
21. Chaos Communications Congress, 27.-29. Dezember 2004, Berlin

Easy Software-Installation

on Linux, Solaris, NetBSD etc.

using pkgsrc

Hubert Feyrer <hubertf@pkgsrc.org>

December 13, 2004

Abstract

The article discusses the problems when installing open source software on Unix(like) systems
and identifies specific areas that need attention, and how they manifest in various architectures of
open source systems today, leading from a rather simple layered theory to a complex graph in reality,
which requires environmental considerations like demands for flexibility and maintainability when
addressed. The pkgsrc system is introduced as a possible solution, which can be used to install
software easily from source, independent of your operating system. A general overview of the
pkgsrc system is given followed by an user-oriented example on how to bootstrap it and compile
packages on a Linux system with a special emphasis of working without root privileges. Operation
of the pkgsrc system is described next, with details of the install process and an overview of
available packages. The article is intended for users of all Unix(like) systems that need to maintain
and update software on a frequently and across various platforms, emphasizing the cross-platform
nature of pkgsrc, which includes Linux, FreeBSD, OpenBSD, MacOS X, Solaris, Irix and even MS
Windows. .

1

Contents

1 Introduction 2

2 Issues managing Open Source software 2

3 A Cross-platform solution: pkgsrc 4

4 Getting started 4

4.1 Grabbing pkgsrc . 4
4.2 Bootstrapping with precompiled binaries . 5
4.3 Bootstrapping by compiling . 5
4.4 Details on the bootstrapped system . 6

5 Using pkgsrc 6

5.1 More details on compiling and installing packages . 7
5.2 Compiling as non-root . 8
5.3 Behind the scenes . 8

6 Overview of available packages 9

7 Conclusion 9

A pkgsrc env no-root 10

1 Introduction

This article contains information abouth the general problems encountered when installing and
managing open source software, and introduces the pkgsrc system, which can be used to install
software easily from source, independent of your operating system. Instead of knowing details like
xmkmf, autoconf, libtool & Makefiles, a simple ”make install” is enough to install a package (and all
its dependencies). The pkgsrc system will download the package’s sources, which is then unpacked,
patched, configured, compiled and installed for later querying and removing. The pkgsrc system is
based on the NetBSD Packages Collection and was ported to a number of other operating systems
like Linux, FreeBSD, OpenBSD, MacOS X, Solaris, Irix and even MS Windows.

2 Issues managing Open Source software

Installation of Open Source software on Unix and Unix-like systems has a number of problems.
First and foremost, there are many programs and lots of version changes. Next, compilation costs
time – everyone who has tried to compile OpenOffice or KDE knows that these packages still need
hours even on latest PC systems. Getting them going on slower, older or non-PC hardware still
is an adventure! The fact that software often is not written with portability in mind doesn’t aid
to this, especially if you’re not on a PC running Linux, but we don’t want to give a c0ding lesson
here.

The installation of software on Unix(like) systems is not trivial either:

• Some basic knowledge about tools is necessary

• There are various ways to configure things (GNU autoconf, Imake, ...)

• There are many side effects depending on other installed packages, compiler switches, etc.

2

• Many inter-depending packages

• Troubleshooting requires expert knowledge

To illustrate the complexity of inter-depending packages, here is a package dependency graph
created from a pkgsrc system running NetBSD1:

The bottom of this graph shows KDE as a big package requiring many smaller and small packages,
which are placed towards the top of the graph. The obvious complexity of the graph comes from
the modularity of Open Source software, where many small packages are used by bigger packages.
The complexity is independent of packaging system and operating system, similar graphs can be
created for each Linux distribution using its preferred packages system.

The solution to this situation depends on the kind of application. In general, a separation between
the base “operating system” and added “applications” need to be made, and depending on the
working environment needed, and there are a number of choices. Classical Unix(like) systems are
rather small systems that don’t come with many applications, but require manual installation of
all software. While this is very difficult to install and needs a lot of know-how, this also leads to a
very flexible software management that is easy to maintain, even without depending on a vendor
providing updates packages. On the other end of the scale are systems that completely integrate
applications and operating system, which leads to easy installation, but if manual installation of
upgrades are required for parts of the system, they usually evolve into maintenance nightmares.
A solution in-between are hybrid systems that come as rather small base operating systems, and
which allow adding software packages easily depending on the kind of application, e.g. installing a
web server will need other software than a desktop machine or database server. These systems are
usually easy to install, and with the aid of a decent packages system, they are easy to maintain.
Figure 1 illustrates the degrees of integration between operating systems and applications.

So, where do you want to go today?

• Easy Installation: choose this if your software doesn’t change often. Use ready-to-user
binary distribution. E.g. for desktop systems install Windows or SuSE Linux from CD/DVD.

• Easy Maintenance: choose this if you have few packages that change a lot. Take a stable
base operating system, and install important packages on your own, e.g. compile on your own
on a webserver with Solaris, Apache and PHP.

• Both: Welcome to pkgsrc!

There are a number of fine packages systems out there that allow easy installation of applications,
and most of these systems are targeted towards one specific operating system or operating system
distribution (usually found in Linux land). Few of these systems work on more than one operat-
ing system, and pkgsrc is introduced here as a packages system that supports a wide number of
platforms.

1Made using pkgdepgraph and dot/graphviz

3

Classic, flexible

software management:

Hybrid systems: Complete integration

of applications and system:

- difficult to install

+ easy to maintain

+ easy to install

+ easy to maintain

+ easy to install

- difficult to maintain

E.g. Solaris, Irix,

Linux From Scratch

E.g. NetBSD, FreeBSD,

Debian & Gentoo Linux

E.g. SuSE, RedHat,

Mandrake Linux

Figure 1: Degrees of integration between operating system and applications

3 A Cross-platform solution: pkgsrc

The pkgsrc system can be used for easy installation and updating of software packages. It is a
source-based package management system which uses original source code for compiling, but also
allows creation and installation of binary packages. The two major components are the management
tools and the packages collection (pkgsrc).

The pkgsrc system handles dependencies between packages automatically with no user interaction.
The system was originally ported from FreeBSD to NetBSD, and uses NetBSD as primary develop-
ment platform today. In addition to NetBSD, pkgsrc was ported to IBM’s AIX, BSDi/WindRiver’s
BSD/OS, Apple’s Darwin, FreeBSD, SGI’s Irix, various Linux distributions, OpenBSD, Sun’s So-
laris, and even Microsoft Windows in combination with Interix (“Services for Unix”, SFU). Linux
distributions known to work with pkgsrc are SuSE 9.0, Debian, ROOT Linux, Slackware, RedHat
8.1/9, Mandrake 9.2, and Bluewall Linux, the latter of which uses pkgsrc as its native packages
system.

4 Getting started

In order to use pkgsrc, the following steps will be discussed:

• Download pkgsrc

• Install the bootstrap kit, either as binary or by compile via pkgsrc/bootstrap

• Install packages:

$ cd pkgsrc/www/mozilla

$ bmake install

4.1 Grabbing pkgsrc

The first step to use pkgsrc is to fetch it. This can either be done by downloading the tar-
archive from ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-current/tar files/pkgsrc.tar.gz, or by us-
ing anonymous CVS, following these steps:

4

$ cd $HOME/OS

$ env CVS_RSH=ssh \

cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot \

co pkgsrc

U pkgsrc/Makefile

U pkgsrc/Packages.txt

U pkgsrc/README

...

As pkgsrc is a fast moving system and frequent updates happen, CVS is better suited for later
updating.

4.2 Bootstrapping with precompiled binaries

Before installing packages, the framework for installing needs to be bootstrapped first. This can
be done by either using precompiled binaries of the framework, or by compiling manually.

Precompiled binaries are currently available for the following platforms:

Darwin 7.3.0/powerpc IRIX 6.5/mips
Darwin 7.0/powerpc IRIX64 6.5/mips
Darwin 6.6/powerpc OpenBSD 3.2/i386
Debian Linux/i386 OpenBSD 3.5/i386
FreeBSD 3.5/i386 Slackware 8.1/i386
FreeBSD 5.1/i386 Slackware 9/i386
FreeBSD 5.2.1/i386 Solaris 8/sparc
Interix 3.5 Solaris 9/sparc

Solaris 9/i386

4.3 Bootstrapping by compiling

An alternative to using precompiled bootstrap packages is compiling them from source, which also
makes sure that the latest changes in the pkgsrc infrastructure are made available. Bootstrapping
is done with the pkgsrc/bootstrap/bootstrap script.

Before starting, a decision needs to be made where packages should be placed into. Usually this
is a place like /usr/local, /usr/pkg or /opt if the system is used site-wide. For demonstration
purpose, the following examples assume that the system should be used without system (root)
privileges, and be installed in the user’s private home directory under $HOME/OS. The pkgsrc

directory can be placed anywhere on the system, it is placed in $HOME/OS/pkgsrc here, and the
operating system used here is SuSE 8.2 system.

The commands for bootstrapping then are:

$ cd pkgsrc/bootstrap

$ export MY_HOME=$HOME/OS/OS-‘uname -s‘

$ export LOCALBASE=${MY_HOME}/pkg

$ export PKG_DBDIR=${MY_HOME}/db/pkg

$./bootstrap \

? --prefix=${LOCALBASE} \

? --pkgdbdir=${PKG_DBDIR} \

? --ignore-user-check

===> bootstrap command: ./bootstrap --prefix=/home/feyrer/OS/OS-Linux/pkg --pkgdbdir=/home/feyrer/OS/OS-Linux/db/pkg --ignore-user-check

===> bootstrap started: Wed Dec 8 14:42:23 CET 2004

Working directory is: work

===> running: /usr/bin/sed -e ’s|@DEFAULT_INSTALL_MODE@|’0755’|’ files/install-sh.in > work/install-sh

===> running: /bin/chmod +x work/install-sh

===> building as unprivileged user feyrer/bedienst

===> Building libnbcompat

===> running: /bin/sh work/install-sh -d -o feyrer -g bedienst work/libnbcompat

5

===> running: (cd work/libnbcompat; /bin/sh ./configure -C --prefix=/home/feyrer/OS/OS-Linux/pkg --sysconfdir=/home/feyrer/OS/OS-Linux/pkg/etc && make)

configure: creating cache config.cache

checking build system type... i686-pc-linux-gnu

checking host system type... i686-pc-linux-gnu

checking whether make sets $(MAKE)... yes

.....

..

.....

/usr/bin/install -c -m 444 linkfarm.cat1 /home3/bedienst/feyrer/OS/OS-Linux/pkg/man/cat1/linkfarm.0

/usr/bin/install -c -m 444 pkg_view.1 /home3/bedienst/feyrer/OS/OS-Linux/pkg/man/man1/pkg_view.1

/usr/bin/install -c -m 444 pkg_view.cat1 /home/feyrer/OS/OS-Linux/pkg/man/cat1/pkg_view.0

===> Installing packages(7) man page

===> running: /bin/sh work/install-sh -c -m 444 files/packages.cat7 /home/feyrer/OS/OS-Linux/pkg/man/cat7/packages.0

Please remember to add /home/feyrer/OS/OS-Linux/pkg/bin to your PATH environment variable

and /home/feyrer/OS/OS-Linux/pkg/man to your MANPATH environment variable, if necessary.

An example mk.conf file "work/mk.conf.example" with the settings you

provided to "bootstrap" has been created for you.

Please copy work/mk.conf.example to /home/feyrer/OS/OS-Linux/pkg/etc/mk.conf.

You can find extensive documentation of the NetBSD Packages Collection

in /home/feyrer/OS/pkgsrc/Packages.txt and packages(7).

Hopefully everything is now complete.

Thank you

===> bootstrap started: Wed Dec 8 14:44:09 CET 2004

===> bootstrap ended: Wed Dec 8 14:55:52 CET 2004

$

After the pkgsrc framework is bootstrapped, paths need to be adjusted as printed at the end of the
bootstrap process, and a call of the pkgsrc “pkg info” command will show that there is already
one package installed:

$ cd $HOME/OS/OS-‘uname -s‘/pkg

$ export PATH=‘pwd‘/bin:‘pwd‘/sbin:${PATH}

$ export PKG_DBDIR=$HOME/OS/OS-‘uname -s‘/db/pkg

$

$ pkg_info

digest-20021220 Message digest wrapper utility

4.4 Details on the bootstrapped system

The binaries installed by the bootstrap procedure provide the core functionality of the pkgsrc
system:

% cd OS/OS-‘uname -s‘/pkg/

% ls bin sbin

bin:

bmake cpio digest ftp

pax tar

sbin:

linkfarm pkg_add pkg_create pkg_info

mtree pkg_admin pkg_delete pkg_view

Important commands to run later are the pkg * programs as well as the bmake program. Manual
pages for all these commands were installed as well, so documentation is readily available with the
help of the Unix “man” command.

5 Using pkgsrc

After the bootstrap procedure has installed all the components needed to build and install packages,
a first small package can be installed. Beware! Make sure that instead of “make” the BSD-

6

compatible “bmake” installed by the bootstrap procedure is being used. GNU make will definitely
not work!

The commands to install the pkgsrc/misc/figlet package are:

$ export MAKECONF=‘pwd‘/pkgsrc_env_no-root # see below

$

$ cd $HOME/OS/pkgsrc

$ cd misc/figlet

$ bmake

...

$ bmake install

...

$

$ pkg_info

digest-20021220 Message digest wrapper utility

figlet-2.2.1nb2 Print text banners in fancy ASCII art characters

The first command (“export MAKECONF=...”) adjust settings so software can be compiled and
installed in a private place. The “bmake” and “bmake install” commands build the program and
installs it into its target directory in $HOME/OS. The “pkg info” command is used to verify that
the package was installed properly, and the “figlet” command can be used now:

$ type figlet

/home/feyrer/OS/OS-Linux/pkg/bin/figlet

$

$ figlet Hello ‘uname -s‘

_ _ _ _ _ _

| | | | ___| | | ___ | | (_)_ __ _ ___ __

| |_| |/ _ \ | |/ _ \ | | | | ’_ \| | | \ \/ /

| _ | __/ | | (_) | | |___| | | | | |_| |> <

|_| |_|___|_|_|___/ |_____|_|_| |_|__,_/_/_\

5.1 More details on compiling and installing packages

The steps above illustrates the basic concept of installing software. This section gives a bit more
information by providing information that is available during the build and install process.

The following output can be expected when building the figlet package:

% bmake

===> *** No /home/feyrer/OS/OS-Linux/../distfiles/pkg-vulnerabilities file found,

===> *** skipping vulnerability checks. To fix, install

===> *** the pkgsrc/security/audit-packages package and run

===> *** ’/home/feyrer/OS/OS-Linux/pkg/sbin/download-vulnerability-list’.

=> Checksum OK for figlet221.tar.gz.

work.i386 -> /home/feyrer/OS/OS-Linux/tmp/misc/figlet/work.i386

===> Extracting for figlet-2.2.1nb2

===> Patching for figlet-2.2.1nb2

===> Applying pkgsrc patches for figlet-2.2.1nb2

===> Overriding tools for figlet-2.2.1nb2

===> Configuring for figlet-2.2.1nb2

===> Building for figlet-2.2.1nb2

gcc -O2 -DDEFAULTFONTDIR=\"/home/feyrer/OS/OS-Linux/pkg/share/figlet\" -DDEFAULTFONTFILE=\"standard.flf\" figlet.c zipio.c crc.c inflate.c -o figlet

chmod a+x figlet

gcc -O2 -o chkfont chkfont.c

%

After compilation, the binaries are installed in a second step:

7

% bmake install

===> Installing for figlet-2.2.1nb2

===> Becoming root@rfhinf032 to install figlet.

Warning: not superuser, can’t run mtree.

Become root and try again to ensure correct permissions.

install -d -o feyrer -g bedienst -m 755 /home/feyrer/OS/OS-Linux/pkg/man/man6

mkdir -p /home/feyrer/OS/OS-Linux/pkg/share/figlet

cp figlet /home/feyrer/OS/OS-Linux/pkg/bin

cp chkfont /home/feyrer/OS/OS-Linux/pkg/bin

chmod 555 figlist showfigfonts

cp figlist /home/feyrer/OS/OS-Linux/pkg/bin

cp showfigfonts /home/feyrer/OS/OS-Linux/pkg/bin

cp fonts/*.flf /home/feyrer/OS/OS-Linux/pkg/share/figlet

cp fonts/*.flc /home/feyrer/OS/OS-Linux/pkg/share/figlet

cp figlet.6 /home/feyrer/OS/OS-Linux/pkg/man/man6

===> Registering installation for figlet-2.2.1nb2

$

5.2 Compiling as non-root

Normally, installation of software needs system (root) privileges, to install software into special
directories that are not writable by normal users. Pkgsrc can be used without these system privileges
to quite some extent. To do so, a number of variables need to be set, and the $MAKECONF environment
variable needs to be pointed at that file:

$ export MAKECONF=‘pwd‘/pkgsrc_env_no-root

$ ls -la $MAKECONF

-rw-rw-r-- 1 feyrer bedienst 816 Oct 6 04:46 /home/feyrer/OS/pkgsrc_env_no-root

The full version of the pkgsrc env no-root can be found in appendix A.

5.3 Behind the scenes

In the above example, a software package was installed in two separate steps with two separate
commands, “bmake” and “bmake install”. It can have been done in one step with just “bmake
install”, and still, building and all the other steps needed first will be performed. If needed, the
steps can be ran manually as well, and the following list shows the commands for manual execution
as well as the action performed:

1. bmake fetch: Download sources

2. bmake checksum: Ensure integrity of sources

3. bmake install-depends: Install required packages

4. bmake extract: Unpack sources

5. bmake patch: Apply patches kept in pkgsrc

6. bmake configure: Configure

7. bmake build: Compile

8. bmake install: Install and register package (for pkg info(1), pkg delete(), etc.)

Other targets that may be useful are:

• bmake package: Create binary package for pkg add(8)

• bmake clean: Remove work directory

8

• bmake deinstall: Deinstall package

• bmake replace: Replace installed package with new version

• bmake update: Rebuild package and all dependencies

These lists are by no means complete. Please see the pkgsrc guide in pkgsrc/doc/pkgsrc.txt and
the packages(7) manpage for more information.

6 Overview of available packages

Currently, pkgsrc itself contains almost 5200 packages, and the SourceForge pkgsrc-wip (“Work
in Progress”) project contains almost 1000 more packages. The packages in pkgsrc are orga-
nized in categories, with one directory per category, and package directories in the category di-
rectory. For example, the Mozilla package can be found in pkgsrc/www/mozilla, KDE3 is in
pkgsrc/meta-pkgs/kde3 and so on.

Here is an example listing all existing categories:

$ cd .../pkgsrc/

$ ls

CVS databases lang pkglocate

Makefile devel licenses pkgtools

Packages.txt distfiles mail print

README doc math regress

archivers editors mbone security

audio emulators meta-pkgs shells

benchmarks finance misc sysutils

biology fonts mk templates

bootstrap games multimedia textproc

cad geography net time

chat graphics news wm

comms ham packages www

converters inputmethod parallel x11

cross

As an example of the WWW category, here is a fraction of the packages contained in it:

$ cd .../pkgsrc

$ ls www

CVS cadaver jakarta-servletap p5-Apache-Test

Makefile calamaris jakarta-tomcat p5-Apache-ePerl

Mosaic cgic jakarta-tomcat4 p5-CGI

SpeedyCGI cgicc jsdk20 p5-CGI-Applicatio

adzap cgilib jssi p5-CGI-FastTempla

amaya checkbot kannel p5-CGI-FormBuilde

analog chimera kdewebdev3 p5-CGI-Kwiki

ap-Embperl clearsilver kimagemapeditor p5-CGI-Minimal

ap-access-referer cocoon lhs p5-CGI-Session

ap-aolserver communicator libghttp p5-CGI_Lite

ap-auth-cookie cronolog libgtkhtml p5-ExtUtils-XSBui

ap-auth-ldap curl libwww p5-FCGI

ap-auth-mysql cvsweb liferea p5-HTML-Clean

ap-auth-pam dillo links p5-HTML-FillInFor

ap-auth-pgsql drivel links-gui p5-HTML-FixEntiti

ap-auth-postgresq elinks lynx p5-HTML-Format

ap-auth-script elinks04 mMosaic p5-HTML-Mason

ap-bandwidth emacs-w3m make_album p5-HTML-Parser

...

7 Conclusion

This article contains a small and short overview about software management, showing the impor-
tance of systems to assist installation of software packages in systems that use a large number of
modules as can be found in Open Source systems today, and introduces the pkgsrc system which can
be used on a variety of hardware and operating system platforms to install and maintain software.

9

More information about internals of the system, dependency handling etc. would be beyond the
scope of this document, but can be found in the pkgsrc guide at pkgsrc/doc/pkgsrc.txt and on
the websites of the pkgsrc and the NetBSD projects, see:

http://www.pkgsrc/org/

http://www.NetBSD.org/Documentation/pkgsrc/

A pkgsrc env no-root

make(1) include file for NetBSD pkgsrc as non-root

#

Usage:

env MAKECONF=/path/to/pkgsrc_env make ...

#

(c) Copyright 2003, 2004 Hubert Feyrer <hubert@feyrer.de>

#

MY_NAME!= whoami

MY_GROUP!= groups | sed ’s/ .*$$//’

MY_OS!= uname -s

MY_HOME= ${HOME}/OS/OS-${MY_OS}

BINOWN= ${MY_NAME}

BINGRP= ${MY_GROUP}

SHAREOWN= ${MY_NAME}

SHAREGRP= ${MY_GROUP}

MANOWN= ${MY_NAME}

MANGRP= ${MY_GROUP}

WRKOBJDIR= ${MY_HOME}/tmp

PKG_DBDIR= ${MY_HOME}/db/pkg

OBJMACHINE= 1

DISTDIR= ${MY_HOME}/../distfiles

PACKAGES= ${MY_HOME}/packages

X needs xpkgwedge installed!

LOCALBASE= ${MY_HOME}/pkg

VARBASE= ${MY_HOME}/var

SU_CMD= /bin/sh -c

FETCH_CMD= ${LOCALBASE}/bin/ftp

PAX= ${LOCALBASE}/bin/pax

CHOWN= true

CHGRP= true

BINMODE= 755 # for Solaris strip(1)

For apache (needs patch to use VARDIR):

APACHE_USER= ${MY_NAME}

APACHE_GROUP= ${MY_GROUP}

The latest version of this file can be found at http://www.feyrer.de/OS/pkgsrc env no-root!

10

