Eine Dissertation der Universgit Regensburg:

System Administration Training
In the Virtual Unix Lab

An e-learning system with diagnosis via a domain specifiglage as
base for an architecture for tutorial assistance and useayatn

Autor: Hubert Feyrexhubert@feyrer.de >
Erstbetreuer: Prof. Dr. Rainer Hamratiner
Zweitbetreuer: Prof. Dr. Christian Wolff
Eingereicht am: 25. Januar 2008

Mundliche Pafung: 11. November 2008

Preface

Development of the basic training system was funded as painedHWP-project of
the German government, the system was implemented at thgp@enScience de-
partment of the University of Applied Sciences (Fachhobbse FH) Regensburg,
Germany.

As the basic system used in this work was developed in Gerargguhge, usage ex-
amples, exercises and screenshots are in that languagewaditki as a whole is written
in English to match the intended audience. The male gendeei$throughout the text
for consistency and simplicity.

Acknowledgements

I'd like to express words of gratitude to Profirgen Sauer as my longstanding mentor;
Prof. Dr. Rainer Hammwahner the principal advisor of this work, and Prof. Dr.
Christian Wolff as co-principal advisor; The departmenGafmputer Science at the
University of Applied Sciences of Regensburg, especiildydfficiating dean Prof. Dr.
Kucera and the former dean Prof. Dr. Schicker, kindly suggzbthe work, and last
but not least I'd like to thank my parents and friends for ldit support.

Further thanks go to the NetBSD, R and PostgreSQL projecthéir great and free
software; the Virtual Unix Lab beta-tester Holger Amannpa®ttl, Glinter Schwarz,
Holger Nosekabel, Stefan Zimmermann, DaNiel Ettle, and Michaestjobe students
of the IST semester in the summer semesters from 2004 to 280Well as to my
proofreaders Verenadimler, Andreas Fassl, Sabine Salzl, Stefan SchumacteteG
Schwarz, Matthew Sporleder, and Gabriele Steinberger.

Without them, this work would not exist in its current fornday.

Hubert Feyrer
Regensburg, November 24th, 2008

Abstract

This work covers training of system administration by idnoing a system called the
Virtual Unix Lab, and illustrates advanced topics based.ohtie work is divided into
three parts.

In the first part, the goals of the Virtual Unix Lab is illusied and compared to related
works, followed by observations about education of systemiaistration. General
learning theories are observed and compared to an existitigré on system adminis-
tration, showing that there is demand for practical exescia advanced topics.

The second part describes how diagnosis of the Virtual Uaix éxercise results and
feedback to the user are realized with the help of a domaicifspéanguage. After
observing the fundamentals of domain specific languagesjekign of diagnosis and
feedback to the learner is presented, the Verification UniBin Specific Language
(VUDSL) is described, and architecture and implementatiithin the existing Virtual
Unix Lab are shown. An evaluation of the system was perforiaued shows that
repeated exercises show improved performance of the g8jded that the system is
regarded as useful by students in general.

The third part adds tutoring and user adaption. Based orutidaimentals of tutoring
and user adaption, an architecture for a tutoring compdioerthe Virtual Unix Lab
based on an overlay architecture is described. Aspectsgdied include on-line diag-
nosis, feedback, assistance to the user, consideratiotisefaiser model, and impact
on the user interface. User adaption is based on the userl fmaitteby the tutoring
component. It observes structural and longitudinal céescy, and provides personal-
ized feedback to the student. An architecture is descritefits in the overall Virtual
Unix Lab architecture, and possible extensions for the VUDSed for diagnosis and
feedback are proposed.

Contents (short)

Introduction
Problem domain and goal of the Virtual Unix Lab
Related works

Education of system administration

Diagnosis and feedback

with a domain specific language

4

Basic design of the Virtual Unix Lab
Introduction of domain specific languages

Architecture and implementation of diagnosis and feedbdc with a do-
main specific language

Evaluation of the Virtual Unix Lab

Tutoring and user adaption
Introduction of tutoring and user adaption

Design of tutoring and user adaption

11

23

53

69

81

129

179

211

CONTENTS (SHORT)

10 Architecture of tutoring

11 Architecture of user adaption

12 Conclusion

List of figures

List of tables

Bibliography

A

Example exercise components

Database structure

Evaluation data and code

A theory of bugs — attempt of a reconstructive approach

Analysis of exercises under tutorial and adaptive aspects

221

247

271

272

278

280

311

345

351

383

387

Contents

| Introduction

1 Problem domain and goal of the Virtual Unix Lab 3
1.1 Problem domain of the Virtual UnixLab 3
1.2 The goal of the Virtual UnixLab 6
1.3 Howthisbookisorganized 8
2 Related works 11
2.1 Computer science education 11
2.2 System administration education 12
2.3 Training systems for system administration 13
2.3.1 Systemsfocusedoneducation 13
2.3.2 Systems focused ondeployment 14
2.3.3 Systems offering user-levelaccess 15
2.4 Domain specificlanguages 16
2.5 Result verification, diagnosis and feedback 17
2.6 Tutoring systems in Unix education 18
2.7 Adaptive systems in Unix education 19
2.8 Othervirtuallabs 20

2.9 \Virtualization & emulation L L. 02

iv CONTENTS

3 Education of system administration

3.1 Fundamentals of education
3.1.1 Psychology and learningtheory
3.1.2 Didactic realization, instruction theory and instional design
3.1.3 Dimension of implementation and adaption
3.1.4 Alternative learning-theoretical approaches
3.1.5 Education —ideal progressionandtools

3.2 The “System Administration”class
3.2.1 History andtargetaudience
3.2.2 Currentcurriculum oL
3.23 Courselayout
3.2.4 Didacticinstruments

3.3 Analysis of the current situation

3.4 Futuredirections

Il Diagnosis and feedback

with a domain specific language

4 Basic design of the Virtual Unix Lab
4.1 A user-level walkthrough of the Virtual UnixLab
4.2 Hardware and network setup of the Virtual Unix Lab

4.3 Software components of the Virtual UnixLab

5 Introduction of domain specific languages
5.1 Classificationoflanguages

5.2 Attributes of domain specific languages

27

53

53

64

65

CONTENTS v

5.3 Designpatterns 72
5.4 Choosing an implementation languages 77
Architecture and implementation of diagnosis and feedbdc with a do-
main specific language 81
6.1 Requirements of exercise verificaton. 81
6.2 Roadmap of implementation 83
6.2.1 Stepwiserefinement 83
6.2.2 Exercisephases 84
6.2.3 Whatandhowtoverify 85
6.3 StepO:Basicdesign. 86
6.4 Step I: Instructions and checks notcoupled 87
6.4.1 Components 87
6.4.2 Integration andinteraction 92
6.4.3 Summary and suggested improvements 97
6.5 Step lI: Instructions and checks coupled 97
6.5.1 Improved check primitives 97
6.5.2 Coupling of exercisetextandchecks 021
6.5.21 Options 103
6.5.2.2 Data structure representation 105
6.5.2.3 Forming a domain specific language 106
6.5.3 Givingfeedback 107
6.5.4 Creating a system front-end with check scripts 110
6.5.5 Integration andinteraction 411
6.5.6 Summaryofstepll 122

6.6 The Verification Unit Domain Specific Language (VUDSL) 122

Vi CONTENTS
6.7 Conclusion of diagnosis and feedback with a domain fipdahguage 124
6.8 Future Perspectives 125
7 Evaluation of the Virtual Unix Lab 129
7.1 Whattoevaluate 129
7.2 Analysis of data gathered during student exercises 131
7.2.1 Methodology ofthe dataanalysis 131
7.2.2 Number of exercises takenandrepeated 32 1
7.2.3 Performance of repeated exercises 33 1
7.2.4 Results of selected exercise topics 136
7.25 Exerciseduration oL 146
7.2.6 Exercisetime 149
T2.7 SUMMANY o o e e e e e e e 150
7.3 Analysis of the user questionnaire 155
7.3.1 Methodology of the questionnaire analysis 155
7.3.1.1 Aspects evaluated by the questionnaire 156

7.3.1.2 Design and implementation of the questionnaire .56 1

7.3.1.3 Evaluationmethods 157
7.3.2 Evaluation of useracceptance 158
7.3.2.1 Questionnaireresults 158
7.3.2.2 Interpretation of the questionnaire results 159
7.3.3 Evaluation of the course of exercises 159
7.3.3.1 Questionnaireresults 159
7.3.3.2 Interpretation of the questionnaire results 160
7.3.4 Evaluation of the use of learning material 161

7.3.4.1 Impact of learning materials ingeneral 161

CONTENTS

Vii

7.4

7.5

7.3.4.2 Impact of learning materials during Virtual Unixd_a
EXEICISES i 163

7.3.4.3 Impact of the “SA’ lecture for exercises in the Vir-

tualUnixLab 165
7.3.4.4 Impact of the “SA’ lecture notes for exercises in the
VirtualUnixLab 166
7.3.4.5 Interpretation of the questionnaire results 167
7.3.5 Evaluation of the target audience 68 1
7.3.5.1 Questionnaireresults 169
7.3.5.2 Interpretation of the questionnaire results 170
7.3.6 Summary e 170
Otherasepctstoevaluate 2 17
Conclusion of the evaluation 751

Il Tutoring and user adaption

8 Introduction of tutoring and user adaption 179
8.1 Fundamentalsoftutoring, 917
8.1.1 Approachingtutoring 180
8.1.2 Theteachingmodel 181
8.1.2.1 Teaching and didactic operations 182
8.1.2.2 Methods for plan recognition and assistance . . . 4 18
8.1.2.2.1 Classicalapproaches 184
8.1.2.2.2 Cognitiveapproach 185
8.1.2.2.3 Linguisticapproach 186
8.1.2.2.4 Artificial intelligence 186

8.1.2.2.5 Semantic networks and ontologies 188

viii CONTENTS

8.1.2.26 Framesandscripts. 189

8.1.2.2.7 Bayesiannetworks 190

8.1.2.3 Choosingamethod 190

8.1.3 Thedomainmodel 191

8.14 Theusermodel 192
8.1.4.1 Theoriesofbugs 193
8.142 Viewpoints. 194
8.1.43 Diagnosis 195
8.1.4.3.1 Behavioral diagnosis 196

8.1.4.3.2 Epistemicdiagnosis 197

8.1.4.3.2.1 Directassignment of credit and blame 197

8.1.4.3.2.2 Structural consistency 199

8.1.4.3.2.3 Longitudinal consistency 199

8.1.4.3.3 Diagnosticdata 200

8144 Feedback. 201

8.1.5 Theuserinterface. 202

8.2 Fundamentals of user adaption 03 2

8.2.1 Themeaningofcontext 207
8.2.2 Adaptive services and multipleagents 208

8.2.3 Modelingtechniques 208

8.24 Adaptiveaxes 210
9 Design of tutoring and user adaption 211
9.1 Goalsoftutoringanduseradaption. 211
9.2 Methodology of tutoring and user adaption. 212

9.3 Thedomainmodel 212

CONTENTS iX

9.3.1 Contentdecomposition 213
9.3.2 Considerations foratheoryofbugs 521
9.3.2.1 Adjusting the domainmodel 216
9.3.2.2 Analyzing existing exercisedata 216
9.3.2.3 Resultsandconclusion 217
9.4 Software architecture oL 921
10 Architecture of tutoring 221
10.1 Establishing the teachingmodel 221
10.1.1 Selectioncriteria 222
10.1.2 Classical approaches with overlay architecture 222
10.1.3 Cognitiveapproach 223
10.1.4 Linguisticapproach. 224
10.1.5 Artificial Intelligence based approach 225
10.1.6 Semantic networks and ontologies 27 2
10.1.7 Framesandscripts 228
10.1.8 Bayesiannetworks 229
10.1.9 Comparison o 230
10.2 Using model tracing for diagnosis during the exercise. 232
10.3 Investigating on-line diagnosis 232
10.4 Giving feedback and assistance 235
1041 Goal. 235
10.4.2 Assumptions 236
10.4.3 Challenges e 236
10.4.4 Realization 237

10.4.4.1 Contents 237

X CONTENTS

10.4.4.2 Formoffeedback 238
10.4.5 Impact on organization of exercises and learningrizht . . 239
10.5 Considerations fortheusermodel 240
10.6 Impactontheuserinterface 241
10.6.1 Communicationchannels. 242
10.6.2 Analysis of the current user interface 242
10.6.3 Blending information into the web-based user-fatar 245
10.7 Summary e e 245
11 Architecture of user adaption 247
11.1 Establishing and maintaining the usermodel 247
11.1.1 Initialization 248
11.1.2 Clustering e 249
11.1.3 Observeddata., 249
11.1.4 Updatingtheusermodel 249
11.1.5 Accommodating plan recognition 025
11.2 Adaptive axes o v v i e 251
11.3 Structuralconsistency e 252
11.3.1 Observing exercisevelocity 225
11.3.2 Observingmasteredskills 253
11.3.3 Observinghelprequests 253
11.3.4 Adjustingtheusermodel 254
11.3.5 Ametricforevaluation 255
11.4 Longitudinalconsistency 256
11.4.1 Assumptions and methodology 256

11.4.2 Descriptiveanalysis, 257

CONTENTS

xi

11.4.2.1 Interpolationvs. moredata

11.4.2.2 Detectingspeedchanges.

11.4.2.3 Observations for repeated exercises

11.4.2.4 Speed and acceleration of progress

11.4.25 Datamodelandstorage

.1 25

11.4.2.6 Drawing conclusions from speed and acceleratioB58

11.4.3 Indicative analysis,

11.5 Personalizingfeedback

11.5.1 Adjustingofhelpcontents
11.5.2 Handling non-standard exercise progress

11.5.3 Adjustingthesystem

11.5.4 Preventing abuse of the helpsystem
11.6 Extending the VUDSL for user adaption

11.6.1 VUDSL extensions for structural consistency

11.6.2 VUDSL extensions for longitudinal consistency

11.6.3 VUDSL extensions for personalized feedback

11.6.4 OtherVUDSL extensions

11.7 Summary o e e e

12 Conclusion

List of figures

List of tables

Bibliography

A Example exercise components

272

278

280

311

Xii

CONTENTS

Al

A2

A3

A4

A5

A.6

Exercisetextsforusers L. 131
A.1.1 Network Information System (NIS) exercise 311
A.1.2 Network File System (NFS) exercise 331
Exercises including text and checkdata 314
A.2.1 Network Information System (NIS) exercise 314
A.2.2 Network File System (NFS) exercise 831
The VUDSL processomiebung2db 321
Complete lists of checks used inexercises 325
A.4.1 Network Information System (NIS) exercise 325
A.4.2 Network File System (NFS) exercise 632
List of check scripts and parameters 327
Selectedcheckscripts 932
A6l Stepl 329
A.6.1.1 netbsd-check-fingersh 329
A.6.1.2 netbsd-check-masterpw.sh 330
A.6.1.3 netbsd-check-pkginstalled.sh 330
A.6.1.4 netbsd-check-pw.pl 330
A.6.1.5 netbsd-check-usershell2.sh 331
A.6.1.6 check-program-output 331
AB.2 Stepll. 333
A.6.2.1 admin-check-clearharddisk 333
A.6.2.2 admin-check-makeimage 333
A.6.2.3 check-file-contents 336
A.6.2.4 unix-check-user-exists 337

A.6.2.5 unix-check-user-shell 338

CONTENTS Xiii
A.6.2.6 unix-check-user-password 340
A.6.2.7 unix-check-process-running 341
A.6.2.8 netbsd-check-rcvar-set 342
B Database structure 345
B.1 Table:benutzer 345
B.2 Tableirechner 345
B.3 Table:iimages 346
B.4 Table:uebungen 346
B.4.1 Definition 346
B.42 Examplerecords 346
B.5 Table:uebung setup 347
B.6 Table:uebungs checks 347
B.6.1 Definition 347
B.6.2 Examplerecords 348
B.7 Table:buchungen 348
B.7.1 Definition 348
B.7.2 Examplerecords 348
B.8 Table:ergebnis checks 349
B.8.1 Definition 349
B.8.2 Examplerecords, 350
C Evaluation data and code 351
C.1 Questionnaire: questions —raw format 351
C.2 Questionnaire: questionsandresults 353
C.3 Exercise results: selected SQL queriesandresults 371

Xiv CONTENTS

D Atheory of bugs — attempt of a reconstructive approach 383

E Analysis of exercises under tutorial and adaptive aspects 387

Part |

Introduction

Chapter 1

Problem domain and goal of the
Virtual Unix Lab

This work is about education of system administration. Wfth increasing com-
plexity of today’s IT systems and their related managemantesponding education
becomes more and more important. This work describes theaViunix Lab, which
is an interactive course system that supports electroainileg (e-learning) for that
purpose.

The basic implementation of the Virtual Unix Lab as framekfar performing practi-
cal exercises for Unix system administration was createthguhe “Praktikum Unix-
Cluster-Setup” project as part of the “Hochschul-Wissbafts-Projekt” (HWP) of
the German ministry of education and research (Bundestainisn fur Bildung und
Forschung, BMBF). The system was designed to consist of sles@mponents and
most of the implementation was done as diploma thesis at theetsity of Applied
Sciences Regensburg, see [Zimmermann, 2003]. The resthegbroject was not
fully functional, and this work puts a focus on those missiognponents — diagnosis,
feedback, tutoring and user adaption.

This chapter outlines the problem domain in which the foltaywvork is performed
in, including a brief description of unterlying terms andated working areas. The
second section identifies the goal of the Virtual Unix Lab hod it will be reached.

1.1 Problem domain of the Virtual Unix Lab

This work describes the Virtual Unix Lab under aspects of jpoter science and in-
formation science. This section lists aspects that aréectta the problem domain.

1 [Feyrer, 2004c]

CHAPTER 1. PROBLEM DOMAIN AND GOAL OF THE VIRTUAL UNIX
4 LAB

What is “e-learning”? Teaching can be seen as knowledge communication. The goal
of knowledge communication is to improve knowledge in a stucthrough
learning. The process of knowledge communication can baresgd by means
of electronic communication, which converges into the téefectronic learn-
ing” or in short, “e-learning? The Virtual Unix Lab system introduced here
borders both the “knowledge” and the “communication” parthat it defines
what and how to teach.

What does “virtual” mean? The term “virtual” has several meanings. In the educa-
tional environment, separation of space is meant, deaayifiie location of the
student from that of the teacher by having them meet in ad&lrtlassroom”.
The Virtual Unix Lab provides such a separation, which casts a real lab in
which a student has to go to for all interaction with the syste happen.

A different approach to the term would be by using virtual hiaes to realize
the lab environment. This is not on focus here, but a poshililee extension as
suggested by some of the related works outlined in chapter 2.

Why system administration? System administration is an area where many students
that graduate in computer science find employment. Follgvwitubwieser,
2000, pp. 63], the human role in the management of informadigstems is
not only setup and maintenance of systems, but also to cétaiprovide infor-
mation on the system status and setup.

No fixed curriculum exists for education in the area of systministration

in the large. The topic of system administration itself isdasing on many
major technical and administrative topics shown in figuz, bf which each

one is taught well to students: operating systems, netw@kagement, sys-
tems and software engineering, security, and law. Systemirgstration itself

requires comprehensive thinking, combining of known ancbdeented compo-
nents, mental transfer and application of expert knowleé#fgethermore, prob-
lem solving strategies are required, as componentsadavork as expected or
documented at many times.

This existing situation, plus personal interest in systeimiaistration and re-
lated areas, led to work on the Virtual Unix Lab, and this work

Why Unix? Besides Microsoft Windows, a number of operating systerasdan be
found today are grouped under the term “Unix.” Originatimgni AT&T in
1969, there are many Unix flavours now, of which Solaris, N6EBand Linux
are just a few examples, seegfienez, 2007] for a complete overview. Several
years of experience in administrating various Unix deinest, esp. Sun’s So-
laris, personal work on NetBSD, a successor of BSD Unix, aokwn the g4u
project have influenced the work described here. The infeiaffects realiza-
tion of the Virtual Unix Lab on one side, and the contents anVrtual Unix
Lab on the other side.

1 [Kuhlen and Laisiepen, 2004] pp. 469

1.1. PROBLEM DOMAIN OF THE VIRTUAL UNIX LAB 5

Tabelle 5. Befehie zum Ersteilen eines Aliasnamens auf der Riickschieifeneinheit (lo0)
fir den Dispatcher

AIX ifconfig 100 alias Ciuster- Adresse newnask Netzmaske
|HPUX

Linux

052

e netmask 0.0.0.0 up

sse 127.0.01 up

Figure 1.1: Instructions for the command line and a graphisar interface. Image
source: [Emzy Bilder Galerie, 2007]

While Unix-derivatives can be managed via graphical ugerfaces (GUI), sys-
tem administration usually happens via a command linefatterand an assorted
set of command line tools. This has proven to be easier fonrdeatation and
learning, as the steps to perform a certain configuratigngtewn in figure 1.1
documents: The command is similar for the five Unix systeras\Windows as
a system that requires use of a GUI for administration neddsmore docu-
mentation to perform the same single step.

The text-based nature of Unix is considered a bonus whenngexcting and
learning to use and administrate a Unix-based operatingrsys. Also, as
Unix systems are compatible among each other, and as maravaitable as
Open Source, their operation can be verified as part of thetgtand adaption
process. The Unix system interfaces of have remained sta&blemany years,
which provides enduring benefits and return of investmentefarners.

Finally, the increasing popularity of Linux as a Unix-likperating system, and
the demand for knowledge and education on those systemstisesireason to
focus on Unix systems. At the same time, the system desigmedfittual Unix
Lab is kept flexible enough to also accommodate exercises eterogeneous
environment, or even one that consists only of machinesmgriviicrosoft Win-
dows.

Why information science? Information science acts in the triangle of science, infor-
mation technology and man. It uses theories from parts daksciences and
humanities on one side, and engineering sciences on thesitlee Topics that
information science is related to include linguistics,lpsdphy, computer sci-
ence, communication science, psychology, economics,falitics and sociol-

1 [Norman, 2007]
2 [Hall, 2007]

CHAPTER 1. PROBLEM DOMAIN AND GOAL OF THE VIRTUAL UNIX
6 LAB

Systems

User
Education

Network

tation

Figure 1.2: Topics related to system administration

ogy. As such, it is an interdisciplinary sciefcéigure 1.3 illustrates some of its
working areas.

A number of areas which are touched within this work inclueleaning, ed-
ucation science, human machine interfacing, tutoringesgst user adaption,
linguistics, knowledge management and information preiogs

Both system administration and information science are$opith many facets, which
are combined here to solve the lack of education in formea.arfehis follows the
paradigm described in [Dagdilelis and Satratzemi, 1998} teaching of technical
topics also needs to give attention to didactics, not ordiirtelogy.

1.2 The goal of the Virtual Unix Lab

Didactical analysis of the “System Administration” classchapter 3 identifies a lack
of interactive, hands-on exercises. The goal of the Virtdiailx Lab is to provide a

system that allows students to do practical exercises tesyadministration, with an
emphasis on cluster management.

The following key items are important for reaching this goal

1 [Kuhlen and Laisiepen, 2004] pp. 5

1.2. THE GOAL OF THE VIRTUAL UNIX LAB

Computer
Science

Psychology

Operations
Research

Cognitive
Studies

Studies of
Computing

Science &

Technology
Studies

Figure 1.3: Topics of information science. Image sourcarf@ll University, 2007]

e An interactive course environment for access

Diagnosis via verification and analysis of exercise results

Elaborated feedback on the exercise results

e A tutorial component to assist learning students

User adaption to accommodate the system do students

Exercises with full access to lab machines, including sygtevileges

From an instructional design point of view, the Virtual Unii&b provides a “transac-
tion shell” component in the sense of Merrill's “Componerisiay Theory?, where
the component can be understood as a mutual, synchronoarge of information
between the learner and the learning system, thus allovasg-based learning. The
Virtual Unix Lab acts like the simulations used by Kuypand Schulmeistér with
the added improvements of result verification, elaboragedihack, a tutoring com-
ponent, and user adaption. Following Hubwieser, the Mittlrax Lab acts as medium

1 [Merrill, 1983] pp. 279

2 [Kuyper, 1998] p. 51

3 [Schulmeister, 2007] pp. 351
4 [Schulmeister, 2007] pp. 104

CHAPTER 1. PROBLEM DOMAIN AND GOAL OF THE VIRTUAL UNIX
8 LAB

to support teaching the role of the system administratoafonformation system: in-
stalling and maintaining the system as well as obtainingdisplaying informatiof.

The key feature of the Virtual Unix Lab is that exercises heappn real systems with
all possible errors and configurations, not on a simulatstesy with restricted func-
tionality. Analysis of exercise results and feedback ase glerformed on those real
systems, which sets a number of demands for the result \&iificprocess.

Other training systems have tried to provide assistanc&Jfox systems, too. One
notable example is the Berkeley Unix Consultant projectwbich its author stated
that their “goals were not strictly technological, we did feel that it was necessary
[...] to produce a product that could actually be used in &weald setting.® In
contrast to that, the Virtual Unix Lab has a clear goal of bedble to be used in a
real-world exercises, which already is done for the systestidbed so far, in spite of
being not strictly technological in this work. While the hitecture definitions for the
tutoring and user adaption do not include practical retitimathey are still designed
with this goal to eventually implement them.

The Virtual Unix Lab is intended to provide an adaptive tiutgrsystem, not a learning
management system. Learning management systems andasieirand possibilities
are described in chapter 3, [Yacef, 2004, p. 344], [Bruns@ajwski, 2002, p. 16].
Embedding an adaptive web based educational system likeirieal Unix Lab into
a learning management system requires correspondindaicést These interfaces
support describing of exercises for selecting and comgasinrses. This is important,
as learning management platforms are not monolithic, diptsforms (like e.g. Web-
CT and Blackboard) but more and more consist of open ar¢hieswith components
that can be freely used, like uPortal, OKI, CampusSourceCpehUSS$. As no single
interface can be considered as established at this pdiegration of the Virtual Unix
Lab into a learning management system is not covered in thik.w

1.3 How this book is organized

The following chapters show how the goal of the Virtual UnialLis reached. They
are separated into three parts.

In the first part, chapter 1 defines the goals of Virtual Unik lithis work, followed
by an illustration of related works in chapter 2. Educatiérsystem administration
is observed in chapter 3 as background its relationshipetdetirning system that the
Virtual Unix Lab provides.

The second part covers diagnosis of the Virtual Unix Lab @gerresults and feed-

1 [Hubwieser, 2000] p. 39, pp. 63
2 [Wwilensky et al., 1988] p. 36
3 [Nodenot et al., 2004] pp. 94

1.3. HOW THIS BOOK IS ORGANIZED 9

back to the user with the help of a domain specific language cMerall design of
the system is outlined in chapter 4, chapter 5 covers thegimeatals of domain spe-
cific langauges, and chapter 6 illustrates architectureimpiementation within the
existing Virtual Unix Lab in detail. The resulting systemswvavaluated as described
in chapter 7.

The third part adds tutoring and user adaption to the bastodliUnix Lab system.
Related fundamentals are covered in chapter 8, and thellbdesign is outlined in
chapter 9. An architecture for a tutoring component for thieudl Unix Lab is de-
scribed in chapter 10. Based on tutoring, an architectueeusier adaptive component
is described in chapter 11.

Chapter 12 draws conclusions from the work on exercise tresufication, domain
specific languages, tutoring, and user adaption, and gitaeef perspectives.

A number of appendices support the above chapters by gixagpgle exercise com-
ponents in appendix A and illustrating the database streatithe Virtual Unix Lab
in appendix B. Appendix C lists data and program code useihgl@valuation. Ap-
pendix D shows the data that was used to attempt a recongéragiproach for a
theory of bugs in system administration, and appendix Esgiletails on an analysis
of exercises under tutorial and adaptive aspects.

CHAPTER 1. PROBLEM DOMAIN AND GOAL OF THE VIRTUAL UNIX
10 LAB

Chapter 2

Related works

This chapter shows works that are related to the Virtual Waix in some way. It illus-
trates works related to Computer science education in gerard System administra-
tion education in particular. A number of training systerosdystem administration
and related topics are introduced, which leads to an obisenvaf the status quo on
Domain Specific Languages in the domain of operating systenmghat extent result
verification is available in training systems, and the aliity and state of tutoring
systems and adaptive systems in Unix education. OtherVildbs that cover related
topics are considered next, closing with a brief overviewhefstatus of virtualization
and emulation.

2.1 Computer science education

The Virtual Unix Lab’s application domain is in the wider fiebf computer science
education. Related discussion — especially in Europe — i rfazused on the di-
dactics of computer science. Related keywords are “Com&dence Education”
(CSE) and “Didaktik der Informatik” (DDI). A list of univeiges in Europe that do
research and teaching in that field is listed in table 2. lilairfists for the USA can be
found at the websites of the ACM Special Interest Group fan@oter Science Educa-
tion (SIGCSE) at [SIGCSE, 2007], and of the Computer Sciflieaeher Association
(CSTA) at [CSTA, 2007].

Care should be taken that the level of computer science &dnda often focused on
the level of highschool/K12 rather than the scientific leveliniversities or colleges.
Furthermore, computer science education is often perfdrseart of a general edu-
cation of teachers for e.g. math and physics in the correipgriepartments, as they
use the computer as tool. A difference between this focustlmene of computer
science education in computer science departments carpbetex.

11

12

CHAPTER 2. RELATED WORKS

| University | Homepage \
Uni Antwerpen http://www.ua.ac.be/main.aspx?c=.VAKBESE2005&n=2890 7
Uni Athen http:/iwww.di.uoa.gr/en/research_act.php?id=5
Uni Bayreuth | http://did.inf.uni-bayreuth.de/
FU Berlin http:/Awww.inf.fu-berlin.definst/ag-ddi/
Uni Dortmund | http://ddi.cs.uni-dortmund.de/
TU Dresden http://dil.inf.tu-dresden.de/
Uni Erlangen http://ddi.informatik.uni-erlangen.de/
Uni Frankfurt | http:/www.informatik.uni-frankfurt.de/"poloczek/
Uni Jena http:/Aww.uni-jena.de/Didaktik_der_Informatik.html
TU Minchen | nitp://ddi.in.tum.de/
Uni Minster http://ddi.uni-muenster.de/
Uni Paderborn http://ddi.uni-paderborn.de/
Uni Passau http://lehramt.fmi.uni-passau.de/informatik/
Uni Potsdam | nhttp://ddi.cs.uni-potsdam.de/
ETH Zirich http:/Aww.inf.ethz.ch/education/courses/#dida

Table 2.1: Education of computer science at European siiies [cited 2007-08-16]

Both SIGCSE and CSTA offer cooperation in the area of conrmdience education,
a comparable chapter is available in the German Geseltsithidhformatik (Gl) [Gl,
2007]. Related publications that cover computer scienceaibn esp. from the di-
dactic side include [Hubwieser, 2000], [Humbert, 2006]] &chubert and Schwiill,
2004].

2.2 System administration education

After graduation, many students of computer science aate@ttechnical subjects like
math and physics, find work in the area of system administmatfet, system admin-
istration education at large is not common as part of commmaience education today.
Instead of focusing on system administration, a numbermitsotouch it from differ-
ent angles as shown in figure 1.2, including operating systeetwork management,
databases, and management of information security (ViI&} This section gives a
number of pointers to ongoing research and education féesyadministration.

When looking at the list of universities that offer specialicses on system adminis-
tration in table 2.2, it is obvious that more entries with “Fékist, i.e. schools that
are focused more on practice than on theory. This emphattizgzoint that system
administration is mostly used as an add-on when performihgaion and research

1 [Corbesero, 2003]

2 [Adams and Erickson, 2001]

3 [Mata-Toledo and Reyes-Garcia, 2002]
4[Yang, 2001]

2.3. TRAINING SYSTEMS FOR SYSTEM ADMINISTRATION 13

[University [Homepage \
FH AUngUfg http://www.fh-augsburg.de/informatik/vorlesungen/un ix/index_i.html
FU Berlin http://iwww.mi.fu-berlin.de/kvv/?veranstaltung=279

Uni Bielefeld http:/Awww.rvs.uni-bielefeld.de/lecture/SysAdmin/
TU Chemnitz | http:/iwww.tu-chemnitz.de/urz/lehre/psa/
FH Hagenberg http://cms.fh-hagenberg.at/_studienplan/1_0/sam/

FH Isny http://www.misc.st23.org/sysadmin/
Uni Mainz http://iwww.zdv.uni-mainz.de/ak-sys/ak-sys-index.htm |
Uni Muenster | nttp:/iwww.uni-muenster.de/ZIV/Lehre/2007_Wintersem ester/kse2.html

FH Regensburg nttp:/iwww.feyrer.de/SA/

Table 2.2: Education of system administration at univiersitcited 2007-08-16]

on other topics, rather than being a separate topic on its own

A few theoretical considerations about teaching systemimidtration can be found
in [Burgess, 2000], example course material for teachirgiesy administration are
available in [Corbesero, 2003], [Campbell and Cohen, 2608][Feyrer, 2005].

Finally, the USENIX Special Interest Group for Sysadmind®E&) focuses on sys-
tem administration from various angles, including eduwatnd professional devel-
opment. An — unfortunately somewhat dated — overview idats in [Kuncicky and
Wynn, 1998].

2.3 Training systems for system administration

After outlining the general state of computer science arstlesy administration edu-
cation, this section gives an overview of training systefg choice is split into three
parts, of which the first one describes systems that comestids the Virtual Unix
Lab due to their focus on education. The second part descsiywtems that are also
available for training, but where the focus is more on thémézal side of the system,
including setup, deployment and access. Last, a few syséeenmitroduced that al-
low training many Unix and system administration skills Biedng user-level access,
with no special emphasis on education, training, or feeklbac

2.3.1 Systems focused on education

The following systems offer training for system administria and related topics as
discussed above, and thus come closest to the Virtual Uriix La

e The Tele-Lab “IT-Security” offers automatic setup of maws for security ex-

14

CHAPTER 2. RELATED WORKS

ercises. No verification on the results of those exercisgeiformed, and no
feedback is given to the student, though — this is left to thdent taking part in
the exercise. More information is available in [Hu et al.02D

The TU Chemnitz “Root-lab” offers similar automated setaipd allows giving
courses on topics that require modifications on the opeyatistem and network
configuration level. No support support for evaluation agetiback is available
again. More information on use the system can be found attfRalo, 2007Db],
an overview of the available hardware is available at [Radt; 2007a], and
details on the setup of the system are described in [Heiniehal., 2007].

The Remote Laboratory Emulation System (RLES) describ¢8onder, 2007]
uses virtual machines to provide a training environmentdioanges on the
system-level. Again, the system does not offer feedbadkastudent.

LiveFire Labs offer a Unix system administration coursehwigmote access
to their lab. Again, no mention of feedback is given. Infotima about the

LiveFire Labs can be found at [LireFire Labs, 2007b], thaeysadministration

course is described at [LireFire Labs, 2007c] and detailtheir Internet Lab

can be found at [LireFire Labs, 2007a].

2.3.2 Systems focused on deployment

The following systems support installation and deploynntarious operating sys-
tems to a number of real and virtual machines, to performimgiand research in the
areas of operating systems, networking and related topics:

e The Emulabs project is “a network testbed, giving reseaschevide range of

environments in which to develop, debug, and evaluate fystems. The name
Emulab refers both to a facility and to a software systénkacilities offered
include emulated computer systems with a choice of opeyatstems, 802.11
and mobile wireless networks as well as software-defineid it sensor net-
works.

More information on the Emulab project is available in [Arsten et al., 2006],
[Lepreau, 2006], and [Eide et al., 2006]. A list of other Eatultestbeds is
available at [Emulab, 2007b].

The openQRM project provides “an open source systems maragelatform

that automates enterprise data centers and keeps themguifilm a data center
environment, the number of systems is always growing, atahaation of setup,
installation and esp. maintenance is needed to assistisgstministrators from
manually repeating error-prone tasks. The openQRM systErsdelp in those

1 [Emulab, 20073]
2 [openQRM, 2007]

2.3. TRAINING SYSTEMS FOR SYSTEM ADMINISTRATION 15

| Software | Homepage \
Acronis True Image | http:/mwww.acronis.com/homecomputing/products/truei mage/
g4| http://sourceforge.net/projects/g4l
g4u http:/iww.feyrer.de/g4u/
Norton Ghost http://www.symantec.com/ghost

Paragon Drive Backup http:/iwww.drive-backup.com/home/personall
Symantec Drivelmage nttp:/iwww.symantec.com/
YAGI http://dan.deam.orglyagi.php

Table 2.3: Harddisk image cloning software [cited 2007188-

areas, for both heterogeneous x86 PCs and virtual mactSeesthe openQRM
homepage at [openQRM, 2007] for more information.

None of those systems offer facilities to evaluate statub®&etup, and compare it to
some goals that are defined in an learning environment. Tdwegtill serve as base for
such a system, e.g. the deployment subsystem of the Virtnixl LAb could benefit
from work of those projects.

Besides those fully integrated systems, a number of lowtliseftware products are
available that help in cloning systems by replication ofigiaives, which may be useful
when implementing a similar system, see table 2.3.

2.3.3 Systems offering user-level access

From the number of operating systems available today, soenaedter fit for operation
and administration from remote systems than others. Whigddoft Windows sys-
tems allow some remote access, Unix systems of any flavourux|_Bolaris, NetBSD,
and all others— can be fully used over the network.

This section outlines a number of systems that offer rematess for using the sys-
tems without admin privileges. No admin privileges meara the systems do not
require fresh setup, and many areas of system administresio be learned without
changing the system, so they are considered an importanines

e The “Virtual Unix Lab” of the University of Cyprus providesriachines stuck
in a dark room, where users can access from other terminaigada telnet,
rsh or x-sessions” Documentation on the lab is only available in greek, see
[University of Cypria, Department of Computer Science, 240 Some more
general information is available in english language atiyersity of Cypria,
Department of Computer Science, 2007b].

1[Lévenez, 2007]
2 [Zoulas, 2007]

16 CHAPTER 2. RELATED WORKS

Similar labs that are accessible for practicing to studeitteer for local or re-
mote access can be found at other universities, too.

e There are a number of commercial and free public access Ysigms, e.g. by
the Super Dimension Fortrés®ani¥X, Solari&, and Nixsy$.

e Various vendors and non-profit organizations have setughines for remote
access so users and developers can experience the harddémespecific fea-
tures of the operating system. Examples would be Intel'pecation with the
Linux Foundation on the Open Source Batihe SourceForge shell servigand
HP’s TestDrive program

2.4 Domain specific languages

This section gives an overview of two areas in which domagcHj languages are
employed: generation of system setups, and verificatiogsiém status.

The following domain specific languages that are used irticigaystem setups:

e Cfengine can be used to describe setup for one or many systerugling con-
figuration parameters for the operating system and netwgrkit can create
configuration for the systems, depending on their exactatiper system, envi-
ronment, and other constraints. For more information ongifee, see [Burgess,
1995] and [Burgess and Frisch, 2007].

e Puppet is intended to be a successor to cfengine. It addressee of the short-
comings of cfengine in the areas of the configuration langupgrtability, and
support community. Information on Puppet can be found ati{R&ve Labs,
2007b], a comparison between Puppet and cfengine is alagaljReductive
Labs, 2007a].

e In[Zheng et al., 2007, pp. 219], the authors approach thiel@no of misconfig-
uration for Internet services. They propose a softwarestfucture that elim-
inates misconfiguration by defining their own scripting laage, configuration
file templates, communicating runtime monitors, and hé&aréggorithms to de-
tect dependencies between configuration parameters aswd &al configura-
tions. The scripting language they use is a domain specifiguage for their
area of application.

1 [Super Dimension Fortress, 2007]

2 [Public Access Networks Corporation, 2007]
3 [sol.net Network Services, 2007]

4 [Nixsys, 2007]

5 [The Linux Foundation, 2007]

6 [SourceForge, 2007]

7 [Hewlett Packard, 2007]

2.5. RESULT VERIFICATION, DIAGNOSIS AND FEEDBACK 17

e [Madhavapeddy et al., 2007, pp. 101] describes an OCAMIlethapproach to
generate network and application layer protocols, ranfyomg Ethernet to SSH
and BGP.

e [Narain, 2005] also describes model finding in network camfigjons, defining
the desired configuration and its properties via a domairiSpealescription
language. A similar approach is taken for validation of r@twconfigurations
in the Emulab project as described in [Anderson et al., 2006]

The named works have a strong focus on network configura#gplying standard

interfaces to components in system management will allosido apply those mech-
anisms in system administration eventually, and to cregtes configuration auto-
matically.

Besides system setup, analyzing, troubleshooting andgdéty are vital areas that
system administrators need to be trained in. Similar, systnalyzing and evaluating
an administrator’s performance have to evaluate the systat®. Currently, no system
like the VUDSL is widely deployed, but a number of domain spetanguages exist

that perform evaluation for related areas:

e GNU autoconf is used by software programmers to determineéhet environ-
ment the program will be compiled. Attributes of the envitent include the
operating system, installed software packages, placesgpiam which to look
for various programs, and many more. The system itself isdas the m4
macro processor. See [Elliston et al., 2000] for more infaiam.

e Perl's t/TEST framework is used to implement unit tests ferl Phodules and
other software written in the Perl programming language.nkare information
see the Perl Test(3) module at CPAN::Test and the relatedil@®ih the “See
also” section there.

e Nessus’' “Network Attack Scripting Language” (NASL) allows write pro-
grams that automate penetration testing. The programgaiekhown issues
in local and network services under security aspects, goartrany problems
found. An introduction of the Nessus system can found in fiduai, 2004],
a reference manual of the NASL language can be found in [BeadeRogers,
2007, pp. 363, 423].

2.5 Result verification, diagnosis and feedback

In learning systems, feedback to the student is considenpdrtant. To provide that,
the student’s actions and/or their cause need to be obsemdd diagnostic process
will lead to feedback to the student. A number of systemsyader an environment

18 CHAPTER 2. RELATED WORKS

in which students can experiment in complex areas, but dsigrand feedback is
mostly left to the student.

In some systems, the process of giving feedback means tiln¢etbacher if he did a
good job, but this is not what is meant here.

The following list reflects the state of result verificatidteamodification of a learning
system:

e Moodle provides a full-featured learning management systeat can be used
to provide learning material to students, facilitate comination between stu-
dents and teachers, and offer tests of the students’ kngelednfortunately,
the tests are either simple multiple-choice tests, orlijgtdupled to the subject
module, so no general verification of exercise results idabla. More informa-
tion can be found in [Rice, 2006], [Cole, 2005], and on the Mlechomepage
at [Moodle, 2007].

e A set of changes that need to be determined on systems iswiithisecurity
area, to detect break-ins performed either manually ornaatically by some
worm or virus. In general, the detection routines of everyviscanner can be
observed here. The matter comprises problems from lirigsjgtattern match-
ing and automata theory. An overview of the area can be foarjBatcha and
Park, 2007], implementation and application examples @engn [Tucek et al.,
2007, pp. 115], [Kolter and Maloof, 2006] and [Zhang et a00?Z].

2.6 Tutoring systems in Unix education

The related works observed so far focus strongly on the doofaystem administra-
tion. When widening that focus, a wealth of projects can haébthat offer tutoring
for use of Unix systems in general. l.e. instead of admiaiiin, emphasis is on use
of the system from a user’s point of view, including taske lilte handling and editing.
Noteworthy projects in this area include:

e The Berkeley Unix Consultant (UC) was a research projedtwae never in-
tended to be used in practice, see chapter 1. Various aspetiie tutoring
system are described in [Chin, 1983] and [Wilensky et al3819

e The AQUA project described in [Quilici et al., 1986] and [@cii 2000] also
provides a Unix Advisor that observes neophyte users’ iehawnfers plans,
and detects misconceptions.

e TNT, the talking Tutor'n'Trainer, is a system for teachirgtuse of interactive
computer systems, focusing on the Unix “vi” editor. See [ataki et al., 1986].

2.7. ADAPTIVE SYSTEMS IN UNIX EDUCATION 19

¢ COMFOHELP is an adaptive help system that supports the CONEBXyraph-
ical text processing program, which is available on somexdgstems. COM-
FOHELP works by observing user actions, determining thespéan, and as-
sisting him in reaching that goal. Details can be found irgllge et al., 1993].

e AutoBash is an assistant that tries to analyze a user’s impoita system by
both looking at the commands typed as well as system calle ficaidhteractive
programs. It tries to infer a plan, detect any false appresctakes wrong steps
back and perform the right operations to get the user to ras Jihe system is
described in [Su et al., 2007].

e The NAGLICE system introduced in [Manaris and Pritchard93]%nd [Ma-
naris et al., 1994] describe development of a natural lagguaterface to the
Unix operating system.

e The GOETHE project described in [Heyer et al., 1990] is a retlanguage
system focusing on knowledge representation and semamtics complex do-
main of the Unix operating system. Focus of the work is on péaognition via
a frame-based approach.

e The “Yucca-*" project is a successor to a number or projeats] it focuses
on natural language interaction and plan recognition inglemnenvironments.
“Complex” in that context means constructs like Unix shglgs (‘commandl
| commandl’), which — when compared to the domain of system administra-
tion — puts this project into perspective. See [Hegner, P000

2.7 Adaptive systems in Unix education

In the context of research on the Unix operating system’s imserface, some of the
tutoring systems were extended to provide adaption to the tkere is a selection of
related works:

e Menix is an adaptive user interface that presents a limgedfdunix commands
to a user. The commands presented are selected based orefineedevel
of information for the user, which in term is determined frdne user's past
interaction with the Unix system. See [Chauvin, 1991] forenimformation.

e [Tyler and Treu, 1989] describes an interface architedtuprovide an adaptive
task-specific context for the user.

e Other systems that focus on tutoring and that were mentianéte previous
section also grew extensions for adaption, see e.g. the GIBEAnd TNT
projects, and [Chin, 1986] for user modeling in the Berkélayx Consultant.

20 CHAPTER 2. RELATED WORKS

2.8 Other virtual labs

Virtual labs are becoming popular for many areas of apptioato decouple time and
physical presence of students from the lab hours and roornadifional labs. While
the above sections have shown that the supply for systermétration and its related
topics is scarce, there are still a number of projects thatnateworthy in related
areas. Aspects like general handling, user interfacingseace of learning material,
and other aspects can be learned from them:

e The Laboratory of Communication Technologies of the Ursitgrof Applied
Sciences Regensburg, Germany, offers a virtual lab in catipa with the
Virtuelle Hochschule Bayern (VHB). The lab allows praatigiwireless and
wired networks, switch and router setup, offers automagtas of the exercise
components, and access to the exercise systems via VNGic&gon of exer-
cise results is part of the tasks of the students, and as =rébrmed by the
students. See [Fachhochschule Regensburg, 2007] for mforenation.

e The “Virtuelles Informatik-Labor” (VILAB) of the FernUnigrsitat Hagen, Ger-
many, allows practice of various topics related to compstéence: program-
ming, neural networks, databases, and knowledge basethsysThe system is
designed to give adaptive feedback as describediittiftke and Helbig, 2004,
pp. 443], more information on the system can be found at [Benersitt Ha-
gen, 2007].

e The “Verbund Virtuelles Labor” (VVL) is a collaboration ofvious universities
from Baden-Wirttemberg, Germany, to make virtual labs available forminer
of topics, including robotics, lab engineering, measunareagineering, 2D and
3D graphics, and others. See the homepage at [Virtuelle $tbehe Baden-
Wirttemberg, 2007] for more information.

Lists of further simulations and virtual labs can be founfMia and Nickerson, 2006],
[Kopp and Michl, 2000], and [Bundesministeriutir fBildung und Forschung, 2004].

2.9 Virtualization & emulation

The Virtual Unix Lab got its name by providing a “virtual” lagmvironment, i.e. one
where the place at which the student takes the exercisedsulged from the real lab,
exercise time is not bound to any lab opening hours, and wétiethents can access
from anywhere and at any time.

No virtualization techniques are currently used for thelengentation of the Virtual
Unix Lab, and there is a lot of potential in that area, as repahlications show, e.g.

2.9. VIRTUALIZATION & EMULATION 21

[Guruprasad et al., 2005], [Vollrath and Jenkins, 2004}] §dams and Laverell,
2005]. A comparison of various technologies related targilization was done by the
Emulab project and can be found in [Hibler et al., 2004].

For the purpose of further extensions of the Virtual Unix ltaluse virtual machines
instead of real ones, an overview of available solutionsiftwalization and emulation
of various systems as of this writing are listed in table 2.4.

Besides virtualization, a number of other technologiesrtey prove useful for future
works on the Virtual Unix Lab. Given the goal of providing seal operating systems,
and not focusing on one system, Solaris Zdné&seeBSD Jaif®, and UserMode

Linux*® may be of interest.

The topics covered in this work — verification of exerciseutiss tutoring and user
adaption — are not influenced whether virtualization is wgebt, though.

1[Sun Microsystems, 2007]

2 [Kamp and Watson, 2007]

8 [The FreeBSD Documentation Project, 2007] Chapter 15: Jails
4 [User Mode Linux, 2007]

5 [Dike, 2006]

22 CHAPTER 2. RELATED WORKS
| Software | Homepage
Ardi Executor http://www.ardi.com/executor.php
Basilisk Il http://basilisk.cebix.net/
bochs http://bochs.sourceforge.net/
CoLinux http://iwww.colinux.org/
dosbox http://dosbox.sf.net/
FAUmachine http://iwww.faumachine.org/
gxemul http://gavare.se/gxemul/
JPC http://www.physics.ox.ac.uk/jpc/
LilyvM http://lilyvm.sourceforge.net/
Microsoft Virtual Server http://iwww.microsoft.com/virtualserver/
Parallels http://iwww.parallels.com/
PearPC http://pearpc.sourceforge.net/
gemu http://Awww.qemu.org/

Serenity Virtual Station
SIMH

SkyEye

VirtualBox

Virtuallron

VirtualPC

Virtuozzo

VMWare

WABI

Xen

http://www.serenityvirtual.com/
http://simh.trailing-edge.com/
http://www.skyeye.org/
http://www.virtualbox.org/
http://www.virtualiron.com/
http://www.microsoft.com/virtualpc/
http://www.sw-soft.com/en/products/virtuozzo/
http://www.VMware.com/
http://docs.sun.com/app/docs/doc/802-6306/

http://www.cl.cam.ac.uk/research/srg/netos/xen/

Table 2.4: Virtualization and emulation software [cited2Z@08-16]

Chapter 3

Education of system administration

This chapter illustrates didactics and education of systéministration. It introduces
theories of didactics, then applies them to an existingsotessystem administration.
An analysis of that situation leads to future directionstfer domain of teaching sys-
tem administration.

3.1 Fundamentals of education

There are several aspects to instructional research whithevinvestigated in this
chapter. First, psychology and learning theory explain hoguisition of new infor-
mation works in the human mind. Second, didactic realiraisexplained by instruc-
tion theory, which describes how to model information sd this best fit for one of
several learning theories. Third, instructional desigiedrines how to prepare teach-
ing material to fit for instructional and learning theotieafter looking at the various
theories, dimensions of implementation and adaption veldiscussed, followed by
a look at alternative learning-theoretical approache®twider. This defines an ideal
progression of education, and an optimal set of tools thapjdied to an existing
course on system administration.

3.1.1 Psychology and learning theory

The process of human learning can be approached from twe: sptélosophy and
psychology. From the philosophical side, epistemologgga view on knowledge and
learning with its impact on teachiAgOn the other side, psychology has recognized

1 [Kuyper, 1998] p. 49
2 [Hammer and Elby, 2000] p. 2

23

24 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

the relation of human learning with its subject early, and Haveloped theories of
learning, which in turn emerged into theories of instrucimd instructional desighs

This section gives an overview of the various aspects ofhieg¢ starting with the
psychological learning theories and moving on the possédézations.

Behaviorism: Early learning theories go back to Iwan Pawlow, who obsefgeddi-
tional reflexes” in his famous “drooling-dog” experim&rand Edward Thorn-
dike, who found laws about learning by trial and error, byexikpenting with
cats. John Watson and Burrhus Skinner picked up their works, amitewvat-
son coined the term “behaviorist” in his article “Psychaolats the Behaviorist
Views it"4, Skinner made experiments with operant conditioning okgpitg.
Skinner was also influenced by Sidney Pressey’s “testingleaching” ma-
chine$”’, and in collaboration with James Holland he worked on a ‘éag
machine®, which led him to define the term and concepts of “programmed
teaching.®

Based on these fundamentals, Norbert Wiener’s theorieglmroetics’, and
Helmar Frank’s “cybernetic pedagody; it was hoped that teaching could be
automated with the aid of machines (computers), so that huezaning can be
guided in a better wéy.

The focus of the behavioristic approach to teaching is t@luipformation to
the learner, give him time to understand, then ask quesbiotize subject taught,
and give feedback based on the quality of the reaction. Th@entrocess can
be seen in figure 3'3:14

By repeating this sequence, simple tasks can be trainedkeffic as Pawlow
and others have shown. The same method works for traininghsias well. A
few examples on how to design instructions to fit behaviigrisarning will be
introduced in section 3.1.2.

The behavioristic learning theory is most appropriate foak learning steps.
Bigger learning goals have to be split into several smalteigy which are usu-
ally presented in a sequential maniier

1 [Kuyper, 1998] p. 49

2 [Pawlow, 1972] pp. 203

8 [Thorndike, 1911]

4 [Watson, 1913] pp. 158

5 [Skinner, 1947] p. 168ff

6 [Pressey, 1926]

7 [Pressey, 1927]

8 [Holland and Skinner, 1961] p. V
9 [Skinner, 1968]

10 [wiener, 1948] pp. 11

11 [Frank, 1969]

12[Seidel and Lipsmeier, 1989] p. 32
13 [Nosekabel, 2005] p. 6, Figure 2
14 [Kerres, 1998] p. 46

15 [Tulodziecki, 2000] pp. 57

3.1. FUNDAMENTALS OF EDUCATION 25

Information Question Feedback

Teacher ————— >

Time

Learner

Digest Reaction

Figure 3.1: Behavioristic approach of teaching. Image SauiKerres, 1998, p. 46]

Critics of behaviorism point out that the approach does wotsider the indi-
vidual nature of human beings enough, e.g. Watson desctiitzdhere is “no
dividing line between man and brutk.This led to development of metacogni-
tion and cognitivism as learning theorfes

Cognitivism: The concept of cognitivism goes back to the early days of b 2
century, notable names are Jean Piaget, Edward TolmammdeBouners and
Wolfgang Kohler.

The idea in cognitivism is to view the learner as an indivigdudnich is able to
process external stimulus on his own, and do more than jast te it. As such,
the learner behaves as an interactive receiver of mesdageontains news and
knowledge in the sense of Shannon and Weaver's communictitéory, and
messages can be carried in various medlzearning is considered a creative
process of problem solvidgand Piaget proposed that the learner adapts to the
problem domain and solves it by using assimilation and accodatio. In this
context, accommodation and assimilation mean to adjudetraed cognitive
concepts to new environments, and to match new externattsbgmd condi-
tions to the individual’s internal structure by modifyiniget existing cognitive
structured. Cognitive development happens through both externaléntia by
learning material, and internal influence by the learnedisting cognitive struc-
tures. The learner’s “knowledge” is considered to be the stiall patterns of
recognition, understanding and processing availableganttiividual, including
its environmerit A number of ways to model instructions after constructivis
approaches will be illustrated in section 3.1.2.

The cognitivistic learning theory is best used for complekjscts that go be-

1 [Watson, 1913] p. 158

2 [Seidel and Lipsmeier, 1989] pp. 36
3 [Seidel and Lipsmeier, 1989] p. 26
4 [Shannon and Weaver, 1949] pp. 31
5 [Seidel and Lipsmeier, 1989] p. 26
6 [Piaget, 1967] pp. 7

7 [Schulmeister, 2007] p. 67

8 [Tulodziecki, 2000] p. 58

26 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

yond pure factual knowledge. Depending on the learningsy@ainstructivistic
approaches can be used:to

e Determine which kind of knowledge structures to build up.

Cognitive theories can not only be used for learning simatsf (declara-
tive knowledge), but also rules (procedural knowledge)@nttepts (con-
textual knowledge).

e Determine how knowledge is stored in the brain.

Various theories can be applied here as well, for exampleiipgythe
topic taught a context with other subjects that it can asgeavith (theory
of meaning structures), explaining concepts both in wordkreon-verbal
(dual encoding theory) or trying to analyze all structunatl dunctional
components (theory of mental models).

e Determine if specific topics or general strategies shoulaened.

Specific topics such as system administration include uarareas of sci-
ence which provide an intellectual challenge. In contiidit,also possible
to teach general development aspects, e.g. social or nmrsiderations.

Leaving the possibilities that the constructivist leagntheory offers aside, the
basic concept is still based on the interaction betweenmadtenedial presenta-
tion and internal processing, just as in behaviorism.

Constructivism: The constructivist learning theory is based on works by alrem
of philosophers, most notably Jean Piaget. The centraistiie¢hat cognition
is construction and interpretation, and that objectivejextt-independent learn-
ing and understanding is not posstbleAs such, it goes one step further than
cognitive theory: constructivism emphasizes the “indiid components like
experience and the way of thinking first found in cognitivieren more, to a
point where it does not include any external instructionthtlearner. Instead,
the idea of constructivism is to act freely in an environmantd construct new
knowledge from existing knowledge and interpretationseddback given to
various actions in an act of recognition. This act is indixtto each learner.

Due to this subjective nature, there is no “best” way of téaglin construc-

tivism. Instead, learning happens by actively dealing \dtsks that provides
a context to the learning process, and that make acquiredl&dge context-
bound or “situated.” This approach also prevents “inertidedge”, i.e. knowl-

edge that was once learned, but cannot be applied in a gitwgtisn as there is
no mental connection between the context given by the stwand the knowl-

edge needed to be applied

During the learning process, knowledge is created dyndip@ad is not stored
in a fixed way. As a consequence, knowledge cannot be passedttorut

1 [Tulodziecki, 2000] pp. 58
2 [Bruns and Gajewski, 2002] p. 14
3 [Bruns and Gajewski, 2002] p. 15

3.1. FUNDAMENTALS OF EDUCATION 27

repeating the same learning process in the receiving leawi® has to re-
construct that knowledge

The “creation” of knowledge can also be improved by encamggommuni-
cation between students and a teacher or in a learning groapgthemselves,
which allows changing role and perspective. That way, thssital roles be-
tween teacher and student are not sharply defined any maté tmcomes clear
that social interaction between learners is an importartqfa@onstructivism.

There are several approaches to model “instruction” (ptat quotes here as
there is no concept of instruction in constructivism). Amgdhem are the con-
cept of cognitive apprenticesKigknowledge communitiésand cognitive tooRs
Some of these will be discussed in section 3.1.2.

As a summary, constructivistic approaches are best fit foragerhing complex
subjects and learning goals, as it goes far beyond the cognéach-review
cycle. There are downsides though, which become obvious Vaduking at the
didactic realization.

This section introduced three fundamental learning tlesoniith some of their basic

ideas. None of the theories is ideal for teaching every stibjsome are better fit for

simple, introductory topics, while others are better fitddvanced topics. This needs
to be considered when approaching the didactic realizafiarieaching system, which

is what the next section covers.

3.1.2 Didactic realization, instruction theory and instructional de-
sign

The psychological and pedagogical foundations given omieg theories need to be
applied to create learning systems, which is covered imungbn theory and in in-
structional design. Starting from the three learning thremointroduced in the previous
section, some methods for realizing them will be introduicerk.

This section only gives an overview on the methods needeplimach system admin-
istration. Related introductory texts on instruction ttyeand design can be found in
[Eikenbusch and Leuders, 2004, pp. 153] and [Wiggins, 19&9]n-depth coverage
of the topic can be found in [Gagn1967], [Gaga and Briggs, 1974], [Richey, 1986],
[Reigeluth, 1983], and [Schulmeister, 2007].

Behaviorism: The “instruction paradigm” provides a realization of thénaeioristic
learning theory. It assigns the learner a passive but netesthimportant role of

1[Schulmeister, 2007] pp. 67

2 [Bruns and Gajewski, 2002] pp. 15
3 [Schulmeister, 2007] pp. 75

4 [Schulmeister, 2007] pp. 76

5 [Schulmeister, 2007] pp. 79, 315

28 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

Exit

Test :
(Congruity)

(Incongruity)

Operation

Figure 3.2: The TOTE model. Image source: [Miller et al., 0.96. 26]

receiving and processing information and instruction gitsg a tutor, teacher,
or a teaching program. After each learning unit, feedbagkévided before
moving on to the next urlit This kind of instruction is also known as “drill
& practice” due to its main components. It provides the basiecept behind
programmed teachig

Big lectures are split into small learning atoms by experntsh®e subject. It is
possible to teach the learning atoms in several ways, dithefassroom teach-
ing, by providing it in book form, or via a computer program.dll but the first

case, the learner can decide the speed of progresses onrfiis ow

With the aid of computer programs, it is even possible to daagress to later
learning units until prior ones are mastered successfullysystem to assert
“success” is needed in that case. This schema is reflectds: im®TE-model
developed by Miller, Galanter and Bram in 1960, which cassié four phases
as illustrated in figure 3.2: Test, Operation, Test and EKitst, a condition
is tested, and unless it is satisfied, a learning operatisrtdhédappen. This is
repeated until success of the test is indicated by congleyling to an exit of
the procedure®.

Cognitivism: As an alternative to the instruction paradigm, the “problsoiving
paradigm” corresponds to realization of a cognitivist&rteng theory. The cen-
tral idea there is to provide an environment where learn@nssearch their own
challenges within an open learning environment, or solvergproblems with
no clear description of how to solve them. That way, learaeesencouraged
to use their existing knowledge and the tools and inforrmatieailable in the

1[Bruns and Gajewski, 2002] p. 32
2 [Seidel and Lipsmeier, 1989] p. 40
3 [Kerres, 1998] p. 49

4 [Miller et al., 1960]

5 [Seidel and Lipsmeier, 1989] p. 28

3.1. FUNDAMENTALS OF EDUCATION 29

learning environment to construct new knowletige

Environments that encourage this kind of learning are tHoséexplorative
learning” as described in [Bruner, 1961], and as a speci® tze microworlds
described by Seymour Papert. A microworld in this contexansea small (“mi-
cro”) environment (“world”) with a fixed set of rules, withimhich a given task
should be solved. Probably the best-known microworld idetithe “logo” pro-
gramming language. Logo allows teaching procedures,aaten and list pro-
cessing on one side, but as it also provides a facility to naottegtle across the
screen in a way described by the user, it can also be usedtohesic concepts
of computer science and programming

In general, several types of tasks can be requested froradhedr, depending on
the kind of knowledge that he should build up. On the one hemdglations can

best be learned by predicting the behavior of the system whanging various

parameters. On the other hand, the task can be to explaimplaiameters

need changing to achieve a certain condition of the systaechpeoblems can be
solved by choosing the proper conditions and changes farem giffect.

Constructivism: Verbalizing as described in the prior paragraphs helpsedbheér
order vague concepts that are mentally present and inkere@ahnected to a
subject into a clear form needed for communication. Legrmindialog with a
teacher, a tutor, or with other learners in a learning greugoiod for more than
just working on a given task. Due to the changes in role andipnsequired for
participants of a learning group, it goes beyond the givek,tand encourages
constructing new knowledge. Tools found useful for sugpgrtommunication
can be divided into synchronous and asynchronous gfoups

e Asynchronous communication toolsinclude email, discussion forums
and electronic bulletin board systems, user galleries fagitities for giv-
ing feedback on existing material.

e Synchronous communication toolsnclude video- and audio-conferencing,
application sharing, interactive whiteboards, chat, asteint messaging,

Similar to cognitivism, the approach taken in construstiviis to follow the
“problem solving paradigm®’ But given the basic idea behind constructivism
that no instructions are given at all, the learning envirentmeeds to be much
more flexible. It has to provide a framework to create reftexdiof learned
knowledge in various media, communicate and cooperateatlithrs, and con-
struct new media from existing ohe

1 [Bruns and Gajewski, 2002] p. 32
2 [Papert, 1982] p. 152

3 [Kuyper, 1998] p. 53

4 [Bruns and Gajewski, 2002] pp. 48
5 [Bruns and Gajewski, 2002] p. 32
6 [Bruns and Gajewski, 2002] p. 16

30 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

To allow learners free navigation in a wealth of informatiardisplay of infor-
mation that connects all information with everything rethto it is necessary.
In effect, this means building a hypertext or even hypermatiucture as can
be found (to some extent) on the World Wide Web tddaSuch a tightly inter-
connected system would allow references to other resoofdeformation, as
can be found in electronic libraries, discussion groups ke Usenet etc., and
it would also accommodates a wide variety of media formatduding (hyper-
linked) text, images, audio and video

Prospective learners can apply a number of problem solMiradegies, e.g.
depth first, width first, hill-climbing and means-end anaysAll of them re-
quire a model of the problem domain, though. These techsiqae be used for
plan recognition and automation of assistance as disciissedtion 8.1.2.2.

Methodical elements to provide these media and various wregdcessing them
include hyperlinked content, guided tours, a document,pertyclopedia, in-
teractive exercises, business games and map exercisetatims, online tests,
movies and help-functions for all these facilifies

Besides offering an environment for communication, calalion, navigation
and construction, learning systems like microworlds, $ations and intelligent
tutoring systems (ITS) offer interaction within an envinoent for creating new
knowledge from various views on new and existing knowledgi@ed through
them. A number of projects realizing these ideas are demtiib[Schulmeister,
2007, pp. 321, 351, 171] and [Schulmeister, 2002, pp. 16,248

Another approach to realize constructivistic learningoties is by not dealing
with a particular subject either directly or via some (pblssimulated) inter-
face, but by talking about it. For this approach, a teacheutor is needed to
ask questions that the learner answers. The most well-kriown of this is

known as the “Socratic dialogue.” By considering all asp@dta certain topic,
unknown areas will be discovered, and relationship to exjstnowledge can
be used to build up new mental connections, and thus know|édgough inter-
action with a guiding instanée

This section covered methods which can be employed to esaidous learning theo-
ries. There is a variety of options to choose from, and thecésfwill also vary widely.
There are various levels at which these methods can be @téghinto teaching envi-
ronments, which is covered in the next section.

1 [Schulmeister, 2007] p. 77

2 [Schulmeister, 2007] p. 22

3 [Bruns and Gajewski, 2002] pp. 44
4 [Bruns and Gajewski, 2002] p. 31

3.1. FUNDAMENTALS OF EDUCATION 31

3.1.3 Dimension of implementation and adaption

In 1929, Edward Thorndike and Arthur Gates pondered “If, hyil@cle of mechanical
ingenuity, a book could be so arranged that only to him whodwate what was di-
rected on page one would page two become visible, and so aih that now requires
personal instruction could be managed by prin&h early prototype of such a book
was built in Alan Kay’s “DynaBook” projeét®. Looking at this idea from today'’s per-
spective, it is obvious that one would use a computer to cocisa “book” with these
constraints.

Offering a guided tour through a book is only one of severathmdical forms for
teaching. The spectrum ranges from pure classroom teaabkipgrformed in the cur-
rent “System Administration” class as described in sec3i@)over a mixture between
presence teaching with virtual components to pure virteathing as e.g. offered by
the “Virtuelle Hochschule Bayern” (VHB)and others When employing methods for
online learning, various degrees exist. Examples incladfepaced online learning,
collaborative online learning (tele-tutoring), and liveliae learning (tele-teachinfy)
The central entity here is the “learning environment”, iniethteaching and learning
happen& Depending on the type of education and the learning theupljead, various
methodical communicative elements can be used, as dedanilsection 3.1.2.

One component of the learning environment not covered yieisfeedback” given
to learners, which means the reaction of the learning platfto attempts on solv-
ing a task given to the learrfer While existing platforms often use multiple choice
texts and gaps in a text to fill in, all these test forms traisibaehavioristic learning
instead of real understanding of concépt®©n one hand side, more advanced con-
cepts like interactive maps, images, or feedback on a gigenasio that the learner
was asked to create are rarely found, even if these advanagslfar evaluation and
feedback are more appropriate for the concepts taught alzaéons of cognitivistic
and constructivistic learning approactesOn the other hand, systems implementing
these methods like simulations or microworlds often do nolude any components
for evaluation and feedback at*4ll

Comparing learning theories in genéfatheir realization, and virtual, computer based

1 [Holland and Skinner, 1961] p. V

2 [Kay, 1972]

3 [Ryan, 1991]

4 [Virtuelle Hochschule Bayern, 2001]
5 [Schulmeister, 2002] pp. 228

6 [Bruns and Gajewski, 2002] pp. 39
" [Schulmeister, 2002] pp. 6

8 [Schulmeister, 2007] pp. 104

9 [Seidel and Lipsmeier, 1989] pp. 53
10 [Schulmeister, 2002] p. 154

11 [Schulmeister, 2002] p. 223
121Schuman, 2007]

32 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

ones in particuld; one comes to the conclusion that approaches followingtaasns
tivistic learning theories are best, but that their redigrais just as hard. As a conse-
qguence, most of the realizations found so far are incomphete-working or otherwise
insufficient.

Two conclusions can be drawn from this: First, not all sutsi@an be taught by vir-
tual teaching, and second, realization of constructivistic approachsgecially ones
which defeat the instructional components of the learniog@ss, may not be the best.
There is room for alternative learning-theoretical apphze 5, which are described
in the next section.

3.1.4 Alternative learning-theoretical approaches

There are ups and downs to the various learning theorieshenih$truction designs
resulting from them, as discussed in the previous secti@sognizing this, a number
of approaches have been suggested that take a pragmatiopbsitween cognitivis-
tic and constructivistic approactfesThe instructional design of the 2nd generation
combines elements of constructivism, like explorativeriéeg and communication,
with elements of cognitivism, which intents to add new comgras into the learner’s
existing knowledge structures, intending an integratibnesv content& The learner
should not be made a reactive entity, but rather made to aetctively. Proactive
learning concepts allow a change of the pedagogical situdéiwards choices for the
learner, making room for own arrangements and self-orgéinis of the learning pro-
ces§.

Merrill laid the fundamentals in instruction design witrsHiSecond Generation In-
structional Design” (IR). ID, tries to overcome the limitations of what Merrill calls
the “First Generation Instructional Design (2 by integrating sets of knowledge
and skills, producing pedagogical guidelines, selectind sequencing instructional
transaction sets, and esp. integrating phases of inginadtdesigh. The following
components are part of 1f:

1. A theoretical base that organizes knowledge about ictsnal design and de-
fines methodology for performing instructional design.

1 [Schulmeister, 2002] p. 223

2 [Schulmeister, 2007] pp. 218

3 [Schulmeister, 2002] p. 160

4 [Schulmeister, 2007] p. 109

5 [Merrill et al., 1991] pp. 3

6 [Tulodziecki, 2000] pp. 59

7 [Bruns and Gajewski, 2002] p. 17
8 [Weidenmann, 1993] pp. 11

9 [Merrill et al., 1991] p. 9
0
[

10Merrill et al., 1991] p. 10

3.1. FUNDAMENTALS OF EDUCATION 33

2. A knowledge base for domain knowledge, for making indgtomal decisions.

3. A series of intelligent computer-based design tools favidedge analysis and
acquisition, strategy analysis, transaction generatind,configuration.

4. A collection of mini-experts with small knowledge bases éne or more in-
structional design decisions each.

5. Alibrary of instructional transactions, with interfact® add new transactions.

6. An online intelligent advisor program that dynamicallystomizes the instruc-
tion during delivery, based on a mixed-initiative dialogiwthe student.

The interfaces mentioned in item 5 are important in learsiygfems that incorporate
many sources of teaching materials, teachers and topigbttakor the present discus-
sion, the topic of interfaces and formats of meta-data fey eaxchange are beyond the
scope; More information can be found in [Schulmeister, 2@@2 202, 207]. The ad-
visor program and dynamic customisations of instructiolhlvei addressed later when
discussing tutoring systems, personalisation and usgrtave systems.

Other approaches to address the named problems can be fouhd concepts of
situated cognition and situated learning.

Situated cognition assumes that thinking and learning ammd to a certain context
in which knowledge is learned. This context is defined by daning environment,
which also names and defines the goals that should be leaarddarning is most
efficient when the goals are knotn

Situated learning goes into more detail. It emphasizesdbethat an individual's
learning performance is not only affected by the contensgméed and his internal
learning processes, but also by the context in which the@ilegmmaterial is presented.
Real world examples are considered important, so the aadjkinowledge and prob-
lems solving methods can be appfiedt the same time, a variety of examples should
be used to achieve decontextualisation. Following the ephof situated cognition,
situated learning is employed in a learning environmenttvigives contextual infor-
mation as well as instructions on goals to achieve. Situaguhing provides methods
to reach the given goals, and also emphasizes social itiraac facilitate elaboration
and reflectiod.

There are a number of approaches to realize situated lgar@imoices in implemen-
tation include the degree to which virtualization shoulddmeployed (i.e. whether
a “teacher” is present either in real or in the form of a corepyrogram), if there
is a guide, and how strong didactic embedding ist. The appemrange from a
teacher/student relationship in “Cognitive Apprentigpslover learning in groups in

1 [Schulmeister, 2007] p. 70
2 [Lave and Wenger, 1991] pp. 32
3 [Mandl et al., 1994] p. 170

34 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

“Knowledge Communities” to using cognition-promoting ®avith the “Cognitive
Tools” theory. Most of these choices use multimedia technology to varitagsees

The difference in situated learning to a pure construdtagproach is that individuals
are both guided in what they should learn, as well as beingigeed with an environ-
ment that promotes solution of the given problems. The wiiffee between situated
learning and cognitivistic learning approach is that manpkasis is put on the learn-
ing context and elaboration in the former, not only on ackedging the (internal)
individual character of the learner, but also providing en@xternal) context for learn-
ing. As such, situated learning can be placed between éagti¢t and constructivistic
teaching approaches.

This section covered various alternative approaches taiteatheory and instruction

design. Using a synthesis of the “classical” approachestaid derived forms, a set

of powerful teaching tools is available, and it is possilbl@thieve teaching methods
that are considered ideal in traditional education, asramdlin the next section.

3.1.5 Education —ideal progression and tools

A number of structures for instructional design of lectunase been proposgdAn
ideal course of teaching is considered to consist of thevigiig step:

1. A collection of assignments, collecting and discussipgnsaneous ideas for
solving.

. Defining learning goals, and discussing their meaning.

. Communication about proceeding towards these goals.

. Acquiring fundamentals needed to solve the assignment.

. Putting the assignment into effect.

. Comparing various solutions, and summarizing what has lEarned.

. Introducing and working on domain specific assignments.

o N o o b~ WD

. Discussing the knowledge learned, and the way it waséearn

So far, discussion has named a number of instruments taeealrious learning theo-
ries and instructional designs. A number of these instrusnesin be used to shift the
focus from the result of the learning process to the learpiogess itsef

1[Schulmeister, 2007] p. 75
2 [Mandl et al., 1994] pp. 171
3 [Clark, 2000]

4 [Tulodziecki, 2000] pp. 62

5 [Schulmeister, 2007] pp. 73

3.2. THE“SYSTEM ADMINISTRATION” CLASS 35

Empowering learning environments, to promote creativity.

e Games to increase motivation.

Cognitive tools, to promote understanding and representaf cognitive pro-
cesses.

Tools to support writing and reasoning.

Programs to support reflection of the mental processes dé#nger.

The above lists are guidelines for realizing learning emvinents. This section has
discussed the learning theories, instruction designdtiegdrom them, and circum-
stances in which to use one over another or a mixture of Sesppaoaches, to gain a
maximum benefit from all approaches.

3.2 The “System Administration” class

Discussion was kept on a theoretical level in the previost@e This section looks

at the existing class on “System Administration” (SA) asgtatuat the University of

Applied Sciences Regensburg for several years now. Thsg @daonsidered equal to
classes on the same topic given at other univiersities, esgteon 2.2. The goal is to
outline history and target audience of the existing classcdbe the contents of the
current curriculum, and discuss the didactic instrumesexiso far. More details on
the existing class on system administration can be founBewgrer, 2007a].

3.2.1 History and target audience

The “System Administration” class is offered to studenta@fmputer science at the
University of Applied Sciences Regensburg. It was startedraelective course for
students in their advanced study period, i.e. the 7th or &thester, by Prof. (fgen
Sauer in 1994, and held until 1998. Since 1999, the coursegwas by Dipl.-Inf.
Hubert Feyrer. Starting in 2003, the course was added asatmmydor all students.
This discussion only covers the class in its mandatory fogit ia given since 2003.

The target audience of the “System Administration” counse students of general
computer science (“Allgemeine Informatik”) in the advadatudy period, usually in
their 5th semester. Volunteer students from technical eterscience (“Technische
Informatik”) or commercial information technology (“Wathaftsinformatik”) are al-
lowed to participate and take the course as elective course.

36 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

3.2.2 Current curriculum

The course consists of two lectures and one lab exercise @ek,wvith the lectures
and the lab exercises being 90 minute each. For lab exertigestudents are split
into two groups due to lack of sufficient working places. Oarage, a course consists
of 40 students, resulting in two groups of 20 students.

Given other focuses in the curriculum, students usuallyeHatle Unix knowledge.
Some understanding of the basic operating system and riéhgqrinciples are avail-
able from corresponding courses, but experience in usiadJtlix operating system,
its commands, as well as concepts for automating tasks damerexpected from all
students. As such, a part of the lecture introduces basic@omds and concepts of the
Unix operating system, focusing on the latter under thet laflsystem administrative
tasks.

The following topics are covered in the lecture and accoryipariab exercises

0. Introduction: The introduction of the class gives a small historical oi@mof the
past and a description of the class’s overall goals

1. Historical Overview: This section illustrates the history of Unix, starting with
AT&T and going to BSD and the various systems derived from it.

Exercises compare various Unix systems using the “RoséttaeSor Unix’®,
and look at descriptions of commands in standards like PGBiKthe Single
Unix Specificatiofi->,

2. Login process, process correlation/As an introduction, the classical login pro-
cess is discussed, including processes involved. Furthrarepts like signals,
job control, and general handling of documentation undexk isndiscusse®l

3. User commands (standalone and for shell programming)Assuming that only few
students have a sound Unix background, basic Unix commamddiscussed
which are useful both when used alone as well as when usectihpsbgram-
ming. Areas covered include managing files and directopesnissions and
access control in a multiuser environment, text processind using regular
expressions

4. Information about the system: To properly administrate and tune a system, it is
essential to know as much data about the system’s state aiblposThis sec-
tion gives related commands, output usually found and hoint&spret it. The

1 [Feyrer, 2007€]

2 [Feyrer, 2007¢] “Vorwort”

8 [Hamilton, 2007]

4[The Open Group, 2004]

5 [Feyrer, 2007e] “Historischddberblick”

6 [Feyrer, 2007€] “Login ProzeR, ProzeRzusamnienfe”

7 [Feyrer, 2007e] “Hilfsprogramme (Standalone uiid $hell-Programmierung”

3.2. THE“SYSTEM ADMINISTRATION” CLASS 37

areas covered are processes, signals, users, instaltadusnfoperating system
version, kernel, terminals, remote machines, swap-sgaoeess accounting,
filesystems, disk quotas, device-handling and harddlisks

5. Shell programming: Assuming a basic understanding of a Unix system, this chap-
ter introduces shell programming using the Bourne sheih/gh) to automate
recurring tasks. Topics include redirection of input andpaty expansion of
wildcards, shell and environment variable, quotes, costroctures, and shell
functiong.

6. Application of shell scripts: booting and shutdown: Students have been introdu-
ced to all the features that are available in shell progrargni his section shows
an application of shell programming by observing the sy&estartup mecha-
nism, which is usually realized as a set of shell scripts. dpygroach of letting
students read existing code written by experts, insteadritihg their own, is
intended to show solutions for common problems and alsdipeaeading and
understanding the flow of code and data. This section intreslgeneral booting
of systems and outlines the System V “init"-system. Atttésiof the init-system
discussed include runlevels, concept and functionalitstaift- and stop-scripts,
and their layout in the filesystem. After the System V “iniy/ssem, alterna-
tive approaches for disabling/enabling of services andrdghing the order in
which to start services are discussed.

Exercises for this section are mostly of analytical natasechanging the sys-
tem’s boot system to gain experience would require systevilgges. Those
cannot be handed out for practical reasons described ilse8. As a result,
exercises include analyzing the existing startup systemnsd on Solaris, SUSE
Linux and NetBSD.

7. Networking: Students in the 5th semester visit the “Data Communicd&titats
ture in parallel with the system administration lectureadmasic understanding
of networking and TCP/IP basics can be assumed, and cormfepdisiressing,
routing and name services are only repeated briefly. Bigldipon these, the
network model of Unix is explained, again covering varioogpliementations
with an emphasis on Solaris, but also Linux and NetBSD. Wt network
model understood, the next steps covered are how to configargystem and
name resolving for basic TCP/IP networking. Following thisoduction, three
topics are picked up that are considered important when giag&lusters of
workstations: setup of public key authentication in theuedShell (ssh), the
Network File System (NFS) and Network Information Systenf)\tlients and
servers.

For practical exercises, the same situation as describ@geab “Booting and
shutdown” applies: for maximum learning effect, systenvifgges would be

1 [Feyrer, 2007€] “Informationeiiber das System”
2 [Feyrer, 2007€] “Shellprogrammierung”
3 [Feyrer, 2007e] “Anwendung von Shellscripten: Hoch- unahiRefahren des Systems”

38 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

needed, but they cannot be handed out to students for thednagasons. As
such, exercises mostly consist of the analysis of existjstesns.

8. The X Window System: An application of networking is the X Window System,
which is the graphical subsystem used on Unix. The intergséct here is that
the X Window System itself is network transparent, i.e. apliaption can run
on one machine and display its graphical output on anothehime. The lecture
starts with some basic concepts like the client/serveri@aiare, addressing dis-
plays, and simple access control. Redirection of appbicatacross the network
is covered next, using the mechanisms provided by the X WinBigstem and
the secure shell, followed by the startup process of the XdéinSystem with
processes and files involved. Last, the functionality of arfféw Manager” is
explained in the context of a demonstration the KDE desktsfrenment.

Lab exercises for the X Window System build a graphical emvinent step by
step from single components, starting with window managelacing client
windows next, followed by tuning application look and feel

9. Security: Security is considered important today, mostly requiriygfem adminis-
trators to take appropriate measures to establish secstensy. The curriculum
of computer science includes special lectures on securityivie basic under-
standing and methods. The system administration lectypeaphes “security”
from the practical side by discussing what kinds of problemay exist, includ-
ing host and network security, showing that a number of gmisl have equal
origins. The lecture closes by pointing at various sourdesformation, from
full disclosure over general security lists to vendor pded information to assist
in securing systems.

Student exercises start by a briefing on the legal situati@omputer security,
and that any security holes found should be reported to theisyadministra-
tor immediately. The lab systems should then be analyzedheordtored for
the various classes of security problems discussed, fetlowy finding special
system services that may get exploited

10. Practical Extraction and Report Language - Perl: A language found often in
system administration environments is Perl. The introdaagiven to Perl cov-
ers the difference from other programming languages intgratss, input/output
and control structures. Features presented include miocesf regular expres-
sions, arrays, lists, stacks, and hash tables. The Pengmuging language’s
built in functions, creating one’s own functions, usingstkig modules, and an
overview of all existing modules round up the introductiorPerl.

Exercises for Perl include programming tasks that handte And associative
arrays, analysis of web server logfiles and scanning anshgat mailboxe$.

Feyrer, 2007e] “Networking”

Feyrer, 2007e] “Das X Window System”

Feyrer, 2007¢e] “Security”

Feyrer, 2007e] “Practical Extraction and Report LanguaBerl”

1
2
3
4

3.2. THE“SYSTEM ADMINISTRATION” CLASS 39

11. User management:This section approaches user management by repeating the
related concepts in Unix, including user databases, passswwryption, home-
directories, dot-files, quotas, and site-specific setupsstéhe tools used for
user management at the University of Applied Sciences Regeg’'s computer
science faculty are then introduced to show an approachig¥ kcale user han-
dling — the computer science department has an averageQff &t@dents which
have access to various Unix machines. Besides showingrgtibdew to realize
user management in Perl, it gives students a chance to leameixisting Perl
code.

Unfortunately, exercises are restricted again, as theestactan not work with
system administrator privileges. As such, the exercisasisbof examining var-
ious operating systems’ tools via their documentation arttié extent possible
with normal user privilegés

12. Software management:After describing system operations and user manage-
ment, handling application software is the third big topiwered in the “Sys-
tem Administration” lecture. This section introduces tloétware architecture
found on operating systems including separation into “afyeg system” and
“applications.” The historical development that led to tlegious models and
components is explained, followed by handling of precoetpbinary software.
Software management tools covered include those of Splarnsix Systems
that use the RedHat Package Management (RPM) system, aB&Det

Exercises for software management involve software ilagiah as a “normal”
user. After getting familiar with various package systeths,meta data used by
these systems is investigated, and dependencies betwiéearsgpackages are
analyzed.

13. Backups: The last section of the lecture covers backing up data. $apigcussed
include media, various concepts of backups from file basedhtie filesystems,
and data compression. An overview of integrated solutionkiding commer-
cial backup systems closes the chapter.

Lacking not only access to systems on a filesystem/harddisé, but also back-
up hardware and enterprise solutions for performing bagkoiactical exercises
are kept on the base of backing up single files and directories

This section has described the various topics covered ifSygem Administration”
lecture with a focus on the contents taught in class and theXarcises students are
expected to do. The next section will give more informationtioe overall layout of
the course and the reasons behind it.

1 [Feyrer, 2007€] “Benutzerverwaltung”
2 [Feyrer, 2007€] “Software-Management”
3 [Feyrer, 2007€] “Datensicherung”

40 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

3.2.3 Course layout

After the previous section discussed the contents of thglesiectures in detail, this
section illustrates the overall building blocks of the “B&ya Administration” class,
and how they are arranged to reach the goal of the lecturethdturore, it covers
how the building blocks reflect the change demanded in Iegrsirategies, ranging
from behavioristic learning for the fundamentals to cogistic learning for the more
advanced topics.

The class has two goals:

1. General understanding of Unix, and that there is not “thednix system”, but
several implementations that differ in various details meaninor, some major.

2. System management of large scale clusters, with systemand software man-
agement as well as procedures to setup the necessary nétfvastructure

The first goal aims at giving students a general understgnofinthe Unix operating
systems, assuming they are not familiar with the conceptséoand/or administrate
such a system. Throughout the lecture, exercises are givehaw differences in
platforms using the hardware and operating systems alailalstudents at the com-
puter science and computing center’s department of thedusity of Applied Sciences
Regensburg. The main system that the lecture is based omiMBuwosystems’ “So-
laris” operating system as incarnation of a System V systgher systems discussed
throughout the class and exercises are “SUSE Linux” as septatin of the Linux
family of operating systems, and “NetBSD” for the BSDs.

The second goal gives a direction for the contents of theitect‘System Adminis-
tration” itself is a wide field, and the goal of administratia cluster of workstations
is considered worthwhile. The various steps needed forgibéd are difficult to learn
e.g. in a self-teaching home-environment, while otherdepke setup of mail, DHCP,
DNS, Web and Samba servers may be easy to learn and practice.

For the further discussion, here is a list of the topics cedeaturing the lecture, pre-
sented in detail in section 3.2.2. Short names are givernuftindr reference:

3.2. THE“SYSTEM ADMINISTRATION” CLASS 41

Section Title Short name
0. Introduction -
1. Historical Overview -
2. Login process, process correlation -
3. User commands (standalone and for shell programming) rGuses
4. Information about the system Syslnfo
5. Shell programming ShellProg
6. Application of shell scripts: booting and shutdown Bogti
7. Networking Network
8. The X Window System X
9. Security Security
10. Practical Extraction and Report Language Perl
11. User management UserMgmt
12. Software management SWMgmt
13. Backups Backup

When analyzing the structure of these topics, some act atafmentals to others.
Figure 3.3 displays “Cluster Management” as the main tofiieeclass, and illustrates
the relations between the various topics discussed.

6.Booting

@ 13.Backup @ 5.ShellProg

Figure 3.3: Structure of the “System Administration” leetu

The topics shown in figure 3.3 can be divided into three gragzshown in figure 3.4:

e User Management
e System Operations

e System Startup

42 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

5.ShellProg

11.UserMgmt

7.Network |

User System System
Management Operations Startup

10.perl 13.Backy

Figure 3.4: Thematic groups in the “System Administratitecture

The “User Management” group on the left of figure 3.4 assumasnaerstanding of
the Perl programming language, and it also requires uratetstg of commands from
“System Information, for the areas of user databases, andttidandle them. The
“Systems Startup” group on the right asks for an understenai shell programming,
which in turn uses a variety of user and system specific cordmmdetermine infor-
mation like which services to start. Finally, the middle gpmf “System Operations”
is a loosely coupled collection of topic that cover softwar@nagement, security and
networking, which again build up on the information derifeain the system as well
as various user commands.

Examining the discussion of the groups, it becomes obvibasdach group can be
divided into various levels according to the difficulty omhadvanced the topic is, i.e.

e Basic
e Advanced

e High-level

Figure 3.5 illustrates this separation. The basics upormhwvail other topics rely are
user commands, commands to determine information abosy#tem, understanding
of networking concepts, and related configuration. The Pexgramming language
listed as “advanced” here could be in the “basic” categorng lheo. Advanced topic
are backups, the X window system, shell programming andrggclsing all these

basic and advanced topics, the high-level goals of user aftdae management as

3.2. THE“SYSTEM ADMINISTRATION” CLASS 43

C oo
High-level @

m—

Basic

6.Booting

5.ShellProg

3
!
el
i

13.Backup

@é
i

Figure 3.5: Levels of difficulty in the “System Administrati” lecture

well as booting of the system (which is important for systesnfiguration esp. in
large scale environments) can be realized. In turn, thestharfoundation needed for
management of large clusters of Unix workstations and sgrwehich is the ultimate
goal of the “System Administration” lecture.

As not all of the fundamentals of such a complex topic can lpaéxed at once, the
lectures have been split both horizontally into variouglewf fundamentals building
one upon another (see figure 3.5), and vertically to sep&vateal groups that can
be separated to build logical units (see figure 3.4). Theltresa collection of single
topics, as presented in section 3.2.2.

3.2.4 Didactic instruments

Besides the learning goals presented in the previous sedhere are a number of
didactic instruments that are used in various parts of tbeite and in lab exercises
that are presented in this section, grouped by what parecfdlirse they are used in.

Lecture: The “System Administration” class consists of two lectuaed one lab exer-
cise per week. Each lecture takes 90 minutes, the lab egeedies 90 minutes,
too. During lectures, a laptop and a video projector are tisgutesent slides.
Occasionally, examples are developed on the blackboatthstrate examples
that are not immediately clear from the slides.

The teacher’s notebook is used to display examples for cardsyarocedures
and to show example outputs of various systems. Either tta laptop is
used, or a remote system is accessed via the ethernet comnacailable to
the teacher in each classroom.

A number of books covering various topics from the lectuee @assed around

44 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

in the first lecturg, but students are not required to read all or parts of theiin - al
the lecture material is present in the lecture slides anadiime lecture notes.

The history of Unix is illustrated by a printout of a graphplaying all historical
Unix releases so far, printed on many sheets of paper and thgethet

Online lecture notes: The online lecture notes are identical to the slide presidhte-
ing the lecture. Each student has online access to the éauties so he can print
them in advance, bring them to the lecture and make persaes iif needed.
If a situation is found to be described suboptimally duritess, the notes are
updated after the lecture to clarify the situation

Lecture notes are available http://www.feyrer.de/SA/ as a set of
HTML files®.

Examples: The lecture notes include examples for many situationsrtfast arise in
the topics described. Examples include a description ositioation, the exact
command name to input and example output. That way, studemtsot required
to sitin front of a computer to learn what a command does, &nitio so from the
online lecture notes’ examples only. Examples are desigmée as complete
as live demonstrations for the purpose of learning with nehites at hand,
which is esp. important as the lecture tries to give examplesany different
machines and operating systems, many of which are not wédeljable. Figure
3.6 shows an example found in the online lecture script.

Live Demonstrations: System administrative procedures consisting of a number of
steps are demonstrated live. For them, a detailed deseripfithe context in
which the demonstration happens is given, including machardware and op-
erating system, goal of the demonstration, and an outlitlesodonceptual steps.
This is followed by a description of commands and tools u3éuk next step is
an interpretation of the output and other effects resufiiogn the demonstration
steps, as well as an analysis and description of the systemtaé demonstra-
tion, with retrospect on how each step affected the system.

Analysis of existing systems:Strong emphasis on the multi-platform property of Unix
is given in the entire “System Administration” course. Thgssupported by
many examples and exercises that are intended to be ran dipledifferent
systems, to learn the properties of single systems as weliffesences. That
way, students can infer concepts commonly found on many Gpstems as
well as others that are only found on single systems, e.gisassbed during the
“Networking” or “System startup” sections.

For that purpose, a number of machines are available: Sb{86, Linux/i386
and NetBSD/i386. Possible systems for future demonstratisay include SGI
machines running Irix, IBM machines running AlX, and Sun imaes running

1 [Feyrer, 2007€] “Literatur”
2 [Lévenez, 2007] .
3 [Feyrer, 2007€]

3.2. THE“SYSTEM ADMINISTRATION” CLASS 45

File Edit View Tab Setings Go Bookmarks Tools Help

A/ B8 o) [tpisewfeyrer de/SAISS2004/04-systeminfos html [
@ C5765 Aspec | Vorlesung Opx ¥ Untitied x

rfhinf032% eat /proc/stat

cpu 11284627 358168 713256 46962094
cpul 11284627 358168 713256 46962094
page 1270776 2846120

swap 78 416

« iostat:
rfhpc8317% iostat 1

tty cmdk0 5do sd1 nfsl cpu
tin tout kps tps serv kps tps serv kps tps serv kps tps serv us sy wt id
0 302 01 0 e g g oG 0 01347 0 012 87
MBI e e 0L 0 0 o s
0Lis0 oo o 8 il T ige T oo 0l 0 o e
« ymstat: L

rfhpc8317% vmstat 1
procs memory page disk faults cpu
r in sy cs us sy id

0 0 1 0 0 164 407 27L 0 0 99
0 0 1 0 0 158 199 251 @
0.0 1 0 0 162 141 547 0

rbw suap free re T
000 692472 202748 0 0
000 679504 189588 0 6 0 0 O

0 0

0 0 0 679504 189588 100

psrinfo (Solaris):

3500% psrinfo

cpu0: SUNW,UltraSPARC-II (upaid 6 impl Oxll ver 0x20 clock 336 MHz

cpul: SUNW,UltraSPARC-II (upaid 7 impl Ox1l ver 0x20 clock 336 MHz

cpu2: SUNW,UltraSPARC-II (upaid 10 impl Ox1l ver 0x20 clock 336 MHz)

cpu3: SUNW,UltraSPARC-II (upaid 11 impl Ox1l ver 0x20 clock 336 MHz)

cpud: SUNW,UltraSPARC-II (upaid 14 impl Ox1l ver 0x20 clock 336 MHz)
nn1f - SITNW [11+raSPARC-TT (1naid 15 imnl Ox11 r 020 clack A MHzZ)

/
I 1 —H
Done | 5]

Figure 3.6: Examples help learning without a computer

Solaris/sparc. Students have logins on all these systean&gho the NIS/NFS
infrastructure of the computer science department.

Lab exercises for hands-on learning:Each section of the online lecture notes con-

tains suggested exercises that students are expectedk@wduring lab time.
The lab for these exercises consisted of 15 PCs running almgl of So-
laris/x86 and Windows 2000 (of which the latter is little totrused for the
exercises), and four PCs running NetBSD. During lab exescimmachines are
reserved for the students to do the exercises. No solutdtisetexercises are
published, to motivate students to come up with their owntsmhs. Personal
experiences show that when handing out solutions for théumgof exercises,
students prefer to just read the solution (or learn it by fieand not go through
all the steps to learn the aspects of the topics discussed.

Attended tutorials: During lab exercises, a tutor is present for answering tprest
about the working environment, machines, operating systéneir configura-
tion, the exercise in question, and any related questiongstipns can be an-
swered during lab exercise time; As students are free toalexarcises outside
the lab exercise time, they can contact the teacher via daradl in some rare
occasions via IRC chat) to ask questions. Students are eagealito use the lab
exercise time for asking questions, though.

The instruments described here are currently in use in tgste& Administration”
class given at the University of Applied Sciences Regemgsblihe instruments have

46 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

been the same for the past few years that the lecture is gniéimpnly some minor
variety on machines and operating systems that studentsdtaess to. A number of
alternative instruments could be used in theory, some othvhre discussed in the
next sections.

3.3 Analysis of the current situation

This section analyzes the “System Administration” lectdigcussed in section 3.2
under the light of the learning theories and didactic fundatals given in section 3.1.
Taking the suggestions for ideal progression and tools flecture given in section
3.1.5 into account, a list of measures can be identified toorgstudent orientation
and learning performance of students over the current fdrmedecture:

e Define goals at the start of the semester.

Besides setting general, system/distribution-indepehalederstanding of Unix
as a goal, cluster management should be mentioned explicitl

e Give a better overview of the way how the given goals are redch

This needs change in two places: First, give an overview alehapters at the
start of the semester, similar to the overview given in sec8.2.3. Second, at
the start of each chapter, outline the contents that willlesgnted.

These changes can be accomplished easily in future ingameaif the “System Ad-
ministration” lecture.

Another problem is more difficult to solve, though: In advaddtopics, practical exer-
cises are indispensable, which can be seen from the desorgfthe current lecture in
section 3.2.2 and the “wishlist” of alternative instrumrsegiven in section 3.4. Merrill
supports this by stating that “much new scientific knowletdggynamic in character
and cannot be understood without a more active represemtatid student involve-
ment.! The approaches of situated learning and related cognitimeapts introduced
in section 3.1.4 support this, and Hubwieser also asks fatatfing and simulation to
be part of the educational principle, and not part of theuiectontents

The course starts out with basic topics that can be easitgdeawithout practical ex-
ercises, by merely looking at examples and descriptionsweder, more advanced
sections need practical exercises for understanding. fiduigl move from behavior-
istic learning theories for basic topics to cognitivistgatning theories for advanced
topics also shows that these two forms are not the only onedeakto fulfill all the
needed requirements, and that mixed forms like illustratesg:ction 3.1.4 are needed.

1 [Merrill et al., 1991] p. 7
2 [Hubwieser, 2000] p. 69

3.3. ANALYSIS OF THE CURRENT SITUATION a7

2 (1) Basic topics learnable in theory,

=) (2) applying behaviouristic learning the
S

_%) (2) Advanced topics learnable in practic
< applying cognitivistic learning theor

Progress of the lecture

Figure 3.7: Change in learning paradigm with advancinglleve

Figure 3.7 illustrates the correlation between basic andekd topics: Basics in-
troduced at the start (left) of the lecture can be learnetiowit practical exercises,
applying behavioristic learning theory only. But the modvanced the lecture gets,
both in time and in level of topics discussed, the more prattxercises are needed
for understanding and learning, applying cognitivistiarieng theories.

Basic topics can be learned through simple behavioristimiag methods like drill-
and-practice in theoretical manners. But with increasewgll of difficulty, practical

exercises following cognitivistic or constructivistic ohels are required. For the “big”
topics that build the goals of the “System Administratioatture, it is not sufficient
to cover them on a theoretical level. Instead, practicatases with full system priv-
ileges are mandatory for throughout understanding.

An operational problem regarding practical exercises @aithinistrative privileges to
access the system configuration level is present in the tab ssed at the University
of Applied Sciences of Regensburg: If a student used adtratiige privileges during

an exercise, the machine’s state is not known after the meerdn order to assure
proper operation of the lab machines for future exercisesmachine would have to
be re-installed. Re-installing the systems is not an optimfiortunately, due to time
constraints and the lack of human ressources.

In summary, there is a need for practical exercises appboggitivistic learning meth-
ods in the “System Administration” lecture, esp. with systerivileges. Currently, a
lack of manpower and resources to setup and re-install meslgrevent this. A pos-
sible solution would be to build a virtual environment thibws practising the real
goals of the course where only theoretical coverage of ttagses is possible so far.
This approach is also suggested by [Adams and Laverell,]2005

The implementation of this “Virtual Unix Lab is more demamglj and will be covered
in the remaining chapters of this work.

48 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

3.4 Future directions

There are a number of didactic instruments that are notetlyrased in the existing
course, but that may be useful for future improvements. Nafnthem breaks any
new grounds in education of computer science or system astnaition, and they may
be found in other courses on system administration andecttapics. Still, they are
considered worthwhile:

e Solutions to (selected) exercises could be handed outidimg a description of
the solution. Providing well-written examples esp. for gregramming parts
like Bourne and Perl programming may give students a betéar of how to use
certain constructs.

e Access to more (different) machines with more operatingesys would be
helpful for better understanding of system attributes. fulsmachines to name
are SGI machines running Irix, Sun SPARC- and AMD-based imastrunning
Solaris as well as a set of PC machines running differentdLdistributions like
RedHat, Gentoo, Debian and Slackware (besides the SuSitiglevailable).
This would allow to analyze setups even without root priye. For example,
the NIS and NFS client setup could be derived from such mashin

The problems involved here are the cost of hardware and tipgisystems on
one side, and maintenance of machines on the other sidehwieccomputer
science department cannot provide currently.

e At some points, contents could concentrate on using aveil@hbll tools like
SuSE’s “yast”, Solaris’ “admintool”, or the Solaris Managent Console, in-
stead of configuration files and command line tools. Thesks tmmld be used
if it was ensured that students understood the underlyingegats properly, e.g.
they would be more appropriate in an “Advanced System Adstriziion” class
instead of a class teaching basics, like the current “Sy#téministration” lec-
ture.

e Section 3.2.2 pointed out that many topics cannot be pegtiicoperly, due to
the lack of machines which can be accessed with system astraitoir privi-
leges. While a number of workstations are available for tallents — 15 run-
ning SUSE Linux, 15 running Solaris/x86, 4 running NetBSDora of them
are available for practicing system administrative taaksall of them are public
machines that other students need to use too. Handing detsysiministrator
privileges on these machines would require re-instaliatibthe machine after
the exercise, as the system’s state would not be known, ard not be trusted
for public services.

Examples of exercises where exclusive access to hardwark Wwe useful in-
clude:

3.4. FUTURE DIRECTIONS 49

— Setup of various operating systems, and related initiafigoration to get
the systems to a predefined state

— Setup of various client/server scenarios, e.g. mail, PRARA, spam filter-
ing, DNS, DHCP, FTP, SSH, Samba, NFS, NIS and many cthers

— Troubleshooting scenarios where systems are setup to Inaigben one
way or another. Students would be expected to identify ahe $be prob-
lems.

Due to the lack of manpower, this re-installation cannoté&ggmed after each
lecture, and as there are no machines dedicated for systaimiattation train-
ing, no practical exercises are currently offered for mamaa that need these
privileges.

e Besides machines and operating systems, access to otderdnarcomponents
would be useful for practicing some of the basic setup andadipas principles.
Those components could include network components likéinggthubs and
switches as well as hardware for backup, such as tape drivesrious tech-
nologies like AIT or DLT, and maybe some external disks andRArrays.
Again, this is not possible or available at this time due tariitial constraints.

e For describing certain setup or troubleshooting situatidwould be useful to
have machines available in exactly such a situation asitées;which students
then could pick up for further practicing, realizing an “Amred Instruction”
approach.

Besides the lack of hardware resources, such a setup woethaniet of prepa-
ration to define the systems to be in a specific state, and eeze aifort to
backup and restore exactly that situation for later replaglbstudents. While
this would be very useful for troubleshooting setups, itgaia not possible due
to lack of manpower, machines and money.

¢ Right now, the whole “System Administration” class is ceatearound class-
room teaching where students are expected to be presenie ¥hdents are
free to take the lab exercises outside of the lab hours, @desmmended to take
them when the teacher is in to get optimal feedback on questiod problems.

Moving the lecture into a “virtual” environment, where stuis decide on the
process themselves would be possible due to the availedsitihe online lecture
notes. Moving the lab exercises into a completely virtuairemment with no
teacher present would be more demanding. Interactiveritgt@nd adaptive
components would be needed to help students in situatioesenthachers can
look over their shoulder today, and react to the situatibey seé.

1 [Ernst, 2004]
2[Mandl et al., 1994] p. 171 and 173
3 [Bruns and Gajewski, 2002] pp. 22

50 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

This list of further instruments that could be used in thest®yn Administration”
lecture is by no means complete, but it illustrates a numbepproaches that could
be used to improve teaching.

Part Il

Diagnosis and feedback
with a domain specific language

Chapter 4

Basic design of the Virtual Unix Lab

This chapter gives an overview of the Virtual Unix Lab thatswdeveloped during
the “Praktikum Unix-Cluster-Setup” project from a usergctive. The system pre-
sented here is used as a foundation for the following worley; dkesign components,
the hardware and network setup are introduced briefly heze.[Eeyrer, 2004c] and
[Zimmermann, 2003] for a more detailed description.

4.1 A user-level walkthrough of the Virtual Unix Lab

The Virtual Unix Lab basically has two user modes, one foukegusers (students),
and one for administrators (teachers). A brief overviewhef student’s perspective
is given in this section to get an overview of the system. Tdimiaistrative view is
discussed in detail in [Feyrer, 2004a] and in the followihgters.

This tour through the user area of the Virtual Unix Lab covegén and account cre-
ation, booking an exercise, taking an exercise and retrgefgedback afterwards. The
walkthrough consists of a number of screenshots displayiegveb based user inter-
face that the Virtual Unix Lab presents in the order that @ett using the system
would see:

1. Access to the user interface of the Virtual Unix Lab is tiglo a web browser,
which allows accessing all facilities provided, excepfpening exercises them-
selves (see below). Language of the user interface is Gefomdy) right now —
internationalisation is on the list of items to do in the fetu

When accessing the webpage, the first thing students eraroisnd mask to
login as displayed in figure 4.1.

2. If a student does not have a login yet, he can create a néw(l&yofil”) using
the form displayed in figure 4.2.

53

54 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

|£ile Edit Wiew Tab Settings Go Bookmarks Tools Help

[€ 75 ¢ @ 8 0 —————

F Soreenshote des X ¥ virtuelles Lnix X |

Virtuelles Unjix Labos:

Home] [Login] [Informationen]

Login

Bitte geben Sie hier Thre Daten ein.

Login |
Passwort |

Zuriicksetzen | >> Los geht's!

Sie sind noch nicht registriert?
Dann muR fiir Sie zuerst ein Profil angelegt werden.

Administrator: hubert.feyrer @informatik.fh-regensburg.de

[i

Figure 4.1: Logging into the Virtual Unix Lab

|gne Edit Yiew Tab Ssttings Go Bookmarks Tools Help |

E /DQQ@OﬁAE

F Soreenshots des X @ Virtuelles Unix X |

=

Viirtuelles Unix Laboy;

Home] [Login] [Informationen]

Profil anlegen

Bitte geben Sie hier Thre Daten ein.
Es sind alle Felder auszufiillen.

Matrikel-Nummer |

Vorname |

Nachname |

eMail-Adresse |

Passwort |

Passwort wiederholen |

Zuriicksetzen | >> Los geht's!

Nachdem Sie Thr Profil erfolgreich angelegt haben, konnen Sie bereits in den geschiitzten
Bereich eintreten. Desweiteren wird Ihnen eine Bestitigung per eMail zugesand. Mit ihr
erhalten Sie eine Geheimnummer, die Sie einmalig zur Identifikation Thres Profils
verwenden. Ohne diese Identifizierung wird Thr Zugang nach 8 Tagen ungiiltig.

Administrator: hubert.feyrer@informatik.fh . de

e T B

Figure 4.2: Entering data for a new login

4.1. AUSER-LEVEL WALKTHROUGH OF THE VIRTUAL UNIX LAB

55

EE]

(F |

File Edit View Go Bookmarks Tools Hindow Help

7 hHowe | WpBookmarks #UF #Heise #BSD News #fSlashdot o Sunlink 4 Bluephod

2 A R | - 5| -

& £ Virtuellss Unix Labor ‘

x

Virtuelles U

Sie sind eingeloggt als user

home] [Benutzerdaten] [Ubungen auflisten] [Buchung k] [Buck
insehen] [logout]

Willkommen im Anwenderbereich des
Virtuellen Unix Labor

Auf diesen Seiten haben Sie die Moglichkeit, an Ubungen zur Systemadministration
unter Unix teilzunehmen. Mit Hilfe des Virtuellen Unix Labors erhalten Sie auf den
Ubungsrechnern Zugang als 'root” und kénnen Sie alles ausprobieren, wozu Sie sonst
keine Berechtigung haben.

Fragehogen: Wenn Sie die Ubungen "NIS” und "NFS” absolviert haben, dann sagen Sie
uns bitte Thre Meinung zum Virtuellen Unix Labor! (Bei Gruppenarbeit bitte von jedem
Mitglied der Gruppe ausfiillen lassen)

VULab News:

2004-07-16:
Countdovm zur Pritfung! Bitte nach den beiden vulab-Ubungen das Ausfiillen des
Fragebogens nicht vergessen, und am Montag Ausdrucke der Auswertungen der
NIS-und NFS-Ubungen mitbringen.

home] Link auf diese Seite
Benutzerdaten Hier kbnnen Sie Ihre personlichen Daten dndern

Ubungen auflisten Einsehen der Ubungstexte

[Buchung vornehmen] ‘iirzleerxieren Siesich Ubungsaufgaben, die Sie bearbeiten

. Uberpriifen Sie Ihre getitigten Buchungen sowie die
I g] 5 =
Bl stibsshi Auswertungen absolvierter Ubungen

logout] Verlassen Sie ihr Profil

- hubert feyrer@informatik fh de

B D BB D | Ir

R

Figure 4.3: Welcome to the Virtual Unix Lab

The student will have to give his student ID number (“Matkkiimmer”), first
and last name, an email address where he can be reached astvab(twice).
Upon registration, an email will be sent to the given emadrads. The emalil
contains an authentication token that the user has to enparinanently enable
his account. Accounts not enabled that way will be deletéel &f days. This
allows instant access to the lab, but ensures that peopl&prat least a valid

email address if they want to keep using the lab.

3. After successful login into the Virtual Unix Lab, the wetoe screen shown in
figure 4.3 is displayed, and users can choose from sevefahathey want to
do: Update their user settings (“Benutzerdaten”), gettafiavailable exercises
(“Ubungen auflisten”), book an exercise for a certain time aatd ‘Buchung
vornehmen”), get a list of past and future exercises, délétee exercises and
retrieve feedback on past ones (“Buchungen einsehen”) hasviogout of the

web site.

4. Next, an exercise can be booked. This is done by sele¢tatidoung buchen”

56

CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

15\2 Edit View Tab Sefings Go Bookmarks Tools Help ‘

\ﬂ/myyny!n_mﬁ_j

@ virtuelles Unb x [§ig PHP: po_guerx |

Virtuelles U,

Sie sind eingeloggt als user

home] [Benutzerdaten] [Buchungvornehmen] [Buchungen
insehen] [logout]

Buchung vornehmen

In diesem Bereich kénnen Sie Ihre Ubungs-Buchungen vornehmen.

Wiihlen Sie Thren Ubungstag

Januar 2004
Mo Di Mi Do Fr Sa So

Angefragtes Datum: 21.1.2004
Wiihlen Sie die gewiinschte Startzeit der Ubung

293031 12 3 4 & 1500 Uhr
567 891011 € 18:00 Uhr
1213 14 1516 17 18 © 2100 Uhr
16 20[21] 22 23 24 25 —
2627 28 293031 1 |
Januar M|
2004 -] GO

Administrator: hubert.feyrer @informatik fh-regensburg.de

[pone. [=

Figure 4.4: Booking an exercise: selecting date and time

menu item. The first step in booking an exercise consists afloey at which
date and time to take the exercise, which is displayed indigu.

Exercises are available in three-hour intervals (1.5 héurshe exercise, plus
about one hour for preparation of the lab machines and saomeeftir postpro-
cessing). Slots already booked by other users are not gegpldn the screen-
shot, some exercises are not available because of this.

. After deciding on the date and time for the exercise, theé siep is to choose

which actual exercise to take. The exercise hame, desuriptid duration are
displayed, and the user has to decide for one as displayeglirefi.5.

. After selecting date, time, and which course to take, a éoafirmation shown

in figure 4.6 has to be made before the exercise is booked.

. The exercise is booked at this point, and the system wilhkwhen to prepare

the lab machines for the exercises by using an at(1) job.

The student can walk away and prepare for the exercise. bika $chool test,
he should come back to the lab a few minutes before the sdl¢ote of the
exercises and log in again as shown in figure 4.1.

. After the user has logged in again, the system will tell thiat an exercise was

prepared, and that he can already start to prepare the sxdxgifollowing the
provided link (“bittehier klicken” in red text) as displayed in figure 4.7.

4.1. AUSER-LEVEL WALKTHROUGH OF THE VIRTUAL UNIXLAB 57

|5ue Edit View Tab Sefings Go Bookmarks Tools Help |

(372 3 9 - @ O

@ viruelles Unb x [gig PHP: pg_guerx |

|

Viirtuelles Unix Laboy:

Sie sind eingeloggt als user

home] [Benutzerdaten] [Buchungvornchmen] [Buchungen
cchen] i

logou!

Buchung vornehmen

In diesem Bereich konnen Sie Ihre Ubungs-Buchungen vornehmen.
Wihlen Sie die gewiinschte Ubung fiir
21.1.2004
1500 Uhr

Stichwort-Ubungs-Suche: Suchen

Vorhandene Ubungen: 7

1171
Kurzbezei Bezeich Dauer wiederholbar
¢ apache Aufsetzen eines Apache Servers 01:00 ja
® netbsd NetBSD konfigurieren 01:30 ja
¢ nfs Aufsetzen von NFS Clientund Server 01:30 ja
€ nis Aufsetzen von NIS Client und Server 01:30 ja
 pruefung \N/%vmlben von Benutzern mit Hilfe von 0100 0
¢ pruefung2 Einrichten eines Apache Servers mit SSL. - 01.00 nein
¢ solaris Solaris konfigurieren 01:30 ja
11-71
zuriick weiter
ator: hubert fevrer@informatik fh de

Figure 4.5: Booking an exercise: selecting the exercise

58 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

|gne Edit Wiew Tab Settings Go DBookmarks Teels Help

[< /5 0 2 0 ¢

@ Scrcanshots des X @ Virtuelles Unix X |

Viirtuelles Uy,

‘Labor

Siesind eingeloggt als feyrer

home] [Benutzerdaten] [Ubungen auflisten] [Buchungvornehmen] [Buchungen
einsehen| logout]

Buchung vornehmen

Folgende Buchung wird ausgewihlt:

NetBSD konfigurieren
(Dauer: 01:30 Minuten)

am: 6.6.2004 beginnend um 21:00 Uhr

zuriick >> Buchen!

Administrator: hubert. @informatik.fh-r I de

e

Figure 4.6: Booking an exercise: confirmation

|5ne Edit View Tab Setings Go Bookmarks Tools Help |

eses=TTrrs_______

@ Virtuelles Unb x [§ig PHP: po_guerx |

Viirtuelles Unix Laboy:

|

Sie sind eingeloggt als user

home] [Benutzerdaten] [Buchungvornehmen] [Buchungen
insehen] [logout]

Willkommen im Anwenderbereich des
Virtuellen Unix Labor

Die Ubung netbsd’ wird fiir Sie filr den 2004-01-21 um 14:30:00 vorbereitet.
Dauer ist 90 Minuten, Ubungsbeginn ist in 16 Minuten.

Die Ubung ist freigegeben, bitte hier klicken um den Ubungsbeginn vorzubereiten!

Auf diesen Seiten haben Sie die Moglichkeit, an Ubungen zur Systemadministration
unter Unix teilzunchmen. Mit Hilfe des Virtellen Unix Labors erhalten Sie auf den
Ubungsrechnern Zugang als ‘root’ und konnen Sie alles ausprobicren, wozu Sie sonst
keine Berechtigung haben.

ome] Link auf diese Seite
Benutzerdaten Hier kénnen Sie Thre persdnlichen Daten dndern

Reservieren Sie sich Ubungsaufgaben, die Sie demniichst

Buchung vornehmen Dot aien

Buchungen einsehen] Uberpriifen Sie Ihre getitigten Buchungen
logout] Verlassen Sie ihr Profil

ator: hubert.feyrer@informatik fh burg.de

[pore.

Figure 4.7: An exercise is prepared and waiting

4.1. AUSER-LEVEL WALKTHROUGH OF THE VIRTUAL UNIXLAB 59

igue Edit View Tab Sefings Go Bookmarks Tools Help |

ey 7

@ Viruelles Univx [PHP: pg_querx |

Sie sind eingeloggt als user

home] [B] [Buchung 33 [Buck
inschen] [logout]

Firewall Konfiguration

Bitte geben Sie die IP-Nummer des Rechners ein, von dem aus Sie sich auf die
Ubungsrechner verbinden wollen, in der Form "123.45.78.127" ein!

1P-Adresse: |132.199.213.26

Nach Eingabe Ihrer IP-Nummer kénnen Sie das Labor betreten und auf den Start der
Ubung warten.

Labor betreten

Administrator: hubert.feyrer@informatik.fh-regensburg.de

[pare. [Ry

Figure 4.8: Configuring access to the lab machines

9. Before starting the exercise, the student has to entdPtlagldress of the ma-
chine from which he wants to access the lab machines. Thiepsos shown
in figure 4.8. The IP address will be used to configure the filewlaen the
exercise actually starts, to restrict access so other stsid@nnot disturb the
exercise.

10. Just as in a real test, the student can enter the lab welrgitsit down, but the
test will not start until the specified time. In a real lab teélis would be when
the teacher hands out the questions. In the Virtual Unix Ll student has to
wait for the start of the exercise too, as displayed in figuge 4

11. When exercise time is reached, the firewall protectirgldb systems will be
opened to allow (only) the student to access the lab systanisthe exercise
text will be displayed as shown in figure 4.10.

The text is the same as the one provided for looking at befareekercise, so
students can prepare properly. There are few additionsttettt, though. First,
a link with help for accessing the lab systems is placed uthgeexercise text, so
students not yet familiar with the lab can learn how to actiesdab machines,
giving proper syntax for telnet, ftp and ssh. Below this Jittke time remaining
for the exercise is printed on the lower left (“Verbleibendet”). If the user
decides to finish the exercise before the time runs out, heiess the “Fertig!”
(done) button.

12. Separate terminal windows have to be opened to accesabtimeachines and

60

CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

13.

14.

|5ue Edit View Tab Sefings Go Bookmarks Tools Help |

(370 9 9 0 @ O @

@ Virtuelles Univx [PHP: pg_querx |

Virtuelles Umnix Labor;

Sie sind eingeloggt als user

home] [Benutzerdaten] [Buchungvornehmen] [Buchungen
o cchen]]

logou

Willkommen zur Ubung!

Das Labor ist fiir Sie vorbereitet, Sie konnen die Ubung um 14:30Uhr beginnen, Dauer ist
90 Minuten. Der Zugriff auf die Ubungsrecher ist hier beschrieben.

Beginn der Ubung ist in 11 Minuten.

Administrator: hubert.feyrer@informatik.fh-regensburg.de

[pore; | Ry

Figure 4.9: Waiting for start of exercise time

perform the tasks requested in the exercise text. Figuteghaws access to a
Solaris/sparc (left terminal window) and NetBSD/spargt{titerminal window)
system.

Each lab system offers a “normal” user account as well as atiesystem ad-
ministrator (root) privileges. The corresponding passisare given in the in-
structions on how to access the lab machines.

The student can solve the given task by any measures he fipdspaiate, using
the full administrative privileges he has available. If @ii¢he lab machines has
to be rebooted, this can be done as with any remotely admaitést machine.

After the exercise has ended — either by timeout, or lsecthe student pushed
the “Fertig!”-button — the system will revoke access to thk systems by re-
enabling the firewall. It then prints a message that the éseis over, and that
feedback on the exercise can be retrieved from the databtse afew minutes
as shown in figure 4.12.

The lab systems are analyzed in the background by a numberipfss These
scripts know what configuration steps are necessary foresséd performance
of the exercise, and will report their findings in the databfas later retrieval.

Later, students can retrieve feedback on an individkexlcése by selecting “Bu-
chungen einsehen” from the main menu. They will see the eseetext, com-

ments on what checks were done (green text), and if the phatitask was done
successfully (“OK”) or not (“Nein”). See figure 4.13 for anample.

4.1. AUSER-LEVEL WALKTHROUGH OF THE VIRTUAL UNIXLAB 61

|5ue Edit View Tab Setings Go Bookmarks Tools Help |

PEErrerz @

@ viruelles Uni x

Virtuelles Unix Laboy;

Sie sind eingeloggt als user

home] [Benutzerdaten] [Buchungvornehmen] [Buchungen
einsehen] logou

Willkommen zur Ubung "NetBSD konfigurieren™!

In dieser Aufgabe soll etwas an NetBSD rumkonfiguriert werden, das auf dem Rechner
"yulab1” des Virtuellen Unix Labors installiert ist.

Aufgaben:
Paketverwaltung

1. Installieren Sie die bash und tesh Bindrpaket (Quelle:
ftp://ftp.netbsd org/pub/NetBSD/packages/1.6/sparc/All)

Benutzerverwaltung

1. Richten Sie einen neuen Benutzer "test” ein. Home-Verzeichnis soll home/test
sein, Shell "tesh”.

Geben Sie das Passwort fiir den Benutzer "test” auf "vutest”

Stellen Sie sicher dass sich der Benutzer via telnet, ssh und ftp einloggen kann!

Andern Sie die Login-Shell des Benutzers "vulab” so daB er kiinftig die bash

verwendet.

Rwn

Der Zugriff auf die Ubungsrecher ist hier beschrieben.

Verbleibende Alle Aufgaben
Zeit: bearbeitet:

Minuten Fertig!

Administrator: hubert.feyrer @informatik fh-regensburg.de

[pone. T =

Figure 4.10: Display of the exercise text

62

CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

Virtuelles

File Edit View Tab Setings Go Bookmarks Tools Help

370 3 e o 4 S | |

@ Virtuelles Ui x [af Screenshots ¢ [5i PHP: PHP Mex |

1. Master (Solaris): vulabl

=

« Stellen Siesicher dass die notigen Pakete (SUNWypr, SUNWypu,)
installiert sind.

« Setzen Sie den NIS-Domi auf "vulab” main &
domainname(1))

« Setzen Sie den Rechner mit "ypinit -m" als NIS Master auf

« Sorgen Sie dafiir dass die notigen Serverprozesse (ypbind, ypserv, ...) beim booten
gestartet werden.

 Starten Sie die Serverdienste!

« Welcher NIS-Server wird verwendet?

+ Welche Datei wird fiir die Gruppen-Daten verwendet?

« Welche Datei wird fiir die Passwort-Daten verwendet?

« Uberpriifen Sie ob Gruppen-und Passwort-Informationen tiber NIS abgefragt

werden konnen
[WId45Y telnet snaug. Fh-regensburs. de 10023 W52 telnet swaug, Fh-regensburg.de 20023
Trying 194,95, 108,11, , Trying 194,95, 108,11, ,
Comected £ Snaug. Firegensburg. de. Comnected to snaug, Firegensburg, de.
Escape character is ']’ scape character 15 '°]'.
I |osin: vala

5unds 5.9 Last login: Hon Dec 15 11:03:08 2003 From 194,95.108.85

Copyriht (c) 1995, 1857, 1998, 1839, 2000, 2001, 2002, 2003
Logine wulsh BSD) Foundation, Inc. A1 rights reserved.
PPassuard; Copyright (c) 1960, 1983, 1995, 1939, 1390, 1991, 1995, 1994
Lest Loain: i Fob 13 14:05:89 from 134.95.100.65 The Regents: of the University of California. ALl rights reserved.
S Hiortans e G0 R Generic Hay 2002

NetBSD 1,6.2 (GENERIC) #0: Tue Feb 3 06315347 UTC 2004
e aceucrd:
0 Uelcone to NetESD!

unane -a
Sun0S wulabl 5.9 Generic sundm spare SUN, SPARCstat ion—4 s su
n Passuord:
! Painfo Silier S Sigerot il ab2e
laris Bundled tools il sb2% unane o

et suww WS oo ettt (roat) NetBSD vulab2 16,2 NetBSD 16,2 (GENERIC) #03 Tue Feb 3 06315:47 LT 2004
custen SUNgpu NIS Server For Solaris (usr) berfiton. netbdl. org/ autobui 1/netbsd-1-E-PATCHO0 sparc/B] /autobut Id/methsd-1
| ! PRYCHEOQ/src/sgs/arch/spart/‘:amplle/EENERIE sparc,

wulabe

Figure 4.11: Logging into lab machines for the exercise

[file et viow T Sobbine G okerks Teols elp

\</>~Q®G_JJ

@ Virtuslles UniX | @F User Friendly X | (i heise onlinet % | &, Daily Dacnon hX | Jo Slashdott NewsX |8 sunlink.cht UiX | @ Bluephod Infos | & STILEFROJECT.CX |

Vrrtuell es Umx Labor

Sie sind eingeloggt als user

home] [Benutzerdaten] [Buchungvornehmen] [Buchungen
insehen] [logout]

Ende der Ubung
Herzlichen Gliickwunsch, Sie haben die Ubung im Virmellen Unix Labor gemeistert!
Siehaben die Ubung beendet, der Zugriff auf die Ubungsrechner wurde gesperrt und das
Ergebnis Threr Ubung wird in der Datenbank gespeichert, wo Sie es in ein paar Minuten
einsehen konnen. Bitte wihlen Sie dazu den Punkt "Buchungen einsehen” im Menit!

Vielen Dank fiir Thre Teilnahme an der Ubung!

ome] Link auf diese Seite
Benutzerdaten Hier kénnen Sie Ihre personlichen Daten dndern

Reservieren Sie sich Ubungsaufgaben, die Sie demniichst

Buchung vornehmen bearbeiten wollen

Buchungen einsehen] Uberpriifen Sie Ihre getitigten Buchungen
logout] Verlassen Sie ihr Profil

Administrator: hubert.feyrer@informatik fh . de

= | =

Figure 4.12: End of exercise

4.1. AUSER-LEVEL WALKTHROUGH OF THE VIRTUAL UNIX LAB

63

|£He Edit View Tab Setings Go Bookmarks Tools Help

(370 3 0 0 o D

@ Vituelles Unix [PHP: pg_querx |

=
- -
Virtuelles Unix Lahoss
Sie sind eingeloggt als user
home] [Benutzerdaten] [Buchung vornehmen] [Buchungen
insehen] [logout]
Auswertung der Ubung “"NetBSD Kkonfigurieren™
Die Ubung "NetBSD konfigurieren” (Buchungs-ID #77) fand am 2004-01-21von
12:00:00 bis 13:23:37 statt und dauerte damit 83 von max. 90 Minuten. Die Ubung wurde
von der [P-Nummer 132.199.213.26 aus absolviert.
Es folgt die genaue Auswertung der einzelnen Teilaufgaben:
In dieser Aufgabe soll etwas an NetBSD rumkonfiguriert werden, das auf dem Rechner
"vulabl” des Virtuellen Unix Labors installiert ist.
Aufgaben:
Paketverwaltung
1. Installieren Sie die bash und tesh Bindrpaket (Quelle:
ftp://ftp.netbsd.org/pub/NetBSD/packages/1.6/sparc/All)
Pakete installiert? (pkg_info -e) Nein
Benutzerverwaltung
1. Richten Sie einen neuen Benutzer "test” ein. Home-Verzeichnis soll /home/test
sein, Shell "tcsh”.
"test” finger(1)bar? OK
Korrektes Home-Verzeichnis? (finger, test -d) OK
Shell richtig gesetzt? (finger) OK
Eintrag in /etc/master passwd? OK
2. Geben Sie das Passwort fiir den Benutzer "test” auf "vutest”
Passwort richtig gesetzt? {getpvmam(3), crypt(3)) oK
3. Stellen Sie sicher dass sich der Benutzer via telnet, ssh und ftp einloggen kann!
4. Andern Sie die Login-Shell des Benutzers "vulab” so daB er kiinftig die bash
verwendet.
Login-Shell vulab? (chfn/chsh, finger) Nein
1.
Anzahl Teiltibungen: 7
Davon bestanden: 5 (72%)
ome] Link auf diese Seite
Benutzerdaten Hier kénnen Sie Thre personlichen Daten dndern
[Buchung vornchmen] Reservieren Sie sich Ubungsaufgaben, die Sie demniichst.
bearbeiten wollen
Buchungen einsehen] ~ Uberpriifen Sie Ihre getitigten Buchungen
logout] Verlassen Sie ihr Profil
Administrator: hubert.feyrer@informatik fh . de |
[pore. iy

Figure 4.13: Feedback on an exercise taken

64 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

Figure 4.14: The initial implementation of the Virtual Uriiab

This overview illustrates the basic mode of operation a aaamperform in the Virtual
Unix Lab. The next section will describe the hardware congmis and the network
setup that the Virtual Unix Lab was composed of.

4.2 Hardware and network setup of the Virtual Unix
Lab

This section describes the hardware setup used in the Viia Lab, some of the
possible alternatives, and why there were (not) used.

Despite its name, the current implementation of the Virtuaix Lab uses real ma-
chines for performing the exercises on. During the initiesidn phase of the project
in 2001/2002, virtual machines were slowly starting to lmee@vailable in widespread
use and were considered a useful alternatifaie to budget limitations, no hardware
was available to run virtual machines, and so “real” haréwaas chosen for the cur-
rent instance. A possible future goal is replacing the remtines with virtual ones.
As such, keeping an eye on developments in that are was atwag&dered of impor-
tance during the whole project’s lifecycle so far, even ithat aspect is not realized
yet — see chapter 2 for relevant work in that area.

Another design issue was that the production network shooide influenced. Due
to that, the lab machines were put on an extra network behiad/irtual Unix Lab
control machine, through which all access has to go. Whiégpkey the lab machines
from doing any evil on the production network, the added fieisethat access to the
lab machines can be controlled tightly. Using the firewalbst forwarding, it allows
access to the lab machines only to those users who have banle@rcise previously.

Figure 4.15 illustrates the setup of the Virtual Unix Lab&twork and the network
services that are available. Figure 4.14 shows a photo ahtmhine setup as it was
made initially.

Initially, the control machine of the Virtual Unix Lab — shavin the left half of figure
4.14 and in the center of figure 4.15 — ran on a Sun SPARCst&tigith a 85MHz
CPU, 192 MB RAM and three external SCSI disk. An additionalS®Bthernet card
was added for connecting the internal lab, the machine raB®@ 1.6.2/sparc for

1 [Pratt and Zelkowitz, 2001] pp. 57

4.3. SOFTWARE COMPONENTS OF THE VIRTUAL UNIX LAB 65

telnet
ssh
ftp

20023
20022
20021
10023
10022
10021

80 web
22 :$ ssh

telnet
ssh
ftp

P —
Control Lab
machine machines

Figure 4.15: Accessing the lab clients

historic reasons. A hardware upgrade was made in 2005 tol@DBelith a 3.2GHz
CPU, 1GB RAM and two 100GB harddisks that are used in a sofw&kID1 con-
figuration. NetBSD was chosen as operating system agaihyasieasy to upgrade,
fulfilled all requirements, and experience in its handlirgsvavailable in-house.

For the lab clients — shown on the right of figures 4.14 and 4.tMo Sun SPARCsta-
tion 4 with 110MHz CPU, 64 MB RAM and 1 GB internal SCSI disk,ne@ised. The
machines run NetBSD/sparc or Solaris/sparc, dependingeoexercise.

4.3 Software components of the Virtual Unix Lab

This section gives an overview on the software componentseo¥irtual Unix Lab.
Figure 4.16 illustrates the components and their relatigns full overview is avail-
able in [Feyrer, 2004c]. A brief discussion of the variousmponents follows:

User: The user is not part of the Virtual Unix Lab, but he is the maitive& component
in the system. He provides input and interacts with the systnd is as such
considered to be a vital part of the system design. Intemadsi done through a
web browser for management of exercises, and though a codmarinterface
(ssh, ftp, telnet) during the exercises.

Interaction happens with the “User Management” component.

66 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

User

User Management

Course Engine——— Database———— Schedul

N

Firewall Deploymen

vulab

Figure 4.16: Software components of the Virtual Unix Lab

User Management: This component acts as a single point of contact towardssée u
In cooperation with the Database, Scheduler and CoursenEiiigperforms lo-
gin procedures, account generation, books exercises as@awser interface
during the exercise. This component is described in [Zinmaem, 2003, pp. 9,
38]. The User Management component is mostly implement&dHii.

Course Engine: After the User Management component has logged in the user, a

exercise booked earlier may be ready for taking. If so, thedliag of this

will be done by the Course Engine: It makes sure that only geeific user
has access to the lab machines by configuring the Firewalils it the start
time of the exercise, and displays the exercise text andléfhéor the exercise.

At the end of an exercise, it verifies the exercise resultsrglyaing the lab
systems and collecting the data that is needed to give fekdbahe user on his
performance during the exercise.

The Course Engine component is discussed in detail in thewfislg sections,
an overview is available at [Feyrer, 2004€]. It is impleneehas a mixture of
PHP scripts for the user/web frontend parts, and Bournd ahdlPerl scripts
for the result verification parts.

Database: All data collected for the user accounts, exercise setupdaptbyment,
feedback, etc. is stored in a relational database thatter@bmponents access.
Access of the database happens via SQL from Perl and shilisscr

The database is implemented with PostgreSQL. Reasons fgrie8QL over
other alternatives, in particular MySQL, are that Post@keS$s free, and that
it ran on the target platform, whereas MySQL did not work. Taabase is
accessed from PHP, Perl and through Bourne shell scriptheigpsql” utility.
See [Zimmermann, 2003, pp. 9, 69] for more information.

4.3. SOFTWARE COMPONENTS OF THE VIRTUAL UNIX LAB 67

Scheduler: This component has two tasks: First, prepare the lab masHareany
exercises that are booked, so they are ready in time. Se@0nuijnutes after
the exercise’s scheduled start, the evaluation procesarted, and the exercise
is marked as done. If a user takes the exercise and finishigsbgaclicking
on the “Fertig™-button, this is performed earlier, and ttwgresponding job is
cancelled not to run after 90 minutes. The point is, if a usgkis an exercise
but does not take the exercise, it would be marked as 'aveilfdr an infinite
time, which is suboptimal. By scheduling the second jols thiprevented.

The Unix at(1) facility that's started by the atrun(8) andny(8) facility is used to
implement the Scheduler component, the tasks to performealieed as Bourne
shell and Perl scripts.

Firewall: Access to the lab’s exercise machines is controlled by aditeto ensure
data safety in two ways. It restricts inbound access to thenlachines, and
prevents outbound disruption of the production network tha Virtual Unix
Lab is hooked up, see below. The firewall is configured in adgon with the
Course Engine component.

The firewalling software used is IPfillewhich is part of the NetBSD operating
system, and which allows dynamic configuration. For morerimfation see
[Feyrer, 2004d].

Deployment: Setup of the lab machines is done by rebooting them via n&thoot
(netboot), as described in [Feyrer, 2004f]. The netbootrenment allows to
access a file server, which provides harddisk images thdharewritten to the
client’'s harddisk. After another reboot, the client bootsni harddisk and is
freshly installed. This deployment process is initiatedh® Scheduler Compo-
nent for every lab machine that needs to be setup for a ptatiexercise, the
data for which is taken from the database.

The implementation of this is by performing a netboot of thie SPARCstation
4 machines via their OpenBoot PROM, use DHCP and TFTP to lct88D
as base for deploying the harddisk imag&he lab client’s harddisk image is
loaded via the network file system (NFS) just like the nettsystem itself. The
design of this was influenced by previous experience frongtheproject. See
also [Feyrer, 2004b] for more details about the deploymentgss.

This section gives some understanding of the overall straaif the Virtual Unix Lab,
which will be referred to further in this work from severabpks.

1[Reed, 2007]
2 [The NetBSD Foundation, 2007]
3 [Feyrer, 2007b]

68

CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

Chapter 5

Introduction of domain specific
languages

The Virtual Unix Lab uses a domain specific language to realiagnosis and feed-
back in chapter 6. Domain Specific Languages (DSLs) or “Mimjuages” are pro-
gramming and data description languages that are interzdbd tised for a special
“domain”, a field of application that does not use the fullgital of a languade

This chapter classifies programming languages, listsrieitey which to recognize
Domain Specific Languages from traditional programmingyleages, and explains
how they are related. An overview of design patterns is gieedetermine ways to
implement DSLs for an application domain, and criteria fog selection process as
well as a DSL candidate is introduced.

5.1 Classification of languages

There are a number of ways to classify a language, and résearDomain Specific
Languages is still ongoing. Judging purely by the term, D8teslanguages that are
designed to serve a certain area (domain) of applicatiorhiohwthey are specific, and
which they intend to serve well.

When comparing programming languages, distinctions candse according to vari-
ous attributes and paradigms, e.g. as listed by Finkdlelson and SussmérHoaré,

Raymond, 2003] pp. 183
Finkel et al., 1995] pp. 1 and 3
Abelson et al., 1985] pp. 335

1
2
3
4 [Hoare, 1973]

69

70 CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

Ahot!, Raymond and Pratt and Zelkowitz

Describing how to design a new language is beyond the scapesafocument, guide-
lines on language design, syntax, semantics and how to avdtenpiler or interpreter
can be found e.g. in [Wirth, 1974], [Wexelblat, 1976], [Heat973], [Hilfinger, 1981],
[Floyd, 1979], [Finkel et al., 1995], [Pratt and Zelkowi2)01], and [Aho et al., 2003],
with ongoing research being discussed e.g. in the ACM SIAG®PEAProgramming

Language Design and Implementation” (PLDI) grbup

When writing a computer program, two approaches are passibhe is compiling
a source code written in a certain programming language erezutable machine
codé, the other is defining an “evaluator” or “interpreter” thatdrprets instructions
and performs operatiohd. Compiling a language is a process that takes some effort
once for lexical and syntactical analysis, code optimisatind code generation, but
results in a fast executable when ran later, assuming trgrgorois not modified very
often. When a program is expected to change often, the cadrbkinterpreting the
source language is not too high, or the program should béewr@nce to be used on
several different machine architecture, an interpretagudage can be used - Spinellis
talks about the distinction between “deep or shallow trtih” heré. Medvidovic
and Rosenblum also note that compiling a program into macaxkecutable code is
“simply a special case of architectural refinement” stegmown from a high level
“boxes and arrows” design

Another aspect of current programming language evolutiothat due to the ever-
increasing processing speed of computers, the runtimeheadrof interpreters is
getting less and less of an isdtjeand scripting languag®slike Perf?, Pythort®:14
Ruby*® and PHE® are becoming more and more attractive today, which alsofitene
any domain specific languages that are based on scriptiggdaes instead of being
compiled into machine code.

A recent trend is to use a hybrid approach that compiles cafe & high-level lan-
guage into bytecode, which is then interpreted by a virtuatinme instead of a “real”

1[Aho et al., 2003]

2 [Raymond, 2003] pp. 183

3 [Pratt and Zelkowitz, 2001] pp. 19 and pp. 114
4[PLDI, 2007]

5[Aho et al., 2003]

6 [Abelson et al., 1985] p. 294

7 [di Forino, 1969] p. 68

8 [Spinellis, 2001] p. 96

9 [Medvidovic and Rosenblum, 1997] pp. 5

10 [wirth, 1974] p. 28

11 [wikipedia, 2007] “Scripting programming language”
12Twall et al., 1996]

13 [Rossum and Drake, 2003]

14 [Rossum and Fred L. Drake, 2003]

15 [Matsumoto, 2001]

16 [The PHP Project, 2007]

5.2. ATTRIBUTES OF DOMAIN SPECIFIC LANGUAGES 71

CPU. The compilation step ensures type safety and optimaizaand the virtual ma-
chine offers the same platform on every hardware and operatistem which which
it is available. The result is a trade-off between safetyrogpamming and portability,
with minor impact on performance. Languages to name in tigia are Javeand C#.

Modifying an existing language to adjust it for a special laggion domaid leads
to a Domain Specific Language. There are several ways toeceedbmain specific
language, as will be discussed in the next section.

5.2 Attributes of domain specific languages

By definition, Domain Specific Languages are limited to a $aa of application,
and often embedded into a larger system with the goal to eetheécsemantic distance
between a problem and the program. Spinellis lists theviafig attributes as specific
to DSLs, which set them apart from “normal” languayes

Concrete expression of domain logic:Instead of using an existing programming lan-
guage and overloading it with details from the applicatiomdin, the details are
put into the DSL. This removes details that are not of inteteeghe application
domain, and programmers can concentrate on issues retetieel domain.

Direct involvement of domain experts results from the above. As there is no exces-
sive ballast between the application domain and the persibnexpert knowl-
edge of the application domain, the domain expert can djrecbdel any do-
main knowledge with no person in between that needs to aiEnfiom the ap-
plication domain into a programming language.

Expressivenessis the other result from removing unneccessary parts of guiage.
What is left is explicitly expressing knowledge of the apption domain only,
no superfluous code that only exists to support the progragsystem or ap-
plication language. Instead, all this meta-knowledge ivedaointo the DSL's
processing system.

Runtime efficiency: Possible interactions between different elements of gepeir-
pose languages can have negative impacts on performagcdran type sys-
tems and conversion of data between multiple internal ftsmblsing a DSL
focused on the problem can provide optimisation and leaffitdency here.

Modest implementation costs: DSL systems are usually implemented within a larger
system, and as such, they can use tools and interfacesyalreaithble. Also, as

1 [Gosling and McGilton, 1996]
2[1SO 23270, 2006]

3 [Wirth, 1974] p. 29

4 [Spinellis, 2001] p. 91

72 CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

they are directed toward a certain (small) goal and not tds/aolving a general
problem, implementation costs can be kept low by only makiegn handle that
area of application (and possibly hand over remaining taskther subsystems
or languages).

Reliability follows from this immediately, as the language does nomidtt be of
general purpose. Handling only a small scope can often hergifisiot trivially,
verified to be correct.

Tool support limitations might be a problem with DSLs, as existing software tools
and languages like editors, CASE tools, build systems, glgéns and version
control systems may not be prepared to handle a new, unkremwguage. Ad
hoc solutions need to be developed to integrate DSLs intls toosolve that
problem.

Training costs arise from the fact that system implementers and maintiagmell
as domain experts have by definition no prior experienceemgw DSL, and
thus need training to get familiar with the new language asssibly its integra-
tion into the development process and environment.

Software process integrationcan not be expected in currently established software
processes. CASE tools and processes usually assume abgiating, well
known programming languages and are flexible enough toratedanguages
that reflect application specific properties rarely, andtheed to be modified,
if possible.

Design experienceis needed for creating a DSL that will actually solve prokdam
stead of creating new ones. There are several guideline®iiog so, as outlined
in the next section.

The above list of attributes was compiled by Spiné|lsmilar findings can be found
in [Bentley, 1986]pp. 719 and [Mernik et al., 2005].

5.3 Design patterns

In the previous sections, different kinds of programmingglaages following different
paradigms and areas of application were observed. If a Egegdoes not fully fit a
certain application, it can be changed to fit better. If a ravglage needs to be created
for a certain kind of application, it can often be based onerveéd from an existing
language. In either way, a Domain Specific Language (DSLjagesult, and we will
look at various approaches to do so in this section.

1 [Spinellis, 2001]

5.3. DESIGN PATTERNS 73

Raymond describes three ways to create a domain specificdgegor “minilan-
guage”, two “right” ones and a “wrong” one. The two “right” @ are recognizing
upfront that an existing language needs to be extended afedwp to a higher level
of abstraction, and noticing that a data file format startgaioing complex structures
and elements that imply action. The “wrong” approach to atklfeature after another
to a data or configuration file, as this will lead to an incorsislanguage that may be
difficult or impossible to verify, or even provide insecurdte to routines not origi-
nally intended. A solution to avoid designing a bad languagaccident is to know
how to do it right. For this reason, the patterns that can be identified whegrieg

a domain specific language are introduced here.

Spinellis uses design patterns to describe ways for caistguprogramming lan-
guage$, and he cites Christopher Alexander, who defined desigepattas the re-
lationship between recurring problems and their respea®utions: “Each pattern
describes a problem which occurs over and over again in odroement, and then
describes the core of the solution to that problem, in suclyathat you can use this
solution a million times over, without ever doing it the sawesy twice’®.

Spinellis identifies the following design patterns for damspecific languagés

Language extension:If an existing language is mostly fit for a particular apptioa,
but lacks some constructs, the language can be extendegporsihe addi-
tional features Most of the existing language is kept in use for this, inatgd
command structure and type system. Only the few constrioat@te needed for
the DSL are added, usually by a preprocessor that transfibrensxtended lan-
guage into the original one without burdening the domaireexpith the details
of the implementation. Notable examples of this patterrfa®riginal C++ im-
plementation via the “cfront” preproces8pand the “Rational Fortran” (Ratfor)
compiler that provided elements of structured programrfongrortrart.

Piggyback: If a new language needs to be created due to lack of an exlatiggage
that can be extended, it is likely that features like constalictures, type sys-
tem and procedure handling are ne€dixt are already present in an existing
programming language and its processing tools (compil@mterpreter). Con-
struction of the new DSL including definition of grammar, &pand semantics
can still happen independent of any existing language gimplementation can
be done by using common elements shared with the existimmayé. Possi-
ble ways are to either translate into existing source codmdlready-existing

1 [Raymond, 2003] pp. 183

2 [Spinellis, 2003] pp. 331

3 [Alexander, 1995] p. X (Foreword)
4 [Spinellis, 2001]

5 [Spinellis, 2001] p. 95

6 [Stroustrup, 1994] pp. 66

7 [Kernighan, 1975]

8 [Ledgard, 1971]

9 [Spinellis, 2001] p. 93

74

CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

language and let the existing compiler system handle the,amdeven to cre-
ate a compiler-frontend that translates into machineabklgdntermediate code
that can then use the compiler’s optimizer and code generdtee latter ap-
proach needs intimate knowledge of the interface betweercdmpiler fron-
tend and backend and the (machine-readable) data formsggpbetween them.
Translation using (human-readable) source code is usioalhd easier for faster
progress, less compiler-internals to consider and easkrghjing. Notable tools
for aiding in a piggyback design are feand yacé.

Language specialization: At times, it happens that a language is needed for an area

of application that should not allow certain constructss fior example dynamic
memory allocation, references to static and/or dynamic argifpointers), type-

free programming (C:void *”) and jumps @oto s)®. Reasons for this may

be easier verification and increased security of prograritgewrin the new lan-
guage. A possible approach is to “remove” the unwanted oactstfrom an
existing language Examples where major languages had some features re-
moved are Ja\(@hf, the Automotive “Save Subset” of®Cand both HTML

and XML® as a special form of SGML

Lexical Processing: Due to the limited field of applicability, it is possible toeate

DSLs by using technigques of simple lexical processing ahdtiution. Instead
of a full, tree-based syntax analysis, lexical hints canéerded into a lan-
guage that are used to identify tokens that need speciagsot, e.g. by adding
a special prefix and/or postfix for variabt&sThe form of lexical processing can
also be used together with the piggyback approach to trantsia DSL into its
base language by applying simple lexical translation, &ed handing off the
result to the base language’s processing tools.

Using the technique of lexical processing and substituttmluces implementa-
tion costs as it makes creating special languages possitdeeva full tree-based
approach would demand too many ressources in knowledgéenmeptation ef-
fort, and effectively time and money. Often, interpretergapid prototyping
languages are used for implementing the lexical procesigvdilows design
and implementation of the DSL to happen as an iterative gsc&ools often

!
21
°

Lesk and Schmidt, 1975]
Johnson, 1975]
Wirth, 1974] p. 25

4 [Spinellis, 2001] p. 95

5 [Nipkow and von Oheimb, 1998]
6 [Edwards et al., 1997]

" [Berners-Lee et al., 1999]

1

°
°
°[

Derose, 1997]
1SO 8879, 1986]
Spinellis, 2001] pp. 94

5.3. DESIGN PATTERNS 75

found in realizing a DSL this way include set] awk®4, m#£>®, the C Prepro-
cessof, Perf and Pythof. All of these tools offer easy to use ways for lexical
processing and substitution, often based on regular esipres®:%,

Data Structure Representation: It is not always program code that is special to a
particular area of application. At times, data needs to huetired for a certain
application. Describing it in a form that's close to the apgion domain and
then transforming it from a domain-specific representatman implementa-
tion-specific representation offers all the benefits foundomain specific ap-
plication languages, like easier use by domain experts assilglity of verifi-
cation during the transformation process. Spinellis esghat anything beyond
initialisation of a simple rectangular array should be espnted by a DSL, and
the more complicated data becomes by means of intercooneantid intercor-
relation, the more important consistency, automated stersy checking, and
validation of input ar€. No matter what the complexity is, keeping the repre-
sentation in the application domain allows transforminigtib various internal
ways along with choosing an optimal internal representatip e.g. replacing
linear lists with trees or hash tablésProminent examples where this approach
is used is the transformation of lists in Perl as well as maisp land Prolog
dialects into more efficient internal representations atinoe, as well as the
internal tables used by lexical analyzers and parsersectdstlex* and yace®.

Source-to-Source Transformation: As already mentioned, there are several approa-
ches when creating a DSL. Doing simple lexical substitut®one way, full
lexical and syntactical analysis, constructing an intetmeg based on grammar,
doing possible optimisation and generating code is ano8mnellis calls it the
difference between “shallow or deep translatiéh.As described above at the
“Piggyback” pattern, the latter approach is possible, lmttaasy in terms of
implementation costs, testing, debugging, verificatiod knowledge needed.
When using this pattern, the goal is to transform the DSL amt@xisting source
language that can then be processed by the existing congplémizer and de-

1 [Dougherty and Robbins, 1997]

2 [The Open Group, 2004] Base Specifications Issue 6: “se@arstreditor”

3 [Aho et al., 1988]

4 [The Open Group, 2004] Base Spec. Issue 6: “awk - pattermaoguiand processing language”
5 [Kernighan and Ritchie, 1994]

6 [The Open Group, 2004] Base Specifications Issue 6: “m4 - maowegsor”

7 [Kernighan and Ritchie, 1988] pp. 192

8 [Wall et al., 1996]

9 [Dougherty and Robbins, 1997]

10 [Friedl, 1997]

11 [The Open Group, 2004] Base Specifications Issue 6: “9. Regidpressions”
12spinellis, 2001] pp. 96

13 [Ledgard, 1971] pp. 134

14 [Lesk and Schmidt, 1975]

15[Johnson, 1975]

16 [Spinellis, 2001] p. 96

76 CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

bugget. Another advantage is that the output of the DSL “compilearfsfor-
mation) process is still human-readable, which makesyiagfand debugging
much easier. An example for this pattern can be found in tiegiture lan-
guage and its use as a target language for the CHEM languegepessat

Pipeline: Domain specific languages by definition intend to do a smalhjell. When
several similar tasks need to be performed, extending aiéagegis one thing,
splitting it into two separate tools with each tool only corg its area of excel-
lence and depending on other tools to do the remaining waakdsher optiof
This is the principle of “pipelining” languages and tool -eea source language
in on one end, get it processed by one language and tool, #snifg output on
to the next one after possibly rewriting the input. At the ethe result is influ-
enced by all tools that processed the ifp{this approach encourages splitting
up a language into several smaller parts, with each one gaenbenefits of a
DSL. Assembling the single parts can then happen by usintitizefound on
many modern operating systems, like the command line psocgesind utilities
that can be found on Unix systefrfs Examples that use the pipelining pattern
are the PBMplus image manipulation toblnd the “troff” set of typesetting
tool. The latter come with specialized tools and languages fodlisg equa-
tions, tables, references, pictures and derivations litectbd graphs, chemical
structures, that are all transformed back into the basmébbefore being pro-
cessed eventually

System Front-End: In large systems that have several ways to access and config-
ure internal objects, e.g. using either graphical userfextes, programming
libraries or command line options, it is useful to provide @lhat allows users
to perform these actions. This leads to a declarative, @iaigble, organized
and open-ended mechanism for accessing these areas. Wiasingxsettings
and objects via some variables and functions of a DSL, it neydeful to re-
move code manipulating these settings and objects fronribmal system, and
rewrite them in the DSL for simplicity of implementation,gwention of code
redundancy, and easier maintenance. Besides simplifygygtam, inventing a
DSL leads to other benefits like making the system extendahlthe DSL (e.g.
via some plugins or loadable scripts), the DSL provides ammomlanguage for
its users, and it also allows third parties to supply prosibesed on the interface
provided by the DSH°.

Existing languages that are used for customizing and adgapdrge software

1 [Spinellis, 2001] p. 96

2 [Bentley, 1986] pp. 716

3 [Spinellis, 2001] p. 95

4 [Bentley, 1986] pp. 712

5 [Salus, 1994] pp. 50

6 [Meunier, 1995]

7 [Poskanzer, 2007]

8 [Ossanna and Kernighan, 1976]
9 [Bentley, 1986] pp. 716
0
[

101spinellis, 2001] pp. 97

5.4. CHOOSING AN IMPLEMENTATION LANGUAGES 77

products include Lisp for the Eméeeditor and AutoCAIB, Microsoft's Ap-
plication Basié for Microsoft’s Office suite and ABAPfor the SAP ERP sys-
tem. Numerous small DSLs exist for many of the tools found oix\gystems,
including mail readers, shells and graphical applic&tion

The above list contains single patterns that can be emplogezkisting general and
domain specific languages alone or in combination to createdSLs with the goal

that the new language is better suited to the area of apiplicaf similar list can be

found in [Mernik et al., 2005, pp. 320].

Whether an existing language is better suited for applymgd the patterns or for
implementing a translator for a DSL depends on the langsaderacteristics, which
are illustrated in the next section.

5.4 Choosing an implementation languages

When looking at a language for use in a DSL creation procesexisting program-
ming language may be used in either of two positions

e Use as dase languagéyy extending an existing language for a new DSL. See
section 5.3 for a discussion of possible design patterrictrabe employed for
this task.

e Use as arimplementation languagefor the translator (compiler) or evalua-
tor (interpreter) of the new language. Various requiremédot this are listed
in [Spinellis, 2001], among them are presence of lexicalhmes$ and in-depth
knowledge of interfaces between compiler frontends an#tdrats for possible
reuse of compiler backends.

Other attributes that are considered imporant here are:

e Integration layer: At which level can a DSL process be instafled Source
level is one possibility, using existing interfaces betweempiler frontend and

1 [Chassell, 2004]

2 [Glickstein, 2004]

3 [Rawls and Hagen, 1998]
4 [Boctor, 1999]

5 [Keller and Kiiiger, 2001]
6 [Raymond, 2003] pp. 183
7 [Bentley, 1986] pp. 717

8 [Spinellis, 2001] p. 94

78

CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

backend or between bytecode compiler and bytecode interpray be possi-
ble, but depends on accessibility and documentation ofitbetface. This may
be implementation specific.

Compiler or Interpreter: The fact whether a resulting executable depends on
a certain machine architecture but does not need an exaustitime system —

as in a compiler scenario — or if a program can run on manygtat but needs

an appropriate runtime system — usually in the form of arrmeter — may be
less interesting from the design point of view of a DSL, buewlising the result
later, it may very well be a limitation and needs to be considered early in the
design process, see “platform-availability” below. Alsgalability limits may

be encountered, depending on the approach choseh here

e Platform-availability can be a limiting factor in existing projects, as DSLs have

to work in the environment they are designed for, and can iotate that envi-
ronment per definition. The question is if an implementai®mvailable on
the platform — hardware and operating system — of choice. fWbeking at

operating systems, mostly Microsoft Windows and Unix basgstems are of
interest today, where “Unix” includes all POSIX-complidi@vours from both
commercial vendors like Sun’s Solaris, IBM’s AlX, Apple’sdd OS X, and
HP’s HP/UX as well as free systems like Linux and NetBSD. Tdreguage in
question may be part of the base operating system, beiniglaleagither through
commercial vendors or as freeware.

A programming language that fulfills the above criteria wasded for the creation of
a domain specific language in chapters 6 and on. The choilaanféhe Perl program-
ming language for the following reasons:

e The Perl programming language contains features of C, sédaad the Bourne
shelf. It offers control structures needed for structured progreng, Perl ver-
sion 5 and later also offers the option of object orientedypamming, which is
not imposed upon the programmer by following the Perl mariirhere is more
than one way to do it.” Data representation in Perl programaastly strings,
with implicit data conversion for numerical context. Adead data structures
are available as lists and hash tables, more complex stasctan be realized
with the OOP framework.

e Perl itself works as a interpreter — internally, the souragecis compiled into a
bytecode that is then interpreted, but there is no easy tinteséace available
for accessing the bytecode to modify it or feed created logte¢o the execution
backend, and extend Perl that way. An interface for embedEerl language
support into existing programs is available though, andabethat Perl code is
interpreted gives it platform independence.

1 [Spinellis and Guruprasad, 1997] p. 2
2 [Spinellis and Guruprasad, 1997] p. 8
3 [Wall et al., 2000]

5.4. CHOOSING AN IMPLEMENTATION LANGUAGES 79

e Incontrastto C, C++ and Java, Perl provides built-in supjeohandling regular
expressions, and combined with its strong string procgssiodel, this makes
Perl an ideal choice for an implementation language for a@hd there are
indeed many examples of thi$3“4 While handcrafting lexical analysis is easy
using Perl’s built in regular expression feature, analysiyntax can be handed
off to tools like py if needed.

e Platform availability for Perl is excellent, for both opt@rg systems and hard-
ware platforms covered. Perl is written in C using portalyletem interfaces,
which ensures that it works on all platforms that provide PO&mpatibility -
initially being developed on Unix, Perl has been ported taigoft Windows
and also many more platforms. The Perl source code is freeijable, and
a big collection of routines and modules is available in tlmen@rehensive Perl
Archive Network (CPANS.

The overview given for domain specific languages, their cased design patterns
and the choise of an implementation languages will be agppliehe architecture and
implementation of diagnosis and feedback in the VirtualXUwab in section 6. The
next chapter illustrates the related design.

1 [Spinellis, 2007]

2 [Spinellis and Gritzalis, 2000]

3 [Ramming, 1997]

4 [Ball, 1999]

® [py, 2007]

6 [CPAN, 2007] “Perl Source Code”
7 [CPAN, 2007] “Perl Modules”

80 CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

Chapter 6

Architecture and implementation of
diagnosis and feedback with a domain
specific language

A major task of the Virtual Unix Lab is to perform diagnosisdaverification of the
exercise results, and provide feedback to the student. cChaigter discusses verifica-
tion of exercises results performed in the Virtual Unix Labusing Domain Specific
Language (DSL) technigues. The basics of DSLs were disdussection 5, and the
requirements, design, and implementation for the VirtuaixtU.ab will be described
in this chapter.

A more in-depth description of the implementation incliglimany technical details
can be found in [Feyrer, 2007d].

6.1 Requirements of exercise verification

There are a number of requirements tied to the result veidicéramework, that will
be discussed in this section. This includes portabilityesffication checks, an efficient
verification interface to the lab systems, integration affieation into exercise-design,
and storing results for evaluation purpose.

Portability of checks: The ultimate goal of the Virtual Unix Lab is not to be specific
to Unix only, but to also offer exercises for other, non-Utike) systems like
Microsoft Windows. While the Virtual Unix Lab engine will neain on one
machine using whatever platform, it has to be flexible endegixecute code
for verification purpose on many systems.

An exercise consists of several individual task. Succégsfiformance of each

81

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
82 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

task can be verified by testing one or more system settingeeotab machine.
Verification of a single setting is done via a so-called “dtscript”’, a small

code fragment that inspects only that fact, and that reteither “true” to indi-

cate that the setting was in favour of the exercise’s godfatse” indicating that

the setting was not tuned properly to solve the task. Thetegage of checks
to perform is specific to the exercise and lab system(s) agited in the next
sections.

A requirement of the verification mechanism is to be independf machine ar-
chitecture and operating system where possible: The firgdeimentation of the
Virtual Unix Lab used two Sun SPARCstations running NetBSI0 Solaris as

lab machines, but the goal was to also include PCs runningdamd Windows.

For this, the check-scripts had to be general enough to oheelaspect on as
many systems as possible. Aspects that were specific toaircedrdware or

operating system were still possible, and runnable onlyransystem then, but
the general goal was portability of the checks.

Example:A script that checks if a file is present should be usable onasym
systems as possible. A C program will only run on one (CPUraipeg system)

combination, so an interpreter was required to run on thiesyand take more
abstract commands.

Efficient interface to the lab systems:A requirement tightly coupled to portability
is to have a way to run the check scripts on the lab machines éffiient way.
There are several ways across different operating systesh$iad to be evalu-
ated, and the goal was to find one method that was common tosysisins.

ExampleBe able to have one script that checks if a certain file waspteghen
the target system to verify runs either Unix or Windows.

A second requirement of the remote execution system wasttisafast. Only
one setting was checked by each check-script call, and a ewaflralls were
needed to acquire the full state of the lab system to give amvew of the
overall success or failure of the system.

Example:Doing a ssh-call to a 75MHz SPARCstation 4 is quite slow tisaiok
the cryptographic methods used by ssh. rsh is much betthisinetgard-2.

The third and last requirement for the interface systemeddb machines was
passing back the check-result. As passing of complex datat isasily possible,
a simple boolean value indicating success or failure wasemas the result,
which was passed back to the calling system.

Example:The above-mentioned script that checks if a file is presemiilshsay
if it is there or not. Other checks are made for file contentstber files.

Integration into exercise-design: The first approach for the Virtual Unix Lab exer-
cise design was to have exercise texts separated from addficof the exercise

1 [Feyrer, 2001] “Beschreibung der Berechnungsanige”
2 [Schaumann, 2004] p. 146

6.2. ROADMAP OF IMPLEMENTATION 83

goals (see sections 6.3 and 6.4 below). It quickly becam@ab\hat having a
connection between a part of an exercise’s text and thesporeling aspects to
test to see if that part was successful was helpful both fsigdéng the exercise
as well as to provide feedback to the user later.

The requirements for this connection between the exereigeand the verifi-
cation checks had to be easy to realize, but also to be flegimbeigh to allow
storing the result for later evaluation.

Storing results: The results of checks need to be stored for later evaluakonex-
ample, to compare the performance of all students on a nesiaircise or part
of it, how an individual student performs on a class of exasj or to identify
special areas where a lack of knowledge exists and shoultdzkly better ed-
ucation. Other applications would be a tutoring componieait tould act based
on the results of earlier exercises of an individual or aitlents, or a system that
may adapt to the user, again based on results of earlierigge@f an individual
or all students. See chapters 10 for tutoring extensionsa&irtual Unix Lab,
and chapter 11 for a discussion of user adaption.

In summary, it is desirable to store information on the gtarity of the check-
level, and associate each check result with a context fikshidy the student,
and the exercise that the result was performed in.

6.2 Roadmap of implementation

6.2.1 Stepwise refinement

Implementing verification of exercise results in the VittUmix Lab consists of sev-
eral design and implementation steps described belowaglisgg an evolutionary de-
sign'-2, which is common for complex learning systems today

Cocke and Schwartz suggest the following four steps to esgremplex functions like
the verification of the exercises’ resdlts

1. Find a set of “stereotypes”, i.e. functional abstractjahat cover as much of
the field to investigate as possible.

2. Analyze the stereotypes for repetitive patterns andldp\eframework to call
them, including any possible parameters.

1 [Wirth, 1974] p. 29

2 [Hoare, 1973] pp. 25

3 [Kolle, 2007] pp. 139

4 [Cocke and Schwartz, 1970] pp. 10

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
84 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

3. Design a “language processor” (interpreter) or comghet understands the
overall structure.

4. When steps 1-3 are implemented properly, a domain spéifiuage and pro-
cessor will be available to efficiently implement verificatiof results in the
Virtual Unix Lab.

The steps involved in the design and implementation of thdication of exercise
results in the Virtual Unix Lab do not follow the scheme désed above in an exact
way. To allow early testing, a simple abstraction of sterpes with a framework for
creating and calling them was chosen and implemented filthwas refined in later
steps. As such, the system evolved in a rapid approachwfoipmethods from agile
programming and extreme programming, with special emphagnsure a test driven
development (TDD)?+3

6.2.2 Exercise phases

The following phases of the exercise are involved in theltegrification process.
They are covered for each of the design steps:

Preparation: Describes the procedure to create a hew exercise. ltembvéavare
the text of the exercise that is presented to to the studeirigithe “Exercise”
phase, and the program code to perform the actual verificatiled in the “Ver-
ification” phase.

Exercise: after the initial preparation, the text of the exercise issgnted. Possible
preprocessing that is done at runtime instead of during tbpgpation phase is
described here.

Verification: After the student has ended the exercise, the system pertbeverifi-
cation steps by running the code to check what was done andweasanot, and
stores the results in the database.

Feedback: After the verification has stored the results of the varioscks in the
database, methods for feedback will access the data. Rafrgin simple eval-
uation of one student’s performance in one particular éger¢This is how you
performed in the preceding exercise”) to more sophistitatglysis involving
several students and/or exercises.

Providing feedback is discussed in section 6.5.3.

1 [Cunningham, 2001]
2 [Beck, 1999]
3 [Beck, 2002]

6.2. ROADMAP OF IMPLEMENTATION 85

1) Semantic layer 2) Pragmatic layer
Original (Footprint tracing) Problem solved (Result-Verification)
system behaves -
system Steps to solve problem d?;"ferently Verify that system

behaves in the
expected way

Figure 6.1: Verifying on the semantic and pragmatic layer

6.2.3 What and how to verify

Following Morris’ theory of signs, there are several seimitztyers on which signs can
be interpreted. Such signs can be actions and/or state®mputer system in general,
or during verification of exercise results in particular.€Tdigns can be interpreted on
the syntactic, semantic and pragmatic ldyer

Syntactic layer: Interaction with the systems happens through single mauskes,
keys and mouse buttons pressed. Intercepting all thesadtiten “events” is
possible, and the “higher-level” actions initiated by amymber of these “low-
level” actions can be determined with some effort. This efulsfor finding how
basic interaction with the system is performed, e.g. if mamymands are mis-
typed and corrected or if many menus are searched beforadimaaid selecting
the required item.

Semantic layer: There are several logical steps involved to solve a probienexam-
ple each consisting of one or several commands being ruemsitn graphical
user interfaces being clicked on. The execution of each egetHogical steps
can be verified, and testing on the semantic layer meansify ifeany of these
pre-defined steps were performed properly (“Footpringeifig’). This process
is also known as causality trackihgExamples are software packages installed,
files created, entries made to configuration files etc.

Pragmatic layer: Ignoring the wayhow a problem was solved, the system can be
checked to determine if the requested result was reachedtpi.@. if it be-
haves in a different way as if the problem in question was obtesl (“Result-
Verification”). Examples here are verification if a certagmsce like web, mail
or file service runs, or if a configuration problem no longestsx

In the Virtual Unix Lab, no testing is performed on the sytitad layer, as this is
difficult to realize. The higher levels are more appropriateletermine outcome of
the exercises. Figure 6.1 illustrates how verification angbmantic and pragmatic
layers can be performed. See also the discussion of didgulasa in section 8.1.4.3.3,
methods for plan recognition in section 8.1.2.2 and on-iiagnosis in section 10.3.

In summary, besides thvehatto verify there is also Aowto verify:

1 [Morris, 1938] pp. 20
2 [Alvisi et al., 2002]

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
86 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Exercise:

Exercise Text

Verification:

Check-Script

#!/bin/sh
_—

Figure 6.2: Step 0: Separate exercise text and verificatienlcscript

What to verify depends on th&asksthat are to be solved as part of the exercise, and
also of the goals of the exercise that the student should.lear

How to verify depends on theystem environmerthat the exercise defines, as for
some systems doing one way or the other may be easier.

6.3 Step 0: Basic design

An exercise in the Virtual Unix Lab consists of two parts, éxercise text and the cor-
responding check scripts. The exercise text is presentadweb page to the student,
which describes all the tasks to perform. The check scrigtsan when the lab exer-
cise is over, either when time runs out, or when the userglickthe “Fertig”-button.
The results found by the check scripts are stored in the dagafor later analysis and
evaluation. Figure 6.2 illustrates the basic idea.

The verification process itself is controlled by the Virtualix Lab’s Course Engine,
which is omitted from figure 6.2 to make the basic flow of infation clearer.

The scheme displayed here was never implemented in any afetsign and imple-
mentation steps of the Virtual Unix Lab, as a single, mohdalitheck script to do all
the verification steps does not allow passing the result maak easy way. Also, code
re-usability would have been more difficult.

The following sections describe steps that were actualiylémented in the Virtual
Unix Lab, and they address the flaws mentioned in this basigde

6.4. STEP I: INSTRUCTIONS AND CHECKS NOT COUPLED 87

6.4 Step I: Instructions and checks not coupled

This section describes the first design step of the restiftaation architecture imple-
mented in the Virtual Unix Lab. A description of the desigritwthe key components
their integration is given, followed by a discussion of pbsimprovements for the
second design iteration in step II.

6.4.1 Components

The Virtual Unix Lab result verification architecture castsiof a number of key com-
ponents that reflect the exercise and which interact inicertays. This section intro-
duces these components.

Exercise text: In the first incarnation of the Virtual Unix Lab’s result viécation ar-
chitecture, the exercise text was stored in plain HTML text aisplayed at
exercise time. The HTML text was embedded into a larger derrthat gave
the usual web layout, a display of the time remaining and #ohub indicate
that all tasks were completed and the exercise was finishigd ea

See figure 6.3 for an example of the plain exercise, figure IBodvs the text
rendered in a HTML browser. The full texts of the exercisesspnted to the
students can be found in appendix A.1.

Check-scripts: They run either on of the lab machines or an “outside” machine
check if an aspect of the exercise was performed successfuliot. The whole
exercise consists of a number of checks to verify all parth®exercise.

Following Cocke and Schwartz’ “stereotype” paradigm, ¢hscripts are ab-
stractions to map complex verification operations expikgsan arbitrary lan-
guage (usually a Perl or Bourne shell script) into abstrantipves that perform
their pre-defined task, and report success or failure upoptagiort.

To determine which primitives are needed for a certain tgsking an overview
of the problem area in question e.g. as expressed in [Er@84]2vas a good
first step. Looking at the possible areas that the VirtuakUaib would be used
for, various groups can be identified for which check priveis will be needed:

e Networking: Example primitives could verify configurations and setting
conformance to specifications like RFCs, proper networnughput, a list
of open or closed ports, and standard replies to variousanktprotocols.

e Operating systems: Checking would be for type, version, system plat-
form, installation of system and application software sfilprocesses and
other topics covered e.g. in standards like POSIX and S@ISv3

1 [Cocke and Schwartz, 1970] pp. 6
2 [The Open Group, 2004]

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

88

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

- feyrer@rfhpcd3l 7:home3Medienst/feyreriworkivulab/code/public [EN[E(E]
rfhpcB317% pud
fhetrfhsB012/home3 bedienst/ FeyrerAworkvul abdcode/public_html

X cat textednethsd,html
$1d: netbsd.php,v 1,14 2004/02/23 15:40:15 feyrer Exp $ —>

-

In dieser Aufgabe =oll etwas an MetBSD rumkonfiguriert werden, das auf
dem Rechner "wulabl" des Wirtuellen Unix Labors installiert ist,

Lpr

Aufgaben:

{px

<hZ> Paketverwaltung </ h2x

<1i» Installieren Sie die bash und tesh Bindrpaket (Ouslle:
ftp://Ftp,.netbsd, orgs/pubs/Het BSD/packagess/1, 6/ sparc/ALL

<laly

<h2» Benutzerverwaltung </ h2:

<1i> Richten Sie einen neuen Benutzer "test" ein, Home-Verzeichnis

zs0ll Ahomestest sein, Shell "tesh®,

Setzen Sie das Passwort fir den Benutzer "test" auf "wutest"
Stellen Sie zicher dass zich der Berutzer via telnet, ssh und ftp
einloggen kann!

Arndern Sie die Login-Shell des Berutzers "wulab" zo dak er
kiinftig die bash verwendet,

Figure 6.3: Exercise text with no associated checks, impA&CII

6.4. STEP I: INSTRUCTIONS AND CHECKS NOT COUPLED 89

|5ue Edit View Tab Setings Go Bookmarks Tools Help |

PEErrerz @

@ viruelles Uni x

Virtuelles Unix Laboy;

Sie sind eingeloggt als user

home] [Benutzerdaten] [Buchungvornehmen] [Buchungen
einsehen] logou

Willkommen zur Ubung "NetBSD konfigurieren™!

In dieser Aufgabe soll etwas an NetBSD rumkonfiguriert werden, das auf dem Rechner
"yulab1” des Virtuellen Unix Labors installiert ist.

Aufgaben:
Paketverwaltung

1. Installieren Sie die bash und tesh Bindrpaket (Quelle:
ftp://ftp.netbsd org/pub/NetBSD/packages/1.6/sparc/All)

Benutzerverwaltung

1. Richten Sie einen neuen Benutzer "test” ein. Home-Verzeichnis soll home/test
sein, Shell "tesh”.

Geben Sie das Passwort fiir den Benutzer "test” auf "vutest”

Stellen Sie sicher dass sich der Benutzer via telnet, ssh und ftp einloggen kann!

Andern Sie die Login-Shell des Benutzers "vulab” so daB er kiinftig die bash

verwendet.

Rwn

Der Zugriff auf die Ubungsrecher ist hier beschrieben.

Verbleibende Alle Aufgaben
Zeit: bearbeitet:

Minuten Fertig!

Administrator: hubert.feyrer @informatik fh-regensburg.de

[pone. T =

Figure 6.4: Exercise text with no associated checks, rexadarweb browser

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

90

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

System interfaces:Testing presence of facilities needed for certain tasks
like file locking interfaces, thread availability, detemimg which interface

to use e.g. for system installation and service configunatgackaging
systems, startup system, etc.

Depending on the scenario and system environment thatheuexamined,
primitives could be grouped according to their availapitind scope:

Primitives forall systems e.g. TCP/IP networking, basic file attributes.

Primitives for agroup of systemse.g. Unix/POSIX like systems and their
specific services, or any Microsoft Windows version.

Primitives for asingle systemonly, e.g. Microsoft Windows in a specific
version (95, 98, ME, 2000, XP), Novell, BeOS as well as spetifitix
systems (Solaris, NetBSD) or Linux distributions (SuSE] Rat, Gentoo,
Mandrake).

In the Virtual Unix Lab, the two exercises “Network Infornaat Service” (NIS)
and “Network File System” (NFS) were examined closer. Adfsteeded check
primitives was identified and realized for each exercise.

For NIS, an overall number of 43 items to test was identified,appendix A.4.1
for a full list. Some notable examples of checks needed f& &ik:

For

Check if domainname(1) an@tc/defaultdomain are set on both
machines.

Do files like /var/yp/Makefile , Ivarlyp/passwd , Ivarlyp-
/binding/vulab/ypservers and/var/yp/passwd.time exist

on the NIS server?
Does ypwhich(1) return the correct NIS server?
Do passwd-, host- and group-NIS-maps contain the expeeta®d

Is /etc/nsswitch.conf properly set up to search passwd, group and
host-information in NIS?

Is /etc/rc.conf setup to start rpcbind and ypbind on NetBSD?

Are home directory and shell of the “ypuser” user set aceydo the
exercise text on the NIS server?

Is account information for the “ypuser” user provided pndpgia NIS?
Is “ypuser” member of the group “benutzer"?

Can the host “tab” be pinged (assuming the name is resoheNN)?
Are tcsh and/or bash installed on Solaris and/or NetBSD?

NFS, 36 items to test were identified, see appendix Adr2affull list.

Among them:

6.4. STEP I: INSTRUCTIONS AND CHECKS NOT COUPLED 91

e Isthe/usr’/homes filesystem exported properly in the filetc/dfs/-
dfstab on the (Solaris) NFS server?

e Do the NFS server processes rpchind, mountd, nfsd, statl] lmin on the
NFS server?

e Do the NFS client processes rpchind, rpc.lockd, rpc.stadon the (Net-
BSD) NFS client?

e Can the remote filesystem be mounted on the client manuatlyvam
letc/fstab ?

o Is the filesystem exported so clients can access it with noateges?

e Does the user “nfsuser exist on both machines, and does haisiiome
directory/usr/homes/nfsuser on both machines?

o Are files created on one machine accessible and owned onhltbemte?
e Are tcsh and/or bash installed on Solaris and/or NetBSD?

Database with web-interface to define checksCheck scripts are stored on the Vir-
tual Unix Lab master machine, which installs the lab machimens the check
scripts for result verification, and also the web frontend dourse manage-
ment. All data on exercises is stored in various tables ofititabase, and the
“uebungs _checks " table describes the connection between an exercise and a
check. It uses the following information from appendix B.6:

e A unique identifier for the exercise, e.g. “nis”, “nfs”,
o Filename of the check-script, e ¢heck-domainname-set

e Which machine to run the check-script on, evglLAB 1, VULAB 2 Or LO-
CALHOST for the Virtual Unix Lab master machine

e A description of what the check-script does, to be printe@mvbiving the
user feedback about the exercise’s result, e.g. “Was doraair(1) set
properly?”

Besides the data on which check to run (and on what lab maglieze was an-
other table (érgebnis _checks ") in the database that describes the checks’
results. Basically the check associated with the exercid@doolean “success”
value is stored for evaluation and feedback purpose.

Section 6.4.2, appendix A.1.1, the “preparation” in figur® &nd the “verifi-
cation” phase in figure 6.7 contain more details on the dawlaamd the web
frontend.

Result verification engine: This is the part where all the components are tied to-
gether: exercises, the checks as stored in the databafegteva of the checks
and storing the results. All this is done by the sciipbung _auswerten
which is described in more detail in the “verification” paftsection 6.4.2.

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
92 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Web—-Browser/GUI

checkl@vulabl
check2@vulab2
check3@vulab2

Figure 6.5: Step I: Preparation

Exercise Text

Figure 6.6: Step |: Exercise

6.4.2 Integration and interaction

This section describes how the components of the first imgpteation of the Virtual
Unix Lab result verification architecture that were introdd in the previous section
are integrated, and how they interact with each other. Egér5, 6.6, and 6.7 give an
overview of the exercise phases that were introduced inose6t2.2, and which are
involved in the process of result verification.

Preparation: Preparation of an exercise in the first implementation cediof sev-
eral parts:

1. Define the general parameters as of the exercise usingdhanterface
shown in figures 6.8 to 6.10. Parameters include name andiplést of
the exercise, duration, preparation- and post-processirgg name of the
exercise file, and which harddisk image to use for instaiagh of the lab
machines.

6.4. STEP I: INSTRUCTIONS AND CHECKS NOT COUPLED

93

©)

©)

Check1: Check2:

#!/usr/bin/perl #!/usr/bin/perl

checkl @ vulabl

check2 @ vulab2
check3 @ vulab2

run checkl
true
uebung_auswerten
run check2
false

checkl=true
check2=false

Figure 6.7: Step I: Verification

Machine
vulabl

Machine
vulab2

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
94 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Eue Edit View Tab Setings Go Bookmarks Tools Help

ﬂ/nyy%_ﬂ—

@& Virtuelles Uni»x [§i PHP: PHP Mex [Screenshats cx |
[
- -
Virtuelles Unix Labor
m -
Siesind eingeloggt als admin
home] [Benutzerdaten] [Uebungs-Setup] [Buchungen logout]
Neue Ubung erstellen (1/3)
In diesem Bereich kénnen Sie eine neue Ubung in das System einstellen.
Kurzbezeichnung netbsd
Bezeichnung |NelBSD-spezifische Sachen konfigurieren
Nur fiir |
Vorlauf in r . '4—
Stunden:Minuten 0 R
Dauer in ,— . ,— E
Stunden:Minuten I
Nachlauf in r . ,—
Stunden:Minuten 0 _Ryls
Wiederholbar 7 Ja ¢ Nein
Pad auf die Textdate I“f;bsld ph
e
Pfad auf zusétzlichen |
Info-Material Test
Zuriicksetzen | >> Weiter: Werte iibernehmen |
Administrator: hubert.feyrer@informatik.fh . de |
| =l

gfgﬂgo,g_

| screenshots cx |
Y
- -
Virtuelles Unix Labor
m L =
Sie sind eingeloggt als admin
home] [Benutzerdaten] [Uebungs-Setup] [Buchungen logout]
Neue Ubung erstellen (2/3)
Hier konnen Sie die Rechner der Ubungund deren Konfiguration bestimmen,
verwendeter Rechner |bitte wihlen Sie -
benstigtes Image | bitte wihlen Sie 7|
Rechner-Konfiguration hij | >> Weiter: Checks hinzufiigen |
Bereits eingetragene Rechner
verwendeter
Rechner rrulabl E‘
benbtigtes Image netbsd162img.gz a‘
Administrator: hubert.feyrer@informatik.fh burgde L
[&

Figure 6.9: Defining an exercise, step 2: which image to depfowhich lab machine

6.4. STEP I: INSTRUCTIONS AND CHECKS NOT COUPLED 95

Flle Edit View Tab Setings Go Bookmarks Tools Help

PRy eesr X%

@ Vinuelles Uni % [PHP: PHP Mex | @ Soreenshots x |

Virtuelles Unix

Siesind eingeloggt als admin

home] [Benutzerdaten] [Uebungs-Setup] [Buchungen ogout]

Neue Ubung erstellen (3/3)
In diesem Bereich kénnen Sie neue Check-Scripte zur Ubung hinzufiigen, dieam Ende
der Ubung laufen werden. Die Check-# ist im Ubungstext der Funktion

auswertung_teiluebungen() fiir die Auswertung der entsprechenden Teiliibung zu
iibergeben. Die Bezeichnung wird bei der Auswertung angezeigt.

Check-Script | bitte wahlen Sie =
Léuft auf Rechner |bitte wéhlen Sie ~|

fiir Ausvwermng: I

Check hinzuftigen | >> Fertig: Setup abschlieBen

Administrator: hubert feyrer @informatik.fh de

Figure 6.10: Defining an exercise, step 3: what checks to numtoch machine

2.

3.

Write the exercise text as a HTML file, which is stored in plublic -
html/texte directory of the Virtual Unix Lab HTML code.

Determine which checks are needed to verify if the exernsicompleted
successfully, and write the corresponding check-scripts.

Which checks are needed depended on the task to be perfaedidiated
by the exercise text and the way chosen to check if the taslpersrmed
correctly, see section 6.2.3. Also, if an already existihgak handled a
similar task, copying the corresponding check script andsdithg just one
or two parameters usually gave a working shell script.

ExampleThe script to check if the shell of the “nisuser” from the Nk&e
cise existed was derived from the check that did the samé&édmtfsuser”
from the NFS exercise.

It became clear quickly that a way to parametrize the chedbptscwas
needed, but this had to wait for the second implementatiem ct the Vir-
tual Unix Lab, see chapter 9.

. Associate the checks with the exercise in the databaisg), tie web fron-

tend.

After the check scripts were put into theulab directory on the master
machine, the web frontend could be used to create entriggeiddtabase
that described which checks to run on which machine aftexarcise was

completed, see section 6.4.1.

Although data entry via the web frontend is not very difficulsing the

web frontend to enter 30-40 checks was tedious. This poistagdressed
in the second implementation, see chapter 9.

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
96 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Exercise: After the exercise was written and stored on the Virtual Urab master
machine, nothing needs to be done at runtime. The PHP shaptisplayed
the exercise text read the exercise text file, added HTML éreadd footer, and
displayed it to the student.

Verification: At the end of the exercise, the verification process is stafiée three
steps involved in the verification process are illustratefigures 6.5, 6.6, and
6.7:

1. Determine which checks to run on which lab machine.

The database contained all the information about the chibeksvere part
of the exercise’s verification step, and what check scriptitoon which
lab machine.

2. Get the lab machine to run the check script, and collectdbelt.

The check script needed to be run either on the Virtual Unilx beaster
machine or on one of the lab machines, as described in thbakaRun-
ning the check on the master machine was easy, running iteorethote
machine required the script to be transported to the remathime first,
then executed (by running it through the right script inteter), and col-
lecting the result of the test afterwards.

3. Store the check’s result in the database.

Following the requirements, the result was then stored éenddtabase’s
“ergebnis _checks " table for later retrieval, evaluation, and feedback.

Feedback: No feedback on the results stored in the database was mbdbtzehe
first implementation of the Virtual Unix Lab, neither for useo query their
individual results, nor for teachers to get an overview efdkerall performance
for each test. During the design of exercises it became ttiaathe combination
of exercise in one file and definition of checks in the datalves®too hard to
maintain when exercises needed adjusting during theigdgsiase. As a result
no real exercises were done on the first implementation oVittteal Unix Lab
that yielded any values to analyze.

Another major reason for moving towards the second imple¢atiem of the Vir-
tual Unix Lab was that for analysis of individual exercisesl giving feedback
to students, doing so in the context of the single tasks oeRegcise is much
clearer than giving feedback without that context.

Example:An exercise consists of two tasks, A and B. The result of taska&
verified by checks 1, 2 and 3, and task B was verified by checkglsba The
first implementation of the Virtual Unix Lab did not allow gig feedback for
checks 1-3 associated to task A and checks 4-5 associatektB,tbut only a
list of checks 1-5 and their results, without saying whichathwas associated
to which task. This was of little use for users who wanted toriefrom their
errors. Figure 6.14 illustrates this.

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 97

6.4.3 Summary and suggested improvements

This section looks at what has been achieved in step |, argkestgyimprovements for
step Il. In the context of Domain Specific Languages, stgpest have been identi-
fied and implemented via check scripts. They were a goodrgjgubint to continue.
Initially, they were inflexible, as different scripts werxuired to verify the results of
different but similar tasks. Flexibility was improved byopiding a set of check scripts
for basic operations, plus adding a parameter passing mischa

Beyond stereotypes for result verification, no real “larggichas been defined at this
point that embeds the stereotypes as activators for thefiggeactions. In the con-
text of the Virtual Unix Lab, this became obvious as there waglirect connection
between the exercise text and the verification steps caoaedy the check scripts.
The loose coupling of exercise text and checks was not enfarggiving detailed
feedback as described in the “Analysis” part of section.4 his can be improved
by embedding activators for the check scripts into the égerext. With a close cou-
pling between exercise text and checks, it is possible te fgedback on parts of the
exercise, telling the student which parts of the exerciseewelved successfully, and
which were not.

All the above points are addressed in step Il of the VirtuaikWmab.

6.5 Step Il: Instructions and checks coupled

This section describes the version of the Virtual Unix Lahtthddresses the issues
identified in step I, and that was used for evaluation in secti This section describes
how check scripts were improved, and how coupling of exertggt and checks was
achieved by creating a domain specific language. This aleavsto give elaborated
feedback, and it allowed creating a system front-end wittckiprimitives. For these
aspects, integration and interaction with the existingesysare illustrated.

6.5.1 Improved check primitives

The check scripts that implement the verification primiiveere improved in several
ways. To be of more general use, the checks were implemesierd ane common
language and framework for all scripts. Common tasks wegstifled and expressed
in more generic scripts, which were taught how to handlempatars, to accommodate
the scripts to the specific tests. The following items désctine changes in detail.

Rewrite all check scripts in Perl: Implementing check scripts in the Bourne shell is
fast if the shell supports the task intended to be perfornoedf there is an

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
98 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

external program to do the verification and report back ssgoefailure. While
this is possible for a number of tests, the shell does notigednternal methods
to test system specific items. Relying on external programmablematic as
these commands may or may not be present between differstensy, they
may be named differently, or have different calling conicms.

An alternative to avoid those problems with portability anéroperability is to
use another language for implementing the check primitiesction 5.4 dis-
cusses possible options, and with the given requiremeatsjsPa good candi-
date: itis available on many platforms, and also providesynagerating system
specific interfaces.

For step Il of the Virtual Unix Lab, all check scripts were réten in Perl. At

the same time, their names were changed to indicate thgaesgfapplicability,

i.e. if they can be used on all systems, on Unix systems, or onlspecific

Unix(like) systems, by giving them common filename prefix8se appendix
A.5 for examples.

Extend check scripts to handle parameters:Check scripts often verify similar re-
sults. For the first implementation, scripts were often edpand similar items —
filenames, text patterns, etc. — were changed. Sometimesithponents likely
to be changed were even put into internal variables that sedrat the start of the
script, and that were the only parts of the scripts that ngéetianging. While it
was an improvement that not the whole script had to be urmtstsvhen deriv-
ing a new test from an existing one, copying the script wakretessary with
all the drawbacks. Those drawback included the need to stadet internals of
the Virtual Unix Lab, and redundant maintenance effort wtiencore part of
the check script had to be changed, e.g. for feature imprem&gror bug fixing.
As such, it quickly became clear that a method to pass thesengters to the
check script would be of benefit.

Passing parameters into a check script involved severaleof/irtual Unix Lab
components: Besides the check scripts that needed chamgesdpt parame-
ters, the parameters had to be stored in the database. Theaseth interface to
store and edit the check data in the database had to be aljjastkan interface
had to be defined to pass the parameters from the databasegoripts when
running it. Furthermore, an interface was introduced tagaecheck script for
its purpose and the parameters it supported.

To realize this, the following changes were made:

e Check scripts: All check scripts were changed to use Perl as the only lan-
guage, as described above. At the same time, a frameworkvaduced
to make passing and querying parameters more easy.

e Database:Theuebungs checks table (see appendix B.6) was extended
by a “parameter” field to store an arbitrary string that camthe processed
lexically into single parameters and arguments.

1 [Mayer, 2001] pp. 24

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 99

File Edit View Tab Setings Go Bookmarks Tools Help

Jd /» @ & o o | 3

@& Virtuelles Uni»x [§i5 PHP: PHP Mex | Sereenshats cx |

Sie sind eingeloggt als admin

ome] [B 1 [Ueht pl [Buck] [logout]

Neue Ubung erstellen (3/3)

In diesem Bereich kénnen Sie nene Check-Seripte zur Ubung hinzufiigen, die am Ende
der Ubung laufen werden. Die Check-# ist im Ubungstext der Funktion
auswertung_teiluebungen() fir die Auswertung der entsprechenden Teiliibung zu
iibergeben. Die Bezeichnung wird bei der Auswertung angezeigt.

Check-Script |bitte wihlen Sie |

Parameter: |

Léuft auf Rechner |bitte wihlen Sie -|

fiir Auswertung: I

Check hinzuftigen | >> Fertig: Setup abschliefen |

Administrator: hubert.feyrer @informatik.fh-regensburg.de

\]

Figure 6.11: Extended web interface to enter parametexshfeck script

e Web interface to database:The web interface realized in step | was ex-
tended by a field for a string of parameters that was storedetdatabase
as described above. See figure 6.11 for a screenshot.

e Parameter-passing interface:As the check script is ran either on the Vir-
tual Unix Lab master machine or copied to one of the lab mashand
executed there, the parameters need to be passed. Froral gm&sible
ways (passing on as command line arguments, via a file désctike
standard input, or as environment variable), passing asoemeent vari-
able was chosen.

e Interface to query possible parameters:

Check scripts were extended by a querying interface toexatriheir gen-
eral purpose, a list of possible parameters, and their iggiser. This in-
formation is displayed in the web-based user interface fdering and
changing check scripts. Figure 6.12 shows a choice of dlaileheck
scripts (read from the harddisk'gulab directory), a description the pa-
rameter(s) of theinix-check-user-shell check script is shown in
figure 6.13.

Improvements of check scripts: The check scripts used in step | of the Virtual Unix
Lab only tested one aspect of the system. Testing two simdpects following
the same concept required two separate shell scripts.wWintiahe description
of Cocke and Schwartz, the check scripts were improved teigedindicative
subpatterns” to be embedded into exercise texts. Thespasgns” provide the
“contextually implied information”, i.e. they act as a aaition of subroutines

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
100 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

HP: PHE Mex | Screenshots cx |
bitte wihlen Sie
admin-check-clearharddisk
admin-check-makeimage
check-directory-exists

check-file-exists
check-program-output
netbsd-check-installed-pkg
netbsd-check-revar-set
netbsd-check-user-shell
[home] Imsolal’is-cl’mck-insmlled-pkg
unix-check-file-owmer
ix-check-mount

Sie sind eingeloggt als admin

Buchungen logout]

u /3)

u .
In diesem Bereich kdniynix-check-user-fullname bung hinzufiigen, die am Ende
der Ubung laufen werd ynix-check-user-home it der Funktion
auswertung_teiluebus ix-check ingroup prechenden Teilibung zu
iibergeben. Die Bezeictynix-check-user-password Ingezeigt.

———unix-check-user-shell
Check-Script | bitte wihlen Sie M|

Parameter: |

Léuft auf Rechner | bitte wihlen Sie ~|

fir Auswertung: I
Check hinzufiigen | >> Fertig: Setup

Bereits eingetragene Checks
Check#915, [i s Lol Al

Figure 6.12: Listing existing checks

IF Virtuslles Unix Labor -

File Edit View Tsb Settings Go Bookmarks Tools Help

[/5 ¢ @ 6 ¢ S |

F Virtuelles Unix x|

]

Virtuelles Umnjix Labor:

Siesind eingeloggt als admin

home] [Benutzerdaten] [Uebungs-Setup] [Buchungen] [Feedback] logout]

Check editieren

Check #915, Sexipt: |unix-check-user-shell |

Parameter: [LOGIN-vulab SHELL_SHOULD-"*/bash’

fiir A“m iy |§hell des Users vulab auf bash gesetzt?

Léiuft auf Rechner: [vulabl -]
Ubernehmen? ja | _nein

Aufgabe des ausgewihlten Check-Scripts ‘unix-check-user-shell”:

"Tested ob die Login-Shellvon User $LOGIN gleich $SHELL SHOULD ist (via
getpwnarm()) "

Mbgliche Parameter:
Variable Default Beschreibung

LOGIN test Benutzer, dessen Login-Shell ueberprueft werden soll
SHELL_SHOULD /bin/sh Pfad auf den die Shell gesetzt sein sollte

ator: hubert.feyrer@informatik fh burg.de

Figure 6.13: Possible parameters of a check script, anddbscription

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 101

that can be called for specific check tasks when needed, titextds defined
by parameters

Improvements made were:

e Output of programs and contents of files were first comparathagfixed
values, the final check scripts then compared against pattirectly.
Example:The following transition was made from a check script thataked
a program’s output to determine the contents of a file intothatchecked
the contents of a given file. In effect, the scope of the sevgs thus nar-
rowed, and the complexity of parameters was reduced.

Before:
Script: check-program-output (see appendix A.6.1.6)
Parameters:
PROGRAM="grep ""PWDIR. *=. * /varlyp" /varlyp/Makefile | wc -I
OUTPUT_SHOULD=1

After:
Script: check-file-contents (see appendix A.6.2.3)
Parameters:
FILE=/varlyp/Makefile
CONTENTS_SHOULD=""PWDIRx =. * /varlyp"

e Specific checks were implemented to test various attribafasser ac-
counts, e.g.

— if a user account exists at 4ll
— if a user has a certain login shell
— if a user has a certain passwbrd

e Output of the same program was compared against differémtsaPass-
ing these values by parameters made it possible to use theeckaank script
to test various aspects in different exercises, by passffeyeht parame-
ters.

Example:The scriptunix-check-process-running (see appendix
A.6.2.7) was designed to take a process name as parameaterheck if

the named process is running. The following database quewsthe

places where this is used:

vulab=> select distinct uebung_id, bezeichnung, paramete r
vulab-> from uebungs_checks
vulab-> where script="unix-check-process-running’;
uebung_id | bezeichnung | parameter
+ +
nfs | L &uft lockd? | PROCESS=lockd

1 [Cocke and Schwartz, 1970] pp. 10

2 See thaunix-check-user-exists script in appendix A.6.2.4

3 See thaunix-check-user-shell script in appendix A.6.2.5

4 See thaunix-check-user-password script in appendix A.6.2.6

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

102 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE
nfs | L &uft mountd? | PROCESS=mountd
nfs | L &uft nfsd? | PROCESS=nfsd
nfs | L &uft rpc.lockd? | PROCESS=rpc.lockd
nfs | L auft rpc.statd? | PROCESS=rpc.statd
nfs | L auft rpcbind? | PROCESS=rpchind
nfs | L @auft statd? | PROCESS=statd
nis | rpcbind 1 auft? | PROCESS=rpcbind
nis | ypbind | auft? | PROCESS=ypbind
(9 rows)

e Checks that queried specific system databases by using sapraand
checking its output were changed to get the fields to query, @mld re-
turn if the field is set.

Example:Checks existed to test if a certain service was started ibaoé
process of NetBSD, as defined in thedc/rc.conf file. They were
implemented by looking for a certain pattern in that file. 3&ehecks
were replaced by a script that only specified the field to queng that
either returned success or failure, whether the field wasrgsat.

Before:
Script: check-file-contents (see appendix A.6.2.3)
Parameters:
FILE=/etc/rc.conf
CONTENT_SHOULD="rc_configured. *=. *[Yy][Ee][Ss]

After:
Script: netbsd-check-rcvar-set (see appendix A.6.2.8)
Parameters:
RCVAR="rc_configured’

Similar checks that are specific to one operating system eavritten e.qg.
for the Irix startup system’s database or the Windows regist

As a summary, the initial set of task-specific check scrips whanged into a set of
check scripts that are more general. Parameters can betgivlea scripts to specify
which aspects of the specific subsystem to examine closer.

6.5.2 Coupling of exercise text and checks

The example at the end of section 6.4.2 illustrates one gbtblelems in step | of the
Virtual Unix Lab: Giving useful feedback after an exerciseasmot possible. Exercise
text and check scripts were completely separated, and asuli tewas not possible
to tell the student which of the exercise’s tasks were sobigrtessfully, and which
were not. To give detailed feedback on each task of the esegran association needs
to be made between the textual description of a specific thkecexercise, and the
check(s) that verify the results of that task.

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 103

a)
text
check 1
task A check 2
heck 3
task B c
‘ check 4
check 5
b)
text

check 1

task A § check 2
task B : check 3

‘ \ check 4
check 5

Figure 6.14: Exercise text and checks: a) uncoupled in st@pcoupled in step I

Figure 6.14 a) illustrates the uncoupled exercise text &edlcs used in step | of the
Virtual Unix Lab, while figure 6.14 b) shows the coupling ligat in step II.

6.5.2.1 Options

Several ways for coupling exercise text and checks arelgessi

e Split the exercise text into single tasks, associate thes tagh the exercise, and
the checks with tasks:

exercise— task« checks
instead of the
exercise— checks
association used so far, in effect splitting a “big” exeecisto several smaller

ones. Instead of writing one HTML file for the whole exercisgtt several files
would be needed, one per task.

The maintenance impact of this was considered to be too miuah &sue to
realize this solution.

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
104 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

o Write check code inline into exercise text, i.e. mix the HTMHP code used to
describe tasks with code to check the results.

There are a number of problems involved in this solutionstf-putting the code
for the tests directly into the exercise text would (re)te@dundancy of code
that was removed with the work to use generic check scripezoi&d, an as-
sociation between the result of the check and the check milidtesmade to

give feedback for a particular exercise to the user and stheiexercise was
solved successful or not. For this association, an identistill required that

maps between the check and its result. Third, as the codes heded executed
either on the master or one of the lab machines, extractigdbe from the ex-
ercise text would be necessary, either at test time withouihg the verification

code anywhere, or with extracting it once and storing it etolace that would
need management. This would make the whole exercise hgrmimplex and

complicated.

e The last alternative for coupling exercise text and cheskshybrid version of
the above solutions: The exercise text is augmented withs"aar “activators”
to check scripts. The check script is stored separatelyttandesult of its exe-
cution is stored in the database for later retrieval usingique identifier for the
(booked exercise, check number) combination.

The advantages of this approach is that the code doing tifeation itself can

be abstracted in the check scripts as described above. tReanl be stored
and retrieved for feedback by giving them a unique identffieithe check and
one for the booked exercise, and the existing verificatiogirencan be used
unchanged.

From these three approaches, the last one was chosen tariemleoupling of exer-

cise text and checks for step Il of the Virtual Unix Lab. Reeastor this decision are

that it allows to reuse existing code from the check scripts the result verification

engine, is has a low overhead on maintenance, and that i keepbstraction between
check script stereotypes and their implementation.

The information needed for a single check to run are the chegt name, any possi-
ble parameters, which host to run it on as well as a textuarge®n what the check
does, for giving user feedback. Also, an identifier for thetipalar check is needed to
identify the result of the particular check for a particudaercise taken.

In step |, the main tasks for creating an exercise were writithe exercise text and
associating checks with the exercise using the web frontelsihg the web interface
for a large number of checks (43 for the NIS exercise, 36 feINRS exercise) was not
practical, and it also split the exercises’ parts into twaxcgk. This split made it hard to
maintain a full overview over a particular exercise andfal &ssociated checks, and as
a result exercise maintenance was hard. To solve this pmliéegrating check data
into the exercise was chosen following the “Data Structwgprsentation” pattern for
domain specific languages described in section 5.3, witldditianal twist.

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 105

6.5.2.2 Data structure representation

So far, the per-check data — check script name, parameteich Wost to run on and a
textual description for the user feedback — was stored in¢freings checks table,
filled in using the web interface. The idea for improvemens waplace this data into
the exercise text, to keep check data near the exercise text.

That is, the idea was to have something like this in the egengxt:

1. Perform some task on host vulabl with parameters x and vy.
/I Check 1: run check-task-done (no parameters) on host vula bl
1 Feedback: “Was the task performed successfully?”
/I Check 2: run check-task-parm (PARM=x) on host vulabl
1 Feedback: “Does the task use parameter x?”
/I Check 3: run check-task-parm (PARM=y) on host vulabl
1 Feedback: “Does the task use parameter y?”

This example first describes the task to the user in textual,fthen contains some
comments to indicate the check data. It usés™as an indicator for the processing
engine to not include the check data when displaying theceseetext to the user.
While preventing the displaying of the check data was pdsdip using HTML or
PHP comments, there were two problems given with this amprodirst, how to
extract the check data for running when the exercise is anersecond, how to display
the feedback to the user.

The first problem was solved by a processor that realizesi#@ ‘Structure representa-
tion” pattern from section 5.3. This processor extracttieck data from the exercise
text and stores it into the database&bungs _checks table. The check data can be
stored as comments in the exercise text, and then get eedrentb the database, where
it can be edited using the existing web interface, and erelchy using the existing
result verification engine as described in section 6.4.dgffely, using a processor to
extract the data from the exercise text into the databasepred a need to change
the whole result verification engine. It still allowed usitige existing web interface
to edit checks when needed, and most important, keepingealiata for an exercise
in one file. This was was considered a key item for keeping teaance of exercises
manageable. The processor is described in more detail ioséc5.5.

What is not described so far is how feedback for the user ergafter an exercise was
taken, which leads to the second problem and the “twist” rnaet before.

To give feedback after the exercise, hiding the check dagmssive comments in the
exercise text as displayed in the above example is not gesg\n active component
needs to remain, which acts as an activator to display thererhstored for feedback
purpose (“Was the task performed successfully?”, ...) dsagean indicator for suc-
cess or failure of the exercise, retrieved from the databasmique identifier for each
check was needed, and the check ID stored in theetk _id " field already present

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

106 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE
feyrerBulddh:homesfeyrar Awork vulabscodedpublic_html/texte
<p
Aufgabent
ipr

<hZ> Paketverwaltung </hZ>

{ol>

<1i» Inztallieren Sie die bash und tosh Bintwedrpaket (Quelle:
ftpi//Ftp,netbed, org/pub/NetBSD packages/1,6/ sparc/All)

{?php auswertung_teilusbungen(
HEM, A/ wulably netbsd-check-installed-pkg PEG=tcsh
I tesh installiert? (pkg_info -e tcsh)

Wil A7 wulablt rethsd-check-installed-pka PKG=bash
7 bazh installiert? (pka_info -e bash)

<ol

<hZ>» Benutzerverwaltung </h2>
<ol
{1i*» Richten Sie einen neuen Benutzer "test" ein, Home—VYerzeichnis

Figure 6.15: Example exercise text with check data

in theuebungs _checks table fits this purpose. Finally, deciding whether to digpla
feedback or not was handed over to a PHP function, which catefieed to hide the
feedback before and during the exercise, and show it wheastierequests feedback
after the exercise was taken. So as a twist, feedback is givent depending on a
single function definition, which is different before/whiand after the exercise, see
section 6.5.3.

The final exercise design consists of the exercise text befitgen in HTML text with
PHP functions included that control printing of evaluatias well as feedback text
stored as PHP comment. This gives the data for the associagedt, and is stored in
the database by theebung2db processor.

An example exercise text is displayed in figure 6.15, appeAd? lists full exercise
texts for the NIS and NFS exercises as used for evaluatioheoWirtual Unix Lab
described in chapter 7.

6.5.2.3 Forming a domain specific language

Given the above design, exercise texts contain a numbertailsieFirst, the checks,
its parameters, and which lab machine to run it on are exddcom comments in the
exercise text, and stored into the database byéteing2db processor. This realizes
the “data structure representation” pattern describe@dtian 5.3 and by Spinelfis

Second, information on the check script names are givenenctmments, which

1 [Spinellis, 2001] p. 96

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 107

acts as calls to functions. The functions are defined by teelchcripts as discussed
in section 6.5.1. Last, the exercise text is augmented witR Runction calls that
give feedback depending on the context that the functioasalled in. This forms
a domain specific language which is further refered to asifi¢ation Unit Domain
Specific Language” (VUDSL).

Details on the PHP functions as well as the feedback thewa#iagiven in section
6.5.3, and a summary of the Verification Unit Domain Speciioguage can be found
in section 6.6.

6.5.3 Giving feedback

Giving proper feedback on what tasks of an exercise wheredduccessfully and
which were not was one of the primary design goals of step thefVirtual Unix
Lab. Given the exercise design described in the previoused was easy to realize
giving different feedback to single users and teachers.

Key elements for giving feedback are the PHP functions enibedhto the exercise
text as shown in figure 6.15. They controll what checks aretgdi if feedback is
requested:

e auswertung _ueberschrift()
e auswertung _teiluebungen()

e auswertung _zusammenfassung()

For presenting the exercise text to the user when previewairdywhile taking the
exercise, these functions do not print anything at all.

To give feedback for a user after the exercise, these fumstare defined differ-
ently. While auswertung _ueberschrift() and auswertung _zusammen-
fassung() give general information including a header and footer lier éxercise,
the main work is done bguswertung _teiluebungen() . The function takes a
list of check IDs, and it retrieves and prints the correspagdextual description of
the check (from thelfjezeichnung " field of the uebungs _checks table) as well
as the result of the check (stored in thexfolg ” field of the ergebnis _checks
table). Figure 6.16 shows a screenshot of feedback for éesirsgr.

While single users are only interested in their own perforoeateachers are interested
in statistics on how the whole study group performed. Stey the Virtual Unix Lab
allows users with admin privileges to retrieve such infatiovafor all users. Using the
named PHP functions, a routine can be addeddswertung _teiluebungen()

to print the following information in addition to “normal”ser feedback:

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
108 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

igue Edit View Tab Setings Go Bookmarks Tools Help |

(370 2 0 0 o | [

@ Vituelles Unix [PHP: pg_querx |

U,

Virtuelles

Sie sind eingeloggt als user

home] [Benutzerdaten] [Buchung vornehmen] [Buchungen
insehen] [logout]

Auswertung der Ubung “"NetBSD Kkonfigurieren™

Die Ubung "NetBSD konfigurieren” (Buchungs-ID #77) fand am 2004-01-21von
12:00:00 bis 13:23:37 statt und dauerte damit 83 von max. 90 Minuten. Die Ubung wurde
von der [P-Nummer 132.199.213.26 aus absolviert.

Es folgt di Auswertung der ei Teil

In dieser Aufgabe soll etwas an NetBSD rumkonfiguriert werden, das auf dem Rechner
"vulabl” des Virtuellen Unix Labors installiert ist.

Aufgaben:
Paketverwaltung

1. Installieren Sie die bash und tesh Bindrpaket (Quelle:
ftp://ftp.netbsd.org/pub/NetBSD/packages/1.6/sparc/All)

Pakete installiert? (pkg_info -e) Nein

Benutzerverwaltung

1. Richten Sie einen neuen Benutzer "test” ein. Home-Verzeichnis soll /home/test
sein, Shell "tcsh”.

"test” finger(1)bar? OK

Korrektes Home-Verzeichnis? (finger, test -d) OK

Shell richtig gesetzt? (finger) OK

Eintrag in /etc/master passwd? OK
2. Geben Sie das Passwort fiir den Benutzer "test” auf "vutest”

Passwort richtig gesetzt? {getpvmam(3), crypt(3)) oK

3. Stellen Sie sicher dass sich der Benutzer via telnet, ssh und ftp einloggen kann!
4. Andern Sie die Login-Shell des Benutzers "vulab” so daB er kiinftig die bash
verwendet.

Login-Shell vulab? (chfn/chsh, finger) Nein

Anzahl Teiltibungen: 7
Davon bestanden: 5 (72%)

ome] Link auf diese Seite
Benutzerdaten Hier kénnen Sie Thre personlichen Daten dndern

Reservieren Sie sich Ubungsaufgaben, die Sie demniichst

Buchung vornehmen bearbeiten wollen

Buchungen einsehen] ~ Uberpriifen Sie Ihre getitigten Buchungen
logout] Verlassen Sie ihr Profil

Administrator: hubert.feyrer@informatik.fh . de

[pare.

Figure 6.16: Giving feedback on an exercise for a single user

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 109

(=]

™ Virtuelles Unix Labor - Mozilla
Window Help

M Eile Edit Y¥iew Go Bookmarks Tools
3 G
-2 -3 O— | o] 3

Back
5| a3 Home | wpBookmarks
& 4 Virtuelles Unix Labor |¢Screanshms des Virtuelles Unix Labor |
Al

2. Client (NetBSD): vulah2

Das Verzeichnis /usr/homes soll vom NFS—Server (vulab1) auf /usr/homes gemountet

werden:

« Existiert der Mountpoint /ust/homes auf dem Client?

¢ Sind Daten im Mountpoint enthalten?

o Uberpriifen Sie mit ‘showmount —e’ die NFS—Freigaben des NFS—Servers ‘vulabl”

(10.00.1)
Nein

showmount(1) zeigt /usr/homes?

Bestanden: 1 (9%)lo
Nicht bestanden: 10 (90%) loooooooooo

Summe: 11(100%)

o Untersuchen Sie die System—Defaults in /etc/defaults/re.conf und tragen Sie fiir
NFS notige Abweichungen in die Datei fetc/rc.conf ein. Achten Sie auf rpc.lockd(8)

und rpe.statd(8)!
OK

fete/re.conf: re_configured gesetzt?
Bestanden: 9 {81%) looooooooo
Nicht bestanden: 2 (18%) loo

Summe: 11 (100%)

fetc/re.conf: lockd gesetzt? Nein
Bestanden: 3 (27%) looo
Nicht bestanden: 8 (72%) loooooooo

11 (100%)

Summe:
Nein

fetc/re.conf: statd gesetzt?
Bestanden: 3 (27%) looo /
o

S B 2 @ @ m | Do

Figure 6.17: Giving teacher/admin feedback for all usergiwtook an exercise

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
110 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

e The number of students who solved the task successfull pptcount and
percentage

e The number of students who did not solve the task succegsfigiain given by
count and percentage.

e The count of students who took the exercise, and either sdeckor failed.

e A bar of “0"s is printed besides each result, with on®' ‘trepresenting one
student. This allows to get a quick visual overview of theuhess

Figure 6.17 displays an example of feedback on how all ussfegmed on a certain
exercise, with all the data mentioned above.

Many other ideas for giving feedback to single users and&splysis of performance
of whole groups of students are possible. For a first overvieerones implemented
in step Il of the Virtual Unix Lab were considered adequate.

6.5.4 Creating a system front-end with check scripts

Besides exercise texts, the other important part of an eeeis the machine setup
provided for an exercises that users start with. This machketup is stored in form
of harddisk images that are written to the lab machines’ diakd before the exercise
starts as described in section 4.3. Sometimes a harddisieimeeds to be updated
or newly created. The process to update/create an imagdirsttmstall an existing
image or install the machine from CDROM, then store the nreghiharddisk image
to an image file that can then be used for exercises as showgune .9.

Before step Il, the process of creating or updating a hakddisge was done man-
ually by first preventing any exercises from being taken fums time (by disabling

logins in the Virtual Unix Lab), then — when updating an exigtimage — issuing the
command to deploy an existing image manually, or instabimgachine from CDROM

and configure it so that its configuration can be used for tleecése in mind. After

that, the machine had to be shut down and netbooted. Fronetheat environment,
the harddisk image was taken and written to the Virtual Urak Imaster machine via
NFS. After entering the newly created image file intoithages table with an appro-

priate SQL statement, the new/updated image was ready tedakin newly created
exercises.

The process where these manual steps were used for updediNgtBSD clientimage
from NetBSD 1.5.2 to NetBSD 1.6.

This process is tedious, prone to errors, and many inteetalld of the Virtual Unix
Lab need to be known. Looking closer at the process, mostasfetisteps can be
done automatically easily though: The normal exerciseesystan be used to book a

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 111

certain “admin-type” exercise. It will prevent users fromtarrupting the process, and
also install a predefined image on the lab machine for upgldtirvanted). Normal
users are prevented from booking the exercise by enterm@dministrator’s login
name into the “Nurir” (only for) field so only the named administrator can boloé& t
admin-type exercise. The exercise text file has to existcantbe empty. See figure
6.18 for an example setup.

When the exercise time arrives, the machine will be prepared instead of doing a
predefined exercise, the administrator changes the cliaohime as needed.

The verification of the exercise results consists of two spetieck scripts that will
care to do the postprocessinggdmin-check-clearharddisk 1 and admin-
check-make-image 2. The first script cleans up any unused space on the lab ma-
chine’s harddisk and prepares it to be better compressilfiée the second script does

all the real work of shutting down the lab machine, takingcprgions so a netboot will
create a harddisk image in a given file, perform the netboait, umtil the image file is
created, and storing the newly created image’s filenameeiimihges table. Image
6.20 shows an example setup in the web user interface.

Figures 6.18, 6.19, and 6.20 show the steps of an exampleisxsetup that was used
to update the Solaris image for some minor changes. Impdtéms to notice are:

e The exercise can only be booked by one user, “admin”, as tigit hame is
entered in the “Nuriir” (only for, see image 6.18 field of the first mask

e The exercise text in the “Pfad zur Textdatei” (path to exs&¢ext file, see image
6.18 must exist so it can be displayed. As it is expected Hesatimin taking the
“exercise” knows what he wants to change, not much text nielle put there,
and the file can be empty as well.

e Both machines have “bétigtes Image” (required harddisk image, see image
6.19 set so that they get Solaris installed. Only one machitide modified
and taken an image from, but the other one will be useful flaremce, so both
are given the same default installation.

e Theadmin-check-clearharddisk check scriptis started on theJLAB 1
lab machine to clean up the harddisk before generating aganihis will result
in a smaller image, as it is expected that there is unusednamihta left on the
disk which would prevent optimal compression of the harkldizage.

e Theadmin-check-makeimage check scriptis run onOCALHOST, i.e. the
Virtual Unix Lab master machine and not on one of the lab maehi This is
required because the script needs to access the netboairatd¢he database,

1 See appendix A.6.2.1
2 See appendix A.6.2.2
3 [Feyrer, 2007b] Section “5.10 Reducing the image size”

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
112 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

|5ue Edit View Tab Sefings Go Bookmarks Tools Help |

e

& virluelles Unp x |

Virtuelles Umnix Labor;

Sie sind eingeloggt als admin

ome] [] [Uebu pl [[Feedback] [logout]

Ubung editieren (1/3)

Kurzbezeichnung }deawsolaris

Bezeichnung |Sularis-lmageupdalen

Nur fiir admin
Standen Mimatan 10 +F5
Smnden:]\?la;:l:lrtei: W : W
SndenMimuten 02 +00

‘Wiederholbar 7 Ja ¢ Nein ¢ r

Pfad aut die Texidatei "2 *75-PhP
Test

Pfad auf zusétzlichen |
Info-Material Test

Zuriicksetzen | >> Weiter: Werte tibernehmen |

Administrator: hubert feyrer @informatik fh-regensburg.de

[pone. |

Figure 6.18: Defining an admin-only exercise to update tHar&dmage, step 1: only
“admin” may book

[et on T et Go e T i

[3
Viirtuelles Unix Labor

Siesind eingeloget als admin
Thome] [Uebungs-Setup] [Feedback] ~[logout]

@ Virtuelles Unox [

Ubung editieren (2/3)

verwendeter Rechner [bitte wahlen Sie -]
bendtigtes Image [bitte wahlen Sie ~|
Rechi ion hinzufiigen | >> Weiter: Checks hinzufiigen |
Bereits eingetragene Rechner
e ot 9
benbtigtes Image jolaris29.img gz =
Rechner 1202 ol ||
benbtigtes Image jolaris29.img gz =|
hubert. il ik.fh b d
[Pone. T &

Figure 6.19: Defining an admin-only exercise to update thiarfoimage, step 2:
Solaris will be preinstalled

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 113

|5us Edit View Tab Sefings Go Bookmarks Tools Help

s=s-rre___-_— ——o.).. ¥

@ Virtuelles Uni>x |

I

Virtuelles Unix Laboss

Sie sind eingeloggt als admin

home] [E] [Uebungs-Setup] [Buct] [Feedback] [logout]

Ubung editieren (3/3)

In diesem Bereich kénnen Sie neue Check-Seripte zur Ubung hinzufiigen, die am Ende
der Ubung laufen werden. Die Check-# ist im Ubungstext der Funktion
auswertung_teiluebungen() fiir die Auswertung der entsprechenden Teiliibung zu
ibergeben. Die Bezeichnung wird bei der Auswertung angezeigt.

Check-Script | bitte wihlen Sie |

Parameter: |

Liuft auf Rechner | bitte wihlen Sie ~|

fir Auswertung: I

Check hinzufiigen | >> Fertig: Setup

Bereits eingetragene Checks

Check #917,
Script:

Parameter: |RECHNER:Vulab 1 IMGFILE=solaris29-2.img.gz

Lauft auf
Rechner:

Jadmin-check-makeimage

lu o

llocalhost

Bezei - - - -
fir Auswertung, /a8 von vulab L in solaris25-2 img gz zichen

Ched{sﬁ?llp? Jadmin-check-clearharddisk E‘

Parameter: | =|

Liuft auf
Rechner: |vulab L

fiir Auswertung: |Falplalt,e von vulab1 von Muell saeubern (dd </dev/null >x)

ator: hubert. feyrer@informatik fh de

Figure 6.20: Defining an admin-only exercise to update tHarsdmage, step 3: the
disk will be cleaned and put into an image file after the eserci

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
114 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

which it can not do from a lab machine. Parameters are pasdetl the script
from which machine’s harddisk the image should be us&@ECHNER=vu-
labl "), and in which file in/vulab to store it on the master machindNIG-
FILE=solaris29-2.img.gz .

e The check scripts are run in order of their ascending nunw@ch will assure
that first the harddisk is cleared before it is put into an imag

In summary, it was possible to add a high-level interfacenfiodifying an important
part of an exercise by adding two special check scripts ‘kathgh required intimate
knowledge of the design and implementation of the Virtuailklmab before, and which
was greatly simplified that way. As such, the newly createdifpcan be viewed as a
system front-end following the corresponding “System Edend” pattern described
in section 5.3 as well as in [Spinellis, 2001, pp. 97] and [Mieet al., 2005, p. 323].

6.5.5 Integration and interaction

So far, all the major new components and features of stepthe¥/irtual Unix Lab-
were described. This section goes into detail how all thepmmants from both step
I and step Il fit together, and how they interact to providertsult verification archi-
tecture of the Virtual Unix Lab. Figures 6.21, 6.22, 6.23] &4 give an overview of
the various components involved as well as their interactio

Preparation: Creation of an exercise in step Il of the Virtual Unix Lab im8ar to
step | with a few changes in detail:

¢ Define the exercise with its general parameters by using #tefrontend
from step | as displayed in figures 6.8 to 6.10. The definitibrcleck
scripts in the third screen (shown in figure 6.10 can be lefptgnas the
initial set of checks will be derived from the exercise text.

e Write the exercise text in HTML as in step |, and add hints &sult veri-
fication and giving feedback embedded as comments comesSexsec-
tion 6.5.3 for details and examples. As the check-numbeishnientify
each individual check and which are given to tlaeSwertung _teil-
uebungen() ” PHP functions are not known when writing the exercise,
“XXX' should be put in as a placeholder, which will be filled in autdi-
cally later. See figure 6.25 for an example.

e After writing the exercise text, the hints are extractea itite database
by running the scripttiebung2db " as shown in figure 6.26. Parameters
given on the command line are the exercise name, the filenanaioing
the exercise text, and a filename which will contain the dgerwith the
check-numbers filled in.

6.5.

STEP II: INSTRUCTIONS AND CHECKS COUPLED

115

*Task 1: Do ...

*Task 3: Do ...

Exercise Text (Template):

auswertung_teiluebungen(
1, // vulabl: check-script-foo parl=X

" "Is foo set to X on the server?|
2); Il vulab2: check-script-foo parl=Y
n "Is foo set to Y on the client?"
*Task 2: Do ...

auswertung_teiluebungen(
3); // vulab2: check-script-bar parl=2
n "Is bar set to Z on the client?"

Web-Browser/GUI

uebung2db

check 1: check-script-foo(par1=X) @ vulab1l,
"Is foo set to X on the server?"
check 2: check-script-foo(parl=Y) @ vulab2,
"Is foo set to Y on the client?"

check 3: check-script-bar(parl=Z) @ vulab2,

"is bar set to Z on the client?"

Figure 6.21: Step Il: Preparation

Exercise Text:
* Taskl: Do ...
(Check-data not shown)
* Task2: Do ...
* Task3: Do ...

Figure 6.22: Step II: Exercise

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
116 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Check1: Check2:

#!/usr/bin/perl #lusr/bin/perl

checkl: check-script-foo(parl=X, ...)@vulabl
@ check2: check-script—foo(parl=Y, ...)@vulab2
check3: check-script-bar(parl=z, ...)@vulab2

; Machine
run check-script-foo
(parl=X, ...) vulabl

true
@ uebung_auswerten run check-script-foo
(par2=Y, ...)

false Machine
vulab2

checkl=true
@ check2=false

Figure 6.23: Step Il: Verification

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 117

Exercise text (Template): —3 —
*Task 1: Do ...

auswertung_teiluebungen(checkl, check?2);
*Task 2: Do ...

auswertung_teiluebungen(check3);
*Task 3: Do ...

checkl: "Is foo set to X on the server?"
check2: "Is foo set to Y on the client?"
check3: "Is bar set to Z on the client?"

checkl =true
check2 =false

Feedback:
*Task 1: Do ...
Is foo set to X on the server? yes
Is foo set to Y on the client? no
*Task 2: Do ...
Is bar set to Z on the client?

*Task 3: Do ...

Figure 6.24: Step Il: Feedback

At this point, the databaseisebungs _checks table is filled with the
checks from the exercise text's comments, and the secorgiviée to the
“uebung2db ” call will contain the original file's contents with the chlec
numbers filled in from th&ebungs _checks table for the “XXX"s. Fig-
ure 6.27 illustrates the difference between the origindlthe updated ex-
ercise text using the diff(1) output format.

o After the updated exercise text has been reviewed, it needs put into
the place where the Virtual Unix Lab expects exercise textiset stored.

The corresponding subdirectorypsblic _html/texts , the file name
is given in the web user interface’s “Pfad auf die Textda{péith to text
file) field.

Optionally, the updated exercise text can be committed tonéenit man-
agement system (CMS) like the CVS repository used for deveémnt of
the Virtual Unix Lab, as shown in figure 6.28.

After these steps — define general properties, write exeteist, extract data
from the exercise text into the database, move updatedisgeext into place —
the exercise is prepared, and it can be used for exercisdadgnts.

Exercise: The exercise text is stored in a HTML file with calls to PHP fiioc
auswertung _ueberschrift() , auswertung _teiluebungen() and
auswertung _zusammenfassung() as described in section 6.5.3. When
displaying the text during the exercise, only the plain #axd no feedback on
success is displayed. This is achieved by signalling the RidEtions to not

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
118 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Aufgabent
ipr

<hZ> Paketverwaltung </hZ>

{ol>

<1i» Inztallieren Sie die bash und tosh Bintwedrpaket (Quelle:
ftpi//Ftp,netbed, org/pub/NetBSD packages/1,6/ sparc/All)

{?php auswertung_teilusbungen(
HEM, A/ wulably netbsd-check-installed-pkg PEG=tcsh
I tesh installiert? (pkg_info -e tcsh)

Wil A7 wulablt rethsd-check-installed-pka PKG=bash
7 bazh installiert? (pka_info -e bash)

I
<faly

<hZ>» Benutzerverwaltung </h2>
<ol
{1i*» Richten Sie einen neuen Benutzer "test" ein, Home—VYerzeichnis

Figure 6.25: Preparing an exercise, part 1: Writing exertagt and hints

\a 1 lab public_htmls

wld45% perl usbung2db -v netbsd netbsd.php n
check_id 908 inserted (1)
check_id 303 inserted {1}
check_id 910 inserted {1}
check_id 911 inserted (1}
check_id 912 inserted (1}
check_id 912 inserted {1}
check_id 914 inserted {1}
check_id 915 inserted (1}

old checks removed from database
wl

Figure 6.26: Preparing an exercise, part 2: Extractingshimtb database and writing
new text with check-numbers for feedback hints

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 119

Bwl4452 ha 0
—— netbzd.php Hon Feb 23 16:39:21 2004
+++ n Mon Feb 23 16:37:58 2004
GR -1,3 +1,4 @R
+1-— DB updated by feyrer on Mon Feb 23 16337:57 MET 2004 from netbsd.php -->
<|-- $Id; metbzd,php.v 1,13 2004/02/19 10;55:52 feyrer Exp § ——»
{7php auswertung_ueberschrifti)s 7>
{1-- -
BR -15,10 +16,10 @@
ftpi/éftp,netbsd, org/pub/Net BSD/ pack agess1, 6 sparc/All)

<php auswertung_tei lusbungsnl
= HEM, A/ wulably netbsd-check-installed-pkg PEG=tcsh

+ 08, /4 wulabl: netbsd-check-installed-pkg PEG=tcsh
I tesh installiert? (pkg_info -e tosh)
= HEY A/ wulably netbsd-check-installed-pkg PEG=bash
+ 08 /4 wulabl: netbsd-check-installed-pkg PRG=bash
I bash installiert? (pkg_info -e bash)
Iy
Aol

@R -30,23 +31,23 @R
z0ll shomestest sein, Shell "tesh",

Figure 6.27: Preparing an exercise, part 3: Comparingralgind updated exercise
text

wlddSZ nv n netbzd.php

wl445%

wl445¢

wlddS¥ cvz ci -m 'Datenbank-Update nach neuen Aufgaben' netbsd,php
Checking in nethsd,php:
Shome/Feyrer/ousroot /codespubl ic_html/texte/netbed,php,v <-- netbsd,php
rew revision: 1,14: previous rewision: 1,13

done

wlddsz I

Figure 6.28: Preparing an exercise, part 4: Moving the wgablexercise into place and
saving to the CMS

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
120 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

print any feedback data. The signalling is done by the Virtirzix Lab frame-
work before it pulls in both the functions’ definition and t&xeercise text.

Verification: Verification of the exercise results consists of almost #eeprocedure
as in step |1, as illustrated in figures 6.21 to 6.24:

1. Query the database to determine which check scripts tontuat parame-
ters to pass to them, and on which machine to run them.

The additional field parameter " was added to theebungs _checks
table, where thedebung2db ” script stored the parameters for the call
of the shell script. This field is retrieved in addition to ttata already
required in step .

2. Run the check script with the parameters from the databaskcollect the
result.

The same procedure is used as in step I, i.e. the script isedatedan
interpreter for execution, and the output is collected te ifg¢he check
indicated success or failure. Parameters for the scriptpassed as envi-
ronment variables.

3. Store the check script’s result into the database.

There is no change from step | here. The textual output of ileelcscript
is scanned for an indicator of success or failure, and theebaderfolg ”
(success) field of thergebnis _checks table is set accordingly.

Feedback: Atany time, a list of all booked exercises ever can be retddw selecting
the “Buchungen einsehen” (view booked exercises) menu iféra list contains
both exercises already completed as well as exercises énatwoked for future
dates, see figure 6.29. Exercises that have already beendakgave a button
on their right that can be used to analyze that particularoése and retrieve
feedback it, see figure 6.30 a) for an image of the analyzdiffsek-button. If an
exercise was booked but has not been prepared and taketncget e cancelled
by using the button displayed in figure 6.30 b). This worksyanitil the exer-
cise’s preparation time has arrived, which is about 45 neimlitefore the start
time. An exercise that has been prepared will be recordedds $f a student
does not show up for a booked and prepared exercise, thersyslienotice and
keep a record on this.

When an exercise has been completed successfully and tifieaten of the
exercise’s result is done, feedback on the exercise cantfieves by pressing
the corresponding button.

As described in section 6.5.3, the Virtual Unix Lab systeemttisplays the exer-
cise text, and runs the embedded PHP functions to show theatedescriptions
of the tasks, details on what the checks tested, and if titewese successful or
not.

In detail, the PHP code in the exercise text first callswertung _ueber-
schrift() and prints a header with general information about the éserc

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 121

|5ue Edit View Tab Sefings Go Bookmarks Tools Help |

PRERCIORORT Yj¥

@ Viruelles Univx |

=

Virtuelles Unix Labors

Siesind eingeloggt als feyrer
home] [Benutzerdaten) Ubulygen auflisten] [Buchung vornehmen] [Buchungen

logout]

Verwaltung gebuchter Ubungen

Stichwort-Suche: Suchen

Achtung: Sollten Buchungen in roter Farbe auftreten, wenden sie sich bitte an Thren
Administrator !

Vorhandene Buchungen: 15

ol 11-10111-151
Kurzhez. Bezeichnung Datum Startzeit Dauer ‘lv|i:l‘:r“- freigegehen

Aufsetzen von NFS 00:00 p . .
Gt Seamer 26.06.2004 Uhr 0130 ja nicht-mehr EI

Aufsetzen von NIS 03:00 p q q
bzl Seaer 26.06.2004 Uhr 0130 ja nicht-mehr 2‘

Aufsetzen von NIS 06.07.2004 09:00 01:30

Clientund Server Uhr ja nichtmehr =

nis Aufsezenvon NIS 91072004 %90 0130 ja nein @]
nfs Aufictzenvon NES - 9107000 1200 0130 ja nein @]
ol 11-101 1115 |
istrator: hubert feyrer@informatik fh de 1
e T 5

Figure 6.29: The list of booked exercises contains both detag exercises for which
feedback can be requested (“freigegeben: nicht-mehr”)elkas uncompleted exer-
cises that have not yet started (“freigegeben: nein”)

a) b)

2 9

Figure 6.30: Buttons for a) retrieving feedback on completeercises, and b) deleting
uncompleted exercise that have not yet started

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
122 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

date and time of start and end, duration in minutes and thairfber from which
the exercise was taken. The IP number is the one stored byé¢halfi configu-
ration when the lab was entered for the exercise, as showgureféd.8. The ex-
ercise text is displayed next, augmented with calls tatwvertung _teil-
uebungen() function, which does the main job of giving feedback.

The auswertung _teiluebungen() function takes a variable number of
arguments, each representing a check-number. See fig@réo8.8n example.
For each of the check numbers, the function retrieves:

o the textual description of the check as stored in thezeichnung ” (de-
scription) field of theuebungs _checks table, and

o the result of the check as stored in thexfolg " (success) field of the
ergebnis _checks table.

If the feedback is not requested by a “normal” user of theldrtUnix Lab but by
an administrator, an overview of all students’ performaiscghown in addition
to the single user’s result as discussed in section 6.5.3.

From the description of these phases, it can be seen thatdhera number of small
to medium size changes, but that the general design andrimeplation of the Virtual
Unix Lab result verification architecture could have beeptKer step Il.

6.5.6 Summary of step Il

Comparing the improvements intended for step Il of the \drtunix Lab and the
changes made, the conclusion can be drawn that the goalswetneithin the given
requirements. Step Il of the Virtual Unix Lab was realizediascribed here, and used
as base for the evaluation in chapter 7. During the impleatiemt and evaluation of
step Il, a number of possible improvements were identifiddclkvcan be addressed
in future implementation steps of the Virtual Unix Lab. Theyl be listed in the con-
clusions drawn on result verification of exercise resultsradiscussing the resulting
Domain Specific Languages in the next section.

6.6 The Verification Unit Domain Specific Language
(VUDSL)

This section summarizes the domain specific language defaretie Virtual Unix
Lab so far. This DSL was titled and will be refered to as therifigation Unit Domain
Specific Language” (VUDSL). Exercises in the Virtual UnixtLdescribed consist of
three major components:

6.6. THE VERIFICATION UNIT DOMAIN SPECIFIC LANGUAGE (VUDSL 123

1. Exercise text, which is displayed both during the exereisd also when giving
feedback.

2. Data on what aspects of the lab machines to evaluate.

3. Display of feedback on the exercise results as estallish¢he data on what to
evaluate from (2.) in the context of the exercise text (1.).

The connection between the data for the actual evaluatipriii2 exercise text (1.) and
its display for the results is implemented by a domain spekifiguage that realized
the “data structure representation pattern.”

As described in section 5, DSLs are usually not described foyl ayntax specifica-
tion with a context free grammar, but rather as extensiomadasting programming
language. This is also the case for the VUDSL, which is annsita to PHP that
specifies evaluation data. That data is later on stored medSQL database by the
VUDSL processor, and the resulting database IDs are notiéebiresulting PHP file.

All “real” data for verification of the exercise part’s vedéition are kept in PHP com-
ments. A full exercise including all VUDSL statements carsben in appendix A.2.
The examples in figure 6.31 explains the important companafithe VUDSL.

Currently there are only two lines of comments, and they apeeted to have fixed
format:

1. The first line currently contains the name of the lab maelnin which a check
is performed, the name of the check script as the primitivehefverification
language, and any possible parameter that may be neededherfspecify the
test.

2. The second line of the PHP comments contains the help hakti given as
feedback to the student to give him an idea what the actuakdltid, in addition
to telling him if that part of the exercise was mastered sssitdly or not.

The VUDSL processouebung2db applies lexical analyzing. It extracts the data
from the PHP comments and stores them in the SQL databasso Uitpdates/generates
IDs for the checks, and updates them in the exercise textoassim figure 6.27.

<?php auswertung_teiluebungen(
??? I/ vulabl: check-program-output PROGRAM=ypwhich OUTP UT_SHOULD="vulabl’
" Gibt ypwhich(1) 'vulabl’ zur uck?
) 7>

Figure 6.31: VUDSL example for verifying one aspect of thereise

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
124 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

<?php auswertung_teiluebungen(
776, Il vulabl: check-file-exists FILE=/varlyp/Makefile

I Existiert /var/yp/Makefile?

777, 1l vulabl: check-file-exists FILE=/var/yp/binding/ vulab/ypservers
1" Existiert /var/yp/binding/vulab/ypservers?

778 Il vulabl: check-file-exists FILE=/var/yp/passwd.ti me
l Existiert /var/yp/passwd.time?

Figure 6.32: VUDSL example for verifying multiple aspecfdtte exercise in one go

A list of all check primitives with their assorted parametéor the first line can be
found in appendix A.5. Extensions of the VUDSL to add useipéida in the Virtual
Unix Lab are discussed in section 11.6.

6.7 Conclusion of diagnosis and feedback with a do-
main specific language

This section summarizes the results from the steps takeesigmand implement ver-
ification of exercise results in the Virtual Unix Lab and théetification Unit Domain
Specific Language”. When viewing result verification in thietdal Unix Labunder
aspects of Domain Specific Languages, the following key sterare covered in this
chapter:

Stereotypesin the form of check scripts for testing single aspects ofsteap have
been identified, a framework for implementation and runnifuge check scripts
was defined, scripts were implemented based on the framewaodkthe overall
organisation was improved in an iterative approach. Thelrésa number of
check scripts that can be supplied with parameters to téguemaspects of var-
ious systems, while being used as “activators” (functidisgéor the tests from
a programming language view. The scope of most of the cheagiksés to be
usable on all systems, but some are tailored towards testingpects that are
unique to certain operating system implementations only.

A languagewas defined for the domain of combining exercise texts witlultever-
ification. This was done by embedding activators for the klseeipts into the
exercise text, using only special constructs of the PHPUagg as described by
the “Language Specialization” pattern in section 5.3. @gugnces of this are:

e Keeping the check-related data in a place that is close tapipécation
domain of result verification, instead of the place wherelitgsical storage
is (the database).

6.8. FUTURE PERSPECTIVES 125

e Easier maintenance of exercises, as all the important paats exercise —
exercise text and data on check script calls — can be stoeesiimgle place.

e The possibility to give feedback on exercises for both singlers as well
as administrators by coupling exercise texts and checks.

The language only knows about sequences of check scriptatiems so far.
Extensions for selection of alternatives would be a futwal gNo need is cur-
rently seen in implementing iterations as the third basitding block for pro-

gramming languages.

Keeping exercise text and check data in one plads good for creation and main-
tenance of exercises. To perform the actual result veiificatfter an exercise
and to give feedback, it is easier to access the check-dediata using database
access routines though. To achieve this, the exercisedasios the check data
in the form of the above-mentioned “language”, processed bymple lexical
analyzer which transforms the check data stored in the meetext and stores
it into the database. This transformation from the dataesgmtation which is
close to the application domain of the exercise to the dgieesentation used
in the database realizes the Data Structure Represenfatttarn described in
section 5.3.

Implement a system front-endfor generating and updating harddisk images for
new and updated exercises. This was done by using specizk shepts with
the result verification architecture. Instead of requirngt of details about the
implementation of the Virtual Unix Lab for creating or upitat an exercise,
this special knowledge was moved into two check scripts ¢hatbe used for
a special kind of exercise. This allows concentrating ondbetents of the
exercise creation without distraction by technical detailThe System Front-
End pattern is described in detail in section 5.3, its deaiythimplementation
within the Virtual Unix Lab are described in section 6.5.4.

Descriptions of related items and some implementationildetere included to illus-
trate the connections between the key items as well as titegration and interaction,
and to show possible areas for future improvements, whigls@ammarized in the next
section.

6.8 Future Perspectives

While implementing result verification and feedback in dteg the Virtual Unix Lab,
a number of items were discovered that may be of interestdduiure incarnations,
assuming that another design & implementation cycle asritbestin section 6.2 and
as realized in steps | and Il of the Virtual Unix Lab will happéd-or this new cycle —
step Il — possible areas of improvement are:

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
126 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

a)

b)

Figure 6.33: Various forms of non-linear exercises

Non-linear exercises: For some types of exercises, better control then striatlydr
evaluation is required, i.e. to also allow users to chootsrative paths for
solving a given problem. Depending on the nature of the dati# is possible
to either have only single (small) alternatives, or wholig)ltrees, depending
on the nature of the alternative.

A “small” alternative can be a single item that can be solveddrious ways,
but which will not have an impact on the verification of thethar items, as
displayed in figure 6.33 a). An example for this would be thiirsg of the
domain name on NetBSD in the NIS exercise, which could eibigedone in
letc/rc.conf or /etc/defaultdomain

“Big” differences decide about further tests, the way they applied, or the
exact state of which object will be checked as shown in figudd ®). This is
of concern if the choice of important software componentaughbe left to the
user, and not restricted by the exercise text. Componergsaithis would apply
are e.g. choice of operating system (Windows vs. NetBSD wsious Linux
distributions), webserver (Apache vs. Internet InformatBerver) and database
software (Oracle vs. MS SQL Server vs. MySQL vs. PostgreSQL)

As the result of a check script is a boolean value and thus nntave two
results. To realize multiple choices, a combination of baalchecks has to be
used, as shown in figure 6.33 c).

Possible realization of multiple alternatives based ortkhesults could happen
during evaluation, by using check results and the languaaiifes that are pro-
vided by the PHP language, which is already used for evalnaind reporting

of feedback. Theoretical foundations can be found in [Wiitst, 1990, pp. 18]

and [Robberecht, 2007].

Assessment:During an early stage, the feedback given to students iedadcounter

6.8. FUTURE PERSPECTIVES 127

telling that “X out of Y tests were performed successfulLiring the beta test
period, this led students to think they should get as high“e€are” as possible.
This thinking was wrong for two ways: for one, a number of desere built
into the exercises that were meant to be ok by default, ang tonest if the
user damaged a crucial default-setting. Also, when altexnaxercise paths (as
described before) are implemented, many checks (50% fdr &éernate path)
will be wrong. As such, just going for the absolute numbertafaks performed
successfully is not useful — think of a user trying to instaith Windows and
Unix on the same machine to score both points.

If giving scores like “X out of Y possible points” or “Z% comgtied success-
fully” should be realized, work is needed to identify whidieck results should
impact the scoring, and which should not. For alternatiek; one out of two or

more alternatives can score a point. Others tests can icfiube score directly,
either in a positive or negative way, i.e. if the user achieaegoal during the
exercise, or if he damaged an important configuration thatwaking properly

by default (“false positive”) .

Beyond giving scores, it is possible to give grades for catipd of exercises,
i.e. excellent ones if all/most of the “important” check® aolved properly,
medium ones if there are some errors and bad ones if the gbthle exercise
were not met. Establishing criteria on which check wouldehasich kind of

impact on the score and grade would need further research.dé@tails could
be encoded in the VUDSL, see section 11.6 for possible waysicifi exten-
sions. Existing literature on instructional and test design be used for this
enhancemeht

Creating interfaces and APIs for external assessment ¢toollsl be considered
as an alternative to realizing assessment in the Virtuax Uab.

Further check script optimization: Besides the major changes in the way feedback
is given to users, some smaller changes can be done to optih@zmplemen-
tation.

One such change is to extract common code from all the cheigitssdCurrently,
the check scripts define a number of variables to describgogearof the script,
parameters supported, and Perl function that performsdhmalatest. Besides
that, each of the check scripts contains code that evaltlaesriables, checks
parameters, calls the check function etc., which is the seode for all the
check scripts. As only the first part of all the check scrifffieds, and the second
one is the same for all, the second half could be moved intparate file and
appended when calling the script, i.e.
“cat foo-check-bar common-body | perl ”
Check script parameter checking in web frontend: Each check script can be queried
for the parameters it accepts. The VUDSL-processor already this to verify
check script data before storing it into the database. Aerothange that has

1 [Eikenbusch and Leuders, 2004] pp. 10

CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS
128 AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

small impact of the functionality of the system but increasebility would be
to add a similar verification to the web GUI. That way, simpl®es like typos
could be caught earlier and easily.

The described items would have impact on both functionalitthe Virtual Unix Lab
towards users and administrators designing new exerclasher improvements to
performance, reliability and usability of the Virtual Unibab can be made in future
versions by using the same iterative design and implementeycle that was used in
the first implementation steps described in this chapter.

Chapter 7

Evaluation of the Virtual Unix Lab

This chapter observes the Virtual Unix Lab that was desdribehe previous chap-
ters, and evaluates it under a number of aspects. So fartemijing of theoretical
knowledge was possible for advanced topics in the systeninégtration class held at
the University of Applied Sciences Regensburg which, asrileed in chapter 3. Af-

ter the system was realized, it is possible to offer pracégarcises for those topics,
and test practical competence, instead of theoretical ladye. The Virtual Unix Lab

was used to supplement the classroom lecture in the summesger 2004, and this
chapter covers the experiences that were made during its use

With the work in the area of diagnosis and giving user feellpdie Virtual Unix Lab
is complete for practical use. As a consequence, the ei@iuzdn concentrate on the
effect of the system as a whole, instead of observing onlglsinomponents of the
system and their efficiency. Evaluation of the whole systewh its reflection on the
user is considered to be more than the sum of its components.

Many aspects of the components of the Virtual Unix Lab, the& and he system as a
whole are not covered in detail here, some of which are dészlibriefly in the section
7.4.

7.1 What to evaluate

To establish the effect of the Virtual Unix Lab as a whole,dhestion arises if the Vir-
tual Unix Lab is “useful”, i.e. if the students learned “mboe “better” than without
the system.

When observing the impact of a learning tool, an establishethod for evaluation is
to create a controlled testing environment by split a clagstwo groups. One group
uses the platform, and the other group uses an alternaitredy b method that was

129

130 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

used before the new platform was available. After the tggtieriod, the results from
both groups are compared.

This approach would be recommended for use with the Virtugk Wab, too: Have
students attend the “System Administration” lecture, thetmh participate in the usual
lab exercises, but only allow half of the students to use thed Unix Lab in addition.
At the end of the semester, both groups would take the samefeiedm paper test.
The results of that paper test would be examined for impathéyearning platform.

There are two problems with this approach. The first one it fthrasmall groups,
it is possible that all “good” students are in one group, ahtbad” students are in
the other group. Increasing the group size would help, hstwiould require more
students than available. The other problem with this apgras that it cannot be
performed in a “live” setup with students, as the “System Awdstration” lecture is
a mandatory course at the University of Applied ScienceseRgigurg, and allowing
part of the students to use a learning material while deniyitagothers is not possible.
Arranging for a separate course outside the normal cumisw/as unfortunately not
possible due to lack of students and funding for such a ventur

An attempt of comparing existing end of term papers fromettigroups that did use
the Virtual Unix Lab with the results of students that did oee the Virtual Unix Lab
was made and described in [Feyrer, 2007c]. Even if the cosga suggested that
the Virtual Unix Lab indeed had a positive effect on studepérformance in the paper
tests, a control group is really needed for reliable results

As a result, data that was gathered during existing exeraisthe Virtual Unix Lab is
utilized. In particular, the following material is examahéor this evaluation:

1. Students were asked to perform two particular exercistii Virtual Unix Lab.
Data was gathered for the full study group, and analyzeddticse7.2.

2. Students were asked to fill out an online questionnaies Hitir exercises in the
Virtual Unix Lab. The results from this questionnaire aralgmed in section
7.3.

Other methods like personal interviews or recording thelestts’ practices on video
would have been possible to obtain information to evaluat&éory. In practice this
would have limited students in their free choice of time akate for doing the ex-
ercises, thus canceling the “virtual” effect of the Virtwdhix Lab. As a result, those
methods were not persued.

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 131

7.2 Analysis of data gathered during student exercises

This section analyzes data that was gathered during theaVictinix Lab exercises in
the summer semester 2004. The analysis covers a numberezitas$ipat have impact
on the learning performance.

After a brief introduction of the methodology used, thistgacfirst examines exercises
that were taken several times by a user, and makes an irsstigf the performance
of those repeated exercises. Next, it was noted that sonie thaks occur in more

than one place in the exercises. An analysis of the perfaceam similar tasks is

made to determine conceptual problems that need betteatainc Last, the time at

which exercises were performed, and the duration of thosemses, was observed.

7.2.1 Methodology of the data analysis

This section describes the methods that are used for theatial of the Virtual Unix
Lab. It observes data that was gathered during studentgtisgs, and utilizes visual-
ization techniques to aid in the evaluation process.

For visualization, methods from statistics are used to @mparious values with each
other. Histograms and box-plots (also known as whiskersplate used in the fol-
lowing section$23. To also allow visual comparison of median values in boxlo
“notches” are added to indicate the confidence intervalthimmedian of the distribu-
tion. This allows to compare the median of two distributieni§ the intervals around
two medians do not overlap, they can be considered diffeviht95% confidence
This method allows to tell which median is “better” (higherlower, depending on
score or grade) by visual inspection of the graph

The data used for analysis and evaluation is stored in an 3€bdse, appendix B has
details on the database structure. Queries to retrievefidatathe SQL database are
listed in appendix C.3 and referenced from this section el data is discussed.

In many cases, SQL is not adequate for analyzing data, arRiphegram was used for
statistical analysis. Export of data from the PostgreSQilukse was done by using
using the “psqgl” command line tool, which was told to printjwt unaligned (fa "),

use a“,” as record separatokf(“, "), write the results of SQL queries into a file with
colon-separated values (CSMg* file.csv "), and do not include the standard
footer (\pset footer ") in the output. Import of data into R was performed by

reading the CSV file into an R tableté&ble=read.csv("file.csv") ").

1 [Tukey, 1977] pp. 39

2 [Fahrmeir, 2003] pp. 65

3 [Chambers, 1983] pp. 21

4 [McGill et al., 1978] pp. 12

5 [Garrett and Nash, 2001] pp. 12

132 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

count | uebung_id

_______ [——
58 | nfs
71 | nis
6 | netbsd
(3 rows)

Table 7.1: Exercise popularity

To examine “similar” exercise tasks, the checks are exadna®eidentified by their
check numbers and the associated data, check scripts nahpai@meters. Full defi-
nition of the checks are contained in the exercise texts f8rahd NFS. See appendix
A.2.1 for the NIS exercise text, and appendix A.2.2 for NFSorfef list of checks
including the description that is printed as feedback farsisan be found in appendix
A.4.1 for the NIS exercise and in appendix A.4.2 for the NF&reise.

7.2.2 Number of exercises taken and repeated

Students were told to perform the NIS and NFS exercises each at least, with no
restrictions on repeating an exercise several times. Euson observes how often
students really booked exercises. For those students tlvkietd an exercise more
than once, any possible differences in performance betthesiirst and last time they
repeated an exercise will be observed. The goal is to deterthe impact of use of
the Virtual Unix Lab here.

The number of total exercises (NIS, NFS, NetBSD) every sttitiok! can be seen
in results of query 5 in appendix C.3. From the 27 students, stadent performed
only one exercise (instead of the requested two, NIS and N&®) three students
performed exactly two exercises. A more detailed overvievictvincludes the exact
exercise$ can be seen in results of query 6 in appendix C.3. 19 studentsrmed
single exercises only once, but the majority of exercisestaken two or more times,
up to a maximum of one student taking the NIS exercise 8 times.

Overall, at the end of the summer semester 2004, 135 exensise performed by
students in the Virtual Unix Lab. Table 7.1 shows how oftecheaf the exercises was
choserR —the NIS and NFS exercises were requested to be taken, ttistiiexercise
was offered to become more familiar with the NetBSD opegasiystem.

When examining the number of distinct students that tookases, it can be seen

1 See query 5 in appendix C.3 on page 372
2 See query 6 in appendix C.3 on page 373
3 See query 7 in appendix C.3 on page 374

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 133

that 26 students took the NIS exerdisand 27 students took the NFS exeréisel he
fact that one student only took one of the two exercises tlakienthe difference here
was also seen in the number of total exercises that evergmstudoR. With these
numbers, it can be said that students took the NIS exerci§titnes on averageand
the NFS exercise was booked 2.15 times on avérage

The reason why the NIS exercise was practiced more oftentli@aNFS exercise are
not known at this point. While it could be suspected that eiitsl may regard NIS as
more difficult, and thus wanted to repeat it more often to géhea tasks in the exercise
right, there is no evidence for this, at least not from the.dddserved here. See also
section 7.3 for students’ opinions on the Virtual Unix Lab.

7.2.3 Performance of repeated exercises

With the fact that many students repeated an exercise maredhce, a comparison
between the various exercise repetitions’ results can luenta see if a difference in
performance could be found.

To find the first and last repetition of a certain exercise acdréain user, the corre-

sponding booked exercise ID{ichungs _id ") need to be known. IDs are numbers
and allocated increasingly for each new exercise that i&kdoWhen looking at the

various booked exercise IDs of a user, it can be assumedithfitsh exercise had the

smallest (minimum) ID, and the last exercise had the big@eakimum) ID.

The other question is how to assess an exercise’s perfoenkocthis comparison, the
number of successfully performed tasks are counted, witboking at false positives,
i.e. tasks that would test as successful per default, btibtieastested to see if students
broke the configuration for them. A more in-depth look at eis results for assessing
performance is outside the scope of this discussion. Seesalgion 6.8 for further
information on establishing assessment.

By combining these data points, an investigation can be rati®mk at students’ re-
sults of their first and last exercise of a certain kind (NI%3). This can be seen
in results of query 10 in appendix €.3 The list includes the ID first _id ”,
“last _id ") and percental scoref“pscore ", “| _pscore) of a student’s first and
last exercise of a certain kindu&bung _id ") and student, as well as the difference
between the two percental scoredgscore).

Looking at all exercises, i.e. NIS and NFS, the average subtlee first exercises is

1 See query 8 in appendix C.3 on page 374

2 See query 9 in appendix C.3 on page 374

3 See results of query 5 in appendix C.3 on page 372
471/26=2.73

557/27=2.15

6 See query 10 in appendix C.3 on page 374

134 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

44.61% and the average score of the last exercises is 62i#3%etween students’
first and last exercise there is an average increase of 18.E3§are 7.1 shows the
distributions of the first and last exercises of studentse fHuts that the notches of
both plots do not overlap shows that there is a statisticatipificant improvement
between the students’ first and last exercise!

Investigating this further, a comparison of the scores effitst and last exercises with
each sorted ascending can be seen in figure 7.2. The figuresghatthe results of

the last exercises are better than the first ones. The figsmesabgests a correlation
between the first and last exercise, but to investigate thésscores have to be dis-
played in pairs of each student’s first and last score. Thisbeaseen in figure 7.3 —
while the results of the first exercises are still sorted egdicgy, the scores of the last
exercise are printed accordingly. Two results can be seiest, &imost all scores are
higher in the last exercise than in the first exercise, anel wicsa, which confirms that
an improvement in performance was achieved. Second, Igakithe last exercises
shows that students with low scores on the first result rehoi@e or less the same
scores as students who performed average or good in thegxercise, i.e. most gain
was made by students who performed bad on their first attempts

As such, no direct correlation between the first and lastescoan get established,
which is also confirmed by the Pearson correlation coeffioiér0.4397. Reasons
which influence the overall increase in performance here Ipeathat students scored
bad scores in the first exercise because the tasks were agtmi¢ enough informa-

tion to solve the tasks was available, the environment wasasidamiliar as in later

exercises, or that the feedback provided after the firstceseehelped to obtain better
scores on later exercises. Exact reasons for the improveraenot be given here, and
are subject of further investigation.

Section 7.2.5 observed that the time needed by studenth éxeacises was influenced
equally by both NIS and NFS. In a similar effort, after obsegvthe results of all
exercises together, the scores observed for NIS and NFSissewill be examined
separately next, to determine if the Virtual Unix Lab praddhe same gain that was
shown for all exercises.

The average percental score of students’ first NIS exercase38.58%, and the aver-
age percental score of the last NIS exercise was 67.65% .afsints for an average
increase of 28.08%. For NFS, the average percental scoredfrst exercises was
53.96% and 64.96% of the last exercise, i.e. a gain of 11.00%ile the first results
were a bit better for NFS than for NIS, the results show thadestits greatly improved
in the NIS exercise, while results for NFS did increase tadg,rtot as much. Figure
7.4 contains the corresponding box plots - the great impneve between the first and
last NIS exercise is depicted in 7.4 a), while the lessersbliexisting improvement
can be seen in 7.4 b). Both improvements are statisticalyifitant, as shown by the
non-overlapping notches in figure 7.4 a) and b).

Comparing the two results, the Virtual Unix Lab had a biggepact for the NIS exer-

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 135

100

80

60

Score (%)

40

20

first last

Student's exercise

Figure 7.1: Comparison of all scores between students’dirdtlast exercise

o
o
= - om
X XEX
xxX O
XX
XXX X oo
o x
8 XXXXXX o
xX o
x
XX XXX 000
x)
o x
o - x oo
g x °
& X)(X OOO
g XXX o
3 xX 0000009
»n XX 00000000
S’r _ XXX [eXeloXe)o)
x [eXe}
X OOOO o first exercisg
< 4 X last exercise
X 0000
o
om®
o - mEBEX
T T T T T T
0 10 20 30 40 50

Test number

Figure 7.2: Score of all first and last exercises orderedrakicg

136 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

100

®
®
800®0000°0®O0

Score (%)
X
X

o
? 0o EEEOO

o first exercise
Q4 X last exercise|

Test number

Figure 7.3: Score of all first and last exercises ordered bydiercise

cise than for the NFS exercise. This can also be seen fronidtrdodtion of the results

in figure 7.5. While most students scored at best averagesgothe first NIS exercise
in figure 7.5 a), the last exercises were much better, regd0%. The NFS results
shown in figure 7.5 b) are different here, where good studesutdly increased their
scores, but less scores below average were reached. Figuaés@ confirms that in

NIS, most students’ scores did improve, while the NFS egescimostly had an effect
on students that performed badly in their first attempts. r&dicorrelation between
“first” and “last” exercises cannot be established for reitNIS nor NFS though, as
indicated by the corresponding Pearson correlation cosffie of 0.26 (NIS) and 0.42
(NFS).

In summary, it can be said with statistical significance thatVirtual Unix Lab had a
positive effect for both NIS and NFS exercises, and that #ie gwas most notable for
the NIS exercise.

7.2.4 Results of selected exercise topics

After observation the impact and benefits of the Virtual Ubab, topics where stu-
dents still have problems are identified next. The intent isnprove their knowledge
about these topics, e.g. by discussing them in more detailaiss, or by offering
special exercises in the Virtual Unix Lab for these topics.

The identification of common topics will be made by obseniegts performed at the

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 137

a) NIS:

Score (%)

ﬁ

Y

first last

Student's exercise

b) NFS:

100

Score (%)
60
I

first last

Student’s exercise

Figure 7.4: Comparison of a) NIS and b) NFS scores betweetests’ first and last
exercise

138

CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

a) NIS:

b) NFS:

Figure 7.5: Score of first and last exercise ordered ascgridima) NIS and b) NFS

exercise

Score (%)

Score (%)

80

60

40

20

100

80

60

40

20

X X
x
X X
X X
X X o
x
X X X
X X
o o
X o
x X o
X o
X 0O 0O 0O O O
x o o o o
o
X o O
X o o first exercise
© X last exercise|
e}
x o
o
® O
T T T T T
5 10 15 20 25
Test number
B
B
B
X ®
X O
X O
X X
X X X X X 0 0 O
x
X o o
X X
X)
X e} o
X X X o O O
o o o first exercisg
x last exercise
o O O
=
T T T T T
5 10 15 20 25

Test number

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 139

a) NIS:

Score (%)

b) NFS:

Score (%)

Figure 7.6: Score of first and last exercise ordered by firstase for a) NIS and b)

NFS exercise

80

60

40

20

100

80

60

40

20

Test number

x o first exercise
X last exercise
T T T T
10 15 20 25
Test number
B
x x o
B
B
B
e} X
x x =
o o
o ® O O
B
o first exercise
x last exercise
T T T T
10 15 20 25

140 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

count | script

+

21 | check-program-output

10 | check-file-contents

10 | unix-check-process-running
| netbsd-check-rcvar-set
| unix-check-file-owner
| check-file-exists
| netbsd-check-installed-pkg
| solaris-check-installed-pkg
| unix-check-user-exists
| check-directory-exists
I
I
I
I

unix-check-user-ingroup
unix-check-user-fullname
unix-check-user-password
unix-check-user-shell
unix-check-mount

PRRPRRODMDDNTOON

Table 7.2: Check scripts and their usage in various checks

end of the Virtual Unix Lab. Similar topics are tested by gsihe same check scripts,
and topics that are tested by the same check script are evedids related.

Table 7.2 shows a list of all check scripts in use in the Virtliaix Lab', and a count in
how many places they were used to test for various similacsdpy running the same
script on different hosts with possibly different opergtsystems and with different
parameters.

To compare various results of a single script, it has to bd irsenore than one place,
obviously - as such, the last five scripts listed in table 7eaf limited use in this
discussion. The following scripts and their results wildeasidered in this discussion.
Attention must be brought to “false positive” tests heretheey are “true” by default
to verify the system is operating properly, and only ares#dlif the students break the
configuration. For each script, a short description of tlsestopic is given, followed
by a comparison of the various tests by using boxplots, ancirergary is drawn from
the results, reflecting on students’ overall performancthemelated topic.

check-program-output : used 21 times, see figure 7.7. No false positives.
This script tests the output of various programs, e.g. “yiptvh “domainname”,

“ypcat”, “showmount”, “share”, “mount”, “df”, “cat” and, ping.” These pro-
grams belong to a wide variety of topics, and are thus otlitite to make a
prediction for a particular topic. The non-uniform resutidigure 7.7 confirm

this.

1 See query 11 in appendix C.3 on page 376

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 141

Success?

i

T T
775 780 782 788 801 803 883 794 871 873 811

Check number

Figure 7.7: Results of check-program-output

check-file-contents . used 10 times, see figure 7.8. No false positives.

This script is used to see if files were edited properly, whese of an editor
program was required. See results of query 12 in appendikd€ 8description

of the various editing tasksThe results in figure 7.8 show that on average, six of

the corresponding tasks were solved successfully whilestftevere unresolved.
Problems here could be that students were able to use ttoe fetibne task but
not another one, or more likely that students did not knowtwbaedit in the
first place.

unix-check-process-running . used 10 times, see figure 7.9. No false posi-

tives.

The test to see if a certain process runs properly was masthgd successfully
by students, as can be seen in figure 7.9. An interestingl dethiat the boot
system of Solaris needs no special configuration to stacgsses if a subsystem
is configured, while NetBSD needs additional work. Whiledgtots coped with
both operating systems, the tests on systems that ran Nef@#®ioks 798, 799,
878, 879, 880; see results of query 13 in appendix C.3) weafempeed slightly

less successfully than on Solaris (checks 865, 867, 86§, 869

The conclusion is that process startup itself is perfornregerly by most stu-
dents, but more emphasis could be put on understanding dfi¢ti@SD boot
system that is responsible for process startup and its aoafign.

1 See query 12 in appendix C.3 on page 376

142 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

alaramEaREaa

12

1.0

0.8

Success?
0.6

0.4
|

0.2

0.0
|

)T

T T T T T T T T T T
790 791 792 793 810 864 882 885 774 783

-0.2
|

Check number

Figure 7.8: Results of check-file-contents

netbsd-check-rcvar-set . used 7 times, see figure 7.10. False positives: 795,
874.

This script checks if various services were started prgpasing the NetBSD
startup mechanism. The results shown in 7.10 confirm therfysdfrom the
unix-check-process-running script above, as the majority of students
had problems configuring the needed processes properlgpEgns seem to be
the results of checks 795 and 874, but the topics they test # #iee variable
“rc_configured” is left at “yes” irfetc/rc.conf , as shown in results of query
14 in appendix C.3 —is properly configured by default (“faissitives”), so they
cannot be regarded as successfully solved.

In summary, the request for better education of studentsdaratea of the Net-
BSD startup system can be repeated from these results.

unix-check-file-owner : used 6 times, see figure 7.11. No false positives.

This script verifies permission setting skills with a spefoaus on a distributed
(NFS) environment. The results in figure 7.11 show that tiieeelot of room
for improvements. An interesting side effect is that theisgtof permissions
on a local system (checks 890, 892) seems to be easier f@ngtdvhile the
remaining checks test permission setting via NFS, as carér is results of
qguery 15 in appendix C.3 (the NFS exercise defimesAaB 1 to be the NFS
server with the data on local storage, and AB 2 the NFS client).

check-file-exists : used 5 times, see figure 7.12. False positive: 870.

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 143

Success?
0.
|

e L
o

o o o o o —

T
798

T
799

T T T T T T T T
865 866 867 868 869 878 879 880

Check number

Figure 7.9: Results of unix-check-process-running

This test is used to see if a file exists, usually as a conseguara user running
a certain setup procedure like the NIS “ypinit” command. s Solaris oper-
ating system starts the NFS service by default if the proge® Monfiguration
is present, check #870 is a false positivRegardless of that false positive, the
results in figure figure 7.12 show that most students sucddageerforming the
associated tasks.

netbsd-check-installed-pkg . used 4 times, see figure 7.13. No false posi-

tives.

Installation of binary packages on NetBSD is tested. to Besdrs installed
either tcsh or bash as “convenience” shells in any of thecisef. None of
these is needed for successfully performing the NIS or NFSaise, but the
possibility is offered to users as an alternative to the leses-friendly default

shells.

The results in figure 7.13 show that students either did retgaeed to install
those shells, or failed to do so, as very few of them pickechempportunity of
a more convenient command line interface. The reasonsi®ath not known,
and could be work of future investigation.

solaris-check-installed-pkg . used 4 times, see figure 7.14. No false pos-

itives.

1 See results of query 16 in appendix C.3 on page 378
2 See results of query 17 in appendix C.3 on page 378

144 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

Success?

-0.2
|

T T T T T T T
795 796 797 874 875 876 877

Check number

Figure 7.10: Results of netbsd-check-rcvar-set

Just as with the previous check script, this one tests theliason of packages,
but this time on the Solaris operating system, which diffiersome details from
NetBSD. Also, installation of bash and tcsh was offered awenience again,
but not mandatory for neither the NIS nor the NFS exefcise

The results shown in figure 7.14 indicate that most studedtaat attempt to
install any of these packages, but that at least some trigzbssfully. Whether
more students were interested in installing convenienelissbn Solaris than on
NetBSD is unknown (and rather less likely), but it is couldtbat it was also
easier for students to install the packages on Solaris gswhee provided for
installation on the system ifledrom , instead of requiring students to download
them from the network, as needed for NetBSD. Whether this twasmuch
effort for students, regarded as plain inconvenient, ottfients just did not
know how to handle packages properly is not known, but coeldubject of
future research.

unix-check-user-exists . used 4 times, see figure 7.15. No false positives.

One important resource distributed among machines in a Rtfoa NFS en-
vironment are user accounts and related data. This tesklifez certain user
account was created or is accessible properly, i.e. if stisdeere able to apply
the appropriate user management skills that are requiggepsy’.

Looking at the distribution of the results in figure 7.15, soimprovements of
the skills needed to manage user accounts, esp. in digtilerivironments,

1 See results of query 18 in appendix C.3 on page 378
2 See results of query 19 in appendix C.3 on page 378

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 145

Success?
0.
|

T T T T T T
890 891 892 893 894 895

Check number

Figure 7.11: Results of unix-check-file-owner

seem required. The fact whether the problem here is on the¥ faanagement”
or on the “distributed” part cannot be derived from the érgtata.

check-directory-exists : used 3 times, see figure 7.16. No false positives.

This last check script and its results are related to theiguevone: Checking
for existence of a directory can be used for a number of agiidios. Within the
Virtual Unix Lab, the primary application is to test if homeettories of user
accounts are created propérly

The results of this exercise are shown in figure 7.16, thegianéar to the ones
of the previous check — some success, but definitely mores¢idameeds to be
done in making sure users understand what the purpose ofatiyecreation is
in the area of user management.

After observing the various areas that are covered in theidlilUnix Lab, it can be
said that some topics are handled competently by studehie more education and
practice would be appropriate for others. Topics that thdestts performed good in
are changing system settings by editing files, handling@égss startup via the Solaris
boot system and setting up files for the Network Informatigat&m (NIS).

Areas that need further investigation are the procesaugtaié the NetBSD boot sys-
tem and its configuration in general, user management inrgeineluding creation of
user accounts and making user data accessible and finally emphasis of handling
software packages on both Solaris and NetBSD.

1 See results of query 20 in appendix C.3 on page 379

146 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

Success?
0
|

T T T T T
776 T 778 784 870

Check number

Figure 7.12: Results of check-file-exists

7.2.5 Exercise duration

The next question to investigate is if the time reserved fere&ses was long enough,
or if more time was required to solve them, i.e. if studentieetthe exercise first, or if
it was ended by the timeout. To answer the question, the gritlire of exercises was
observed in relation to the start time, both of which wereilabée for each booked

exercise.

A list of all exercises that were taken in the Virtual Unix Lishdisplayed in the results
of query 21 in appendix C'3 The “duration” is calculated by the difference between
starttime and end time. Duration of NIS and NFS exerciseS@minutes (1.5 hours,
01:30:00) each. As can be seen from the list, several exsreisre not within the nor-
mal exercise period between 0 and 90 minutes. Negativeidosadnd those that were
significantly over 90 minutes (2 hours and up) indicate thahhical problems arose
during the exercise, and that manual intervention was rebg@n administrator. In
the following discussion, these exercises are thus exdlulleother set of exercises is
also of interest - there are several exercises that took thare90 minutes, with ranges
between 90:05 and 98:45 minutes. Possible reasons foreldyg dould be too much
system workload on the Virtual Unix Lab machine (a 85MHz SBARCstation 5 that
also had to serve other services than the Virtual Unix Lalummeer semester 2004),
or that the mechanism to implement the timeout was inaceurassuming either of
these reasons, the results of the exercises of up to 10 rainfter the “official” end

1 See query 21 in appendix C.3 on page 379

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 147

Success?

900 901 904 905

Check number

Figure 7.13: Results of nethsd-check-installed-pkg

of an exercise were included in the following analysis. Feiteersions of the Virtual
Unix Lab should be extended to keep record if an exercise wded:by a user or
aborted by timeout.

The time that students needed for exercises varied. A hesto@f the various times
needed by students to perform all NIS and NFS exercises isrshofigure 7.17%.
Here, the bigger, white boxes in figure 7.17 a) indicate égescaccumulated over
10 minute intervals, while the smaller grey boxes in figurels’ &) and b) indicate
exercises within a resolution of one minute.

The histogram in figure 7.17 a) shows that most exercises bebtkeen 40 and 90
minutes, with a significant number of exercises ending infitel 10 minutes. This
could either be that the time reserved for the exercise wastigxright for most stu-
dents, or that many exercises were aborted by timeout. As th@o record about the
exercises terminated by timeout, a closer look at the liskefcises completed around
90 minutes in figure 7.17 b) shows that most exercises weualcendecdbeforethe
timeout of 90 minutes, and that very few exercises ended {ateeither by timeout
or voluntarily is unknown, but of minor significance, assagithat no exercise was
terminated by timeout before 90 minutes.

The overview of all exercises includes a total of 100 NIS af@Nxercises many of
which were finished in between 40 and 90 minutes, and espthgshefore 90 minutes.

1 See query 23 in appendix C.3 on page 381
2 See query 22 in appendix C.3 on page 381

148 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

Success?
0.
|

898 899 902 903

Check number

Figure 7.14: Results of solaris-check-installed-pkg

While no timeout ended any of those exercises, a more detailalysis seems to be
in order about the distribution, based on the two separaecises for NIS and NFS.
The 100 exercises observed so far consist of 59 NIS exetcsestl NFS exercisés
histograms for the NIS exercises are displayed in figure®7thé same histograms for
NFS are shown in figure 7.19Both figures include the number of exercises ended in
10 minute intervals (white boxes) and 1 minute boxes, aral@stain an overview of
the exercise duration of 100 minutes in figures 7.18 a) an@l & hs well as zoomed
to the 90th minute in figures 7.18 b) and 7.19 b).

Similar observations as for all exercises can be made foradtBNFS separately —
most exercises took between 40 and 90 minutes, with an dbsoljority ending in
the last few minutes, but before the timeout. As such, theeansto be no difference
between the NIS and the NFS exercise. Figure 7.20 compageatidtribution of the
NIS and NFS end times, and the overlapping of the notches sitioat there is no
significant difference between the two exercises’ duratiae. students take equally
long for the NIS and the NFS exercises.

These findings answer the question if the time reserved ferceses was sufficient:
According to the given data, exercise times for NIS as weNBS were long enough,
but close to the limit. More time for each of the two exerciskeuld be considered,
e.g. by changing the exercise time from 90 to 120 minuteslewkiducing the post

1 See query 1 in appendix C.3 on page 371
2 See query 3 in appendix C.3 on page 372
3 See query 2 in appendix C.3 on page 371
4 See query 4 in appendix C.3 on page 372

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 149

1.2

N/

1.0

0.6 0.8

Success?
0.4

0.2
|

0.0
|

-0.2
|

789 804 888 889

Check number

Figure 7.15: Results of unix-check-user-exists

processing time from 45 minutes to 15 minutes, to keep theus taster.

A change that should be made to the database structure ofittua/MUnix Lab is
to record if an exercise was ended by the user or by a timeoutduce the need
for heuristics to determine between “normal” exercise et those terminated by
timeout.

7.2.6 Exercise time

The last aspect of the Virtual Unix Lab exercise results thatvaluated is the time
of day that exercises were taken. The question that is exg¢p¢otbe answered here
is, at what times students prefer (not) to exercise. Thisrmétion could be used to
schedule maintenance periods and other downtime.

Exercises in the Virtual Unix Lab can start every three hpues at Oam, 3am, 6pm,
etc. Table 7.3 lists the start times and number of exercls@swere started at the
corresponding time figure 7.21 displays the histogram of the same%ata

As can be seen from figure 7.21, most of the exercises wererpeztl in the afternoon
and evening (12am to 9pm). Late evening and early morninm (@ad 9pm) were
less popular, and almost no exercises were booked durintatdenight and early

1 See query 24 in appendix C.3 on page 382
2 See query 25 in appendix C.3 on page 382

150 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

1.2

N/

1.0

0.8

0.6

Success?
0.4

0.2
|

0.0
|

N

T T T
785 805 887

-0.2
|

Check number

Figure 7.16: Results of check-directory-exists

morning hours. This information can be used to determinegifor testing and system
maintenance to not disturb students in their “regular” fgmed) practicing hours.

7.2.7 Summary

In this section, the data collected during exercises pexdarin the Virtual Unix Lab
in summer 2004 and their results were observed under a nushbspects.

Looking at the frequency and results of the booked exersibewed that many users

count | startzeit

_______ Fommmm————
7 | 00:00:00
1 | 06:00:00
11 | 09:00:00
24 | 12:00:00
27 | 15:00:00
32 | 18:00:00
27 | 21:00:00

(7 rows)

Table 7.3: Distribution of exercise start times

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 151

Frequency

nnh o Ton IO O T i
T

T T T T
0 20 40 60 80 100

Duration of exercise in minutes

b)

Frequency

T T T T 1
84 86 88 90 92

Duration of exercise in minutes (zoomed)

Figure 7.17: Duration of all exercises: a) overview and ljrmed to the end of exer-
cise

152 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

a)
o
® _
e
~
o
Q4
3
c
o
>
T
o
w
o
9 4
w
o 4 [I 1 00 M HHH FH—’T!THFHHHF m
T T T T T 1
0 20 40 60 80 100
Duration of exercise in minutes
N
-
o
S 4
© _|
3
c
Q
E
=4
3 ©
w
<
~ 4
o

T T T T 1
84 86 88 90 92

Duration of exercise in minutes

Figure 7.18: Duration of NIS exercises: a) overview b) zoditeethe end of exercises

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 153

a)
o LLN T HH(H HWHHWH(HH W
b) Duration of exercise in minutes

Frequency
3
I

T T T T 1
84 86 88 90 92

Duration of exercise in minutes

Figure 7.19: Duration of NFS exercises: a) overview b) zodtoehe end of exercises

154 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

100

Time in minutes

NIS NFS

Exercise

Figure 7.20: Comparison of durations of NIS and NFS exescise

Frequency

Hour of day

Figure 7.21: Starttime of exercises

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 155

booked the requested exercises more than once each. A dinecéction between
weak/strong performance in the first exercise and improwwtbpnance in the last
exercise could not be seen. Possible reasons that weatsriesthle first exercise were
not directly connected to (relatively) strong results ia thast exercises may be due to
problems in handling of the system or in understanding otakks requested to per-
form in the exercises. However, comparisons of the perfaoaan students’ first and
last exercise showed that there was a significant improvemeverall performance
for both NIS and NFS, which confirms that the request for arodlet! testing envi-
ronment from section 7.1 is valid, and that there seems togmesiive impact of the
Virtual Unix Lab.

The investigation about solving of similar tasks in variexercises, as defined by the
use of the same check script, revealed that a number of tastesselved properly by
most students, but that there are also a number of areas @hwhidents need to get
trained better or have better information available dutivgexercise.

Looking at the time and duration of exercises, the systenseésl least at 6am, which
can be used e.g. as a maintenance window. In contrast, margises were performed
in the afternoon, evening and night, which — in correspondenith the opening hour
of the school — emphasizes the virtual component of the &fittinix Lab. The time
available for students to take the NIS and NFS exercisesristight, and offering
longer exercises, for example 120 instead of 90 minutesidocmake a difference.
Another worthwhile change for future investigations wohé<o record if an exercise
was aborted by timeout or by a student finishing the exercise.

7.3 Analysis of the user questionnaire

Focus of the evaluation of the Virtual Unix Lab is to evalutite system as a whole,
and if students accept it as a useful aid in the learning psocdo find out about
students’ acceptance and if they see a benefit in the Virtnad Lab, they were asked
to fill out a questionnaire.

Performing a questionnaire was chosen due to the relativelgffort needed, because
it does not influence students during the exercises. Besi@espinion of students
about the Virtual Unix Lab, it shows how student cope with tioeirse of exercises,
gets details on students’ use and preference of learningriakiand learn about their
overal motivations and background.

7.3.1 Methodology of the questionnaire analysis

Before describing the evaluation of the questionnairessilts in the next sections, this
section gives an overview of the evaluated aspects, descdbsign and implemen-

156 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

tation of the questionnaire, and describes the methods insth@ evaluation of the
questionnaire.

7.3.1.1 Aspects evaluated by the questionnaire

Insight of the following aspects is expected from a survéemeby students who used
the Virtual Unix Lab after the “System Administration” lece:

User acceptance:The first question is, if users find the Virtual Unix Lab a usadndl-
dition to the teaching aids used in the “System Administratclass. Questions
and answers to find out are discussed in section 7.3.2.

Course of the exercise:The question here was how students dealt with the exercises.
This went from choosing the time of the exercises over agugghe Virtual
Unix Lab and mastering the exercises to evaluation and segdbn the exercise
results. The findings are discussed in section 7.3.3.

Use of learning material: The Virtual Unix Lab is intended to supplement the “nor-
mal” exercises as well as the lecture, but what other legrmiaterials are pop-
ular among students? This question is answered in secof. 7.

Target audience: While it is known what semester the majority of students wied
the Virtual Unix Lab were in, there is no direct connectioanfr that to their
knowledge and interests which is to be determined to bettemsiom lecture,
lecture notes and practices. The results for these questiendiscussed in sec-
tion 7.3.5

7.3.1.2 Design and implementation of the questionnaire

The first step in conducting the questionnaire on users oWitteal Unix Lab was
to design it. Theories about questionnaires provide chistkto help during the de-
sign'. Decisions made for the questionnaire were to use a Web lzagmdach for
conducting. It was not split on multiple pages to preventsisborting the survey
before the final page. To encourage users to provide deeas@ers, no options were
included to voice “no opinion” in most of the cases. If a rarkdio be assigned, odd
numbers of options were avoided to prevent undecided ugarstiking “the middle
way.” For easy evaluation, the use of “free form” text wasided in favor of offering
multiple choices. The questionnaire shown in appendix a4 used for the survey in
the summer term 2004.

To realize the web-based survey, a software was neededdarféle questionnaire,
and get the HTML pages for the forms, database (table) setupedl as methods to

1 [Bortz and Dbring, 2002] pp. 244

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 157

retrieve the values for evaluation. No money was availatiedntracting the survey
or buying commercial software, and the few available Opamwr&opackages found to
fulfill the needs were mostly based on different databasestked for the PostgreSQL
database used for the Virtual Unix Lab. As an example, theP'Bdsy Survey Pack-
age” (phpESP) was HTML-based, but used MySQL as datdbase a solution, a
processor “txt2survey” was written to transform the tekumscription of the ques-
tionnaire into the necessary HTML, PHP and SQL files.

Before asking students to perform the survey, a group of 28a4esters” was chosen
to perform a test of the survey and ensure that all key itenre wevered. The beta-
testing group was selected to contain people with basicrstateling of Unix system
administration and the areas covered in the Virtual Unix &arcises, NIS and NFS.
As the whole Virtual Unix Lab as well as the survey were destjto be in German
language, proper understanding of that language was aéspaement for the testers.

After the beta testing period, students who attended thst&8y Administration” class
in summer 2004 were asked to take the NIS and NFS exercise dtttwal Unix Lab.
Handing in printouts of feedback on both exercises and amsgvéhe questionnaire
was made a mandatory pre-requirement for each student satpagnd-of-term test.
This ensured that 28 out of 33 students who took the exerfiizbout the question-
naire, even though some questions were left blank. Thetsestd printed in appendix
C.2, the various aspects will be discussed throughout duiss.

7.3.1.3 Evaluation methods

Most data in the questionnaire asked is on an ordinal sd&egest are on a nominal
scalé. Due to this, care has to be taken when choosing the statistiethods used to
analyze the results. In the following discussion, mediashrmodus will be used. The
median is used to determine which value has 50% of the resnitge and 50% of the
results below it, and thus requires a definition of “aboved drelow”, which can only
be found on an ordinal, but not on a nominal scale. The modussed with both scales
to describe the answer which was chosen most often, on afutdbasé.

As common statistical methods for comparison require ndinat but interval scaled
values, they cannot be used directly to compare items on dinabrscale. Ordinal
scales define ordering of items, but not “distance” betwéemt which prevents ap-
plying methods for interval scaled data. By introducing aewmption of a certain
“distance” between the values, it is possible to transfoatnes from an ordinal scale
to an interval scale, and thus be able to use methods of @algtatistics. In this
discussion, the assumption is to assign fixed distancesltevased to describe the
learning materials. They will be used to calculate meanesahd quartiles. Box-plots

1 [phpESP, 2007]
2 [Fahrmeir, 2003] pp. 17
3 [Fahrmeir, 2003] pp. 53

158 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

are described in section 7.2.1, they are used to visualzeitbference of learning
materials.

For each aspect, results from various questions from thetipn@aire are presented
along with references to the exact questions and resulgparalix C.2.

7.3.2 Evaluation of user acceptance

Evaluation of user acceptance is a major goal of the quesdiom and as such, the
relevant parts are discussed first here.

7.3.2.1 Questionnaire results

The first question asked to students was if they found thedfitUnix Lab a reasonable
supplement to the “system administration” lecture. Mostietts (15 out of 28) found

it a very reasonable supplement, the remaining 13 studenight it was a reasonable
supplemerit

Asking students if the system was easy to use, most (17 ol)didreed. From the
remaining students, more found it to be cumbersome (7 ouBpf&her than very
easy (4 out of 28)

When asked if the students felt a general benefit from theislitnix Lab, most found
the benefit as positive (15 out of 28), the majority of the rigring students (8 out of
28) found it as very positive, 4 students found it as neutmdi@nly one felt a negative
benefit.

The last item of the questionnaire was a free-form field wisexdents could write any
comments they wanted. From the 13 students that used thgtopfy, statements
regarding user acceptance show that a two students founeiéreise machines to
be slow. Other than that, students wished that the Virtuak Uab machines were
available for practicing various topics covered duringftiietime of the semester, and
that new exercises be added for setup of firewalls, ematgllation of software, and
performing system updates. In general, several studedisaited that they had fun
practicing in the Virtual Unix Lab, and that it was a usefupplement to the existing
lecturé.

1 See question #9 in appendix C.2 on page 356

2 See question #11 in appendix C.2 on page 356
3 See question #10 in appendix C.2 on page 356
4 See question #52 in appendix C.2 on page 369

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 159

7.3.2.2 Interpretation of the questionnaire results

Investigating user acceptance of the Virtual Unix Lab shobthat students regard the
system as a very good supplement to the existing lecturey fitumd it easy to use

and that it had a positive benefit on them. This was confirmetthéwishes students
expressed for using the Virtual Unix Lab for more than just gxercises, and having
it available all the time as well. In general, students iatkd having fun using the
Virtual Unix Lab.

The only negative point noted here were slow exercise mashimhich is no surprise,
given that the machines run on 75MHz SPARC CPUs, while ctiireaal and com-
patible CPUs run at 3GHz. Possible solutions here would lbsédaster machines or
emulate the exercise machines, see section 2.9.

7.3.3 Evaluation of the course of exercises

To gather data about the course of the exercises perforntée ivirtual Unix Lab, a
number of questions were reserved in the questionnaireer@tbthods, like supervis-
ing the exercises by an instructor and/or video, would haenlpossible in theory, but
hard to implement, due to the fact that the students werediett to do the exercises
at times and places of their choice. The questions discussedare in the order of the
exercise process.

7.3.3.1 Questionnaire results

Most students (26 of 28) found that there were enough datekahbie for exercising.
Only two students found that there were too fessible dates.

After booking, most students (20 out of 28, 71%) were usirgyrthome machines to
access the Virtual Unix Lab for practicing, while the reniagn7 students (28%) were
using school machines. No student indicated doing the eesrérom another place
(e.g. from a company they were workingZatMost students absolved the exercises
on their own (17 out of 28), 5 of them were in groups of two and §rioups of three
students — apparently not everyone filled out the questicegia

When asked if the setup of the machines for the exercises tefuate, no student
found it to be too spartan. Many (11 out of 28) thought of itlaghsly spartan, and the
majority of 14 out of 28 considered it acceptable. Only thetelents characterized

1 See question #12 in appendix C.2 on page 357
2 See question #13 in appendix C.2 on page 357
3 See question #16 in appendix C.2 on page 358

160 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

the setup as “comfortabl&” The instructions which described the exercise to perform
that were given to students were found to be too much by ordystwdents out of 28.
The information was exactly right for 9 students, and theami®j (16 out of 28) of the
students have wished for more informafion

During the exercise, a majority of students (19 out of 27 hetsthey had a chance to
ask for more help Even more students (22 out of 27) wished the system would hav
detected problems automatically, and provided apprapassistance in that cdse

The time reserved for practice — 90 minutes for the NIS as asthe NFS exercise,
each — was “too short” for most of the students (15 out of 2§ student found the
time “much too short”, and for 11 out of 27 students the time ¥yast right™®.

When asked if the feedback given after exercises was detaileugh to understand
mistakes made, about two third of the students (17 out of 28gwable to learn from
their mistakes, while the remaining 9 students still weresuwe about what they did
wrongf.

In the field reserved for giving free-form feedback at the ehdhe questionnaire,
several students asked for more time and information toestile exercises. Also,
more information was requested by a few students for thebfaedafter the exercises,
esp. for tasks that were not solved successfully

7.3.3.2 Interpretation of the questionnaire results

The schedule of exercises being available in a three-hdterpavas accepted by most
students. Most of them used the “virtual” component of theudl Unix Lab to make
the exercises from a location of their choice, instead ohdpgihysically present at
school. A similar number of students solving the exerciseseinstead of in groups
may lead to the conclusion that students working from themés did them alone
could not be found true when examining a correlation betwkese resulfs

The exercise machines’ setup was rather spartan when comgphe NetBSD and
Solaris installation to e.g. modern Linux distributioneeliSUSE, which students were
expected to be most familiar with. As a result, it was expe¢hat students would
find the installation of the exercise machines rather spaatad inadequate for per-
forming the exercises. The results show that most studentsifthe setup acceptable

1 See question #15 in appendix C.2 on page 357
2 See question #18 in appendix C.2 on page 358
3 See question #19 in appendix C.2 on page 359
4 See question #20 in appendix C.2 on page 359
5 See question #17 in appendix C.2 on page 358
6 See question #41 in appendix C.2 on page 366
7 See question #52 in appendix C.2 on page 369
8 The Spearman correlation coefficient between results intiqume13 and question #16 was found to
be -0.52.

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 161

or at most slightly spartan, which indicates that the assiomp made about students’
expectations were wrong, in favor of the default instadiagprovided.

An area where work is needed from the teacher’s side are siriations provided on
the exercise to be performed, as students wished for mayeniation here. Care must
be taken when addressing that point to not give away too miitecsolution to the

exercises.

The need for more information and help was also expressetubgrsts. They wished
to either request more help manually, or have the systenmeaiiceally detect situations
where intervention was needed, and provide help in thosatsins.

Statements of students that the time for exercises was tmoisidicate similar prob-
lems: The tasks to perform do not take up much time when utatetsand all the
needed procedures and commands needed to run are knowter®sdob understand-
ing the objectives and how to reach them — searching for imédion and applying
theories and concepts — cost time, which students seemkodadndicated by previ-
ous observations. More practical exercises may be apptefn make students more
familiar with methods for practical problem solving.

Finally, while a majority of students were able to learn frtime feedback given to
them after the exercises, one third of the students needeel Inetp and explanations
to understand what they did wrong to not meet the exercistsgdéore elaborated
feedback than the one-line summaries given could help Rergsible help could point
at descriptions of the scenarios, procedures to apply ifeittere notes, and lists of
useful commands for setup and troubleshooting for theqadati problem.

In summary, it seems students need more information duhiegxercises to under-
stand what their tasks are and how to solve them. They alsbware data given on
feedback to learn from errors.

7.3.4 Evaluation of the use of learning material

Students were provided with a wide range of learning mdtefa the class, as de-
scribed in section 3.2.4. This section discusses the paheofjuestionnaire that at-
tempted to find out what material was preferred by students.

7.3.4.1 Impact of learning materials in general

The first set of questions asked what source of informatienstodent used most to
learned about the topic of system administration. Possildsvers were

162 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

. The “SA’ lecturé

. The lecture notes for the “SA’ lectifre

. Practical exercises accompanying the “SA’ lecture
. The Virtual Unix Lal§

. Analyzing school machings

. Analyzing own machinés

. Books

co N o o B~ W N P

. Online informatiof

For each source of information, the students were askeddioate how much they
learned from it. The possible answers and their assumedesgliscussed in section
7.3.1.3 were:

4 = Alot (“Sehr viel”)

3 = Some (“Einiges”)

2 = Average (“Geht s0”)
1 =Few (“Wenig")

0 = Nothing (“Nichts”)

Figure 7.22 displays the distribution of the learning miatet popularity to allow a
comparison with box-plots as described in section 7.2.1e ddlumns on the-axis
show the learning materials, while theaxis displays their popularity as described
above.

It is obvious that most students did not like to read boolen{it7 in figure 7.22), and
that analysis of school machines (#5) was not very poputaeei The most popular
sources of information where students learned most abstgrsyadministration were
visiting the “SA” lecture (#1) and analyzing of the studémtwn machines (#6). The
remaining items were equally popular, with the Virtual Uhb among them.

1 See question #1 in appendix C.2 on page 353
2 See question #2 in appendix C.2 on page 354
3 See question #3 in appendix C.2 on page 354
4 See question #4 in appendix C.2 on page 354
5 See question #5 in appendix C.2 on page 355
6 See question #6 in appendix C.2 on page 355
7 See question #7 in appendix C.2 on page 355
8 See question #8 in appendix C.2 on page 355

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 163

Popularity

Learning aid (see legend)

Figure 7.22: Popularity of learning materials among stislen

7.3.4.2 Impact of learning materials during Virtual Unix La b exercises

The next set of questions asked was how much any of the faltpleiarning materials
helped students solve the exercises in the Virtual Unix Lab:

1. The “SA’ lecturé

2. Lecture notes for the “SA’ lectute
3. Practical exercisés

4. Analyzing school machinés

5. Analyzing own machinés

6. Book$

7. Online information

1 See question #21 in appendix C.2 on page 359
2 See question #22 in appendix C.2 on page 360
3 See question #23 in appendix C.2 on page 360
4 See question #24 in appendix C.2 on page 360
5 See question #25 in appendix C.2 on page 361
6 See question #26 in appendix C.2 on page 361
7 See question #27 in appendix C.2 on page 361

164 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

Popularity

Learning aid (see legend)

Figure 7.23: Helpful learning material in the Virtual Unicah

For each learning material, students were asked to indlcatemuch the resource
helped them. The possible answers and their numbers were:

5 = Not used (“Nicht genutzt”) — not included in plot

4 = Alot (“Sehr viel”)

3 =Some (“Einiges”)

2 = Average (“Geht s0”)

1 =Few (“Wenig”)

0 = Nothing (“Nichts”)
Figure 7.23 shows that the most popular medium that was us@hdexercises in the
Virtual Unix Lab were online information (item #7). This islfowed by knowledge
gained in the lecture (#1) and the lecture notes (#2), malotixercises performed by

students outside the Virtual Unix Lab (#3) as well as analgdiown machines (#5)
were less popular, and analysis of school machines (#4) aokisbh(#6) were least

used.

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 165

7.3.4.3 Impact of the “SA” lecture for exercises in the Virtual Unix Lab

After observations of the various learning materials, glezmphasis was given to
effect of the “SA’ lecture and the lecture notes. The nexto$efuestions asked how
much visiting the lecture helped during exercises in théudirUnix Lab, in particular
for a number of different tasks:

. NIS server setup

. NIS client setup

NFS server setdp

NFS client setup

Handling of Solaris in general

Handling of NetBSD in genefl

N oo o M w0 N PF

General problem solvifg

For each topic, students were asked to indicate how muchetitare helped them.
Again, numerical values are assigned to allow employintissigal methods for com-
parison. The possible answers and their numbers were:

4 = Alot (“Sehr viel”)

3 = Some (“Etwas”)

2 = Average (“Geht s0”)
1 =Few (“Wenig”)

0 = Nothing (“Nichts”)

One observation from figure 7.24 is that no student indichtelbarned nothing from
the lecture for any of the topics, because it is not presertherscale. The median
of all results shows that students consider having learbesleaaverage skills for all
areas, with the most impact coming from the lecture, i.e.ndeacy towards having
learned a lot, in the topics of NFS client setup (item #4) aaddting of Solaris (#5)

and NetBSD (#6) in general.

1 See question #28 in appendix C.2 on page 362
2 See question #29 in appendix C.2 on page 362
3 See question #30 in appendix C.2 on page 362
4 See question #31 in appendix C.2 on page 363
5 See question #32 in appendix C.2 on page 363
6 See question #33 in appendix C.2 on page 363
7 See question #34 in appendix C.2 on page 364

166 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

4.0

35

3.0

Popularity
25
I

2.0

15

1.0

Topic (see legend)

Figure 7.24: Impact of the “SA” lecture on various topics bé tVirtual Unix Lab
exercises

7.3.4.4 Impact of the “SA" lecture notes for exercises in th&irtual Unix Lab

After asking about the impact of the lecture, the importaofdée lecture notes during
the Virtual Unix Lab exercises on the same areas were asked:

1. NIS server setup

2. NIS client setup

3. NFS server setdp

4. NFS client setup

5. Handling of Solaris in general

6. Handling of NetBSD in genefal

1 See question #35 in appendix C.2 on page 364
2 See question #36 in appendix C.2 on page 364
3 See question #37 in appendix C.2 on page 365
4 See question #38 in appendix C.2 on page 365
5 See question #39 in appendix C.2 on page 365
6 See question #40 in appendix C.2 on page 366

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 167

Popularity
2
I

Topic (see legend)

Figure 7.25: Impact of the “SA’ lecture notes on various ¢spdf the Virtual Unix
Lab exercises

For each topic, students were asked how much the lecturs hetped them. Numer-
ical values are assigned to allow employing statisticalhmes$ for comparison. The
possible answers and their numbers were:

4 =Alot (“Sehr”)

3 =Some (“Etwas”)

2 = Average (“Geht s0”)
1 =Few (“Wenig”)

0 = Nothing (“Nichts™)

Figure 7.25 shows that the script was regarded as providiogeaaverage help for all
areas, with a tendency towards a lot of information for thé&aB® operating system
(item #5).

7.3.4.5 Interpretation of the questionnaire results

This section made observations about the use and prefeoétearning materials of
students in general, and for the exercises in the VirtuakWUab in particular.

168 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

In general, students seem to be more interested in readorgiation online than from
books. Instead of analyzing school machines, which can sengesd to be properly
configured for the various tasks, students use their own é¢homachines to learn. The
“System Administration” (SA) lecture seems to be considexeital source of infor-
mation for practical exercises, and the lecture notes (whie available online!) as
well as other online information are preferred for the pradtexercises in the Virtual
Unix Lab. Students confirmed this by stating that the Intemas the #1 reference
material used during the Virtual Unix Lab exercikeEhe reason for this may be that
information is quicker and easier to search and obtain wherekact location is not
known. A similar case is that students prefer analyzing (ardbably configuring)
their own machines over the school machines. It can be asktimatthey knew their
own machines better, plus they had the credentials to chidsegeonfiguration there,
in contrast to the rather unknown school machines, whegewleee not even allowed
to tune the configuration. More investigation could be doméhés topic, which would
go beyond the scope of this investigation.

Visiting the lecture is considered to be important by mostishts, as it helps some-
what in the various practical tasks that are part of the ¥lrtunix Lab. The lecture
script is considered a good source of information, too, @sfig when it comes to the
Solaris operating system. Possible improvements thatidsiimade are in the areas of
NFS client setup as well as general handling of NetBSD. Thestipn if the demand
for NFS client setup was influenced by the demand for genee#8B8D documenta-
tion in the lecture notes would need separate investigading goes beyond the scope
of this work.

Another point that may be worth looking into is if the style @fline information
— usually short, non-prose and keyword-type style — is mppapriate for system
administration than the style of books — prose with intrdilug more detailed de-
scription of problems and solutions, and possibly exescés&l references. Different
areas to observe are material for acquiring knowledge atmntepts and theories in
contrast to reference material and their usage during thesemf the learning cycle.

7.3.5 Evaluation of the target audience

Finding out more information about background knowledge metivation of the stu-
dents participating in the “System Administration” leewras one of the goals of the
guestionnaire which students were asked after completiadNtS and NFS exercise
in the Virtual Unix Lab.

1 See question #52 in appendix C.2 on page 369

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 169

7.3.5.1 Questionnaire results

An absolute majority (21 of 27) of the students had “very higérest in their study
subject, while the remaining 6 students indicated a “biggiiast. Interestin Unix(like)
operating systems like Linux, Solaris and NetBSD was inditas “very big” by 16
of 27 students, and with the exception of one student who whsmoderately inter-
ested, all other students indicated “big” intefesh contrast, interest in the “System
administration” topic was a bit lower. While most studerit§ of 27) still indicated
“very big” interest, 7 indicated “big” interest and 5 werelpmoderately interestéd
Asking about the number of lectures visited, 23 of 27 (85%jylshts visited 9-10
lectures out of ten, most others (11%) came to 4-8 out of tetules, and only one
student went to 0-3 out of ten lectufes

The operating system that students used to start the exewveis some Unix-variant
for most of the students (21 out of 28) while only 7 used Wingow

To learn more about students’ interest in specific topicswhaie covered in detail in
class as well as in the Virtual Unix Lab, they were queried tibay estimated the
importance of the “Network File System” (NFS) and “Networdrmation System”
(NIS). Results show that NFS is considered “big” by most (@#af 27) students with
a tendency towards moderate interest by a large part (8 aif2fig remaining group
For NIS, importance was only considered as “moderate” bytrobthe students (12
of 27), with an equal number of students considering its ingmee as “big” (6 or 27)
and “less” (also 6 of 27)

Querying the students if they had prior experience withespsadministration, e.g.
during internships or from home usage, the majority (22 9fdthe students did have
prior experiencg To find out what operating system students administratest,rtteey
were asked to name the operating system they used most, nitlooe answer pos-
sible to focus on the system they had the most experience #itbwers showed that
most of the students had administrative experience witLifl6 of 23). 5 Students
had experience with Windows, and one student had worked Sathris and Novell
each.

The students who participated in the survey were mostlyeir #th semester (23 out
of 27), one was below the 4th semester, and three studentsiweaemesters 8 or
abové®. Gender distribution among students was 96% (26 of 27) raalé 4% (1 of

1 See question #42 in appendix C.2 on page 366
2 See question #44 in appendix C.2 on page 367
3 See question #43 in appendix C.2 on page 367
4 See question #47 in appendix C.2 on page 368
5 See question #14 in appendix C.2 on page 357
6 See question #46 in appendix C.2 on page 368
7 See question #45 in appendix C.2 on page 367
8 See question #48 in appendix C.2 on page 368
9 See question #49 in appendix C.2 on page 368
10 See question #50 in appendix C.2 on page 369

170 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

27) female.

7.3.5.2 Interpretation of the questionnaire results

Comparing the interest of students in their studies in gdner Unix(like) operating
systems, and in system administration in particular, itrseéhat they have less in-
terest in the subject of system administration than in thersubjects. This may be
due to the fact that the SA lecture is mandatory to all stugjentcontrast to the SY
lecture which used to be available to volunteer studentss fflay have an impact on
motivation of students and test result, as was found in@eati2.

The lack of interest may be due to the selection of topics remlze The fact that the
students consider advanced topics like that of networkeshitems (NFS) and system
management in a distributed environment (NIS) as modgratglortant supports this
assumption.

If students were confronted with system administratiorsiolg the lecture previously,
it was more often with Linux systems than with Windows. Ressthat would need

further investigation (but are outside the scope of thiskjvoould be that Linux sys-

tems need more “administration” than other (Windows) systeor that students are
more interested in setting up and tuning single-user watksts than being interested
in advanced topics like the management of workstation efastiscussed in the “Sys-
tem Administration” (SA) lecture.

Most students participating in the questionnaire were @irtith semester, where the
lecture is mandatory for students of (General) Computegridea (“Allgemeine Infor-
matik”). A few students were from higher semesters. Froikiriglto these students,
it can be said that they were not studying (General) Comp&té&mce, but Computer
Science with either technical or economical emphasis, hatithey took the system
administration course voluntarily.

The ration of male to female students was typical for tecrstudy courses.

7.3.6 Summary

Evaluation of the online questionnaire confirms many of theraaches taken in the
Virtual Unix Lab described so far, and also what future inygments can be made in
each of the observed areas:

User acceptance:Students found the Virtual Unix Lab easy to use, that it iscsoa-
able supplement of the existing “System AdministrationA)$cture, and that
use of the Virtual Unix Lab has an overall positive benefit.

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 171

Students requested to keep the Virtual Unix Lab running peently to allow
doing investigations and testing configuration when negdeduding system
privileges. This request could be easily carried out.

Other requests from students to create and offer more egsran the Virtual
Unix Lab as well as making the machines faster would requiveereffort. Hu-
man resources and funding are required for creating neveieesr and upgrad-
ing machines needs changes to the Virtual Unix Lab’s softywespecially for
the automatic setup and preparation of exercise machineaddition, funding
would be needed for hardware purchases and associate@ssfthanges.

Course of the exercise:The number of possible dates for exercises were enough. The
duration of exercises could have been longer, as was al@zrved in section
7.2.5.

Moving from the current 45+90+45 scheme for exercises, Wwhiges 45 min-
utes for preparing the exercise machines, 90 minutes foexeecise and 45
minutes for postprocessing, i.e. the evaluation of the lalshines, would give
chances for either more or longer exercises. For exampieggo a 30+90+15
scheme would allow ten exercises per day, 30+90+10 woubtvadleven exer-
cises per day, or 45+120+15 would allow eight exercisesg® riow (which
was found OK by students), but allow longer exercises. Redjpa and post-
processing would need to be kept in bounds of the limits sehbyhardware
(for preparation) and the exercise (for postprocessingie dbove 45+120+15
scheme would work for the existing setups, assuming ex@yads not hang the
system for postprocessing.

Most students used the “virtual” component of the Virtuali}Jbab and ac-
cessed it from home.

More information should be provided with the instructiomstbe Virtual Unix
Lab exercises, without giving away too much of the solutidviere information
should be provided in the feedback given to students afgrceses, esp. on tasks
that were not completed successfully.

If the student needs more information during the exercishaould be available
on request. As an alternative, instead of having the stuasktfor help, the
system could monitor the progress, and detect that helpedateor if a situation
is critical, and offer appropriate help automatically. Sbapter 10 for more
ideas in that direction.

Use of learning materials: Students prefer online information to reading books. Stu-
dents also prefer their home machines for analysis oveiosamachines, despite
the fact that the latter are known to be properly configuredsfsks, whereas this
is unknown for the former.

Visiting the “System Administration” (SA) lecture is codsired important by
students, and the lecture notes are used to a great extém faractical exercises
in the Virtual Unix Lab.

172

CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

Further studies in this area could compare the use of scloostudents’ ma-
chines as passive vs. active learning materials. Anotivesstigation could be
to evaluate the impact of existing online vs. offline (i.e.okpinformation on
topics like learning of concepts and theories, in cont@stterence material for
the topic of system administration.

Target audience: Students have great interest in their studies and Uniy(likeer-

ating systems in general. Interest in system administrasoa bit less. An
important factor for this may be that the class is mandatory.

The question if students are less interested in system &straitton and more
interested in using systems to perform tasks not relateldetariachine and op-
erating system configuration could be the work of futureaesg, but is outside
the scope of this document.

To conclude, the questionnaire showed overall user aceeptaf the Virtual Unix
Lab as evaluated, but also that there is a demand for moreniat®n in the exercise
description, during the exercises, and when giving feeklbfter the exercises.

7.4 Other asepcts to evaluate

There are a number of aspects under which the Virtual Unixdalid be evaluated.
While none of these evaluations is carried out as part ofwhik, they may lead to
overall benefits for the users of the Virtual Unix Lab.

Quality of the VUDSL: One major component that the original version of the Virtual

Unix Lab lacked and that was described in the previous chsjigethe DSL
for the verification of exercise results. The question alibatquality of that
language arises. Along with that, the question on how tdbéistathe “quality”
of a language arises, though.

Literature on creating languages is scarce, and the situtitat judges the qual-
ity of languages is very similar, unfortunately. No estsiid methods were
found by which to judge how “good” the VUDSL is. Possible negrto apply
could include maintainability, scalability/extendatyiland tracability of the pro-
gramming language. Similar metrics may be applied not omlihe language
(and its manifestation in various programs as exercise tentl their verifica-
tions), but also to the processor of the VUDSL itself.

Dijkstra suggests that a major goal of designing a programgiainguage should
be that its functions can be verified. For that, a languageldhaffer a “small

number of concepts, the more general the better, the motensgtic the bet-
ter.”! This emphasis on verifyability can also be found in moderprapches

1 [Dijkstra, 1961] p. 4

7.4. OTHER ASEPCTS TO EVALUATE 173

to software engineering, e.g. the V-model specifies use estccaises for each
software feature before looking further at the implemeatet of the software
features and the tedts

A practical approach to determine the quality of the VUDSIuldobe to sit
down and write many exercises and the corresponding tes¢sthe existing
stereotypes (check scripts) and possibly refine them. Negulzge features as
mentioned in section 6.8 could be added as need arises, araénall qual-
ity of the VUDSL and its processor could be judged by how wadiyt support
those extensions. This approach is tedious, time consyraim(most likely)
incomplete, and as such not recommended.

No further evaluation attempt at evaluating the “qualitjttee VUDSL is made
at this point. The extensions proposed in section 11.6 gipe hihat the basic
system is extensible and scalable within reasonable amoafimaintenance.

Mobile education: Given its “virtual” nature, the Virtual Unix Lab can be acsed
from anywhere, which was very much accepted by studentspwsdfin the
above evaluation. Accessing the Virtual Unix Lab is not gmigsible from “tra-
ditional” access devices for Unix — PCs, workstations onedi@lup-terminals—
but also from mobile devices like PDAs, cell and smart phoresiumber of
restrictions still apply for such “mobile” nodes which dotradfect the access
devices commonly used, and problems with format and foingadif the Virtual
Unix Lab’s user interface can be expected.

A more in-depth discussion of the issues and challenges bileneducation can
be found in [Ndsekabel, 2005].

Accessibility: A number of considerations are needed to adjust softwareisedin-
terfaces to be accessible. Use of color, size of fonts, tagbuser interface
components, use of language, using keyboard and mouseaditety are just a
few examples given in many guidelines that are intended tkensaftware ac-
cessible through various law4®, general accessibility standafdsand a rich
choice of software interfaces and style guite®*!

While the benefit of making software accessible to those diegend on it is
recognized as important, no effort in that direction is madéhis document
with respect to the Virtual Unix Lab. It is left to future wako evaluate, judge
and/or improve the existing situation of the Virtual Unixi.a

1 [iIABG, 2007]

2 [Versteegen, 2001]

3 [Government of the United Kingdom, 2001]
4[BGG, 2002]

5 [Thomas, 2000]

6 [ISO 16071, 2003]

7[BITV, 2002]

8 [The KDE Project, 2007]

9 [Trolltech, 2007]

101The GNOME Project, 2007]

11 [World Wide Web Consortium, 2007]

174 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

Security: While the system was designed with security in mind, it wageneval-
uated under that aspect. Areas that could be observed inasuevaluation
are the web based user interface, its implementitiand precautions against
users breaking out of the exercise lab’s network into thelpecton network to
which the Virtual Unix Lab is connectédMethods for evaluation could range
from code audits*® over network audits and penetration té<t&°to general
practices of network and system secuflty* 12

Privacy: As an aspect of security, privacy of the system, its userbtlagir data is not
evaluated per se, as stated above. But in the context of us#gling, privacy is
a concern, and while no full audit is performed, relatedessare discussed in
section 8.2.

Usability: The existing user interface was taken as part of the predingimvork on
the Virtual Unix Lab done for the HWP project “Practical Urghuster setup”,
and the design goals were modeled to the functional reqeinesrher&.

An evaluation of the existing user interface could idenpfytential improve-
ments for user guidance in general, and how to realize ingatasser guidance
for tutoring in particular. While the latter is further disgsed in chapter 10, a
full evaluation of the user interface and dialog structuibe Virtual Unix Lab
under usability aspects are considered outside of the safdhes work.

Possible methods for further research would be focus groeyeert reviews,
personas and usage scenarios, among dthers

Check lists for desirable goals in user interface designbeafound in a num-
ber of standards like 1ISO 92#1and the VDE 5005 standard for “software-
ergonomics in office communicatiol¥, They describe information presenta-
tion®®, dialog guidance via on-screen forfifundamentals of dialog desigin

1 [Zimmermann, 2003] pp. 9

2 [Feyrer, 2004d]

8 [Heffley and Meunier, 2004] pp. 90278
4 [Hill, 1988] pp. 291

5 [Huang et al., 2004] pp. 45

6 [Lytle et al., 2005] pp. 197

7 [McNab, 2004] pp. 57

8 [nmap, 2007]

9 [Nessus, 2007]

10[Herold, 2005] pp. 1

11 [Schneier, 2005] pp. 1

12 [Trgek, 2005] pp. 43

13 [Zimmermann, 2003] pp. 9

14 [Jakob Nielsen, 1997] pp. 94

15 [Gibbs, 1997]

16 [Shneiderman, 2004] pp. 139-172
1711SO 9241, 2003] pp.37

18 [vDI-Gesellschaft Entwicklung Konstruktion Vertrieb, 9]
9[1ISO 9241, 2003] ISO 9241-12, pp. 111
20[1SO 9241, 2003] ISO 9241-17, pp. 227
21[ISO 9241, 2003] ISO 9241-10, pp. 81

7.5. CONCLUSION OF THE EVALUATION 175

and user guidanée

Full evaluation of all the details addressed in these staisdia a lot of work,
even if these standards do provide their own checklists dsiee testing and
evaluation. Other approaches to perform these evaluationtd be to employ
evaluation methods like IsoNofnisoMetric, the Questionnaire for User Inter-
face Satisfaction (QUIS) by Shneiderman, Slaughter ananddy, the System
Usability Scale (SUS) by BrooRethe Web Usability Indekand others?8, in
addition to the existing guidelines for usability desigml @mgineering;*°,

User Guidance: An analysis of the dialog structure of the Virtual Unix Labudd
be performed to identify places in the user interface thatdcbe improved for
better handling by the users as well as adding componentgrtmice active
user guidance. Such active user guidance could includemséeling, tutoring
and user adaption.

An analysis of the Virtual Unix Lab’s user interface undeggh aspects as well
as investigations on how to realize a tutoring componentumed adaption will
be given in chapters 10 and 11.

7.5 Conclusion of the evaluation

After observing several aspects of the existing Virtual Ubab, this section draws
a conclusion on the evaluations performed, i.e. about thealiUnix Lab exercise
results in section 7.2.7 and the results from the questioairasection 7.3.6.

Examining the results of students who repeated an excis#iVirtual Unix Lab
more than once, and comparing their first and last resultsldodv some significant
improve in performance. No Areas where the learning expedecan be improved
are partly possible within today’s incarnation of the VatWwnix Lab, and partly need
deeper changes to it. Among the items that can easily achgneemaking exercises
longer (e.g. 120 instead of 90 minutes) and offering morecses.

Giving more information to students during exercises wagiested repeatedly. To
supply more information for assistance of the exerciseirega change in the current
model of the exercise procedure, and thus a change in theaVitinix Lab itself.

1[1ISO 9241, 2003] ISO 9241-13, pp. 148

2 [Primper and Anft, 2006] “Fragebogen ISONORM 9241/10”

3 [Gediga et al., 1999] pp. 151

4 [Harper and Norman, 1993] pp. 224

5 [Brooke, 1996]

6 [Harms et al., 2002]

7 [UsabilityNet, 2007] “Questionnaire ressources”

8 [Baseline, 2007] “Frequently Asked Questions about Uséidstion: Questionnaires”
9 [Nielsen, 2001]
0
[

10 Nielsen, 1994]

176 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

Possible areas for providing better information and amscst are a tutorial component
and user adaption, which are discussed in the followingtelngp9, 10 and 11.

Part Il

Tutoring and user adaption

Chapter 8

Introduction of tutoring and user
adaption

The previous parts of this work have introduced the VirtualdLab in general, and
how verification of exercise results can be realized withhtékp of a domain specific
language. The third part of this work describes how the fatiod laid out so far can
be used to add tutoring and adaption to the Virtual Unix Lab.

This chapter covers the fundamentals for tutoring and usaptéon that are used for
defining corresponding components in the Virtual Unix Lab.

8.1 Fundamentals of tutoring

Using computers to help in teaching is old, and has grown aoeuwf related acronyms
like Computer Aided Instruction (CAl), Intelligent Com@utAided Instruction (ICAH,
and Intelligent Tutoring Systems (ITSRelated concepts are discussed in this section

” o 9 G

are “knowledge”, “communicatiord; “intelligence.”

The named concepts are implemented in learning manageystatrs (LMS), learn-
ing environments, and tutoring systems, as described inbfizemulla and Lawhead,
2004]. A more in-depth discussion of the differences betwsetutor, an assistant and
a consulted is given in [Wenger, 1987, pp. 232] and [Davied.eR001, pp. 54].

While the Virtual Unix Lab offers a wide field of applicatigresome topics will not be
discussed here to narrow the focus; references to literatg given here for further
information.

1 [Wenger, 1987] pp. 3
2 [Freedman et al., 2000] pp. 1
3 [Wenger, 1987] pp. 6

179

180 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

Group teaching: Tutoring of groups of students — in contrast to tutoring ofira s
gle student — allows applying many advanced tutoring teghes in the area
of communication, e.g. discussion forums, mailing listenpoting students as
tutors of their co-students, and many more - see the metigidd Linder “Con-
structivism” in section 3.1.2. Keywords to mention for tlsisea of research
are Computer Supported Collaborative Work (CSCW) and Cdem@&upported
Collaborative Learning (CSCL)

Texts that discuss group teaching are [Suebnukarn and Mgd@a04] for ap-
plication in medical teaching, and [Yin et al., 2000] for sokrledge-based ap-
proach for designing intelligent team training systemsrthar texts that cover
group teaching include [Yacef, 2004, pp. 343], [Haake ¢t24l04] and [Klle,
2007].

Even though group teaching is not discussed in detail hatering and user
adaption can be applied to individual members of a group ipswhat would

not be possible otherwise. As such, group teaching is cersidan extension
to the tutoring applied to single students that is discussed.

Natural language processing:There’s a large base of literature for natural language
processing that is specifically targeting the Unix opeasigstem, its user inter-
face, and how to apply it to tutoring for users that are nevhtogystem. The
area of natural language interfacing is not considered, laaréhe existing user
interfaces of the Unix operating system should be learned,re additional
interfaces be provided to (possibly) make learning andguie system easier.

One of the problem areas with natural language interfaces imderstanding
commands, which makes them sub-optimal for the generaicgpipin area. See
[Hegner, 2000, p. 183] for more information on these prolslem

Further discussions of using natural language processthghe Unix operating
system’s user interface can be found in [Wilensky et al. 4198/anaris et al.,
1994], [Manaris and Pritchard, 1993], [Chin, 1983], [Wi&y et al., 1988] and
[Kevitt, 2000]

The discussion led in the following sections covers leagritreories and instruction
design as discussed in section 3.1.1, including areas fistruction theory.

8.1.1 Approaching tutoring

The basis for tutoring can be found in communication madelghen analyzing tu-
torial support, communication processes and related madelommunicable knowl-
edge have to be observedn this communication process, the computer acts as rep-
resentational medium, the domain acts as subject matteharsludent as a source of

1 [Haake et al., 2004]
2 [Wenger, 1987] pp. 6
3 [Wenger, 1987] pp. 307

8.1. FUNDAMENTALS OF TUTORING 181

variability in the models of experti$eKobsa also states that user models are “a neces-
sary prerequisite for a dialog system to exhibit coopeeatialog behavio?, and even

for non-cooperative dialog systems user models providengitant improvement of
communication and flexibility.

Knowledge communication consists of several componentsi@arels applied in a
number of communication modélsThe following discussion focuses on the model of

intelligent tutorial systems (ITSs) as described in [Fread et al., 2000] and [Schul-
meister, 2007, p. 171].

The four basic components can be identified

e The domain model.
e The teaching model, also called pedagogical or didacticahod
e The user model, also referenced as student model.

e The user interface.

The following sections describe a top-down approach tosvartutoring system that
employs this approach by first analyzing the didactic re#tin of the teaching model,
providing an analysis of the topics to teach for the domaimehathen investigating
tutorial and adaptive help for the student in the user maated, finally by observing
any changes in the user interface of the Virtual Unix Lab tmild assist in that
process.

Implementation of the tutoring architecture describedehand the tutoring design
ourlined in chapter 10 is beyond the scope of this work. Faaunal implementation,
it is expected that an iterative development model simiathe two-step approach
chosen to implement verification of exercise results in tdra can be employed.

8.1.2 The teaching model

The teaching model in tutoring systems describes how tagétperformed, and what
related didactic operations are performed. This sectidlines a number of possible
approaches that can be used, and gives some guidelines oto ldatermine which
approach to choose. This serves as decision base in ch@pter 1

1 [Wenger, 1987] p. 309
2 [Kobsa, 1990] p. 4

3 [Wenger, 1987] pp. 417
4 [Wenger, 1987] pp. 13

182 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

behavioral epistemic individual
target level
T long-term
plan-based diagnostic local monito
/ expectations
T~ DIDACTIC
context—=| opeRrATION (P a”\
i didactic actions
diagnose g
opportunity episode z goals
constraints resources

decision base

didactic domain diagnostic

Figure 8.1: Aspects of a didactic operation. Image souMnger, 1987, p. 397]
8.1.2.1 Teaching and didactic operations

The teaching model in intelligent tutoring systems is alsi@nred to as didactic or
pedagogic model. It focuses on pedagogical activities dhatintended for a direct
effect on students, not only on diagnostic activitiedhere are four characteristic
aspects of a didactic operation: the plan of action thattsreadidactic operation, the
strategic context in which the operation is triggered, teeislon base that provides
constraints and resources for the construction of the tiparand the target level of
the student at which the operation is airagigure 8.1 illustrates the relationship.

Didactic operations influence the plans of actions. Plaist ex all levels, and every
action — however small — can be viewed as a plan. Episodeseasdd to create
diagnostic expectations, and the results of the plan candyétoned. For the moni-
toring, the bandwidth of the communication channel betwiberentity that performs
the monitoring and the monitored entity is of importancekelwise, the fact that un-
certainty is a fundamental fact of all communication shdagédemembered

For the pedagogical context, the assumption is that “iofibm has goals® Activities
can happen either as part of a plan, or on impulse becauseob#dered appropriate
in the given context. This may happen if a situation in whichaativity happens
was not brought up as part of a plan, but if the right final steptill recognized as
appropriate. For plan based contexts and strategies, ttegpgic goals dominate.
Mixed strategies are still possible to follow alternativamats at the same time

The decision base for didactic operations consists of reesuand constraints. Re-

1 [Wenger, 1987] p. 395
2 [Wenger, 1987] p. 396
3 [Wenger, 1987] p. 397
4 [Wenger, 1987] p. 398
5 [Wenger, 1987] pp. 398

8.1. FUNDAMENTALS OF TUTORING 183

sources are required as building material, and constrairgsre didactic effectiveness
and often imply the resolution of conflicts between varioospeting factors that are
affecting decisions. There are three potential sourcestbftesources and constraints:
didactic, domain specific, and diagnostic information. @ltactic base provides ped-
agogical principles and sequencing schemes, e.g. simgleniplex and focused vs.
diversified. Tailored interventions and tailored sequeraxdress specific issues that
are found during didactic processes, and they describevartton strategies for those
processes and situations. For this, they can use a lot afidiiig information if avail-
ablé.

The target level of a didactic operation is defined as thd lefvthe student model at
which an operation seeks immediate modification. Possbkdd are behavioral, epis-
temic or individuat. At the behavioral level, guidance of a task is performedait
addressing any internalized knowledde any direct or organized fashion. Possible
types of behavioristic actions are specific hints, genedalca, error correction by
direct or indirect indication, or suggestions of betteusiohs'. Guidance at the epis-
temic target level explicitly seeks to modify the studekt®wledge state, either via
direct communication or via practice. The latter is inteshtteexposing the student to
specific experiencéssee “situated learning” in section 3.1.4. Actions at thaiviial-
ual target level have positive effects on student learniggéf they perform no direct
form of knowledge communication. Instead, this can be iiddial motivation (e.g. for
despaired students, so further knowledge communicatiposgsible at all), adjusting
of speed, abandoning a topic temporarily, or congratujasitndents on a small suc-
cess. Using individual actions reflects on the student asoavikig, performing and
learning being itself. Such a reflexion may be critical to Wwiele operation of what
teaching strategies to apply. They can only be discoveredhimteractive way, it is
not possible in other “passive” media like books or fifms

Bridging the gap between communicable knowledge and a nodde¢ student is “ex-
tremely difficult and computationally costly.” As a reswdpplied didactic knowledge
is applied in compiled form. This could happen via estalglésburricula, tested lesson
plans, libraries of activities, and presentation techegju

The organization of teaching can happen in either lineanfarhere the network of
a student’s knowledge grows incrementally, or as web ofctopihere the learning
determines the depth rather than the breadth of knowledgboth organizations, a
difference is made between active and passive assistargta daquisition can e.g.
happen by keystroke analysis and other diagnostic metlaodswrong steps can be
determined by applying an existing so-called “theory of$fudrhe interplay of top-

1 [Wenger, 1987] pp. 401-407

2 [Wenger, 1987] pp. 408

3 See “Cognitivism” in section 3.1.1
4 [Wenger, 1987] pp. 408

5 [Wenger, 1987] pp. 410

6 [Wenger, 1987] pp. 411

7 [Wenger, 1987] p. 314

184 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

down expectations and bottom-up reconstruction can be leddeéth diagnostic plan
analyzer$. More details on factual vs. procedural knowledge and thaiomship be-
tween various levels (behavioristic, cognitivistic, coustivistic) of didactic analysis
can be found in chapter 3 and in [Feyrer, 2005].

8.1.2.2 Methods for plan recognition and assistance

After laying out the didactic foundations of teaching and thequirements for plan
recognition, assistance, and diagnosis, this sectiorridbeschow to realize them. It
introduces a number of approaches that can be chosen frartingtwith classical
approaches, going from cognitive and linguistic methodstificial intelligence. This
will be used as base for selecting methods that can be uséeé Mittual Unix Lab,
which is described in the next section, 8.1.2.3.

8.1.2.2.1 Classical approaches

There are several classical approaches for plan recogritid assistance, which are
introduced here.

The overlay model takes a list of domain concepts as inpdtf@ms its user model by
noting to what extent each concept is believed to be knowmégtuderfts. Domain
knowledge is split into independent components, and thginggsystem maps the
knowledge of the student on the predefined components. THelrdefined that way is
a subset of the full model, which provides a simple mechanisdetermine candidate
areas of pedagogical actidn®©ne limitation of the overlay model is that it is restricted
to the knowledge of the domain expert. This can be solvedilbiging several experts
plus a meta-expext Another issues is that interdependencies between singleepts
are not considered, which are important for procedural kedg€. Improvements of
the static overlay model can be made by segmenting taskscempanents as well as
adjusting them to a genetic graph as described in [Weng87,,18. 140]. See section
8.1.4 for a further discussion of the student model.

The differential student model offers a procedural netwaslcontrast to a semantic
network, where major tasks are split into smaller tasks, tasts for possible errors
are included. In contrast to statistical models, procedural networksalao tell what

wrong thinking (“bug”) may cause a problem, due to their deiristic deep-structure

1 [Wenger, 1987] pp. 224-226
2 [Carr and Goldstein, 1977]

3 [Wenger, 1987] p. 199

4 [Wenger, 1987] p. 346

5 [Wenger, 1987] pp. 232

6 [Wenger, 1987] pp. 137

7 [Wenger, 1987] pp. 154

8.1. FUNDAMENTALS OF TUTORING 185

model. Limitations of this model are that help is pre-detesd by the model, and
if a case is not modeled, it can not be trained. Furthermooereasoning can be
givenwhya wrong decision was made at a certain poi problem of this model is
constructing it, as many cases need to be considered — Wergdions “110 observed
bugs for subtraction”, “a test capable of distinguishingoag 1200 compound bugs
with only 12 problems” and a “place-value subtraction witirdowing [...] turns out
to involve as many as 58 subskills.” He also adds that aniegistheory of bugs for
the problem domain will be of valuable help, as it turns the td test design” into a
formal process

The Leeds Modeling System (LMS) is related in that it compatges similar to the
before-mentioned sub-goals. But in contrast to only modetind comparing rules,
it also knows about mal-rules. Those may be generated atitaiia from existing
daté.

The User Modeling Front End (UMFE) is another extension &dberlay model that
assigns a scale to the tagged domain concepts, indicatimgveti known a concept

is, see the “three levels of knowledge” in [Michaud et al.0@p It also assumes
connections between the concepts, and does not treat tltspeindently. Sources
of evidence on which conclusions are drawn include a stgpeotf the user’s initial

understanding, a user’s statements, and inferences drawnlgs. All this is repre-

sented in a framework of the problem space that is split batweimitive operators
and conditionals

8.1.2.2.2 Cognitive approach

The difference between classical and cognitive tutoringreaches is that the former
try to reflect the learner’s internal line of thinking, whillee latter “only” provide a
procedure for building up knowledge

Tutoring and plan recognition with cognitive approachesuases that knowledge is
first acquired declaratively through instruction, and tltemverted and reorganized
into procedures through experience, following Piagetscept of assimilation and
accommodation described in section 3.1.1. In the first stépawvledge compilation,
general pieces of information are “proceduralized” intedfic rules that apply to a
special class of cases. These are collapsed into few rud¢sith used in sequence
to achieve a goal, which in turn is used to compose a singkthdt combines all
their effort$. The representation of cognitive functions is assumed ppéia as set of

1 [Wenger, 1987] pp. 156
2 [Wenger, 1987] p. 165
3 [Wenger, 1987] pp. 194
4 [Wenger, 1987] p. 221
5 [Wenger, 1987] pp. 304
6 [Wenger, 1987] p. 291

186 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

production rules, and no limit on the size of the long-termmmey is assuméd

Comparison with human tutors shows that they never statprib@uctions that have
to be learned in a declarative way explicitly, especiallypesductions are the repre-
sentation of the skills to be learned. Instead, they prosigeoblem solving context
and point out factual problems, without telling how to fix tinei.e. not giving away

procedural knowledge. Those procedural skills should Inepiied by the learner dur-
ing problem solving by properly understanding, integmtiand later recalling and
adapting.

Feedback is considered important in the learning process ttee earlier feedback
happens, the betfer Inmediate feedback is considered useful, but care neelds to
taken in debugging and troubleshooting situations. Tgdsrdone though rules and
mal-rules.

8.1.2.2.3 Linguistic approach

Using a linguistic approach to plan recognition and tutpratlows to separate syn-
tactic, semantic and pragmatic views on a problem. The ehgd is inference of
the pragmatic and semantic view from the corresponding séoand syntactic view,
though . Augmented Transition Networks (ATNs) and Planning ATNs balp to re-
alize this approach, which is comparable to parsing netimgnrotocols like TCP/IP.

In that regard, the same principles like Jon Postel's pgradif “be liberal in what you
accept and conservative in what you efitan be applied to parsing of the various
semiotic layers. Miller, Goldstein and Genesereth alsgsttpthis idea by viewing
plan recognition as instance of a parsing proStétnwhere plan recognition is per-
formed in a “bottom-up” fashion, matching expectationg #ra modeled “top-down.”
Also, software engineering techniques can be applied thgttavdescribe natural lan-
guage problems verbally, and make a transition of the prelslemain from natural
language processing to programmithg

8.1.2.2.4 Arttificial intelligence

1 [Wenger, 1987] p. 291

2 [Wenger, 1987] pp. 291
3 [Heer et al., 2004] p. 468
4 [Wenger, 1987] pp. 296
5 [Wenger, 1987] pp. 228
6 [Morris, 1938]

7 [Wenger, 1987] p. 229

8 [Postel, 1981] p. 13

9 [Wenger, 1987] p. 234
10[Genesereth et al., 1982] pp. 124
11 Iwenger, 1987] p. 235

8.1. FUNDAMENTALS OF TUTORING 187

The idea of using artificial intelligence (Al) and expert &8s in computer added
instruction (CAl) goes back to Carbonell in 197n contrast to the “bottom-up” lin-
guistic approach described in the previous section, thisageh assumes a complete
domain model, in which navigation and searching can be padd. This approach
is related to semantic networks, and addresses the dras/bHzkthey have in the ar-
eas of representation of procedural knowledge by usinglaiioas for feedback and
exercise of debugging and troubleshooting

Assistance is given by recognizing the way that the studesblving a problem, and
comparing it with other possible steps. If the student'saaph differs from a possible
solution, he can be brought back on track. Solutions for ptangnition can be found
with strategies like a width first or depth first search of thendin model, or by using
hill-climing or means-end analysis with the student’s inasi starting poinfs

Historic examples include a framework for integration dklligent tutoring systems
in a gaming simulatichand for simulation educatiénKerner and Freedman describe
a “Content Knowledge Base” that takes a start and end condéas well as a list
of known steps and effects, and then determines the propeticspautomaticall§.
Couch and Gilfix also apply logic programming to plan rectigniand tutoring, and
they use Prolog to describe a system that compares currdritaget state, and that
identifies necessary chandgeSimilar systems that solve problems for the domain of
Unix system management are cfEndimad LCFG(ng). [Narain, 2005] describes
a system that designs a network setup for a given problenrigésn, including all
configuration parameters.

While those systems start to be of use for solving problehes; to not offer a base
for reasoning, and as such are not ripe for use in educatidrtraiming yet. The
time that has passed between Couch and Gilfix’ Prolog-bgseach and Narain’s
implementation show that there’s some more time neededte grature.

Another aspect is complexity of the application domain. yaand Selman, 1992]
describes a very simple block-world that needs eleven.rédasa complex system like
Unix, the effort will be much higher. Furthermore, to implent rollback of actions
like deleting files and terminating processes is considbeed, even if not impossible
through means of speculative executfon

In summary, realizing plan recognition and tutoring via &\konsidered very difficult

1 [Carbonell, 1970]
2 [Wenger, 1987] p. 30
3 [Haberlandt, 1999] pp. 157
4 [Angelides and Paul, 1993]
5 [Taylor and Siemer, 1996]
6 [Kerner and Freedman, 1990]
7 [Alva L. Couch and Gilfix, 1999]
8 [Burgess, 1995]
9 [Anderson and Scobie, 2002]
(]
[

10[su et al., 2007]

188 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

to realizé.

8.1.2.2.5 Semantic networks and ontologies

Semantic networks are directed graphs with nodes that areected by directed rela-
tions. The nodes represent properties, and the relatiditsite a semantic relationship
between the nodés. While the properties and relations can be from a wide fidld, t
primary area of application is in establishing linguistiodels of natural languages.
Associated theories like Schank’s Conceptual Dependeheprly assists in the mod-
eling process for semantic netwotks

Ontologies describe the relations between nodes andaestiThe relation can either
be within a specific domain, forming a domain-specific orggl@mr on a more general
scheme across multiple domains, forming a so-called uppeta)’.

Applications of semantic networks can be found in mind Mé&@End the extension
of the World Wide Web with semantic information into Tim Bers-Lee’s “Semantic
Web™. Many notations are available for describing elements masic networks
and ontologies. Example languages include the Web Ontdlegguage (OWLY,
the Resource Description Framework (RBE)and CycL, the language of the Cyc
knowledge basg.

Semantic networks can be used as model for knowledge repegiem. It is only
a factual, objective model without personal connotatiansvauld be expected from
cogntivive learning theories. Furthermore, the semartiesappropriate as a model
for knowledge, but not to reflect a learning procéss

Semantic networks can be extended from reflecting puredakhowledge into han-
dling procedural knowledge to some extent. The main apidicdies within factual
knowledge, thoughi. Pedagogical actions that can be based upon the knowlepge re
resenation allow reasoning about the student’s knowledgecepts he has already
learned and what facts he missed, and a system can give hinééaded concepts and

1 [Wenger, 1987] p. 18

2 [Quillian, 1967]

3 [Chaffin, 1992]
4[Schank, 1972]

5 [Staab and Studer, 2004]
6 [Gruber, 2008]

7 [Buzan and Buzan, 2006]
8 [Nast, 2006]

9 [Berners-Lee et al., 2001]
101W3C, 20044]

11 [W3C, 2004b]

12 [Lenat and Guha, 1991]
13[Quillian, 1988] p. 80
14Quillian, 1988] p. 81

8.1. FUNDAMENTALS OF TUTORING 189

terms that the student is found not to be fluent with.

Examples of learning environments that use semantic nksaalone or in combina-
tion with other systems include the friendly intelligentdring environment described
in [Jerinic and Devedzic, 2000], the WeKnow project desedlim [Sattari et al., 2007],
and the Electronic Learning Assistant (ELA) described inlpski et al., 2004].

8.1.2.2.6 Frames and scripts

Frames organize and store knowledge in units that represgnsituations or objects.
Frames consist of slots and filters. Slots describe praseind filters describe values
and can link to other framésIf a slot didn't have a specific value, a default value is
assumed. This reflects the separation into general andfispaowledgé. Scripts
describe sequences of events in a particular context, ieide an extension of the
factual knowledge represented in frames for proceduraiviedge .

The application of frames and scripts in education requredl model of the domain

in frames and scripts. Assuming the existance of such a domatlel, frames and
scripts can be used to identify what solution a user persresdiven problem, detect
deviations from common procedures in the user’s actiond,aaswer general ques-
tions about the knowledge domain. The drawback of the madélat the underlying
domain model, i.e. the frames and scripts, are hard to medel, in complex do-
mains and/or for complex tasks. Frame databases like 2@t project® and the
Maryland PARKA project® show the complexity and effort needed for limited areas
of application.

A rare practical example of a project using frames and sciggbcript Applier Mecha-
nism (SAM) project, which allowed to answer questions alf@ivy tales. Their knowl-
edge representation was based on frames, and scripts waiedap a database that
was derived by semantic network techniques in the MARGIEgoith Other projects
use frames and scripts for educational projects in comioimatith other techniques,
like the frame-based interaction and learning model foqubus learning in [Si et al.,
2006].

1 [Minsky, 1975]

2 [Brewer, 2007]

3 [Schank and Abelson, 1975]
4 [Kirsch, 2003] pp. 11

5 [Lenat and Guha, 1990]

6 [Cycorp, 2007]

7 [Evett, 1994]

8 [PLUS, 2007]

9 [Cullingford, 1981]

190 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

8.1.2.2.7 Bayesian networks

Bayesian networks represent a probabilistical model #iaased on an directed acyclic
graph (DAG). In addition, statistical methods exist to midHe inter-dependencies be-
tween the nodes. They can be used to predict and classi§nstats about behaviour
and development within the domain model. A major advantddepesian networks
is that they can create a domain model, or improve an exisliimgain model without
explicit manual effort.

The underlying graph of the network needs to exist or be eteand the probability
of moving from one node to another one can be modeled dyn#imiBased on this
model, statements about certain developments in user inein@an be made based on
previous user interactions that built the domain mode.fidation of the statements is
needed, though.

Some applications of bayesian networks in teaching emgadseir supporting nature
of other teaching models, e.g. when recognizing what kinttafner a certain stu-
dent is: [Garcia et al., 2007] shows that detection is péssfta student’s learning

mode is reflecting or acting, steadily or in fits and starts, iihe learns intuitively or

sensitively. As such, bayesian networks find their appteatvithin a so-called “de-

cision support system” (DSS), e.g. within intelligent ting systems (ITSs). Other
examples include the long-term modeling of a user’s fadtnaivledge in the form of

english capitalization and punctuation in [Mayo and Miip\2001], the web-based
ITS described in [Butz et al., 2006], and [Conati et al., 20®&ich describes how
bayesian networks can help to cope with uncertainty in stua®deling.

In summary, bayesian network can be considered to be rateepporting tool for
other methods than as a standalone teaching rhodel

8.1.2.3 Choosing a method

The previous section outlined various approaches forziegliassistance in tutoring
systems. To determine which approach is best fit, a numbeunestmpns need to be
answered.

The first decision is if a mode based on a psychological agprslaould be chosen over
a learning theory based on pedagogjicEhe system should classify students by their
success or failufe and it should be considered that constructivistic apgreaare

Ben-Gal, 2007]

Ben-Gal, 2007]

Wenger, 1987] p. 305
Wenger, 1987] p. 17, pp. 153

1
2
3
4

8.1. FUNDAMENTALS OF TUTORING 191

considered difficult to realiZeand “extremely difficult and computationally costfy.”
The diagnostic process may require descriptions in donegniic languages, and the
diagnostic process is accounting for the required®data

Section 10.1 describes the selection process for tutonirige Virtual Unix Lab, and
its outcome.

8.1.3 The domain model

The domain model of tutoring system describes the objettiigacommunication is
about. In this regard, a computer acts as the represerdghtioedium, the domain is
the subject matter, and students are a source of varialilitye model of expertise
The domain model contains data about the application domdioth compiled and
articulate formi. Furthermore, with the help of the domain model it is — to sextent
— possible to automatically create exercises for stufients

Compiled knowledge is used for several reasons. First,ritlza used to indicate
specific circumstances, e.g. illustrate a connectiorstilate causal or temporal con-
nections, or to connect specific actions with specific sibmat Second, compiled
knowledge can make working along a certain model or by a pexpproach easier.
Third, compiled knowledge can serve a specific purpose e jgreisent a certain setup
in a specific light, possibly simplifying or omitting factkét are not of importance
to the situation or methods to learn. The advantages of dethgnowledge in this
context is that it is highly efficient and simple to apply

One application of compiled knowledge could be to evaluhtegossible steps for
the domain concept, model the student, offer direct proldeilving with suggestions,
select problems to optimize learning according to its sttideodel, solve examples
step by step for the student to follow and learn when predenith a better solution.

All these points can be used in adaptive interaction, se@set.2.

Besides compilation of knowledge, articulation can imgraekie form of communi-
cation towards a certain goal, e.g. causality, structurectfonality, teleology, con-
straints and definitional semantfics As such, processes can be divided into fine-
grained steps that not only allow to understand the finalltielsut also the order of
events and decisions that lead to those results. Decoriggosén be applied to the
subject matter to split it into various views: a curriculuiew for learnable units and

1 [Schulmeister, 2007] pp. 218

2 [Wenger, 1987] pp. 314

3 [Wenger, 1987] p. 18

4 [Wenger, 1987] p. 309

5 [Wenger, 1987] pp. 325-327

6 [Shah and Kumar, 2002] pp. 170
7 [Wenger, 1987] p. 329

8 [Wenger, 1987] pp. 331

192 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

a diagnostic view for perceptual units. The various partb\aews of the subject mat-
ter are then compiled again to adjust it to the correspontyipg of teaching As an
example, in the Virtual Unix Lab the subject matter could lkeeamposed into vari-
ous check primitives, and an exercise could then be comfiited those checks, see
section 8.1.2.2.1.

After analyzing the data of the problem domain, a possibfdiegtion is to use that
data to automatically create exercises for students. Véhiecises are usually created
manually, the task is challenging, and if the volume of regpliexercises raises in
volume, automation is desiraBleFor simple problems, automatic exercise creation
can be done by finding exercises with structural analogychwvisi difficult for complex
problems as a whole. For them, it would be possible to appgtéthnique to smaller
areas again. An alternative to analogies would be to use idesp&cific operators in
the form of compiled productions. Again, these are founéiadift to communicate
and encode without falling back to using examples

Examples for automated creation of exercises are discus$echer and Steinmetz,
2000, pp. 49] and [Fischer, 2001]. The taxonomy and ontologgd in their exam-
ples are not available for the present domain of system aslrdtion or any of its
parts, though. Furthermore, the approach is good for crgatkercises which check
declarative knowledge of facts, but not so much for procaikmowledge. A transi-
tion from declarative knowledge to procedural knowledgeals® of questionable use.
[Helic et al., 2004] goes one level higher in abstraction padorms automatic course
sequencing based on pre-defined building blocks. This agproan help to integrate
exercises into existing learning management systems (LS)sing interfaces like
the ones described in the “Sharable Content Object Referdioclel” (SCORMY. As
written in section 8.1, this work covers the Virtual Unix Lab explorative learning
system with user adaption, and will not concentrate on lagrmanagement systems
and how to interface with them. The area of how to provide kegither on demand
or automatically — is considered of much importance, thoagld thus covered later
on.

8.1.4 The user model

The model of the user in instructional systems goes back@o Bletche?. It tries to
answer the question of what's going on inside the studerthdmmodel of knowledge
communication, the student is the receiver of informatj@and he has both correct
and incorrect knowledde Representation of knowledge in this model can be done in

1 [Wenger, 1987] pp. 336

2 [Shah and Kumar, 2002] pp. 170
3 [Wenger, 1987] p. 303

4 [ADL Technical Team, 2004]

5 [Fletcher, 1975] pp. 118

6 [Wenger, 1987] pp. 307

7 [Wenger, 1987] pp. 16

8.1. FUNDAMENTALS OF TUTORING 193

several ways. One possible solution is to use primitiveslahguage for the domain
that spans both correct and incorrect knowledge. This caseberibed e.g. within
an expert system or an Al component as described for theitepoodel in section
8.1.2.2.4. Another solution is to use a data or model driy@r@ach with a known set
of errors and misconceptichsA list of possible attributes to store for a user, and a list
of academic and commercial systems that implement userlmgd=n be found in
[Kobsa, 2001a].

When applying a cognitive learning model, there is a diffieeebetween final (abso-
lute) expertise and the expertise as possessed by a stadelved in learning. The
dimensions of variety in knowledge states include scopegriect knowledge, and
viewpointg. [Wenger, 1987] describes how to build a “genetic grapht tlescribes
such a model, and how to determine a finegrained genetic doaghgiven domain
using decomposition of the subject matter and an overlayefiod\s an additional
plus, the learning curve can be determined from a genetjghgaa described in [Chin,
1986, p. 25]. Taking a genetic graph and overlay model as foase tutor, the in-
formation about which deviations to expect in a domain playmaportant role in a
tutor's ability to communicate knowledfje An existing theory of bugs can provide
this information.

8.1.4.1 Theories of bugs

The term “theory of bugs” describes an enumeration of altakiss that a student can
make when learning to become proficient in a specific domédierd are several enu-
merative, reconstructive and generative theories of thafscan be used to determine
mistakes by a studehnt

Enumerative theories of bugs are usually implemented asocate or library of items
that can go wrong, and can be built empirically by observinglesnt errors. Their
representation can exist as a description or rule, whichbeadetected by machine-
executable forms as “mal-rule” or “incorrect plan”, or bytetsing corresponding pat-
terns as described in section 8.1.2.2.3. “Simple” errorsheagrouped into classes or
errors, and extended with descriptions of which generakgiand wrong assumptions
are being made. From these classes of errors, heuristiesrfurdetection can be de-
termined. A problem with enumerative theories of bugs is$ thay are unstructured
and usually extensife

Reconstructive theories of bugs try to overcome the linaitest of enumerative theories
of bugs. Instead of having fixed catalogues of errors, ctasberrors are recognized

1 [Wenger, 1987] p. 45, pp. 205

2 [Wenger, 1987] p. 345

8 [Wenger, 1987] p. 346

4 [Wenger, 1987] p. 347

5 [Wenger, 1987] pp. 347, Figure 16.1
6 [Wenger, 1987] pp. 348

194 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

by general descriptions. They are usually data driven andtoacted in a bottom-up
approach, and use data mining procedures on data fromrexestercises. Description
of error classes can happen in a (domain) specific languagestbpecified on a rather
finegrained base Parallels to the decomposition process as for the domadehio
section 8.1.3 can be found here.

Generative theories of bugs intend to go one step furthenananly recognize classes
of errors, but to also lead them back on what was learned wirottge past, explain

to the student what was done wrong, and what he has to do tou®jm the futuré.

In practice this could be achieved by giving “better” feeclbauring the exercises.
Wenger found that “incorporation of such dynamic geneeathveories into a com-
plete tutoring system has never been trieaVhich hints at the availability of practical
experiences for this area, upon which a real system couldiitte b

When deciding which approach to use for a theory of bugsether several considera-
tions to make. The enumerative approach is easy to reatimedmpirical observations
and it can even cover corner cases that are difficult to caterwise. The downside is
that the amount of cases that can be handled is limited. R&cative theories of bugs
can often be derived from enumerative ones. By reducingdbesfof reconstructive
and generative approaches, more than one assumption cameb®rt an error, and
there will be the problem of choosing which one really is ifeeft. Models and the-
ories from psychology and artificial intelligence can daskere, see the approach of
having several experts plus a meta-expert in classicabappes for plan recognition
and assistance, and overlay architecture in section 8.1.2.

Mislearning and forgetting are two more problems that nedektaddressed. In plan-
ing nets, steps that were learned wrong or that were fongcte only be recognized
to a limited extent. Replacing planing nets through knogkith compiled form helps
here, and there is some belief that theories based on plaeisgand Al are less reli-
able in practice than simply enumerative approathes

8.1.4.2 Viewpoints

Errors and “wrong” knowledge can be viewed from two sides. tnone side they
are the manifestation of wrong actions and beliefs, on theragide they are points
where correct knowledge should be taught and wrongly lebknewledge should be
corrected. Basically, viewpoints allow looking at an isst@n more than one side,
and allow detecting errors and also correct them with “fighowledgé.

1 [Wenger, 1987] p. 349
2 [Wenger, 1987] pp. 349
8 [Wenger, 1987] p. 350
4 [Wenger, 1987] p. 351
5 [Wenger, 1987] p. 353
6 [Wenger, 1987] p. 355

8.1. FUNDAMENTALS OF TUTORING 195

Viewpoints are usually situation-specticTo accommodate them to a problem, in-
structions need to be adapted for multiple approaches datist — problems can be
viewed and solved in multiple ways, solutions can be corgtdiin multiple ways,
and identical decisions can have different sources.

The background for viewpoints is that each person has itgithdal view on the world,
as learning within a domain is tied to background-knowle¢fgalture”). In the con-
text of scientific research, there are also “researchitoendi’” which build a set of
general assumptions about the entities and processes imardof study, and about
the appropriate methods to be used for investigating thblgmes and constructing
the theories in that domain. Wenger recommends that it iiLseview the student
involved in learning as a microcosm of the scientific comrty#ni

Several different viewpoints can exist for a problem, are/tban overlap or contra-
dict each other. It is thus not right or useful to merge therr. fEll comprehension,

a viewpoint must be assumed that covers all the relevanilgletdnich is also why in
practice the sum of all knowledge about a certain topic oraiars called the (sin-
gular!) viewpoint of a persoh Knowledge communication systems used in diagnose
should ideally maintain one viewpoint to an issue, whileafering different alter-
native viewpoints at the same time, which is often difficaltéalize in realit§.

8.1.4.3 Diagnosis

Diagnosis describes the task of providing feedback to thenkr for the activities
engaged during the learning process. It consists of thedestdnferences, interpreta-
tion, and classification. Inference reconstructs intepnatesses either by assembling
primitives from data in a “bottom up” manner, inferring serties from syntaX, or by
testing variations in a model in a “top down” approach. Thsibassumption in both
cases is that the reconstruction is performed in a detestigniay. Interpretation then
places the observations made into context, tries to maksedeom actions via view-
points and goals, and tries to understand the student bleétpeng him, with possible
rationalizations to explain observations. Classificatloen characterizes or evaluates
observations and inferences according to expectétions

In general, diagnosis is performed on communication, aedcttimmunication hap-
pens over a communication channel that has a specific batidwitsually this is a
keyboard, sometimes it is a mouse in addition. Quantitative qualitative analysis
of data is still available for diagnostic purposes even \gitich limited bandwidth.
The design of the diagnostic interface can be critical tosthecess of the diagnos-

1 See Mandl's “situated learning” in section 3.1.4
2 [Wenger, 1987] p. 358

8 [Wenger, 1987] p. 359

4 [Wenger, 1987] p. 359

5 [Morris, 1938]

6 [Wenger, 1987] pp. 368

196 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

tic module. E.g. the impact of granularity of informationrreved for building the

student model is considered as an additional difficulty # gbdagogical challenge.
Ideally, the level of granularity should match the granityalevel of the compiled

model knowledge for optimal operation. One problem to atswsaer is that immedi-
ate steps may have different semantics than the final soluBiay. when configuring
a system, it is only natural for it to be in an inconsistentestaalfways during the
process.

Another problem, esp. for complex domains, is that reagpitgelf can go through
different phases, which makes intermediate steps much diffieult to understand
than the final solution. For the current area of applicatiothe Virtual Unix Lab, this
means that while final exercise results are easy to judgdypbyethe fact that they
are final, in contrast to providing assistance during thease. While a final solution
can be analyzed behaviorally in terms of notions of coresgrin the domain and of
implemented goals, the precise interpretation of inteiatedteps requires a complete
model of reasoning within the domain. Without such a modesé steps cannot be
interpreted as they reflect a process, not a state

There are three levels at which information can be relevamgédagogical purpose and
providing diagnosis. The behavioral level is considered pare product of behavior
without tying to any perceived knowledge state involvedtingeneration. The epis-
temic level also evaluates the knowledge of the studeniidiny factual knowledge
about the domain and strategic knowledge applied to infErenocedures. Everything
else is considered at the individual level. This mostly es\al the items that make
the deterministic deduction of intents and knowledge netedhninistic, e.g. due to as-
pects of the teaching and domain architecture, learningemetereotypes, motivation,
circumstances, and reflexive and reciprocal infents

The following sections describe the levels of diagnosigeghints at where and how
they can be applied in chapter 10, and discusses acquisitidiagnostic data.

8.1.4.3.1 Behavioral diagnosis

Behavioral diagnosis can be applied to get an overview ofthéent’'s knowledge. It
can happen via a number of different activities, an ovenagéwhich is given in figure

8.2. The activities that are of interest in the context of\ireual Unix Lab are recon-

structive post-hoc and on-line interpretation. They baté inferential reconstruction
via reconstructive interpretation to draw inferences altbe present situation from
events from past everits

In the case of post-hoc reconstruction, only the final resyRituation is analyzed and

1 [Wenger, 1987] p. 367-390
2 [Wenger, 1987] pp. 368-369
3 [Wenger, 1987] pp. 371

8.1. FUNDAMENTALS OF TUTORING 197

behavioral diagnosis

non-inferential inferential
classification classification

evaluation characterization

reconstructive additional
SOPHIE-I MYCROFT interpretation data points
EXCHECK TALUS / / \
é?JIIEDON post hoc on-line procedural nonprocedural
WEST data}—drivermodlel—driven
PROUST IMAGE ACM's DEBUGGY ADVISOR
ADVISOR FLOW path finder LMS PROUST
WEST IMAGE
ODYSSEUS

Figure 8.2: Taxonomy of behavioral diagnostic processesagk source: [Wenger,
1987, p. 372]

inferences are drawn on how they could have happened. InitheaMUnix Lab this
is realized via check scripts as described in chapter 6. if@gneiagnosis can collect
diagnostic data during the exercise, and draws similarémfees.

8.1.4.3.2 Epistemic diagnosis

Cognitive psychology offers theories of human knowledgena®duced in section

3.1.1. Epistemology describes the “theory of knowledgat tovers the philosophical
analysis of human knowled§eA connection between these areas was descrihed
and epistemic diagnosis helps to identify areas whereitigds needed.

Epistemic diagnosis happens in three phases. First, dissiggnment of credit and
blame determines which elements of knowledge are of irtteMNsxt, structural con-
sistency describes the impact of the affected elementsmfletge on the overall state
of knowledge, and last, longitudinal consistency updatesstudent (user) model due
to newly learned knowledgeThe following sections provides more details.

8.1.4.3.2.1 Direct assignment of credit and blame

1 [Wenger, 1987] pp. 373
2 [Corlett, 1991b] p. 285

3 [Corlett, 1991b] pp. 285
4 [Corlett, 1991a] pp. 327
5 [Wenger, 1987] pp. 376

198 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

The purpose of direct assignment of credit and blame’s &sikafold. For one, it rec-
ognizes both correct and wrong knowledge that was usedpg applying a modeling
language. It then compares this against a differentialxpedel to determine which
relevant knowledge was left out and was not applied

Extraction of epistemic information from the student’s &eior can be split into three
categories: activities that can be recognized via modeirtga reconstruction of ma-

terial that can not be observed directly, and applying issaseparate the recognition
process from modeling the student behavior. Each of theges dtas at least three
dimensions: The level of articulation, the degree up to Whikisting knowledge can

be recognized and reproduced, and the amount of inform#tadris required for the

diagnosis.

Model tracing takes the knowledge recognized, and compagsinst the compiled
knowledge available. Compiled knowledge merges many ssteghls into larger steps
without describing in detail which exact steps need to bertaknd is thus very close
to the detectable knowledge. As a result, “model tracingddtually on the border
between behavioral and epistemic diagnosis, as it assigdg end blame for internal
pieces of knowledge on the one side, but also verifies behavid knowledge via
wrong or missing rules on the other sidérhe automated testing via rules and mal-
rules in model tracing is similar to the list of possible apssvn frame-based systems,
where decisions lead to forks in the teaching path. The itapodifference is that in
model tracing, the results are used to update the whole rstunedel, and can thus
have an influence on any further teaching activities. Of seuthis depends on how
much the student model impacts the pedagogic decisions

While model tracing draws inference from directly measlealttivities, the goal of
reconstruction is to derive beliefs from data that is noeclily measurable. This is
considered non-trivial in general, and the analysis of ttistiag exercises in the Vir-
tual Unix Lab confirm that this is complex. As a result, thigpagach is not pursued
further here. More information is available in [Wenger, I98p. 379].

Issues are curriculum elements whose participation insitets can be recognized
and discussed without being modeled explicitly. They caaryghing of pedagogical
interest to the system, even a misconception. They are naxtthji tied to behavior,
and any number of them can be independently recognized ash@articipated or not
participated in a decision. As issues are not explicitly eled, it is difficult to include
them into the diagnostic process, though. A possible swius to have a separate
“expert-module” that knows about relevant issues and Brihgm up at the right time.
For example, when a student just reboots the system aftagoigconfiguration of
a service instead of manually restarting the service, asistildent why he did it that
way — maybe he does not know how to restart a service manudiglizing such an

1 [Wenger, 1987] pp. 376
2 [Wenger, 1987] pp. 378
3 [Wenger, 1987] pp. 378
4 [Wenger, 1987] pp. 379

8.1. FUNDAMENTALS OF TUTORING 199

expert-model is non-trivial and not considered furtherehenore information on the
topic is available in [Wenger, 1987, pp. 381].

A hybrid approach of using model tracing, reconstructiod esues together is pos-
sible, as each of them has a different focus, either epistembehavioral. With this
approach, it is possible to trace the student’s actionsawbitonstructing intermediate
steps to infer his plafs

8.1.4.3.2.2 Structural consistency

Additional constraints provided by the structure of knatge states can increase the
influence of direct assignment of credit and blame, e.g.etation between the likeli-
hoods of various pieces of knowledge being mastered as simogacttion 7.2.4. The
advantage of those networks is that they can be designee iabtbence of epistemo-
logical structure and of a model of conceptual interactioes without an analysis of
a domain’s compiled knowledge

That way, it is not only easy to tell what was learned so fanahdt was not, but also
defining what the student is about to learn next. This can e dy looking at the
concepts he starts to use, but has not mastered yet. A discudshis concept can be
found in [Michaud et al., 2000].

8.1.4.3.2.3 Longitudinal consistency

Collecting state in an ongoing exercise faces two conttiagicequirements: on one
side it has to be sensitive enough to adapt the tutor’s détitiithout delay, but on the
other side it also has to be stable enough not to be easilyrbet by local variations
in performance.

Longitudinal consistency indents to balance this requinetmlt is often derived em-
pirically, and implemented via scalar attributes such americal weights. The at-
tributes are associated with individual elements of thenkadge state in the context
of an overlay, and they are updated by statistical or psetatistical computations as
knowledge manifests itself in behaviorAs an alternative, Bayesian networks can be
used for the implementation as described in [Mayo and Mit;c?001].

An application of longitudinal consistency is to adjustdback, see section 8.1.4.4.

1 [Wenger, 1987] p. 381
2 [Wenger, 1987] pp. 381
3 [Wenger, 1987] pp. 383

200 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

8.1.4.3.3 Diagnostic data

Diagnostic data is the source upon which didactic analgseiformed, and thus the
source of all evidence. It can be collected either passiaetyvely or interactively. In
contrast to passive actions, active diagnosis allows tetesyto test its hypotheses.
Extending the dialog between the user and the system, aadtites diagnosis invites
the student to report on his decisions and his knowlédge

Active diagnosis can be used to request more data that isreedfor discriminating
between the competing models that the system inferred froprésent data. Difficul-
ties are confidence about what data to acquire, availabilityethods for acquiring the
exact data required (i.e. if there’s an exact exercisettamican determine the missing
data) and not to speak of how to fit it into the exercise withdisturbing continuity,
or if it fits at all.

Dynamically created exercises help here. When adding iaddlt exercises, care
should be taken that a maximum of information is retrievedttimm, to minimize
the number of extra exercises neetled

Interactive diagnosis can be used to justify predictiondypotheses in the context
of specific cases (“Why you think that this command ...”) dtiag questions about
students’ beliefs. The challenges here are to incorpdnatmteraction seamlessly into
the exercise, and to also “understand” the reasoning dortkebgtudent, esp. when
using natural language. A domain-specific alternative toguisatural language would
be to use menus or graphics.

Even in interactive systems, some inference should happen.obvious or simple
cases it is better to use inference than to disturb the stusi¢m trivial questions.
Furthermore, the student may be unlikely to describe hiasdommpletely, and thus
additional inference would be needed — to ask intelligemstjons, there’s a need to
“understand” what the student is doing anywhys

Still, an interactive approach to confirm diagnosis is attva for two reasons. First,
because it involves the user early in the process, and sebewmduse it keeps the
dialog at the level of beliefs, where misconceptions areeetqal to occur, and hiding
the actual diagnostic process from the user. Once a misptionehas been detected
and confirmed, an alternative most closely in line with theleht’s own plan can be
offered.

In diagnosis, comparisons with human teachers are usuatlyery illuminating, be-
cause classroom teaching is very different from the typeutsfring performed by

1 [Wenger, 1987] p. 390
2 [Wenger, 1987] p. 390
3 [Wenger, 1987] p. 392
4 [Wenger, 1987] p. 236

8.1. FUNDAMENTALS OF TUTORING 201

computer systems, and because human private tutors andttiénts share extensive
conversational capabilities and common backgrounds teat@mpletely inaccessible
to current computets

8.1.4.4 Feedback

In the diagnostic process, feedback serves two purposedgoiims the student about
the state and progress of his own knowledge, and it helpsyttera to verify if its
own didactic measures were appropriate

The foundations of the “feedback loop” to update the studesér) model are laid
out in section 8.1.4.3.2, more information is availableeiner and Freedman, 1990,
p. 895]. See also section 3.1.2 for the meaning of feedbadikervarious learning
theories.

Giving feedback to the student leads to an improved locuswofrof and is expected
to increase his motivation. There are different times atcWlieedback can be given
to the student. Either immedidtdate® or post-exercise as implemented in chapter 6.
Furthermore, feedback can be provided by the system on iisavwon demand by the
student, where detailed feedback is only given when theesitasks for f7. Longitu-
dinal adaption to the learner can be done to give ideal, blyssamediate, feedback to
the student, while preventing him from doing the work by igpd requests for help,
i.e. what is called “gaming the systefh?

Verifying the impact of didactic operations allows deteming what the student has
already learned, what he has not learned yet, and what heis eblearn — [Michaud
et al., 2000] describes a “zone of proximal development’[XEhat highlights the
latter. To implement this, some domain specific heuristiesagain needed.

To realize a system that pays attention to zones of proximeatldpment, not all in-
formation that is available should be fed to the user imntetliato not confuse or
overburden him. A possible method of filtering such mességestlined in [Hylton
et al., 2005]. If filtering of information is not sufficientileer techniques like changing
the viewpoint of the system may help, as outlined in [Diétrit al., 1993].

Last, when giving elaborated feedbatkhints should be given in great detail, e.g.

1 [Wenger, 1987] p. 394

2 [Heer et al., 2004] pp. 463

3 [Corbett and Anderson, 2001] pp. 245
4 [Corbett and Anderson, 2001] pp. 245
5 [Nathan, 1990] pp. 407

6 [Shah and Kumar, 2002] p. 171

7 [Corbett and Anderson, 2001] pp. 245
8 [Baker et al., 2004] pp. 383

9 [Nathan, 1990] pp. 407

10 See “elaboration” in section 3.1.4

202 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

what scenario and approach are appropriate, which comneandid help, and which
commands would be good for troubleshooting. See sectiaB 0B more details on
what students considered helpful during the course of eesdn the Virtual Unix
Lab.

8.1.5 The user interface

While the pedagogical, domain and student model providbaise for didactic actions
and interactions, the user interface is what separates fiteemthe user. It processes
data flowing between the user and the system in both dires;tiomd in the process
of doing so translates between the system’s internal reptaon and some language
that the user understands. The user interface componeks wimsely with the other
components, but as the design for it is still influenced byralmer of unique decisions,
it is considered as a separate compohent

The practical impact of the user interface on the succedseo$ystem of knowledge
communication has two reasons. First, it is what the us@sfaad interacts with, and
the external presentation of internal material what makesstudent learn in the end.
Quialities like ease of use, attractiveness, usability,ramdmizing the load on work-
ing memory can be essential for the acceptance of the sys®etond, the constant
progress in media technology keeps on providing new toaisrttay be fit better for
the task of knowledge communication than their predecesaod they can thus have
an impact on the design of the entire systém

Beyond giving status reports for the user, an important tdske user interface is
to provide on-line analysis of the ongoing activities of th&er, and communicate
feedback. The system can provide more interactivity that, Wat the user interface
has to support this style of interaction to e.g. prevent digaiie dangerous situations.
A possible implementation for the Virtual Unix Lab would tecg to extend the check-
based testing done on the pragmatical layer realized inteh&pto testing on the
syntactical or semantical layers. See the discussion dinendiagnosis in section
8.1.4.3.1, and section 10.3 for further thoughts.

An advanced requirement of the user interface is that it lshewpport splitting a full
exercise into several smaller parts which may be preseefetately, and where each
part is only displayed when the preceding part is solved gnigh Care should be
taken to not limit the explorative character of the exersiggtem by halting the flow
of the exercise, though. For the Virtual Unix Lab, it would foessible to display the
full exercise text, but to also have a separate tutorial @mapt that interacts with

1 [Wenger, 1987] pp. 21

2 [Shneiderman, 2004] pp. 451

3 [Wenger, 1987] pp. 21, pp. 298, pp. 314

4 [Shneiderman, 2004] pp. 173

5 Compare this to the book suggested by Thorndike and Gatestinis8.1.3

8.2. FUNDAMENTALS OF USER ADAPTION 203

the user on a per-task base, recognizing which task of theisgehe user currently
works on, and providing assistance on that task. This asgistcan be offered ei-
ther in cooperative (on-demand) or an automated fashioa.cBapter 10 for further
discussion.

Finally, communication between the user and the system agpdn in many types of
interactiort'2. Natural language seems obvious, to have the system tatki(ader-
stand!) the language of the user, not vice versa. As usingaldanguage in dialog
with a machine may impact user acceptance, placing the niggface in the domain
of contemporary graphical user interface design seems appealing, esp. when
considering the experiences made by others in that arelag aliscussion about using
natural language processing in section 8.1 shows.

Guidelines for the implementation of user interfaces carfdomd in parts 10, 11,
and 12 of [ISO 9241, 2003], theoretical foundations can lbmdon [Nielsen, 2001],

[Shneiderman, 2004], and [Norman, 2002]. A number of tootsevaluating the us-
ability of a user interface and to improve it in a latter implentation steps, tools like
the ISONORM 9241/10 questionnairand the IsoMetrics Usability Inventdigan be

used.

8.2 Fundamentals of user adaption

In order to use a technical system, a user needs to have anewef what information
exists in general, which information is available in thetegs, and how to find it. This
requests a lot of effort from the user, and an alternativéhfesystem is to help the user
in an active wa¥. [Johansson, 2002, p. 2] cites Fischer for stating that ¢tradlenge
in an information-rich world is not only to make informati@vailable to people at
any time, at any place, and in any form, but specifically to theyright thing at the
right time in the right way.” For complex applications, atance can be provided in
several ways: unused functionality should not get in the wiysed functionality;
unknown existing functionality should be made accessibléetivered at times when
it is needed; and commonly used functionality should not iffecdlt to be learned,
used and remembered

There is an important difference between an assistant antba While the former
helps the user to complete a task by possibly performingas@utomatically, a tutor
helps in learning how to use the system itself, and will negrapt to do the actual
work for the user. A tutor still has to make the right inforimatavailable at the right

1 [Bruns and Gajewski, 2002] pp. 48
2 [Shneiderman, 2004] pp. 71

8 [Prumper and Antft, 2006]

4 [Gediga et al., 1999]

5 [Kobsa, 1990] pp. 1

6 [Johansson, 2002] p. 3

204 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

Static Ul —= Flexible Ul—= Adaptive UI—\

Help System——————= Intelligent Help System—= Intelligent Interfac

Computer Based Teaching——= IT—S—/

Figure 8.3: Terms: Adaptive User Interfaces and Intelligaterfaces. Image source:
[Dietrich et al., 1993, p. 14, Figure 1]

time. Adaption may be needed in the learning environmengaxedcises that the user
should perform.

The overall benefits that are expected from user adaptionléaming system are
increased effectiveness, efficiency and acceptabhility order to offer support in the
system, it has to collect data about the user’'s goals, plaelgfs, knowledge and
assumptions. Those build the user model. By analyzing ttoeniration that the user
requested, his plans and goals can be learned, and mommatfon can be provided to
him. By taking into account what a user knows or doesn’t knowa specific situation
can prevent the teaching process from becoming boring anguisbko much of the user.
Furthermore, wrong assumptions can be recognized and coivated. Depending
on the system and the specific learning context, specificuttedasumptions can be
madé, see the discussion of “stereotypes” in section 8.2.3 .

Figure 8.3 lists the various components that are considesdxbing part of a “intelli-
gent interface”, and their relationship. In order to prevaptimal help for the learner,
an adaptive user interface, an intelligent help system,taecomponents of an in-
telligent tutoring as discussed in section 8.1 are consitl@orthwhile to achieve.
Components that are of interest for adaption also includéesxd-sensitive help, adap-
tive hypertext, assistance in navigation, as well as a pateed news filter in the user
interface. Of these components, the first three are of istéoe the Virtual Unix Lab,
and also under the aspects of a learning environment andlfisiistem.

A comment should be made about the term “adaption” here. eTaer a number of
related terms in that area, e.g. personalization, adagtallbption and adaptible sys-
tems. “Personalization” is used here to describe actibiy is initiated and controlled

by the usef. It requires a system that can be changed by the user, whicllexl
“adapable”® “Adaption” means a change in the system that is initiated by the system

1 [Johansson, 2002] p. 4

2 [Kobsa, 1990] pp. 243

3 [Kobsa, 1990] p. 5

4 [Dietrich et al., 1993] p. 17
5 [Fischer, 1993] pp. 55

8.2. FUNDAMENTALS OF USER ADAPTION 205

itself to react to activities of the uderSuch a system is called “adag”? The change
may be verified with the user, i.e. be “user-controlled”, baed not be. Giving the
user final control e.g. by offering adjustable preferencadpsincreasing the user’s
motivation via increased locus of conttdl [Fischer, 1993, pp. 55] continues this
discussion about why design environments should be adsgtist adaptable.

The system discussed here is intended to offer adaptioretogér by being adaptive.
The following topics will not be discussed here to down nartbe focus; references
to literature are given here for further information:

Shared decision makingmeans both the system and the user perform adaption. This
topic is not considered here in order to prevent the user filmaction from
learning and the goal of the exercises. The topic is furtbgeed in [Fischer,
1993, pp. 58].

Support for a specific application: The student should learn how to use an existing
system. Use of the system itself should not be changed fardée in general.
Instead, adaption should happen in the curriculum, exescsd by adjusting
the information given to the student. [Johansson, 2002héurcovers this topic.

Group teaching in user adaption is similar to group teaching in tutoring isswuksed
in section 8.1. While learning in groups, including adapiid the exercise to the
whole group, is not discussed here, using personalizationdiividual members
of the group is considered on-topic for two reasons. Firss, @xpected to have
a very disproportional ratio between students and tea¢hehg classroom sit-
uation that's being assisted here. As such, the teacherffariitile or no time
to take individual students into account. Having a traingygtem that offers
user adaption can assist students where a teacher carmaf,tke groups grow
largeP. Second, large groups of students show a variety in backgr&oowl-
edge and motivation. Offering classroom teaching thauites$ the full range
is not always possible, and again a training system thatsofféaption to single
users can help in this situation. In sum, an adaptive tujosiystem can help
students in learning, assuming that its role is clear asiassie.

See section 8.1.4 for a discussion of the student model shiagéing used to
perform adaption upon.

Elderly people and people with disabilities may need specially tailored information,
contents and possibly modes of display. Areas where thishaag an impact

1 [Dietrich et al., 1993] p. 17

2 [Fischer, 1993] pp. 55

3 [Corbett and Anderson, 2001] pp. 2001

4 [Schulmeister, 2007] pp. 146

5 Personal experience shows that tutoring a group of aboutd®sts is the maximum where you can
take care of every student’s individual needs. This was ooefi in the Fall term 2005 at Stevens
Institute of Technology in Hoboken, NJ, USA. Student groapthe University of Applied Sciences,
Regensburg, Germany, are usually between thirty and fifgyestis, making considerations of single
students in tutoring next to impossible.

206 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

are operation of the computer’s user interface hardwacegrgtion of the navi-

gation elements and contents as well as visual impactsdgkees in color recog-
nition. Measures may require the use of large user interééements or non-
visual methods, e.g. reading what is written on the screervisually impaired

user.

While this goal is considered worthwhile in general, it ig imothe focus of this
work. At the same time, care is being taken that the work desdrhere will
pose no further restrictions on people with the named issdese information
on this topic can be found in [Kobsa, 1999].

Privacy: Methods are available to recognize, mitigate and/or prea€tivities in sys-

tems that may lead to deprivation of privacy. While they areally found in the
area of databases or general applications that handlerzecatd, they could
be considered for exercise systems like the Virtual Unix aabvell.

Influencing factors are users’ concerns of privacy as weksting privacy
legislation. Users’ own preferences on their privacy catubed on a per appli-
cation base; getting those preferences into accordanbeprtitacy legislation
require customized solutions, as they are too differertt,ranframeworks exist
that supply solutions that cover both areaShe fact that privacy laws differ
widely between various countries does not make things easeen planing a
system, including tutoring systems, that will be deployedeéveral countries,
this needs to be taken into account upfront to avoid unplgasaprises latér
The impact of different countries’ laws can start with diéfat restrictions on the
trans-border flow of personal data, which needs to be coreider Internet-
based systems common today

Privacy considerations should be considered when userislatequired and
stored over long terms. For short term learning goals likexercise systems,
this should not be a problem in genéraind it is thus not considered further
here.

More information on privacy can be found in [Kobsa, 2002]pf§a and Schreck,
2003, pp. 149], [Teltzrow and Kobsa, 2004a], and [Teltzrow Kobsa, 2004b].
Collaboration in groups was explicitly excluded here, yétary is of concern
there too, see [Patil and Kobsa, 2005, pp. 329].

Separation of responsibilities: Responsibilities in a learning environment may in-

clude contents and curriculum, realization, interfaces iategration. In larger
systems where credibility, accountability and accreititaaire of importance it
may be required to implement this, to prevent e.g. exam rftem being able
to look at students’ grades or keep interface designers freimg able to see
details of tests that should be kept confidential.

1 [Kobsa, 1990] p. 12
2 [Kobsa, 2001b] pp. 1

°
‘[
°

Kobsa, 2002] pp. 1
Kobsa, 2002] p. 69
Kobsa, 1990] pp. 13

8.2. FUNDAMENTALS OF USER ADAPTION 207

The solution to this problem is not only of technical naturighwespect to
database schemes and authorization, but correspondiatlylégnding non-
disclosure agreements should be signed to help in this ggocEhis topic is not
followed further here, more information is available in [gan et al., 2003, pp.
210] and in the literature on privacy, see above.

The following sections first talk about the meaning of “cotitén exercise systems.
As main source of information for the user model, it definestibse of user adaption.
Adaptive services and multiple agents are discussed rakiwed by techniques for
modeling the system which leads to a definition of adaptiwsax

8.2.1 The meaning of context

In learning systems, “context” means situative informati¢-ollowing Conland and
Power, it is “any information that can be used to characgdtie situation of an entity.
An entity is a person, place or object that is consideredvaeleto the interaction
between a user and an application, including the user anitappn themselves”
They describe the following types of contekts

Computing context: network connectivity and bandwidth, hardware ressouri&es |
I/0 devices (mouse, keyboard, display, ...)

User context: user’s profile, location, nearby people, and current saifiaation

Physical context: lighting, noise level, traffic conditions, temperature

When focusing on computer based training systems, the atediénvironment and the
tasks given fit between the computing context (for the systsetff) and the training
system and its tasks (for the user context). The task of aptidautoring system is
to analyze the given context for the user, and offer appadptiitoring.

To avoid that the user feels helpless with the tutoring systeaking changes behind
his back, the decisions should be communicated and posibfjrmed by personal-
ization of the usér, see the discussion about locus of control in section 8.2al@md
in section 8.1.4.4.

1 The approach of signing Non-Disclosure Agreements is ctlyrgmacticed by the BSD Certifi-
cation Group to prevent question writers and system deeetoffom disclosing information that
lead to unfair advantage of third parties during later Gedfion exams. Seéttp://www.
BSDcertification.org/ for more information.

2 [Conlan et al., 2003] p. 207

3 [Conlan et al., 2003] pp. 208

4[Conlan et al., 2003] p. 208

5 [Conlan et al., 2003] p. 208

208 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

8.2.2 Adaptive services and multiple agents

Adaption can affect communication and functionality of tharning system. In the

former case, only communication between the system anduberst is affected, and

the tasks for the student remain the same. In the latter tas¢asks that the student
has to absolve are adjusted to his performindée adaption of interaction can be
realized via adaptive services and multiple agents, bygusomponents that know

details about the user model and context of the currenttiinfa

Adaptable services and components should be composed inthatanodels the flow

of control and information between elemental services, @sd reflect underlying
business process modeling. Realizing a model of adaptabl&ss requires a flow of
information between the various componénta any case, components can either act
proactive or reactive; it would be attivehandling of an adaptive system, though, not
a passive one of an adaptable system

When multiple sources of data are used to establish the usgeliseparate software
agents can be used to acquire specific data, act as tutor othe itase of collabo-
rating groups which is not covered here — as virtual team neeghbAgents have to
understand the task domain, a possible team structuresidiecnaking processes and
information about the user model of participating learserSynthetisizing data from
multiple sources may need classification and filtering. Mofermation on the topic
of agents in intelligent training systems can be found im[&i al., 2000].

8.2.3 Modeling techniques

Originally, constructors of learning systems wanted tdamei human interaction with

computers to reduce cognitive load on the learner. Expegibas shown that this was
not successful for a variety of reasons. Since then, it has lestablished that the
differences in interaction between humans and machinebearsed to retrieve data
that can also be used in building the user's model and foracsaptiof.

Users with different background knowledge do exist, andralmer of modeling tech-
nigues can be applied to determine in which group a certanfafis. The techniques
introduced here are application of stereotypes, clugieend plan recognition.

Stereotypes are used to recognize patterns of behaviorsgfraBased on the assump-
tion that they were recognized properly, further implioas can be made about the

1 [Dietrich et al., 1993] pp. 17
2[Conlan et al., 2003] p. 208

3 [Conlan et al., 2003] pp. 208
4[Conlan et al., 2003] p. 209

5 [Kobsa, 2001a] pp. 57

6 [Johansson, 2002] p. 7

8.2. FUNDAMENTALS OF USER ADAPTION 209

user, including his knowledge, plans, and behaviBuilding and recognizing stereo-
types is only possible with some uncertainty. Assumptioesweade based on the little
data available from users’ interaction, and which may nadequate in generai-

Clustering is another approach. It does not try to categdtie user as a whole, but
only build the user-model for specific areas called “clusteiThe assumption then
is that the user will perform according to those areas. Famgte, when using a
content-based approach for clustering, a user may haveradsine area, but he may
still be a beginner in another area. In a “clique based” aggpactions of a user
are not observed separately, but in the context of a grougefuwvith a similar goal
in mind, as is e.g. the case for users in the Virtual Unix La® the discussion on
structural consistency in section 8.1.4.3.2.2. Clustgattows for more fine-grained
classification here than use of stereotypes

When exercising plan recognition based on a user’s histdanteraction with a system

followed by analysis and inference on a user, his knowlegigns and actions, it

allows making statements with more certainty than whengustereotypes. While this

is desirable, it also requires a lot more data to be obtaindde first place. There'’s

still some remaining uncertainty, but less than when ustegestypes or clustered
approaches, as more data is used, and inferences are drammatiar areas based on
that dat&”.

Using stereotypes and clustering require data from egstgers. When those are not
available, they can be initialized with values that stermfrexperience with the ex-
pected user base. An established method for charactetigiial user scenarios can
be found in Cooper’s “personas”. In a user-centered desligy, describes prototyp-
ical users, their expectations, wishes, knowledge and gds@meters as determined
by interview$. While personas are were originally used in software ergging, they
can also be used on the smaller scale of initializing useratshd

Recognition of goals and plans can be achieved through plapasition, which enu-
merates all possible user actions and their results, theows down the number of
possible plans until one or few are identified with sufficieobhfidence; see the use of
artificial intelligence for plan recognition in section 2.4 and [Kobsa, 1993, p. 6].
Tools that can help in the process of plan recognition aradibes of plans and com-
mon mistakes. The former provides a list of likely goals wadsociated actions for
recognition, the latter provides domain-specific lists ddtakes that can be expected

1 [Kobsa, 1995] pp. 2

2 [Kobsa, 1990] p. 7

3 [Johansson, 2002] pp. 8
4[Rich, 1979]

5 [Johansson, 2002] p. 9
6 [Kobsa, 1995] pp. 2

7 [Johansson, 2002] pp. 7
8 [Cooper, 2004] pp. 123
9 [Pruitt and Grudin, 2003]
! [Kobsa, 1993] p. 6

210 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

see the discussion about theories of bugs in section 8.14h<ernative to giving
the user full freedom of learning as suggested in constigtit learning theoriesis
to specify the task for the learner and guide him in that tasks is e.g. used in the
Virtual Unix Lab, and contrasts the “general” help systefmet wwere built to guess
user plans like the Unix Consg/tOSCON, and GOETHE.

In sum, stereotypes can be used to determine both user mudialyatem behavior,
with clustering as possible refinement step. Applicatioplaf recognition and their
associated libraries will need further research. Morermfation on how to apply these
theories to user adaption in the Virtual Unix Lab are listedhapter 11.

8.2.4 Adaptive axes

Adaptive axes describe the scales and units upon whichiadagn be based. One
or more of them can be used to determine how a system shouldtddjthe learner.

The number depends on the exact area of application, theingaenvironment and

the amount of data available in the user mode. The scalescraaic values that are
either visible or invisible to the student.

Visible attributes could be on a physical level that defifesdignals and signs that
are used in the combination in communication with the usem example is the link
annotation described in [Specht and Kobsa, 1999].

Invisible attributes cover the learning system’s intellogic and can affect attributes
like freshness, progressive assistance, method and nmitgshaift, level of discourse,
backtracking and graceful faillreFurther examples of levels for adjusting on the tax-
onomy of adaptive user interfaces include the learnerislgkil, the specific area of
the domain that he’s currently practicing, and interactityte. The latter can include
using query and answer, menu selection and command largaageell as reactive
error correction versus active héfp

2 See section 3.1.1

3 [Wilensky et al., 1988] pp. 35
4 [Kevitt, 2000] pp. 89

5 [Heyer et al., 1990] pp. 361
6 [Heer et al., 2004] pp. 463

7 [Dietrich et al., 1993] p. 19

8 [Fowler et al., 1987] pp. 345

Chapter 9

Design of tutoring and user adaption

The previous chapters from the first main part of this workehiad out the founda-

tions for verification of exercise results in the Virtual Mriab. With the discoveries

of the evaluation that more help is desired by studentsngdeiktended help to user
by means of tutorial and user adaptive components is apipedaa this second main
part of this work.

This chapter outlines the design of the tutorial and useptadacomponents for the
Virtual Unix Lab. Topics covered include the goals of thosenponents, the method-
ology used to create them, an overview of the domain model,aanoutline of the
software architecture.

9.1 Goals of tutoring and user adaption

After setting up a basic training system, more assistandessed to support students
during their exercises. While a human teacher can look deeshhoulder of a student
during an in-class exercise, this is not so easy for a computkee goal here is to
imitate a teacher by using a tutorial component, and adaptlite specific user using
an adaptive componéhnt

Currently, the results of an exercise are only verified ateth@, establishing success
or failure of single parts of the exercise. While this helpdétermine what went right

and what went wrong, it does not telhythings went wrong (if so). A more detailed
analysis is needed here. Figure 9.1 illustrates the cuemreditdesired situation in a

different area of application where not only the final re&ilbf interest, but also the

events that lead to it, to possibly improve the final result.

1 [Wilensky et al., 1988] p. 36

211

212 CHAPTER 9. DESIGN OF TUTORING AND USER ADAPTION

a) Verification after the exercise b) Verification during thercise

Figure 9.1: System administration is like hitting a naillwda hammer. Sometimes.
Image sources: [Bent Nail, 2007], [Morell, 2004]

9.2 Methodology of tutoring and user adaption

An architecture for tutorial and user adaptive componemtstfe Virtual Unix Lab is
described in chapters 10 and 11. The methodology used isl loastne theories and
the models for domain, teaching, users and the user inerfdescribed in section
8.1 and section 8.2. Utilizing the foundations laid for verification via domain
specific languages in chapter 6, the architecture of the tbmaponents are described.
For each component the domain, teaching and user model basneinsiderations for
the user interface are discussed.

The approach reflects the iterative design that was usedliaeeserification of exer-
cise results in chapter 6. This includes repeated stepsatfaion and improvements,
and is recommended in [Manaris et al., 1994, pp. 34].

9.3 The domain model

The domain model describes the topics that the tutoringgesys intended to teach. It
is established by two steps. First, the items of interestérspecific part of the domain
are determined by decomposition of the exercise compondiis is followed by a
discussion on how to obtain a theory of bugs for this area.

9.3. THE DOMAIN MODEL 213

Master Client Transfer
main Initializ r Set. |nitiali i r Adjust
Set domain Initial eN(I:Serfa]geps donety Initialize nsswitch a((::c%autr?t permlISSIOhS

’ Commands & Files ‘

Figure 9.2: Goals and sub-goals of the Network Informatipst&n (NIS)

9.3.1 Content decomposition

The domain model that is used for tutoring and adaption intheal Unix Lab is not
explicity modeled by rules, but realized by lab exercisechiaes which reflect the
domain in real.

The domain model is thus modeled implicitly. The studentijgo®rted in understand-
ing the domain by the exercises about the Network File Sygr$) and the Network
Information System (NIS) that are available in the VirtuadixJLab, the lecture notes,
and other material that is available as discussed in se8tihd. A more fine-grained
analysis of the target domain is discussed in section 8.1.3.

The general goals is to first embed the system as supplenterihsexisting lecture,
and then allowing transition to a purely virtual trainingsgsm in a second step as
described in chapter 1. The basic conditions at which theeéfystem is still targeted
are the same as described section 3, i.e. students of canspigrce at the University
of Applied Sciences Regensburg.

To refine the learning goal of “Unix Cluster Management” wetihhphasis on the Net-
work File System (NFS) and the Network Information systenS)iNthose areas need
further analysis for their sub-goals and single tasks.rinédion on the sub-goals like
user and software management, system startup, etc. haeentadbe available to the
student. In general, instructional information should lesidned in multiple layers,
where one layer adds information to the previous one, gigifgerarchical view on

the domain knowledge. This approach is in conformance wity&uth’s “elabora-

tion theory” described in [Reigeluth and Stein, 1983]. Fegu9.3 and 9.2 illustrate
this analysis and the various layers involved.

Analysis of the exercises into smaller tasks happens araptd the classification
suggested for the Berkeley Unix Consultant. Classificatitine topics involved and
ordering to supplement building of a corresponding overtaydel also helps with

214 CHAPTER 9. DESIGN OF TUTORING AND USER ADAPTION

/

Server Client Transfer

/ /

rpcbind, /etc/exports Service (d)fstab rpcbin&ervice Create Adjust
mountd ‘ management ‘ ‘ management account permission

Commands & Files

NFS

Figure 9.3: Goals and sub-goals of the Network File SysteRS)N

defining stereotypes and their attribdteBurthermore, decomposition as suggested in
section 8.1.3 may help in defining the learning curve for siusl.

The methodology chosen here is to discuss a number of gnestineach of the topics
that are currently covered in the existing exercises in tiei& Unix Lab, realizing
an expert walkthrough. The questions are based on the erges made in the past
from mentoring students for lab exercises and in the Virtliaix Lab. Alternatives
would have been to use classification by assigning singlencamds from the SINIX
manuals to topics and goals, as was done for the “Sinix Ctarstifl, or cognitive walk
throughs with students. Use of manuals was rejected asighecesingle manual that
defines all the areas that are covered in the exercises, gniiee walkthroughs were
considered too time-consuming.

The following items were observed for all the topics of theS\#hd NIS exercises in
the Virtual Unix Lab:

What does the student have to do?This identifies on what level the topic is, e.g. ei-
ther specify commands for items that are more on the behstitfevel, or
give an outline of tasks to perform for commands on a highegl léhat require
epistemic diagnosis.

What problems can occur, how can they be identifiedAssues that may arise either
in the learner due to wrong assumptions and beliefs, andrthgtiead to wrong
steps. Also: problems that may arise in system configurdtiahwill lead to
future problems. For example when a user destroys parteaytstem.

Help for the student can be provided either on the behavioristiepistemic level.
Examples would be to just tell an novice user what commandndassuming
he does not know the higher level concepts yet), or just atdithe epistemic

1[Chin, 1986] p. 25
2 [Wahlster et al., 1988] p. 7

9.3. THE DOMAIN MODEL 215

level by giving keywords and concepts to the user (assunenzgh connect the
keywords and concepts as appropriate)

Believes - what wrong thinking can cause problemsAt times, students have wrong
assumptions and/or knowledge about the system, and bagbdtpthey will do
the wrong steps. ldentifying those steps and the thinkiag ldd to them can
prevent mishap.

What viewpoints may exist: Some problems may be seen from various positions.
When setting up network services, a viewpoint from “insitte machine (server
view) or from “outside” a machine (client view) may be appmiage.

Issues, Structural and Longitudinal consistencyare important for tutoring. Issues
are discussed in the context of a theory of bugs in sectio2 %8d consistency
is covered in sections 11.3 and 11.4.

Ways of data acquisition: How can the activity related to the topic be detected? This
is done either by analyzing the system state using a cheigk asrdescribed in
section 6, or by using “on-line” analysis e.g. via keystrideeing as described
in section 8.1.5.

The above catalogue of questions was applied to the exsritis¢ were previously
introduced in chapter 6. Decomposition of the Network Infation Service (NIS)
exercise can be seen in appendix E, a similar analysis of #teidfk File System
(NFS) exercise was considered but deferred. The resultsi®fanalysis and their
further application are discussed in section 10.

9.3.2 Considerations for a theory of bugs

The term “theory of bugs” describes the specific mistakesdfiabe made in learning
to master a certain domain’s knowledge, as described ifose®tl.4.1. Due to the lack
of an existing theory of bugs for the domain of system adrraii®n, an attempt was
made to create one as outlined below. The intention was tolsuent the design of
tutorial and user adaptive components in the Virtual Unik ha described in chapter 9.

This chapter describes the approach chosen for the cregattiar{limited) theory of
bugs. It analyzes the data from the Virtual Unix Lab’s dasgbaf existing results
as well as the results originating from these efforts in amstructive approach as
described in section 8.1.4.1. The exact database queriethair results that were
performed to retrieve the discussed data are listed in ajppénfor reference.

216 CHAPTER 9. DESIGN OF TUTORING AND USER ADAPTION

9.3.2.1 Adjusting the domain model

A full theory of bugs for the complete domain of system adstiwrition was considered
ways too complex. As a result, a smaller subset of the domasahosen. As the
Virtual Unix Lab only covers a subset of that domain and asa tkavailable for that

subset of the domain, the focus of this analysis was set deraye@dministration on the
Unix operating system, with special emphasis on admiristraf both the Network

File System (NFS) and the Network Information Service (NIS3luding both client

and server setup for these areas.

9.3.2.2 Analyzing existing exercise data

In order to use a reconstructive approach to determine at€tintheory of bugs, a
number of queries were performed on the database that kegxéircises and their
results from past exercises from the Virtual Unix Lab. THéofeing list outlines these
gueries and their individual results:

1. Determine the overall number of checks performed durkegaises on both the
client (vulab1) and server (vulabd2)

These numbers are used in subsequent calculations thetediffate between
those two machines.

2. Percentual number of checks that students failed to edawe (numbers calcu-
lated manuallyd.

The results show that the failure rate on the client (vulat@)e higher than on
the server (vulabl) for both the NIS and NFS exercises.

3. Determine the number of checks performed for each usemantiing.

The results show that the number of checks is balanced betilhieeclient and
the server. With the previous results, it can be said thaereaors are detected
on the client than on the server. Reasons for more errorseonlignt may be
that its operating system (NetBSD) is less known, as it ism®primary system
used in the lecture accompanying the exercises. It shouldteel that the errors
may not arise from mistakes (only) in the client configunatithough.

4. The next question is to determine the overall number of bften each check
was ran as well as the number of failed checks, and their ptgé.

The list of check scripts includes ones “false positive®, ithe test is usually
successful, and only fail if a user damages a working parefsystem. This

1 See results of query 1 in appendix D.
2 See results of query 2 in appendix D.
3 See results of query 3 in appendix D.
4 See results of query 4 in appendix D.

9.3. THE DOMAIN MODEL 217

can be seen in figure 9.4. The “false positive” scrijptseck-file-exists
andunix-check-process-running) are failed least often, as can be seen
from their location near the bottom of the figure.

The remaining scripts find errors with a rate between 53% &84, 8e. there is
no clear winner that indicates a significant number of errors

5. A more detailed analysis of the failure distribution iséa on both check scripts
and also their parametérs

The results confirm the fact that the “false positives” ailefHeast often. Again,
the remaining errors are distributed evenly, no clear de@sbination of a cer-
tain script with a specific set of parameters) can be foundaedfwith a ex-
traordinarily high number, compared to the other ones.

6. Taking the percental distribution of each check scrighws varying parame-
ters, a box (scatter) plot can be generated to indicate véreres lie in a quan-
titative fashion. Data is taken from the “perc” column of tlesults of query 5
in appendix D).

The result is displayed in figure 9.4, it shows several poifite scripts that test
“false positives” (scripts #3, #11) do lead to few errorsrijgs that test a wide
range of topics and complexity (#2, #4) show a correspondimge, i.e. an
equally wide one. Scripts that check for a specific, comptea are more likely
to fail, the error rate is more than 50% here. Within the “cterp checks,
the error rate is between 60% and 85%, with no clear majonitshout further
defining what “complex” means in this context). An explaoativhy testing for
installed shells (#17) fails often is because the item iskedas optional in the
exercise text.

9.3.2.3 Results and conclusion

From the above examinations, no usable list of checks tlilafrémuently and that
could be used as foundation for an enumerative theory of bagsbe determined,
even for the limited area of system administration undexUwith a focus on NIS
and NFS.

The following sections approach tutoring and adaption etittrelying on a theory of
bugs.

1 See results of query 5 in appendix D.

218 CHAPTER 9. DESIGN OF TUTORING AND USER ADAPTION
. —
A
]‘. ‘2 ‘3 ‘4 ‘5 ‘6 ‘7 ‘8 ‘9 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘ 16 ‘ 17
Script #
Legend:
| Script
—
1 | check-directory-exists
2 | check-file-contents
3 | check-file-exists
4 | check-program-output
5 | netbsd-check-installed-pkg
6 | netbsd-check-rcvar-set
7 | netbsd-check-user-shell
8 | solaris-check-installed-pkg
9 | unix-check-file-owner
10 | unix-check-mount
11 | unix-check-process-running
12 | unix-check-user-exists
13 | unix-check-user-fullname
14 | unix-check-user-home
15 | unix-check-user-ingroup
16 | unix-check-user-password
17 | unix-check-user-shell

Figure 9.4: Error distribution of check scripts

9.4. SOFTWARE ARCHITECTURE 219

9.4 Software architecture

A lot of software components for learning systems are rgaifilable today, origi-
nating from the open source communitEven without looking at the quality of those
components, it is difficult to build a learning environmendrfi these components.
Difficulties increase with the requirements that are neddean adaptive learning
system. “Adaptive” can have many meanings in this context, e.gdgnce, presenta-
tion and collaboration, and one author’s assumption doesetessarily match those
of other authors, making it difficult to assemble a systermftbose componerits

Various architectural suggestions exist for construcéingntelligent tutoring system,
using e.g. object oriented architectures that organizéutioe around objects that rep-
resent the knowledge to be taught, not around the varioupcoents of the tutér
While it would be possible to realize tutoring and adaptiemponents for the Virtual
Unix Lab, using this approach would require many change$éneixisting system.
Integration into the existing Virtual Unix Lab system is saered important for prac-
tical realization, and even if the immediate goal is “onlg”’define an architecture,
changing the whole system for the sake of practical reéimas beyond the scope
of this work. As a consequence, a software architecturedserthat allows to keep
the existing system as a base, and extend it instead. Figush8ws the components
that were added over the first design in figure 4.16 in bold.féhewing components
were added:

User interface: Tutorial support and adaption should happen within thetiexjsiser
interface of the course engine. While attention of the usesurrently split
between the telnet/ssh interface to the lab systems andtheeengine which
gives instructions to the user, no third interface shoulddded.

User model: Data about the user and the history of his interactions asady stored
in the database. The database scheme can be easily exteradsal $tore infor-
mation about the ongoing exercises and further data on mgaction that can
be used to build the user model.

Tutor: The tutoring component monitors the user’s actions dutiregexercise with
the help of the scheduler, and updates the user model baste @vailable
data. It communicates its decisions and any knowledge corization towards
the user to the course engine, which acts as user interfadbddutor. See
chapter 10 for more information.

Adaption: Equally placed as the tutoring component, the adaption oo mon-
itors a user’s exercise, compares it against data availalte user model and

L[Fink et al., 1998] pp. 7

2 [Nodenot et al., 2004] p. 95
3 [Nodenot et al., 2004] p. 95
4 [Bonar et al., 1986] pp. 269

220 CHAPTER 9. DESIGN OF TUTORING AND USER ADAPTION

User

User Management

Course Engine——— Database———— Scheduler

= User Interface + User M$<

. Tutor
Firewall Adaption Deploymer

vulab

Figure 9.5: The Virtual Unix Lab with tutoring and adaptiore{v components in bold)

updates the user model so the tutor can adjust its feedbatket. See chapter
11 for more information.

The original design is organized around the curriculum, thieite sized architecture
allows easy steering and testindgxtensions for tutoring and adaption correspond to
the design of the AVANTI system described in [Fink et al., 898p. 5]. The tutoring
and adaptive components contain both the domain modem anedbhing model to
the extent that this can not be placed into the databasesmieg hardcoding as much
as possible. Communication between the various compoigeperformed by using
SQL and the VUDSL described in chapter 6.

More details on tutoring in the Virtual Unix Lab are descdlie chapter 10, chapter
11 covers user adaption.

1 [Wenger, 1987] pp. 144

Chapter 10

Architecture of tutoring

A tutoring component for the Virtual Unix Lab is expected wide students in their
learning experience, and to support the teacher in giviegack to the student. The
previous chapter outlined the overall design of the Virtuaix Lab and identified
where components for evolving towards a tutoring systemldvoeed to be placed.
This chapter goes forward in that direction and focussesrenitacture that can be
used to realize a tutorial component for the Virtual Unix Lab

Topics discussed here include establishing the teachindehtny selecting from a
number of possible approaches for tutoring, applying mtrdeing for diagnosis dur-
ing exercises, and on-line diagnosis. Giving feedback asistance is covered with
details on the exact goals, assumptions made and challengesintered, as well as
their influences on contents and form of course materialtheuattopics include con-
siderations for the user model, which is followed by aspetthe user interface.

10.1 Establishing the teaching model

A number of models for tutoring in learning environments available as outlined in
section 8.1. For practical realization, the question ofolshihodel and methods to use
for the intended application arises.

This section describes criteria by which the selection iderfar the Virtual Unix Lab,
how they apply to a number of choices outlined in section23.&nd decides upon
one to implement tutoring. Both terms “pedagogical modall &eaching model” are
used with the same meaning in this section.

221

222 CHAPTER 10. ARCHITECTURE OF TUTORING

10.1.1 Selection criteria

This section outlines criteria to considered for the séactf a pedagogical model
for the Virtual Unix Lab. While a general outline of the selen process is given in
section 8.1.2.3, emphasis is put on to the following poiatgtie selection process:

Pedagogical depth: Does the model offer sufficient pedagogical depth to help the
student, e.g. by supporting views, mal-tests and poss#alganing?

Procedural knowledge: Can the method be used to model procedural knowledge, or
can it only handle factual knowledge?

State of the art: Is the method described in the literature, and/or are regmoritheir
realization available? Is the method known and well testeds it rather new
and experimental?

Integration: How easy is integration of the method in question with the oéshe
existing system as described so far? What parts are alrbady, twhich ones
need to be created? How feasibility is the latter?

Data acquisition: What effort is needed to acquire data necessary for the m@tto
data already available in the system, are extensions toyters needed, or is
data only available under certain constraints.

Exercise maintainability: Creating a system that can assist students is only one part
of the work. Exercises have to be created in the system, éordsefor setup and
maintenance of those exercises are considered important.

Summary: A short summary of the method.

10.1.2 Classical approaches with overlay architecture

The idea behind tutoring with the help of an overlay modebisniodel the problem

domain and trace both correct and incorrect actions by tbe Uibe idea is like putting

a transparent slide over a map (the problem domain’s model)tr@cing the user’s

steps with a pen. The system then classifies the steps analcactslingly. Variations

exist to target specific student behavior in a differentiahmer, to improve detection
of bad decisions and various extensions to adapt to the G$assical approaches to
tutoring via an overlay architecture are described in tletaiection 8.1.2.2.1.

Pedagogical depth: The problem domain is modeled by one or more domain experts
and/or meta-experts, which will determine relevant coteapd misconceptions
for a target area, and define how to react to actions that angifiéd through the
overlay model.

10.1. ESTABLISHING THE TEACHING MODEL 223

Besides the limitation to the domain experts’ knowledge system is restricted
to pointing out problems, but no reasoning or explanatiaruathe origins that
led to the problematic situation is possible. A possiblentettmeasure for this
is the introduction of “mal-rules” to detect when usersvwtioff the “right” path.

Procedural knowledge: The overlay method was specifically designed to handle pro-
cedural knowledge.

State of the art: A large number of papers describe how to employ this tecleniqu
real-life scenarios, illustrate how to model problem damsaigather data, and
draw conclusions for didactic actions. As such, this apghazn be considered
well-documented and ripe for practical use.

Integration: Considering the application area of the Virtual Unix Lab dnel foun-
dations work performed here, the didactic principles facteéng system admin-
istration from chapter 3, and the methods for verifying el state and results
from chapter 6, many of the foundations needed to implemeatihg via over-
lays are available.

Data acquisition: The amount of data available during the exercise is consitiguf-
ficient to drive the tutoring process.This applies at leaststatic analysis of
exercise status and progress, and to some extent even fgsiaraf online in-
teraction of the student.

Exercise maintainability: The preparation efforts for exercises — specifying reastio
to events etc. — are considered acceptable, with an estohéiteear growth of
didactic actions with exercise length/complexity, inste&exponential growth.

Summary: The classical approach using an overlay architecture ibfexand while
it remains open for extensions like adaption and more finmgdastructures, it
is still easy to realize.

10.1.3 Cognitive approach

The cognitive approach goes back to cognitive psycholodyerdin, no strict rules

are outlined for the learner, but (internal) "knowledgebislt up from analyzing and

understanding examples that are presented under varyawgpeints. See sections
3.1.1 and 8.1.2.2.2 for more details.

Pedagogical depth: The pedagogical offers of this approach are considereddhbe b
ones available. Knowledge is gained by the student throegtming in different
environments, by changing viewpoints, challenges andtadtkout predefined
learning units. The system ideally gives a maximum of feelllbaactions taken
by the student, who builds up knowledge about facts and nrdsgs own.

Variations exist in the form of changing scenarios giverh® student, interac-
tion styles, different kinds of interactivity and feedbastiles.

224 CHAPTER 10. ARCHITECTURE OF TUTORING

Procedural knowledge: Cognitive and constructive methods can be used for both
procedural and factual knowledge. Methods like decongdiation can be ap-
plied in both cases.

State of the art: There’s a number of documents about the theories behindta@gn
approaches in tutoring. Unfortunately the number of exgpe@s from practical
realizations of those approaches are rather limited.

Integration: Techniques for cognitive tutoring approaches vary widelgging from
a number of interaction techniques for single studentsugegsoups of students
over multiple scenarios and points of view for one scenarité related meth-
ods for data acquisition, which in term vary widely as well.

Within the Virtual Unix Lab, some of these methods and apghea are avail-
able or can be implemented with medium amount of efforts.| support of
cognitive tutoring requires a wide number of extra changeset made to the
system, which qualifies this tutoring approach as item fouriresearch, and
not an immediate candidate for easy realization.

Data acquisition: If availability of an appropriate range of cognitive tutagi tools
could be ensured, the existing framework of the Virtual Un@b as described
so far is expected to deliver the required data to drive tlisring process.

Exercise maintainability: Preparation efforts for exercises with a cognitive tutgrin
approach are acceptable, again assuming that a set ofaat#tivter the contents
is available.

Summary: The method is considered as very good, but very difficult &dize, if at
all. See Schulmeister’s judgement in section 3.1.3.

10.1.4 Linguistic approach

The linguistic approach takes events on the syntacticar]agfers actions on the se-
mantical layer, and attempts to determine pragmaticabasfirom semantical actions.
As such, it is appropriate for finding out about a user/leesn@ans. Further informa-
tion is available in section 8.1.2.2.3.

Pedagogical depth: The model supports plan recognition through defined redatio
between syntactical / semantical actions and their cooredipg semantical /
pragmatical meaning. Input at the appropriate level, with ¢orresponding
amount of detalils, is required for this. A certain level diilfaolerance against
“unimportant” glitches (e.g. mistyped commands) has to dresilered, and a
comparison between recognized plans, expectations, ardigx goals has to
be made to determine if intervention is needed.

Didactic actions that are considered after such compagiamnof general nature
and not specific to the linguistic approach of tutoring.

10.1. ESTABLISHING THE TEACHING MODEL 225

Procedural knowledge: Applying linguistic analysis only makes sense to procedura
knowledge. Factual knowledge can not be used in this cobeytnd simple
connections of terms, which is better done with semantiwoes if needed.

State of the art: “Plan recognition” is well covered in tutoring and Al litétae, esp.
for the domain of Unix operating systems. Most attentioriveigto recognizing
a user’s plan and assisting him, instead of applying tugptéchniques. The
overall number of theoretical papers describing how to Uae gecognition for
tutoring is small, with even fewer practical examples.

Integration: To realize tutoring with linguistic methods, a learner'amplon how to
solve a given problem needs to be determined. In the cumepieimentation
of the Virtual Unix Lab it is possible to determine the statbisthe exercise
systems. Capturing of user input data (via mouse, keyboetsyork, etc.) is
not implemented yet, and would be needed for this way of itagor

Data acquisition: When methods for capturing user input data are availabie git-
pected that the existing Virtual Unix Lab could deliver eghudata from user
interaction to properly recognize users’ plans on how tlodyesgiven exercises,
and comment on them.

Exercise maintainability: Preparation of new exercises with support for linguistic
tutoring techniques consists of two parts: Defining generigs that apply to
each part of the exercises (e.g. how to handle mis-typed @rmmames —
when to assume it is a typo, when to assume that a student dlalems with
the user interface and to intervene, and when to help thestury suggesting
what to type), and identifying specific patterns that appilydo one or a small
number of steps in an exercise. The overall efforts requierd depend on the
level of detail that tutoring is intended for the student:nder cites 110 possible
bugs for subtraction Considering the complexity of managing an average Unix
system with several services gives an impression of thé éfwemplexity that
can be reached with this approach.

Summary: This approach is good for recognizing unknown plans. Foctrgext of
the Virtual Unix Lab this is of less importance, as the gehglan is predefined
via the exercise text. As such, the method requires too mffictt &or too little
win.

10.1.5 Artificial Intelligence based approach

Using Artificial Intelligence (Al) for tutoring is similard the overlay method, where
user input is compared to expected behavior. The main diife here is that the
problem domain is not explicitly modeled after an expert®kledge, but that start

1 [Wenger, 1987]

226 CHAPTER 10. ARCHITECTURE OF TUTORING

and goal are defined, and the 'way’ (list of steps to perforsnfiound by applying
techniques usually found in Al. See section 8.1.2.2.4 foramaformation.

Pedagogical depth: Using the Al based approach can lead to finding the possiise li
or lines of thinking a student has done to reach a given paoiran exercise,
by e.g. taking preconditions and wrong assumptions, détémgthe possible
lines of steps to reach the current situation to what theestudctually did. It
is expected to be able to find wrong assumptions and conalsitids way, that
can then be reacted on with didactic measures.

Like for the linguistic approach, determining what didagtttions to employ to
counter the findings made remains as a separate topic.

Procedural knowledge: Applying Al algorithms to search in the problem domain can
be done on either factual or procedural knowledge, depgnatinthe model of
the domain only. It is expected that a corresponding domaidahpreferably
constructed for procedural knowledge, though. FactuaiMkeage would better
be represented via semantic networks.

State of the art: Little literature is available on this approach, esp. notéaching in
the Unix system administration domain. Related papers edoind for setup
and verification of computer network setups, but again thebar is very low,
with no specific discussion about the tutoring techniquemsting from the
findings determined by these techniques.

Integration: To apply Al methods to tutoring in the Virtual Unix Lab, bothda-
scription of possible steps in each situation is needed,ellsas an inference
mechanism that determines possible steps, compares thienwhat the user
actually did, and then communicates the misconceptiontstthas found in the
user. While no such inference mechanism is available in ineaf Unix Lab
today, it is considered to be realizable with acceptablertsff using common Al
methods.

Data acquisition: Acquiring data for the Al inference engine is similar to thetal
acquisition and user input capturing technologies meetidor overlay and lin-
guistic approaches. Equivalent data would be needed herenipare users’
steps against various possible lines of thinking.

Exercise maintainability: The real challenge in this approach is the definition of ex-
ercises: For one, a complete Unix system (in all its varidikis Solaris, Linux,
NetBSD, ...) needs to be modeled with the different commatiasr options,
in what situation they can be run, and with what effects. \§gkeral thousand
commands, many options per command and an almost arbitanper of situ-
ation that various commands can be used, this is considexedidg — probably
to the extent to not go near this approach for a complex ieasd¢enario, which
would explain the low quantity of existing literature.

10.1. ESTABLISHING THE TEACHING MODEL 227

Summary: While this approach sounds promising in theory, it is way tomplex
to model in practice, when including all possible steps a gae do in Unix:
the NetBSD operating system alone has more than 800 comniratigs base
install, and each of those has a moderate number of posgbitne. Adding
about 100 configuration files ifetc alone gives an idea that this is not going
anywhere in a lifetime.

10.1.6 Semantic networks and ontologies

Semantic networks describe the connections between temaspntologies can be
used as formal representation of those connections. Séers&cl.2.2.7 for more
information.

Pedagogical depth: Semantic networks can be used to both verify a student's eemp
tence in a specific domain, and also provide reasoning aloogepts he has not
learned, or learned wrong.

Procedural knowledge: Semantic networks mostly work for factual knowledge. Pro-
cedural knowledge is difficult to represent at best.

State of the art: A number of projects exist that show the use of semantic mitsvo
and related ontologies for teaching projects. The semaetiworks are mostly
used as a supplement to other teaching mechanisms, thaudyharaly applied
alone.

Integration: Integration of semantic networks into the Virtual Unix Lalowid re-
quire a corresponding domain model. Given that the requéreror the Virtual
Unix Lab is mostly checking procedural knowledge, the neknemuld test if a
student knows relevant commands, options and files in a giveation. Verifi-
cation of this could only be used at specific points in an egerc

Data acquisition: Input required from the Virtual Unix Lab to verify against a-s
mantic network would be single commands and keystroked|asito what is
needed for the on-line analysis described in sections.8.1.4nd 10.3.

Exercise maintainability: Exercises would need to be extended to identify what parts
in a (larger) semantic network are required at a specifictpoithe exercise, and
what relevant concepts, commands and files could or coultaeixpected by
the student. Besides the connection between the exersisgle tasks and the
semantic network, a semantic network for the domain of systdministration
and the Unix (or related) operating systems would be redupessibly requir-
ing a corresponding ontology to be defined first. Most of thiskwvould not be
directly related to Virtual Unix Lab. No existing projectking those efforts are
known.

228 CHAPTER 10. ARCHITECTURE OF TUTORING

Summary: Semantic networks are more useful to apply at factual thamcatedural
knowledge, and related assessment. This, plus the efftiieafcreation don't
make them a primary candidate for a teaching model in theudlittynix Lab.
They could be considered as addition to a primary model inea &ep, though.

10.1.7 Frames and scripts

Frames were introduced by Marvin Minsky to describe sitretiand objects with
associated properties, which can be connected either reospyical defaults, or to
other frames which further specify the property. Scripts am extension of frames
model procedural knowledge. See section 8.1.2.2.7 for inémemation.

Pedagogical depth: A model consisting of frames and scripts can help to verify a
learner’s knowledge against what he has already learnedwhat he has to
learn yet. When verifying a learner’'s knowledge, areas bglidetected where
specific facts are required, but where stereotypical in&diom will be provided.
This can be used as an indicator that the learner is proficiené general prob-
lem domain by display of the stereotypical information, hot yet with the
specific situation at hands. Feedback and teaching can be gacordingly.

Procedural knowledge: Frames were created to represent factual knowledge, and to
model the relations between facts. Scripts are an extemgiframes that de-
scribe procedures of events, which happen in the contextaids. The order
of events is pre-defined, thus allowing to detect if a usdofed a certain plan
or not.

State of the art: A number of learning systems exist for factual knowledgemivtbr
procedural problems, but no recent results show an apiplicat the domain of
system administration or any of the related domains.

Integration: To integrate frames and scripts in the Virtual Unix Lab, aresponding
domain model and a processing engine for it are requirededas that, situa-
tions could be modeled with frames, and possible ways ofast®ns could be
described in scripts.

Data acquisition: On-line analysis could be used to verify if a script is folkxvor
not. The existing diagnosis that is based on verifying tlagesof the Virtual
Unix Lab would not be sufficient to verify the steps of a script

Exercise maintainability: Description of the exercise would happen by modeling key
situations like the start and end, and any important inteliate steps as frames.
Scripts would be written to recognize steps that lead fromfoame to another
one. Those scripts could include correct steps as well asgwaoes, to detect if
a learner makes mistakes or follows a wrong line of thinking.

10.1. ESTABLISHING THE TEACHING MODEL 229

Summary: Frames and scripts require on-line diagnosis and a compleath model.
Both require major issue to realize, and thus make this gmbranlikely as an
extension of the existing Virtual Unix Lab.

The general approach is worth to re-consider when on-lisdyais is available
in the Virtual Unix Lab, though. This is further discussedéttion 10.3.

10.1.8 Bayesian networks

Bayesian networks are directed acyclic graphs, which dessituations and the prob-
ability of any succeeding situations. The models can be rg¢ed automatically as
described in section 8.1.2.2.7.

Pedagogical depth: Assuming a properly modeled and trained network, bayeséan n
works can be used to predict a user’s behaviour, detect angtiass and pro-
vide feedback at what point the deviation happened, and tibgiroper actions
would have been.

Procedural knowledge: Bayesian networks can be applied to factual and procedural
knowledge equally, and detect changes over time.

State of the art: Bayesian networks are used in several projects. On a nunfber o
them, they are used as supplement for other methods, thandlaren’t used as
the primary teaching model.

Integration: Integration of bayesian networks into the Virtual Unix Lalowid re-
quire several steps: first to setup a basic model of the dqmaiich would then
be trained in a second step, to indicate what steps are e&dact “good”, and
also what mistakes can be made. For productive exercisesntiiel could then
be used as described. Data input for the Virtual Unix Lab dqurkferably be
gained though on-line analysis as discussed in section a4Bh®ugh the exsting
model of analyzing the current situation of the lab machirstate may be used
as well, with less confidence for statements.

Data acquisition: Depending on the underlying domain model, the existingyaisl
of the lab machine state can be extended with on-line argalysi

Exercise maintainability: Assuming that the Virtual Unix Lab system is extended
to train a bayesian network with data from existing exesised to provide
feedback, it is expected that the overall overhead of esergiaintenance is
rather low, assuming that the network is trained by existixeycises. Individual
exercises could extend the graph that reflects the undgriygmain model to
some extent.

230 CHAPTER 10. ARCHITECTURE OF TUTORING

Summary: Bayesian networks could be used as supplement to an existiching
method, to ensure predictions and statements. The low eadrbf when main-
taining exercises is considered good, the neccessansinfcaure needs to be
implemented in the existing system, though. In summaryebian networks
could be considered as worthwhile addition for future \arsiof the Virtual
Unix Lab, but not as primary teaching model.

10.1.9 Comparison

After the previous sections have given an overview of thesiidess methods for real-
izing tutoring, this section compares them and draws a sugnorawhich method is
most likely to lead to success.

Pedagogical depth: All the named methods have the required pedagogical depths.
Overlays are easiest to realize, cognitive methods wouldrbferable from a
strictly pedagogical point of view. The linguistic and A&ded approaches as
well as frames & scripts and bayesian networks would be velgddo find
problems, offer reasoning on how and why things went wrong, leow to im-
prove the situation. Semantic networks and ontologiestcbeladded to verify
conceptual knowledge.

Procedural knowledge: The Virtual Unix Lab trains mostly procedural knowledge.
For this, overlay methods, cognitive, linguistic or Al metls are better fit than
semantic networks. Frames & scripts and bayesian netwallsl e used to
some extent, but are not ideal as primary teaching modely €beld be used
for later improvements.

State of the art: The overlay and cognitive methods are well documented ghib-
lications on linguistic and Al-based approaches are ratharse. This goes for
both theories as well as practical projects that use themil&8i observations
can be made for semantic networks and ontologies, framesaipls, as well
as bayesian networks.

Integration: Overlay methods can be easily integrated, while cognitie¢hwds re-
quire a lot more effort, as also observed by Schulmeistenguistic and Al-
based approaches could be integrated into the existingrayafth moderate
efforts. Similar efforts are needed for semantic networid@ntologies, frames
and scripts, and bayesian networks.

Data acquisition: This is easy to realize for overlays in the existing systeogritive
methods are doable if appropriate tutoring tools are adaldetexisting system.
Linguistic methods require inputs from on-line diagnosgibjch is challenging
to realize. Al-based methods should be easier, but willireglata acquisition
from on-line sampling instruments, too.

10.1. ESTABLISHING THE TEACHING MODEL 231

= [}

[] _ 8]

Q c D c c c

= 52 Q S ¢8|

S S0 O, ® 2 05|l

=3 Q= j= — R O = E

TS 02 868 D @3 £E| €

2% S22 Bo & 585 €8| 5
Approach oo O OS £ 0O WE| ?
Classical w/ overlay + ++ + + ++ + |++
Cognitive ++ 4+ 0 — 0 4 +
Linguistic + + - 0 0 — | 0
Al + + -0 0 —-——10
Semantic network + — 0 0 _ _ _
Frames & scripts + + - 0 — 0 0
Bayesian networks| 0 + + 0 — 0 0

Figure 10.1: Comparison of tutoring approaches, from best)(to worst (——)

Semantic networks and ontologies as well as frames andseviguld require
on-line diagnosis to exist, which is not available in thetdé Unix Lab as de-
scribed so far. Bayesian networks could benefit from on<iiagnosis as well,
but they could be based on the existing system as well, witb@demate amount
of work.

Exercise maintainability: This is considered easy for overlay methods, with a linear
connection between the amount of maintenance needed anzisexeolume.
Bayesian networks are expected to impose a low overheadesnisx mainte-
nance as well. For cognitive methods, semantic networkdranges & scripts
the efforts increase rapidly and can quickly explode intammaintainable state.
The effort for both linguistic and Al-based methods is cdeséd very high, too.

Summary: The overlay approach is small and manageable. The cogaitipeoach
needs a lot of work on the course engine. Linguistic and Aeldamethods are
too complicated with respect to exercise preparations. adémnetworks and
frames & scripts require both work on the existing VirtualixJhab as well
as esp. on exericses, whereas bayesian networks wouldeedpgnges to the
existing Virtual Unix Lab system as well.

Table 10.1 summarizes the situation. Following it, theHartproceeding is to focus
on using an overlay architecture with checks for exerciseltg, as they are easy to
implement and maintain. Furthermore, the paradigm of dassignment of credit and
blame is realized for feedback for the same reasons. Duetatk of a useful theory

of bugs, detection of errors is done in an ad-hoc way withségositives”, based on
experiences made in prior exercises in the Virtual Unix Lab.

232 CHAPTER 10. ARCHITECTURE OF TUTORING

10.2 Using model tracing for diagnosis during the ex-
ercise

The goal of model tracing for diagnosis during the exeraisthé Virtual Unix Lab
is to determine what skills and topics the student is praficie, and then improve
those skills and topics that need further improvement. Weat, cognitive adaption
is intended to happen in the learner by giving appropriagelfack to him. See also
section 10.4.5.

The approach outlined here is to apply the direct assignmoectedit and blame
paradigm as described in section 8.1.4.3.2.1. In conteasie system used for di-
agnosis so far, no pure behavioristic post-hoc diagnosisad. Instead, model tracing
with the help of an overlay model as described in sectiongl®@2.1 and 8.1.2.2.1 is
used. In contrast to a semantical network that can be usedtfar simple behavioris-
tic tasks, those represented in the Virtual Unix Lab are reatlas procedural network,
see section 8.1.2.2.1.

Realization in the Virtual Unix Lab includes a full analysisd decomposition of the
subject matter as outlined in section 9.3.1, and to defineceses that work from
smaller tasks towards specific learning goals. Verificatibthe tasks and goals can
be done by using check scripts, and noting their resultsealizeemodel tracing. The
overlay model is implicit in the exercise in this case, defjnivhat should be verified,
and how — which checks to expect to fail, and which to expestitzeed.

Description of errors and error classes can happen thowgWtDSL and its primi-
tives as defined in chapter 6 and section 8.1.4.1. Checksdomanon class of errors
can be realized by passing parameters to check scriptagdsti the class by using
the VUDSL. As an example, checks can be made to see if speeifiogs in the
/etc/rc.conf file were disrupted, important packages wetiasialled, files deleted or
processes terminated. Also, deadlock situations can leetéel like when a NIS/NFS
client is started without a corresponding server, whichi$e® nasty hangs for these
services.

10.3 Investigating on-line diagnosis

The check scripts described in the previous section tessyhtem state after user
actions. While this is largely sufficient, looking closeltla¢ user input while changes
are still being made would be useful as supplement, to e&li@havioristic on-line
diagnostics as described in section 8.1.4.3.1

1 Clients using the Network File System (NFS) wait until the@rver is (back) up when it is gone.
This waiting can cause the whole system to hang and wait, it to the expansion of NFS to
“Nightmare File System” as described in [Weise et al., 1994 283].

10.3. INVESTIGATING ON-LINE DIAGNOSIS 233

. Operating
Network Network Terminal :
stack services drivers Shell ig?;i?

Figure 10.2: The path of incoming information

Theoretically, diagnosis can be done on a number of semétérs:

Syntactical layer: Analyze network traffic, keystrokes and mouse activity aaettd
mine activities performed. This is difficult as no contextlwie available, e.g.
for things like tab completions, history recall or wildcagpansion on a com-
mand line interpreter, or for position of a mouse pointer emtents of a screen
to tell the effects of a mouse click.

Semantical layer: This could analyze the history files written by a shell, or — us
ing a modified shell — commands typed by users directly as @egcribed in
[Matthews et al., 2000]

Pragmatical layer: This would require knowing/understanding the plan thatstoe
dent expresses towards the system by activities on the $ienaad syntactical
layers. Inference of the student’s plans is needed for thigch in turn re-
quires methods that analyze the lower layers again, as #r&s isain cannot be
scanned (yet).

While “context” will still be needed to make use of data frohe tsemantical layer,
choosing an approach on the syntactical layer even moretaf d& such, the focus
here will be on the semantical layer.

The general path by which commands enter a Unix based labrsyate illustrated in
figure 10.2: The lab machine’s operating system receivas ioyer the network, using
its network stack. The network stack then passes that data one of the network
daemons that are used for interaction, e.g. the secure(skkll), telnet (telnetd) or
remote shell (rshd) daemon. These pass on the characteastegtfrom the network
packets to a command shells using the Unix terminal (tty)smupo terminal (pty)
interface. The “shell” that gets the characters passedasobseveral command line
interpreters available in Unix, e.g. standard systems fetveand “csh”, but there are
others that differ slightly in functionality. In turn, th@ssemble commands form the
single keystrokes passed in via the network, and then gigréorm internal action or
run other commands from the system via the exec(2) systdf?cal

For the practical realization, there are several placebithngetup where data can be
acquired, defined by the components outlined above. Hem émalysis of what will
be needed to get data at that part, and how feasible thatésliae:

1 [Mayer, 2001] pp. 24
2 [Stevens, 1992] pp. 325
3 [Stevens, 1994] pp. 162

234 CHAPTER 10. ARCHITECTURE OF TUTORING

Network stack: Mining data at this level would mean to sniff and analyze roekwv
traffic, or hook into the operating system’s network stackaving the technical
difficulties, plus the multitude of possible operating syss that this has to be
done for aside, analysis on this level would require moréedithan is available
here. l.e. data on the harddisk for wildcard expansionohissubstitution,
tab completion, or interpretation of mouse clicks in graphiuser interfaces.
Including the technical difficulties, this can be regardedhaet feasible.

Network services: Various daemon processes realize the network servicelsahdte
input and output for command line interfaces, e.g. rshdj sshu telnetd. They
receive single characters over the network, and again ntexbis available
for reliable inference of the semantic level. Also, teclhi@alization again is
problematic due to (non)availability of source code andrthmber of network
services and operating systems that would need patchirighwalso makes this
method not very likely for successful deployment.

Terminal drivers: Intercepting user input at this point means modificationverg
operating system'’s terminal (tty) and pseudo terminal)(pltyvers, and will
yield only syntactic information again. This fact, the nueniof systems to
change, their changeability (i.e. non-availability of smicode), and the techni-
cal expertise needed for the required modifications spegdiast this approach,
too.

Shell: “The shell” is actually available in several incarnatiossime available as open
source, but the ones often shipped with commercial Unixesystare of closed
source nature, and thus cannot be changed easily. As thevsiid be in a good
position to determine information on the semantic leves thiould be a good
place to start, as e.g. documented for the USE$Hoblems arise again from
the number of shells that would need changing, and the pérba)availability
of source code.

Operating system kernel: In the family of Unix(like) operating systems, commands
are started by exec(2) and a number of related system callevéry command
is executed that way, they would be an ideal place to haniaghdstic data.
Problems are (un)availability of source code once morentiraber of differ-
ent operating systems that would need changing, and thaitettexpertise to
perform those changes.

An approach of an assistant that performs plan detectioraasidtance in the
Unix environment by analyzing system calls can be found ind&al., 2007].

Others: Another point where diagnostic data for on-line diagnosis eorresponding
analysis could be gained is the firewall that all interactidtt the lab machines
has to pass through. While sources for the IPfilter firewglfioftware, which is
used in the Virtual Unix Lab, is available, data would be oofythe syntactic
level again.

1 [Matthews et al., 2000] pp. 121

10.4. GIVING FEEDBACK AND ASSISTANCE 235

When available, system accounting can be used to log all @dmexecuted
by the system. It requires no modification to the system, ancbmbination
with a separate program that collects and analyzes dasaythild be the most
promising approach. Feasibility of the approach would iegavaluation of
system accounting in further depth, esp. on what exact datadilable, and
with what latency. No system so far is known to use this soofadiagnostic
data that could be used as reference.

In summary, the idea of collecting on-line data for diagimgstirpose seems easy from
the outside, but the implementation details make the affoestionable for the Virtual
Unix Lab. For the system level that data is needed for, tooynsgetem components
would require changes that are either non-trivial from dwhnical side, or not possible
as no source code for modifications is available. As not mitetature is available for
collecting on-line data for system-level diagnosis eithliee following chapters will
focus on a system that does not rely on on-line diagnosidewkeping the option to
add this at a later time.

10.4 Giving feedback and assistance

This section defines the goals for giving feedback and asgistduring an exercise,
then describes some of the challenges to consider, and homaster them in the
current system. The changes will have an impact on the argtion of exercises and
course material, which is also discussed.

10.4.1 Goal

The goal of giving feedback is to assist the student durirgetkercise, and show
existing problems in the problem-solving context withoivirgg any hints on their so-
lutions (at first), as discussed by Wenand in section 8.1.2.2.2. During the exercise,
feedback is shown for those parts of the exercise that wezady worked on, either
if the work was successful or not. Additional help is givertisat the user understands
what the system is verifying. No feedback is displayed far plarts of the exercise
that haven’t been worked on yet. This scheme scales betweetutrent practice of
not displaying any feedback during the exercise at all tovisg full feedback for all
items after the exercise.

To find the part of the exercise that the student is currendlskimg on, checks on the
current situation are performed — see also the Zone of Pabliravelopment (ZPD) in
[Michaud et al., 2000] and the course of an exercise a studagttake in figure 10.3.

1 [Wenger, 1987] p. 292

236 CHAPTER 10. ARCHITECTURE OF TUTORING

1. Step: -
2. Step: + -
3. Step: +++++ -

4. Step: ++++++++———+++—

Figure 10.3: Possible course of an exercisedone,- =todo)

The didactic model underlying this approach is based onch&avandering around
among students doing exercises in a classroom or lab, Igakier their shoulder,
analyzing the current situation and providing help basetherstudent’s activities.

10.4.2 Assumptions

Questions to answer at this point are how to recognize whatalvaady worked on,
what is currently being worked on, and what is still open tdalathe student. Some
assumptions based on the existing Virtual Unix Lab and itppse are being made
here:

e Exercise parts should be worked on in a linear fashion

e Later parts build up on earlier parts; as such, it is betté&gam (only) the basics
in early parts, than to learn advanced skills in later pafter passing the early
and “easy” parts.

e Even if the student has skipped a part of the exercise andswarla later one,
he will have a reason for this. To be less invasive, it is satggeto support the
student in his move, instead of forcing him to go back to thipgstd part.

With these assumptions, the procedure to recognize whabptre exercise the stu-
dent currently works on is as follows: Check from the ’lasigjgre 10.3: rightmost)
part of the exercise to the ‘first’ (figure 10.3: leftmost)ttarfind what part was solved
successfully last. Assuming that the student works in alifi@shion, he will work on
the next unsolved part. Figure 10.4 illustrates this preces

10.4.3 Challenges

Two of the challenges that will be encountered are if a studkips parts of the exer-
cise, and/or if he does not perform them in a linear sequence.

10.4. GIVING FEEDBACK AND ASSISTANCE 237

3. Step: +++++———————————————————

Figure 10.4: Going backward to find the latest (a) and nextlpging worked on (b)

A skipped part is displayed in the 4th step of figure 10.3. Asgg that the student
skipped the missing parts for a reason, no efforts are madbeing him back “on
track” to finish the missing parts if there are other partsrsissing in the sequence of
exercises. If the last (rightmost) part of the exercise imftbto be completed, guidance
and direction can be offered to help the student solve theingparts.

Handling exercise parts that are not performed in sequemttiker is harder. This

situation can occur in two cases. First, when a student pasfdis first pass through
the exercise parts, and second, after he has finished theityajothe exercises and
gets to pick the parts that are still missing. The assumpgtiah exercise parts are
approached in a sequential order from the start may be lesghian for the general
flow of the exercise.

Besides the assumption that the student always startshetfirst (leftmost) unsolved
exercise part, some heuristics have to be employed to wehiéit parts heeally works
on. Applying the linguistic approach for tutoring based online analysis could offer
the needed data. For the realization, the data model deddrilfigure 6.15 and section
6.6 would need to be extended. The extension would definedogcognize a student
working on the corresponding part of an exercise not only(pi@st-mortem, so to
speak) checks as right now, but also by what patterns ofdaatien and commands he
uses.

10.4.4 Realization

To realize feedback, its content and form have to be coresitdleFhis is discussed in
the following sections.

10.4.4.1 Contents

Feedback is considered to be part of the user model as dedénilsection 8.1.4.4. To
provide elaborated feedback, the contents have to contfinient details. Feedback

238 CHAPTER 10. ARCHITECTURE OF TUTORING

provided by users of the Virtual Unix Lab (see section 7.ar8) analysis of the exist-
ing exercises (see appendix E) show that the following gaihbuld be considered for
detailed feedback:

e What scenario is appropriafe?
e What approach is appropriafe?
e What commands may be of help to solve the given exercise3part?

e What commands may be of help to troubleshoot the given esepzrt?

When providing help, two orders are possible: either prexgdneral cognitive / epis-
temic help first (i.e. hinting at relevant topics, troubl®sting strategies, and so on),
and then move on to behavioristic help (i.e. telling what owands to use, possibly
including the necessary arguments for the situation at$)anfithis does’t help the
student, he requests more help. The alternative is movetiet@pposite direction,
giving behaviouristic help first, and if the student needsentelp, give the neccessary
background later via epistemic help. The former approadoisidered appropriate
here, based on the assumption that the student will learhtapias are appropriate to
consider to solve the problem, instead of blindly typingia tommands that the help
system may provide when giving behavioristic feedback.

The effect that Baker describes as students “gaming thersystan happen in the
first incarnation of the system. Updating the student modehdime help is given to
the student and applying adaption based on structural agitlmlinal consistency can
be used to detect if a student abuses the feedback systestass#d in sections 10.5
and 11.5. Also, the help previously offered to the studemiddition to the other data
in his user model helps to determine what help is offered,ifextore help is needed.

Discussion of the technical realization of displaying fle@ck during the exercise is
discussed in section 10.6.

10.4.4.2 Form of feedback

The form that feedback is given in can be either in a coopergtin-demand) way,
or automatically. The underlying pedagogical model formerative feedback corre-
sponds to a student asking the teacher for help during a kzisg. The teacher has
to gain an overview over the situation that the student ishie,attempts that the stu-
dent has made to solve the exercise part at hands, plus th&tatsaof the system to

1 See “viewpoints” in appendix E

2 See “what does the student have to do” in appendix E
3 See “help” in appendix E

4 See “help” in appendix E

5 [Baker et al., 2004]

10.4. GIVING FEEDBACK AND ASSISTANCE 239

give appropriate help. For automatic feedback, the pedeglogodel corresponds to
a teacher roaming around among students in the lab, lookiegtbeir shoulder and
commenting their work if needed. Feedback can be givenreithmediately when a
noteworthy situation is found, or after some delay, givihg student time to correct
mistakes on his own, as is discussed in section 8.1.4.4ipse@tl.2 and [Wenger,
1987, pp. 296].

10.4.5 Impact on organization of exercises and learning material

Providing feedback can have an impact on organization oteses and learning mate-
rial for students. Depending on the pedagogical model ttyapgercises and learning
material can be split into tiny pieces, in order to adjust floev of exercises more
dynamically to the student’'s performance. Organizatioga@ftent in such a way is
common in constructivistic learning environments andrtasgorted learning manage-
ment systems. The requirements of such systems and thagioreto the Virtual Unix
Lab are discussed in chapter 1.

Possible approaches for sequencing exercises and learrateyial are outlined in
[Darbhamulla and Lawhead, 2004] and [Helic et al., 2004]0asfble architecture
that employs a cycle of “direction- capture— analysis— feedback” that would be
compatible with the Virtual Unix Lab can be found in [Heer bt 2004]. The mapping
of specific checks to didactic topics can be done via topec#ic parameters and
weights, see the discussion on “weighted polynomials” irufidovsky and Cooper,
2002, pp. 28].

No focus is set on the topic of splitting and sequencing ofreeunaterial for the
Virtual Unix Lab at this point. Many theoretical foundat®for that area are available,
e.g. in[Kobsa et al., 2001], [Helic et al., 2004], [Fisct2301] and in the whole corpus
of hypertext and hypermedia literature. If need arisesr fin@ined course sequencing
can be performed at a later step to improve and fine-tuneigtor

When discovering that more training is needed for a pres#guinterrupting an ongo-
ing exercise to learn those prerequisites in a separateisggs challenging not only
to the learning environment and the learning material, k8d & the cognitive load
on the student, involving a switch of focus and context bauk farth. An alternative
is to not interrupt the ongoing exercise, give the studeaiobtion to either learn the
skill on the current exercise, or abort it, then to offer theand training and after that
allow the student to take the first exercise again. Past gy shows that giving
students the opportunity to repeat exercises without fieeas accepted by students,
as described in section 7.2.2.

Figure 10.5 illustrates these two approaches to arrangeaa"raxercise that the stu-
dent practices (1) and a second exercise that teaches basibe main exercise (2).
Image 10.5 a) shows interruption of the main exercise (1}Herprerequisite exer-

240 CHAPTER 10. ARCHITECTURE OF TUTORING

a) Prerequisite
exercise
. Main

Main exercise

exercise continued

—_— () —
b) Main

Main Prerequisite exercise

exercise exercise (repeated)
= =

Figure 10.5: Learning prerequisites by a) interrupting bncepeating

cise (2) and the following continuation of the main exer¢ite Image 10.5 b) shows
that the main exercise (1) is fully completed first, and affie@n-success has been es-
tablished, the neccessary basics are practiced (2) bedpeating the main exercise

D).
Advantages of the second approach are:
e Only a recommendation is given, the final control is left te #tudent, botfif
he takes the prerequisite exercise, amgbn
e No distraction is made for the student while he is focusechemtain exercise.

e Implementation is a lot easier, both for the course systsetfjtand for organi-
zation and granularity of course material.

e Giving recommendations on what exercise the student stiak&lnext can be
considered as a “light” version of a learning managemertesays

The feedback given to the student can be used to judge if mesEdneed to be
learned, in addition to get an evaluation of his performandbe exercise. Individual
feedback can be given here by utilizing user adaption, set®gsel1.5.

10.5 Considerations for the user model

The approach to giving feedback and assistance to the dtirdire previous section
also requires considerations for the user model. Dataatetfeduring the exercise
includes:

10.6. IMPACT ON THE USER INTERFACE 241

e What specific exercise is currently on, identified by the boghD. This helps
to find the type of exercise, the associated checks, and veeatsiworking on
the exercise, for updating his user model.

e The number of the verification run within the given exerci€errently there is
only one such run through all the check scripts at the endeoéxercise, so no
bookkeeping is needed. With several runs, this has to change

e Each exercise’s check has a unique check ID. For each cotidrinaf book-
ing ID, check run, and check ID, the result of the test has toelserded for
evaluation, updating the student model and giving feedback

o If assistance is given by printing help text, the time andiiebn the text are
recorded in the student model. If further help is neededastme point, this
information will help to get more specific and not repeat h@kviously given.

e The reason why help was provided. If help was provided by yiséesn in an
automatic way, or if the user made a request for help. Thishedmto identify
when users abuse the help system.

Based on Nathan’s statement that “ITSs do too much thinkjrige system is imple-
mented as unintelligent tutor that provides late or verg feedback, with possible
user adaption. In the given context, “late” feedback wolddalier a part of an exer-
cise was worked on as discussed in the previous sectiory fat®” feedback would
be after the whole exercise, as is currently done in the &litinix Lab. In contrast,
immediate feedback on the exercise part that the studetill is@rking on is consid-
ered inappropriate as it may lead to confusion of the stydehts line of thinking
(and configuration works) is interrupted by panic messabasthe system is in an
inconsistent state (which is a natural thing during systdmiaistration configuration
work). Updates to the user model happen accordingly by tteal#lined above.

While Nathan suggests to not give any feedback at all, theaitnix Lab is intended

to support the student by giving feedback, so that the buadeassessment of his
work is not placed on him aloAeThis approach can later be extended for individual
feedback and user adaption, see chapter 11.

10.6 Impact on the user interface

In intelligent tutoring systems, the user interface is usedommunication between
the student and the tutoring system. To extend the Virtua Uab with capabilities
to provide feedback and assistance, extensions to thentuser interface are needed.

1 [Nathan, 1990] pp. 407
2 [Nathan, 1990] p. 413

242 CHAPTER 10. ARCHITECTURE OF TUTORING

This needs considering of the relevant communication ablanthe current user inter-
face, and how to blend information into the existing webeohisser interface.

10.6.1 Communication channels

The user interface provides communication in two waysnigkisers’ input, and pre-
senting learning material and feedback to the student. idpat comes as interaction
with the website, keystrokes from on-line diagnosis (kggiag) and the checks per-
formed by the system to verify the current state of the egetcilnteraction of the
users happens via a web interface for presentation of theisgaext and some feed-
back like remaining time, the lab machines are accessedepiarate applications for
FTP/SSH/telnet.

The major challenge to the user interface when adding ngaid the Virtual Unix
Lab is to integrate the feedback provided by the system tausiez in a seamless,
non-intrusive way.

10.6.2 Analysis of the current user interface

An analysis of the current interaction in the Virtual Unixiaan help identify the
modules that need to be extended for providing further concation with the stu-
dent, for both acquiring data and providing feedback. Amaesv of the current user
interactions can be seen in figures 10.6 and 10.7. The gemerall structure with
its five main menu items is displayed in figure 10.6. The eserdiself is happens
between the “Start exercise” and “End exercise” steps. Arambversion of that flow
of the exercise itself, with the countdown to end the exergmssible help for ac-
cessing the lab machines, and the main interaction can lel fioufigure 10.7. This
main interaction is happening via a command line interf&€el) in a separate ter-
minal application besides the web application, where ther s into the two lab
machines, types commands and interacts with the systenudfitbthe requirements
of the exercise.

The two modules that have been identified for possibly piogidhelp to the system
are marked with “Help #1” and “Help #2" in figure 10.7, where tformer would
be placed within the web interface, and the latter withingistems’ command line
interface that the student is accessing with the terminpliegtion. As such, help
can be web-based and/or shell-based. Web-based feedbatk appen within the
existing user interface, shell-based feedback would reqigeper modifications of
the lab machines. An impression of the work needed can bénelotdy observations
made in the Berkeley Unix Consultant project described iilgWgéky et al., 1988] and
in the Unix assistant introduced in [Manaris and Pritchag83].

243

10.6. IMPACT ON THE USER INTERFACE
Login
Menue
User data List of exercisesBook exercise Exercise View exercises
("Benutzerdaten") ("Ubungsliste”) ("Buchen") ("Buchungsliste")
Undate records Enter IP Delete Retrieve
P Select day number booked feedback
Select exercise (after
exercise exercise
Set new)
password Selecttime \yait for start
(optional) of exercise
Diplay
exercise text Select oo .
exercise Start exercise:
End exerciseé
Confirm Confirm Confirm
("Werte
Ubernehmen")
Confirm
Update DB
+ at/cron

Figure 10.6: The current user interface: Menue structure

244 CHAPTER 10. ARCHITECTURE OF TUTORING

L S

Start exercise

Display exercise text

5 h
Display remaining time Open terminal
Countdown 3 application
o 3 (ssh, telnet)
Help for accessing : Connect to
the VUlab machines P oml VUlab machine(s)

Log into
VUlab machine(s)

/| Display prompt

7777777777777777 1
_1 Perform exercise: Ente’{ command

ay respons

3 Displ
5

Log out of :
VUlab machine(s)§

) Indicate end of exercise
Timeout | Click "Fertig" (done)

o

End exercise 3

#1: Web based help
#2: Shell-based help

Figure 10.7: The current user interface: During the exercis

10.7. SUMMARY 245

10.6.3 Blending information into the web-based user-interface

When providing feedback in the existing web interface, tda be done either syn-
chronous or asynchronous. Synchronous feedback would beninection to some
user event in the web interface. As there is currently only lomtton in the web inter-
face to indicate the exercise has finished before time ishigig no help for feedback
during the exercise. A new “help”-button could be introddice realize the peda-
gogical model of a student raising his hand to call the teatha lab exercise, see
“cooperative feedback” section 10.4.4.2.

For asynchronous help, the course engine would have toagli$pédback without the
user asking for it explicitly. The course engine would cdhthe user model for its
decisions, and then communicate with the web interfacedplaly the information.
As there may be several items to display to the user, sometiselevould have to be
made on what feedback to really give to the user. Informatboconsider would be
the current exercise situation, the student’s previoushjisand other data in the user
model. Selection and presentation could be displayed agestef in the RSS-based
scheme in [Hylton et al., 2005].

For both synchronous and asynchronous delivery of feedlzatially displaying the
feedback should not disturb the information displayed leystudent at that point, i.e.
exercise text and remaining exercise time should contioltvisible. A part of the
screen could be reserved to display feedback, possiblyanitimnce to scroll through
previous messages from the “teacher.” Updates of the textdMoave to happen in
an asynchronous way based on either actions from the usethargystem. Within
the existing web framework, this could happen by runningvaSaript-based engine
that constantly communicates with the course engine, anchvdisplays information
to the user when needed, without any action from him. A péssibplementation of
such a JavaScript-based engine called “Asynchronous daga&nd XML" or in short
“Ajax” was introduced in [Garrett, 2005].

10.7 Summary

The major components that need work for extending the Miftrex Lab to add tu-
toring during the exercise have been discussed in this ehaphile time constraints
prevent realizing them, it is expected that the foundatiaitshere are sufficient for
further work on tutoring in the Virtual Unix Lab.

246 CHAPTER 10. ARCHITECTURE OF TUTORING

Chapter 11

Architecture of user adaption

For advanced learning topics, adaping of the learning systeusers is considered
beneficial. This chapter describes an architecture foradaption in the Virtual Unix
Lab.

The adaptive component introduced in this chapter is bpdtwesult verification with
Domain Specific Languages and the “simple” tutorial compore described in the
previous chapters, and extends them. The user model of theatucomponent is
used as base for this extension, as it already contains dapsogress of students’
performance during a particular exercise. The data aveilalihe user model reflects
the situative context described in section 8.2.1, whicketednined by check scripts.

The data can be used for several applications: An overvighegbrogress of exercises
and students’ learning in general can be gained, and thesttgarned can be verified
to be consistent. Better support can be given during theceseewith respect to giving

help and feedback, while at the same time preventing stadesth abusing the help

system. Further data can be collected to analyze usageiotdrelp contents (Unix

manual pages, online lecture notes) and optimize them. attex lapproach is useful
for moving towards a full learning management system, wigdliscussed briefly in

chapter 1. The other points are discussed in the followicgmes.

11.1 Establishing and maintaining the user model

The user model contains data about the user. In the Virtued Lab described so far,
this means data about the students’ performance duringfercha exercise. To adjust
the system to the user, it has to draw certain inferencestdbewser upon which to
act.

This section outlines how the user model’s view of the usariimlized, what data is

247

248 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

considered relevant, how the initial user model is updateapproximate the real user
behavior, and what inferences to draw from the updated model

11.1.1 Initialization

Initialization of the user model is based on data availabléhe user and his exercises
with the intent to classify the user into one of several rdiles “beginner”, “expert”
or a number of intermediate states. Average values for atlestts as determined
in the evaluation in section 7.2.4 could be used for an indiassification, to which
the student is then compared. In the easiest scenario, [@lemge would mean a
beginner, above average an expert. Of course this can bedexté¢o introduce more

roles if need arises.

To compare a student against the average, data about tlemshas to be known. As

this is not available for a new student taking his first exsciseveral solutions are
possible. It can be assumed that the student performs oagejeand assume just the
average values of all previous students’ values. This caupated later when more
and more data becomes available, see below.

Another possibility to initialize the user’s initial stateby a questionnaire, asking the
student questions. This can be done in addition to the useeaisting exercise data.
Some effort is needed to determine the list of questions,esatiiate answers. User
acceptance has to be taken into account, too, when comgjdesing questionnaires.
It is suggested that this approach should be kept for a l&gesif the first iteration of
going with average values turns out not to be sufficient.

Classification into roles can be done on a general scale ffeasMs that the student
can be asked to perform, or more fine grained, allowing a stutdebe a beginner
in one topic, but an expert in others. This is recommended,a®ws to determine

what topics the student has already learned, and what hkagito learn. Topics can
be differentiated either “only” by the check script usedvalaate performance in the
corresponding area, or it can also take the specific parasngiien to the script into

account.

An example for the former would be to determine a studentititey skills” via the
check-file-contents check scripts after something needs to be changed in an
exercise. Another example would be to see if he has the edjtinstall software
skills” by looking looking if thenetbsd-check-installed-pkg andsola-
ris-check-installed-pkg check scripts find a requested package installed.

An example that also takes the parameters given to a cheigh sto account would
be for scripts that cover broader areas, like verifying thpot of a program via
check-program-output

11.1. ESTABLISHING AND MAINTAINING THE USER MODEL 249

11.1.2 Clustering

Clustering can be applied if the number of check scriptssipbsin combination with
parameters, turns out to be too much data. This way, cheaksehify “similar” areas
can be grouped together, like the “software install skikample above that takes
both package management on Solaris and NetBSD into accdmite information
on clustering is available in section 8.2.3. During the fisplementation of user
adaption, clustering will not be considered, saving it assfie future optimization.

11.1.3 Observed data

The data received, stored, and analyzed for tutoring angtiatacan be split into
several groups, some of which are again optional for theifirstementation.

Data on the progress of exercises, both during the exeraiggsfter them is already
discussed in the previous chapter, see section 10.3. Thetdatt skills and concepts
learned can be determined by analyzing the check scripitsesidiscussed above and
in sections 10.2 and 10.3. On-line diagnostics can help teroféne what commands
the user is typing and what information he is looking up in m&lmnd web pages. This
information tells if the user is investigating the rightstabn, possibly even before he’s
issuing the corresponding commands. A problem with doctatiem is that the user
may get the required information “out of band” in a way whi@naot be measured,
e.g. by looking up manual pages on a different system, brayesn offline copy of the
lecture notes or consulting a printout.

11.1.4 Updating the user model

The initial data that is stored in the user model is updatethduhe exercises by the
new findings made. More information can be inferred by commgathe initial state
and later updatés The data updated during the exercise is the same that isezbve
during initialization of the user model. Specific knowleelyeas and skills are updated
by analyzing the results from check-scripts and possit#yr trarameters as described
above, and multiple areas and skills can be combined by eygptyustering.

When updating the user model, keeping old values for reéeramd analysis can be
useful. For one, this can help to determine if the initialues chosen for the user
model were chosen appropriately. If many updates happéreatart of an exercise,
the initial values were probably chosen suboptimally. Alemg term observations
can be made about the change in students’ behavior, e.gné@ue was classified as
“beginner” initially, and gradually changes into an “exigeBuch observations can be
made along one or several exercises.

1 [Chin, 1986] pp. 26

250 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

11.1.5 Accommodating plan recognition

The data from the user model is mainly used to give feedbadkerutorial compo-
nent, see chapter 10. Adapting the data to the user allowgd@grsonalized feedback
that is tailored towards each user individually. There aneiimber of other possible
applications, though.

Inferences can be drawn about the plans, intents and kngevlefithe user, as outlined
in chapter 10 and by [Fink et al., 1998]. In contrast to urseéhelp systems like
COMFOHELF or the Berkeley Unix Consultant, the task for the studenbimglete
in the Virtual Unix Lab is specified, and as a result the sttidgrtan is assumed to be
knowr?. So far, “plan recognition” has not been covered within thetal Unix Lab
due to this predetermination.

When atask allows to be solved in more than one way, the restification performed
in the current version of the Virtual Unix Lab can be supplated by a more detailed
analysis of what the student is actually doing. For this|ina-diagnosis as described
in section 10.4.3 will be required. If it is available, theaektask that the student is
currently working on can be determined, and then his exapsstan be observed. The
steps can be evaluated if they lead towards the given goalyay from it. A separa-
tion between “good” (appropriate, right, leading towaras goal) and “bad” (wrong,
counter productive, leading away from the given goal) cambele, and needs to be
reflected in the exercise definition. The exercise spedificatescribed in section 6.6
will need to be extended for this, also possibly indicatiogvgood or bad a particular
step is.

A possible application would be to allow the system to intptrin critical situations
before or right when the student performs an action that dveerider the system unus-
able. Examples would be if he removes a file that is criticdhtosystem’s operation,
or if he has setup a NIS or NFS client without a server, andatbethe client system
would hang infinitely upon reboot, waiting for the server tore up.

Another extension would be to apply “fuzzy” matching to thelme diagnosis with
the data stored in the exercise, and allow deviations oftaicedegree from them to be
more fault tolerant. This can be applied to recognize tygmngrs in commands that
would be “on track” otherwise, or when output is not 100% gseeted, but is slightly
different. The level to which fuzziness is acceptable orwotild have to be defined
for each individual case, and would also require reflectiotihé exercise definition.

Those components could greatly help assisting studenkeiWittual Unix Lab. Be-
fore realizing them, on-line diagnosis is required as bhsilding block, though.

1 [Krause et al., 1993]
2[Chin, 1986] p. 24

11.2. ADAPTIVE AXES 251

User 1 % st ExercisEEE- E2nd Exercis
User 2 % st Exercis» 2nd Exercis»
User 3 % st Exercis» 2nd Exercis»

Structural consistency

Longitudinal consistency

Figure 11.1: Structural and longitudinal consistency m¥irtual Unix Lab

11.2 Adaptive axes

Adaptive axes describe the scale on which a specific atériiian adaptive system can
be set. They describe the characteristics for achievingitren state, and the results
stemming from a particular state to which the system has adapted as described in
section 8.2.4. This section introduces the adaptive axasifted for the Virtual Unix
Lab.

Section 8.1.4.3.2 identified a number of approaches fotezpis diagnosis. In addi-
tion to the direct assignment of credit and blame describesction 10.2, structural
and longitudinal consistency are considered relevant. siStancies are established
with and compared against data from the user model. As atydéisete is an interac-
tion between the tutorial component and the adaptive coentoof the Virtual Unix
Lab. In order to keep the architectural design easy, theg \split, and the adaptive
component is defined here, instead of overloading the altooimponent:

e Tutorial component: collects data, stores it in user model, and gives feedback
based on the data in the user model

o Adaptive component: evaluates data in the user model and updates the decision
base for the tutorial component

When observing consistency in the Virtual Unix Lab, botlustaral and longitudinal
consistency are taken into account. Sections 8.1.4.3r&1284l.4.3.2.3 introduced
the theoretical foundations, and figure 11.1 illustratesdifference within the Virtual
Unix Lab:

e Structural consistencycompares results of various users against each other, to
compare a single student against a group.

252 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

e Longitudinal consistency compares data of a single user against other incar-
nations of the data, e.g. about profiles built from an eaplase of the same
exercise, or from other exercises done by the student.

The adaptive axes of structural and longitudinal consggteme discussed further in
sections 11.3 and 11.4. The third axis is personalized fegdbAs indicated in the
previous chapter, feedback is important for tutoring, arnthwhe data collected in
the user model, feedback can (and should!) be personalirexpfimal feedback and
learning effect in the student. Personalized feedbacksisudsed in section 11.5.

11.3 Structural consistency

The focus of structural consistency is to compare one stisgdperformance to that
of other students. The student’s performance is the basgpfiating the user model,
which in turn is used to alter the system’s way of handlinglfeek. This section dis-
cusses exercise velocity, mastered skills, help requestswace of data, outlines how
to reflect this on the user model, and raises the issue onpnugteics for evaluations.

11.3.1 Observing exercise velocity

The first observation made is the speed at which a studentaymkgress in a given
exercise. The results are compared against similar vaketesrdined from other stu-
dents’ exercises, with special attention to the zone of iprakdevelopment (ZPD)
described in section 10.4.1.

When comparing a student’s performance at a given pointrie igainst that of other
students at the same time in the same exercise, it is easyeiordee if the student is

faster or slower than the other students, with a certain denéie. For example, if a
student has absolved more checks than the average of atdenss at a certain point
in time, inferences can be drawn about his performance. @f&exepeated evaluation
will help to determine if the inferences were drawn cornectl

Taking the average of all other students from a group as #melatd against which the
student is compared has drawbacks: A group that is in genexak or unmotivated
can give unfair advantage to a student with average streargdhmotivation due to
their low performance. Also, if a new term or exercise startsdata is available for
comparison. For such cases, the exercises can be extendedurte data on what
performance is expected from students during an exerciseat\Wilestone should
be passed after what time, which concepts and skills shailchdstered safely, etc.
When noting students’ expectations in the exercise, mare twould be reserved for
“difficult” tasks than for “trivial” ones.

11.3. STRUCTURAL CONSISTENCY 253

When extending exercise texts with information about whaieetations toput into
students’ performance, this should be done in a secondaftepmeasuring and eval-
uating students’ performance first.

Proper metrics are needed to determine what is and can betegfsm students, see
section 11.3.5.

11.3.2 Observing mastered skills

Going plainly by number of exercises correctly solved oweretis one approach to
establish how a student compares to others. A more fineegtaipproach is to look at
his performance for each skill, as identified by a certairckhseript and possibly any
related parameters, end then compare that among students.

For example the “edit file” skill can be allowed to fail for 1t@nes, but should be
expected to be mastered after that number of attempts. Ufdest fails more often,
then there is probably a general problem that needs atterftieo, if the failure pattern
is not at random but turns from repeated failures into reggkaticcess, then a point at
which the student did learn the skill in question can be distadd.

Grouping of “easy” skills may be needed to determine if affdifit” skill was learned,
e.g. “user management” may require mastering of skills tkeating directories,
changing owners on filesystem objects and modifying systatab@dses. On the other
hand, mastering a skill may well require more knowledge flaghthat of managing
all prerequisites. A detailed analysis of empirical datalldde needed to be able to
tell details.

In general, it can be expected that “simple” skills are ledrfaster/sooner than “dif-
ficult” skills. After an initial round of tests to determineolw student’s perform on
average, this can again be reflected in the exercise setumtng expected values.
Examples could be in the form of “the 'modify system databak#l must never fail”
and “programs printing proper output may fail a few timeshat ¢asy/starting or vol-
untary/difficult parts.”

11.3.3 Observing help requests

Another source of data for judging a student’s performancesiation to a group of
students are the offers and/or requests for help he makewinvay or other. In that
context, those requests can be:

e Active help requests by the student, e.g. by pressing a Hblgton.

254 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

e Offers for help by the system, based on analysis of the cueercise as dis-
cussed in section 10.4.

e Possibly requests for online manual pages and webpagesnfgtimation on
how to solve the exercise. Recognizing this can be challgngs the requests
can happen outside of the Virtual Unix Lab as described iti@ed1.1.3.

Analyzing help requests can tell if a student asks for helpenaften than is expected.
On one hand side, there may be valid reasons for the studesquest more informa-
tion, e.g. plain curiosity on what the system has to offenmmarybe he did not fully

understand the description of the exercise, and hopesrifydlas by asking for help.

On the other side, analyzing help requests can prevent afube help system by
students who are “gaming the system.” The number of helpestguhat are con-
sidered “normal” or “too many” in this context can be deterad by looking at data
from all students again. Each request for help updates tlkest's user model with
data on what part of the exercise that help was requestedylaaidhelp was given in
case there’s more than one hint available — see the sepamt®“behavioral” and

“epistemic” help in section 10.4.4.1.

Observing help requests of all students also helps to iyetatsks where not only
a single student has problems, but where the majority of tindesit group requests
more help than was expected. This can indicate general gombbf understanding
that should be addressed in an appropriate way, e.g. witnsifted training in the
classroom or by providing extra exercises for the topic stadlents find difficult.

Data about the expected volume of help requests can be notée: iexercise text
again. This can e.g. happen in the form of noting tasks wheareased help requests
should be expected, or it can also be in combination with ekiellof skills learned -
e.g. that increased help requests are acceptable as longpasific skill is not noted
as learned.

11.3.4 Adjusting the user model

The observations and collection of data discussed in theque sections can be used
to update the user model of each individual student:

o If the student is faster or slower than the majority of studgim general.
e If he has mastered various skills better or worse than theagee

e What help was given to the student, and at what help leveM® tlie next hint
for the same task, if repeated help is requested.

11.3. STRUCTURAL CONSISTENCY 255

This in turn can lead to reactions such as personalized &#dis discussed in sections
11.1.4 and 11.5.

Furthermore, the data can also be used to determine aveasigens of behavior of
whole groups of students against which an individual studen the be compared.
Metrics for these comparisons are discussed in the follgwection.

11.3.5 A metric for evaluation

To classify what “faster / slower”, “learned” and “too manglp-requests” means that
metrics are needed, which can be used to judge what the avkraging speed is,

after how many (and which) repetitions a topic can be comsiias “learned”, and

asking how many questions and using how much aid is accepi@fibre considering

it as being “too much.”

Another question is, against what data set the current studecompared, exactly.

Possible options are the average of all students in the seoup,gnedian of the group,

and a possible statistical distribution with a certain aterfice. When using descriptive
methods instead of indicative methods, a graphical toeltlie box/whisker-plots used
during the evaluation in section 7.2.1 will be useful.

For a first pass, using an arithmetic average for non-boolakues like general results
and for help-requests, with some percental margin, e.g. nfidemce of 95%. For
boolean values like skills mastered, the median can be asedi€ntation.

More precise statements can only be made after evaluatiagfiden a first round of

exercises. For that, a first round of tests and data gathierimgjuired. Of course this
is preceded by implementing a system that acts accordiagtydelivers the required
data.

After evaluating data from life exercises, hints can be ptd the exercises to start
the next round with better stereotypes. The format of theuslirUnix Lab’s Verifi-
cation Unit Domain Specific Language (VUDSL) as describedeation 6.6 would
need corresponding extensions. Possible facts statedicianlé how values are mea-
sured (averages, median) and what possible deviationl(absw in percent) would
be acceptable. A few examples in human-readable notatigid &@ “This part of the
exercise should be completed after 30 minut&sminutes”, “Skill S should be mas-
tered from heret:2 tasks” and “The student should not be slower than 10% obayeer
of the group.” Of course the exercise would require thoseifipations in a machine
readable representation available via the VUDSL. Sectiof @utlines some of these
extensions.

256 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

11.4 Longitudinal consistency

In contrast to the structural consistency observed in tleipus section, the focus
here is to analyze a single exercise, and try to understangabe at which a student
is making progress in that exercise. The analysis is basedeasuring the time be-
tween solving various parts of an exercise and acquirintpireskills as outlined in
the previous section, with the eventual goal of identifyomgblems in the progress of
the exercise.

The following sections cover the assumptions made on pssguéthe exercise dur-
ing the analysis, performing calculations for establigHongitudinal consistency, and
how to perform descriptive and indicative analysis.

11.4.1 Assumptions and methodology

Longitudinal consistency looks at one specific exercis¢a@aquisition happens dur-
ing the periodical status verification by running checkpsrfor the tutorial compo-
nent as described in section 10. This can be compared to #shlifyht” view shown
in figure 9.1 b).

Results of each check-run, i.e. the single results of eaebkcbeript, will be saved by
using the ID of the booked exerciséb(fchungs _id "), and an increasing humber or
a timestamp to identify the check-run within the booked eiser.

A number of assumptions are made on how progress happeris witlexercise:

e There’s linear progress of the exercise, as shown in figur 10
e No parts of the exercise are skipped, ideally
e Parts of the exercise are numbered strictly increasiggus, . . . (u.)

e Check scripts that implement verification of each part of ser@se do not
“block” but succeed immediately. Blocked scripts can skbestiming obser-
vations made.

e The “state” of an exercise is defined by the last part of anasersolved suc-
cessfully, i.e. the one located rightmost in figure 10.3

Those assumptions result in a strictly increasing valueddwabe used for calculations.
For the following analysis,, denotes the time at which the exercise is at state

The calculations described here aim at specific attributdgpeoperties of a student’s
learning process. Other techniques can be used to est#igistudent model, e.g. via
Bayesian networks as described in [Mayo and Mitrovic, 2001]

11.4. LONGITUDINAL CONSISTENCY 257

11.4.2 Descriptive analysis

There are a number of exercise parts between the two sigtaad u,, with their
associated timelg andt;. The average velocity that each part of the exercise between
those two states was taken with can be calculatéd as wug)/(t1 — to) = Au/At.

11.4.2.1 Interpolation vs. more data

By increasing the frequency of the state checks, i.e. byedeingA¢, more precise

information can be learned about every single part of thecise as verified by each
individual check script. An alternative to decreasiigis to define the ratio between
the various parts by adding scalars that reflect the ratio.ekample, in a 30 minute
period with three exercise parts, this could indicate thatfirst part takes twenty
minutes, and the second and third part take 5 minutes each.

11.4.2.2 Detecting speed changes

By getting more data — either through interpolation or by enfsequent data collec-
tion — the average time needed for each exercise part by ttieydar student can be
determined. If there’s a constant value, the student woiks eonstant speed and is
making progress. Whether he’s slower or faster than othwelestts can be found by
looking at other students’ speed values. If progress oftildesits is not constant, this
indicates behavior that needs attention. Information ahwerage durations for each
exercise part and at what time a specific check can be expediedositive due to the
underlying skill being learned can also be determined byhod described in section
11.3.

11.4.2.3 Observations for repeated exercises

If a student repeats an exercise, he may expose differeati dgehavior than in pre-
vious runs of the same exercise by him. While changes can jpected from the
results in section 7.2.3, the point where a student’s sphadges from fast to slow
may change, and it is this point that calls for attention: Shelent may need more
time because he is not fluent in the required skills or need® fimformation. This
point the equivalent of Michaud et al's “Zone of Proximal @B&pment” (ZPD), see
section 10.4. An comparison between the part of the exeatistich the ZPD shows
up between various repetitions of an exercise may reveat méwrmation.

258 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

11.4.2.4 Speed and acceleration of progress

By observing the derivation of the change in the exercisgnessAw by time A¢ with

At — 0=/, the speed of progress of the exercise at the point at whechkttident is
currently working can be determined. Movement of the poant be used to make a
statement if the exercise is progressing fast or slow. Bgnliisg the change of speed
over time —Au’ derived byAt = «” — statements on the change of the progress’ speed,
i.e. its acceleration, can be made. E.g. it can be told if thdet is speeding up or
slowing dowrt.

11.4.2.5 Data model and storage

The data model for storing the check results within an esershould be modeled
to identify each individual check’s result. Currently, batheck result is stored in
addition with the booking ID, the check ID and the result of ttheck script in the
ergebnis _checks table as described in appendix B. For multiple check runsgur
an exercise, a counter or timestamp needs to be added.

If data from a previous check run is available, informatitwoat the exercise’s speed
of progress can be calculated and stored in the databasewiki, if the data from

the previous run does include information about the speegutagress at that time,
information about the change of exercise speed can be atddund stored.

The question of what data to store exactly should be addidase For each check-
run during the exercise, speed and acceleration at that jpdiime can be calculated
as outlined above, and it would be sufficient to draw conohsiabout the progress of
the exercise.

Data about progress of the exercise — indicated by the maveofiehe part that the
student is currently working on, and reflected by the speetiaateleration of the
exercise — can be stored in a separate database table. The/taltd have the booking
ID of the exercise and a counter or timestamp to identify tiividual check run as
keys, and would include data on speed and accelerationdaruirent snapshot.

11.4.2.6 Drawing conclusions from speed and acceleration

After determining speed and acceleration of an exercisecattain points, an eval-
uation may result in adjustments of the system to the studétiile it remains to

be determined what a “slow” or a “fast” student exactly i #ystem can recognize
such students. For “slow” students, it can provide addéitidrelp to solve the exercise
by immediately giving hints that would be given to other &nt$ only on demand,

1 [Serway and Jewett, 2004] pp. 1

11.4. LONGITUDINAL CONSISTENCY 259

or after some time. The system could even adjust itself tedhstudents, and save
them doing parts of the exercise. The question of fairnesshter students should be
considered when adjusting the exercise system, though.

“Fast” students probably do not need any special attentikewise no reactions to
speedups (acceleration) is needed during the exercise.

When negative acceleration, i.e. slowdown, is detectemhgam exercise, this would
be of more interest. Depending on the exercise this may bectg at some points
e.g. when new knowledge is required. For example in the Ni$pseperations like
adding a user to the NIS system is expected to be a challengteidents, and thus
more time should be planned as things may go slow at that.pgintther points, a
slowdown may indicate that the student has a problem at thiat,and this could —
possibly with some threshold to prevent distraction fromititernal learning process
— be interpreted as need for help.

An exercise could store those points and indicate what s{geiddo slow” at what
points in an exercise a slowdown is expected as normal, whehould not happen,
and how to react if it still does. See section 11.6.2 belowfdiother discussion on
VUDSL extensions.

11.4.3 Indicative analysis

Instead of computing values to compare students’ perfocmamexercises, the same
raw data that is used for those calculations can be used addyéadicative analysis.
Using graphical methods like the box/whisker plots introgldi in section 7.2.1, it is
possible to compare a student to a group of students, antbalsat different exercises
or snapshots of the same exercise from a single student.

When using box/whisker plots for visualization, statersezeén be made with a cer-
tain confidence. Examples that compare results of lateccesesr with those of early
exercises can be seen in figures 7.1, 7.4 a), and 7.4 b).

Other methods that do not offer statements on confidence tifldesuseful to indicate
trends when comparing earlier and later exercises of the seer. Investigations on
general performance and details on every individual paainoéxercises can be made.
Examples for the former can be seen in figures 7.5 a) and bjp@era for the latter
can be seen in figures 7.6 a) and b). In any case, statementsecaade if there
is a positive (increasing) or negative (decreasing) trenperformance and exercise
results.

Data that can be observed and compared this way includes:

e The number of checks solved properly, exercise speed araleaation for a

260 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

single student’s exercise(s) as the basic data to observe.

e A student’s overall progress, compared to a group. This earsbkd to tell if the
student is working faster or slower than the reference group

e A student’s overall progress, compared with his earlier@ses. If no progress
can be seen here, demand for increased help and informatioecinferred.

e A student’s progress on a particular exercise over timegmirsg several snap-
shots of results. More detailed statements on progressdspeprogress and
also change in progress, i.e. speedup/slowdown, can be made

e At what points in an exercise do slowdowns (or even speechqus)r? If those
points show up on all students’ exercises, information aagdhing effort seems
appropriate to cover the challenge in the related exerags.p

While indicative methods that use visualization are goadhi@man interpretation,
they are less useful as decision base for computer progratiils.they may be very
valuable for verifying operation of the learning system éordstatus reports for both
the student as well as the teacher.

11.5 Personalizing feedback

In tutoring systems, help can either be cooperative (on deijnar provided automati-
cally, see section 10.4. In both cases, interaction witluses model should happen to
determine what help should be given. Data from the user nthdelwould be required
is:

e What help was already offered at this place

e A general classification of the student: beginners couldgbtvioral / compre-
hensive help e.g. by giving exact commands to type, or hgrifiem at useful
commands; experts could get epistemic / high level / conebielp.

The ultimate goal is to personalize the feedback given tatindent to match his speed
and level of knowledge. At the same time, abuse of the helgsythrough the student
(“gaming the system”) should be prevented.

11.5.1 Adjusting of help contents

If a student is found to be either very far behind the expe&tealvledge, or far in
advance of it, some feedback can be retained from him to resbovden or bore him.

11.5. PERSONALIZING FEEDBACK 261

To realize this, items can be classified by where they usagdfear on the learning
curve, and the student can then be compared against tha tusee where he is
related to thdt See also the discussion on the Genetic Graph in sectioh ®assible
implementation options are to not display information §tal adjust the information
presented in an “incremental linking” style. Another sefpoksibilities arises from
the choice whether to use restrictive or non-restrictiveptiste methods, e.g. if link
annotation or link hiding should be ugedAlso, when on-line diagnosis recognizes
wrong or even dangerous commands being issued, it could @rapfain refuse to
issue these commands.

11.5.2 Handling non-standard exercise progress

Section 11.4 shows how to detect if a student exposes nadat@dbehavior in solving

exercises, e.g. if he is too fast or too slow, how that can bergéned either in general,
or if there is a speedup or slowdown at a specific point in tiegage. One effect that
will happen is that slow students may not complete the egerand run into timeouts,
but that is not a problem per se - the students can repeat #neisx, and no special
action is needed. If a student makes progress at a certagngpacthen slows down at
a certain point, that is of more interest: What happenedatbint? Does the student
need help or assistance, or did he just leave for a smoke™h®ma#alysis can help to
determine the exact circumstances in more detail.

11.5.3 Adjusting the system

If a real slowdown is detected, the question on how to reaseswr Possible reactions
include:

e No action: Having the system offer immediate advice may be too fast and c
fuse the student who may just be thinking. The didactic mo€létis would be
a teacher spotting a problem while looking over a studehtaikler in a class-
room exercise, but not speaking up when it is obvious thagtiingent is working
on a solution to the problem.

e Give information on current situation: The system may or may not fully un-
derstand the current problem at hands. Based on the leves stadent as stored
in the user model, help can be given at various levels, rgrfgim behavioristic
hints to epistemic help.

1[Chin, 1986] p. 25
2 [Specht and Kobsa, 1999] pp. 1
3 [Schulmeister, 2007] pp. 181

262 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

e Offer an alternative viewpoint: If a student is recognized to approach a certain
problem in a specific manner (as e.g. detected by using endilgnosis), he
may have forgotten or not be aware of the fact that there &uex approaches to
solve the problem. Information can be given on how to prodedtie current
line of thinking that the student is currently in, or otheewpoints can be out-
lined, possibly with details on how to approach them (dependn the student’s
experience and level).

e Hint at other exercises: If a student did previously slow down at similar exer-
cise parts of the same category, he may need more practicdesper under-
standing of the matter at hands. Besides giving more infoomasuggesting
a specific exercise to the student to improve his skills it #raa may help.
Of course this assumes that an appropriate exercise iablail The data for
this hint may be stored in the user model and suggested tduterg after the
exercise, to not distract him more than necessary fromilegurn

e Perform the step requested automatically:In theory, the system could per-
form the steps required to proceed at the point that the stusleurrently stuck
at. This should be done with quite some consideration thougkrs may even-
tually abuse the help system, and the question of fairnesther students that
have successfully mastered the point at hands has to beitgkeaccount.

Besides exposing these actions when a slowdown in exesocikgécted, most of them
can also be applied when the user asks for help actively.

11.5.4 Preventing abuse of the help system

When the above points are realized, detecting when a ussting to abuse the help
system is possible as described in [Baker et al., 2004]: #ex works slowly but at a
steady pace and he starts requesting help repeatedly abiomegare should be taken.
A comparison with the user’s history of help requests carrdgne if he needs some
help in general, or if he just tries to trick the system intaingg the right information
without making efforts on his own.

11.6 Extending the VUDSL for user adaption

The previous sections have discussed user adaption in theaMUnix Lab in the
context of structural and longitudinal consistency as waslpersonalizing feedback.
Each of these areas reflects on the definition of the exemiskthis section discusses
possible extensions of the VUDSL for them.

11.6. EXTENDING THE VUDSL FOR USER ADAPTION 263

To extend the existing VUDSL as described in section 6.6siclamations need to be
made about how to extend it. An easily realizable way thatlisesadable would be to
add an extra keyword to each line that indicates what ex#u#lyine is for, followed
by data specific to that purpose. E.g. currently data in ttssvartungteiluebung()
PHP calls look like this:

<?php auswertung_teiluebungen(
??? Il vulabl: check-program-output PROGRAM=ypwhich OUTP UT_SHOULD="vulabl’
l Does ypwhich(1) return 'vulabl'?

In the PHP comments £ "), the first line describes what check to run on a specific
system, and the second one determines the feedback giviea student after the ex-
ercise. Adding keywords “On” and “Feedback”, this could eesult in the following:

<?php auswertung_teiluebungen(
??? /I On vulabl: check-program-output PROGRAM=ypwhich OUTPUT_SH OULD="vulab1’
/I Feedback: Does ypwhich(1) return 'vulabl'?

), ?>

The general approach in the next sections is to first define mdeds to be added to
the exercise, before showing how it can be added.

11.6.1 VUDSL extensions for structural consistency

The Verification Unit Domain Specific Language (VUDSL) délses exercises in the
Virtual Unix Lab as introduced in section 6.6. This secti@vers extensions of the
VUDSL to accommodate data for establishing changes focttral consistency as
discussed in section 11.3.

1. Speed of progress:The timeframe in which an exercise should be solved is
given by the overall time available for the exercise. Witthia exercises, regions
and milestones can be identified which should be completsgetific times,
though, see 11.3.1. E.g. if an exercise consists of two piesfirst part may
require 30% of the time, and the second part may take the némgar 0%.

This can be noted in the exercise e.g. by noting at what timéestone should
be completed. Here is an example telling that the point irstjoe is expected
to be solved after 30 minutes:

Exercise: Minor task

<?php auswertung_teiluebungen(
??? [/ On vulabl: check-minor-task

264 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

/I Feedback: Was the minor task performed successfully
/I Expected after: 30mn
) ?>

Exercise: Major task

Giving time like this is probably easiest for a start. An algive would be to
give time relative to the exercise’s overall duration, éExpected after:
2594’ to note that after one quarter of the time the exercise is due

2. Data about expected mastering of skills:If a specific skill is required at a
certain point, the system could observe the user’s pastrigistnd act according
to it. For example, it could give more help from the start, @aat to the situation.
In order to realize this, the skill required is implicitly @ded by the check script
that verifies the user’s results. What's lacking is a metriddtermine if previous
failures indicate critical misunderstanding or not. Toveothis, checks could
contain data on their importance, so that only changes thgge‘Important
skill” are taken into account.

Here is an example:

Exercise 1: Perform important task!

<?php auswertung_teiluebungen(

??? I/ On vulabl: check-task
/I Feedback: Was the important task done?
/I Inportant skill: yes

); ?>

Exercise 2: Perform unimportant task!

<?php auswertung_teiluebungen(

??? I/ On vulabl: check-task
/I Feedback: Was the unimportant task done?
/I Inportant skill: no

) ?>

Exercise 3: Perform another important task!

<?php auswertung_teiluebungen(

??? Il On vulabl: check-task
/I Feedback: Was the other important task done?
/I Inportant skill: yes

s 7>

After exercises 1 and 2, their results can be observed to kattevdo when the
student reaches exercise 3: If the student failed the “itap6t first task, this
will have a different impact than when he failed the “unimpot” second task.
For this observation, it is important that only skills withetsame check script
(and possibly parameters, though not used here), are @userv

3. Data on overall number of acceptable help requestsSection 11.3.3 describes
that the exercise may know about the number of help requestistacceptable
as “normal” either for the whole exercise, or parts of it. Skiould serve as
lower bound above which actions will be taken by the systematsd by the

11.6. EXTENDING THE VUDSL FOR USER ADAPTION 265

“Globally acceptable help requests” and “Acceptable hetpuests” tags in the
following example:

/'l dobally acceptable help requests: 1
 Do something!

<?php auswertung_teiluebungen(
??? I/ On vulabl: check-something
/I Feedback: Was something done properly?
/I Acceptabl e hel p requests: 2
/I Hint 1: Further explain task to do
/I Hint 2: Given even more details, and first hints on how to so Ive
/I Hint 3: Hint at how to solve the problem

) ?>

If help requests are accepted as method to further explaitatk that the student
has to do, then this should be reflected by appropriate hiatisjist explain
things in more detail, without giving away help on how to sottie problem at
hands immediately.

4. Data on acceptable help requests considering (un)learnedifis: Section
11.3.3 also describes a schema where the number of aceepielptrequests
could be given more fine-grained, based on the finding thastindent possi-
bly has not mastered the required skill for that exercise (@ identified by
the check script). Numbers for “beginners” that did not reashe skill and
“experts” could be given:

 Do something!

<?php auswertung_teiluebungen(
??? I/ On vulabl: check-something

/I Feedback: Was something done properly?
/I Acceptable help requests for beginners: 2
/I Acceptable help requests for experts: 1
/I Hint 1: Further explain task to do
/I Hint 2: Given even more details, and first hints on how to so Ive
/I Hint 3: Hint at how to solve the problem

), 7>

5. What metric to use for measuring and comparing: In the comparisons de-
scribed so far, absolute numbers were used either to deszniser’s expected
behavior, or of any deviations. Section 11.3.5 outlines alternatives, esp.
when giving the bounds in which deviations from given staddealues are de-
scribe.

Instead of a fixed limit, tolerances can be given, e.g. fovarmgtime an absolute
value — given in minutes or as count — can be used to indicatetf. for novice
users, more time would be acceptable than for advanced users

/I Expected after: 30min +/- 5mn

/I Acceptable help requests: 2 +- 1
), 7>

266

CHAPTER 11. ARCHITECTURE OF USER ADAPTION

Instead of giving the acceptable deviation as absolute rgmabrelative number
can be given as well:

/I Expected after: 30min + - 10%

/I Acceptable help requests: 2 +/ - 50%
), 7>

When establishing the average speed of progress, fixedsvarebe used as
outlined for the speed of progress above. Instead of takkegl fvalues, values
from the exercises of other users could be used instead.albes/could indicate
what time the majority of users took to solve a specific parrofexercise, or
how much time was needed to master a given skill to a certainede These
numbers can be determined from the existing exercise sdstttie Virtual Unix
Lab.

A question is how to exactly calculate them, though. Possidys would in-
clude average, median and modus values for the given data. f&.time, an
average may make more sense while for a yes/no item like bletdhed, the
modus may make more sense.

This information can be put into the exercise text as well:

/I Expected after: nedi an

/I Important skill: yes (modus)
) ?>

Besides the exact method twow to perform the calculation, the question of
whatto compare against is important as well. Possible itemsdcoelthe time
after which an item was solved, or a skill that was mastered.

As in the previous examples, adding knobs to tune — methostoand scales
to apply — is only the first part of tuning the exercise. Futtgsearch with
practical examinations will reveal what values to applydaiven exercise.

11.6.2 VUDSL extensions for longitudinal consistency

This section describes extensions of the Verification Upitiain Specific Language to
accommodate data for establishing changes for longitudomsistency as discussed
in section 11.4.

1. Adjustments for descriptive analysis:

(a) What is “too slow”? When observing progress of a single exercise, the
speed of progress can be determined as outlined in sectiBrilPossible
ways to determine valid values here include absolute vdioesempirical

11.6. EXTENDING THE VUDSL FOR USER ADAPTION 267

(b)

methods, and compare them against other students’ exeesgsaitlined in
the previous section. The extensions to the VUDSL would besdme, so
no extra changes are needed.

How to handle slowdowncan be defined by marking exercise parts where
slowdown is allowed and acceptable without immediate actidhile lack

of progress in other parts may need different behavior froenetxercise
system. Hints on where a slowdown is acceptable, where itldlor must
not happen can be encoded into the exercise as shown in theifa
examples:

/I Sl omdown: ok
/I Sl ondown: acceptabl e
/I Sl ondown: shoul d- not
/I Sl ondown: nust - not

), ?>

These hints will help the Virtual Unix Lab to react to a possiliser behav-
ior. The question on what to do exactly in that case is disligs section
11.6.3.

2. Adjustments for indicative analysis:

In contrast to the methods described for adjustments ofrigtise analysis, re-
sults from indicative analysis are not evaluated by the@sgersystem. Instead,
the statistics and graphs produces are intended to be usgtdd®snts and teach-
ers, and should thus be comparable and not changed indiyidua

11.6.3 VUDSL extensions for personalized feedback

Personalizing feedback requires adjustment of the praentof help contents, and a
decision base on what help should be given. For a first imphatien, keeping those
purely in the Virtual Unix Lab’s Course Engine (see chapdestuld be sufficient. If
customizations turn out to be needed for an exercise or part exercise, the VUDSL
can be extended based on these findings at a later step.

11.6.4

Other VUDSL extensions

Besides the extensions discussed in the previous sectithms;, extensions may be
useful for a number of aspects where the VUDSL is used. Headis of areas for
possible future extensions:

1. Giving multiple hints: If the system knows more than one hint at a given exer-
cise, an order needs to be defined for that. This can e.g. bel@onumbering
the exercises, and then giving them one after the other. dlleving example
tags the hints with “Hint” and a number to distinct them.

268 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

Exercise: Determine the currently used NIS server.

<?php auswertung_teiluebungen(
??? I/ On vulabl: check-program-output PROGRAM=ypwhich OU TPUT_SHOULD="vulabl’
/I Feedback: Does ypwhich(1) return ’vulabl'?
/I Hnt 1: What command prints the current NIS server?
/I Hnt 2: Try running ypwhich(1)
/I Hnt 3: Does ypwhich(1) print 'vulab1'?
s ?>

The number may not be needed technically, but it can be useffdpsome
ranking or ordering of the hints, so the system knows whattbigive first.

2. Marking hints that can be given to a user during the exercise a behavior-
istic or epistemic. Existing hints can be annotated that way. Let’s observe the
ones in this exercise part:

Exercise: Determine the currently used NIS server.

<?php auswertung_teiluebungen(

??? I/ On vulabl: check-program-output PROGRAM=ypwhich OU TPUT_SHOULD="vulabl’
/I Feedback: Does ypwhich(1) return ’vulabl'?
/I Hnt 1: What conmand prints the current NI'S server?
/I Hnt 2: Try running ypwhi ch(1)
/I Hnt 3: Does ypwhi ch(1) print 'vulabl ?
) ?>

The hints could be given in order, assuming that given epistehigh level hints
will lead to the proper associations in the student, whicbafrse assumes that
he has learned them already. If that’s not the case, the dddohwould give
the command to run. If that’s still not enough, another hionild also give the
expected results.

Different approaches to tutoring can be given, e.g. eithst §ive epistemic

hints and then behavioristic ones if the first hints do nad kegproper results. Or
the exercise text could be supplemented with the behatiohisits immediately

if needed, without any further action by the user.

In either case, the system would need to know what of what &isplecific hint

is. This could be told explicitly, e.g. by tagging the hints“8ehavioral” and
“Epistemic”:

Exercise: Determine the currently used NIS server.

<?php auswertung_teiluebungen(

??? [/ On vulabl: check-program-output PROGRAM=ypwhich OU TPUT_SHOULD="vulabl’
/I Feedback: Does ypwhich(1) return ‘vulabl'?
/I Epistemic Hint 1: What command prints the current NIS server?
/I Behavioral Hint 1: Try running ypwhich(1)
/I Behavioral Hint 2: Does ypwhich(1) print 'vulabl'?
) 7>

3. Handling transient states: The Virtual Unix Lab only observes the current
state of the exercise systems. If a transient event — e.gtt@nboeing pushed
and released — needs to be recorded, this is challengingedsutton may no
longer be pressed when the system’s state is observed. Hutien does not
have a permanent effect that can be determined later, oe éfflect is possibly

11.6. EXTENDING THE VUDSL FOR USER ADAPTION 269

reversed or changed at some point, drawing clear inferéaad®llenging. To
solve this problem, exercises should be setup in a way toahpton transient
events.

If this is not an option, increasing the intervals at which gystem examines
the exercise systems is an option to increase the likelibmegdtch the transient
event. Of course this still depends on the event itself —ig itery short-lived
it may be challenging to do busy-polling on the systems. i@j\iints here at
which time intervals such behavior would be required toleatech events can
be noted in the exercise.

Here is an outline how to realize an exercise of pressing @tvdor (say) 10
seconds. Besides pressing the button, the exercise wogldreepreparation
and finalizing steps:

Part 1: Make sure you know where The Button is.

Part 2: Press The Button and hold it down for 10 seconds, then
release it.

Part 3: Continue with the exercise.

After part 3, observing the system will not show if the buttess pressed or not.
Taking the time between part 1 and 3 as “critical section” loaused to notify
the system that increased awareness is required, i.e.hiaacanning interval
in which check scripts are ran should be set to somethingvasi$o5 seconds.
Later on, a check would be needed to see if the test for therbutas ever true,
and then act appropriately.

Here is an example that increments and decrements scaanith¢hen tests and
reacts whether the button was pushed after some time. Tée thanges to the
VUDSL are adding a “Scan” tag to increase check scan intervaset them to
the default for the exercise, and add a new PHP funatiswertung _teil-

uebung _ever() that does not print if the status of the named check was true
at the end of the exercise, but ifaverwas true, and give feedback accordingly:

Part 1: Make sure you know where The Button is.

<?php auswertung_teiluebungen(

??? I/ On vulabl: unix-check-process-running PROCESS=but tonprog
/I Feedback: Is the button-program running?
/I Hint: Start the “button”-program
/I Scan: 5s

); ?>

Part 2: Press The Button and hold it down for 10 seconds, then
release it.

<?php auswertung_teiluebungen _ever(

??? I/ On vulabl: check-button STATUS=pressed
/I Feedback: Was the button pressed for 10 seconds?
/I Hint: Press the button for 10 seconds.

) ?>

Part 3: Continue with the exercise.

<?php auswertung_teiluebungen(

270 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

??? I/ On vulabl: check-other
/I Feedback: The exercise was continued successfully!
/I Hint: Relax!
/I Scan: def aul t

) 7>

11.7 Summary

This chapter discussed user adaption in the Virtual Unix, kath special attention to
establishing and maintenance of the user model that stafi@sriation about students,
an overview of the adaptive axes used and special attemtisinuctural and longitudi-
nal consistency. Applying these adaptions was discussqufsonalizing feedback to
the student, and a number of hints were given on how to extemestisting VUDSL
to give the exercise system more hints on how to handle usewim.

Many of the items discussed can be implemented with the VUDfaL is available

in the Virtual Unix Lab. Based on this implementation, fineihg of the precise

values to use in exercises, and what exact metrics to usethartold at this time.

Furthermore, on-line diagnosis would be of benefit for finghwed analysis. These
areas are expected to provide material for future research.

Chapter 12

Conclusion

The focus throughout this work was on defining a learningesydor system adminis-
tration. Emphasis was put on the architecture for resuifigation and on feedback to
the learner. After laying out the didactic foundations afteyn administration, the sys-
tem was described, realized, and evaluated. Advancedstlipitutoring and adaption
were discussed, building up on the basic Virtual Unix Laliesys

The result contains more work on the foundations of tutoengd didactics of system
administration as was originally expected. Still, a systems realized that is usable in
practice, and that can be used as foundation for future works

Further areas of work have been identified, most notablyhiegaf system adminis-
tration and realizing and tuning of tutoring and user adeptAdditional work should
be put into translations of the system from German to Endgisjuage, investigations
of virtualization techniques and their integration in tlepbbyment of the Virtual Unix
Lab, and creation of a theory of bugs for system administnedis a whole, or in parts.

As the system with its basic functionality has proven uskfuthe education of system
administration, another possible step for the future wéaldo market the system, e.g.
to supplement existing training situations as offered bjous companies. Companies
that could be interested include specific Unix vendors as ageihdependent training
institutes. The neccessary funding for future researchérateas named above could
be achieved that way.

Beyond that, it can be said that IT systems keep on growingimpdexity, and that
demand on system administrators increases accordingtywhth it, the contents that
need to be taught to them to cope with their workload. Thisgase in information
and requirements can only be solved by more and better edndatsystem adminis-
tration, and related tools like the Virtual Unix Lab.

271

272 CHAPTER 12. CONCLUSION

List of figures

11

1.2

13

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Instructions for the command line and a graphical ugerfaxce. Im-

age source: [Emzy Bilder Galerie, 2007] 5
Topics related to system administration. 6
Topics of informationscience 7

Behavioristic approach of teaching. Image Source:rg&rl998, p. 46] 25

The TOTE model. Image source: [Miller et al., 1960, p. 26]. . . . 28
Structure of the “System Administration” lecture 41
Thematic groups in the “System Administration” lecture. 42
Levels of difficulty in the “System Administration” lage 43
Examples help learning withouta computer 45
Change in learning paradigm with advancing level 47
Logging into the Virtual UnixLab 45
Entering dataforanewlogin 54
Welcome to the Virtual UnixLab 55
Booking an exercise: selecting date andtime. 56
Booking an exercise: selecting theexercise 57
Booking an exercise: confirmation 58
An exercise is prepared and waiting 58

273

274

LIST OF FIGURES

4.8

4.9

4.10

411

4.12

4.13

4.14

4.15

4.16

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

Configuring access to the lab machines 59
Waiting for start of exercisetime 60
Display of the exercisetext 61
Logging into lab machines forthe exercise 62
Endofexercise
Feedback on an exercisetaken 3
The initial implementation of the Virtual UnixLab 64
Accessingthelabclients 5
Software components of the Virtual UnixLab 66
Verifying on the semantic and pragmaticlayer 85
Step 0: Separate exercise text and verification chegitscr. 86
Exercise text with no associated checks, in plain ASCII... 88
Exercise text with no associated checks, rendered irbnefsser . . . 89
Step l: Preparation

Stepl:EXercise e
Step I: Verification o 93
Defining an exercise, step 1: general properties 94
Defining an exercise, step 2: which image to deploy on hvkab
machine 94
Defining an exercise, step 3: what checks to run on whathine . . 95
Extended web interface to enter parameters for cheigk sc. 99
Listing existingchecks 001
Possible parameters of a check script, and their ghdiseri 100
Exercise text and checks: a) uncoupled in step |, b)ledip step 1l . 103
Example exercise text with checkdata106

LIST OF FIGURES 275

6.16 Giving feedback on an exercise forasingleuser 108
6.17 Giving teacher/admin feedback for all users which t@olexercise . . 109

6.18 Defining an admin-only exercise to update the Solareganstep 1:
only “admin"maybook 112

6.19 Defining an admin-only exercise to update the Solar&yam step 2:
Solariswill be preinstalled, 112

6.20 Defining an admin-only exercise to update the Solaragim step 3:
the disk will be cleaned and put into an image file after the@ze . . 113

6.21 Stepll:Preparation 511
6.22 Stepll:Exercise. e 115
6.23 Step Il: Verification a1l
6.24 Stepll:Feedback 117
6.25 Preparing an exercise, part 1: Writing exercise tedthants 118

6.26 Preparing an exercise, part 2: Extracting hints intalzise and writ-
ing new text with check-numbers for feedback hints 118

6.27 Preparing an exercise, part 3: Comparing original aaddted exercise
text .o 119

6.28 Preparing an exercise, part 4: Moving the updated secimto place
andsavingtotheCMS, 119

6.29 The list of booked exercises contains both completedceses for
which feedback can be requested (“freigegeben: nicht-thakmwell
as uncompleted exercises that have not yet started (“frelggn: nein”) 121

6.30 Buttons for a) retrieving feedback on completed egessiand b) delet-
ing uncompleted exercise that have notyet started 121

6.31 VUDSL example for verifying one aspect of the exercise 123
6.32 VUDSL example for verifying multiple aspects of the ege in one go124

6.33 Various forms of non-linearexercises 126

7.1 Comparison of all scores between students’ first ancelastise . . . 135

7.2 Score of all first and last exercises ordered ascending 135

276

LIST OF FIGURES

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

Score of all first and last exercises ordered by first éserc 136

Comparison of a) NIS and b) NFS scores between studerstsafid

lastexercise 137
Score of first and last exercise ordered ascending fol@&)aNd b)

NFS EXEICISE o e e e e e 138
Score of first and last exercise ordered by first exeroisa)fNIS and

b) NFSexercise 139
Results of check-program-output 141
Results of check-file-contents 142
Results of unix-check-process-running 143
Results of netbsd-check-rcvar-set 144
Results of unix-check-file-owner 145
Results of check-file-exists 146
Results of netbsd-check-installed-pkg 147
Results of solaris-check-installed-pkg 148
Results of unix-check-user-exists 149
Results of check-directory-exists 150
Duration of all exercises: a) overview and b) zoomechwend of
EXEICISE i e 151
Duration of NIS exercises: a) overview b) zoomed to titead exercises152
Duration of NFS exercises: a) overview b) zoomed to tiokod exercises153
Comparison of durations of NIS and NFS exercises 154
Starttime of exercises o 541
Popularity of learning materials among students 163
Helpful learning material in the Virtual UnixLab 164
Impact of the “SA’ lecture on various topics of the Vatwnix Lab

EXEBICISES . . v v i e e e e 166

LIST OF FIGURES 277

7.25

8.1

8.2

8.3

9.1

9.2

9.3

9.4

9.5

10.1

10.2

10.3

104

10.5

10.6

10.7

111

Impact of the “SA” lecture notes on various topics of Wirtual Unix
Labexercises 167

Aspects of a didactic operation. Image source: [Werd@87, p. 397] 182

Taxonomy of behavioral diagnostic processes. ImagesoWWenger,
1987,p.372] . . o 197

Terms: Adaptive User Interfaces and Intelligent Irdegls. Image
source: [Dietrich et al., 1993, p. 14, Figure1] 204

System administration is like hitting a nail with a hamn&ometimes.

Image sources: [Bent Nail, 2007], [Morell, 2004] 212
Goals and sub-goals of the Network Information Systet8YN . . . 213
Goals and sub-goals of the Network File System (NFS) 214
Error distribution of check scripts 218
The Virtual Unix Lab with tutoring and adaption (new camnpnts in

bold) 220
Comparison of tutoring approaches, from best)toworst ——) . . 231
The path of incoming information 233
Possible course of an exercisedone,-=todo) 236

Going backward to find the latest (a) and next part beimdked on (b) 237

Learning prerequisites by a) interrupting and b) répga. 240
The current user interface: Menue structure 243
The current user interface: During the exercise 244

Structural and longitudinal consistency in the Viruaix Lab 251

278 LIST OF FIGURES

List of tables

2.1 Education of computer science at European univergitiesd 2007-

08-16] -« « o o v e e e

2.2 Education of system administration at universitieeft2007-08-16]
2.3 Harddisk image cloning software [cited 2007-08-18]

2.4 \Virtualization and emulation software [cited 2007D&-

7.1 Exercisepopularity

7.2 Check scripts and their usage in variouschecks

7.3 Distribution of exercise starttimes

279

280 LIST OF TABLES

Bibliography

[Abelson et al., 1985] Abelson, H., Sussman, G. J., and Sarssin (1985)Structure
and Interpretation of Computer Programm$/IT Press, Cambridge, MA, USA.
Available from: http://mitpress.mit.edu/sicp/full-text/book/
book.html [cited 2007-10-05].

[Adams and Erickson, 2001] Adams, D. R. and Erickson, C. {200reaching net-
working and operating systems to information systems rsajon SIGCSE '01:
Proceedings of the thirty-second SIGCSE technical symposn Computer Sci-
ence Educationpages 85—-89, New York, NY, USA. ACM Press.

[Adams and Laverell, 2005] Adams, J. C. and Laverell, W. @0&). Configuring
a multi-course lab for system-level projects. SIGCSE '05: Proceedings of the
36th SIGCSE technical symposium on Computer science eoloigaages 525-529,
New York, NY, USA. ACM Press.

[ADL Technical Team, 2004] ADL Technical Team. Sharable @oh Object
Reference Model (SCORM) Documentation Suite [online]. 00 [cited
2007-10-15]. Available from: http://www.adlnet.gov/downloads/
DownloadPage.aspx?ID=237

[Aho et al., 1988] Aho, A. V., Kernighan, B. W., and Weinberge. J. (1988).The
AWK Programming Languagdéddison Wesley, Boston, MA, USA.

[Aho et al., 2003] Aho, A. V., Sethi, R., and Ullman, J. D. (3)0Compilers. Princi-
ples, Techniques and Tool&ddison Wesley, Boston, MA, USA.

[Alexander, 1995] Alexander, C. (1995Eine Muster-SpracheLocker Verlag, Vi-
enna, Austria.

[Alva L. Couch and Gilfix, 1999] Alva L. Couch, D. and Gilfix, M1999). It's Ele-
mentary, Dear Watson: Applying Logic Programming To Cogeet System Man-
agement Processes. IMSA '99: Proceedings of the 13th USENIX conference on
System administratigmages 123-138, Boston, MA, USA. USENIX Association.

[Alvisi et al., 2002] Alvisi, L., Bhatia, K., and Marzullo, K2002). Causality tracking
in causal message-logging protocdlstributed Computing15(1):1-15.

281

282 BIBLIOGRAPHY

[Anderson et al., 2006] Anderson, D. S., Hibler, M., Stqller, Stack, T., and Lep-
reau, J. (2006). Automatic online validation of network figaration in the emulab
network testbed. IfProceedings of the Third IEEE International Conference on
Autonomic Computing (ICAC 2008)os Alamitos, CA, USA. IEEE Computer So-
ciety Press. Available fromhttp://www.cs.utah.edu/flux/papers/
linktest-icac06.pdf [cited 2007-10-05].

[Anderson and Scobie, 2002] Anderson, P. and Scobie, A.2R00CFG: The next
generation. IProceedings of the UKUUG Winter Conference 20B@ntingford,
UK. United Kingdom Unix User Group. Available fronfttp://www.lcfg.
org/doc/ukuug2002.pdf [cited 2007-10-05].

[Angelides and Paul, 1993] Angelides, M. C. and Paul, R.298). Towards a frame-
work for integrating intelligent tutoring systems and gagisimulation. InWSC
'93: Proceedings of the 25th conference on Winter simutatages 1281-1289,
New York, NY, USA. ACM Press.

[Baker et al., 2004] Baker, R. S., Corbett, A. T., KoedinderR., and Wagner, A. Z.
(2004). Off-task behavior in the cognitive tutor classroomnen students "game
the system”. InCHI '04: Proceedings of the SIGCHI conference on Human fiacto
in computing systempages 383—-390, New York, NY, USA. ACM Press.

[Ball, 1999] Ball, T., editor (1999).Proceedings of the 2nd Conference on Domain-
Specific LanguagesJSENIX Association, Boston, MA, USA.

[Baseline, 2007] BASELINE, editor. Frequently Asked Qimss about User Val-
idation: Questionnaires [online]. (2007) [cited 20074A%]. Available from:
http://www.ucc.ie/hfrg/baseline/questionnaires.html .

[Beale and Rogers, 2007] Beale, J. and Rogers, R. (20089sus Network Auditing
Syngress Publishing, Amsterdam, Netherlands.

[Beck, 1999] Beck, K. (1999)Extreme Programming ExplainedAddison Wesley,
Boston, MA, USA.

[Beck, 2002] Beck, K. (2002).Test Driven DevelopmentAddison Wesley, Boston,
MA, USA.

[Ben-Gal, 2007] Ben-Gal, I. (2007). Bayesian Networks. bmgBeri, F., Kenett, R.,
and Faltin, F., editorsEncyclopedia of Statistics in Quality and Reliabilitiohn
Wiley & Sons, Indianapolis, IN, USA.

[Bent Nail, 2007] Bent Nail. New & Used Building Supplies - @mstruction, De-
molution & Salvage [online]. (2007) [cited 2007-10- 05] dlable from: http:
/Iwww.bentnail.org/bennai/Profile.html

[Bentley, 1986] Bentley, J. (1986). Programming pearlstle.ilanguagesCommuni-
cations of the ACM29(8):711-721.

BIBLIOGRAPHY 283

[Berners-Lee et al., 1999] Berners-Lee, T., Fischetti, Mnd Dertouzos, M. L.
(1999). Weaving the Web: The Original Design and Ultimate DestinthefWorld
Wide Web by its InventoHarper San Francisco, San Francisco, CA, USA.

[Berners-Lee et al., 2001] Berners-Lee, T., Lassila, Od lendler, J. (2001). The
semantic webScientific American284(5):34-43.

[BGG, 2002] Bundesministeriumif Gesundheit und Soziale Sicherung, editor.
Gesetz zur Gleichstellung behinderter Menschen (BG@iline]. (2002)
[cited 2007-10-05]. Available from:http://bundesrecht.juris.de/
bundesrecht/bgg/

[BITV, 2002] Bundesministerium des Inneren, editgerordnung zur Schaffung bar-
rierefreier Informationstechnik nach dem Behinderterdiistellungsgesetz (BITV)
[online]. (2002) [cited 2007-10-05]. Available fronmttp://bundesrecht.
juris.de/bundesrecht/bitv/ .

[Boctor, 1999] Boctor, D. (1999)Microsoft Office 2000: Visual Basic for Applica-
tions FundamentalsMicrosoft Press, Redmond, WA, USA.

[Bonar et al., 1986] Bonar, J., Cunningham, R., and Schdlt£1986). An object-
oriented architecture for intelligent tutoring systemsOOPLSA '86: Conference
proceedings on Object-oriented programming systemsplages and applications
pages 269-276, New York, NY, USA. ACM Press.

[Border, 2007] Border, C. (2007). The development and depent of a multi-user,
remote access virtualization system for networking, sgcand system adminis-
tration classes. IBIGCSE '07: Proceedings of the 38th SIGCSE technical sympo-
sium on Computer science educatipages 576-580, New York, NY, USA. ACM
Press.

[Bortz and Dbring, 2002] Bortz, J. and &ing, N. (2002).Forschungsmethoden und
Evaluation fir Human- und SozialwissenschaftleBpringer Verlag, Heidelberg,
Germany.

[Brewer, 2007] Brewer, W. F. Learning Theory - Schema The-
ory [online]. (2007) [cited 2007-12-16]. Available from:
http://education.stateuniversity.com/pages/2175/
Learning-Theory-SCHEMA-THEORY .html

[Brooke, 1996] Brooke, J. (1996). A quick and dirty usapistale. In Jordan, P. W.,
Thomas, B., Weerdmeester, B. A., and McClelland, I. L.,@ditUsability Evalu-
ation in Industry Taylor & Francis, London, UK.

[Bruner, 1961] Bruner, J. S. (1961). The act of discovetgrvard Educational Re-
view, 31(1):21-32.

[Bruns and Gajewski, 2002] Bruns, B. and Gajewski, P. (2002)ltimediales Ler-
nen im Netz — Leitfaderiif Entscheider und PlanerSpringer Verlag, Heidelberg,
Germany.

284 BIBLIOGRAPHY

[Brusilovsky and Cooper, 2002] Brusilovsky, P. and Cooer. (2002). Domain,
task, and user models for an adaptive hypermedia perforensuggport system. In
IUI '02: Proceedings of the 7th international conferencelatelligent user inter-
faces pages 23—-30, New York, NY, USA. ACM Press.

[Bundesministeriumiir Bildung und Forschung, 2004] Bundesministeriuir Bil-
dung und Forschung, editor (2004)Kursbuch eLearning 2004: Produkte aus
dem Forderprogramm Neue Medien in der Bildung - HochschuBundesmin-
isterium fr Bildung und Forschung, Bonn, Germany. Available frohttp:
/Iwww.bmbf.de/pub/nmb_kursbuch.pdf [cited 2007-10-05].

[Burgess, 1995] Burgess, M. (1995). A site configurationieagComputing Systems
8(2):309-337. Available fromhttp://www.iu.hio.no/"mark/papers/
paperl.pdf [cited 2007-10-05].

[Burgess, 2000] Burgess, M. (2000). Theoretical systemimidtration. InLISA '00:
Proceedings of the 14th USENIX conference on System admfiug, pages 1-14,
Boston, MA, USA. USENIX Association.

[Burgess and Frisch, 2007] Burgess, M. and Frisch, A. (20B87fystem Engineer’s
Guide to Host Configuration and Maintenance Using CfengilkksSENIX Asso-
ciation, Boston, MA, USA. Available fromhttp://www.sage.org/pubs/
16_cfengine/ [cited 2007-10-05].

[Butz et al., 2006] Butz, C. J., Hua, S., and Maguire, R. B.O@0 A web-based
bayesian intelligent tutoring system for computer prograng. Web Intelligence
and Agent System(1):77-97.

[Buzan and Buzan, 2006] Buzan, T. and Buzan, B. (2006 Mind Map BookRan-
dom House, New York, NY, USA.

[Campbell and Cohen, 2005] Campbell, W. and Cohen, R. (2005ing system ad-
ministrator education in developing an IT degree in a compsitience department.
In SIGITE '05: Proceedings of the 6th conference on Informmatexhnology edu-
cation, pages 319-321, New York, NY, USA. ACM Press.

[Carbonell, 1970] Carbonell, J. R. (1970). Mixed-initietiman-computer instruc-
tional dialogues. Technical Report 1971, Bolt, Beranekldad/man, Cambridge.

[Carr and Goldstein, 1977] Carr, B. and Goldstein, I. P. @)9Dverlays: a Theory of
Modelling for Computer Aided Instruction. Technical Repal Memo 406 (Logo
Memo 40), Massachusetts Institute of Technology, CambritA, USA.

[Chaffin, 1992] Chaffin, R. (1992). The concept of a semarglation. In Lehrer,
A., editor,Frames, Fields and contrastpages 253-288. Lawrence Erlbaum Asso-
ciates, Publishers, Hillsdale, NJ, USA.

[Chambers, 1983] Chambers, J. M. (1983kraphical methods for data analysis
Wadsworth International Group, Belmont, CA, USA.

BIBLIOGRAPHY 285

[Chassell, 2004] Chassell, R. J. (2004n Introduction to Programming in Emacs
Lisp. Free Software Foundation, Boston, MA, USA.

[Chauvin, 1991] Chauvin, Y. (1991). MENIX: A Unix user adapte Interface.
SIGCHI Bullettin 23(4):64—65.

[Chin, 1983] Chin, D. N. (1983). Knowledge structures in th& unix consultant. In
Proceedings of the 21st annual meeting on Association foniZdational Linguis-
tics, pages 159-163, Morristown, NJ, USA. Association for Cotafanal Lin-
guistics.

[Chin, 1986] Chin, D. N. (1986). User modeling in uc, the unonsultant. InCHI
'86: Proceedings of the SIGCHI conference on Human factorsamputing sys-
tems pages 24-28, New York, NY, USA. ACM Press.

[Clark, 2000] Clark, D. Developing Instruction or Instrigrtal Design [online].
(2000) [cited 2007-10-05]. Available from:http://www.nwlink.com/
“donclark/hrd/learning/development.html .

[Cocke and Schwartz, 1970] Cocke, J. and Schwartz, J. TOj1®rogramming Lan-
guages and their Compiler€ourant Institute of Mathematical Sciences, New York
Universities, New York, NY, USA.

[Cole, 2005] Cole, J. (2005)Jsing Moodle O’Reilly, Sebastopol, CA, USA.

[Conati et al., 2002] Conati, C., Gertner, A., and VanLehn(2002). Using Bayesian
Networks to Manage Uncertainty in Student Modelingser Modeling and User-
Adapted Interaction12(4):371-417.

[Conlan et al., 2003] Conlan, O., Power, R., Higel, S., Ofigah, D., and Barrett,
K. (2003). Next generation context aware adaptive servitedSICT '03: Pro-
ceedings of the 1st international symposium on Informasiod communication
technologiespages 205-212. Trinity College Dublin.

[Cooper, 2004] Cooper, A. (2004The Inmates Are Running the AsyluBams Pub-
lishing, Indianapolis, IN, USA.

[Corbesero, 2003] Corbesero, S. G. (2003). Teaching syateimetwork adminis-
tration in a small college environmeniournal of Computing Sciences in Colleges
(JCSC) 19(2):155-163.

[Corbett and Anderson, 2001] Corbett, A. T. and AndersomR.X2001). Locus of
feedback control in computer-based tutoring: impact omieg rate, achievement
and attitudes. IICHI '01: Proceedings of the SIGCHI conference on Human f&cto
in computing systempages 245-252, New York, NY, USA. ACM Press.

[Corlett, 1991a] Corlett, J. A. (1991a). Epistemology ardezimental cognitive psy-
chology: A reply to fuller, schmitt, and greenwood\New ideas in Psychology
9:327-334.

286 BIBLIOGRAPHY

[Corlett, 1991b] Corlett, J. A. (1991b). Some connectioesueen epistemology and
cognitive psychologyNew ideas in Psycholog9:285-306.

[Cornell University, 2007] Cornell University. Program @view: Information Sci-
ence [online]. (2007) [cited 2007-10-05]. Available fronittp://www.
infosci.cornell.edu/about/ .

[CPAN, 2007] Comprehensive Perl Archive Network [onlin@]007) [cited 2007-10-
05]. Available from:http://www.cpan.org/

[CSTA, 2007] Homepage of the Computer Science Teachersciggm [online].
(2007) [cited 2007-10-05]. Available fronmttp://csta.acm.org/

[Cullingford, 1981] Cullingford, R. (1981). SAM. In SchanR. and Reisbeck, C.,
editors,Inside Computer Understandingawrence Erlbaum Associates, Publish-
ers, Hillsdale, NJ, USA.

[Cunningham, 2001] Cunningham, W. Manifesto for Agile 8afte Develop-
ment [online]. (2001) [cited 2007-12-22]. Available fromhttp://www.
agilemanifesto.org/

[Cycorp, 2007] Cycorp, editor. Cycorp inc. homepage [cllin(2007) [cited 2007-
12-12]. Available fromttp://www.cyc.com/

[Dagdilelis and Satratzemi, 1999] Dagdilelis, V. and Sa&eni, M. (1999). Didac-
tics too, not only technology. INTICSE '99: Proceedings of the 4th annual
SIGCSE/SIGCUE ITiCSE conference on Innovation and teolggolh computer
science educatigmpage 183, New York, NY, USA. ACM Press.

[Darbhamulla and Lawhead, 2004] Darbhamulla, R. and Ladhea(2004). Paving
the way towards an efficient learning management systemACIMI-SE 42: Pro-
ceedings of the 42nd annual Southeast regional confergrages 428-433, New
York, NY, USA. ACM Press.

[Davies et al., 2001] Davies, J. R., Gertner, A. S., LeshRith, C., Sidner, C. L., and
Rickel, J. (2001). Incorporating tutorial strategies iatointelligent assistant. Il
'01: Proceedings of the 6th international conference orlligent user interfaces
pages 53-56, New York, NY, USA. ACM Press. Available fromttp://www.
merl.com/reports/docs/TR2000-30.pdf [cited 2007-10-05].

[Derose, 1997] Derose, S. J. (199The SGML FAQ Book: Understanding the Foun-
dation of HTML and XML Klower Academic, Dordrecht, Netherlands.

[Deutsches Institutifr Normung, 2003] Deutsches Institutirf Normung, editor
(2003). DIN-Taschenbuch 354: Software-Ergonomigeuth Verlag, Berlin, Ger-
many.

[Dhanjani, 2004] Dhanjani, N. Writing nessus plugins [oel]l. (2004) [cited
2007-10-05]. Available from: http://www.oreillynet.com/pub/a/
security/2004/06/03/nessus_plugins.html .

BIBLIOGRAPHY 287

[di Forino, 1969] di Forino, A. C. (1969). Programming laiages. InAdvances in
Information Systems Sciena®lume I. Plenun Press, New York, NY, USA.

[Dietrich et al., 1993] Dietrich, H., Malinowski, U., #me, T., and Schneider-
Hufschmidt, M. (1993). State of the art in adaptive userrfates. In Schneider-
Hofschmidt, M., Kihme, T., and Malinowski, U., editorAdaptive User Interfaces
Elsevier Science Publishers, Amsterdam, Netherlands.

[Dijkstra, 1961] Dijkstra, E. W. (1961). On the Design of Muwge independent Pro-
gramming Languages. Technical Report MR 34, Stitching Misttical Centrum,
Amsterdam. Available fromhttp://www.cs.utexas.edu/users/EWD/
MCReps/MR34.PDF [cited 2007-10-20].

[Dike, 2006] Dike, J. (2006)User Mode Linux Pearson Studium Verlag, ivichen,
Germany.

[Dougherty and Robbins, 1997] Dougherty, D. and Robbing1897). Sed & Awk
O'Reilly, Sebastopol, CA, USA.

[Edwards et al., 1997] Edwards, P., Rivett, R., and McCall(1®97). Towards an
automotive safer subset of C. In Daniel, P., ediRmgceedings of the 16th Inter-
national Conference on Computer Safety, Reliability ancl8t/, pages 185-195,
Heidelberg, Germany. Springer Verlag.

[Eide et al., 2006] Eide, E., Stoller, L., Stack, T., Freide,and Lepreau, J. (2006).
Integrated scientific workflow management for the emulabwvaosk testbed. In
Proceedings of the 2006 USENIX Annual Technical Conferepages 363—368,
Boston, MA, USA. Available from: http://www.cs.utah.edu/flux/
papers/workflow-usenix06-base.html [cited 2007-10-05].

[Eikenbusch and Leuders, 2004] Eikenbusch, G. and Leudersgeditors (2004).
Lehrer-Kursbuch StatistikCornelsen Verlag Scriptor, Berlin, Germany.

[Elliston et al., 2000] Elliston, B., Gkioulas, Taylor, Try, and Vaughan (2000).
Autoconf, Automake and LibtodQue Publishing, Indianapolis, IN, USA.

[Emulab, 2007a] Emulab - Network Emulation Testbed Homédifeh (2007) [cited
2007-10-05]. Available fromhttp://www.emulab.net/

[Emulab, 2007b] Other Emulab Testbeds [online]. (2007etR2007-10-05]. Avail-
able from: http://www.emulab.net/docwrapper.php3?docname=
otheremulabs.html

[Emzy Bilder Galerie, 2007] Emzy Bilder Galerie. NT versusi¥J[online]. (2007)
[cited 2007-10-05]. Available fromhttp://www.emzy.de/gallery/fun/
NTvsUnix .

[Ernst, 2004] Ernst, T. (2004). Btyliche Szenarienif das Virtuelle Unix Labor.
Technical report, Fachhochschule Regensburg, Compuienc&cDepartment.

288 BIBLIOGRAPHY

[Evett, 1994] Evett, M. P. (1994)PARKA: A System for Massively Parallel Knowl-
edge RepresentatiofPhD thesis, University of Maryland.

[Fachhochschule Regensburg, 2007] Fachhochschule Rmggns Laboratory of
Communication Technologies [online]. (2007) [cited 2QAF05]. Available from:
http://comserver.th-regensburg.de/ .

[Fahrmeir, 2003] Fahrmeir, L. (2003)Statistik Springer Verlag, Heidelberg, Ger-
many.

[FernUniversiéit Hagen, 2007] FernUniveraitHagen. Virtuelles Informatik-Labor
[online]. (2007) [cited 2007-10-05]. Available from: http://pi7.
fernuni-hagen.de/vilab/

[Feyrer, 2001] Feyrer, H. Mit dem Regensburger Marathamst@r durch’s Ziel [on-
line]. (2001) [cited 2007-10-05]. Available fronfnttp://www.feyrer.de/
marathon-cluster/

[Feyrer, 2004a] Feyrer, H. (2004a). An Introduction to Syea Train-
ing in the Virtual Unix Lab. In EuroBSDCon 2004 Proceedignarl-
sruhe, Germany. Available fromhttp://www.feyrer.de/Texts/Own/
eurobsdcon2004-vulab-paper.pdf

[Feyrer, 2004b] Feyrer, H. Virtuelles Unix Labor - Deploymi&ler Ubungsrechner
[online]. (2004) [cited 2007-10-05]. Available from:http://vulab.
fh-regensburg.de/feyrer/vulab/hubertf/deployment .

[Feyrer, 2004c] Feyrer, H. Virtuelles Unix Labor - Designnlme]. (2004)
[cited 2007-10-05]. Available fromhttp://vulab.fh-regensburg.de/
“feyrer/vulab/hubertf/design

[Feyrer, 2004d] Feyrer, H. Virtuelles Unix Labor - Firewdthnline]. (2004)
[cited 2007-10-05]. Available fromhttp://vulab.fh-regensburg.de/
“feyrer/vulab/hubertf/firewall

[Feyrer, 2004€] Feyrer, H. Virtuelles Unix Labor - Kursemgi[online]. (2004)
[cited 2007-10-05]. Available fromhttp://vulab.fh-regensburg.de/
“feyrer/vulab/hubertf/kursengine .

[Feyrer, 2004f] Feyrer, H. Virtuelles Unix Labor - Netboo¢t8p [online]. (2004)
[cited 2007-10-05]. Available fromhttp://vulab.fh- regensburg de/
“feyrer/vulab/hubertf/netboot-doku.txt

[Feyrer, 2005] Feyrer, H. (2005). Didaktik der Systemadstiation. In GUUG
Fruhjahrsfachgesgch 2005 ProceedingsMunich, Germany. Available from:
http://vulab.fh-regensburg.de/ feyrer/vulab/hubertf /
guug-sa-did.pdf [cited 2007-10-05].

BIBLIOGRAPHY 289

[Feyrer, 2007a] Feyrer, H. (2007a). Education of System #dstration. Tech-
nical report, Computer Science Department of the Universit Applied Sci-
ences Regensburg and Information Science Department ofUttieersity of
Regensburg. Available from: http://www.feyrer.de/Texts/Own/
article-vulab-didactics.pdf [cited 2007-12-04].

[Feyrer, 2007b] Feyrer, H. g4u - Harddisk Image Cloning f@sHonline]. (2007)
[cited 2007-10-05]. Available fromhttp://www.feyrer.de/g4u/

[Feyrer, 2007c] Feyrer, H. (2007c). Impact of the VirtualixJhab: Evaluation
of end-of-semester papers tests. Technical report, Canp8tience De-
partment of the University of Applied Sciences Regensburnd &formation
Science Department of the University of Regensburg. Abgldrom: http:
Iwww feyrer.de/Texts/Own/article-vulab-eval-papers pdf
[cited 2007-12-04].

[Feyrer, 2007d] Feyrer, H. (2007d). Implementing exercesilt verification for the
Virtual Unix Lab. Technical report, Computer Science Dépent of the University
of Applied Sciences Regensburg and Information Scienceafbent of the Uni-
versity of Regensburg. Available fromhttp://www.feyrer.de/Texts/
Own/article-vulab-resver-implementation.pdf [cited 2007-12-
04].

[Feyrer, 2007€e] Feyrer, H. Systemadministration unterxUanline]. (2007) [cited
2007-10-05]. Available fromhttp://www.feyrer.de/SA/

[Fink et al., 1998] Fink, J., Kobsa, A., and Nill, A. (1998).oWards a user-adapted
information environment on the web. Rroceedings of Multimedia and Stan-
dardization 98 Paris, France. Available fromhttp://www.isr.uci.edu/
"kobsa/papers/1998-must-kobsa.pdf [cited 2007-10-05].

[Finkel et al., 1995] Finkel, R., Ortega, L., and Shanklin,(C995). Advanced Pro-
gramming Languages Addison Wesley, Boston, MA, USA. Available from:
ftp://aw.com/cseng/authors/finkel/apld [cited 2007-10-05].

[Fischer, 1993] Fischer, G. (1993). Shared knowledge inpecative problem-
solving systems — integrating adaptive and adaptable coemgs. In Schneider-
Hofschmidt, M., Kihme, T., and Malinowski, U., editor8daptive User Interfaces
Elsevier Science Publishers, Amsterdam, Netherlands.

[Fischer, 2001] Fischer, S. (2001). Course and exerciseesging using metadata
in adaptive hypermedia learning system¥urnal on Educational Resources in
Computing (JERIG)1(1es):5.

[Fischer and Steinmetz, 2000] Fischer, S. and Steinmet@2@0). Automatic cre-
ation of exercises in adaptive hypermedia learning systdmslYPERTEXT '00:
Proceedings of the eleventh ACM on Hypertext and hypermpdges 49-55, New
York, NY, USA. ACM Press.

290 BIBLIOGRAPHY

[Fletcher, 1975] Fletcher, J. D. (1975). Modeling of learivecomputer-based in-
struction.Journal of Computer-Based Instructioh:118-126.

[Floyd, 1979] Floyd, R. W. (1979). The paradigms of programgnCommunications
of the ACM 22(8):455-460.

[Fowler et al., 1987] Fowler, C. J. H., Macaulay, L. A., and{®ksup, S. (1987). An
evaluation of the effectiveness of the adaptive interfacelute (aim) in matching
dialogues to users. IRroceedings of Third Conference of the British Computer
Society Human-Interactio on People and computerpHlbes 345-359, Cambridge,
MA, USA. Cambridge University Press.

[Frank, 1969] Frank, H. (1969Kybernetische Grundlagen des Lernens und Lehrens
AGIS Verlag, Baden-Baden, Germany.

[Freedman et al., 2000] Freedman, R., Ali, S. S., and McRoWWS(2000). What
is an intelligent tutoring system? Intelligence 11(3):15-16. Available from:
http://www.cs.niu.edu/"freedman/papers/link2000.pdf [cited
2006-05-16].

[Friedl, 1997] Friedl, J. E. F. (1997Mastering Regular Expression®©’Reilly, Se-
bastopol, CA, USA.

[Gagre, 1967] Gagé, R. (1967). The conditions of learning Holt, Rinehart and
Winston, New York, NY, USA.

[Gagre and Briggs, 1974] Ga@gnR. M. and Briggs, L. J., editors (1974rinciples
of instructional designHolt, Rinehart and Winston, New York, NY, USA.

[Garcia et al., 2007] Garcia, P., Amandi, A., Schiaffino, &gd Campo, M. (2007).
Evaluating Bayesian networks’ precision for detectingdstus’ learning styles.
Computers & Education49(3):794-808. Available fromhttp://dx.doi.
0rg/10.1016/j.compedu.2005.11.017 [cited 2007-12-17].

[Garrett, 2005] Garrett, J. J. Ajax: A new approach to webliappions [online].
(2005) [cited 2007-10-05]. Available fromhttp://www.adaptivepath.
com/publications/essays/archives/000385.php

[Garrett and Nash, 2001] Garrett, L. and Nash, J. C. (20019suds in Teaching
the Comparison of Variability to Non-Statistics Studentslournal of Statis-
tics Education 9(2):12-16. Available from:http://www.amstat.org/
publications/jse/vOn2/garrett.html [cited 2007-10-05].

[Gediga et al., 1999] Gediga, G., Hamborg, K.-C., arith3ch, I. (1999). The iso-
metrics usability inventory: An operationalisation of 8241-10. Behaviour and
Information Technologyl18:151-164.

[Genesereth et al., 1982] Genesereth, M., Kehler, T., Baykinin, T., Friedland, P.,
Miller, J., Miller, M., Soloway, E., and Tennant, H. (1982ntelligent assistance

BIBLIOGRAPHY 291

for complex systems. IACM 82: Proceedings of the ACM '82 conferenpage
124, New York, NY, USA. ACM Press.

[Gl, 2007] Gesellschaftifr Informatik, editor. Informatik und Ausbildung / Di-
daktik der Informatik (IAD) [online]. (2007) [cited 20070105]. Avail-
able from: http://www.gi-ev.de/gliederungen/fachbereiche/
informatik-und-ausbildung-didaktik-der-informatik-i ad/ .

[Gibbs, 1997] Gibbs, A. (1997). Focus Groujgocial Research Updaté9.

[Glickstein, 2004] Glickstein, B. (2004).Writing GNU Emacs Extensions: Editor
Customizations and Creations with Lisp’Reilly, Sebastopol, CA, USA.

[Gosling and McGilton, 1996] Gosling, J. and McGilton, H. eldava Language
Environment White Paper [online]. (1996) [cited 2007-1]-0 Available from:
ftp://ftp.javasoft.com/docs/papers/langenviron-pdf. zip .

[Government of the United Kingdom, 2001] Government of theted Kingdom, ed-
itor (2001). Special Educational Needs and Disability Act 2001 (SENDAhe
Stationery Office, London, UK.

[Gruber, 2008] Gruber, T. (2008). Ontology. Encyclopedia of Database Systems
Springer Verlag, Heidelberg, Germany.

[Guruprasad et al., 2005] Guruprasad, S., Ricci, R., anddap J. (2005). In-
tegrated network experimentation using simulation andlatiom. In Proceed-
ings of the first International Conference on Testbeds anse&eh Infrastruc-
tures for the Development of Networks and Communities €mtmbm 2005)
Trento, Italy. Available fromhttp://www.cs.utah.edu/flux/papers/
simem-tridentcomO5a.pdf [cited 2007-10-05].

[Haake et al., 2004] Haake, J., Schwabe, G., and Wessnegditbys (2004) CSCL-
Kompendium. Lehr- und Handbuch zum computeruriteatgn kooperativen Ler-
nen Oldenbourg Verlag, nchen, Germany.

[Haberlandt, 1999] Haberlandt, K. (1999 uman MemoryAllyn & Bacon, Boston,
MA, USA.

[Hall, 2007] Hall, J. M. (2007). Beachhead: Beneath theaef Linux Journal
2007(154):16.

[Hamilton, 2007] Hamilton, B. Rosetta Stone for Unix [ordin (2007) [cited 2007-
10-05]. Available from:ttp://bhami.com/rosetta.html .

[Hammer and Elby, 2000] Hammer, D. and Elby, A. (2000). Episblogical re-
sources. In Fishman, B. J. and O’Connor-Divelbiss, S. Rtpeq International
Conference of the Learning Sciences — Facing the Challenfj€&omplex Real-
World Settingspages 4-5, University of Michigan, Ann Arbor, USA.

292 BIBLIOGRAPHY

[Harms et al., 2002] Harms, I., Schweibenz, W., and Strobe(2002). Usability
Evaluation von Web-Angeboten mit dem Usability-Index. Proceedings der 24.
DGI-Online-Tagung 2002 - Content in Contektankfurt am Main, Germany.

[Harper and Norman, 1993] Harper, B. D. and Norman, K. L. @9%mproving user
satisfaction: The questionnaire for user interactiorséattion. InProceedings of
the 1st Annual Mid-Atlantic Human Factors Conferenpages 224—228, Virginia
Beach, VA, USA.

[Heer et al., 2004] Heer, J., Good, N. S., Ramirez, A., DaMs, and Mankoff, J.
(2004). Presiding over accidents: system direction of huawion. InCHI '04:
Proceedings of the SIGCHI conference on Human factors inpoimg systems
pages 463-470, New York, NY, USA. ACM Press. Available frohitp://
jheer.org/publications/2004-Direction-CHI.pdf [cited 2007-
10-05].

[Heffley and Meunier, 2004] Heffley, J. and Meunier, P. (2009an Source Code
Auditing Software Identify Common Vulnerabilities and Bsédl to Evaluate Soft-
ware Security? IfProceedings of the 37th Annual Hawaii International Coefere
on System Sciences (HICSS'0gage 90277. Available fromhttp://doi.
ieeecomputersociety.org/10.1109/HICSS.2004.1265654

[Hegner, 2000] Hegner, S. J. (2000). Plan realization fonglex command interac-
tion in the unix help domainArtificial Intelligence Reviewl4(3):181-228.

[Heinichen et al., 2007] Heinichen, J., Raue, S., and AssnAan Dokumentation
rootlab [online]. (2007) [cited 2007-10-05]. Availableom: http://vsr.
informatik.tu-chemnitz.de/backup3/Rootlab.pdf .

[Helic et al., 2004] Helic, D., Maurer, H., and Scerbakov,(R004). Combining in-
dividual tutoring with automatic course sequencing in wgtems. InWWW Alt.
'04: Proceedings of the 13th international World Wide Wehfecence on Alternate
track papers & posterpages 456—-457, New York, NY, USA. ACM Press.

[Herold, 2005] Herold, R. (2005)Managing an Information Security and Privacy
Awareness and Training Programuerbach Publications, New York, NY, USA.

[Hewlett Packard, 2007] Hewlett Packard. HP TestDriveifwail (2007) [cited 2007-
10-05]. Available from:http://www.testdrive.hp.com/

[Heyer et al., 1990] Heyer, G., Kese, R., Oemig, F., and Dubdd 990). Knowledge
representation and semantics in a complex domain: the atixal language help
system goethe. IRroceedings of the 13th conference on Computational Istgg
pages 361-363, Morristown, NJ, USA. Association for Corapiahal Linguistics.

[Hibler et al., 2004] Hibler, M., Ricci, R., Stoller, L., Dug, J., Guruprasad, S., tim
Stack, Webb, K., and Lepreau, J. (2004). Feedback-diredtadilization tech-
nigues for scalable network experimentation. TechnicakeNeTN-2004-02, Flux
Group, University of Utah.

BIBLIOGRAPHY 293

[Hilfinger, 1981] Hilfinger, P. N. (1981)Abstraction mechanisms and language de-
sign PhD thesis, Carnegie Mellon University, Pittsburgh, PSAJ

[Hill, 1988] Hill, G. (1988). A rule-based software engimigy tool for code anal-
ysis. InProceedings of the Seventh Annual International Phoenixf€@ence on
Computers and Communicatigneages 291-295.

[Hoare, 1973] Hoare, C. A. R. (1973). Hints on programmimglaage design. Tech-
nical Report AIM-224, STAN-CS-73-403, Stanford Univeysifrtificial Intelli-
gence Laboratory, Computer Science Department.

[Holland and Skinner, 1961] Holland, J. G. and Skinner, §1861). The analysis of
behaviour McGraw Hill, New York, NY, USA.

[Hu etal., 2004] Hu, J., Meinel, C., and Schmitt, M. (2004gI€Flab it security: an
architecture for interactive lessons for security edweatiIn SIGCSE '04: Pro-
ceedings of the 35th SIGCSE technical symposium on Conguiégice educatign
pages 412-416, New York, NY, USA. ACM Press.

[Huang et al., 2004] Huang, Y.-W,, Yu, F,, Hang, C., TsaiHC,Lee, D.-T., and Kuo,
S.-Y. (2004). Security and privacy: Securing web applaratode by static analysis
and runtime protection. IProceedings of the 13th International Conference on
World Wide Webpages 40-52.

[Hubwieser, 2000] Hubwieser, P. (2000pidaktik der Informatik Springer Verlag,
Heidelberg, Germany.

[Humbert, 2006] Humbert, L. (2006Didaktik der Informatik - mit praxiserprobtem
Unterrichtsmaterial Teubner Verlag, Wiesbaden, Germany.

[Hylton et al., 2005] Hylton, K., Rosson, M. B., Carroll, J.Mind Ganoe, C. (2005).
When news is more than what makes headlinesCM Crossroads: Human-
Computer Interaction12(2):13-17. Available fromhttp://www.acm.org/
crossroads/xrds12-2/rss.html [cited 2007-10-05].

[IABG, 2007] iABG, editor. Das V-Modef - Homepage [online]. (2007) [cited
2007-11-05]. Available fromhttp://www.v-modell.iabg.de/

[ISO 16071, 2003] 1SO 16071 (2003). 1SO 16071:2003(E) — Rogaics of human-
system interaction — Guidance on accessibility for humamyguter interfaces. In
[Deutsches Institutifr Normung, 2003].

[ISO 23270, 2006] ISO 23270 (2006). ISO 23270:2006(E) — C#hdumge
Specification. Available from: http://standards.iso.org/ittf/
PubliclyAvailableStandards/c042926 1SO_IEC_23270_
2006(E).zip [cited 2007-11-19].

[ISO 8879, 1986] 1SO 8879 (1986).1SO 8879:1986(E) — Information Processing -
Text and Office Systems - Standard Generalized Markup Laegi8GML) Inter-
national Organization for Standardization, Geneva, S#liénd.

294 BIBLIOGRAPHY

[1ISO 9241, 2003] 1SO 9241 (2003). ISO 9241:2003(D) — Ergoisctre Anforderun-
gen fur Burotatigkeiten mit Bildschirmgeiten. In [Deutsches Institufif Normung,
2003].

[Jakob Nielsen, 1997] Jakob Nielsen (1997). The Use and 9disfi Focus Groups.
IEEE Software14(1):94-95.

[Jerinic and Devedzic, 2000] Jerinic, L. and Devedzic, @Q@). The friendly intelli-
gent tutoring environmenSIGCHI Bull, 32(1):83-94.

[Johansson, 2002] Johansson, P. (2002). User modelingiogdsystems. Techni-
cal Report SAR 02-2, St. Anna. Available fromttp://www.ida.liu.se/
“ponjo/downloads/papers/johansson_sar2002.pdf [cited 2007-
10-05].

[Johnson, 1975] Johnson, S. C. (1975). Yacc: Yet Another @llemCompiler. Tech-
nical Report Computing Science Technical Report No. 32, Bdoratories, Mur-
ray Hill, NJ, USA.

[Kamp and Watson, 2007] Kamp, P.-H. and Watson, R. N. M. J&lsnfining the
omnipotent root [online]. (2007) [cited 2007-10-05]. Adile from: http://
docs.freebsd.org/44doc/papers/jail/jail.html .

[Kautz and Selman, 1992] Kautz, H. and Selman, B. (1992).nridtey as satisfia-
bility. In ECAI '92: Proceedings of the 10th European conference oifidid
intelligence pages 359-363, Indianapolis, IN, USA. John Wiley & Sons.

[Kay, 1972] Kay, A. (1972). A personal computer for childrehall ages. InPro-
ceedings of the ACM National Conferen&oston, MA, USA. Available from:
http://www.mprove.de/diplom/gui/Kay72a.pdf [cited 2007-11-19].

[Keller and Kriger, 2001] Keller, H. and Kmger, S. (2001). ABAP Obijects:
Einfuhrung in die SAP-Programmierun@AP Press, Bonn, Germany.

[Kerner and Freedman, 1990] Kerner, J. T. and Freedman, @980). Developing
intelligent tutoring systems with a Hypermedia Object-&hntelligent Educator
(HOBIE). In IEA/AIE '90: Proceedings of the 3rd international confecenon
Industrial and engineering applications of artificial itfigence and expert systems
pages 890-897, New York, NY, USA. ACM Press.

[Kernighan and Ritchie, 1988] Kernighan, B. W. and Ritctie,M. (1988). The C
Programming LanguagePrentice-Hall, Upper Saddle River, NJ, USA.

[Kernighan and Ritchie, 1994] Kernighan, B. W. and Ritclide M. (1994). The M4
Macro Processor. 14.4BSD Programmer’s Supplementary Docume@t&eilly,
Sebastopol, CA, USA.

[Kernighan, 1975] Kernighan, K. W. (1975). RATFOR — A Preggesor for a Ratio-
nal Fortran.Software Practice and Experiencg395—406.

BIBLIOGRAPHY 295

[Kerres, 1998] Kerres, M., editor (1998Multimediale und telemediale Lernumge-
bungen: Konzeption und Entwicklun@ldenbourg Verlag, Mnchen, Germany.

[Kevitt, 2000] Kevitt, P. M. (2000). The oscon operatingtgys consultantArtificial
Intelligence Reviewl4(1-2):89-119.

[Kirsch, 2003] Kirsch, S. M. (2003). Frames, Scripts andchBlarechnical report, In-
stitut fur Kommunikationsforschung und Phonetik, Rheinischedfidd-Wilhems-
Universitat Bonn. Available from: http://sites.inka.de/moebius/
docs/framesscripts-ho.pdf [cited 2007-12-16].

[Kobsa, 1990] Kobsa, A. (1990). User modeling in dialog eyst: potentials and
hazardsAl & Society 4(3):214-231. Available fromhttp://www.isr.uci.
edu/"kobsa/papers/1990-AlSoc-kobsa.pdf [cited 2007-10-05].

[Kobsa, 1993] Kobsa, A. (1993). Adaptigitund Benutzermodellierung in interak-
tiven Softwaresystemen. Froceedings der 17. Fachtagunigr fKiinstliche Intel-
ligenz Informatik Aktuell series, pages 152-166, Heidelbergin@y. Springer
Verlag. Available from: http://www.isr.uci.edu/"kobsa/papers/
1993-DKIT93-kobsa.pdf [cited 2007-10-05].

[Kobsa, 1995] Kobsa, A. (1995). Supporting user interfdoesll through user mod-
eling. InProceedings of the Sixth International Conference on Hw@amputer
Interaction volume I, pages 155-157. Available frofmttp://www.ics.uci.
edu/"kobsa/papers/1995-HCI95-kobsa.pdf [cited 2007-10-05].

[Kobsa, 1999] Kobsa, A. (1999). Adapting web informatiordisabled and elderly
users. InProceedings of WebNet 99- World Conference on the WWW agchéft
volume 2, pages 32-37, Charlottesville, VA, USA. Assooiatfor the Advance-
ment of Computing in Eduction (AACE). Available fronfttp://www.ics.
uci.edu/"kobsa/papers/1998-NRHM-kobsa.pdf [cited 2007-10-05].

[Kobsa, 2001a] Kobsa, A. (2001a). Generic user modelintgesys. User Modeling
and User-Adapted Interactiori1(1-2):49-63.

[Kobsa, 2001b] Kobsa, A. (2001b). Tailoring privacy to wseneeds. InUM
'01: Proceedings of the 8th International Conference on fiUgideling 2001
pages 303-313, Heidelberg, Germany. Springer Verlag. |aai from: http:
IIwww.ics.uci.edu/"kobsa/papers/2001-UMO01-kobsa.pdf [cited
2007-10-05].

[Kobsa, 2002] Kobsa, A. (2002). Personalized hypermedikisternational privacy.
Communications of the ACM5(8):64-67.

[Kobsa et al., 2001] Kobsa, A., Koenemann, J., and Pohl, @012 Personalized Hy-
permedia Presentation Techniques for Improving Onlinet@ner Relationships.
The Knowledge Engineering Revigl$:111-155.

296 BIBLIOGRAPHY

[Kobsa and Schreck, 2003] Kobsa, A. and Schreck, J. (2003)ivady through
pseudonymity in user-adaptive system®CM Transansactions on Internet Tech-
nology (TOIT) 3(2):149-183. Available fromhttp://www.ics.uci.edu/
"kobsa/papers/2003-TOIT-kobsa.pdf [cited 2007-10-05].

[Kolovski et al., 2004] Kolovski, V., Jordanov, S., and Gdly, J. (2004). An elec-
tronic learning assistant. I@ompSysTech '04: Proceedings of the 5th interna-
tional conference on Computer systems and technolpgeges 1-6, New York,
NY, USA. ACM.

[Kolter and Maloof, 2006] Kolter, J. Z. and Maloof, M. A. (260 Learning to detect
and classify malicious executables in the wilthe Journal of Machine Learning
Research7:2721-2744.

[Kopp and Michl, 2000] Kopp, H. and Michl, W. (2000)leiLe - Neue Medien in der
Lehre Luchterhand Literaturverlag,d{n, Germany.

[Krause et al., 1993] Krause, J., Mittermaier, E., and Himann, A. (1993). The
Intelligent Help System COMFOHELRIser Modeling and User-Adapted Interac-
tion, 3(3):249-282.

[Kuhlen and Laisiepen, 2004] Kuhlen, R. and Laisiepen, KO@. Grundlagen der
praktischen Information und Dokumentatidgaur Verlag, Minchen, Germany, 5th
edition.

[Kuncicky and Wynn, 1998] Kuncicky, D. and Wynn, B. A. (1998%hort Topics in
System Administration #4: Educating and Training SystemiAigtrators: A Sur-
vey. USENIX Association, Boston, MA, USA.

[Kuyper, 1998] Kuyper, M. (1998Knowledge Engineering for Usability?hD thesis,
University of Amsterdam, Roetersstraat 15, 1018 WB Amsterd\Netherlands.

[Kolle, 2007] Kolle, R. (2007). Java lernen in virtuellen Teams Verlag Werner
Hulsbusch, Boizenburg, Germany.

[Lave and Wenger, 1991] Lave, J. and Wenger, E. (19%ijuated learning Cam-
bridge University Press, Cambridge, MA, USA.

[Ledgard, 1971] Ledgard, H. F. (1971). Ten mini-languagestudy of topical issues
in programming language#&CM Computing Surveys (CSUR)3):115-146.

[Lenat and Guha, 1990] Lenat, D. B. and Guha, R. V. (199(Building Large
Knowledge-Based Systems: Representation and Inferenice @©YC Project Ad-
dison Wesley, Boston, MA, USA.

[Lenat and Guha, 1991] Lenat, D. B. and Guha, R. V. (1991). &wdution of cycl,
the cyc representation languagdGART Bull. 2(3):84-87.

BIBLIOGRAPHY 297

[Lepreau, 2006] Lepreau, J. (2006). Emulab: Recent Worlgddry Work. InPro-
ceedings of the DETER Community Meetid&C/ISI. Available from:http://
www.cs.utah.edu/flux/testbed-docs/emulab-dev-jan06. pdf
[cited 2007-10-05].

[Lesk and Schmidt, 1975] Lesk, M. E. and Schmidt, E. (197%x LA Lexical An-
alyzer Generator. Technical Report Computing SciencerlieahReport No. 39,
Bell Laboratories, Murray Hill, NJ, USA.

[Lévenez, 2007] Evénez, E. Unix History [online]. (2007) [cited 2007-10-0BYail-
able from:http://www.levenez.com/unix/ .

[LireFire Labs, 2007a] Description Internet Lab [onling2007) [cited 2007-10-05].
Available from: http://www.livefirelabs.com/info/internet_
lab.htm

[LireFire Labs, 2007b] Homepage of LifeFire Labs [onlmé?.OO?) [cited 2007-10-
05]. Available from:http://www.livefirelabs.com/

[LireFire Labs, 2007c] UNIX System Administration coursefarmation [online].
(2007) [cited 2007-10-05]. Available fromhttp://www.livefirelabs.
com/course_info/UNIX_System_Administration.htm

[Lytle et al., 2005] Lytle, D. P., Resendez, V., and August(05). Security in the
residential network. IfProceedings of the 33rd annual ACM SIGUCCS conference
on User services SIGUCCS 'Opages 197-201.

[L tticke and Helbig, 2004] utticke, R. and Helbig, H. (2004). Practical
courses in distance education supported by an interactitering compo-
nent. In Benrath, U. and 8gs, A., editors,3rd EDEN Research Work-
shop, Bibliotheks- und Informationssystem der UnivatsiDldenburg (BIS):
Supporting the Learner in Distance Education and E-Leagnipages 441—
447. Available fromttp://pi7.fernuni-hagen.de/papers/luett/
luett-2004-eden-bis.pdf [cited 2007-10-05].

[Ma and Nickerson, 2006] Ma, J. and Nickerson, J. V. (2006andts-on, simulated,
and remote laboratories: A comparative literature revié@W Computing Surveys
(CSUR) 38(3).

[Madhavapeddy et al., 2007] Madhavapeddy, A., Ho, A., Deeda Scott, D., and
Sohan, R. (2007). Melange: creating a "functional” inteér&CM SIGOPS Oper-
ating Systems Revie@l(3):101-114.

[Manaris and Pritchard, 1993] Manaris, B. Z. and Pritchdrdy. (1993). Construct-
ing natural language interface applications to operatysesns. INCSC '93: Pro-
ceedings of the 1993 ACM conference on Computer scigragges 425-432, New
York, NY, USA. ACM Press.

298 BIBLIOGRAPHY

[Manaris et al., 1994] Manaris, B. Z., Pritchard, J. W., armhinick, W. D. (1994).
Developing a natural language interface for the unix ojregasystem. SIGCHI
Bullettin, 26(2):34—40.

[Mandl et al., 1994] Mandl, H., Gruber, H., and Renkl, A. (499 Situiertes Lernen
in multimedialen Lernumgebungen. In Issing, L. J. and K&mB., editors|nfor-
mation und Lernen mit Multimedigpages 167-178. Psychologie Verlags Union,
Weinheim, Germany.

[Mata-Toledo and Reyes-Garcia, 2002] Mata-Toledo, R. Al Beyes-Garcia, C. A.
(2002). A model course for teaching database administratith personal oracle
8i. Journal of Computing Sciences in Colleges (JGSCJ3):125-130.

[Matsumoto, 2001] Matsumoto, Y. (2001Ruby In A NutshellO'Reilly, Sebastopol,
CA, USA.

[Matthews et al., 2000] Matthews, M., Pharr, W., Biswas, & Neelakandan, H.
(2000). Uscsh: An active intelligent assistance systdmtificial Intelligence Re-
view, 14(1-2):121-141.

[Mayer, 2001] Mayer, A. (2001).Shell-Programmierung in Unix Computer und
Literatur Verlag, Bblingen, Germany.

[Mayo and Mitrovic, 2001] Mayo, M. and Mitrovic, A. (2001). @@imising ITS Be-
haviour with Bayesian Networks and Decision Thedngernational Journal of Ar-
tificial Intelligence in Education12:124-153. Available fromhttp://aied.
inf.ed.ac.uk/abstracts/Vol_12/mayo.html [cited 2007-12-17].

[McGill et al., 1978] McGill, R., Tukey, J. W., and Larsen, W. (1978). Variations
of boxplots. The American Statisticiar82(1):12-16.

[McNab, 2004] McNab, C. (2004).Network Security AssessmenO’Reilly, Se-
bastopol, CA, USA.

[Medvidovic and Rosenblum, 1997] Medvidovic, N. and Rosenh D. S. (1997).
Domains of concern in software architectures and architectiescription lan-
guages. IrProceedings of the Conference on Domain-Specific Langu&gega
Barbara, California, USA. Available from:http://www.usenix.org/
publications/library/proceedings/dsl97/medvidovic.h tml .

[Mernik et al., 2005] Mernik, M., Heering, J., and Sloane,M.. (2005). When and
how to develop domain-specific language&CM Computing Surveys (CSUR)
37(4):316-344.

[Merrill, 1983] Merrill, D. (1983). Component display theo In [Reigeluth, 1983],
pages 279-333.

[Merrill et al., 1991] Merrill, D., Li, Z., and Jones, M. (199. Second Generation
Instructional Design (IB). Educational Technologyd0(1):7—11. Available from:
http://id2.usu.edu/Papers/ID1&ID2.PDF [cited 2007-10-05].

BIBLIOGRAPHY 299

[Meunier, 1995] Meunier, R. (1995). The pipes and filtershdecture. InPattern
Languages of Program Desigmpages 427-440. Addison Wesley, Boston, MA,
USA.

[Michaud et al., 2000] Michaud, L. N., McCoy, K. F., and Peamgton, C. A. (2000).
An intelligent tutoring system for deaf learners of writtenglish. InAssets '00:
Proceedings of the fourth international ACM conference saigtive technologies
pages 92—-100, New York, NY, USA. ACM Press.

[Miller et al., 1960] Miller, G. A., Galanger, E., andiBram, K. H. (1960) Plans and
the structure of behavioHolt, Rinehart and Winston, New York, NY, USA.

[Minsky, 1975] Minsky, M. A. (1975). Framework for represiryg knowledge. In
Winston, P. H., editorThe Psychology of Computer Visigoages 211-277. Mc-
Graw Hill, New York, NY, USA.

[Moodle, 2007] Moodle. A Free, Open Source Course ManagérSgatem for
Online Learning [online]. (2007) [cited 2007-10-05]. Aladile from: http:
[ivww.moodle.org/

[Morell, 2004] Morell, A. Motion Study of Hammer on Lead [oné]. (2004)
[cited 2007-10-05]. Available fromhttp://www.abelardomorell.net/
recentwork/Motion_Study_Hammer_full.jpg

[Morris, 1938] Morris, C. W. (1938). Foundations of the theof signs. In Neurath,
0., editor, International Encyclopedia of Unified Sciendgniversity of Chicago
Press, Chicago, MI, USA.

[Nakatani et al., 1986] Nakatani, L. H., Egan, D. E., Ruedisl.. W., Hawley, P. M.,
and Lewart, D. K. (1986). TNT: A talking tutor 'n’ trainer faeaching use of
interactive computer systems. @HI '86: Proceedings of the SIGCHI conference
on Human factors in computing systerpages 29-34, New York, NY, USA. ACM
Press.

[Narain, 2005] Narain, S. (2005). Network Configuration Mgament via Model
Finding. In Proceedings of the 19th Large Installation System Admmatish
(LISA) ConferenceSan Diego, California, USA.

[Nast, 2006] Nast, J. (2006)ldea Mapping John Wiley & Sons, Indianapolis, IN,
USA.

[Nathan, 1990] Nathan, M. J. (1990). Empowering the studerispects for an un-
intelligent tutoring system. I€HI '90: Proceedings of the SIGCHI conference on
Human factors in computing systemsiges 407—414, New York, NY, USA. ACM
Press.

[Nessus, 2007] Nessus —the network vulnerability scaromgir]e]. (2007). Available
from: http://www.nessus.org/

300 BIBLIOGRAPHY

[Nielsen, 1994] Nielsen, J. (1994)sability EngineeringMorgan Kaufman Publish-
ers, San Francisco, CA, USA.

[Nielsen, 2001] Nielsen, J. (2001pesigning Web UsabilityMarkt+Technik Verlag,
Munchen, Germany.

[Nipkow and von Oheimb, 1998] Nipkow, T. and von Oheimb, (298). Javgght is
type-safe — definitely. IfProceedings of the 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languag&sn Diego, California, USA.

[Nixsys, 2007] Nixsys. Public Access UNIX System (PAUS)ljoge]. (2007) [cited
2007-10-05]. Available fromhttps://nixsyspaus.org/

[nmap, 2007] Nmap — free security scanner for network egpion & security audits
[online]. (2007) [cited 2007-10-05]. Available frorhttp://www.insecure.
org/nmap/index.html

[Nodenot et al., 2004] Nodenot, T., Marquesaz€&., Laforcade, P., and Sallaberry,
C. (2004). Model based engineering of learning situatiensafiaptive web based
educational systems. WWW Alt. '04: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posteages 94-103, New
York, NY, USA. ACM Press.

[Norman, 2007] Norman, D. (2007). The next ui breakthrougbmmand linesin-
teractions 14(3):44-45.

[Norman, 2002] Norman, D. A. (2002Jhe Design of Everyday Thing3asic Books,
New York, NY, USA.

[Nosekabel, 2005] Bisekabel, H. (2005)Mobile Education GITO Verlag, Berlin,
Germany.

[openQRM, 2007] openQRM — The open source systems manag@tagorm [on-
line]. (2007) [cited 2007-10-05]. Available fromhttp://www.opengrm.
org/ .

[Ossanna and Kernighan, 1976] Ossanna, J. F. and KernigBanW. (1976).
Nroff/troff user's manual. Technical Report CSTR #54, AT8EIl Laboratories,
Murray Hill. Available from: http://cm.bell-labs.com/cm/cs/cstr/
54.ps.gz [cited 2007-10-05].

[Papert, 1982] Papert, S. (198Mindstorms: Kinder, Computer und neues Lernen
Birkhauser Verlag, Basel, Switzerland.

[Patcha and Park, 2007] Patcha, A. and Park, J.-M. (2007)ovenview of anomaly
detection techniques: Existing solutions and latest teldyical trends.Computer
Networks 51(12):3448-3470.

BIBLIOGRAPHY 301

[Patil and Kobsa, 2005] Patil, S. and Kobsa, A. (2005). Rsvan collabo-
ration: Managing impression. IProceedings of the First International
Conference on Online Communities and Social Computinas Vegas, NV,
USA. Available from: http://www.ics.uci.edu/"kobsa/papers/
2005-ICOCSC-kobsa.pdf [cited 2007-10-05].

[Pawlow, 1972] Pawlow, I. P., editor (1972Die bedingten ReflexeKindler Verlag,
Munchen, Germany.

[PhpESP, 2007] PHP Easy Survey Package [online]. (2007¢dcR007-10-05].
Available from: http://phpesp.sourceforge.net/

[Piaget, 1967] Piaget, J. (1967)Six psychological studiesRandom House, New
York, NY, USA.

[PLDI, 2007] PLDI, A. S. Programming language design andlengentation (pldi)
[online]. (2007) [cited 2007-10-05]. Available fronmttp://www.acm.org/
sigplan/pldi.htm

[PLUS, 2007] PLUS, editor. Large-Scale Knowledge Repregem: The PARKA
Project [online]. (2007) [cited 2007-12-12]. Availablefn: http://www.cs.
umd.edu/projects/plus/Parka/ .

[Poskanzer, 2007] Poskanzer, J. The extended portablepitoolkit (pbmplus) [on-
line]. (2007) [cited 2007-10-05]. Available fromhttp://www.acme.com/
software/pbmplus/

[Postel, 1981] Postel, J. (1981). RFC 793: Transmissiortt@bRrotocol. Available
from: ftp://ftp.internic.net/rfc/rfc793.txt [cited 2007-10-05].

[Pratt and Zelkowitz, 2001] Pratt, T. W. and Zelkowitz, M. (2001). Programming
Languages: Design and ImplementatioRrentice-Hall, Upper Saddle River, NJ,
USA.

[Pressey, 1926] Pressey, S. L. (1926). A simple apparatighwiives tests and scores
- and teachesSchool and Socief23(586):373—-376.

[Pressey, 1927] Pressey, S. L. (1927). A machine for aufortegiching of drill ma-
terial. School and Societ25(645):549-552.

[Pruitt and Grudin, 2003] Pruitt, J. and Grudin, J. (2003rd®nas: practice and the-
ory. InDUX '03: Proceedings of the 2003 conference on Designingifar expe-
riences pages 1-15, New York, NY, USA. ACM Press.

[Prumper and Anft, 2006] Rmper, J. and Anft, M. Fragebogen ISONORM
9241/10 [online]. (2006) [cited 2007-10-05]. Availableorn: http://www.
ergo-online.de/site.aspx?url=html/software/verfahre n
zur_beurteilung_der/fragebogen_isonorm_online.htm

302 BIBLIOGRAPHY

[Public Access Networks Corporation, 2007] Public Accesstwérks Corporation.
Panix Shell Services [online]. (2007) [cited 2007-10-0&}ailable from: http:
/Iww.panix.com/shell.html

[py, 2007] py — Write parser programs in perl [online]. (2D@aited 2007-10-05].
Available from:http://perl.plover.com/py/

[Quilici et al., 1986] Quilici, Dyer, and Flowers (1986). Ag: An intelligent unix
advisor. InProceedings of the 7th European Conference on Atrtificiadlligence
(ECAI), Volume 1) pages 33-38, Brighton, England.

[Quilici, 2000] Quilici, A. (2000). Using justification ptdrns to advise novice unix
users.Atrtificial Intelligence Reviewl4(4-5):403—-420.

[Quillian, 1967] Quillian, M. R. (1967). Word concepts. aetry and simulation of
some basic semantic capabiliti€&ehavioral Sciencel2:410-430.

[Quillian, 1988] Quillian, M. R. (1988). Semantic memorp. Minsky, M., editor,Se-
mantic information processingages 216-270. MIT Press, Cambridge, MA, USA.

[Ramming, 1997] Ramming, C., editor (1997Rroceedings of the Conference on
Domain-Specific Languages October 15-1JSENIX Association, Boston, MA,
USA.

[Rawls and Hagen, 1998] Rawls, R. R. and Hagen, M. A. (1988}olisp Program-
ming: Principles and Technique®’'Reilly, Sebastopol, CA, USA.

[Raymond, 2003] Raymond, E. S. (2003)he Art of UNIX ProgrammingAddison
Wesley, Boston, MA, USA. Available fromhttp://www.fags.org/docs/
artu/ [cited 2007-10-05].

[Reductive Labs, 2007a] Reductive Labs. Cfengine vs. Pufpdine]. (2007)
[cited 2007-10-05]. Available fromhttp://reductivelabs.com/trac/
puppet/wiki/CfengineVsPuppet

[Reductive Labs, 2007b] Reductive Labs. Puppet [onlir2)0F) [C|ted 2007-10-05].
Available from: http://puppet.reductivelabs.com/

[Reed, 2007] Reed, D. IP Filter [online]. (2007) [cited 26D00-05]. Available from:
http://coombs.anu.edu.au/"avalon/ .

[Reigeluth, 1983] Reigeluth, C., editor (1983)nstructional-Design Theories and
Models Lawrence Erlbaum Associates, Publishers, Hillsdale NgA.

[Reigeluth and Stein, 1983] Reigeluth, C. and Stein, F. 8)98he elaboration theory
of instruction. In [Reigeluth, 1983], pages 335-382.

[Rice, 2006] Rice, W. (2006)Moodle E-Learning Course Developmeiftackt Pub-
lishing Limited, Birmingham, UK.

BIBLIOGRAPHY 303

[Rich, 1979] Rich, E. (1979). User Modeling via Stereotyp@sgnitive Psychology
3:329-354.

[Richey, 1986] Richey, R., editor (1986)The theoretical and conceptual bases of
instructinal design Kogan Page, London, UK.

[Robberecht, 2007] Robberecht, R. (2007). Interactivelinear learning envi-
ronments. The Electronic Journal of e-Learning (EJEL$(1):59-68. Avail-
able from: http://www.ejel.org/Volume-5/v5-i1/Robberecht.
pdf [cited 2008-11-24].

[Root-Lab, 2007a] Hardwareausstattung Root-Labor [@jlin(2007) [cited 2007-
10-05]. Available from: http://www.tu-chemnitz.de/informatik/
friz/pool/374/hardware.php

[Root-Lab, 2007b] Nutzungshinweise Root-Labor [online](2007) [cited 2007-
10-05]. Available from: http://www.tu-chemnitz.de/informatik/
friz/pool/374//nutzung.php

[Rossum and Drake, 2003] Rossum, G. V. and Drake, F. L. (200®) Introduc-
tion to Python Network Theory, Bristol, UK. Available fromhttp://www.
network-theory.co.uk/python/manual/ [cited 2007-10-05].

[Rossum and Fred L. Drake, 2003] Rossum, G. V. and Fred L. &rak(2003).The
Python Language Referendéetwork Theory, Bristol, UK. Available fromhittp:
/Iwww.network-theory.co.uk/python/language/ [cited 2007-10-
05].

[Ryan, 1991] Ryan, B. (1991). Dynabook revisited with alay.kBYTE Magazing
16(2):203-.

[Salus, 1994] Salus, P. H. (1994)A Quarter Century of UNIX Addison Wesley,
Boston, MA, USA.

[Sattari et al., 2007] Sattari, S., Backhaus, W., and Heginih (2007). The web-
based knowledge map: the combination of practise-orieatedscientific knowl-
edge. INWBED’07: Proceedings of the sixth conference on IASTEDrat&onal
Conference Web-Based Educatiggages 475-480, Anaheim, CA, USA. ACTA
Press.

[Schank, 1972] Schank, R. C. (1972). Conceptual Dependeéndyeory of Natural
Language Understandin@.ognitive Psychologyd(4):pages 532—631.

[Schank and Abelson, 1975] Schank, R. C. and Abelson, R9?5(1 Scripts, plans,
and knowledge. IfProceedings of the 4th International Joint Conference otifiAr
cial Intelligence

304 BIBLIOGRAPHY

[Schaumann, 2004] Schaumann, J. (2004). Netbsd/desktamlal$e worksta-
tion solutions. In EuroBSDCon 2004 Proceedingpages 141-159, Karl-
sruhe, Germany. Available fronhttp://www.netbsd.org/jschauma/
netbsd-desktop.pdf [cited 2007-10-05].

[Schneier, 2005] Schneier, B. (2005Applied Cryptography John Wiley & Sons,
Indianapolis, IN, USA.

[Schubert and Schwill, 2004] Schubert, S. and Schwill, A042). Didaktik der In-
formatik Spektrum Akademischer Verlag, Heidelberg, Germany.

[Schulmeister, 2002] Schulmeister, R. (200Rgrnplattformenir das virtuelle Ler-
nen Oldenbourg Verlag, nchen, Germany.

[Schulmeister, 2007] Schulmeister, R. (200G rundlagen hypermedialer Lernsys-
teme Oldenbourg Verlag, Minchen, Germany, 4. edition.

[Schuman, 2007] Schuman, L. Perspectives on InstructiorhatVre the prob-
lems and strengths of these theories? [online]. (2007)dci2007-10-
05]. Available from: http://edweb.sdsu.edu/courses/edtec540/
Perspectives/Perspectives.html

[Seidel and Lipsmeier, 1989] Seidel, C. and Lipsmeier, A8d). Computerun-
terstitzes Lernen — Entwicklungen diglichkeiten, PerspektivenVerlag fur Ange-
wandte Psychologie, Stuttgart, Germany.

[Serway and Jewett, 2004] Serway, R. A. and Jewett, J. WAR®hysics for Scien-
tists and EngineersThomson Brooks/Cole, Belmont, CA, USA, 6th edition.

[Shah and Kumar, 2002] Shah, H. and Kumar, A. N. (2002). Artogpsystem for pa-
rameter passing in programming languaged.TIBSE '02: Proceedings of the 7th
annual conference on Innovation and technology in compstence educatign
pages 170-174, New York, NY, USA. ACM Press.

[Shannon and Weaver, 1949] Shannon, C. E. and Weaver, WO)1Bde mathemati-
cal theory of communicatiorlUniversity of lllinois Press, Urbana, IL, USA.

[Shneiderman, 2004] Shneiderman, B. (20@®signing the User Interfacéddison
Wesley, Boston, MA, USA, 4th edition.

[Sietal., 2006] Si, N.-K., Weng, J.-F., and Tseng, S.-SO60 Building a Frame-
Based Interaction and Learning Model for U-Learnihgcture Notes in Computer
Science4159:796-805.

[SIGCSE, 2007] Homepage of the ACM Special Interest Grouomputer Science
Education [online]. (2007) [cited 2007-10-05]. Availalitem: http://www.
sigcse.org/

BIBLIOGRAPHY 305

[Skinner, 1947] Skinner, B. F. (1947). 'Superstition’ irethigeon.Journal of Exper-
imental Psychology38:168—172. Available fromhttp:/psychclassics.
yorku.ca/Skinner/Pigeon/ [cited 2007-10-05].

[Skinner, 1968] Skinner, B. F. (1968)The technology of teachingB. F. Skinner
Foundation, Cambridge, MA, USA.

[sol.net Network Services, 2007] sol.net Network ServiceSolaria Public Access
UNIX [online]. (2007) [cited 2007-10-05]. Available frontttp://www.sol.
net/jgreco/solaria/ .

[SourceForge, 2007] SourceForge. Document E07-04: Rr§kell Service [on-
line]. (2007) [cited 2007-10-05]. Available fromhttp://sourceforge.
net/docman/display_doc.php?docid=4297&group_id=1#sh ell

[Specht and Kobsa, 1999] Specht, M. and Kobsa, A. (1999)rdwtion of domain
expertise and interface design in adaptive educationatimyedia. INnTUE Com-
puting Science Report 99-07: Proceedings of the Second shpkon Adap-
tive Systems and User Modeling on the World Wide ,Velmes 89-93, Eind-
hoven, Netherlands. Eindhoven University of Technologyaikable from:http:
/Iwwwis.win.tue.nl/asum99/specht/specht.html [cited 2007-10-
05].

[Spinellis, 2001] Spinellis, D. (2001). Notable designtpats for domain-specific
languagesThe Journal of Systems and Softwdr6(1):91-99.

[Spinellis, 2003] Spinellis, D. (2003)Code ReadingAddison Wesley, Boston, MA,
USA.

[Spinellis, 2007] Spinellis, D. How to embed citations imgiams [online]. (2007)
[cited 2007-10-05]. Available fromhttp://www.spinellis.gr/blog/
20070204/index.html

[Spinellis and Gritzalis, 2000] Spinellis, D. and GritzliD. (2000). A domain-
specific language of intrusion detection. Pmoceedings of the 1st ACM Work-
shop on Intrusion Detection Systen#CM. Available from: http://www.
spinellis.gr/pubs/conf/2000-CCS-DSLID/html/paper.ht ml.

[Spinellis and Guruprasad, 1997] Spinellis, D. and Gursada V. (1997).
Lightweight languages as software engineering tools. Ptaceedings of the
Conference on Domain-Specific Languag&anta Barbara, California, USA.
Available from: http://www.usenix.org/publications/library/
proceedings/dsl97/spinellis.html

[Staab and Studer, 2004] Staab, S. and Studer, R. (2a8dhdbook on ontologies
Springer Verlag, Heidelberg, Germany.

[Stevens, 1992] Stevens, R. W. (1992dvanced Programming in the Unix Environ-
ment Addison Wesley, Boston, MA, USA.

306 BIBLIOGRAPHY

[Stevens, 1994] Stevens, R. W. (1994CP/IP lllustrated, Volume 1: The Protocols
Addison Wesley, Boston, MA, USA.

[Stroustrup, 1994] Stroustrup, B. (1994he Design and Evolution of C++Addison
Wesley, Boston, MA, USA.

[Su et al., 2007] Su, Y.-Y., Attariyan, M., and Flinn, J. (200 Autobash: improv-
ing configuration management with operating system caysatialysis. INSOSP
'07: Proceedings of twenty-first ACM SIGOPS symposium orrddipg systems
principles pages 237—-250, New York, NY, USA. ACM.

[Suebnukarn and Haddawy, 2004] Suebnukarn, S. and Had&a¢2004). A collab-
orative intelligent tutoring system for medical problemskd learning. 11Ul '04:
Proceedings of the 9th international conference on Irgeliit user interfacepages
14-21, New York, NY, USA. ACM Press.

[Sun Microsystems, 2007] Sun Microsystems. BigAdmin: 8sl@ontainers (Zones)
[online]. (2007) [cited 2007-10-05]. Available fronhttp://www.sun.com/
bigadmin/content/zones/

[Super Dimension Fortress, 2007] Super Dimension FortreS®F Public Access
UNIX System - Free Shell Account and Shell Access [onlin2DQ7) [cited 2007-
10-05]. Available from:http://sdf.lonestar.org/

[Taylor and Siemer, 1996] Taylor, S. J. E. and Siemer, J.§L9&nhancing simula-
tion education with intelligent tutoring systems. \MSC '96: Proceedings of the
28th conference on Winter simulatigmages 675-680, New York, NY, USA. ACM
Press.

[Teltzrow and Kobsa, 2004a] Teltzrow, M. and Kobsa, A. (2804Communication
of privacy and personalization in e-business.Proceedings of the 1st Workshop
WHOLES: A Multiple View of Individual Privacy in a Networkétrld, Stockholm,
Sweden. Available fromhttp://www.sics.se/privacy/wholes2004/
papers/teltzrow_kobsa.pdf [cited 2007-10-05].

[Teltzrow and Kobsa, 2004b] Teltzrow, M. and Kobsa, A. (20p4Impacts of user
privacy preferences on personalized systems: a comparstiny. InDesigning
personalized user experiences in eCommepages 315-332. Kluwer Academic
Publishers, Norwell, MA, USA. Available fronhttp://www.ics.uci.edu/
“kobsa/papers/2004-PersUXinECom-kobsa.pdf [cited 2007-10-05].

[The FreeBSD Documentation Project, 2007] The FreeBSD Baruation Project.
FreeBSD Handbook [online]. (2007) [cited 2007-10-05]. Wadale from: http:
/lwww.freebsd.org/doc/en_US.1SO8859-1/books/handboo k/ .

[The GNOME Project, 2007] The GNOME Project, editor. ATK - dsssibil-
ity Toolkit [online]. (2007) [cited 2007-10-05]. Availabl from: http://
developer.gnome.org/doc/API1/2.0/atk/index.html

BIBLIOGRAPHY 307

[The KDE Project, 2007] The KDE Project, editor. KDE Accdsiéty Project [on-
line]. (2007) [cited 2007-10-05]. Available fronfttp://accessibility.
kde.org/

[The Linux Foundation, 2007] The Linux Foundation. Lab Aittes [online]. (2007)
[cited 2007-10-05]. Available from:http://old.linux-foundation.
org/lab_activities/

[The NetBSD Foundation, 2007] The NetBSD Foundation. RiskInetbsd how-to
[online]. (2007) [cited 2007-10-05]. Available fronhttp://www.NetBSD.
org/Documentation/network/netboot/ .

[The Open Group, 2004] The Open Group (2008)ngle Unix SpecificationAmer-
ican National Standards Institute, 1430 Broadway, New YdiK 10018, USA.
IEEE Std 1003.1, 2004 Edition. Available fronhttp://www.opengroup.
org/onlinepubs/007904975/toc.htm [cited 2007-10-05].

[The PHP Project, 2007] Hojtsy, G., editor. PHP Manual [o@]i (2007) [cited 2007-
10-05]. Available from:ttp://www.PHP.net/

[Thomas, 2000] Thomas, S. B. (2000). College Students andatity
Law. The Journal of Special Educatipr33(4):248-257. Available from:
http://www.ldonline.org/ld_indepth/legal_legislativ e/
college_students_and_dis_law.html [cited 2007-10-05].

[Thorndike, 1911] Thorndike, E. L. (1911Animal Intelligence MacMillan Publish-
ing, New York, NY, USA. Available fromhttp://psychclassics.yorku.
ca/Thorndike/Animal/ [cited 2007-10-05].

[Trolltech, 2007] Trolltech. Cross-Platform AccessityiliSupport in Qt 4 [online].
(2007) [cited 2007-10-05]. Available fromhttp://doc.trolltech.com/
4.0/gt4-accessibility.html

[Treek, 2005] Téek, D. (2005)Managing Informatino Systems Security and Privacy
Springer Verlag, Heidelberg, Germany.

[Tucek et al., 2007] Tucek, J., Lu, S., Huang, C., XanthosZ8ou, Y., Newsome,
J., Brumley, D., and Song, D. (2007). Sweeper: a lightwegd-to-end sys-
tem for defending against fast wormACM SIGOPS Operating Systems Reyiew
41(3):115-128.

[Tukey, 1977] Tukey, J. W. (1977).Exploratory data anlysis Addison Wesley,
Boston, MA, USA.

[Tulodziecki, 2000] Tulodziecki, G. (2000). Computerustitztes Lernen aus medi-
endidaktischer Sicht. In Kammerl, R., edit@omputerunterstiztes Lernenpages
53-72. Oldenbourg Verlag, dchen, Germany.

308 BIBLIOGRAPHY

[Tyler and Treu, 1989] Tyler, S. W. and Treu, S. (1989). Areiface architecture to
provide adaptive task-specific context for the udeternational Journal of Man-
Machine Studies30(3):303-327.

[University of Cypria, Department of Computer Science, 28J0University of Cy-
pria, Department of Computer Sciendépyaornpio UNIX ue SUN SolarigUnix
and Solaris lab) [online]. (2007) [cited 2007-10-05]. Awshie from: http:
IlIwww5.cs.ucy.ac.cy/Computing/en/Labs/solaris.html .

[University of Cypria, Department of Computer Science, Z800University of Cy-
pria, Department of Computer Science. New Users Guide toptiting Systems
[online]. (2007) [cited 2007-10-05]. Available fronhttp://www5.cs.ucy.
ac.cy/Computing/en/User_Guides/newuserguide.html .

[UsabilityNet, 2007] UsabilityNet, editor. Questionrairessources [online]. (2007)
[cited 2007-10-05]. Available from:http://www.usabilitynet.org/
tools/r_questionnaire.htm

[User Mode Linux, 2007] User Mode Linux. Home Page [onling2007) [cited
2007-10-05]. Available fromhttp://user-mode-linux.sourceforge.
net/ .

[VDI-Gesellschaft Entwicklung Konstruktion Vertrieb, 99] VDI-Gesellschaft En-
twicklung Konstruktion Vertrieb, editor (1990). Software-Ergonomie in der
BurokommunikationBeuth Verlag, Berlin, Germany.

[Versteegen, 2001] Versteegen, G. (20@W3s V-Modell in der PraxisdPunkt Verlag,
Heidelberg, Germany.

[Virtuelle Hochschule Baden-Wttemberg, 2007] Virtuelle Hochschule Baden-
Wiarttemberg. Verbund Virtuelles Labor [online]. (2007)tgd 2007-10-05].
Available from: http://www.vvl.de/VVL/index.html .

[Virtuelle Hochschule Bayern, 2001] Virtuelle HochschiBayern (2001). Verord-
nunguber die Virtuelle Hochschule Bayerhlochschulrecht in Bayerri180.

[Vollrath and Jenkins, 2004] Volirath, A. and Jenkins, 0q2). Using virtual ma-
chines for teaching system administratidlournal of Computing Sciences in Col-
leges (JCSG)20(2):287—292.

[W3C, 2004a] W3C, editor. OWL Web Ontology Language — Guidaliphe].
(2004) [cited 2007-12-11]. Available from:http://www.w3.0rg/TR/
owl-guide/

[W3C, 2004b] W3C, editor. Resource Description FramewBfRIf) [online]. (2004)
[cited 2007-12-11]. Available fromhttp://www.w3.org/RDF/

[Wahister et al., 1988] Wahister, W., Hecking, M., and Kemk€&. (1988).
SC: Ein intelligentes Hilfesystem Uf SINIX. In Gollan, B., Paul,

BIBLIOGRAPHY 309

W. J., and Schmitt, A., editors,Innovative Informationsinfrastrukturen.
Informatik-Fachberichte 184 Springer Verlag, Heidelberg, Germany. Avail-
able from: http://www.dfki.de/"wahlster/Publications/SC_
Ein_intelligentes_Hilfesystem_fuer_SINIX.pdf [cited 2007-10-
05].

[Wall et al., 2000] Wall, L., Christiansen, T., and Orwant,(3000). Programming
Perl. O'Reilly, Sebastopol, CA, USA.

[Wall et al., 1996] Wall, L., Christiansen, T., and Schwaikz L. (1996). Program-
ming Perl O'Reilly, Sebastopol, CA, USA.

[Watson, 1913] Watson, J. B. (1913). Psychology as the Beh&dst Views it. Psy-
chological Review20:158-177. Available fromhttp://psychclassics.
yorku.ca/Watson/views.htm [cited 2007-10-05].

[Weidenmann, 1993] Weidenmann, B. (199Bidagogische Psychologi®sycholo-
gie Verlags Union, Weinheim, Germany.

[Weise et al., 1994] Weise, D., Garfinkel, S., and Strassm&n editors (1994).
The UNIX Hater's Handbook IDG Books, Boston, MA, USA. Available
from: http://research.microsoft.com/"daniel/unix-haters.
html [cited 2007-10-27].

[Wenger, 1987] Wenger, E. (1987)Artificial Intelligence and Tutoring systems —
Computational and Cognitive Approaches to the Commurinatif Knowledge
Morgan Kaufman Publishers, San Francisco, CA, USA.

[Wexelblat, 1976] Wexelblat, R. L. (1976). Maxims for malant designers, or how
to design languages to make programming as difficult as Iplessin Proceedings
of the 2nd International Conference on Software Enginegipages 331-336, San
Francisco, CA, USA. IEEE Computer Society Press.

[Wiener, 1948] Wiener, N. (1948Cybernetics, or control and communication in the
animal and machineMIT Press, Cambridge, MA, USA.

[Wiggins, 1989] Wiggins, G. (1989). A True Test: Toward Maxethentic and Equi-
table AssessmenbDelta Phi Kappan70(9):7-11.

[Wikipedia, 2007] Wikipedia - the free encyclopedia [o®]n (2007) [cited 2007-10-
05]. Available from:http://www.Wikipedia.org/

[Wilensky et al., 1984] Wilensky, R., Arens, Y., and Chin,([@984). Talking to unix
in english: an overview of udCommunications of the ACN27(6):574-593.

[Wilensky et al., 1988] Wilensky, R., Chin, D. N., Luria, MMartin, J., Mayfield, J.,
and Wu, D. (1988). The berkeley unix consultant proje€omputer Linguistics
14(4):35-84.

310 BIBLIOGRAPHY

[Wirth, 1974] Wirth, N. (1974). On the design of programmilagguages. IriPro-
ceedings of IFIP Congress 7gages 23-30, Stokholm, Sweden.

[Witschital, 1990] Witschital, P. (1990)Intelligente Tutorielle Systeme in der Pro-
grammierausbildungPhD thesis, Technische UnivegdiBraunschweig.

[World Wide Web Consortium, 2007] World Wide Web Consortiweditor. Web Ac-
cessibility Initiative (WAI) [online]. (2007) [cited 20070-05]. Available from:
http://iww.w3.org/WAI/

[Yacef, 2004] Yacef, K. (2004). Making large class teachimgre adaptive with the
logic-ita. INCRPIT '04: Proceedings of the sixth conference on Austnadi@mput-
ing educationpages 343—-347, Darlinghurst, Australia, Australia. Aali&n Com-
puter Society.

[Yang, 2001] Yang, T. A. (2001). Computer security and intgaccomputer science
education. INCCSC '01: Proceedings of the sixth annual CCSC northeasten
ference on The journal of computing in small collegesges 233—246, Shelbyville,
IN, USA. Consortium for Computing Sciences in Colleges.

[Yin et al., 2000] Yin, J., Miller, M. S., loerger, T. R., Yed,, and Volz, R. A. (2000).
A knowledge-based approach for designing intelligent téaiming systems. In
AGENTS '00: Proceedings of the fourth international coaefee on Autonomous
agents pages 427-434, New York, NY, USA. ACM Press.

[zhang et al., 2007] Zhang, Q., Reeves, D. S., Ning, P., ard I§. P. (2007). An-
alyzing network traffic to detect self-decrypting explogde. InASIACCS '07:
Proceedings of the 2nd ACM symposium on Information, coenpuid communi-
cations securitypages 4—12, New York, NY, USA. ACM Press.

[Zheng et al., 2007] Zheng, W., Bianchini, R., and NguyenDT.(2007). Auto-
matic configuration of internet serviceBCM SIGOPS Operating Systems Reyiew
41(3):219-229.

[Zimmermann, 2003] Zimmermann, S. (2003). Webbasiertess-Wsanagement des
Virtuellen Unix Labors. Technical report, FachhochschRégensburg, Computer
Science Department.

[Zoulas, 2007] Zoulas, C. (2007). Private email commumicats of 2007-08-16
(Message ID20070816081952.F162156407 @rebar.astron.com).

Appendix A

Example exercise components

A.1 Exercise texts for users

The exercise texts displayed in this section are the plaing®en to the user for
practicing. They were the same for step | and Il of the Virtuaix Lab, and were

rendered from HTML into plain text usingynx -dump .

A.1.1 Network Information System (NIS) exercise

The following text displays the NIS exercise’s text:

Ubung: NIS Master und Client Setup

In dieser Ubung soll auf den beiden vulab-Rechner der Network
Information Service (NIS) installiert werden. Dabei wird a uf dem
Rechner "vulabl" der NIS-Master, auf dem Rechner "vulab2" d er

NIS-Client installiert.
1. Master (Solaris): vulabl

* Stellen Sie sicher dass die n otigen Pakete (SUNWypr, SUNWypu,
SUNWSsprot, ...) installiert sind.

* Setzen Sie den NIS-Dom &nenname auf "vulab" (/etc/defaultdomain &
domainname(1))

* Setzen Sie den Rechner mit "ypinit -m" als NIS Master auf

Sorgen Sie daf Ur dass die n otigen Serverprozesse (ypbind, ypserv,

...) beim booten gestartet werden.

Starten Sie die Serverdienste!

Welcher NIS-Server wird verwendet?

Welche Datei wird f Ur die Gruppen-Daten verwendet?

Welche Datei wird f ur die Passwort-Daten verwendet?

Uberpr Ufen Sie ob Gruppen- und Passwort-Informationen uber NIS

abgefragt werden k onnen.

* Vergleichen Sie den Passwort-Eintrag des Benutzers "vulab " im NIS
und in den /etc-Dateien. Was stellen Sie fest?

* Sorgen Sie daf uUr, dass die Passwort-Informationen k unftig in der
Datei /varlyp/passwd gehalten werden. Die existierenden L ogins

*

* ok ok k%

311

312 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

sollen dabei nicht ubernommen werden.

* Legen Sie im NIS eine Kennung ‘“ypuser® mit eindeutiger UID,
Home-Verzeichnis "/usr/homes/ypuser”, Korn-Shell als Lo gin-Shell,
und Passwort “ypuser" an.

* Stellen Sie sicher dass der User "ypuser" via finger(1l) sich tbar
ist

* Stellen Sie sicher dass sich der User "ypuser" via telnet, ss h und

ftp einloggen kann!
* Stellen Sie sicher, dass der User "ypuser" sein Passwort mit
yppasswd(1l) andern kann.

2. Client (NetBSD): vulab2

* Setzen Sie den Domainnamen auf den selben Namen wie beim
NIS-Master oben.

* |st das aufsetzen des Clients mit "ypinit -c
sinnvoll? Warum (nicht)?

* Stellen Sie sicher dass die n otigen Dienste (ypbind, ...) beim
booten gestartet werden.

* Starten Sie die Dienste!

* Welcher NIS-Server wird verwendet?

n otig? Ist es

+ Stellen Sie sicher dass die NIS Maps (group, hosts, ...) abge rufen
werden k dnnen

* Stellen Sie sicher dass die NIS-Benutzer mit finger(1) abge fragt
werden k onnen

* Stellen Sie sicher dass sich der oben angelegte Benutzer "yp user"
auf dem Client einloggen kann. Erstellen Sie das Home-Verze ichnis
dazu vorerst manuell.

* Betrachten Sie das Passwort-Feld der Passwort-Datei des Us ers

"ypuser" auf dem NIS Master!.

= Andern Sie das Passwort von "ypuser" vom Client aus im NIS auf
“mynlspw”.

* Betrachten Sie das Passwort-Feld der Passwort-Datei des Us ers
"ypuser" auf dem NIS Master erneut. Was stellen Sie fest?

3. Diverses

* Setzen Sie den "Full Name" des Benutzers "ypuser" auf "NIS

Testbenutzer". Verifizieren Sie das Ergebnis mit finger(1). Welche
Methoden zum setzen existieren auf dem NIS Master? Welche au f dem
NIS Client?

* Legen Sie eine NIS-Gruppe "benutzer" an, und machen Sie dies e zur
(prim aren) Gruppe des Benutzers "ypuser'. Welche Group-ID w ahlen
Sie? Warum?

* Legen Sie im Home-Verzeichnis des Benutzers ‘"ypuser' auf de m
Master und dem Client eine Datei an, und uberpr Ufen Sie, welcher

Gruppe sie geh ort.
* Sorgen Sie daf ur dass der Benutzer "ypuser' auf dem NetBSD-System

mittels su(l) root-Rechte erhalten kann. Er muss dazu (unte r
NetBSD) zus atzlich Mitglied der Gruppe “"wheel" sein.

* Wie bewerten Sie die Tatsache dass das root-Passwort allein e nicht
reicht, sondern auch die richtige ~ Gruppenzugeh origkeit

Voraussetzung f ur einen su(l) auf root ist? Vergleichen Sie
zwischen NetBSD, Solaris und Linux!

+* Der Rechner "tab" (IP-Nummer: 194.95.108.32) soll via NIS b ekannt
gemacht werden. Tragen Sie den Rechner auf dem Server in die
entsprechende Hosts-Datei ein, aktualisieren Sie die NIS- Map und
verifizieren Sie das Ergebnis mittels ypcat(1) und ping(1) sowohl

auf dem NIS-Master als auch auf dem NIS-Client.
Hinweise:

* Solaris-Pakete f ur bash und tcsh liegen in /cdrom, Installation
mit pkgadd(1).

* NetBSD-Pakete f Ur bash und tcsh (und weitere) liegen auf
ftp://ftp.de.netbsd.org/pub/NetBSD/packages/1.6.1/s parc/All,
Installation mit pkg_add(1).

A.l. EXERCISE TEXTS FOR USERS 313

A.1.2 Network File System (NFS) exercise
The following text displays the NFS exercises’s text:

Ubung: NFS Server und Client Setup

In dieser Ubung soll auf den beiden vulab-Rechner das Network File
System (NFS) installiert werden. Dabei wird auf dem Rechner "vulabl"
der NFS-Server, auf dem Rechner “vulab2" der NFS-Client ins talliert.

1. Server (Solaris): vulabl

Das Dateisystem /usr/homes soll f ur den zweiten Rechner 'vulab2’ per
NFS exportiert werden:

* Sichern Sie die Datei, in der bisher die NFS-Exports notiert sind
* Das Verzeichnis Jusr’lhomes soll f ur den Rechner "vulab2"
freigegeben werden. Tragen Sie dies in die richtige Datei ei n.

* Laufen die n 0Otigen Serverprozesse? Starten Sie sie ggf. mit Hilfe
der passenden Start-Scripten aus /etc/ *.d.

* Sorgen Sie daf uUr dass die Datei (neu) eingelesen wird

+ Uberpr Ufen Sie mit 'showmount -e' ob die Freigabe besteht!

2. Client (NetBSD): vulab2

Das Verzeichnis /usr/homes soll vom NFS-Server (vulabl) au f /usr/homes
gemountet werden:

* Existiert der Mountpoint /usr/homes auf dem Client?

* Sind Daten im Mountpoint enthalten?

+ Uberpr Ufen Sie mit ’'showmount -e' die NFS-Freigaben des
NFS-Servers ‘'vulabl’ (10.0.0.1)

* Untersuchen Sie die System-Defaults in /etc/defaults/rc. conf und
tragen Sie f Ur NFS nbtige Abweichungen in die Datei /etc/rc.conf
ein. Achten Sie auf rpc.lockd(8) und rpc.statd(8)!

* Starten Sie alle n otigen Hintergrundprozesse.

= Uberpr Ufen Sie, ob das Verzeichnis /usr/homes von vulabl testweis e
auf /mnt gemountet werden kann. Unmounten Sie es anschliess end
wieder!

* Sorgen Sie daf Ur daR das Verzeichnis /usr/homes vom NFS-Server
"vulabl" beim Systemstart auf /usr/homes gemountet wird, t ragen

Sie dies in die passenden Konfigurationsdatei ein
* Mounten Sie alle noch nicht gemounteten NFS-Verzeichnisse !
+ Uberpr Ufen Sie mit df(l) und mount(8) daR das Verzeichnis
gemountet ist!

3. Zugriffsrechte
3.1 Rechnerbasiert

* Legen Sie als root auf dem NIS-Client ein Verzeichnis
/usr/homes/nfsuser an! Wie reagiert das System, und warum?

* Lesen Sie auf dem NFS-Server die Manpage zu dfstab(4) und den
darin unter "SEE ALSO" verwiesenen Befehlen (etc.), und sor gen Sie
daf ur, dall Sie als root auf dem NFS-Client vollen Zugriff habe

* Machen Sie die n otige Anderung in /etc/dfs/dfstab.

* Lesen Sie die Datei neu ein!

* Welche Sicherheitsimplikationen hat der eben vorgenommen e
Konfigurationsschritt? Macht er in der Praxis Sinn? Wie kan n man
ihn umgehen?

* Legen Sie das Verzeichnis /usr’homes/nfsuser an!

3.2 Benutzerbasiert

Es soll ein Benutzer “nfsuser" auf beiden Systemen angelegt werden,
der auf jedem System lokal vermerkt ist (Login, Passwort etc . in

314 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

letc/...), das Home-Verzeichnis /usr/homes/nfsuser soll aber auf
beiden Rechnern mittels NFS verf ugbar sein!
* Legen Sie auf vulabl den User an: “useradd -d /usr’homes/nf suser
nfsuser”

* Legen Sie auf wvulab2 denselben User an: ‘“useradd -d
lusr/homes/nfsuser nfsuser”

* Geben Sie dem Benutzer auf beiden Systemen (getrennt) mitte Is
passwd(1) ein Passwort
* Geben Sie das Verzeichnis /usr’fhomes/nfsuser mittels chow n(1) dem

Benutzer "nfsuser".
* Loggen Sie sich auf beiden Rechner als User “"nfsuser ein und

legen Sie eine Datei "hallo-von-vulabl" bzw. "hallo-von-v ulab2"
an.

* Welches Problem besteht?

* Geben Sie auf beiden Rechnern dem Benutzer “nfsuser" die Use r-1D
2000, stellen Sie sicher dass das Home-Verzeichnis (inkl. | nhalt)

auch dem User geh ort, und legen Sie die beiden Dateien erneut an.
Hinweise:

* Solaris-Pakete f ur bash und tcsh liegen in /cdrom, Installation
mit pkgadd(1).

* NetBSD-Pakete f Ur bash und tcsh (und weitere) liegen auf
ftp://ftp.de.netbsd.org/pub/NetBSD/packages/1.6.1/s parc/All,
Installation mit pkg_add(1).

A.2 Exercises including text and check data

The exercise texts displayed in this section are from steyp the Virtual Unix Lab.
They contain the exercise text as well as data for the chedis tun.

A.2.1 Network Information System (NIS) exercise

<l-- DB updated by feyrer on Sun Feb 22 23:53:01 MET 2004 from n is.php -->
<l-- Id: nis.php,v 1.23 2004/06/03 10:27:12 feyrer Exp -->

<?php auswertung_ueberschrift(); ?>

L A HHINIH L iiD]—-: >

<hl> NIS Master und Client Setup</h1>

In dieser Ubung soll auf den beiden vulab-Rechner der Network

Information Service (NIS) installiert werden. Dabei wird a uf dem
Rechner "vulabl" der NIS-Master, auf dem Rechner "vulab2" d er
NIS-Client installiert.

<p>

<h2>1. Master (Solaris): vulabl</h2>

 Stellen Sie sicher dass die n otigen Pakete (SUNWypr, SUNWypu,
SUNWsprot, ...) installiert sind.

 Setzen Sie den NIS-Dom anenname auf "vulab" (/etc/defaultdomain &
domainname(1))

<?php auswertung_teiluebungen(

774, 1/ vulabl: check-file-contents FILE=/etc/defaultdo main CONTENT_SHOULD='"vulab’
n Dom ane in /etc/defaultdomain gesetzt?
775 Il vulabl: check-program-output PROGRAM=domainname O UTPUT_SHOULD="vulab’

Dom ane im laufenden System (domainname(l)) gesetzt?
) 7>

 Setzen Sie den Rechner mit "ypinit -m" als NIS Master auf
<?php auswertung_teiluebungen(

776, I/ vulabl: check-fil ists FILE=/var/yp/Makefil
" Existiert /varlyp/Makefile?

A.2. EXERCISES INCLUDING TEXT AND CHECK DATA 315

777, I vulabl: check-fil ts FILE=A vulablypservers
n Existiert lvar/yplblndlnglvulablypservers'>

778 /I vulabl: check-file-exists FILE=/varlyp/passwd.ti me
Existiert /varlyp/passwd.time?

) 7>
 Sorgen Sie daf ur dass die n otigen Serverprozesse (ypbind, ypserv,
...) beim booten gestartet werden.
 Starten Sie die Serverdienste!
 Welcher NIS-Server wird verwendet?

<?php auswertung_teiluebungen(

779 /I vulabl: check-program-output PROGRAM=! ypwhlch OUTF‘ UT_SHOULD="vulab1’
" Gibt ypwhich(1) 'vulabl’ zur
) 7>
 Welche Datei wird f ur die Gruppen-Daten verwendet?
 Welche Datei wird f ur die Passwort-Daten verwendet?
 Uberpr ufen Sie ob Gruppen- und Passwort-Informationen uber NIS

abgefragt werden k onnen.

<?php auswertung_teiluebungen(

780, // vulabl: check-program-output PROGRAM="ypcat pass wd | we -I' OUTPUT_SHOULD=T0] =*"
n Daten in passwd-Map vorhanden?
781, // vulabl: check-program-output PROGRAM="ypcat host s | wec -I' OUTPUT_SHOULD=T0] *’
Daten in host-Map vorhanden?
782 // vulabl: check-program-output PROGRAM="ypcat group | we -I' OUTPUT_SHOULD=[0] *’
Daten in group-Map vorhanden?
) ?>
 Vergleichen Sie den Passwort-Eintrag des Benutzers "v ulab” im NIS
und in den /etc-Dateien. Was stellen Sie fest?
 Sorgen Sie daf Ur, dass die Passwort-Informationen k unftig in der
Datei /varlyp/passwd gehalten werden. Die existierenden L ogins
sollen dabei nicht ubernommen werden.

<?php auswertung_teiluebungen(
783, // vulabl: check-file-contents FILE=/var/yp/Makefi le CONTENT_SHOULD="PWDIRx =. * /varlyp’
PWDIR in /varlyp/Makefile auf /varlyp gesetzt?

784 /I vulabl: check-fil ists FILE=/var/yp/p:
Existiert /varlyp/passwd?

) 7>

 Legen Sie im NIS eine Kennung "ypuser" mit eindeutiger U ID,
Home-Verzeichnis "/usr/homes/ypuser”, Korn-Shell als Lo gin-Shell,
und Passwort "ypuser" an.

<?php auswertung_teiluebungen(
785, /I vulabl: check-directory-exists DIR=/usr/homesly puser
" Verzeichnis /usr/homes/ypuser existiert?

786, // vulabl: unix-check-user-shell LOGIN=ypuser SHELL _SHOULD="/. */ksh"
Shell von ypuser auf ksh gesetzt?
787, I/ vulabl: check-program-output PROGRAM="cat /varly p/passwd | grep ypuser: | we -I' OUTPUT_SHOULD=1
" User ypuser in /varlyp/passwd eingetragen?
788 /I vulabl: check-program-output PROGRAM="ypcat passw d | grep ypuser: | wec -I' OUTPUT_SHOULD=1
User ypuser in passwd NIS Map vorhanden?
) 7>
 Stellen Sie sicher dass der User "ypuser" via finger(1) sichtbar

ist

<?php auswertung_teiluebungen(
789, I/ vulabl: unix-check-user-exists LOGIN=ypuser

" User existiert (getpwnam(3))?
790, // vulabl check-file-contents FILE=/etc/nsswitch. conf CONTENT_SHOULD="passwd:. *nis’
passwd-Information wird in NIS gesucht (/etc/nsswitch. conf)?
791, /I vulabl: check-file-contents FILE=/etc/nsswitch. conf CONTENT_SHOULD="group:. *nis’
n group-Information wird in NIS gesucht (/etc/nsswitch.c onf)?
792 /I vulabl: check-file-contents FILE=/etc/nsswitch.c onf CONTENT_SHOULD="hosts:. *nis’
hosts-Information wird in NIS gesucht (/etc/nsswitch.c onf)?
) 7>
 Stellen Sie sicher dass sich der User "ypuser" via telne t, ssh und

ftp einloggen kann!
 Stellen Sie sicher, dass der User "ypuser" sein Passwor t mit

316 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

yppasswd(1l) andern kann.

<h2>2. Client (NetBSD): vulab2</h2>

 Setzen Sie den Domainnamen auf den selben Namen wie beim NIS-Master
oben.

<?php auswertung_teiluebungen(
793, // vulab2: check-file-contents FILE=/etc/defaultdo main CONTENT_SHOULD="vulab’
Domainname in /etc/defaultdomain gesetzt?

794 /I vulab2: check-program-output PROGRAM=domainname O UTPUT_SHOULD="vulab’
Domainname im laufenden System gesetzt? (domainname(1)
) 7>
 Ist das aufsetzen des Clients mit "ypinit -c" n otig? Ist es
sinnvoll? Warum (nicht)?
 Stellen Sie sicher dass die n otigen Dienste (ypbind, ...) beim

booten gestartet werden.
<?php auswertung_teiluebungen(
795, /I vulab2: netbsd-check-rcvar-set RCVAR=rc_configu red
n letc/rc.conf: rc_configured gesetzt?

796, // vulab2: netbsd-check-rcvar-set RCVAR=rpchind
letc/rc.conf: rpchind gesetzt?

797 // vulab2: netbsd-check-rcvar-set RCVAR=ypbind
letcirc.conf: ypbind gesetzt?

) ?>
 Starten Sie die Dienste!

<?php auswertung_teiluebungen(

798, // vulab2: unix-check-process-running PROCESS=rpch ind
rpcbind | auft?
799 /I vulab2: unix-check-process-running PROCESS=ypbin d

ypbind | auft?
) 7>
 Welcher NIS-Server wird verwendet?

<?php auswertung_teiluebungen(

800 // vulab2: check-program-output PROGRAM=ypwhich OUTP UT_SHOULD="vulab1’
n Wird vulabl als NIS-Server verwendet? (ypwhich(1))
) ?>
 Stellen Sie sicher dass die NIS Maps (group, hosts, ...) abgerufen

werden k onnen

<?php auswertung_teiluebungen(
801, // vulab2: check-program-output PROGRAM="ypcat pass wd | we -I' OUTPUT_SHOULD=T0] *’
Daten in passwd-Map vorhanden?

802, // vulab2: check-program-output PROGRAM="ypcat host s | we -I' OUTPUT_SHOULD=T"0] *!
Daten in hosts-Map vorhanden?
803 /I vulab2: check-program-output PROGRAM=ypcat group | we -I' OUTPUT_SHOULD=[0] *'
Daten in group-Map vorhanden?
) ?>
 Stellen Sie sicher dass die NIS-Benutzer mit finger(1) abgefragt

werden k onnen

<?php auswertung_teiluebungen(
804 /I vulab2: unix-check-user-exists LOGIN=ypuser

n Existiert Benutzer ypuser?
) 7>
 Stellen Sie sicher dass sich der oben angelegte Benutze r "ypuser"
auf dem Client einloggen kann. Erstellen Sie das Home-Verze ichnis

dazu vorerst manuell.

<?php auswertung_teiluebungen(

805 // vulab2: check-directory-exists DIR=/ust/homes/yp user
n Existiert Home-Verzeichnis?
) 7>
 Betrachten Sie das Passwort-Feld der Passwort-Datei d es Users

"ypuser" auf dem NIS Master!.
 Andern Sie das Passwort von “"ypuser" vom Client aus im NIS auf
“mynlspw”.

A.2. EXERCISES INCLUDING TEXT AND CHECK DATA 317

<?php auswertung_teiluebungen(

806 // vulab2: unix-check-user-password LOGIN=ypuser PAS SWD_SHOULD=myn1spw
" PaRwort richtig gesetzt?
) 7>
 Betrachten Sie das Passwort-Feld der Passwort-Datei d es Users

"ypuser" auf dem NIS Master erneut. Was stellen Sie fest?

<h2>3. Diverses</h2>

 Setzen Sie den "Full Name" des Benutzers "ypuser" auf "N IS
Testbenutzer". Verifizieren Sie das Ergebnis mit finger(1 .
Welche Methoden zum setzen existieren auf dem NIS Master? We Iche

auf dem NIS Client?

<?php auswertung_teiluebungen(

807 /I vulab2: unix-check-user-fullname LOGIN=ypuser FUL LNAME_SHOULD='NIS Testbenutzer'
n Fullname richtig gesetzt?
), >
 Legen Sie eine NIS-Gruppe "benutzer" an, und machen Sie diese zur
(prim aren) Gruppe des Benutzers "ypuser'. Welche Group-ID w ahlen

Sie? Warum?

<?php auswertung_teiluebungen(
808, // vulab2: unix-check-user-ingroup LOGIN=ypuser GRO UP_SHOULD=benutzer
Benutzer 'ypuser' Mitglied der Gruppe ’benutzer?

809 // vulab2: check-program-output PROGRAM="ypcat group ' OUTPUT_SHOULD="benutzer:"
Gruppe ’benutzer’ existiert in der group NIS-Map?

) 7>

 Legen Sie im Home-Verzeichnis des Benutzers "ypuser" a uf dem
Master und dem Client eine Datei an, und Uberpr ufen Sie, welcher
Gruppe sie geh ort.

 Sorgen Sie daf ur dass der Benutzer "ypuser" auf dem NetBSD-System
mittels su(1) root-Rechte erhalten kann. Er muss dazu (unte r
NetBSD) zus atzlich Mitglied der Gruppe "wheel" sein.

<?php auswertung_teiluebungen(
810 // vulab2: check-file-contents FILE=/etc/group CONTE NT_SHOULD=""wheel:. *ypuser"
ypuser in wheel-Gruppe in /etc/group?

) ?>

 Wie bewerten Sie die Tatsache dass das root-Passwort al leine nicht
reicht, sondern auch die richtige Gruppenzugeh origkeit
Voraussetzung f Ur einen su(l) auf root ist? Vergleichen Sie
zwischen NetBSD, Solaris und Linux!

 Der Rechner "tab" (IP-Nummer: 194.95.108.32) soll via NIS bekannt
gemacht werden. Tragen Sie den Rechner auf dem Server in die
entsprechende Hosts-Datei ein, aktualisieren Sie die
NIS-Map und verifizieren Sie das Ergebnis mittels ypcat(1)
und ping(1) sowohl auf dem NIS-Master als auch auf dem NIS-CI ient.

<?php auswertung_teiluebungen(
811, // vulab2: check-program-output PROGRAM="ypcat host s’ OUTPUT_SHOULD='194.95.108.65. *tab’
Eintrag mit IP-Nummer und Rechnername in hosts NIS-Map?

812 /I vulab2: check-program-output PROGRAM="/shin/ping -c 1 tab 2>&1 ; echo result:$?" OUTPUT_SHOULD="result:0$'
'tab’ pingbar?

<h2>Hinweise:</h2>

 Solaris-Pakete f Ur bash und tcsh liegen in /cdrom, Installation
mit pkgadd(1).

<?php auswertung_teiluebungen(
898, // vulabl: solaris-check-installed-pkg PKG=SUNWtcs
" tcsh auf Solaris installiert? (pkginfo SUNWtcsh)

899 // vulabl: solaris-check-installed-pkg PKG=SUNWbash
bash auf Solaris installiert? (pkginfo SUNWbash)
) 7>

 NetBSD-Pakete f ur bash und tcsh (und weitere) liegen auf
ftp://ftp.de.netbsd.org/pub/NetBSD/packages/1.6.1/s parc/All,
Installation mit pkg_add(1).

<?php auswertung_teiluebungen(

318 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

900, // vulab2: netbsd-check-installed-pkg PKG=tcsh
n tcsh auf NetBSD installiert? (pkg_info -e tcsh)

901 // vulab2: netbsd-check-installed-pkg PKG=bash
" bash auf NetBSD installiert? (pkg_info -e bash)

<l
<?php auswertung_zusammenfassung(); ?>

A.2.2 Network File System (NFS) exercise

<!-- DB updated by feyrer on Sun Feb 22 23:54:29 MET 2004 from n fs.php -->
<l-- Id: nfs.php,v 1.15 2004/06/03 10:27:12 feyrer Exp -->

<?php auswertung_ueberschrift(); ?>

<l--

<h1> NFS Server und Client Setup</h1>

In dieser Ubung soll auf den beiden vulab-Rechner das Network File

System (NFS) installiert werden. Dabei wird auf dem Rechner "vulab1"
der NFS-Server, auf dem Rechner "vulab2" der NFS-Client ins talliert.
<p>

<h2>1. Server (Solaris): vulabl</h2>

Das Dateisystem /usr’homes soll f ur den zweiten Rechner 'vulab2' per

NFS exportiert werden:

<p>

 Sichern Sie die Datei, in der bisher die NFS-Exports not iert sind

 Das Verzeichnis /usr/homes soll f ur den Rechner "vulab2"
freigegeben werden. Tragen Sie dies in die richtige Datei ei n.

<?php auswertung_teiluebungen(
864 /I vulabl: check-file-contents FILE=/etc/dfs/dfstab CONTENT_SHOULD='"share.* nfs. */usr/homes’
n 'share nfs /usr/homes’ in /etc/dfs/dfstab?

), >

 Laufen die n otigen Serverprozesse? Starten Sie sie ggf. mit Hilfe
der passenden Start-Scripten aus /etc/ *.d.

<?php auswertung_teiluebungen(
65, // vulabl: unix-check-process-running PROCESS=rpch ind
l/ L auft rpchind?

866, // vulabl: unix-check-process-running PROCESS=moun td
n L auft mountd?
867, // vulabl: unix-check-process-running PROCESS=nfsd
" L auft nfsd?
868, // vulabl: unix-check-process-running PROCESS=stat d
n L auft statd?
869, // vulabl: unix-check-process-running PROCESS=lock d
l/ L auft lockd?
870 // vulabl: check-file-exists FILE="/etc/rc3.d/S15nf s.server’

NFS-Server wird im Runlevel 3 gestartet?
), >
 Sorgen Sie daf ur dass die Datei (neu) eingelesen wird
<?php auswertung_teiluebungen(
871 /I vulabl: check-program-output PROGRAM='share’ OUTP UT_SHOULD="/usr’homes’
n share(1M) listet /usr/homes? (unportabel!)
) >
 Uberpr ufen Sie mit 'showmount -e' ob die Freigabe besteht!
<?php auswertung_teiluebungen(
872 /I vulabl: check-program-output PROGRAM='showmount - e localhost OUTPUT_SHOULD="/usr’/homes’
n showmount(1) zeigt /usr/homes?
) 7>

<ful>

<h2>2. Client (NetBSD): vulab2</h2>

A.2. EXERCISES INCLUDING TEXT AND CHECK DATA

319

Das Verzeichnis /usr/homes soll vom NFS-Server (vulabl) au f /usr/homes
gemountet werden:
<p>

 Existiert der Mountpoint /usr’homes auf dem Client?
 Sind Daten im Mountpoint enthalten?

 Uberpr ufen Sie mit 'showmount -e' die NFS-Freigaben des NFS-Serve s
‘vulab1’ (10.0.0.1)

<?php auswertung_teiluebungen(

873 /I vulab2: check-program-output PROGRAM="showmount - e vulabl’ OUTPUT_SHOULD="/usr/homes’
" showmount(1) zeigt /usr/homes?
) 7>
 Untersuchen Sie die System-Defaults in /etc/defaults Irc.conf und

tragen Sie f Ur NFS notige Abweichungen in die Datei /etc/rc.conf
ein. Achten Sie auf rpc.lockd(8) und rpc.statd(8)!

<?php auswertung_teiluebungen(
874, [/ vulab2: netbsd-check-rcvar-set RCVAR=rc_configu red
" letcirc.conf: rc_configured gesetzt?

875, /Il vulab2: netbsd-check-rcvar-set RCVAR=lockd
n letc/rc.conf: lockd gesetzt?

876, // vulab2: netbsd-check-revar-set RCVAR=statd
letc/rc.conf: statd gesetzt?

877 // vulab2: netbsd-check-rcvar-set RCVAR=nfs_client
letcirc.conf: nfs_client gesetzt?

) ?>
 Starten Sie alle n otigen Hintergrundprozesse.
<?php auswertung_teiluebungen(

878, I/ vulab2: unix-check-process-running PROCESS=rpch ind
" L auft rpchind?

879, // vulab2: unix-check-process-running PROCESS=rpc. lockd
L auft rpc.lockd?
880 /I vulab2: unix-check-process-running PROCESS=rpc.s tatd
L auft rpc.statd?
), >
 Uberpr ufen Sie, ob das Verzeichnis /usr/homes von vulabl testweis e
auf /mnt gemountet werden kann. Unmounten Sie es anschliess end
wieder!

<?php auswertung_teiluebungen(

881 // vulab2: unix-check-mount MOUNT_FROM=vulab1:/usr/ homes MOUNT_ON=/mnt

Manueller mount erfolgreich?
) 7>
 Sorgen Sie daf ur daB das Verzeichnis /usr/homes vom NFS-Server

"vulabl" beim Systemstart auf /usr/homes gemountet wird, t ragen Sie
dies in die passenden Konfigurationsdatei ein

<?php auswertung_teiluebungen(
882 // vulab2: check-file-contents FILE=/etc/fstab CONTE

" Passender Eintrag in /etc/fstab?
) 7>
 Mounten Sie alle noch nicht gemounteten NFS-Verzeichn isse!
 Uberpr ufen Sie mit df(1) und mount(8) daR das Verzeichnis gemounte t

ist!
<?php auswertung_teiluebungen(
883, // vulab2: check-program-output PROGRAM="df -k | grep
" Mount ist im df(1) Output sichtbar?

884 /I vulab2: check-program-output PROGRAM="mount | grep
Mount ist im mount(8) Output sichtbar?

<ful>

<h2>3. Zugriffsrechte</h2>
<h3>3.1 Rechnerbasiert</h3>

 Legen Sie als root auf dem NFS-Client ein Verzeichnis
lusr/homes/nfsuser an! Wie reagiert das System, und warum?

NT_SHOULD='"vulab1:/usr/homes.

I OUTPUT_SHOULD="vulab1:/usr/homes.

*Jusr/homes.

*nfs.

* W

nfs'" OUTPUT_SHOULD="vulabl:/usr/homes on /usr/homes’

*fusr/homes$’

320 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

 Lesen Sie auf dem NFS-Server die Manpage zu dfstab(4) un d den darin
unter "SEE ALSO" verwiesenen Befehlen (etc.), und sorgen Si e daf ur,
daR Sie als root auf dem NFS-Client vollen Zugriff habe

 Machen Sie die n otige Anderung in /etc/dfs/dfstab.

<?php auswertung_teiluebungen(
885 // vulabl: check-file-contents FILE=/etc/dfs/dfstab CONTENT_SHOULD="root="
" ‘root=" Eintrag in dfstab?
) 7>

 Lesen Sie die Datei neu ein!

<?php auswertung_teiluebungen(

886 // vulabl: check-program-output PROGRAM="share’ OUTP UT_SHOULD="/usr’homes. *root="
" share(1M) exportiert /ust/homes f ur root zugreifbar?
) 7>
 Welche Sicherheitsimplikationen hat der eben vorgeno mmene
Konfigurationsschritt? Macht er in der Praxis Sinn? Wie kan n man

ihn umgehen?
 Legen Sie das Verzeichnis /usr/homes/nfsuser an!

<?php auswertung_teiluebungen(
887 /I vulabl: check-directory-exists DIR=/usr/homes/nf suser
n Existiert Verzeichnis /usr/homes/nfsuser?
) 7>

<ful>

<h3>3.2 Benutzerbasiert</h3>

Es soll ein Benutzer "nfsuser” auf beiden Systemen angelegt werden,

der auf jedem System lokal vermerkt ist (Login, Passwort etc . in

letcl...), das Home-Verzeichnis /usr/homes/nfsuser soll aber auf

beiden Rechnern mittels NFS verf ugbar sein!

 Legen Sie auf vulabl den User an: “useradd -d /usr/home s/nfsuser
nfsuser”

<?php auswertung_teiluebungen(
888 // vulabl: unix-check-user-exists LOGIN=nfsuser
n Benutzer 'nfsuser’ existiert auf vulabl?

) 7>

 Legen Sie auf vulab2 denselben User an: “useradd -d
Jusr/homes/nfsuser nfsuser”

<?php auswertung_teiluebungen(
889 // vulab2: unix-check-user-exists LOGIN=nfsuser

n Benutzer 'nfsuser’ existiert auf vulab2?
), >
 Geben Sie dem Benutzer auf beiden Systemen (getrennt) m ittels
passwd(1) ein Passwort
 Geben Sie das Verzeichnis /usr/homes/nfsuser mittels chown(1) dem

Benutzer "nfsuser".

<?php auswertung_teiluebungen(

890, // vulabl: unix-check-file-owner FILE=/usr/homes/n fsuser OWNER_SHOULD=nfsuser
n Geh ort /usr/homes/nfsuser dem Benutzer 'nfsuser’ auf vulabl?
891 // vulab2: unix-check-file-owner FILE=/ust/homes/nf suser OWNER_SHOULD=nfsuser
Geh ort /usr/homes/nfsuser dem Benutzer 'nfsuser’ auf vulab2?
) 7>

 Loggen Sie sich auf beiden Rechner als User "nfsuser" ei n und legen Sie
eine Datei "hallo-von-vulabl" bzw. "hallo-von-vulab2" an .

 Welches Problem besteht?

 Geben Sie auf beiden Rechnern dem Benutzer “nfsuser” di e User-ID
2000, stellen Sie sicher dass das Home-Verzeichnis (inkl. | nhalt)
auch dem User geh ort, und legen Sie die beiden Dateien erneut an.

<?php auswertung_teiluebungen(

892, // vulabl: unix-check-file-owner FILE=/usr/homes/n fsuser/hallo-von-vulabl OWNER_SHOULD=nfsuser
" hallo-von-vulabl geh ort nfsuser auf vulab1?

893, // vulabZ unix-check-file-owner FILE=/usr/homes/n fsuser/hallo-von-vulabl OWNER_SHOULD=nfsuser
hallo-von-vulabl geh ort nfsuser auf vulab2?

894, // vulabl: unix-check-file-owner FILE=/usr/homes/n fsuser/hallo-von-vulab2 OWNER_SHOULD=nfsuser
n hallo-von-vulab2 geh ort nfsuser auf vulabl?

895 // vulab2: unix-check-file-owner FILE=/usr/homes/nf suser/hallo-von-vulab2 OWNER_SHOULD=nfsuser
hallo-von-vulab2 geh ort nfsuser auf vulab2?

A.3. THE VUDSL PROCESSOR: UEBUNG2DB 321

<ful>

<h2>Hinweise:</h2>

 Solaris-Pakete f Ur bash und tcsh liegen in /cdrom, Installation
mit pkgadd(1).

<?php auswertung_teiluebungen(
902, // vulabl: solaris-check-installed-pkg PKG=SUNWtcs
" tcsh auf Solaris installiert? (pkginfo SUNWtcsh)

903 // vulabl: solaris-check-installed-pkg PKG=SUNWbash
bash auf Solaris installiert? (pkginfo SUWNbash)
) 7>

 NetBSD-Pakete f Ur bash und tcsh (und weitere) liegen auf
ftp://ftp.de.netbsd.org/pub/NetBSD/packages/1.6.1/s parc/All,
Installation mit pkg_add(1).

<?php auswertung_teiluebungen(
904, // vulab2: netbsd-check-installed-pkg PKG=tcsh
" tcsh auf NetBSD installiert? (pkg_info -e tcsh)

905 // vulab2: netbsd-check-installed-pkg PKG=bash
bash auf NetBSD installiert? (pkg_info -e bash)

<?php auswertung_zusammenfassung(); ?>

A.3 The VUDSL processor:uebung2db

#!/usr/pkg/bin/perl

use DBI;
use Getopt::Std;

$checkscript_path="/vulab"; # check-script
#HF#$checkscript_path="/home/feyrer/work/vulab/docs /hubertf/code™;

getopts(‘dv’);

$debug=1

if $opt_d;
$verbose=1

if $opt_v or $opt_d;

$uebung_id = $ARGV(0];
$template = $ARGV[1];
$output = $ARGV[2];

die "Usage: $0 [-dv] uebung |d uebung.php-template neue_u ebung.php\n”
if $uebung_id eq
or $template eq "
or $output eq ™
or $template eq $output;

open(OUTPUT, ">$output”)
or die "Can't write $output: $I\n";

#$dbh = DBI->connect("dbi:Pg:", "vulab", ", { AutoCommit =01}
or die “"cannot connect to DB’
$dbh = DBI->connect("dbi:Pg:dbname=vulab;host=smaug", "vulab", "vulab”, { AutoCommit => 0 })

or die "cannot connect to DB";

%checks_done = ();
$warnings = 0;

header();
main();
delete_old();

close(QUTPUT);
if ($warnings > 0 and !$debug) {
print "Transaction rolled back, output file removed due to w arnings.\n";
print "Please fix\n";
unlink($output);

$dbh->rollback;

322 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

} else {
$dbh->commit;
}

$dbh->disconnect();

exit(0);

sub warning {
print "WARNING: @_\n";
$warnings++;

}
sub header() {
local($now);
chomp($now = ‘date’);
print OUTPUT "<!-- DB updated by $ENV{USER’} on $now from $t emplate -->\n";
}
sub main() {
open(T, $template) or die "can't read $template: $!\n";
while(<T>) {
chomp;
($check_id, $komma, S$rechner, $script, $parameter) =
m@\s ([0-9X?]+)([, N?\s *IN\s+([a-zA-Z0-9_] *)\s+(["] *check-[* J+)\s+(. *)@;

if ($rechner eq ™) {
print OUTPUT "$_\n"
if Y/Generated by. * on . from/; # skip header
next;

}
1. Syntax-Check etc.
Check if script present

if (! -f "$checkscript_path/$script") {
warning("missing check-script $script™);

next;

}

Sinterpreter = get_interpreter("$checkscript_path/$sc ript");

print "$check_id: cat $script | ssh $rechner env $parameter '$interpreter'\n"
if $debug;

chomp($bezeichnung = <T>);
if ($bezeichnung " m@"\s *IN\s *\SHs *@) {
warning("no comment for $check_id ($rechner: $script $par ameter)");

}
$bezeichnung =" s,\s *INs *,,;
$bezeichnung =" s,\s *$,,;
print * bezeichnung=\"$bezeichnung\"\n"
if $debug;
print "\n"
if $debug;

Rechner bekannt?
$sth = $dbh->prepare("SELECT * "
"FROM rechner ".
"WHERE bezeichnung="$rechner");
$sth->execute();
while(@row = $sth->fetchrow_array) {
if ($row[0] eq $rechner) {
print " rechner OK: $rechner\n”
if $debug;
} else {
warning("rechnercheck unknown host: $rechner”);

Check parameters
Get possible parms
open(P, "S$interpreter $checkscript_path/$script listpa ms ")
or die "Can't listparms for $script: $!\n";
while(<P>) {
@p = split(\l));
$par{$p[0]} = $p[1];
#print " $p[0]";

close(P);
#print "\n";

Parse into variables using sh & env
open(P, “env -i $parameter env [')
or die "Can't env(l) $parameter”;
while(<P>) {
chomp();
($var, $val) = /([a-zA-Z0-9_]+)=(. =),
#print " $var -> $val\in”;

A.3. THE VUDSL PROCESSOR: UEBUNG2DB 323

if (exists($par{$var})) {
print " varcheck OK: $var=$val"
if $debug;
if ("$par{$var}" eq "$val’) {
print " (default)"
if $debug;

print "\n"
if $debug;
} else {
warning("varcheck unknown variable: $var=$val");

close(P);

2. Check & Insert/Update things into DB
if ($check_id = Nd+/) {
Might be already-existing check, make sure..
$sth = $dbh->prepare(" SELECT check_id, uebung id, script
bezeichnung, rechner, parameter
“"FROM uebungs_checks "
WHERE check_id="$check_id" "
AND uebung_id=" '$uebung id™);

$sth->execute();

$cnt=0;
while (@row = $sth->fetchrow_array) {
Check already there, update!
($db_check_id, $db_uebung_id, $db_script, $db_bezeichn ung,
$db_rechner, $db_parameter) = @row;

if ($debug) {

print "\n";

print " In DB, check_id=$check_id:\n

print "cat $db_script | ssh $db_rechner env $db)_parameter i nterp\n”;
print " bezeichnung=\"$db_bezeichnung\"\n";

print "\n";

}

if ($script ne $db_script
or $bezeichnung ne $db_bezeichnung
or $rechner ne $db_rechner
or $parameter ne $db_parameter) {
update_db($check_id, $uebung_id, $script,
$bezeichnung, $rechner, $parameter);
print "check_id $check_id updated\n” if $verbose;

} else
print "check_id $check_id unchanged\n" if $verbose;
}
$ent++;
}
if ($cnt == 0) {
Check not there, insert new!
$check_id = insert_into_db($uebung_id, $script,
$bezeichnung, $rechner,
$parameter);
print "check_id $check_id inserted (1)\n" if $verbose;
} else {

Check not there, insert new!

$check_id = insert_into_db($uebung_id, $script,
$bezeichnung, $rechner,
$parameter);

print "check_id $check_id inserted (2)\n" if $verbose;

3. Write out new file w/ check_ids added
print OUTPUT "\t\t". sprintf("%4d", $check_id).

“$komma // $rechner: $script $parameter\n”;
print OUTPUT "\t\t n $bezeichnung\n;

$checks_done{$check_id} =

print “\n"
if $debug;
}

close(T);

sub delete > old() {
$ids=join(", ", sort keys %checks_done);
$sql="DELETE FROM uebungs_checks ".
"WHERE check_id NOT IN ($ids) "
AND uebung_id="$uebung_id™;
print " SQL: $sql\n"

324 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

if $debug;
$sth = $dbh->prepare($sql);
$sth->execute();
print "old checks removed from database\n”

if $verbose;
}
sub update_db() {
local($check_id, $uebung_id, $script, $bezeichnung, $re chner,
$parameter) = @_;
local($sth);

$parameter =~ sAV\\g;
$parameter =" s/'/\V/g;
$bezeichnung =~ sAV\Wg;
$bezeichnung =" s/'\\V/g;

$sql = "UPDATE uebungs_checks ".

T "

" uebung_id="$uebung_id’, ".

" script="$script’, ".
bezeichnung="$bezeichnung’, ".
rechner="$rechner’, ".

" parameter="$parameter’ ".

"WHERE ".

id="$check_id™;

$sth->execute();

sub insert_into_db() {
local($uebung_id, $script, $bezeichnung, $rechner,
$parameter) = @_;
local($sth);

$parameter =~ sAV\\g;
$parameter =" s/'\V/g;
$bezeichnung sA\V\Wg;
$bezeichnung =~ s/'\\V/g;

1. insert new
$sgl = "INSERT INTO uebungs_checks ".
" (uebung_id, script, bezeichnung, ".
rechner, parameter) "
"VALUES "
" (’$uebung_id’, '$script’, '$bezeichnung’, ".
" ‘$rechner’, '$parameter’)";
print " SQL: $sql;\n”
if $debug;
$sth = $dbh->prepare($sql);
$sth->execute();

2. find $new_check_id
$sql = "SELECT check_id ".
"FROM uebungs_checks "
"WHERE uebung_id="$uebung_id" ".
" AND script="$script’ ".
" AND bezeichnung="$bezeichnung’ ".
" AND rechner="$rechner’ "

" AND parameter="$parameter";
print " SQL: $sql\n"
if $debug;
$sth = $dbh->prepare($sql);
$sth->execute();

while(@row = $sth->fetchrow_array) {
$new_check_id = $row[0];
}

print " new check_id=$new_check_id\n"
if $debug;

return $new_check_id;

sub get_interpreter() {
local($file) = @_;
local($i, $rc);

die "No such file: $file\n"
it (1 -f $file);

open(F, "$file”) or die "can’'t open $file: $I\n";
$i = <F>;
close(F);

if (i = Iperll) {
#$rc="perl || /root/vulab/perl";
$re="perl";

A.4. COMPLETE LISTS OF CHECKS USED IN EXERCISES 325

} elsif ($i =" /[clshi) {

$rc = "

}

return $rc;

'sh";

A.4 Complete lists of checks used in exercises

This section provides complete lists of checks that areopexréd for both thee Network
Information System (NIS) and the Network File System (NF&reises. The data is
retrieved from the Virtual Unix Lab’s database, and the SQErges and their results
are shown.

A.4.1 Network Information System (NIS) exercise

This section lists all the checks that are performed by tH& élercise as stated in the
Virtual Unix Lab’s database.

vulab=> select check_id,bezeichnung from uebungs_checks where uebung_id="nis’;
check_id | bezeichnung

e e

775 | Doméne im laufenden System (domainname(l)) gesetzt?

776 | Existiert /var/yp/Makefile?

777 | Existiert /var/yp/binding/vulab/ypservers?

778 | Existiert /varlyp/passwd.time?

779 | Gibt ypwhich(1) 'vulabl’ zur uck?

780 | Daten in passwd-Map vorhanden?

781 | Daten in host-Map vorhanden?

782 | Daten in group-Map vorhanden?

784 | Existiert /varlyp/passwd?

785 | Verzeichnis /usr/homeslypuser existiert?

786 | Shell von ypuser auf ksh gesetzt?

787 | User ypuser in /varlyp/passwd eingetragen?

788 | User ypuser in passwd NIS Map vorhanden?

789 | User existiert (getpwnam(3))?

790 | passwd-Information wird in NIS gesucht (/etc/nsswitc h.conf)?

791 | group-Information wird in NIS gesucht (/etc/nsswitch .conf)?

792 | hosts-Information wird in NIS gesucht (/etc/nsswitch .conf)?

793 | Domainname in /etc/defaultdomain gesetzt?

795 | /etcirc.conf: rc_configured gesetzt?

796 | /etc/rc.conf: rpchind gesetzt?

797 | letc/rc.conf: ypbind gesetzt?

798 | rpchind | auft?

799 | ypbind | auft?

800 | Wird vulabl als NIS-Server verwendet? (ypwhich(1))

801 | Daten in passwd-Map vorhanden?

802 | Daten in hosts-Map vorhanden?

803 | Daten in group-Map vorhanden?

804 | Existiert Benutzer ypuser?

805 | Existiert Home-Verzeichnis?

806 | PaRwort richtig gesetzt?

807 | Fullname richtig gesetzt?

808 | Benutzer 'ypuser’ Mitglied der Gruppe 'benutzer?

809 | Gruppe ’'benutzer’ existiert in der group NIS-Map?

810 | ypuser in wheel-Gruppe in /etc/group?

326 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

811 | Eintrag mit IP-Nummer und Rechnername in hosts NIS-Map ?
774 | Domane in /etc/defaultdomain gesetzt?

794 | Domainname im laufenden System gesetzt? (domainname(1))
783 | PWDIR in /varlyp/Makefile auf /varlyp gesetzt?

|
|
|
|
812 | 'tab’ pingbar?
|
|
|
|

898 | tcsh auf Solaris installiert? (pkginfo SUNWtcsh)

899 | bash auf Solaris installiert? (pkginfo SUNWbash)

900 | tcsh auf NetBSD installiert? (pkg_info -e tcsh)

901 | bash auf NetBSD installiert? (pkg_info -e bash)
(43 rows)

A.4.2 Network File System (NFS) exercise

This section describes the checks that are performed foiESexercise.

vulab=> select check_id,bezeichnung from uebungs_checks where uebung_id="nfs’;
check_id | bezeichnung

ommmmmmmmmmmmmmmmmmemmmmmmmmmmmmmmmmmee ————————

864 | 'share nfs /usr/homes’ in /etc/dfs/dfstab?

865 | L auft rpcbind?

866 | L auft mountd?

867 | L auft nfsd?

868 | L auft statd?

869 | L auft lockd?

870 | NFS-Server wird im Runlevel 3 gestartet?

874 | /etc/rc.conf: rc_configured gesetzt?

875 | /etcirc.conf: lockd gesetzt?

876 | /etc/rc.conf: statd gesetzt?

877 | letcirc.conf: nfs_client gesetzt?

878 | L auft rpchind?

879 | L auft rpc.lockd?

880 | L auft rpc.statd?

881 | Manueller mount erfolgreich?

882 | Passender Eintrag in /etc/fstab?

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
883 | Mount ist im df(1) Output sichtbar?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

884 | Mount ist im mount(8) Output sichtbar?

885 | 'root=" Eintrag in dfstab?

887 | Existiert Verzeichnis /ust/homes/nfsuser?

888 | Benutzer 'nfsuser’ existiert auf vulabl?

889 | Benutzer 'nfsuser’ existiert auf vulab2?

890 | Geh ort /usr/homes/nfsuser dem Benutzer 'nfsuser’ auf vulabl?
891 | Geh ort /usr/homes/nfsuser dem Benutzer ’'nfsuser’ auf vulab2?
892 | hallo-von-vulabl geh ort nfsuser auf vulabl?

893 | hallo-von-vulabl geh ort nfsuser auf vulab2?

894 | hallo-von-vulab2 geh ort nfsuser auf vulabl?

895 | hallo-von-vulab2 geh ort nfsuser auf vulab2?

871 | share(1M) listet /usr/fhomes? (unportabell)

872 | showmount(1) zeigt /usr/homes?

873 | showmount(1) zeigt /usr’homes?

886 | share(1M) exportiert /usr/homes f ur root zugreifbar?

902 | tesh auf Solaris installiert? (pkginfo SUNWtcsh)

903 | bash auf Solaris installiert? (pkginfo SUWNbash)

904 | tcsh auf NetBSD installiert? (pkg_info -e tcsh)

905 | bash auf NetBSD installiert? (pkg_info -e bash)
(36 rows)

A.5. LIST OF CHECK SCRIPTS AND PARAMETERS 327

A.5 List of check scripts and parameters

This section lists check scripts available in step Il of thgu&l Unix Lab, a textual
description of what they do as printed by thbatis parameter and a list of parame-
ters as printed by thistparms ~ parameter. As step Il was in German language, so
are the descriptions given here. A future implementatiothefvirtual Unix Lab may
pay attention to internationalization.

admin-check-clearharddisk: Festplatte zum Komprimieren optimieren (mit 0-Bits
beschreiben)

Parameters:
e (none)

admin-check-makeimage: Muss auf localhost laufen! Erzeugt Plattenimage von $DISK
von $RECHNER in Datei $IMGFILE.img; Zeit ca. 30min
Parameters:
e RECHNER (Default: 'unset’): Rechner dessen Platte in IMIGEVer-
packt werden soll (vulabl, ...)
e IMGFILE (Default: 'unset’): Imagefile, relativ zu /vulab
e DISK (Default: 'sd0’): Platte, von der das Image gemachtdeersoll

netbsd-check-installed-pkg: Testet ob Paket $PKG unter NetBSD installiert ist
Parameters:

e PKG (Default: 'tcsh’): Package-Pattern fuer pkdo -e

netbsd-check-rcvar-set: Testet ob Variable RCVAR in /etc/rc.conf gesetztist (NdIBS
Parameters:

e RCVAR (Default: 'rc.configured’): Variable, di¢iberpiift werden soll

netbsd-check-user-shell:Testet ob Shell von User $LOGIN gleich $SHEISHOULD
in /etc/master.passwd

Parameters:

e LOGIN (Default: 'test’): Benutzer, dessen Shell ueberjftruesrden soll

e SHELL SHOULD (Default: '/.*/tcsh’): Regulaerer Ausdruck, gegdean
verglichen werden soll.

solaris-check-installed-pkg: Testet ob Paket $PKG unter Solaris installiert ist
Parameters:

e PKG (Default: 'tcsh’): Package-Pattern fuer pkginfo

328 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

unix-check-file-owner: Prueft ob FILE dem Benutzer OWNEBHOULD (Login
oder UID) gehoert.

Parameters:

e FILE (Default: '/etc/passwd’): Datei oder Verzeichnissahit.
¢ OWNER SHOULD (Default: root’): Login-Name oder numerische User
ID
unix-check-mount: Versucht MOUNTFROM auf MOUNT.ON zu mounten
Parameters:

¢ MOUNT_FROM (Default: 'foo’): Erstes Argument fuer mount(8)
e MOUNT_ON (Default: '/mnt’): Mountpoint, muss existieren
e MOUNT_ARGS (Default: 'none’): Parameter fuer mount(8)
unix-check-process-running: Testet ob PROCES&uift (Reguairer Ausdruck gegen
ps(1)-Output)
Parameters:
e PROCESS (Default: 'init"); Regdlrer Ausdruck, gegen den der Output
von ps -elf/faux verglichen wird.
unix-check-user-exists: Testet ob der Benutzer $LOGIN existiert (via getpwnam())
Parameters:

e LOGIN (Default: 'test’): Benutzer, dessen Home-Dir uebrerit werden
soll

unix-check-user-fullname: Testet ob der volle Name von LOGIN gleich FULLNAMEHOULD
ist (via getpwnam())

Parameters:

e LOGIN (Default: root’): Benutzer, dessen Fullnaraberpiift werden soll

e FULLNAME _SHOULD (Default: 'Charlie Root’): String auf den der Full-
name gesetzt sein sollte

unix-check-user-home: Testet ob das Home-Verzeichnis von User $LOGIN gleich
$HOME_SHOULD ist (via getpwnam())
Parameters:
e LOGIN (Default: 'test’): Benutzer, dessen Home-Dir uelyegdt werden
soll

¢ HOME_SHOULD (Default: '*"): Pfad auf den das Home-Verzeichnisgézt
sein sollte

A.6. SELECTED CHECK SCRIPTS 329

unix-check-user-ingroup: Testet ob User $SLOGIN in Gruppe GROUBHOULD ist
(primary oder supplementary)

Parameters:

e LOGIN (Default: 'test’): Login-Name
¢ GROUPSHOULD (Default: 'wheel’): Prindare oder Supplemeinte Gruppe,
in der der Benutzer sei sollte
unix-check-user-password: Testet ob Passwort von User $LOGIN gleich $PASS-
WD _SHOULD (plain)
Parameters:
e LOGIN (Default: 'test’): Benutzer, dessen Passwort ueheft werden
soll
e PASSWDSHOULD (Default: *'): Plaintext-Passwort (unverschisest),
gegen das geprueft wird
unix-check-user-shell: Testet ob die Login-Shell von User $LOGIN gleich $SHELL
SHOULD ist (via getpwnam())
Parameters:
e LOGIN (Default: 'test’): Benutzer, dessen Login-Shell egirueft werden
soll

e SHELL SHOULD (Default: '/bin/sh’): Pfad auf den die Shell gesetetn
sollte

A.6 Selected check scripts

This section shows the full source code of selected chegitsérom step I, i.e. before
optimizing, and from step Il, i.e. after optimizing.

A6.1 Stepl

A.6.1.1 netbsd-check-finger.sh

#!/bin/sh

#

Checks if $user exists, NetBSD-specific
user=test

if [finger $user | grep Shell: | we -I' = 1]

then
rc=ok

330 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

else
rc=failed
fi

echo $rc

A.6.1.2 netbsd-check-masterpw.sh

#!/bin/sh
#
Checks if $user exists, NetBSD-specific

user=test

grep -I $user /etc/master.passwd 2>&1 >/dev/null
rc=$?

echo $rc

A.6.1.3 netbsd-check-pkginstalled.sh

#!/bin/sh

pkg_info -ge tcsh
tcsh_installed=$?

pkg_info -ge bash
bash_installed=$?

echo tcsh_installed=$tcsh_installed
echo bash_installed=$bash_installed

if [$tcsh_installed = 0 -a $bash_installed = 0]
then
rc=ok
else
rc=failed
fi

echo $rc

A.6.1.4 netbsd-check-pw.pl

#l/usr/local/bin/perl

$user="test";
$should_pwu="vutest";

$is_pwe=(getpwnam($user))[1];
($salt) = (Sis_pwe =" I"(..)));
$should_pwe=crypt($should_pwu, $salt);

print "is_pwe=8$is_pwe\n";
print "salt="$salt'\n";
print “should_pwe=$should_pwe\n";

if ($is_pwe eq $should_pwe) {
$rc = "ok";

A.6. SELECTED CHECK SCRIPTS 331

} else {

$rc = "failed”;
}
print "$rc\n”;

A.6.1.5 netbsd-check-usershell2.sh

#l/bin/sh
#
Tests if shell of user $user is set to $should_shell

user=vulab
should_shell="/. * [bash’

NO CHANGES FROM HERE
is_shell="finger $user | grep Shell | awk *{print $4}"

echo is_shell=$is_shell
echo should_shell=$should_shell

if expr "$is_shell" : "$should_shell* >/dev/null
then
rc=ok
else
rc=wrong
fi

echo $rc

A.6.1.6 check-program-output

#l/usr/bin/perl

Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)

$SWHATIS='

—

+* Testet ob Ausgabe von PROGRAM den regul aren Ausdruck OUTPUT_SHOULD enth alt

Fokk

Based on work by Thomas Ernst <herr.ernst@gmx.de>

Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#
@vars = (

["PROGRAM", "true",
"Programm f ur sh -c '$SPROGRAM™],
"OUTPUT_SHOULD", "Hallo Welt!",
“zu suchender Regul arer Ausdruck"],
"VERBOSE", ",
“Ausgabe ausgeben”]

Check-Spezifisch:
sub check()

{

332 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

print "PROGRAM="$PROGRAM\n";

print "OUTPUT_SHOULD="$OUTPUT_SHOULD"\n",
print "VERBOSE="$VERBOSE'\n";

print "\n";

$rc = "wrong";
if (open(F, "$PROGRAM 2>&1 |") {
while(<F>){
if($OUTPUT_SHOULD/){
print "Match: $_\n";

$rc = "ok";
last;

} elsif (3VERBOSE) {
print "$_";

}

close(F);

print "$rc\n®;

}

Common code:
Variablen ubernehmen
sub init()
{
for($i=0; $i<=$#vars; $i++) {
if(SENV{$vars[$i][0]}) {
${$vars[$i][0]} = SENV{$vars[$i][0]};
} else {

}

${$vars[$i][0]} = $vars[$i][1];

}

"Hauptprogramm"
if(PARGV[0] eq "listparms”) {
for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";

}

} elsif(BARGV[0] eq "whatis") {
SWHATIS="s/"\n *//g;
SWHATIS="sAn\ *\ *\x ?//g;
SWHATIS="s/\ *** ?//g;
SWHATIS="sAn *$//g;
print "$WHATIS\n";

} elsif(BARGV[0] eq "-h") {

print “whatis Kurzbeschreibung des Scripts\n;
print “listparms Listet Variablen mit Default und Beschrei bung\n“;
print "-h Alle Parameter\n”;
print "sonst Check-Script wird ausgefuehrt\n”;
} else {
init();
check();

A.6. SELECTED CHECK SCRIPTS 333

A6.2 Stepll

A.6.2.1 admin-check-clearharddisk

#!/bin/sh

Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
WHATIS=

ek

+* Festplatte zum Komprimieren optimieren (mit 0-Bits beschr eiben)

Hhk

Parameter:

vars=

Check-Spezifisch:
check()

{
cd /

echo Cleaning empty blocks...
dd if=/dev/zero of=0 bs=1048576

sleep 1
echo ™
echo Cleaning up...
m -f 0

echo Done.
echo ok

AB HIER NICHTS MEHR VERAENDERN !!!

Common code:
Variablen uebernehmen
for var in $vars ; do
eval "$var=\"\${$var:=\${${var}_deff\""
done

"Hauptprogramm”
if ["$1" = ’listparms’]; then
for var in $vars ; do
eval "echo \"$var|\${${var}_def}|\${${var}_bez}\""

done
elif ["$1" = "whatis"]; then
echo "$WHATIS" | sed -e 's/"\ *\«*x Jlg’ | grep -v [] *$
elif ["$1" = "-h"]; then
echo "Usage: $0 [whatis|listargs|-h]"
else
check
fi

A.6.2.2 admin-check-makeimage

#!/bin/sh
#

334 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

Basiert in guten Teilen auf deployl

#

Sollte nur fuer einmalige Uebungen zur Imageerzeugung ben utzt werden

(anschliessend Uebung im VUlab loeschen!)

#

Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)

WHATIS='

ok

=+ Muss auf localhost laufen! Erzeugt Plattenimage von $DISK v on $RECHNER

=+ in Datei $IMGFILE.img; Zeit ca. 30min

Parameter:
vars="RECHNER IMGFILE DISK"

RECHNER_def=unset
RECHNER_bez="Rechner dessen Platte in IMGFILE verpackt we rden soll (vulabl, ...)

IMGFILE_def=unset
IMGFILE_bez="Imagefile, relativ zu /vulab"

DISK_def="sd0’
DISK_bez="Platte, von der das Image gemacht werden soll"

Check-Spezifisch:
check()
{
imagePath="/vulab"
imageHost=smaug

client_log=logs/$RECHNER.log
deployment_done_cookie="VULab Deployment Done"
deployment_poll_interval=60 # seconds
ssh="./rsh-wrapper -p 9999"

if [$SRECHNER = unset]; then
echo RECHNER unset
echo failed
exit 0

fi

if [$IMGFILE = unset]; then
echo IMGFILE unset
echo failed
exit 0

fi

if ["uname -n™ != $imageHost]; then
echo muss auf \"localhost\" laufen
echo failed
exit 0

fi

cd $imagePath

echo "RECHNER=$RECHNER"
echo "DISK=$DISK"

echo "IMGFILE=$IMGFILE"
echo "imagePath=$imagePath"
echo ™

echo Starting deployment: ‘date*

A.6. SELECTED CHECK SCRIPTS 335

Define which image to create
echo ${DISK} ${IMGFILE} >mkimg-${RECHNER}

if [“$ssh $RECHNER echo READY" != READY]

then
echo "Machine $RECHNER didn't respond properly via '$ssh™
echo failed
exit 0

fi

Setup client logfile
m -f $client_log
install -m 777 /dev/null $client_log

Kick client into netboot
echo "Starting netboot on $RECHNER in background..."
Pfad fuer Solaris ist /usr/sbin/reboot, redirection Shel |-abhaengig !!!
$ssh $RECHNER "env PATH=/usr/sbin:/sbin /bin/sh -c 'reboo t - net' \
</dev/null 2>/dev/null >/dev/null" \
</dev/null 2>/dev/null >/dev/null &
echo "done. (rc=$?)"

Wait for client to startup on netboot properly

echo "Waiting a bit to get to /etc/rc..."

sleep 120 # takes about 70 seconds, plus some extra

if | grep “Starting $client_log >/dev/null 2>/dev/null

then
echo "Client $RECHNER didn't do netboot properly, aborting
exit 1

else
echo "$RECHNER properly netbooted.”

fi

Client's running, now wait for it to be done
while ! grep -q "$deployment_done_cookie" $client_log

do
echo ‘date: waiting for $RECHNER to finish: ‘tail -1 $clien t_log’
sleep $deployment_poll_interval

done

echo done.

Clean up

echo Cleaning up ...
rm -f mkimg-${RECHNER}
echo done.

echo Checking if $SRECHNER was installed properly
sleep 120 # time for reboot
if ["“$ssh $RECHNER echo READY" != READY]
then
echo "$0: machine $RECHNER didn't respond properly via '$ss h’
after installing"
exit 1
fi
echo OK.
Image in Tabelle 'images’ eintragen:
echo -n Remember image $IMGFILE in database:
echo "INSERT INTO images (bezeichnung) VALUES ("$IMGFILE)t
| psql -U vulab
echo Deployment done: ‘date*

echo ok

AB HIER NICHTS MEHR VERAENDERN !!!

336 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

Common code:
Variablen uebernehmen
for var in $vars ; do
eval "$var=\"\${$var:=\${${var}_deff\""
done

"Hauptprogramm®
if ["$1" = ’listparms’]; then
for var in $vars ; do
eval "echo \"$var|\${${var}_def}\${${var}_bez)\""

done
elif ["$1" = "whatis"]; then
echo "$WHATIS" | sed -e 's/"\ *\«* [lg | grep v [] *$
elif ["$1" = "-h"]; then
echo "Usage: $0 [whatis|listargs|-h]"
else
check
fi

A.6.2.3 check-file-contents

#!/usr/bin/perl

Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
$SWHATIS='

Fokk

+* Testet ob FILE den regul aren Ausdruck CONTENT_SHOULD enth alt
ok

’

Based on work by Thomas Ernst <herr.ernst@gmx.de>

Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#
@vars = (
["FILE", "letc/motd",
“zu durchsuchende Datei, absoluter Pfad"],
["CONTENT_SHOULD", "Hallo Welt!",
“zu suchender Regul arer Ausdruck"]
)i
Check-Spezifisch:

sub check()
{

print "FILE=$FILE\n";
print "CONTENT_SHOULD=$CONTENT_SHOULD\n";
print "

$rc = "wrong";
if (open(F, "$FILE") {
while(<F>)Y{
chomp();
#print "$_\n";
if(SCONTENT_SHOULDY/){
$rc = "ok";
last;

}

close(F);

}

print "$rc\n”;

A.6. SELECTED CHECK SCRIPTS 337

Common code:

Variablen Ubernehmen
sub init()
{
for($i=0; $i<=$#vars; $i++) {
if(exists(SENV{$vars[$i][0]})) {
${$vars[$i][0]} = $ENV{$vars[$i][0]};
} else {

}

${$vars[$i][0]} = $vars[$i][1];

}

"Hauptprogramm®
if(BARGV[0] eq "listparms") {
for($i=0;$i<=$t#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";

}

} elsif(BARGV[0] eq "whatis") {
SWHATIS="s/"\n *//g;
SWHATIS="s\n\ =\ *\+ ?//g;
SWHATIS="s/"\ *** ?//g;
SWHATIS="s\n *$//g;
print "$WHATIS\n";

} elsif(SARGV[0] eq "-h") {

print "whatis Kurzbeschreibung des Scripts\n;
print “listparms Listet Variablen mit Default und Beschrei bung\n“;
print "-h Alle Parameter\n”;
print “sonst Check-Script wird ausgefuehrt\n®;
} else {
init();
check();
}

A.6.2.4 unix-check-user-exists

#!/usr/bin/perl

Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
SWHATIS=

kK

#+ Testet ob der Benutzer $LOGIN existiert (via getpwnam())

Hhk

Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#
@vars = (
["LOGIN", "test",
"Benutzer, dessen Home-Dir ueberprueft werden soll"],
)i

Check-Spezifisch:
sub check()

{
$login_is=(getpwnam($LOGIN))[0];

print “login_is=$login_is\n";

338 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

print "LOGIN=$LOGIN\n";
print “\n";

if ($login_is eq $LOGIN) {
$re="ok";

} else {
$rc="wrong";

}

print "$rc\n”;

}

AB HIER NICHTS MEHR VERAENDERN !
Common code:
Variablen ubernehmen
sub init()
{
for($i=0; $i<=$#vars; $i++) {
if(SENV{$vars[$i][0]}) {

${$vars[$i][0]} = SENV{$vars[$i][0]};
} else {

}

${$vars[$i][0]} = $vars[$i][1];

}

"Hauptprogramm”
if(PARGV[0] eq "listparms”) {
for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";

}

} elsif(BARGV[0] eq "whatis") {
SWHATIS="s/"\n *//g;
$SWHATIS="s/\n\ *\ *\x ?//g;
SWHATIS="s/\ *\ *\x ?2//g;
SWHATIS="sAn *$//g;
print "$WHATIS\n";

} elsif(SARGV[0] eq "-h") {

print “whatis Kurzbeschreibung des Scripts\n*;
print “listparms Listet Variablen mit Default und Beschrei bung\n“;
print "-h Alle Parameter\n”;
print "sonst Check-Script wird ausgefuehrt\n”;
} else {
init();
check();
}

A.6.2.5 unix-check-user-shell

#!/usr/bin/perl

Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)

$WHATIS='

-

=+ Testet ob die Login-Shell von User $LOGIN gleich $SHELL_SHO ULD ist (via getpwnam())

Fokk

’

Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#

A.6. SELECTED CHECK SCRIPTS

339

@vars = (
["LOGIN", "test",
"Benutzer, dessen Login-Shell ueberprueft werden soll"],
["SHELL_SHOULD", "/bin/sh",
"Pfad auf den die Shell gesetzt sein sollte"],

);

Check-Spezifisch:
sub check()

{
$shell_is=(getpwnam($LOGIN))[8];

print "LOGIN=$LOGIN\n";

print "shell_is=$shell_is\n";

print "SHELL_SHOULD=$SHELL_SHOULD\n";
print "\n";

if ($shell_is =~ $SHELL_SHOULD) {
$re="ok";

} else {
$rc="wrong";

}

print "$rc\n";

AB HIER NICHTS MEHR VERAENDERN !l!

Common code:

Variablen Ubernehmen
sub init()
{
for($i=0; Si<=$#vars; $i++) {
if(SENV{$vars[$i][0]}) {
${$vars[$i][0]} = SENV{$vars[$i][0]};
} else {

}

${$Svars[$i][0]} = $vars[$i][1];

}

"Hauptprogramm”
if(BARGV[0] eq "listparms”) {
for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|Svars[$i][2]\n";

}

} elsif(BARGV[0] eq "whatis") {
SWHATIS="s/"\n */lg;
SWHATIS="s\n\ =\ ** ?//g;
SWHATIS="s/\ *\ *\+ ?2//g;
SWHATIS="s\n = $//g;
print "$WHATIS\n";

} elsif(BARGV[0] eq "-h") {

print “whatis Kurzbeschreibung des Scripts\n;
print "listparms Listet Variablen mit Default und Beschrei bung\n”;
print "-h Alle Parameter\n";
print “sonst Check-Script wird ausgefuehrt\n®;
} else {
init();
check();

340 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

A.6.2.6 unix-check-user-password

#!/usr/bin/perl

Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
$WHATIS='

ok

=+ Testet ob Passwort von User $LOGIN gleich $PASSWD_SHOULD (p lain)

Fokk

’

Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#
@vars = (
["LOGIN", "test",
“Benutzer, dessen Passwort ueberprueft werden soll"],
["PASSWD_SHOULD", "*",
“Plaintext-Passwort (unverschluesselt), gegen das gepru eft wird"],

)i

Check-Spezifisch:
sub check()
{
$passwd_is_e=(getpwnam($LOGIN))[1];
($salt) = ($passwd_is_e =" I"(..)/);
$PASSWD_SHOULD_u= $PASSWD_SHOULD;
$PASSWD_SHOULD_e=crypt($PASSWD_SHOULD_u, $salt);

print "passwd_is_e=$passwd_is_e\n";

print "salt="$salt'\n";

print "PASSWD_SHOULD_u=$PASSWD_SHOULD_u\n";
print "PASSWD_SHOULD_e=$PASSWD_SHOULD_e\n";
print "\n";

if ($PASSWD_SHOULD_e ne "™ and $passwd_is_e eq $PASSWD_SHO ULD_e) {
$rc="ok";

} else {
$rc="wrong";

}

print "$rc\n”;

}

AB HIER NICHTS MEHR VERAENDERN !!!
HHHHHHH A HHHHHHHHHHRHAHA

Common code:

Variablen ubernehmen

sub init()
{
for($i=0; $i<=$#vars; $i++) {
if(SENV{$vars[$i][0]}) {
${$vars[$i][0]} = SENV{$vars[$i][0]};
} else {
${$vars[$i][0]} = $vars[$i][1];
}
}
}

"Hauptprogramm®
if(PARGV[0] eq "listparms”) {
for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";
}

A.6. SELECTED CHECK SCRIPTS 341

} elsif(BARGV[0] eq "whatis") {
SWHATIS="s/"\n *//g;
SWHATIS="s\n\ =\ *\x ?//g;
SWHATIS="s/"\ *** ?//g;
$SWHATIS="s\n *$//g;
print "$WHATIS\n";

} elsif(SARGV[0] eq "-h") {

print "whatis Kurzbeschreibung des Scripts\n";
print "listparms Listet Variablen mit Default und Beschrei bung\n”;
print "-h Alle Parameter\n”;
print “sonst Check-Script wird ausgefuehrt\n®;
} else {
init();
check();
}

A.6.2.7 unix-check-process-running

#!/usr/bin/perl

Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
SWHATIS="

Hokk

+* Testet ob PROCESS | auft (Regul arer Ausdruck gegen ps(1)-Output)
*kk

Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#
@vars = (
["PROCESS", "init",
"Regul arer Ausdruck, gegen den der Output von ps -elffaux verglich en wird."],

)i

wHEAH A R A R R e HHUHHHHH AR
Check-Spezifisch:
sub check()

{
print "PROCESS=$PROCESS\n";
$rc = "wrong";
if (open(P, "ps -elf 2>&1 || ps -auxwww 2>&1 [") {
while(<P>) {
if (/$PROCESS/) {
print "Match: $_\n";
$rc = "ok";
last;
}
close(P);
}
print "$rc\n";
}

AB HIER NICHTS MEHR VERAENDERN !!!

Common code:

Variablen ubernehmen
sub init()
{

342 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

for($i=0; $i<=$#vars; $i++) {
if(SENV{$vars[$i][0]}) {
${$vars[$i][0]} = SENV{$vars[$i][0]};
} else {
${$vars[$i][0]} = $vars[$i][1];
}

}

"Hauptprogramm”
if(PARGV[0] eq "listparms”) {
for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";

}

} elsif(BARGV[0] eq "whatis") {
SWHATIS="s/"\n *//g;
$SWHATIS="s/\n\ *\ =\ * ?//g;
SWHATIS="s/\ #\ *\x ?2//g;
SWHATIS="sAn *$//g;
print "$WHATIS\n";

} elsif(SARGV[0] eq "-h") {

print “whatis Kurzbeschreibung des Scripts\n;
print "listparms Listet Variablen mit Default und Beschrei
print "-h Alle Parameter\n®;
print "sonst Check-Script wird ausgefuehrt\n®;
} else {
init();
check();
}

A.6.2.8 netbsd-check-rcvar-set

#!/usr/bin/perl

bung\n“;

Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei
$SWHATIS='

Fokk

+* Testet ob Variable RCVAR in /etc/rc.conf gesetzt ist (NetBS

Fokk

D)

Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#

@vars = (
["RCVAR", "rc_configured",
“Variable, die uberpr uft werden soll*],
)i
Check-Spezifisch:
sub check()
{

$rc=system(". /etc/rc.subr; "
". letc/rc.conf; .
"checkyesno $RCVAR; "
"exit \$?");

print "RCVAR=$RCVAR\n";
print "rc=$rc\n";
print "\n";

if ($rc ==0) {
$rc="ok";

A.6. SELECTED CHECK SCRIPTS

343

} else {
$rc="wrong";
}

print "$rc\n";

AB HIER NICHTS MEHR VERAENDERN !l!

Common code:

Variablen ubernehmen
sub init()
{
for($i=0; $i<=$#vars; $i++) {
if(SENV{$vars[$i][0]}) {
${$vars[$i][0]} = SENV{$vars[$i][0]};
} else {
${$vars[$i][0]} = $vars[$i][1];

}

"Hauptprogramm”
if(BARGV[0] eq "listparms”) {
for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|Svars[$i][2]\n";

}

} elsif(BARGV[0] eq "whatis") {
SWHATIS="s/"\n */Ig;
SWHATIS="s\n\ =\ ** ?//g;
SWHATIS="s/"\ *** ?//g;
SWHATIS="s\n = $//g;
print "$WHATIS\n";

} elsif(SARGV[0] eq "-h") {

print “whatis Kurzbeschreibung des Scripts\n*;
print "listparms Listet Variablen mit Default und Beschrei bung\n”;
print "-h Alle Parameter\n";
print “sonst Check-Script wird ausgefuehrt\n®;
} else {
init();
check();

344 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

Appendix B

Database structure

This section describes the database tables used in theeMushix Lab, the SQL-
statements that were used to create the tables in the P8&tyidatabase, and example
database records in a few selected cases.

B.1 Table: benut zer

This table describes a user in the Virtual Unix Lab.

CREATE TABLE benutzer (

user_id serial NOT NULL, -- unique user id
vorname varchar(50) NOT NULL, -- first name
nachname varchar(50) NOT NULL, -- last name
matrikel_nr numeric(10) NOT NULL, -- student id

email varchar(80) NOT NULL, -- contact email
login varchar(80) NOT NULL, -- vulab login
passwort varchar(15) NOT NULL, -- password
freischalt_secret varchar(30) NOT NULL, -- initial secret
anmeldedatum date NOT NULL, -- sign-on date

typ varchar(80) DEFAULT ‘user’ NOT NULL,
PRIMARY KEY (user_id),

UNIQUE (user_id),

UNIQUE (login),

UNIQUE (matrikel_nr)

B.2 Table:rechner

This table contains a list of all the lab machines.

CREATE TABLE rechner (

345

346

APPENDIX B. DATABASE STRUCTURE

bezeichnung varchar(30) NOT NULL,

PRIMARY KEY (bezeichnung),
UNIQUE (bezeichnung)

B.3 Table:i mages

This table contains a list of all possible images that cannalled on the lab ma-

chines.

CREATE TABLE images (

bezeichnung varchar(150) NOT NULL,

PRIMARY KEY (bezeichnung),
UNIQUE (bezeichnung)

-- hostname

-- filename

B.4 Table: uebungen

This table lists all possible exercises with their basiqerties.

B.4.1 Definition

CREATE TABLE uebungen (

uebung_id varchar(40) NOT NULL,
bezeichnung varchar(150) NOT NULL,

nur_fuer varchar(40),

vorlauf time NOT NULL,

dauer time NOT NULL,

nachlauf time NOT NULL,
wiederholbar boolean NOT NULL,
text varchar(150) NOT NULL,
mehr_info varchar(150),
PRIMARY KEY (uebung_id),
UNIQUE (uebung_id)

B.4.2 Example records

vulab=> select uebung_id, bezeichnung, vorlauf, dauer, te

-- exercise id
-- description
-- user-restriction
-- preparation time
-- exercise duration
-- time for checks
-- repeatable?
-- exercise text filename
-- more information (unused)

xt from uebungen;
if

uebung_id | bezeichnung text
+ -

pruefung | Verwalten von Benutzern mit Hilfe von NIS :45: 0 :00:00 | pruefung.html

pruefung2 | Verwalten von Benutzern mit Hilfe von NFS | 00:45 :00 | 01:00:00 | pruefung2.html

nfs | Aufsetzen von NFS Client und Server | 00:45:00 | 01:30:0 0 | nfs.php

solaris | Solaris konfigurieren | 00:45:00 | 01:30:00 | sola ris.php

nis | Aufsetzen von NIS Client und Server | 00:45:00 | 01:30:0 0 | nis.php

netbsd | NetBSD konfigurieren | 00:45:00 | 01:30:00 | netbsd .php
0 p

update-solaris | Solaris-lmage updaten

| 00:45:00 | 01:00: 00 | solaris.ph

B.5. TABLE: UEBUNG.SETUP

347

B.5 Table: uebung_set up

This table lists the machines and their images associatihdavgertain exercise.

CREATE TABLE uebung_setup (

uebung_id varchar(40) NOT NULL, -- exercise id
rechner varchar(30) NOT NULL, -- hostname
image varchar(150) NOT NULL, -- image filename

CONSTRAINT pk_uebung_setup
PRIMARY KEY (uebung_id, rechner),
CONSTRAINT fk_uebung
FOREIGN KEY (uebung_id)
REFERENCES uebungen (uebung_id)
ON DELETE CASCADE
ON UPDATE CASCADE,
CONSTRAINT fk_rechner
FOREIGN KEY (rechner)
REFERENCES rechner (bezeichnung)
ON DELETE CASCADE
ON UPDATE CASCADE,
CONSTRAINT fk_image
FOREIGN KEY (image)
REFERENCES images (bezeichnung)
ON DELETE CASCADE
ON UPDATE CASCADE

B.6 Table:uebungs_checks

This table contains a list of checks to make at the end of aicegxercise. The

“parameter ”field is only available in implementation step II.

B.6.1 Definition

CREATE TABLE uebungs_checks (

check_id serial NOT NULL, -- check id

uebung_id varchar(80) NOT NULL, -- associated exercise

script varchar(150) NOT NULL, -- which script to run

parameter varchar(300), -- parameters for script (Step Il o
rechner varchar(30) NOT NULL, -- where to run script
bezeichnung varchar(150) NOT NULL, -- text for feedback

PRIMARY KEY (check_id),
UNIQUE (check_id),
CONSTRAINT fk_uebung
FOREIGN KEY (uebung_id)
REFERENCES uebungen (uebung_id)
ON DELETE CASCADE
ON UPDATE CASCADE,
CONSTRAINT fk_rechner
FOREIGN KEY (rechner)
REFERENCES rechner (bezeichnung)
ON DELETE CASCADE
ON UPDATE CASCADE

niy!)

348

APPENDIX B. DATABASE STRUCTURE

B.6.2 Example records

vulab=> select * from uebungs_checks where uebung_id="netbsd’;

check_id | uebung_id | script | bezeichnung | rechner

.......... S S —
909 | netbsd | netbsd-check-installed-pkg | bash installie n? (pkg_info -e bash) | vulabl
910 | netbsd | unix-check-user-exists | Benutzer angelegt? (getpwnam(3)) | vulabl
911 | netbsd | unix-check-user-home | Home-Directory richt ig gesetzt? | vulabl
912 | netbsd | unix-check-user-shell | Shell auf tcsh gesetz t? (getpwnam(3)) | vulabl
913 | netbsd | netbsd-check-user-shell | Shell auch in /etc/ master.passwd gesetzt? | vulabl
914 | netbsd | unix-check-user-password | Passwort richtig gesetzt? (getpwnam(3)) | vulabl
915 | netbsd | unix-check-user-shell | Shell des Users vulab auf bash gesetzt? | vulabl
908 | netbsd | admin-check-clearharddisk | tcsh installier t? (pkg_info -e tcsh) | vulabl

(8 rows)

B.7 Table: buchungen

This table contains entries for exercises actually bookedders, including time and
date of the exercise and which exercise to practice.

B.7.1 Definition

CREATE TABLE buchungen (

buchungs_id serial NOT NULL, -- booked exercise id

user_id int NOT NULL, -- for which user

uebung_id varchar(40) NOT NULL, -- which exercise

datum date NOT NULL, -- when/date

startzeit time NOT NULL, -- when/time

freigegeben varchar(30) DEFAULT ’'nein’” NOT NULL, -- exerci se set up?
endzeit time, -- when/ended

at_id int, -- setup at(1) job id

at_id_end int, -- uebung_ende job id

- where user came from

ip varchar(20),
PRIMARY KEY (buchungs_id),
UNIQUE (buchungs_id),
CONSTRAINT fk_uebung
FOREIGN KEY (uebung_id)
REFERENCES uebungen (uebung_id)
ON DELETE CASCADE
ON UPDATE CASCADE,
CONSTRAINT fk_user_id
FOREIGN KEY (user_id)
REFERENCES benutzer (user_id)
ON DELETE CASCADE
ON UPDATE CASCADE

B.7.2 Example records

vulab=> select * from buchungen;

buchu- | user | uebung | datum | startzeit | freigegeben | endz eit | at.id | at_id | ip

ngs_id | _id | _id | | | | | atid | _end |
114 | 33 | nfs | 2004-05-03 | 15:00:00 | nicht-mehr | 15:06:18 | 234 | 235 | 132.199.213.37
115 | 33 | nis | 2004-05-11 | 21:00:00 | nicht-mehr | 23:30:05 | 236 | 237 |
116 | 33 | nfs | 2004-05-18 | 11:45:00 | nicht-mehr | 12:05:21 | 238 | 239 | 194.95.108.21
117 | 34 | nfs | 2004-05-20 | 18:00:00 | nicht-mehr | 20:30:05 | 241 | 247 |
123 | 35| nfs | 2004-05-21 | 15:00:00 | nicht-mehr | 16:20:57 | 248 | 250 | 194.95.108.32

| |

124

35 | nis | 2004-05-21 | 21:00:00 | nicht-mehr | 22:28:11 | 249 | 251 | 194.95.108.32

B.8. TABLE: ERGEBNI S_.CHECKS

349

(42 rows)

122
120
121
126
130
127
129
131
134
136
138
128
139
132
141
140
143
144
142
137
146
147
149
145
150
155
152
153
156
157
154
158
159
148
160
161

37 | nfs | 2004-05-22 | nicht-mehr

35 | nfs | 2004-05-22 | nicht-mehr

35 | nis | 2004-05-23 | nicht-mehr

35 | nis | 2004-05-23 | nicht-mehr

34 | nfs | 2004-05-25 | nicht-mehr

37 | nis | 2004-05-26 | nicht-mehr

38 | netbsd | 2004-05-26 | nicht-mehr

44 | nis | 2004-05-27 | nicht-mehr

43 | nfs | 2004-05-28 | nicht-mehr

38 | netbsd | 2004-05-28 | nicht-mehr

38 | netbsd | 2004-05-29 | nicht-mehr

35 | nis | 2004-05-29 | nicht-mehr

37 | nis | 2004-05-29 | nicht-mehr

35 | nis | 2004-05-29 | nicht-mehr

38 | netbsd | 2004-05-30 | nicht-mehr

38 | nfs | 2004-05-30 | nicht-mehr | 17:30:04 |
39 | nfs | 2004-05-31 | nicht-mehr | 23:30:03 |
38 | nfs | 2004-06-01 | nicht-mehr | 22:27:26 |
37 | nis | 2004-06-02 | nicht-mehr | 16:13:50 |
44 | nis | 2004-06-02 | nicht-mehr | |
44 | nis | 2004-06-02 | nicht-mehr | |
38 | nfs | 2004-06-03 | nicht-mehr | |
50 | nis | 2004-06-07 | nein |
44 | nis | 2004-06-03 | nicht-mehr | 18:34:36 |
48 | nis | 2004-06-03 | nicht-mehr | 22:24:17 |
44 | nis | 2004-06-07 | nein | |
33 | nfs | 2004-06-04 | nicht-mehr | 11:30:05 |
33 | nis | 2004-06-04 | nicht-mehr |
38 | nis | 2004-06-05 | nicht-mehr |
34 | nfs | 2004-06-07 | nein | |
48 | nis | 2004-06-07 | nicht-mehr | 10:29:55 |
48 | nis | 2004-06-08 | nein | |
44 | nfs | 2004-06-08 | nein | |
50 | nfs | 2004-06-07 200 | nicht-mehr | 13:29:05 |
52 | nfs | 2004-06-08 | 21:00:00 | nein | |
34 | nis | 2004-06-10 | 15:00:00 | nein | |

298 |

306 |

311 |

313 |
314 |

316 |
317 |

B.8 Table: er gebni s_checks

246
244
245
256
261
258
260
264
268
270
275
259
276
265
279
278
286
288
282
272
293
295

292
299

303
304
309

305

297

252
253
255
257
262
263
266
271
273

274 |

277
280
281
283

284
285
287
289
290
291
294
296

300
302

307
308
310

312

315

|

| 194.95.108.32

| 194.95.108.38

| 132.199.227.122
| 132.199.227.122
| 194.95.108.132

| 194.95.108.32
| 194.95.108.38
| 194.95.108.38
| 194.95.108.32
| 194.95.108.32
| 194.95.108.38
82.83.160.114
| 182.199.227.122
| 194.95.108.68

194.95.108.32
| 194.95.108.32
| 194.95.108.38
| 194.95.108.32

| 132.199.227.122
| 132.199.227.122

|
| 194.95.108.65
| 194.95.108.32

| 132.199.227.122

| 194.95.108.159

This table lists the results from the checks belonging tortatebooked exercise.

B.8.1 Definition

CREATE TABLE ergebnis_checks (

buchungs_id int NOT NULL, -
check_id int NOT NULL,
erfolg boolean NOT NULL, -
CONSTRAINT pk_ergebnis_checks
PRIMARY KEY (buchungs_id,
check_id),
CONSTRAINT fk_check_id
FOREIGN KEY (check_id)
REFERENCES uebungs_checks (check_id)
ON DELETE CASCADE
ON UPDATE CASCADE,
CONSTRAINT fk_buchungs_id
FOREIGN KEY (buchungs_id)
REFERENCES buchungen (buchungs_id)
ON DELETE CASCADE
ON UPDATE CASCADE

booked exercise id

-- check id

result

350 APPENDIX B. DATABASE STRUCTURE

B.8.2 Example records

vulab=> select + from ergebnis_checks where buchungs_id=129;
buchungs_id | check_id | erfolg

129 | 908 | t
129 | 909 | f
129 | 910 | f
129 | 911 | f
129 | 912 | f
129 | 913 | f
129 | 914 | f
129 | 915 | f
(8 rows)
vulab=> select buchungs_id, ergebnis_checks.check_id, b ezeichnung, erfolg
vulab-> from ergebnis_checks,uebungs_checks
vulab-> where buchungs_id=129 and ergebnis_checks.check _id=uebungs_checks.check_id;
buchungs_id | check_id | bezeichnung | erfolg
Ammmmnennt
129 | 908 | tcsh installiert? (pkg_info -e tcsh) |t
129 | 909 | bash installiert? (pkg_info -e bash) | f
129 | 910 | Benutzer angelegt? (getpwnam(3)) | f
129 | 911 | Home-Directory richtig gesetzt? | f
129 | 912 | Shell auf tcsh gesetzt? (getpwnam(3)) | f
129 | 913 | Shell auch in /etc/master.passwd (via vipw(1)) ge setzt? | f
129 | 914 | Passwort richtig gesetzt? (getpwnam(3)) | f
129 | 915 | Shell des Users vulab auf bash gesetzt? | f

(8 rows)

Appendix C

Evaluation data and code

C.1 Questionnaire: questions — raw format

The following data was used as input for txt2surveyARX'd form of the questions
including evaluation and extended statistical value aspldied in appendix C.2.

Fragebogen: Akzeptanzuntersuchung zum Virtuellen Unix La bor SS2004
+ Wodurch haben Sie uber das Thema "Systemadministration” gelernt?
. Besuch der Vorlesung
((Sehr viel / Einiges / Geht so / Wenig / Nichts))
. Script zur Vorlesung
((Sehr viel / Einiges / Geht so / Wenig / Nichts))
Ubungen zur Vorlesung
((Sehr viel / Einiges / Geht so / Wenig / Nichts))
. Virtuelles Unix Labor
((Sehr viel / Einiges / Geht so / Wenig / Nichts))
. Analyse der FH-Rechner
((Sehr viel / Einiges / Geht so / Wenig / Nichts))
. Analyse eigener Rechner
((Sehr viel / Einiges / Geht so / Wenig / Nichts))
. Bucher
((Sehr viel / Einiges / Geht so / Wenig / Nichts))
. Online-Informationen
((Sehr viel / Einiges / Geht so / Wenig / Nichts))
+ Einbindung des Labors in die Vorlesung
. Ist das Virtuelle Unix Labor generell eine sinnvolle
Erg anzung zur Vorlesung?
((Sehr sinnvoll / Sinnvoll / Geht so / Wenig sinnvoll / Unsinn i9))
. Wie empfanden Sie den Nutzen des Virtuellen Unix Labors?
((sehr positiv / positiv / neutral / negativ / sehr negativ))
+ Benutzung des Virtuellen Unix Labors
. War das System einfach zu benutzen?
((Sehr einfach / Einfach / Umstaendlich / Sehr umstaendlich)
. Waren gen ugend Ubungstermine zur Auswahl?
((Zu viele /| Gen ugend / Zu wenige))

. Von wo aus haben Sie auf die Ubungsrechner zugegriffen
((Zuhause / FH oder Uni / Sonstige))
. Von welchem Betriebssystem aus haben Sie die Ubungen

gemacht? ((Windows / Unix (Linux, ...) / Sonstiges))
. War die Ausgangskonfiguration der Rechner ausreichend,

damit Sie die Ubung bearbeiten konnten?

(Mussten Sie viele Vorbereitungen treffen, um mit der

351

352 APPENDIX C. EVALUATION DATA AND CODE

eigentlichen Ubung beginnen zu k ©®nnen oder
war die vorhandene Uebungsumgebung nach all lhren W unschen
eingerichtet?)
((Zu spartanisch / etwas spartanisch / Geht so / Komfortabel
| Sehr komfortabel))

+ Allgemeines zum Ubungsverlauf:

. Haben Sie die Ubung alleine oder in einer Gruppe

absolviert? (Bitte jedes Mitglied der Gruppe diesen
Fragebogen ausf ullen!)
((Alleine / Zu zweit / Zu dritt / Zu viert))

. War die Zeit f Ur das absolvieren der Ubung zu kurz/zu lang?
((Viel zu kurz / Zu kurz / Genau richtig / Zu lang / Viel zu lang))
. Fanden Sie die Aufgabenstellung zu detailiert oder h atten
sie sich mehr Informationen zum Bearbeiten der Aufgabe gew unscht?
((Viel zu viel Information / Zuviel Information / Genau rich tig
/ Bitte etwas mehr Informationen / Bitte viel mehr Informati onen))

. Hatten Sie sich w ahrend der Ubung gewlinscht, um Hilfe
anfragen zu k ©nnen, um weiterzukommen?
((Ja, Hilfe w are gut gewesen / Nein, bin alleine klargekommen))
. Hatten Sie sich gew unscht dass das System automatisch Probleme erkennt
und Hilfestellungen anbietet? ((ja / nein))
+ Ubungsverlauf: Wieviel haben die folgenden Hilfsmittel zu m Bearbeiten
der Ubungen des Virtuellen Unix Labors beigetragen?
. Besuch der Vorlesung
((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts)
. Script zur Vorlesung
((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts)
Ubungen zur Vorlesung
((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts)
. Analyse der FH-Rechner
((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts)
. Analyse eigener Rechner
((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts)
. Biucher
((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts)
. Online-Informationen
((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts)
+ Ubungsverlauf: Wieviel hat der Besuch der Vorlesung zum Bea rbeiten
der Ubungen des Virtuellen Unix Labors beigetragen?
. War die Vorlesung hilfreich bei der Bearbeitung der Aufgab e zum
NIS Server: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War die Vorlesung hilfreich bei der Bearbeitung der Aufgab e zum
NIS Client: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War die Vorlesung hilfreich bei der Bearbeitung der Aufgab e zum
NFS Server: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War die Vorlesung hilfreich bei der Bearbeitung der Aufgab e zum
NFS Client: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War die Vorlesung hilfreich f ur den Umgang mit Solaris allgemein?
((Sehr / Etwas / Geht so / Wenig / Nichts))
. War die Vorlesung hilfreich f ur den Umgang mit NetBSD allgemein?
((Sehr / Etwas / Geht so / Wenig / Nichts))
. Konnten Sie den nicht direkt vermittelten Stoff aus den
bereitgestellten Informationen (Vorgehensweisen, allge meine
Informationen uber Systeme, Vorgehen zur Analyse) ermitteln?
((Sehr / Etwas / Geht so / Wenig / Nichts))
+ Ubungsverlauf: Wieviel hat die Benutzung des Scripts zum Be arbeiten
der Ubungen des Virtuellen Unix Labors beigetragen?
. War das Script hilfreich bei der Bearbeitung der Aufgabe zu m
NIS Server: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War das Script hilfreich bei der Bearbeitung der Aufgabe zu m
NIS Client: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War das Script hilfreich bei der Bearbeitung der Aufgabe zu m
NFS Server: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War das Script hilfreich bei der Bearbeitung der Aufgabe zu m
NFS Client: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War das Script hilfreich f ur den Umgang mit Solaris allgemein:
((Sehr / Etwas / Geht so / Wenig / Nichts))
. War das Script hilfreich f ur den Umgang mit NetBSD allgemein:
((Sehr / Etwas / Geht so / Wenig / Nichts))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 353

+ Feedback nach der Ubung

. Waren die Informationen der Auswertung detailiert genug, um etwaige
Fehler nachvollziehen zu k onnen?
((Ja, ich konnte aus meinen Fehlern lernen
/ Nein, ich weiss immer noch nicht was falsch war))

+ Angaben zur Person

. Interesse am Studium allgemein
((Sehr gross / Gross / Mittel / Weniger / Gar nicht))

. Interesse am Thema "Systemadministration”
((Sehr gross / Gross / Mittel / Weniger / Gar nicht))

. Interesse an "Unix" (Linux, Solaris, NetBSD, ...)
((sehr gross / Gross / Mittel / Weniger / Gar nicht))

. Wie sch atzen Sie die Wichtigkeit des Teilgebiets "NIS" ein?
((sehr gross / Gross / Mittel / Weniger / Gar nicht))

. Wie sch atzen Sie die Wichtigkeit des Teilgebiets "NFS" ein?
((sehr gross / Gross / Mittel / Weniger / Gar nicht))

. Wieviele von 10 Vorlesungsstunden haben Sie besucht?
((0-3/4-81/910))

. Haben Sie bisher ausserhalb der Vorlesung mit Systemverwa ltung
zu tun (Praktikum, Rechner zu Hause, ...)? ((Ja / Nein))

. Wenn ja, mit welchen Betriebssystemen ?
((Windows / Linux / BSD / Solaris / AIX / Novell / sonstige))

. Studiensemester ((unter 4 / 4/ 5/ 617/ 8]/ uber 8))

. Geschlecht (1 m / w))

. Haben Sie sonstige Anmerkungen? Bitten geben Sie ihr
Feedback per EMail oder hier ab! ((5x)

C.2 Questionnaire: questions and results

This section lists the questionnaire that students who theelfirtual Unix Lab in the
summer semester 2004 were asked to fill out, and studeniseansThe evaluation of
the results can be found in section 7.3. The questions (asellge answers) presented
here are printed in amALL CAPITALS font. For each question, the answers given to
each item are displayed as absolute and relative numberelhasva simplified bar-
graph. For the evaluation, the modisgiven for all results, and the medfais printed

for questions whose answers are represented an ordinal scal

WODURCH HABEN SIE UBER DAS THEMA “SYSTEMADMINISTRATION " GEL-

ERNT?

1. BESUCH DERVORLESUNG
((SEHR VIEL / EINIGES/ GEHT so/ WENIG / NICHTS))

1 [Fahrmeir, 2003] pp. 53
2 [Fahrmeir, 2003] pp. 55

354 APPENDIX C. EVALUATION DATA AND CODE

Sehrviel: 16 (57%) |0000000000000000

Einiges: 8 (28%) |ooooo000
Geht so: 4 (14%) |oooo
Wenig: 0 (0%) |

Nichts: 0 (0%) |
Summe: 28 (100%)

Modus: Sehr viel (16)
Median: Sehr viel (14)

2. SCRIPT ZURVORLESUNG
((SEHR VIEL / EINIGES/ GEHT sOo/ WENIG / NICHTS))

Sehrviel: 11 (39%) |00000000000
Einiges: 13 (46%) |0000000000000
Geht so: 4 (14%) |oooo

Wenig: 0 (0%) |

Nichts: 0 (0%) |

Summe: 28 (100%)

Modus: Einiges (13)
Median: Einiges (14)

3. UBUNGEN ZURVORLESUNG
((SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

Sehrviel: 10 (35%) |0000000000
Einiges: 13 (46%) |0000000000000
Geht so: 5 (17%) |ooooo

Wenig: 0 (0%) |

Nichts: 0 (0%) |

Summe: 28 (100%)

Modus: Einiges (13)
Median: Einiges (14)

4. VIRTUELLES UNIX LABOR
((SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

Sehrviel: 9 (32%) |000000000
Einiges: 12 (42%) |000000000000
Geht so: 7 (25%) |oooo000
Wenig: 0 (0%) |

Nichts: 0 (0%) |

Summe: 28 (100%)

Modus: Einiges (12)
Median: Einiges (14)

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS

355

5. ANALYSE DER FH-RECHNER
((SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

Sehrviel: 3 (10%) |ooo

Einiges: 12 (42%) |000000000000
Gehtso: 10 (35%) |0000000000
Wenig: 3 (10%) |ooo

Nichts: 0 (0%) |

Summe: 28 (100%)

Modus: Einiges (12)

Median: Einiges (14)

6. ANALYSE EIGENERRECHNER
((SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

Sehrviel: 15 (53%) |000000000000000
Einiges: 10 (35%) |0000000000
Geht so: 1 (3%) |o
Wenig: 1 (3%) |o
Nichts: 1 (3%) |o
Summe: 28 (100%)
Modus: Sehr viel (15)
Median: Sehr viel (14)
7. BUCHER

((SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

Sehrviel: 6 (21%) |oooooo
Einiges: 9 (32%) |000000000
Geht so: 4 (14%) |oooo
Wenig: 7 (25%) |ooooooo
Nichts: 2 (7%) |oo
Summe: 28 (100%)

Modus: Einiges (9)

Median: Einiges (14)

8. ONLINE-INFORMATIONEN
((SEHR VIEL / EINIGES/ GEHT so/ WENIG / NICHTS))

356

APPENDIX C. EVALUATION DATA AND CODE

Sehrviel: 12 (42%) |000000000000
Einiges: 12 (42%) |000000000000
Geht so: 2 (7%) |oo

Wenig: 2 (7%) |oo

Nichts: 0 (0%) |

Summe: 28 (100%)

Modus: Sehrviel (12)

Median: Einiges (14)

EINBINDUNG DES LABORS IN DIE VORLESUNG

9. ISTDASVIRTUELLE UNIX LABOR GENERELL EINE SINNVOLLEERGANZUNG

ZUR VORLESUNG?
((SEHR SINNVOLL / SINNVOLL / GEHT SO/ WENIG SINNVOLL / UNSINNIG))

Sehr sinnvoll: 15 (53%) |000000000000000
Sinnvoll: 13 (46%) |0000000000000
Geht so: 0 (0%) |

Wenig sinnvoll: 0 (0%) |

Unsinnig: 0 (0%) |

Summe: 28 (100%)

Modus: Sehr sinnvoll (15)

Median: Sehr sinnvoll (14)

10. WIE EMPFANDEN SIE DEN NUTZEN DESVIRTUELLEN UNIX LABORS?

((SEHR POSITIV/ POSITIV/ NEUTRAL / NEGATIV / SEHR NEGATIV))

sehr positiv: 8 (28%) |00000000

positiv:
neutral:
negativ:

15 (53%) |000000000000000
4 (14%) |oooo
1 (3%) |o

sehr negativ: 0 (0%) |

Summe:

Modus:
Median:

28 (100%)

positiv (15)
positiv (14)

BENUTZUNG DES VIRTUELLEN UNIX LABORS

11. WAR DAS SYSTEM EINFACH ZU BENUTZEN?

((SEHR EINFACH/ EINFACH / UMSTAENDLICH / SEHR UMSTAENDLICH))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 357

Sehr einfach: 4 (14%) |oooo

Einfach: 17 (60%) |00000000000000000
Umstaendlich: 7 (25%) |ooooooo

Sehr umstaendlich: 0 (0%)|

Summe: 28 (100%)

Modus: Einfach (17)

Median: Einfach (14)

12. WAREN GENUGEND UBUNGSTERMINE ZURAUSWAHL?
((Zu VIELE / GENUGEND/ ZU WENIGE))
Zu viele: 0 (0%) |
Geriigend: 26 (92%) |00000000000000000000000000
Zu wenige: 2 (7%) |oo
Summe: 28 (100%)

Modus: Geiigend (26)
Median: Geirigend (14)

13. VON WO AUS HABEN SIE AUF DIE UBUNGSRECHNER ZUGEGRIFFER
((ZuHAUsSE/ FH ODERUNI / SONSTIGE))

Zuhause: 20 (71%)|00000000000000000000
FHoderUni: 8 (28%) |0o0000000

Sonstige: 0 (0%) |

Summe: 28 (100%)

Modus: Zuhause (20)

Median: n/a

14. VON WELCHEMBETRIEBSSYSTEM AUS HABENSIE DIE UBUNGEN GEMACHT?
((WiINDOWS/ UNIX (LINUX, ...) / SONSTIGES))

Windows: 7 (25%) |ooooooo

Unix (Linux, ...): 21 (75%) |000000000000000000000
Sonstiges: 0 (0%) |

Summe: 28 (100%)

Modus: Unix (Linux, ...) (21)

Median: n/a

15. WAR DIE AUSGANGSKONFIGURATION DERRECHNER AUSREICHEND DAMIT
SIE DIE UBUNG BEARBEITEN KONNTEN? (MUSSTENSIE VIELE VORBERE
ITUNGEN TREFFEN UM MIT DER EIGENTLICHEN UBUNG BEGINNEN ZU KONNEN
ODER WAR DIE VORHANDENEUEBUNGSUMGEBUNG NACH ALLIHREN WUNSCHEN
EINGERICHTET?)
((ZU SPARTANISCH/ ETWAS SPARTANISCH/ GEHT SO/ KOMFORTABEL /
SEHR KOMFORTABEL))

358 APPENDIX C. EVALUATION DATA AND CODE

Zu spartanisch: 0 (0%) |

etwas spartanisch: 11 (39%)00000000000
Geht so: 14 (50%) |o0000000000000
Komfortabel: 3 (10%) |ooo

Sehr komfortabel: 0 (0%) |

Summe: 28 (100%)

Modus: Geht so (14)

Median: Geht so (14)

ALLGEMEINES ZUM UBUNGSVERLAUF:

16. HABEN SIE DIE UBUNG ALLEINE ODER IN EINER GRUPPE ABSOLVIERT?
(BITTE JEDESMITGLIED DER GRUPPE DIESENFRAGEBOGEN AUSRJLLEN!)
((ALLEINE / ZU ZWEIT / ZU DRITT / ZU VIERT))

Alleine: 17 (62%) |00000000000000000
Zuzweit: 5 (19%) |ooooo

Zu dritt: 5 (19%) |ooooo

Zu viert: 0 (0%) |

Summe: 27 (100%)

Modus: Alleine (17)
Median: Alleine (14)

17. WAR DIE ZEIT FUR DAS ABSOLVIEREN DERUBUNG ZU KURZ/ZU LANG?
((VIEL ZU KURZ / ZU KURZ / GENAU RICHTIG / ZU LANG / VIEL ZU LANG

)
Viel zu kurz: 1 (3%) |o

Zu kurz: 15 (53%) |000000000000000
Genaurichtig: 11 (39%) |00000000000

Zu lang: 0 (0%) |

Viel zu lang: 0 (0%) |

Summe: 27 (100%)

Modus: Zu kurz (15)

Median: Zu kurz (14)

18. FANDEN SIE DIE AUFGABENSTELLUNG ZU DETAILIERT ODER HATTEN SIE
SICH MEHRINFORMATIONEN ZUM BEARBEITEN DERAUFGABE GEWUNSCHT?
((VIEL zU VIEL INFORMATION / ZUVIEL INFORMATION / GENAU RICHTIG /
BITTE ETWAS MEHRINFORMATIONEN/ BITTE VIEL MEHR INFORMATIONEN

)

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 359

Viel zu viel Information: 0 (0%) |
Zuviel Information: 2 (7%) |oo
Genau richtig: 9 (32%) 000000000

Bitte etwas mehr Informationen: 16 (57%)0000000000000000

Bitte viel mehr Informationen: 0 (0%) |

Summe: 27 (100%)

Modus: Bitte etwas mehr Informationen (16)
Median: Bitte etwas mehr Informationen (14)

19. HATTEN SIE SICH WAHREND DER UBUNG GEWUNSCHT, UM HILFE ANFRA-
GEN ZU KONNEN, UM WEITERZUKOMMEN?

((JA, HILFE WARE GUT GEWESEN/ NEIN, BIN ALLEINE KLARGEKOMMEN

)

Ja(...): 19 (70%) |0000000000000000000
Nein(...); 8 (30%) |00000000
Summe: 27 (100%)

Modus: Ja(...) (19)
Median: n/a

20. HATTEN SIE SICH GEWUNSCHT DASS DASSYSTEM AUTOMATISCH PROB-
LEME ERKENNT UND HILFESTELLUNGEN ANBIETET?
((IA/NEIN))

ja 22 (81%) |0000000000000000000000
nein: 5 (19%) |ooooo
Summe: 27 (100%)

Modus: ja(22)
Median: n/a

UBUNGSVERLAUF: W IEVIEL HABEN DIE FOLGENDEN HILFSMITTEL ZUM BEAR-
BEITEN DER UBUNGEN DES VIRTUELLEN UNIX LABORS BEIGETRAGEN ?

21. BESUCH DERVORLESUNG
((NICHT GENUTZT/ SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

360 APPENDIX C. EVALUATION DATA AND CODE
Nicht genutzt: 0 (0%) |
Sehr viel: 8 (28%) |ooooo000
Einiges: 12 (42%) |000000000000
Geht so: 6 (21%) |oooooo
Wenig: 1 (3%) |o
Nichts: 0 (0%) |
Summe: 27 (100%)
Modus: Einiges (12)
Median: Einiges (14)

22. SRIPT ZURVORLESUNG

((NICHT GENUTZT/ SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

Nicht genutzt: 0 (0%) |

Sehr viel: 7 (25%) |oooo0000
Einiges: 14 (50%) |00000000000000
Geht so: 5 (17%) |ooooo

Wenig: 1 (3%) |o

Nichts: 0 (0%) |

Summe: 27 (100%)

Modus: Einiges (14)

Median: Einiges (14)

23. UBUNGEN ZUR VORLESUNG

((NICHT GENUTZT/ SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

Nicht genutzt: 3 (10%) |ooo

Sehr viel: 5 (17%) |ooooo
Einiges: 8 (28%) |0oooo0000
Geht so: 9 (32%) |000000000
Wenig: 2 (7%) |oo

Nichts: 0 (0%) |

Summe: 27 (100%)

Modus: Gehtso (9)

Median: Einiges (14)

24. ANALYSE DER FH-RECHNER

((NICHT GENUTZT/ SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 361

25.

26.

27.

Nichtgenutzt: 3 (10%) |ooo

Sehr viel: 2 (7%) |oo
Einiges: 8 (28%) |ooooo000
Geht so: 8 (28%) |ooo00000
Wenig: 5 (17%) |ooooo
Nichts: 1 (3%) |o
Summe: 27 (100%)

Modus: Einiges (8)

Median: Geht so (14)

ANALYSE EIGENERRECHNER
((NICHT GENUTZT/ SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

Nicht genutzt: 2 (7%) |oo

Sehr viel: 4 (14%) |oooo
Einiges: 10 (35%) |o0o00000000
Geht so: 6 (21%) |oooooo
Wenig: 4 (14%) |oooo
Nichts: 1 (3%) |o

Summe: 27 (100%)

Modus: Einiges (10)

Median: Einiges (14)

BUCHER

((NICHT GENUTZT/ SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

Nicht genutzt: 11 (39%) |00000000000

Sehr viel: 2 (7%) |oo
Einiges: 4 (14%) |oooo
Geht so: 6 (21%) |oooooo
Wenig: 3 (10%) |ooo
Nichts: 1 (3%) |o
Summe: 27 (100%)
Modus: Nicht genutzt (11)
Median: Einiges (14)

ONLINE-INFORMATIONEN
((NICHT GENUTZT/ SEHR VIEL / EINIGES/ GEHT SO/ WENIG / NICHTS))

362

APPENDIX C. EVALUATION DATA AND CODE

Nicht genutzt: 0 (0%) |

Sehr viel: 19 (67%) |0000000000000000000
Einiges: 5 (17%) |ooooo

Geht so: 2 (7%) |oo

Wenig: 1 (3%) |o

Nichts: 0 (0%) |

Summe: 27 (100%)

Modus: Sehr viel (19)

Median: Sehr viel (14)

UBUNGSVERLAUF: WIEVIEL HAT DER BESUCH DER VORLESUNG ZUM BEAR-
BEITEN DER UBUNGEN DES VIRTUELLEN UNIX LABORS BEIGETRAGEN ?

28. WAR DIE VORLESUNG HILFREICH BEI DERBEARBEITUNG DER AUFGABE
ZUM NIS SERVER:
((SEHR/ ETwAS / GEHT so/ WENIG / NICHTS))

Sehr: 4 (14%) |oooo

Etwas: 12 (42%) |000000000000
Gehtso: 8 (28%) |00000000
Wenig: 2 (7%) |oo

Nichts: 0 (0%) |

Summe: 26 (100%)

Modus: Etwas (12)

Median: Etwas (14)

29. WAR DIE VORLESUNG HILFREICH BEI DERBEARBEITUNG DER AUFGABE
ZUM NIS CLIENT:
((SEHR/ ETWAS / GEHT so/ WENIG / NICHTS))

Sehr: 4 (14%) |oooo

Etwas: 13 (46%) |0000000000000
Gehtso: 8 (28%) |00000000
Wenig: 1 (3%) |o

Nichts: 0 (0%) |

Summe: 26 (100%)

Modus: Etwas (13)

Median: Etwas (14)

30. WAR DIE VORLESUNG HILFREICH BEI DERBEARBEITUNG DER AUFGABE
ZUM NFS SRVER:
((SEHR/ ETWAS / GEHT so/ WENIG / NICHTS))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 363

Sehr: 6 (21%) |oooooo

Etwas: 13 (46%) |0000000000000
Gehtso: 5 (17%) |ooooo

Wenig: 1 (3%) |o

Nichts: 0 (0%) |

Summe: 25 (100%)

Modus: Etwas (13)
Median: Etwas (14)

31. WAR DIE VORLESUNG HILFREICH BEI DERBEARBEITUNG DER AUFGABE
ZzUM NFS QLIENT:
((SEHR/ ETWAS / GEHT so/ WENIG / NICHTS))

Sehr: 7 (25%) |ooo00000
Etwas: 12 (42%) |000000000000
Gehtso: 6 (21%) |ooo000
Wenig: 1 (3%) |o

Nichts: 0 (0%) |

Summe: 26 (100%)

Modus: Etwas (12)
Median: Etwas (14)

32. AR DIE VORLESUNG HILFREICH FJR DEN UMGANG MIT SOLARIS ALLGE-
MEIN?
((SEHR/ ETWAS / GEHT so/ WENIG / NICHTS))

Sehr: 10 (35%) |oooo000000
Etwas: 9 (32%) |000000000
Gehtso: 4 (14%) |oooo
Wenig: 2 (7%) |oo

Nichts: 0 (0%) |

Summe: 25 (100%)

Modus: Sehr (10)
Median: Etwas (14)

33. WAR DIE VORLESUNG HILFREICH FJR DEN UMGANG MIT NETBSD ALLGE-
MEIN?
((SEHR/ ETWAS / GEHT so/ WENIG / NICHTS))

364 APPENDIX C. EVALUATION DATA AND CODE

Sehr: 7 (25%) |ooo0000
Etwas: 12 (42%) |000000000000
Gehtso: 6 (21%) |ooooo0
Wenig: 1 (3%) |o

Nichts: 0 (0%) |

Summe: 26 (100%)

Modus: Etwas (12)
Median: Etwas (14)

34. KONNTEN SIE DEN NICHT DIREKT VERMITTELTEN STOFF AUS DEN BEREIF
GESTELLTENINFORMATIONEN (VORGEHENSWEISENALLGEMEINE INFOR-
MATIONEN UBER SYSTEME, VORGEHEN ZURANALYSE) ERMITTELN?

((SEHR/ ETWAS / GEHT so/ WENIG / NICHTS))

Sehr: 1 (3%) |o

Etwas: 14 (50%) |00000000000000
Gehtso: 9 (32%) |000000000
Wenig: 2 (7%) |oo

Nichts: 0 (0%) |

Summe: 26 (100%)

Modus: Etwas (14)
Median: Etwas (14)

UBUNGSVERLAUF: WIEVIEL HAT DIE BENUTZUNG DES SCRIPTS ZUM BEAR-
BEITEN DER UBUNGEN DES VIRTUELLEN UNIX LABORS BEIGETRAGEN ?

35. WAR DAS SCRIPT HILFREICH BEI DERBEARBEITUNG DER AUFGABE ZUM

NIS SERVER:
((SEHR/ ETWAS / GEHT so/ WENIG / NICHTS))
Sehr: 3 (10%) |ooo

Etwas: 14 (50%) |00000000000000
Gehtso: 6 (21%) |oooo00

Wenig: 4 (14%) |oooo

Nichts: 0 (0%) |

Summe: 27 (100%)

Modus: Etwas (14)
Median: Etwas (14)

36. WAR DAS SCRIPT HILFREICH BEI DERBEARBEITUNG DER AUFGABE ZUM
NIS CLIENT:
((SEHR/ ETWAS / GEHT so/ WENIG / NICHTS))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS

365

Sehr: 4 (14%) |oooo

Etwas: 12 (42%) |000000000000
Gehtso: 8 (28%) |00000000
Wenig: 3 (10%) |ooo

Nichts: 0 (0%) |

Summe: 27 (100%)

Modus: Etwas (12)
Median: Etwas (14)

37. WAR DAS SCRIPT HILFREICH BEI DERBEARBEITUNG DER AUFGABE ZUM

NFS SERVER:
((SEHR/ ETWAS / GEHT SO/ WENIG / NICHTS))

Sehr: 4 (14%) |oooo

Etwas: 15 (53%) |000000000000000
Gehtso: 5 (17%) |ooooo

Wenig: 3 (10%) |ooo

Nichts: 0 (0%) |

Summe: 27 (100%)

Modus: Etwas (15)
Median: Etwas (14)

38. WAR DAS SCRIPT HILFREICH BEI DERBEARBEITUNG DER AUFGABE ZUM

NFS CLIENT:
((SEHR/ ETWAS / GEHT SO/ WENIG / NICHTS))

Sehr: 4 (14%) |oooo

Etwas: 15 (53%) |000000000000000
Gehtso: 6 (21%) |ooooo0

Wenig: 2 (7%) |oo

Nichts: 0 (0%) |

Summe: 27 (100%)

Modus: Etwas (15)
Median: Etwas (14)

39. WAR DAS SCRIPT HILFREICH FUR DEN UMGANG MIT SOLARIS ALLGEMEIN:

((SEHR/ ETWAS / GEHT so/ WENIG / NICHTS))

366 APPENDIX C. EVALUATION DATA AND CODE

Sehr: 8 (28%) |oo000000
Etwas: 11 (39%) |00000000000
Gehtso: 6 (21%) |ooooo0
Wenig: 2 (7%) |oo

Nichts: 0 (0%) |

Summe: 27 (100%)

Modus: Etwas (11)
Median: Etwas (14)

40. WAR DAS SCRIPT HILFREICH FUR DENUMGANG MIT NETBSDALLGEMEIN:
((SEHR/ ETwAs / GEHT so/ WENIG / NICHTS))

Sehr: 4 (14%) |oooo

Etwas: 13 (46%) |0000000000000
Gehtso: 7 (25%) |ooooo000
Wenig: 3 (10%) |ooo

Nichts: 0 (0%) |

Summe: 28 (100%)

Modus: Etwas (13)
Median: Etwas (14)

FEEDBACK NACH DER UBUNG

41. WAREN DIE INFORMATIONEN DER AUSWERTUNG DETAILIERT GENUG UM
ETWAIGE FEHLER NACHVOLLZIEHEN ZU KONNEN?
((Ja, ICH KONNTE AUS MEINEN FEHLERN LERNEN/ NEIN, ICH WEISS IM-
MER NOCH NICHT WAS FALSCH WAR))

Ja(...): 17 (60%) |00000000000000000
Nein(...): 9 (32%) |000000000
Summe: 26 (100%)

Modus: Ja(...) (17)
Median: n/a

ANGABEN ZUR PERSON

42. INTERESSE AMSTUDIUM ALLGEMEIN
((SEHR GROSY GROSS/ MITTEL / WENIGER/ GAR NICHT))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 367

Sehrgross: 21 (75%)]|000000000000000000000

Gross: 6 (21%) |ooooo0
Mittel: 0 (0%) |
Weniger: 0 (0%) |
Gar nicht: 0 (0%) |

Summe: 27 (100%)

Modus: Sehr gross (21)
Median: Sehr gross (14)

43. INTERESSE AMTHEMA “SYSTEMADMINISTRATION”
((SEHR GROSY GROSS/ MITTEL / WENIGER/ GAR NICHT))

Sehrgross: 15 (53%)]|000000000000000
Gross: 7 (25%) |ooooo00

Mittel: 5 (17%) |ooooo0
Weniger: 0 (0%) |

Gar nicht: 0 (0%) |
Summe: 28 (100%)

Modus: Sehr gross (15)
Median: Sehr gross (14)

44, INTERESSE AN“UNIX" (L INUX, SOLARIS, NETBSD, ...)
((SEHR GROSY GROSS/ MITTEL / WENIGER/ GAR NICHT))

Sehrgross: 16 (57%)|0000000000000000
Gross: 10 (35%) |0000000000

Mittel: 1 (3%) |o

Weniger: 0 (0%) |

Gar nicht: 0 (0%) |

Summe: 27 (100%)

Modus: Sehr gross (16)
Median: Sehr gross (14)

45, WME SCHATZEN SIE DIE WICHTIGKEIT DES TEILGEBIETS “NIS” EIN?
((SEHR GROSY GROSS/ MITTEL / WENIGER/ GAR NICHT))

Sehrgross: 2 (7%) |oo

Gross: 6 (21%) |ooooo0
Mittel: 12 (42%) |000000000000
Weniger: 6 (21%) |oooo00

Gar nicht: 1 (3%) |o
Summe: 27 (100%)

Modus: Mittel (12)
Median: Mittel (14)

368 APPENDIX C. EVALUATION DATA AND CODE

46. WIE SCHATZEN SIE DIE WICHTIGKEIT DES TEILGEBIETS “NFS” EIN?
((SEHR GROSY GROSS/ MITTEL / WENIGER/ GAR NICHT))

Sehrgross: 3 (10%) |ooo

Gross: 14 (50%) |00000000000000
Mittel: 8 (28%) |oooo0000
Weniger: 2 (7%) |oo

Gar nicht: 0 (0%) |

Summe: 27 (100%)

Modus: Gross (14)
Median: Gross (14)

47. WIEVIELE VON 10 VORLESUNGSSTUNDEN HABENSIE BESUCHT?
((0-3/4-8/9-10))

0-3: 1 (3%) Jo
4-8: 3 (10%) |ooo
9-10: 23 (82%) |00000000000000000000000

Summe: 27 (100%)

Modus: 9-10 (23)
Median: 9-10 (14)

48. HABEN SIE BISHER AUSSERHALB DERVORLESUNG MIT SYSTEMVERWAL-
TUNG ZU TUN (PRAKTIKUM , RECHNER ZUHAUSE, ...)?

((IA I NEIN))
Ja: 22 (78%) |0000000000000000000000
Nein: 5 (17%) |ooooo

Summe: 27 (100%)

Modus: Ja (22)
Median: n/a

49. WENN JA, MIT WELCHEN BETRIEBSSYSTEMEN?
((WiNDOWS/ LINUX / BSD / SoLARIS/ AIX / N OVELL / SONSTIGE))

Windows: 5 (17%) |ooooo

Linux: 16 (57%) |0000000000000000
BSD: 0 (0%) |
Solaris: 1 (3%) |o
AlX: 0 0%) |
Novell: 1 (3%) |o

sonstige: 0 (0%) |
Summe: 23 (100%)

Modus: Linux (16)
Median: n/a

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 369

50. STUDIENSEMESTER
((UNTER4/4/5/6/7/8/UBERS))

unter 4: 1 (3%) |o

4.
5:
6:
7.
8:

23 (82%) |00000000000000000000000

0 (0%) |
0 (0%) |
0 (0%) |
2 (7%) |oo

tber 8: 1 (3%) |o

Summe: 27 (100%)

Modus: 4 (23)
Median: n/a

51. GESCHLECHT

((M7w))

m:
w:

26 (92%) |00000000000000000000000000
1 (3%) |o

Summe: 27 (100%)

Modus: m (26)
Median: n/a

52. HABEN SIE SONSTIGEANMERKUNGEN? BITTEN GEBENSIE IHR FEEDBACK
PEREMAIL ODER HIER AB!

e Die Zeit ist teilweise etwas kurz bemessen, gerade wenn roarimem

Problem steht. Bei den Diensten die zu starten siacew rahere Informa-
tionen hilfreich (z.B. dass der RPCBIND erforderlich igt NIS)

Bei der NISUbung ware ein Hinweis auf den korrekten Ablauf trotz Fehler
beim make im SkriptJbungsaufgabe hilfreich.

Die Geschwindigkeit der Rechneidst zu vilnscheriibrig :)

Dieses Formulardsst keine Mehrfachauswahl bei Betriebssystemen zu :)
Bei der Auswertung des Virtuellen Unix Laborsare es evtl. hilfreich,
wenn bei den falschen Antworten ein kleingsdungshinweis vorhanden
ware.

Ok, der NetBSD Rechner hat a bisserl oft gehangen, aber des jka
vorkommen, sctin wars wenn die bash vorinstallieraw ansonsten is des
Labor wunderbar.

wird lang ;)

hier im fragebogen @&ren manchmal mehrfachnennungen hilfreich (z.b.
49).

zu 17: r nfs reichen auch beim ersten mal, wenn man sich vorbereite
hat, 60min aus,r nis waren 120min nicht schlecht, da diggsung schon
etwas komplizierter ist, und aucériger in der bearbeitung.

370

APPENDIX C. EVALUATION DATA AND CODE

zu 19: vielleicht eine idee, da es aber das internet als ohtdgewerk gibt,
sollte es auch dabei bleiben, damit bleibt diing sehr realistisch.

zu 20: auf keinen fall. damit irde man, wie ich finde, dieses realszenario
zu einem art gefhrten tutorial herabsetzen. dadurckirde erstens der
lerneffekt etwas verlorengehen, und zweiteréggaves auch nicht mehr so
interessant, weil man dann einfach mal trial&error machem und das
wirde nicht mehr zu einem “real-live-szenario” passen.

hangt naiirlich davon ab, wieweit diese live-untdistung geht ...

zu 41: manchmal dachte ich bei der nis, dal? die auswerturaseitskur
wirkt, manche punkte wurden auf nein gesetzt, obwohl wiregigentlich
gemacht hatten ...

problem hierbei ist nétlich folgendes: umso mehr informationen man
hier bei der auswertung “preisgibt”, desto eher kann mambeieiten
versuch eineilbung die dsung zum teil darauf ausrichten, d.h. genau das
erfullen, wonach die automatisch auswertung sucht. obwohadssver-
tung an sich schon eine recht diffizile sache ist ...

sonst hat di€ibung schon spafd gemacht ... obwohl bei nis schon manchmal
etwas verzweiflung dabei war ;) jedenfalls beim ersten arsu

I don’t know if this is possible, but it would be good havingethirtual
servers allways available to access as root whenever weiwander to e
able to practise more and when we wanted.

- Verfuegbarkeit des vulab laesst sehr zu wuenschen uebrig.

- Zeit fuer die NIS-Uebung ist etwas zu knapp (Reboot eréolgaehrend
des finalen ‘make* in /var/yp zum Update der group und hostpsvfaer
Eintrag von ypuser in Group 'wheel’ und 'tab’ in NIS hosts fgj.

- NIS Client unter NetBSD; fehlendes /etc/domainname ishinfalsch
wenn der NIS Domainname z.B. via 'domainname="vulab™ itt/ec.conf
gesetzt wird.

Anmerkung zum Skript: Eine Druckversioréwe super, bei der keine Gra-
fiken abgeschnitten werden.

zum VULAB:

Firr die ersterbungsdurchiufe ware mehr Zeit iitig, wenn man keinen
Plan hat (so wie ich), dann muss man ewig viel googeln um Isetdinden,
was genau man machen muss.

Vielleicht ware es noch figlich, eineUberpiifung einzubauen, ob auf die
Rechner zugegriffen werden kann und diégtliche Fehler gleich weiter
gibt.

Sonst finde ich das Konzept von VULAB echt genial.

bei frage 49. solte ne mehrfach auswaldigiich sein. eine andwort (Linux
und Windows)

Im Grof3en und Ganzen eine sehr lehrreiche Vorlesung.

Eine Verbesserung délbungen und des VULAB's re jedoch winschens-
wert.

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 371

¢ Beim Fragebogen den Abschnitt “Allgemeines zuiungsverlauf” in NIS
und NFS aufteilen, da (nicht nur bei mir) Unterschiede beiBeitungszeit/-
aufwand usw. waren.

Der (BSD)Teufel steckt im Detalil ;)

e Das VULab ist grundstzlich eine sehr gelungene Einrichtung, weil man
hier mit mehr oder weniger Begleitung (allein schon durahAlifgaben)
den Umgang mit UNIX lernt. & die Zukunft ware noch hilfreich, dass
die Rechner &hrend detJbung resetted, also in ihren Ausgangszustand
gebracht werdendnnen (sofern dies aglich ist), da es mir auch passiert
ist, dass ich nach einer Fehlkonfiguration nicht mehr auf @kent zu-
greifen konnte. es weitererbknte ich mir auch noch weitefgbungen
vorstellen, die Aufige Tatigkeiten im UNIX-Administrations-Bereich zum
Thema haben. (Selbst Kompilieren und Installieren von @i, Ein-
richten einer neuen Kernel-Version,...)

Ich weil} allerdings nicht inwieweit das auf dem System vedighbar ist.

C.3 Exercise results: selected SQL queries and results

The following list of PI/SQL queries to the PostgreSQL datsbare used in evaluation
of Virtual Unix Lab exercise results in section 7.2:

1. Determine number of valid NIS exercises:

SELECT count(*)
FROM (SELECT extract(hours from endzeit-startzeit) * 60
+extract(minutes from endzeit-startzeit) AS dauer
FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id
AND login != ‘feyrer’
AND NOT (endzeit-startzeit>="1:40’
OR endzeit<startzeit)
AND uebung_id IN ('nis’)
AND buchungen.datum >= '2004-03-15’
AND buchungen.datum <= '2004-07-25'
ORDER BY dauer
) AS x;

2. Determine ending times of NIS exercises:

SELECT extract(hours from endzeit-startzeit) * 60
+extract(minutes from endzeit-startzeit) AS dauer

FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id

AND NOT (endzeit-startzeit>="1:40

OR endzeit<startzeit)

AND uebung_id in ('nis’)

AND login = ‘feyrer’

AND datum >= '2004-03-15'

AND datum <= '2004-07-25'
ORDER BY dauer;

372 APPENDIX C. EVALUATION DATA AND CODE

3. Count number of valid NFS exercises:

SELECT count(*)
FROM (SELECT extract(hours from endzeit-startzeit) * 60
+extract(minutes from endzeit-startzeit) AS dauer
FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id
AND NOT (endzeit-startzeit>="1:40’
OR endzeit<startzeit)
AND uebung_id IN ('nfs’)
AND login != ‘'feyrer’
AND datum >= '2004-03-15
AND datum <= '2004-07-25
ORDER BY dauer
) AS Xx;

4. Determine ending times of NFS exercises:

SELECT extract(hours from endzeit-startzeit) * 60
+extract(minutes from endzeit-startzeit) AS dauer

FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id

AND NOT (endzeit-startzeit>="1:40

OR endzeit<startzeit)

AND uebung_id IN ('nfs’)

AND login != ‘feyrer’

AND datum >= '2004-03-15'

AND datum <= '2004-07-25'
ORDER BY dauer;

5. Which user booked most exercises:

SELECT login, count(*)
FROM buchungen,benutzer
WHERE buchungen.user_id=benutzer.user_id
AND login = ‘feyrer’
AND datum >= '2004-03-15'
AND datum <= '2004-07-25'
GROUP BY login
ORDER BY count desc;

Results:

login | count
pap34148 | 12
punky@schweinemarmelade.de | 11
andreas.fischer@stud.fh-regensburg.de | 10
wes35369 | 7
urk35769 | 7
walter.kern@stud.fh-regensburg.de | 7
martina.heindl@stud.fh-regensburg.de | 6
meindlth@asamnet.de | 6
marius.strobl@stud.fh-regensburg.de | 6
ramon@pangea.org | 5
josef.scheuer@stud.fh-regensburg.de | 5
benjamin.grundstein@stud.th-regensburg.de | 5
markus@fuchsi.de | 5
gep31844
ham32330
trm35740
1uf33607

AA DS

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 373

wem35832 | 4
petach@gmx.de | 4
wachenroeder@gmx.de | 3
Dragoonsmail@gmx.de | 3
ch.marchi@gmx.de | 3
tdirscherl@onlinehome.de | 3
Klaus1.Rathmacher@stud.th-regensburg.de | 2
andreas.pollinger@stud.fh-regensburg.de | 2
bernhard.gammel@stud.fh-regensburg.de | 2
jingjing | 1
(27 rows)

6. Which user booked most exercises, split by exercise:

SELECT login, uebung_id, count(*)
FROM buchungen,benutzer

WHERE buchungen.user_id=benutzer.user_id
AND login != ‘feyrer’
AND datum >= '2004-03-15
AND datum <= '2004-07-25'

GROUP BY login, uebung_id

ORDER BY count desc;

Results:

login | uebung_id | count

e o

andreas.fischer@stud.fh-regensburg.de | nis | 8
pap34148 | nis | 6
pap34148 | nfs | 6
walter.kern@stud.fh-regensburg.de | nis | 5
urk35769 | nis | 5
wes35369 | nis | 4
meindlith@asamnet.de | nfs | 4
markus@fuchsi.de | nis | 4
punky@schweinemarmelade.de | netbsd | 4
punky@schweinemarmelade.de | nis | 4
wes35369 | nfs | 3
benjamin.grundstein@stud.fh-regensburg.de | nfs | 3
josef.scheuer@stud.fh-regensburg.de | nfs | 3
gep31844 | nfs | 3
ramon@pangea.org | nis | 3
ham32330 | nis | 3
martina.heindl@stud.fh-regensburg.de | nfs | 3
wem35832 | nfs | 3
marius.strobl@stud.fh-regensburg.de | nfs | 3
trm35740 | nis | 3
punky@schweinemarmelade.de | nfs | 3
petach@gmx.de | nis | 3
walter.kern@stud.fh-regensburg.de | nfs | 2
ramon@pangea.org | nfs | 2
andreas.fischer@stud.fh-regensburg.de | nfs | 2
Dragoonsmail@gmx.de | nis | 2
josef.scheuer@stud.fth-regensburg.de | nis | 2
ch.marchl@gmx.de | nis | 2
benjamin.grundstein@stud.th-regensburg.de | nis | 2
wachenroeder@gmx.de | nfs | 2
meindlth@asamnet.de | nis | 2
martina.heindl@stud.fh-regensburg.de | nis | 2
1uf33607 | nfs | 2
urk35769 | nfs | 2
tdirscherl@onlinehome.de | nfs | 2
1uf33607 | nis | 2
marius.strobl@stud.fh-regensburg.de | nis | 2

marius.strobl@stud.fh-regensburg.de | netbsd | 1

374

APPENDIX C. EVALUATION DATA AND CODE

10.

ch.marchi@gmx.de | nfs | 1
wachenroeder@gmx.de | nis | 1
trm35740 | nfs | 1
bernhard.gammel@stud.fh-regensburg.de | nis | 1
martina.heindl@stud.fh-regensburg.de | netbsd | 1
tdirscherl@onlinehome.de | nis | 1
markus@fuchsi.de | nfs | 1
andreas.pollinger@stud.fh-regensburg.de | nfs | 1
petach@gmx.de | nfs | 1
Klaus1.Rathmacher@stud.fh-regensburg.de | nis | 1
wem35832 | nis | 1
bernhard.gammel@stud.fh-regensburg.de | nfs | 1
Klaus1.Rathmacher@stud.fh-regensburg.de | nfs | 1
ham32330 | nfs | 1
andreas.pollinger@stud.fh-regensburg.de | nis | 1

jingjing | nfs | 1
gep31844 | nis | 1
Dragoonsmail@gmx.de | nfs | 1
(56 rows)

. Which exercise was booked most, per exercise:

SELECT count(*),uebung_id
FROM buchungen,benutzer
WHERE buchungen.user_id=benutzer.user_id
AND login!="feyrer’
AND datum >= '2004-03-15'
AND datum <= '2004-07-25'
GROUP BY uebung_id;

Display how often the NIS exercise was booked:

SELECT count(*)
FROM (SELECT distinct buchungen.user_id, uebung_id
FROM buchungen,benutzer
WHERE buchungen.user_id=benutzer.user_id
AND uebung_id="nis’
AND login!="feyrer’
AND datum >= '2004-03-15
AND datum <= '2004-07-25'
) AS foo;

Display how often the NFS exercise was booked:

SELECT count(*)
FROM (SELECT distinct buchungen.user_id, uebung_id
FROM buchungen,benutzer
WHERE buchungen.user_id=benutzer.user_id
AND uebung_id="nfs’
AND login!="feyrer’
AND datum >= '2004-03-15’
AND datum <= '2004-07-25
) AS foo;

Display and compare first and last exercise results ofewser/exercise:

CREATE FUNCTION vulab_count(integer) RETURNS bigint AS
'SELECT count(*)
FROM ergebnis_checks
WHERE buchungs_id=$1" LANGUAGE sq[;

CREATE FUNCTION vulab_score(integer) RETURNS bigint AS

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 375

'SELECT count(*) FROM ergebnis_checks
WHERE buchungs_id=$1 and erfolg=TRUE)' language sql;

CREATE FUNCTION vulab_score_perc(integer) RETURNS bigin t AS
'SELECT 100 * vulab_score($1)/vulab_count($1)’ LANGUAGE sql;

CREATE FUNCTION vulab_score_diff(integer, integer) RETU RNS bigint AS
'SELECT vulab_score_perc($2) - vulab_score_perc($1) LA NGUAGE sql;

SELECT min(buchungs_id) AS first_id,
vulab_score_perc(min(buchungs_id)) AS f_pscore,
max(buchungs_id) AS last_id,
vulab_score_perc(max(buchungs_id)) AS |_pscore,
vulab_score_diff(min(buchungs_id),max(buchungs_id)) AS dpscore,
uebung_id,
substring(login from 1 for 12)
FROM buchungen,benutzer
WHERE buchungen.user_id=benutzer.user_id
AND (SELECT count(*)
FROM ergebnis_checks
WHERE ergebnis_checks.buchungs_id = buchungen.buchungs _id)>0
AND login!="feyrer’
AND datum >= '2004-03-15'
AND datum <= '2004-07-25'
GROUP BY login,uebung_id
ORDER BY login;

Results:

first_id | f_pscore | last_id | |_pscore | dpscore | uebung_i d | substring
+ + + + [S—— o ————
233 | 69 | 233 | 69 | 0 | nfs | Dragoonsmail
234 | 46 | 241 | 79 | 33 | nis | Dragoonsmail
148 | 41 | 148 | 41 | 0 | nfs | Klaus1l.Rathm
149 | 4 | 149 | 4 | 0 | nis | Klausl.Rathm
180 | 0| 190 | 72 | 72 | nfs | andreas.fisc
191 | 46 | 276 | 88 | 42 | nis | andreas.fisc
247 | 41 | 247 | 41 | 0 | nfs | andreas.poll
249 | 46 | 249 | 46 | 0 | nis | andreas.poll
218 | 41 | 235 | 41 | 0 | nfs | benjamin.gru
267 | 23 | 281 | 39 | 16 | nis | benjamin.gru
237 | 69 | 237 | 69 | 0 | nfs | bernhard.gam
238 | 16 | 238 | 16 | 0 | nis | bernhard.gam
168 | 80 | 168 | 80 | 0 | nfs | ch.marchi@gm
179 | 39 | 186 | 88 | 49 | nis | ch.marchi@gm
117 | 27 | 157 | 61 | 34 | nfs | gep31844
193 | 44 | 193 | 44 | 0 | nis | gep31844
209 | 66 | 209 | 66 | 0 | nfs | ham32330
150 | 44 | 158 | 83 | 39 | nis | ham32330
134 | 47 | 134 | 47 | 0 | nfs | jingjing
160 | 55 | 283 | 69 | 14 | nfs | josef.scheue
278 | 60 | 286 | 95 | 35 | nis | josef.scheue
162 | 55 | 196 | 50 | -5 | nfs | uf33607
202 | 39 | 208 | 90 | 51 | nis | 1uf33607
225 | 0| 225 | 0| 0 | netbsd | marius.strob
226 | 44 | 253 | 94 | 50 | nfs | marius.strob
255 | 86 | 255 | 86 | 0 | nis | marius.strob
272 | 44 | 272 | 44 | 0 | nfs | markus@fuchs
257 | 44 | 273 | 27 | -17 | nis | markus@fuchs
224 | 0| 224 | 0| 0 | netbsd | martina.hein
223 | 44 | 263 | 0 | -44 | nfs | martina.hein
222 | 60 | 245 | 53 | -7 | nis | martina.hein
182 | 75 | 217 | 94 | 19 | nfs | meindith@asa
200 | 41 | 216 | 81 | 40 | nis | meindlith@asa
159 | 94 | 239 | 75 | -19 | nfs | pap34148
131 | 44 | 240 | 81 | 37 | nis | pap34148
280 | 91 | 280 | 91 | 0 | nfs | petach@gmx.d
260 | 4 | 262 | 76 | 72 | nis | petach@gmx.d
129 | 12 | 141 | 0| -12 | netbsd | punky@schwei
140 | 16 | 147 | 86 | 70 | nfs | punky@schwei

376 APPENDIX C. EVALUATION DATA AND CODE

156 | 27 | 171 | 86 | 59 | nis | punky@schwei
231 | 100 | 236 | 100 | 0 | nfs | ramon@pangea
220 | 46 | 228 | 95 | 49 | nis | ramon@pangea
269 | 16 | 274 | 63 | 47 | nfs | tdirscherl@o
275 | 48 | 275 | 48 | 0 | nis | tdirscherl@o
122 | 86 | 122 | 86 | 0 | nfs | trm35740
127 | 6 | 142 | 90 | 84 | nis | trm35740
242 | 27 | 251 | 50 | 23 | nfs | urk35769
243 | 18 | 284 | 81 | 63 | nis | urk35769
143 | 16 | 176 | 55 | 39 | nfs | wachenroeder
177 | 58 | 177 | 58 | 0 | nis | wachenroeder
120 | 100 | 123 | 72 | -28 | nfs | walter.kern@
121 | 41 | 132 | 93 | 52 | nis | walter.kern@
173 | 44 | 184 | 69 | 25 | nfs | wem35832
185 | 53 | 185 | 53 | 0 | nis | wem35832
201 | 69 | 214 | 69 | 0 | nfs | wes35369
181 | 46 | 205 | 79 | 33 | nis | wes35369

(56 rows)

11. List check scripts (primitives) and how often each iglisethe various checks:

SELECT count(script), script
FROM uebungs_checks
WHERE uebung_id = 'nis’

OR uebung_id = ’'nfs’
GROUP BY script
ORDER BY count(*) DESC;

12. List all checks that use theheck-file-contents check script, and de-
scribe what they test:

SELECT check_id, bezeichnung
FROM uebungs_checks
WHERE script="check-file-contents’;

Results:

check_id | bezeichnung
S,
790 | passwd-Information wird in NIS gesucht (/etc/nsswitc h.conf)?
791 | group-Information wird in NIS gesucht (/etc/nsswitch .conf)?
792 | hosts-Information wird in NIS gesucht (/etc/nsswitch .conf)?
793 | Domainname in /etc/defaultdomain gesetzt?
810 | ypuser in wheel-Gruppe in /etc/group?
864 | 'share nfs /usr/homes’ in /etc/dfs/dfstab?
882 | Passender Eintrag in /etc/fstab?
885 | 'root=" Eintrag in dfstab?
774 | Domane in /etc/defaultdomain gesetzt?
783 | PWDIR in /varlyp/Makefile auf /varlyp gesetzt?

(10 rows)

13. Determine checks that test if a certain program is rugrilve operating system
image that was used for the machine the test was runningeow(nat operating
system the test was performed on) and list the descriptiothéotest:

SELECT check_id, image, bezeichnung
FROM uebungs_checks, uebung_setup

WHERE script="unix-check-process-running’
AND uebungs_checks.uebung_id=uebung_setup.uebung_id
AND uebungs_checks.rechner=uebung_setup.rechner;

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 377

Results:

check_id | image | bezeichnung
+ +
798 | netbsd162.img.gz | rpcbind | auft?
799 | netbsd162.img.gz | ypbind | auft?
865 | solaris29.img.gz | L auft rpcbind?
866 | solaris29.img.gz | L auft mountd?
867 | solaris29.img.gz | L auft nfsd?
868 | solaris29.img.gz | L auft statd?
869 | solaris29.img.gz | L auft lockd?
878 | netbsd162.img.gz | L auft rpcbind?
879 | netbsd162.img.gz | L auft rpc.lockd?
880 | netbsd162.img.gz | L auft rpc.statd?

(10 rows)

14. Determine checks that use tinetbsd-check-rcvar-set script:

SELECT check_id, bezeichnung
FROM uebungs_checks
WHERE script="netbsd-check-rcvar-set’;

Results:

check_id | bezeichnung

+

795 | /etcirc.conf: rc_configured gesetzt?
796 | /letc/rc.conf: rpchind gesetzt?

797 | letc/rc.conf: ypbind gesetzt?

874 | letc/rc.conf: rc_configured gesetzt?
875 | /etc/rc.conf: lockd gesetzt?

876 | letc/rc.conf: statd gesetzt?

877 | letc/rc.conf: nfs_client gesetzt?

15. Find out places that deal with file ownership:

SELECT check_id, bezeichnung
FROM uebungs_checks
WHERE script="unix-check-file-owner’;

Results:

check_id | bezeichnung
b emmmmmmmmmmcmmmmmmmmmmmmmmmmmmee e
890 | Geh ort /usr’lhomes/nfsuser dem Benutzer 'nfsuser’ auf vulabl?
891 | Geh ort /usr’lhomes/nfsuser dem Benutzer 'nfsuser’ auf vulab2?
892 | hallo-von-vulabl geh ort nfsuser auf vulabl?
893 | hallo-von-vulabl geh ort nfsuser auf vulab2?
894 | hallo-von-vulab2 geh ort nfsuser auf vulabl?
895 | hallo-von-vulab2 geh ort nfsuser auf vulab2?

(6 rows)

16. Find out about places that check for existence of cefiks (either created
manually or via some setup procedure):

SELECT check_id, bezeichnung
FROM uebungs_checks
WHERE script="check-file-exists’;

378 APPENDIX C. EVALUATION DATA AND CODE

Results:
check_id | bezeichnung
776 | Existiert /varlyp/Makefile?
777 | Existiert /varlyp/binding/vulabl/ypservers?
778 | Existiert /varlyp/passwd.time?
784 | Existiert /varlyp/passwd?
870 | NFS-Server wird im Runlevel 3 gestartet?
(5 rows)

17. Determine checks that regard package installation ¢B3{®:

SELECT check_id, bezeichnung
FROM uebungs_checks

WHERE script="netbsd-check-installed-pkg’
AND uebung_id IN ('nis’, 'nfs’);

Results:

check_id | uebung_id | bezeichnung
900 | nis | tcsh auf NetBSD installiert? (pkg_info -e tcsh)
901 | nis | bash auf NetBSD installiert? (pkg_info -e bash)
904 | nfs | tesh auf NetBSD installiert? (pkg_info -e tcsh)
905 | nfs | bash auf NetBSD installiert? (pkg_info -e bash)

(4 rows)

18. Determine checks that regard package installation tariSo

SELECT check_id, uebung_id, bezeichnung
FROM uebungs_checks
WHERE script="solaris-check-installed-pkg’;

Results:
check_id | uebung_id | bezeichnung
+ +
898 | nis | tesh auf Solaris installiert? (pkginfo SUNWtcsh)
899 | nis | bash auf Solaris installiert? (pkginfo SUNWbash)
902 | nfs | tesh auf Solaris installiert? (pkginfo SUNW:tcsh)
903 | nfs | bash auf Solaris installiert? (pkginfo SUWNbash)
(4 rows)

19. Checks that test for existence of a user account:

SELECT check_id, uebung_id, rechner, bezeichnung
FROM uebungs_checks

WHERE script="unix-check-user-exists’
AND uebung_id IN ('nis’, 'nfs’);

Results:

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 379

20.

21.

check_id | uebung_id | rechner |

+

+

789 |

804 |

888 |

889 |
(4 rows)

Determine usage of checks that test for existence oftdiies:

nis
nis
nfs
nfs

vulabl
vulab2
vulabl
vulab2

bezeichnung

| User existiert (getpwnam(3))?
| Existiert Benutzer ypuser?

| Benutzer ’'nfsuser’ existiert auf vulabl?
| Benutzer 'nfsuser’ existiert auf vulab2?

SELECT check_id, uebung_id, rechner, bezeichnung
FROM uebungs_checks

WHERE script="check-directory-exists’

AND uebung_id IN ('nis’, 'nfs’);

Results:

check_id | uebung_id | rechner |

+

+

785 | nis

805 | nis

887 | nfs
(3 rows)

vulabl
vulab2
vulabl

bezeichnung

| Verzeichnis /usr/homes/ypuser existier
| Existiert Home-Verzeichnis?
| Existiert Verzeichnis /usr/fhomes/nfsus

An overview of date, start- and endtime as well as dunaifexercises:

SELECT datum AS date,

startzeit AS starttime,
endzeit AS endtime,
endzeit-startzeit AS duration,
uebung_id,

substring(login from 1 for 20) AS Login

FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id
AND login != ‘feyrer’
AND datum >= '2004-03-15'
AND datum <= '2004-07-25'
ORDER BY duration;

Results:

date | starttime | endtime

+ + +

2004-06-08 | 21:00:00 | 00:03:19
2004-06-08 | 18:00:00 | 00:04:23
2004-07-15 | 18:00:00 | 17:13:20
2004-07-08 | 18:00:00 | 17:13:29
2004-06-17 | 18:00:00 | 18:00:51
2004-05-23 | 15:00:00 | 15:01:08
2004-06-15 | 00:00:00 | 00:04:19
2004-07-07 | 15:00:00 | 15:08:57
2004-05-26 | 15:00:00 | 15:11:11
2004-05-25 | 21:00:00 | 21:16:40
2004-07-16 | 09:00:00 | 09:24:33
2004-07-17 | 15:00:00 | 15:27:10
2004-07-09 | 09:00:00 | 09:31:28
2004-06-03 | 18:00:00 | 18:34:36
2004-05-29 | 12:00:00 | 12:37:46
2004-07-14 | 15:00:00 | 15:41:24
2004-07-16 | 15:00:00 | 15:45:50
2004-07-04 | 18:00:00 | 18:45:52

R

duration

-20:56:41
-17:55:37
-00:46:40
-00:46:31
00:00:51
00:01:08
00:04:19
00:08:57
00:11:11
00:16:40
00:24:33
00:27:10
00:31:28
00:34:36
00:37:46
00:41:24
00:45:50
00:45:52

uebung_id |

nfs
nfs
nfs
nis

nfs

nis

nfs

nfs

nis

nfs

nis

nis
netbsd
nis
netbsd
nis

nis

nfs

josef.sc
uf33607
tdirsche
andreas.
pap34148
walter.ke
wem35832
urk35769
trm35740
gep31844
urk35769
markus@fu
martin
pap34148
punky@
urk35769
benjamin.
ramon@pan

heuer@stud.f

rl@onlinehom
fischer@stud

rn@stud.fh-

chsi.de
a.heindl@stud.

schweinemarmel

grundstein@
gea.org

380

APPENDIX C. EVALUATION DATA AND CODE

2004-07-18
2004-07-12
2004-07-18
2004-07-14
2004-07-08
2004-07-05
2004-05-23
2004-07-02
2004-07-17
2004-07-14
2004-07-03
2004-07-08
2004-06-29
2004-07-17
2004-06-05
2004-07-17
2004-06-13
2004-06-26
2004-07-16
2004-07-05
2004-05-22
2004-06-23
2004-05-22
2004-07-05
2004-06-10
2004-07-03
2004-06-07
2004-06-02
2004-06-28
2004-06-21
2004-07-04
2004-06-24
2004-06-08
2004-06-17
2004-05-21
2004-07-11
2004-06-21
2004-07-05
2004-06-08
2004-06-03
2004-06-20
2004-05-27
2004-06-14
2004-05-29
2004-06-28
2004-07-05
2004-06-01
2004-07-18
2004-07-15
2004-05-29
2004-06-26
2004-05-21
2004-06-20
2004-07-08
2004-07-16
2004-07-15
2004-07-07
2004-07-18
2004-07-17
2004-07-18
2004-06-28
2004-06-23
2004-06-28
2004-06-30
2004-07-02
2004-07-02
2004-07-06
2004-07-05
2004-05-26

12:00:00
12:00:00
18:00:00
12:00:00
12:00:00
21:00:00
12:00:00
09:00:00
18:00:00
18:00:00
21:00:00
09:00:00
12:00:00
21:00:00
00:00:00
00:00:00
18:00:00
21:00:00
18:00:00
18:00:00
12:00:00
18:00:00
15:00:00
09:00:00
12:00:00
12:00:00
18:00:00
15:00:00
21:00:00
12:00:00
12:00:00
21:00:00
12:00:00
21:00:00
15:00:00
15:00:00
21:00:00
00:00:00
15:00:00
21:00:00
12:00:00
18:00:00
21:00:00
21:00:00
09:00:00
15:00:00
21:00:00
21:00:00
15:00:00
15:00:00
18:00:00
21:00:00
21:00:00
06:00:00
21:00:00
21:00:00
21:00:00
09:00:00
12:00:00
00:00:00
18:00:00
15:00:00
15:00:00
09:00:00
12:00:00
18:00:00
15:00:00
12:00:00
18:00:00

12:45:55
12:45:59
18:47:37
12:47:57
12:50:18
21:51:02
12:51:23
09:52:30
18:52:54
18:57:09
21:58:03
09:58:44
12:59:53
22:01:06
01:01:08
01:02:18
19:02:33
22:03:20
19:06:31
19:07:02
13:07:14
19:08:23
16:10:11
10:10:12
13:11:38
13:13:15
19:13:18
16:13:50
22:14:18
13:15:01
13:15:07
22:15:20
13:17:34
22:20:44
16:20:57
16:22:02
22:22:40
01:23:08
16:23:38
22:24:17
13:24:20
19:25:03
22:25:15
22:25:28
10:25:40
16:27:26
22:27:26
22:27:52
16:28:02
16:28:02
19:28:08
22:28:11
22:28:16
07:28:51
22:28:54
22:28:55
22:28:57
10:28:59
13:29:01
01:29:02
19:29:03
16:29:03
16:29:03
10:29:03
13:29:03
19:29:03
16:29:04
13:29:04
19:29:04

00:45:55
00:45:59
00:47:37
00:47:57
00:50:18
00:51:02
00:51:23
00:52:30
00:52:54
00:57:09
00:58:03
00:58:44
00:59:53
01:01:06
01:01:08
01:02:18
01:02:33
01:03:20
01:06:31
01:07:02
01:07:14
01:08:23
01:10:11
01:10:12
01:11:38
01:13:15
01:13:18
01:13:50
01:14:18
01:15:01
01:15:07
01:15:20
01:17:34
01:20:44
01:20:57
01:22:02
01:22:40
01:23:08
01:23:38
01:24:17
01:24:20
01:25:03
01:25:15
01:25:28
01:25:40
01:27:26
01:27:26
01:27:52
01:28:02
01:28:02
01:28:08
01:28:11
01:28:16
01:28:51
01:28:54
01:28:55
01:28:57
01:28:59
01:29:01
01:29:02
01:29:03
01:29:03
01:29:03
01:29:03
01:29:03
01:29:03
01:29:04
01:29:04
01:29:04

nis
nfs
nis
nfs
nfs
nfs
nis
nfs
nfs
nis
nis
nis
nfs
nis
nis
nfs
nis
nfs
nis
nis
nfs
nis
nfs
nis
nfs
nis
nfs
nis
nfs
nfs
nfs
nis
nis
nis
nfs
nis
nis
nis
nfs
nis
nis
nis
nfs
nis
nis
nfs
nfs
nis
nfs
nis
nis
nis
nfs
nis
nis
nfs
nfs
nis
nis
nfs
nis
nfs
nis
nis
nis
nis
nfs
nis
netbsd

urk35769
martina.h
andreas.f
urk35769
martina.h
benjamin.
walter.ke
meindlith@
pap34148
andreas.f
ramon@pan
martina.h
wes35369
pap34148
punky@sch
petach@gm
punky@sch
ham32330
urk35769
andreas.f
trm35740
gep31844
walter.ke
Dragoonsm
ch.marchl
ramon@pan
gep31844
trm35740
wes35369
wem35832
ramon@pan
wes35369
ham32330
ch.marchl
walter.ke
markus@fu
wes35369
Dragoonsm
pap34148
ham32330
ch.marchl
pap34148
wem35832
walter.ke
wes35369
Dragoonsm
punky@sch
benjamin.
markus@fu
walter.ke
andreas.f
walter.ke
pap34148
andreas.p
tdirscher

| tdirscher

| andreas.p
| josef.sch
josef.sch
josef.sch
andreas.f
meindith@
meindith@
meindith@
andreas.f
ramon@pan
bernhard.
martina.h
punky@

eindl@stud.
ischer@stud

eindl@stud.
grundstein@
rn@stud.fh-
asamnet.de

ischer@stud
gea.org
eindl@stud.

weinemarmel
x.de
weinemarmel

ischer@stud

rn@stud.fh-
ail@gmx.de
@gmx.de
gea.org

gea.org

@gmx.de
rn@stud.fh-
chsi.de

ail@gmx.de

@gmx.de

rn@stud.fh-

ail@gmx.de
weinemarmel
grundstein@
chsi.de
rn@stud.fh-
ischer@stud
r@stud.fh-

ollinger@st
I@onlinehom
I@onlinehom
ollinger@st
euer@stud.f
euer@stud.f
euer@stud.f
ischer@stud
asamnet.de
asamnet.de
asamnet.de
ischer@stud
gea.org
gammel@stud
eindl@stud.
schweinemarmel

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 381

2004-07-10
2004-06-24
2004-06-07
2004-07-17
2004-06-13
2004-06-12
2004-06-25
2004-07-06
2004-06-07
2004-07-09
2004-07-08
2004-06-07
2004-06-26
2004-06-20
2004-06-19
2004-06-14
2004-07-01
2004-06-03
2004-06-21
2004-05-29
2004-07-08
2004-06-22
2004-07-02
2004-06-02
2004-05-31
2004-06-25
2004-07-11
2004-06-15
2004-05-28
2004-05-30
2004-06-02
2004-05-30
2004-06-07
2004-07-01
2004-07-03
2004-07-11
2004-05-28
2004-07-15
2004-07-12
2004-06-21
2004-05-20
2004-07-16
2004-06-25
2004-07-07
2004-07-07
2004-07-03
2004-07-09
2004-07-19
(135 rows)

12:00:00
18:00:00
12:00:00
09:00:00
15:00:00
21:00:00
18:00:00
18:00:00
09:00:00
18:00:00
21:00:00
21:00:00
15:00:00
18:00:00
18:00:00
15:00:00
12:00:00
12:00:00
15:00:00
18:00:00
15:00:00
15:00:00
21:00:00
21:00:00
21:00:00
15:00:00
18:00:00
18:00:00
12:00:00
12:00:00
18:00:00
15:00:00
15:00:00
18:00:00
15:00:00
21:00:00
21:00:00
09:00:00
18:00:00
18:00:00
18:00:00
12:00:00
12:00:00
12:00:00
09:00:00
00:00:00
21:00:00
00:00:00

13:29:05
19:29:05
13:29:05
10:29:09
16:29:21
22:29:21
19:29:32
19:29:37
10:29:55
19:30:05
22:30:06
22:30:07
16:30:13
19:30:33
19:31:26
16:31:48
13:35:49
13:36:55
16:37:34
19:38:45
17:13:23
17:30:03
23:30:03
23:30:03
23:30:03
17:30:03
20:30:04
20:30:04
14:30:04
14:30:04
20:30:04
17:30:04
17:30:04
20:30:04
17:30:04
23:30:04
23:30:05
11:30:05
20:30:05
20:30:05
20:30:05
14:30:06
14:30:30
17:13:32
17:13:25
13:13:16

01:29:05
01:29:05
01:29:05
01:29:09
01:29:21
01:29:21
01:29:32
01:29:37
01:29:55
01:30:05
01:30:06
01:30:07
01:30:13
01:30:33
01:31:26
01:31:48
01:35:49
01:36:55
01:37:34
01:38:45
02:13:23
02:30:03
02:30:03
02:30:03
02:30:03
02:30:03
02:30:04
02:30:04
02:30:04
02:30:04
02:30:04
02:30:04
02:30:04
02:30:04
02:30:04
02:30:04
02:30:05
02:30:05
02:30:05
02:30:05
02:30:05
02:30:06
02:30:30
05:13:32
08:13:25
13:13:16
|

|

nis

nfs

nfs

nfs

nis

nis

nis

nis

nis

nis

nfs

nis

nis

nis

nfs

nfs

nfs

nfs

nis

nis

nfs

nfs

netbsd

nis

nfs

nis

nis

nfs

nfs

netbsd

nis

nfs

nis

nfs

nfs

nis

netbsd

nis

nis

nfs

nfs

nfs

nfs

nis

nis

nfs
| nis
| nfs

markus@fu
1uf33607
Klausl.Ra
josef.sch
punky@sch
punky@sch
1uf33607
bernhard.
ham32330
marius.st
marius.st
pap34148
1uf33607
wachenroe
wachenroe
pap34148
benjamin.
punky@sch
wem35832
trm35740
marius.st
andreas.f
marius
pap34148
wachenroe
wes35369
petach@gm
pap34148
jingjing
punky@
pap34148
punky@sch
Klausl.Ra
meindlith@
benjamin.
petach@gm
punky@
markus@fu
petach@gm
andreas.f
gep31844
martina.h
meindlith@
urk35769
andreas.f
marius.st

chsi.de

thmacher@st
euer@stud.f

weinemarmel
weinemarmel

gammel@stud

robl@stud.f
robl@stud.f

der@gmx.de
der@gmx.de

grundstein@
weinemarmel

robl@stud.f
ischer@stud
.strobl@stud.f

der@gmx.de

x.de

schweinemarmel

weinemarmel
thmacher@st
asamnet.de
grundstein@
x.de
schweinemarmel
chsi.de
x.de
ischer@stud

eindl@stud.
asamnet.de

ischer@stud
robl@stud.f

| marius.strobl@stud.f

| wes35369

22. Determine number of exercises with “sane” duration:

SELECT count(*)
FROM (SELECT extract(hours from endzeit-startzeit)
+extract(minutes from endzeit-startzeit) as dauer

FROM buchungen, benutzer

WHERE buchungen.user_id=benutzer.user_id
AND login != ‘feyrer’
AND NOT (endzeit-startzeit>="1:40

OR endzeit<startzeit)

IN (nis’, 'nfs’)

'2004-03-15

'2004-07-25’

AND uebung_id
AND datum >=
AND datum <=
ORDER BY dauer

) AS Xx;

23. Determine ending times of all exercises:

*60

382 APPENDIX C. EVALUATION DATA AND CODE

SELECT extract(hours from endzeit-startzeit) * 60
+extract(minutes from endzeit-startzeit) AS dauer

FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id

AND login = ‘feyrer’

AND NOT (endzeit-startzeit>="1:40’

OR endzeit<startzeit)

AND uebung_id IN ('nis’, 'nfs’)

AND datum >= '2004-03-15'

AND datum <= '2004-07-25'
ORDER BY dauer;

24. Exercise start times and number of exercises bookeaiHitie:

SELECT count(*),startzeit
FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id
AND uebung_id in (nis’, 'nfs’)
AND login!="feyrer’
AND datum >= '2004-03-15'
AND datum <= '2004-07-25'
GROUP BY startzeit
ORDER BY startzeit;

25. Exercise start times and number of exercise booked ttithe for histogram
plotting, NIS and NFS exercises from students only:

SELECT extract(hours from startzeit)
FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id
AND uebung_id IN (nis’, 'nfs’)
AND login!="feyrer’
AND datum >= '2004-03-15
AND datum <= '2004-07-25'
ORDER BY startzeit;

Appendix D

A theory of bugs — attempt of a
reconstructive approach

The following list of PL/SQL queries to the PostgreSQL datsand their results are
used in evaluation of Virtual Unix Lab exercise results intgm 9.3.2.2:

1. Query:

SELECT rechner, uebung_id, count(*)

FROM ergebnis_checks, uebungs_checks

WHERE ergebnis_checks.check_id = uebungs_checks.check_ id
GROUP BY rechner, uebung_id

ORDER BY uebung_id, rechner;

Results:

rechner | uebung_id | count

_________ U,
vulabl | netbsd | 120
vulabl | nfs | 3078
vulab2 | nfs | 3038
vulabl | nis | 3780
vulab2 | nis | 3960
(5 rows)

2. Query:

Results:

rechner | uebung_id | %

........ S R B —

vulabl | netbsd | 80

vulabl | nfs | 42

vulab2 | nfs | 61

vulabl | nis | 36

vulab2 | nis | 68
3. Query:

383

APPENDIX D. ATHEORY OF BUGS — ATTEMPT OF A
384 RECONSTRUCTIVE APPROACH

SELECT count(*), rechner, uebung_id
FROM uebungs_checks

GROUP BY uebung_id, rechner
ORDER BY uebung_id, rechner;

Results:
count | rechner | uebung_id
_______ O S
8 | vulabl | netbsd
18 | vulabl | nfs
18 | vulab2 | nfs
21 | vulabl | nis
22 | vulab2 | nis
1 | localhost | update-solaris
1 | vulabl | update-solaris
(7 rows)
4. Query:

CREATE VIEW testl AS SELECT script
FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_ id
GROUP BY script
ORDER BY script

CREATE FUNCTION count_all(uebungs_checks.script%TYPE) RETURNS bigint AS
SELECT count(*)
FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_ id
AND script = $1
AND erfolg IN (true, false)
GROUP BY script
ORDER BY script
' LANGUAGE sql;
CREATE FUNCTION count_fail(uebungs_checks.script%TYPE) RETURNS bigint AS

SELECT count(*)
FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_ id
AND script = $1
AND erfolg in (false)
GROUP BY script
ORDER BY script
' LANGUAGE sql;
SELECT count_all(script), count_fail(script),
100 * count_fail(script) / count_all(script)
AS perc,
script
FROM testl
ORDER BY perc DESC;
DROP FUNCTION count_fail(uebungs_checks.script%TYPE);
DROP FUNCTION count_all(uebungs_checks.script%TYPE);
DROP VIEW testl;

Results:
count_all | count_fail | perc | script
+ S S s —
15 | 13 | 86 | netbsd-check-user-shell
180 | 152 | 84 | unix-check-user-ingroup

195 | 161 | 82 | unix-check-user-password

385

724 | 588 | 81 | netbsd-check-installed-pkg
180 | 143 | 79 | unix-check-user-fullname
15 | 11 | 73 | unix-check-user-home
1002 | 724 | 72 | unix-check-file-owner
167 | 114 | 68 | unix-check-mount
694 | 452 | 65 | solaris-check-installed-pkg
210 | 123 | 58 | unix-check-user-shell
709 | 408 | 57 | unix-check-user-exists
527 | 296 | 56 | check-directory-exists
3722 | 2010 | 54 | check-program-output
1769 | 940 | 53 | check-file-contents
1224 | 650 | 53 | netbsd-check-rcvar-set
895 | 188 | 21 | check-file-exists
1748 | 357 | 20 | unix-check-process-running
(17 rows)
5. Query:

CREATE VIEW testl AS SELECT script, parameter
FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_
GROUP BY script, parameter
ORDER BY script, parameter

CREATE FUNCTION count_all(uebungs_checks.script%TYPE,
uebungs_checks.parameter%TYPE)
RETURNS bigint AS
SELECT count(*)
FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_
AND script = $1
AND parameter = $2
AND erfolg in (true, false)
GROUP BY script, parameter
ORDER BY script, parameter
' LANGUAGE sql;
CREATE FUNCTION count_fail(uebungs_checks.script%TYPE ,
uebungs_checks.parameter%TYPE,
RETURNS bigint AS
SELECT count(*)
FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_
AND script = $1
AND parameter = $2
AND erfolg in (false)
GROUP BY script, parameter
ORDER BY script, parameter
" LANGUAGE sq;
SELECT count_all(script, parameter), count_fail(script
100 * count_fail(script, parameter) / count_all(script, param
AS perc,
script, parameter
FROM testl
ORDER BY perc DESC;
DROP FUNCTION count_all(uebungs_checks.script%TYPE,
uebungs_checks.parameter%TYPE) ;
DROP FUNCTION count_fail(uebungs_checks.script%TYPE,
uebungs_checks.parameter%TYPE) ;
DROP VIEW testl;

Results:

count | count |

, parameter),

eter)

APPENDIX D. ATHEORY OF BUGS — ATTEMPT OF A
386 RECONSTRUCTIVE APPROACH

_all | _fail | perc | script | parameter
..... S —— -+
180 | 180 | 100 | check-file-contents | FILE=/etc/group CONT ENT_SHOULD=""wheel:. *ypuser"
15 | 14 | 93 | unix-check-user-shell | LOGIN=vulab SHELL_SHO ULD=/. */bash’
180 | 159 | 88 | check-program-output | PROGRAM="ypcat hosts ' OUTPUT_SHOULD='194.95.108.32. *tab’
15 | 13 | 86 | netbsd-check-user-shell | LOGIN=test SHELL_SH OULD="/. «/tcsh’
15 | 13 | 86 | unix-check-user-shell | LOGIN=test SHELL_SHOU LD="/. =/tcsh’
15 | 13 | 86 | unix-check-user-password | LOGIN=test PASSWD_ SHOULD="vutest’
180 | 153 | 85 | check-program-output | PROGRAM="/sbin/ping -c 1 tab 2>&1 ; echo result:$?" OUTPUT_SHOULD="result:0$'
180 | 152 | 84 | unix-check-user-ingroup | LOGIN=ypuser GROU P_SHOULD=benutzer
180 | 150 | 83 | check-program-output | PROGRAM="ypcat group ' OUTPUT_SHOULD='"benutzer:’
180 | 148 | 82 | unix-check-user-password | LOGIN=ypuser PAS SWD_SHOULD=myn1spw
362 | 298 | 82 | netbsd-check-installed-pkg | PKG=tcsh
362 | 290 | 80 | netbsd-check-installed-pkg | PKG=bash
180 | 143 | 79 | unix-check-user-fullname | LOGIN=ypuser FUL LNAME_SHOULD='NIS Testbenutzer'
167 | 130 | 77 | check-program-output | PROGRAM="mount | grep nfs’ OUTPUT_SHOULD="vulabl:/ust/homes on /usr/homes’
167 | 130 | 77 | check-program-output | PROGRAM="df -k | grep : ' OUTPUT_SHOULD="vulabl:/usr/homes. *Just/homes$’
167 | 129 | 77 | check-file-contents | FILE=/etc/fstab CONTE NT_SHOULD="vulabl:/usr/homes. */usr/homes. *nfs. *rw’
334 | 245 | 73 | unix-check-file-owner | FILE=/ust/homes/nf suser/hallo-von-vulabl OWNER_SHOULD=nfsuser
15 | 11 | 73 | unix-check-user-home | LOGIN=test HOME_SHOULD ='lhomel/test’
15 | 11 | 73 | unix-check-user-exists | LOGIN=test
334 | 245 | 73 | unix-check-file-owner | FILE=/usr/homes/nf suser/hallo-von-vulab2 OWNER_SHOULD=nfsuser
347 | 246 | 70 | solaris-check-installed-pkg | PKG=SUNWtcsh
334 | 234 | 70 | unix-check-file-owner | FILE=/ust/homes/nf suser OWNER_SHOULD=nfsuser
167 | 114 | 68 | unix-check-mount | MOUNT_FROM=10.0.0.1:/us r/homes MOUNT_ON=/mnt
171 | 117 | 68 | check-program-output | PROGRAM="showmount - e vulabl’ OUTPUT_SHOULD="/usr’homes’
180 | 118 | 65 | netbsd-check-rcvar-set | RCVAR=rpcbind
180 | 114 | 63 | netbsd-check-rcvar-set | RCVAR=ypbind
171 | 107 | 62 | netbsd-check-rcvar-set | RCVAR=lockd
171 | 107 | 62 | netbsd-check-rcvar-set | RCVAR=statd
360 | 217 | 60 | unix-check-user-exists | LOGIN=ypuser
347 | 206 | 59 | solaris-check-installed-pkg | PKG=SUNWbash
167 | 100 | 59 | check-program-output | PROGRAM='share’ OUTP UT_SHOULD="/usr’/homes. *root="
171 | 102 | 59 | netbsd-check-rcvar-set | RCVAR=nfs_client
167 | 98 | 58 | check-file-contents | FILE=/etc/dfs/dfstab C ONTENT_SHOULD="root="
360 | 207 | 57 | check-directory-exists | DIR=/ust/homes/yp user
180 | 96 | 53 | unix-check-user-shell | LOGIN=ypuser SHELL_S HOULD="/. * /ksh"
334 | 180 | 53 | unix-check-user-exists | LOGIN=nfsuser
167 | 89 | 53 | check-directory-exists | DIR=/usr/homes/nfs user
360 | 185 | 51 | check-program-output | PROGRAM=ypwhich OUTP UT_SHOULD='vulabl’
180 | 93 | 51 | check-file-contents | FILE=/etc/nsswitch.co nf CONTENT_SHOULD="hosts:. *nis’
180 | 89 | 49 | check-file-contents | FILE=/etc/nsswitch.co nf CONTENT_SHOULD='passwd:. *nis’
180 | 89 | 49 | check-file-contents | FILE=/etc/nsswitch.co nf CONTENT_SHOULD='group:. *nis’
180 | 84 | 46 | check-program-output | PROGRAM="ypcat passwd | grep ypuser: | we -I' OUTPUT_SHOULD=1
360 | 160 | 44 | check-program-output | d | we -I" OUTPUT_SHOULD=TT0] =+’
360 | 158 | 43 | check-program-output | | we - OUTPUT_SHOULD=[0] +’
360 | 154 | 42 | check-program-output | | we - OUTPUT_SHOULD=T0] *’
180 | 73 | 40 | check-program-output | PROGRAM="cat /varlyp/ passwd | grep ypuser: | we -I" OUTPUT_SHOULD=1
360 | 135 | 37 | check-file-contents | FILE=/etc/defaultdom ain CONTENT_SHOULD="vulab’
360 | 136 | 37 | check-program-output | PROGRAM=domainname O UTPUT_SHOULD="vulab’
175 | 64 | 36 | check-file-contents | FILE=/etc/dfs/dfstab C ONTENT_SHOULD='share. *nfs. /usr/homes’
180 | 63 | 35 | check-file-exists | FILE=/varlyp/passwd
175 | 62 | 35 | check-program-output | PROGRAM="showmount -e localhost’” OUTPUT_SHOULD="/usr’homes’
180 | 63 | 35 | check-file-contents | FILE=Narlyp/Makefile CONTENT_SHOULD="PWDIR: =. * jvarlyp’
175 | 59 | 33 | check-program-output | PROGRAM="share’ OUTPU T_SHOULD="/usr/homes’
351 | 102 | 29 | netbsd-check-rcvar-set | RCVAR=rc_configur ed
180 | 52 | 28 | unix-check-process-running | PROCESS=ypbind
180 | 45 | 25 | check-file-exists | FILE=/varlyp/binding/vu lablypservers
171 | 44 | 25 | unix-check-process-running | PROCESS=rpc.st atd
171 | 44 | 25 | unix-check-process-running | PROCESS=rpc.lo ckd
180 | 42 | 23 | check-file-exists | FILE=/varlyp/passwd.tim e
526 | 121 | 23 | unix-check-process-running | PROCESS=rpcbi nd
175 | 24 | 13 | unix-check-process-running | PROCESS=nfsd
175 | 24 | 13 | unix-check-process-running | PROCESS=mountd
175 | 24 | 13 | unix-check-process-running | PROCESS=lockd
175 | 24 | 13 | check-file-exists | FILE='letc/rc3.d/S15nfs .server’
175 | 24 | 13 | unix-check-process-running | PROCESS=statd
180 | 14 | 7 | check-file-exists | FILE=/var/yp/Makefile

Appendix E

Analysis of exercises under tutorial
and adaptive aspects

The following text displays the NIS exercise’s text with 8iegle questions decompo-
sitioned as outlined in section 9.3.1.

<h1l> NIS Master und Client Setup</hl>

In dieser Ubung soll auf den beiden vulab-Rechner der Network

Information Service (NIS) installiert werden. Dabei wird a uf dem
Rechner "vulabl" der NIS-Master, auf dem Rechner "vulab2" d er
NIS-Client installiert.

<p>

<h2>1. Master (Solaris): vulabl</h2>

 Stellen Sie sicher dass die n otigen Pakete (SUNWypr, SUNWypu,
SUNWSsprot, ...) installiert sind.

- What does the student have to do?

Use pkginfo(1) to verify if the named packages are
installed (they are all installed by default!)

- What problems can occur, how can they be identified?

pkginfo(1) doesn’t show packages

pkginfo not in search path

User doesn’t know about pkginfo, and tries other commands
(pkg_info, rpm, ...)

Help: behavioristic, epistemic, ...

Give exact commands: pkg_info | egrep '(SUNWypr|SUNWypu|. L)

Refer to pkginfo(8)

Give general information on software management:
http://www.feyrer.de/SA/12-sw.html

What wrong thinking can cause problems? (Believes)
wrong: The packages are not installed and have to be

installed first
Student may know *somex packaging system, but not this

387

APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND
388 ADAPTIVE ASPECTS

one
- What viewpoints may exist:

pkginfo(1) view on installed packages
View on /var/sadm/pkg for installed packages

- Ways of data acquisition: checks, keyboard tracing, ...

checks:
verify that everything is (still!) installed, and
that the student did not remove a package by accident

keyboard tracing:

Recognize if student tries to run several related
commands that are not relevant here (pkg_info, rpm
..)

 Setzen Sie den NIS-Dom anenname auf "vulab" (/etc/defaultdomain &
domainname(1))

- What does the student have to do?

Need to edit the file, plus make system read it:

1) put domain into /etc/defaultdomain

2) set domainname in system either via domainname(1),
or by some init/rc.d script
or by rebooting

- What problems can occur, how can they be identified?

Student doesn't know how to write data info file
Student doesn't know format of /etc/defaultdomain
Student doesn’t know how to set domain in system
Student doesn’t know about domainname(1l) or how to use it
Student doesn't know how to use init/rc.d script to
set domainname from /etc/defaultdomain

Detect by no data in /etc/domainname and domainname(1)
after some time

- Help: behavioristic, epistemic, ...
(Classification of help e.g. via URL or chapter)

Give proper commands:
echo vulab >/etc/defaultdomain
domainname ‘cat /etc/defaultdomain’
or: sh /etc/init.d/inetinit stop/start
Hint at documentation for commands and files:
domainname(1), defaultdomainname(4)
Give background on NIS:
http://www.feyrer.de/SA/08-networking.html

- What wrong thinking can cause problems?
Expect some GUI program to be needed to set the
domainname (e.g. Yast, smc, admintool)

System recognizes changes to /etc/defaultdomain
automatically

Need special program to set /etc/defaultdomain (or domain
in general)
- What viewpoints may exist:
only "from inside"

- Ways of data acquisition: checks, keyboard tracing, ...

1) check /etc/defaultdomain

389

2) check domainname(1)

Or monitor commands entered, recognize

1) setting /etc/defaultdomain (via echo, vi, ...)

2) running domainname(1), init/rc.d script or reboot
(harder than via checks!)

 Setzen Sie den Rechner mit "ypinit -m" als NIS Master auf
- What does the student have to do?

Hostname and domainname need to be set first
No file backend for all NIS maps may be present, non fatal!

Run "ypinit -m",
enter valid NIS server (10.0.0.1, or hostname from /etc/hos ts)
Judge errors printed as not critical

- What problems can occur, how can they be identified?

hostname given for NIS master, but not in /etc/hosts
errors not identified as non-critical

- Help: behavioristic, epistemic, ...

give exact command and all data
hint at programs: ypinit(8)
give background: http://www.feyrer.de/SA/08-networkin g.html

- What wrong thinking can cause problems? (Believes)

All files must be present to create NIS maps

Must use GUI program to setup NIS master (smc, ...)

Name of NIS master is automatically known (instead of
verifying that it's in /etc/hosts)

ypinit runs 'make’ in /varlyp automatically (true on
Solaris, false on NetBSD)

ypinit prints no errors

errors printed by ypinit are fatal

- What viewpoints may exist:

from inside
from outside (when service daemons run!):
rpcinfo, grep yp /etc/rc

- Ways of data acquisition: checks, keyboard tracing, ...

keyboard tracing:
catch 'ypinit -m’ and check if prerequisites are met

checks:

Ivarlyp/Makefile was setup
Ivarlyp/binding/vulab exists (dir)
Ivarlyp/binding/vulab/ypservers (file) exists
Ivarlyp/passwd.time was generated

 Sorgen Sie daf ur dass die n otigen Serverprozesse (ypbind, ypserv,
...) beim booten gestartet werden.
- What does the student have to do?
Solaris: nothing, processes are started automatically
Solaris’ rc.d scripts look at existing config files, and

start daemons then, no need to edit config files

- What problems can occur, how can they be identified?

390

APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

In theory, processes could not be started.
Detected by missing processes after booting,
resulting in services (mostly RPC) not available

- Help: behavioristic, epistemic, ...

Name processes that need to run, and show how they are

started automatically by pointing at the right rc.d
script

Hint at rc.d scripts

Give Background on how services start up, and how the
process may be influenced:
http://www.feyrer.de/SA/06-booting.html

- What wrong thinking can cause problems? (Believes)

Need to edit some config file for services to start up
(Solaris: things just work; different for other
operating systems!)

wrong: need to edit some file

right: things just work

- What viewpoints may exist:

from inside: ps
from outside: rpcinfo vulabl

- Ways of data acquisition: checks, keyboard tracing, ...

check:
if daemons / services run

typescript:
see if user tries to find/edit some file to enable
daemons (e.g. the BSD /etc/rc.conf)

 Starten Sie die Serverdienste!

- What does the student have to do?

Solaris: reboot,
or run /etc/init.d/{inetinit,rpc}

What problems can occur, how can they be identified?

Student doesn't know proper rc.d scripts or
commands to start services manually

Help: behavioristic, epistemic, ...
(Classification of help e.g. via URL or chapter)

Advise to simply reboot

Hint at proper rc.d scripts / commands

Give Background on how services start up, and how the
process may be influenced:
http://www.feyrer.de/SA/06-booting.html

- What wrong thinking can cause problems? (Believes?)

wrong: need to edit some config file before starting
processes
wrong: editing some config file starts processes automatic

- What viewpoints may exist:

from inside: ps
from outside: rpcinfo

ally

391

- Ways of data acquisition: checks, keyboard tracing, ...
checks: ps, rpcinfo
typescript: see if student tries to edit some rc.conf
file, warn if so
 Welcher NIS-Server wird verwendet?
- What does the student have to do?
Run 'ypwhich’ to see if a the NIS server is found

- What problems can occur, how can they be identified?

If no service daemons are started (ypbind, ypserv), then
nothing will be printed.

- Help: behavioristic, epistemic, ...

ypwhich

State that if ypwhich doesn't show a server, there’s
something fundamentally wrong, either on the network
layer, on the NIS client or server part.

Hint at list for troubleshooting NIS setup at
http://www.feyrer.de/SA/08-networking.html

- What wrong thinking can cause problems? (== Believes?)
Student doesn't know the proper command
Student tries to find some (GUI?) program to show used
nis server
- What viewpoints may exist:
from inside: ypwhich
- Ways of data acquisition: checks, keyboard tracing, ...

checks:
verify the proper server is returned from ypwhich

typescript analysis:

see if student knows the 'ypwhich’ command

see if student tries to guess some other commands

see if student runs 'apropos’ or 'man -k’ to find commands

 Welche Datei wird f ur die Gruppen-Daten verwendet?
- What does the student have to do?

Look through /var/lyp/Makefile to see what source is used
for the ’groups’ map(s)

- What problems can occur, how can they be identified?

Student doesn’t know where to start looking

Student names NIS map file instead of its source

Student may mix up source of NIS map (/etc/group) and NIS map
file (== binary DB file, used for ypcat)

- Help: behavioristic, epistemic, ...

Hint at /etc/group

Hint at how the NIS map is produced

Hint at the process performed by /var/yp/Makefile

Outline general operation of NIS at
http://www.feyrer.de/SA/08-networking.html

APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND
392 ADAPTIVE ASPECTS

- What wrong thinking can cause problems? (== Believes?)
Student misses parts in the chain of files used between
server and client (/etc/group -> var/yp/group.byname
-> ypserv -> ypbind -> getgrent/ypcat)
- What viewpoints may exist:
from inside

- Ways of data acquisition: checks, keyboard tracing, ...

checks: n/a
typescript: not easily doable either

To improve, tell user to put the filename into some file,
then check the contents of that file later on.
 Welche Datei wird f ur die Passwort-Daten verwendet?
- What does the student have to do?

same as for group file above
think about shadow passwords and their (non)use in NIS

- What problems can occur, how can they be identified?
No technical problems can arise
Student may not understand use of shadow passwords with
NIS; may manifest in student looking at /etc/shadow

- Help: behavioristic, epistemic, ...

Hint at files
Hint at overall process
Hint at shadow passwords, and their (non)use in NIS

What wrong thinking can cause problems? (== Believes?)

wrong: shadow passwords are being used

What viewpoints may exist:

from inside (only)

Ways of data acquisition: checks, keyboard tracing, ...

checks: n/a
typescript: see user browser /var/yp/Makefile,
warn when touching /etc/shadow or /etc/master.passwd?

 Uberpr ufen Sie ob Gruppen- und Passwort-Informationen uber NIS
abgefragt werden k ©nnen.
- What does the student have to do?
Run ‘'ypcat passwd’ and 'ypcat group’
- What problems can occur, how can they be identified?
No data or some error is printed,
or the output doesn't contain anything that's in the

relevant NIS maps (e.g. no 'root’ in the passwd map,
etc.)

393

Student uses finger or anything that needs nsswitch
setup, which is not done yet
ypserv and ypbind need to run for this to work

- Help: behavioristic, epistemic, ...
Hint at 'ypcat passwd’, 'ypcat group’ etc.

Give general hint on NIS
http://www.feyrer.de/SA/08-networking.html

What wrong thinking can cause problems? (== Believes?)

User may try to go one step further and use system
interfaces (getpwent(3), getent(1), ...), but that's
not configured yet.

User may not be aware of ypcat, it's existence and
functionality

What viewpoints may exist:

from inside and from outside the same (but no client
setup yet, and the test would be pretty much the
same)

Ways of data acquisition: checks, keyboard tracing, ...
checks: not doable

typescript: see if user invokes ypcat with appropriate
arguments

 Vergleichen Sie den Passwort-Eintrag des Benutzers "v ulab" im NIS
und in den /etc-Dateien. Was stellen Sie fest?

What does the student have to do?

Run 'ypcat passwd’ and determine the password (2nd) field

compare against the password (2nd) field in /etc/passwd

and /etc/shadow

Determine that NIS has the encrypted password (public),
while the password used to be in /etc/shadow (private)

No persistent change has to be made upon comparison.

What problems can occur, how can they be identified?

Student doesn't understand/notice that the formerly
private (encrypted) password is now publically
available in NIS.

No change to the system reflects this possible
non-perception. Solution: ask/verify by asking?

Help: behavioristic, epistemic, ...

Display both passwords.

Ask why the two entries may be different.

Ask about availability of shadow passwords on all Unix syste ms
Ask about security implications.

What wrong thinking can cause problems? (== Believs?)

Shadow passwords are used with NIS in general

What viewpoints may exist:

from inside only, to read /etc/passwd

Ways of data aquisition: checks, keyboard tracing, ...

APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND
394 ADAPTIVE ASPECTS

checks: n/a

typescript:
see if commands 'ypcat passwd’ are ran,
see if /etc/passwd is observed
see if /etc/shadow is observed

 Sorgen Sie daf ur, dass die Passwort-Informationen k unftig in der
Datei /var/yp/passwd gehalten werden. Die existierenden L ogins
sollen dabei nicht ubernommen werden.

- What does the student have to do?

create empty file /var/yp/passwd

chanve /var/lyp/Makefile to set PWDIR=/varlyp

run 'make’ in /varlyp

restart yppasswdd via /etc/init.d/rpc stop/start,
lusr/lib/netsvclyplyp{stop,start}, or manually (kill,
lusrllib/netsvclyp/rpc.yppasswdd)

What problems can occur, how can they be identified?

Student doesn't know about the PWDIR switch in
Ivarlyp/Makefile

student copies /etc/passwd to /var/yp/passwd, and gets
duplicate, possibly non-identical accounts

syntax of PWDIR in /varlyp/Makefile is not followed as
exactly as it has to, resulting in yppasswdd not
starting up properly

new NIS map is not built, resulting in difference between
Ivarlyp/passwd and the NIS maps

yppasswdd is not restarted, and will continue to update
letc/passwd

Help: behavioristic, epistemic, ...

Give steps to perform: change PWDIR entry in
Ivarlyp/Makefile, touch /var/yp/passwd,
etc. etc. (see above)

Outline by what processes the passwd file is
used, and how they know its location (PWDIR setting
in /varlyp/Makefile)

Give general information on NIS components and handling

What wrong thinking can cause problems? (== Believs?)

wrong: ypserv re-reads /var/yp/Makefile automatically,
wrong: ypserv rebuilds NIS maps automatically
wrong: yppasswdd re-reads /var/yp/Makefile automaticall y

What viewpoints may exist:

from inside

Ways of data aquisition: checks, keyboard tracing, ...

checks:

proper entry in /var/lyp/Makefile for PWDIR

see if /varlyp/passwd exists

compare output of 'ypcat passwd and passwd file to see
if NIS maps were rebuilt

see if yppasswdd works, to determine if the daemon was
restarted

typescript:

see if yppasswdd was restarted (either way!)
see if ypserv is restarted

see if NIS map is rebuilt (make in /varlyp)

395

 Legen Sie im NIS eine Kennung "ypuser" mit eindeutiger U ID,
Home-Verzeichnis “/usr/homes/ypuser”, Korn-Shell als Lo gin-Shell,
und Passwort "ypuser" an.

- What does the student have to do?

Put appropriate line into /var/yp/passwd
Rebuild NIS maps

- What problems can occur, how can they be identified?

Student doesn't know where to put the data
Student doesn’t know proper format
Student doesn’t know how to rebuild the NIS map

- Help: behavioristic, epistemic, ...

Give proper line, file and procedure to rebuild
Hint at file and give a general hint on rebuilding the
NIS map
Explain what to do about the UserID (UID)
Explain how password encryption works
Give URL of documentation for NIS and user management

- What wrong thinking can cause problems? (== Believs?)

useradd(8) or adduser(8) will know how to handle NIS

Incomplete entries (e.g. empty fields) in the passwd file
are ok

User doesn’t know that Korn-Shell == /bin/ksh

User doesn’'t know how to determine UID

- What viewpoints may exist:

from inside and outside machine: check NIS map
from inside only: check home directory

- Ways of data aquisition: checks, keyboard tracing, ...

Checks:

passwd file must contain proper fields

home directory must exist and have proper permissions
NIS map must be updated

 Stellen Sie sicher dass der User “"ypuser" via finger(1) sichtbar
ist

- What does the student have to do?

enable nis as source for nsswitch in /etc/nsswitch.conf
verify that “finger ypuser" works properly

- What problems can occur, how can they be identified?

fingerd is not started/enabled in inetd.conf
nsswitch.conf is not setup properly
NIS user doesn’t exist (see previous steps)

- Help: behavioristic, epistemic, ...

give exact steps: enable fingerd, fix nsswitch, run
finger

hint at files that may need changing

explain how finger works

explain role of inetd.conf for finger(d)

explain role of nsswitch/getpwnam for finger(d)

give general information on NIS, networking, enabling
network services via inetd.conf, usermanagement

APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND
396 ADAPTIVE ASPECTS

- What wrong thinking can cause problems? (== Believs?)

wrong: assume fingerd works per default

wrong: finger needs fingerd

wrong: system will check NIS automatically (instead of
needing nsswitch)

- What viewpoints may exist:

from inside system: finger ypuser
from outside system: finger ypuser@vulabl (needs fingerd)

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
run finger and expect proper output

 Stellen Sie sicher dass sich der User "ypuser" via telne t, ssh und
ftp einloggen kann!

- What does the student have to do?

log into vulabl via telnet, ssh, ftp
possibly start sshd first

possibly enable telnet and ftp in inetd.conf (and restart
inetd)

- What problems can occur, how can they be identified?
ftp and/or telnet not enabled in inetd
user does not know how to use telnet, ftp, ssh -
detecting?
logging in with / as home directory -> doesn't exist
can't login due to password unknown
- Help: behavioristic, epistemic, ...
discuss using services (ftp, telnet, ssh)
discuss service setup (sshd, telnetd, ftpd)
Explain possible problems during account creation and
login, and how to solve them
- What wrong thinking can cause problems? (== Believs?)
services are enabled by default
login will succeed without making sure password is set
properly
login will succeed flawlessly with no home directory
- What viewpoints may exist:
from inside:
check if processes run and all other pre-requirements

are met to do the login

from outside:
perform logins, and verify it works (easy!)

- Ways of data aquisition: checks, keyboard tracing, ...
checks: perform automated logins from outside
typescript logging: n/a

 Stellen Sie sicher, dass der User "ypuser" sein Passwor t mit

397

yppasswd(1l) andern kann.

What does the student have to do?

login as ypuser

change password using 'yppasswd’

see it changed in the output of 'ypcat passwd’

What problems can occur, how can they be identified?

yppasswdd wasn't restarted after changing PWDIR in
Ivarlyp/Makefile

Help: behavioristic, epistemic, ...

First, note doen (encrypted) password

Run yppasswd, logout & login with new password

Use 'ypcat passwd’' to verify if password was changed (and
NIS map updated)

What wrong thinking can cause problems? (== Believs?)

passwd works always for NIS
yppasswdd catches up PWDIR-change automatically

What viewpoints may exist:
from inside & outside:
same test, as not only the local passwd file, but also
the update of the NIS map needs to be verified, which
needs to be done via the network interface (ypcat)
Ways of data aquisition: checks, keyboard tracing, ...

checks: change password manually

typescripts: nothing sensible

<h2>2. Client (NetBSD): vulab2</h2>

 Setzen Sie den Domainnamen auf den selben Namen wie beim
oben.
- [See above]
 Ist das aufsetzen des Clients mit "ypinit -c" n otig? Ist es
sinnvoll? Warum (nicht)?

What does the student have to do?

Think what 'ypinit -c’ does
No changes to the system needed

What problems can occur, how can they be identified?
n/a
Help: behavioristic, epistemic, ...

ypinit manpage
general documentation on NIS

What wrong thinking can cause problems? (== Believs?)

NIS-Master

APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND
398 ADAPTIVE ASPECTS

wrong: ypinit -c must always be run

- What viewpoints may exist:
n/a

- Ways of data aquisition: checks, keyboard tracing, ...
n/a

 Stellen Sie sicher dass die n otigen Dienste (ypbind, ...) beim
booten gestartet werden.

- [see above]
- NetBSD needs changes to rc.conf
 Starten Sie die Dienste!
- [see above]
- NetBSD has files in /etc/rc.d
 Welcher NIS-Server wird verwendet?
- What does the student have to do?

Run ’ypwhich’ and see which NIS server gets listed

What problems can occur, how can they be identified?

Student doesn't know how to determine the said NIS server
Student doesn't know that the command needed now is
'ypwhich’

Help: behavioristic, epistemic, ...

Tell student to run ’ypwhich’

Outline how NIS clients are bound to servers (broadcast,
or fixed)

Give general introduction to NIS

What wrong thinking can cause problems? (== Believs?)

Student may not know what the proper command is
Student may not know where to look for related
information

What viewpoints may exist:

form inside: run command on client

Ways of data aquisition: checks, keyboard tracing, ...
checks: n/a
typescripting:

see if student runs 'ypwhich’
recognize student trying various commands but failing

 Stellen Sie sicher dass die NIS Maps (group, hosts, ...) abgerufen
werden k onnen
- What does the student have to do?

run “ypcat passwd", “ypcat group”, "ypcat hosts" etc. and
see if the produce proper output

399

- What problems can occur, how can they be identified?

student doesn't know to use ypcat on the various NIS maps
tries poking around instead (niscat, ...)

- Help: behavioristic, epistemic, ...

give commands to run, and how to interpret output
General NIS documentation

- What wrong thinking can cause problems? (== Believs?)
n/a

- What viewpoints may exist:
from inside client only

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
see if ypcat gives proper data

typescript:

see if student runs ypcat with passwd, group, hosts

see if student tries to guess some command names without
knowing them

 Stellen Sie sicher dass die NIS-Benutzer mit finger(1) abgefragt
werden k dnnen

- What does the student have to do?
Fix nsswitch.conf
- What problems can occur, how can they be identified?

Student doesn't know about /etc/nsswitch.conf

Student doesn’t know what do put there

Student doesn’t know proper order of fields

Student adds 'nis’ to the group/password field in the
nsswitch.conf file, but doesn't remove 'compat’. This
basically locks up the system.

- Help: behavioristic, epistemic, ...
Print proper filename and contents
Outline how finger(1) gets its information
Refer to documentation about name resolving (which
includes data on nsswitch)

- What wrong thinking can cause problems? (== Believs?)

wrong: finger(1) works out of the box when ypcat works
“the operating system is broken!"

- What viewpoints may exist:

from inside: finger
from outside: finger ypuser@client -> fingerd

- Ways of data aquisition: checks, keyboard tracing, ...

checks:

see if nsswitch.conf lists 'nis’ as data source
see if finger(1l) returns proper data

see if getpwnam(3) works properly

APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND
400 ADAPTIVE ASPECTS

typescript:
see if student edits nsswitch.conf
see if he uses finger properly for testing

 Stellen Sie sicher dass sich der oben angelegte Benutze r "ypuser"
auf dem Client einloggen kann. Erstellen Sie das Home-Verze ichnis
dazu vorerst manuell.

- What does the student have to do?

setup home directory
login as 'ypuser' (via telnet, ssh, ftp, login, su)

What problems can occur, how can they be identified?

user forgets to create home

user doesn't know how to log in

user can't login due to incompatible password formats
(des vs. blowfish/md5, ...) - unlikely

Help: behavioristic, epistemic, ...

give exact commands

refer to documentation for setting up user accounts and
their home directories

refer to NIS documentation

refer to documentation on using su/ssh/telnet/ftp

- What wrong thinking can cause problems? (== Believs?)

wrong: home directory is needed to login

- What viewpoints may exist:

From inside: su / telnet localhost
from outside: ssh, telnet

Ways of data aquisition: checks, keyboard tracing, ...

Checks:

check if homedir is present
use su from localhost

use sshitelnet from outside

Typescript:

expect mkdir

expect some login attempts (via telnet, ssh, ...)
either from inside or outside

 Betrachten Sie das Passwort-Feld der Passwort-Datei d es Users
"ypuser" auf dem NIS Master!.

What does the student have to do?

Run ‘'ypcat passwd’ and remember the password field
of the ypuser

- What problems can occur, how can they be identified?
Student doesn't know how to retrieve the NIS password file
or where to find the password file
Student doesn't know what the password field is
- Help: behavioristic, epistemic, ...
Give command to run and what field to extract

Refer to ypcat and passwd(5) manpage
Refer to general documentation on NIS

401

Refer to general documentation on user management
- What wrong thinking can cause problems? (== Believs?)

Students expects to make changes to system
Student doesn't know where to locate the requested informat ion

- What viewpoints may exist:
from inside (only)
- Ways of data aquisition: checks, keyboard tracing, ...

Checks:
n/a

Typescript:

see if student looks at /var/yp/passwd file on NIS server

 Andern Sie das Passwort von "ypuser" vom Client aus im NIS auf
“mynlspw”.

What does the student have to do?
run 'yppasswd’ on NIS client
- What problems can occur, how can they be identified?
yppasswdd hasn’t caught up with PWDIR change, will
print error about user not existing
student mis-types password -> error
student doesn't know how to change password via NIS,
tries 'passwd’ (w/o proper option)
- Help: behavioristic, epistemic, ...
Hint at exact command (yppasswd, passwd -y)
Refer to yppasswd and/or passwd manpage
Give general information about working in a NIS environment
- What wrong thinking can cause problems? (== Believs?)
wrong: the passwd command changes the NIS password automati cally
- What viewpoints may exist:
from inside only

- Ways of data aquisition: checks, keyboard tracing, ...

Checks:
check for new password afterwards

Typescript:
check if user runs the right command successfully
Recognize if user tries to run the wrong program

 Betrachten Sie das Passwort-Feld der Passwort-Datei d es Users
"ypuser" auf dem NIS Master erneut. Was stellen Sie fest?

- What does the student have to do?
Observe the password field in /var/lyp/passwd
(or the corresponding NIS map) again, as above.

Note it has changed after running yppasswd from the client

- What problems can occur, how can they be identified?

APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND
402 ADAPTIVE ASPECTS

Password hasn't changed. If so, an error was indicated
in the previous step.

- Help: behavioristic, epistemic, ...
Ask user to check if yppasswdd was restarted after
PWDIR check in /var/yp/Makefile
Hint at troubleshooting NIS setups
Give general documentation on how to operate NIS
- What wrong thinking can cause problems? (== Believs?)
n/a
- What viewpoints may exist:
From inside only:

either on NIS server (-> check /var/yp/passwd)
or on NIS client (-> run ypcat passwd)

Ways of data aquisition: checks, keyboard tracing, ...

Checks: n/a

Typescript:

see if user looked at /varlyp/passwd (server) or
output of 'ypcat passwd’ (client) again, and
guess that he’s coming to proper conclusions.

Asking the user questions here could help to
verify the thesis of drawing proper conclusions.

<h2>3. Diverses</h2>

 Setzen Sie den "Full Name" des Benutzers "ypuser" auf "N IS
Testbenutzer". Verifizieren Sie das Ergebnis mit finger(1).
Welche Methoden zum setzen existieren auf dem NIS Master? We Iche

auf dem NIS Client?
- What does the student have to do?

Client:
use chfn(1)

Server:
edit /varlyp/passwd file directly,
rebuild NIS map

Then:
Use finger(1) on client or server and see if the full
name is set properly

- What problems can occur, how can they be identified?

User doesn’t know which program to use to set the
fullname, tries/guesses some variations

User doesn’t know how to interpret finger(1) output

Student forgets to rebuild NIS maps after editing the
passwd file manually (no need for that when done via
chpasswd(1))

- Help: behavioristic, epistemic, ...

Give exact commands to run: chfn, vi passwd&&make, finger
Hint at possible commands to run

403

Give information about where the full name is stored,
hint at the relationship to NIS, and explain how
finger(1) accessees information from the client to
to the server

What wrong thinking can cause problems? (== Believs?)

wrong: After changing the passwd file, the NIS server
will pick up the changes automatically, and no
rebuild of the NIS maps is needed

wrong: There's no way to change the value from the
client,

wrong: the editing must be done as root on the server

wrong: a ’'In real life:’ value of '???" on Solaris is ok

What viewpoints may exist:

Change can be done from the client or the server
Verification can happen on both the client and the server

Ways of data aquisition: checks, keyboard tracing, ...

checks:
verify if fullname was set properly

typechecking:

verify if the name was set from the server (by editing
the passwd file and rebuilding the NIS map)

verify if the name was set from the client (by running
chfn(1))

verify that the finger(1) command was ran properly
("finger ypuser")

 Legen Sie eine NIS-Gruppe “"benutzer" an, und machen Sie diese zur
(prim aren) Gruppe des Benutzers "ypuser". Welche Group-ID w ahlen
Sie? Warum?

- What does the student have to do?

Edit /etc/group on the server

Create a new line with a distinct GID

Use new GID as primary GID for user ’'ypuser
Rebuild NIS maps

- What problems can occur, how can they be identified?

Student doesn’t know about /etc/group

Student doesn't know that /etc/group is used for the
corresponding NIS map, and uses /var/yp/group

Student doesn't recognize format of the group file, and
uses broken syntax (e.g. leaving out single fields!)

Student doesn't find a distinct GID, re-uses a
pre-existing one

Student doesn't use new GID for ypuser, leaves it
unchanged ot doesn’t use that of group "benutzer"

Student forgets to rebuild both group and passwd NIS
maps, files and NIS maps are inconsistent

- Help: behavioristic, epistemic, ...

Give exact entries for /etc/group and /var/yp/passwd on
the server and instructions to rebuild NIS maps

Give hints on procedure for rebuilding NIS maps

Give background information on group(5) and passwd(5)

Explain groups (primary, supplementary)

- What wrong thinking can cause problems? (== Believs?)

APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND
404 ADAPTIVE ASPECTS

wrong: no need to update NIS maps after editing
group+passwd

wrong: NIS server rebuilds maps automatically

wrong: groups file is under /varlyp

wrong: primary group membership is in group(5) file
instead of the GID in the passwd(5) file

- What viewpoints may exist:

from inside:

changes need to be made from inside the server

checking for proper settings and consistency can be made
on the server

checking for updated NIS maps can be made on the server

from outside:
the client can verify proper settings esp. in the NIS maps

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
see if group 'benutzer exists w/ proper values
see if GID in group map and passwd field is consistent

typescript:
see if user edits wrong file (e.g. /varlyp/passwd)
see if user did not run 'make’ in /var/lyp on server

 Legen Sie im Home-Verzeichnis des Benutzers "ypuser" a uf dem
Master und dem Client eine Datei an, und uberpr ufen Sie, welcher
Gruppe sie geh ort.

- What does the student have to do?

Create file on client and server
Observe group

What problems can occur, how can they be identified?

File may not belong to group 'benutzer’ on both client
and server, if user didn't login after changing the
group ownership

Help: behavioristic, epistemic, ...

Tell user to login again before doing this, on both
client and server

Reference login process, which sets a process’
credentials (group!)

What wrong thinking can cause problems? (== Believs?)

wrong: changing a user's entry in the passwd file
automatically updates any process’ credentials

wrong: changing a user's GID automatically takes his
files to the new group

- What viewpoints may exist:

from inside:
for each of the corresponding machines (server for the
file created on the server, dito for client)

from outside:

for each other of the corresponding machines (from the
server for the file created on the client, and vice
versa)

405

- Ways of data aquisition: checks, keyboard tracing, ...

Checks:

see if the file belongs to the right group for each of
the machines

Typescript:
see ifflhow user creates file (there are many possible
ways!). Probably better to just check effect...

 Sorgen Sie daf ur dass der Benutzer "ypuser" auf dem NetBSD-System
mittels su(1) root-Rechte erhalten kann. Er muss dazu (unte r
NetBSD) zus atzlich Mitglied der Gruppe “"wheel" sein.

- What does the student have to do?
Add user 'ypuser' to group 'wheel’ in the client's

letc/group
possibly try "su"

What problems can occur, how can they be identified?

the corresponding user's primary group is set to wheel
(in the passwd file; which won't work!)
user is added to the NIS group file - this may not work!

- Help: behavioristic, epistemic, ...

Tell user to put add "ypuser" to wheel-line of client's
letc/group file, then run su(8)

refer to su(8) and group(5) manpages

explain difference between primary and supplementary
groups

refer to login process for when process credentials are
set

- What wrong thinking can cause problems? (== Believs?)

wrong: su(8) will always work

wrong: setting primary group to wheel (0) is ok

wrong: need to change NIS “group” file/map

wrong: change is in effect immediately afterwards,
instead of after next login

- What viewpoints may exist:

from inside client:
change client's /etc/group file
login, run su(8), see if it works

from inside server:
TRY to change the group file, may not work...

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
see if su(8) succeeds on the client
see if user is in /etc/group on the client

typescript:
see if /etc/group was edited (difficult)
see if user successfully ran su(8)

 Wie bewerten Sie die Tatsache dass das root-Passwort al leine nicht
reicht, sondern auch die richtige Gruppenzugeh origkeit
Voraussetzung f Ur einen su(l) auf root ist? Vergleichen Sie
zwischen NetBSD, Solaris und Linux!

APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND
406 ADAPTIVE ASPECTS

What does the student have to do?
think - no modification to the system required
recognize that proper group membership may not be easy to

achieve by a mallicious user, thus increasing
security by requiring proper group membership

What problems can occur, how can they be identified?

user does not recognize security benefit,
sees step as extra hassle (see old linux su(8) manpage
WRT system administrators); can’t be detected easily

Help: behavioristic, epistemic, ...

tell user that security is enhanced because a (already)
previleged account needs to "invite" others

give general information on system security, user
credentials and how to achieve "system" privileges

discuss password security

What wrong thinking can cause problems? (== Believs?)

wrong: this is too much effort

wrong: this works the same everywhere

wrong: no special group membership is needed for su(8) -
this is special on BSD

What viewpoints may exist:
form inside client only

from outside: for NIS map delivery at best

Ways of data aquisition: checks, keyboard tracing, ...

checks:
nothing to check

typescript:
nothing to check

 Der Rechner "tab" (IP-Nummer: 194.95.108.32) soll via NIS bekannt
gemacht werden. Tragen Sie den Rechner auf dem Server in die
entsprechende Hosts-Datei ein, aktualisieren Sie die
NIS-Map und verifizieren Sie das Ergebnis mittels ypcat(1)
und ping(1l) sowohl auf dem NIS-Master als auch auf dem NIS-CI ient.

- What does the student have to do?

add line '194.95.108.32 tab’ to server’'s /etc/hosts

rebuild NIS map(s)

use 'ypcat hosts’ on client and server, verify that 'tab’
is listed

run 'ping tab’ on client and server’

- What problems can occur, how can they be identified?
user doesn't now proper format for /etc/hosts
user doesn’'t remember to rebuild the NIS map
letc/nsswitch.conf not configured to grab ’hosts’ entries
via 'nis’ (on both client and server)

- Help: behavioristic, epistemic, ...

give exact steps (see above)

407

hint at server's /etc/hosts and NIS
explain how name resolution works: gethostbynam(),
nsswitch, NIS, ypbind, ypserv, /etc/hosts on server

- What wrong thinking can cause problems? (== Believs?)

wrong: this is related to DNS
wrong: no need to rebuild NIS map

- What viewpoints may exist:

from “inside" NIS domain: both for client & server

from "outside" NIS domain: not doable

- Ways of data aquisition: checks, keyboard tracing, ...

checks:

see if "ping tab" works

see if "ypcat hosts" brings proper entry for 'tab’

see if gethostbynam("tab") returns a proper value,
e.g. with Perl

typescript:

see if /etc/hosts is modified ("vi /etc/hosts")
see if NIS map is rebuilt (“cd /varlyp ; make")
see if ping is ran on client and server

<h2>Hinweise:</h2>

 Solaris-Pakete f Ur bash und tcsh liegen in /cdrom, Installation
mit pkgadd(1M).

What does the student have to do?
cd /cdrom

pkgadd -d . SUNW:tcsh

pkgadd -d . SUNWbash

What problems can occur, how can they be identified?

student doesn’t recognize this step as optional
student doesn't know how to add binary packages, tries

various commands (rpm, pkg_add, pkgadd with varying

syntax, reads manpages, ...)

Help: behavioristic, epistemic, ...

give exact commands to run (see above)

hint at pkgadd(1M) manpage

give overview on package management

What wrong thinking can cause problems? (== Believs?)

wrong: bash & tcsh are installed by default

wrong: pkgadd just uses a package name/directory as
argument, similar to pkg_add / rpm

wrong: package installation can be done w/o root
privileges

What viewpoints may exist:

from inside only

Ways of data aquisition: checks, keyboard tracing, ...

APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND
408 ADAPTIVE ASPECTS

checks:
see if SUNW{bash,tcsh} are installed

typescript:
recognize problems as outlines above

 NetBSD-Pakete f ur bash und tcsh (und weitere) liegen auf
ftp://ftp.de.netbsd.org/pub/NetBSD/packages/1.6.1/s parc/All,
Installation mit pkg_add(1).

- What does the student have to do?

use ftp(1) to retrieve file, or use pkg_add(1) directly
use pkg_add(l) to install package

- What problems can occur, how can they be identified?

student doesn't recognize this step as optional

student doesn’t know how to add binary packages, tries
various commands (rpm, pkg_add, pkgadd with varying
syntax, reads manpages, ...)

Student doesn't know how to fetch files

Student doesn't know that pkg_add can fetch the files
automatically

Packages may be moved from the above-named place(!)

Student may not have the necessary directories in $PATH
to run the binaries installed, resulting in "bash:
command not found" etc.

- Help: behavioristic, epistemic, ...
Give exact commands for installation and running
Reference manpages
Hint at adjusting PATH if necessary
Give general information on package handling
- What wrong thinking can cause problems? (== Believs?)
wrong: pkg_add knows where to find binary packages
automatically (w/o setting PKG_PATH)
wrong: Installed executables may reside in $PATH
- What viewpoints may exist:
from inside only

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
see if both packages are installed

typescript:

recognize any problems in operating the commands properly

detect $PATH problems (esp. looking at the output of
commands ran)

