
Eine Dissertation der Universität Regensburg:

System Administration Training
in the Virtual Unix Lab

An e-learning system with diagnosis via a domain specific language as
base for an architecture for tutorial assistance and user adaption

Autor: Hubert Feyrer<hubert@feyrer.de >

Erstbetreuer: Prof. Dr. Rainer Hammwöhner
Zweitbetreuer: Prof. Dr. Christian Wolff

Eingereicht am: 25. Januar 2008
Mündliche Pr̈ufung: 11. November 2008

Preface

Development of the basic training system was funded as part of the HWP-project of
the German government, the system was implemented at the Computer Science de-
partment of the University of Applied Sciences (Fachhochschule, FH) Regensburg,
Germany.

As the basic system used in this work was developed in German language, usage ex-
amples, exercises and screenshots are in that language. This work as a whole is written
in English to match the intended audience. The male gender isused throughout the text
for consistency and simplicity.

Acknowledgements

I’d like to express words of gratitude to Prof. Jürgen Sauer as my longstanding mentor;
Prof. Dr. Rainer Hammẅohner the principal advisor of this work, and Prof. Dr.
Christian Wolff as co-principal advisor; The department ofComputer Science at the
University of Applied Sciences of Regensburg, especially the officiating dean Prof. Dr.
Kucera and the former dean Prof. Dr. Schicker, kindly supported the work, and last
but not least I’d like to thank my parents and friends for all their support.

Further thanks go to the NetBSD, R and PostgreSQL projects for their great and free
software; the Virtual Unix Lab beta-tester Holger Amann, SonjaÖttl, Günter Schwarz,
Holger Nösekabel, Stefan Zimmermann, DaNiel Ettle, and Michael Jobst; the students
of the I5T semester in the summer semesters from 2004 to 2007,as well as to my
proofreaders Verena B̈aumler, Andreas Fassl, Sabine Salzl, Stefan Schumacher, Günter
Schwarz, Matthew Sporleder, and Gabriele Steinberger.

Without them, this work would not exist in its current form today.

Hubert Feyrer
Regensburg, November 24th, 2008

Abstract

This work covers training of system administration by introducing a system called the
Virtual Unix Lab, and illustrates advanced topics based on it. The work is divided into
three parts.

In the first part, the goals of the Virtual Unix Lab is illustrated and compared to related
works, followed by observations about education of system administration. General
learning theories are observed and compared to an existing lecture on system adminis-
tration, showing that there is demand for practical exercises in advanced topics.

The second part describes how diagnosis of the Virtual Unix Lab exercise results and
feedback to the user are realized with the help of a domain specific language. After
observing the fundamentals of domain specific languages, the design of diagnosis and
feedback to the learner is presented, the Verification Unit Domain Specific Language
(VUDSL) is described, and architecture and implementationwithin the existing Virtual
Unix Lab are shown. An evaluation of the system was performedand shows that
repeated exercises show improved performance of the students, and that the system is
regarded as useful by students in general.

The third part adds tutoring and user adaption. Based on the fundamentals of tutoring
and user adaption, an architecture for a tutoring componentfor the Virtual Unix Lab
based on an overlay architecture is described. Aspects discussed include on-line diag-
nosis, feedback, assistance to the user, considerations for the user model, and impact
on the user interface. User adaption is based on the user model built by the tutoring
component. It observes structural and longitudinal consistency, and provides personal-
ized feedback to the student. An architecture is described that fits in the overall Virtual
Unix Lab architecture, and possible extensions for the VUDSL used for diagnosis and
feedback are proposed.

Contents (short)

I Introduction

1 Problem domain and goal of the Virtual Unix Lab 3

2 Related works 11

3 Education of system administration 23

II Diagnosis and feedback
with a domain specific language

4 Basic design of the Virtual Unix Lab 53

5 Introduction of domain specific languages 69

6 Architecture and implementation of diagnosis and feedback with a do-
main specific language 81

7 Evaluation of the Virtual Unix Lab 129

III Tutoring and user adaption

8 Introduction of tutoring and user adaption 179

9 Design of tutoring and user adaption 211

i

ii CONTENTS (SHORT)

10 Architecture of tutoring 221

11 Architecture of user adaption 247

12 Conclusion 271

List of figures 272

List of tables 278

Bibliography 280

A Example exercise components 311

B Database structure 345

C Evaluation data and code 351

D A theory of bugs — attempt of a reconstructive approach 383

E Analysis of exercises under tutorial and adaptive aspects 387

Contents

I Introduction

1 Problem domain and goal of the Virtual Unix Lab 3

1.1 Problem domain of the Virtual Unix Lab 3

1.2 The goal of the Virtual Unix Lab . 6

1.3 How this book is organized . 8

2 Related works 11

2.1 Computer science education . 11

2.2 System administration education 12

2.3 Training systems for system administration 13

2.3.1 Systems focused on education 13

2.3.2 Systems focused on deployment 14

2.3.3 Systems offering user-level access15

2.4 Domain specific languages . 16

2.5 Result verification, diagnosis and feedback 17

2.6 Tutoring systems in Unix education18

2.7 Adaptive systems in Unix education19

2.8 Other virtual labs . 20

2.9 Virtualization & emulation . 20

iii

iv CONTENTS

3 Education of system administration 23

3.1 Fundamentals of education . 23

3.1.1 Psychology and learning theory 23

3.1.2 Didactic realization, instruction theory and instructional design 27

3.1.3 Dimension of implementation and adaption31

3.1.4 Alternative learning-theoretical approaches 32

3.1.5 Education – ideal progression and tools34

3.2 The “System Administration” class 35

3.2.1 History and target audience 35

3.2.2 Current curriculum . 36

3.2.3 Course layout . 40

3.2.4 Didactic instruments . 43

3.3 Analysis of the current situation 46

3.4 Future directions . 48

II Diagnosis and feedback
with a domain specific language

4 Basic design of the Virtual Unix Lab 53

4.1 A user-level walkthrough of the Virtual Unix Lab 53

4.2 Hardware and network setup of the Virtual Unix Lab 64

4.3 Software components of the Virtual Unix Lab 65

5 Introduction of domain specific languages 69

5.1 Classification of languages . 69

5.2 Attributes of domain specific languages 71

CONTENTS v

5.3 Design patterns . 72

5.4 Choosing an implementation languages 77

6 Architecture and implementation of diagnosis and feedback with a do-
main specific language 81

6.1 Requirements of exercise verification 81

6.2 Roadmap of implementation . 83

6.2.1 Stepwise refinement . 83

6.2.2 Exercise phases . 84

6.2.3 What and how to verify . 85

6.3 Step 0: Basic design . 86

6.4 Step I: Instructions and checks not coupled 87

6.4.1 Components . 87

6.4.2 Integration and interaction 92

6.4.3 Summary and suggested improvements 97

6.5 Step II: Instructions and checks coupled 97

6.5.1 Improved check primitives 97

6.5.2 Coupling of exercise text and checks 102

6.5.2.1 Options . 103

6.5.2.2 Data structure representation 105

6.5.2.3 Forming a domain specific language 106

6.5.3 Giving feedback . 107

6.5.4 Creating a system front-end with check scripts 110

6.5.5 Integration and interaction 114

6.5.6 Summary of step II . 122

6.6 The Verification Unit Domain Specific Language (VUDSL) 122

vi CONTENTS

6.7 Conclusion of diagnosis and feedback with a domain specific language 124

6.8 Future Perspectives . 125

7 Evaluation of the Virtual Unix Lab 129

7.1 What to evaluate . 129

7.2 Analysis of data gathered during student exercises 131

7.2.1 Methodology of the data analysis 131

7.2.2 Number of exercises taken and repeated 132

7.2.3 Performance of repeated exercises 133

7.2.4 Results of selected exercise topics136

7.2.5 Exercise duration . 146

7.2.6 Exercise time . 149

7.2.7 Summary . 150

7.3 Analysis of the user questionnaire 155

7.3.1 Methodology of the questionnaire analysis 155

7.3.1.1 Aspects evaluated by the questionnaire 156

7.3.1.2 Design and implementation of the questionnaire . . 156

7.3.1.3 Evaluation methods 157

7.3.2 Evaluation of user acceptance 158

7.3.2.1 Questionnaire results 158

7.3.2.2 Interpretation of the questionnaire results 159

7.3.3 Evaluation of the course of exercises159

7.3.3.1 Questionnaire results 159

7.3.3.2 Interpretation of the questionnaire results 160

7.3.4 Evaluation of the use of learning material 161

7.3.4.1 Impact of learning materials in general 161

CONTENTS vii

7.3.4.2 Impact of learning materials during Virtual Unix Lab
exercises . 163

7.3.4.3 Impact of the “SA” lecture for exercises in the Vir-
tual Unix Lab . 165

7.3.4.4 Impact of the “SA” lecture notes for exercises in the
Virtual Unix Lab 166

7.3.4.5 Interpretation of the questionnaire results 167

7.3.5 Evaluation of the target audience 168

7.3.5.1 Questionnaire results 169

7.3.5.2 Interpretation of the questionnaire results 170

7.3.6 Summary . 170

7.4 Other asepcts to evaluate . 172

7.5 Conclusion of the evaluation . 175

III Tutoring and user adaption

8 Introduction of tutoring and user adaption 179

8.1 Fundamentals of tutoring . 179

8.1.1 Approaching tutoring . 180

8.1.2 The teaching model . 181

8.1.2.1 Teaching and didactic operations 182

8.1.2.2 Methods for plan recognition and assistance 184

8.1.2.2.1 Classical approaches 184

8.1.2.2.2 Cognitive approach 185

8.1.2.2.3 Linguistic approach 186

8.1.2.2.4 Artificial intelligence 186

8.1.2.2.5 Semantic networks and ontologies 188

viii CONTENTS

8.1.2.2.6 Frames and scripts 189

8.1.2.2.7 Bayesian networks 190

8.1.2.3 Choosing a method 190

8.1.3 The domain model . 191

8.1.4 The user model . 192

8.1.4.1 Theories of bugs 193

8.1.4.2 Viewpoints . 194

8.1.4.3 Diagnosis . 195

8.1.4.3.1 Behavioral diagnosis 196

8.1.4.3.2 Epistemic diagnosis 197

8.1.4.3.2.1 Direct assignment of credit and blame197

8.1.4.3.2.2 Structural consistency 199

8.1.4.3.2.3 Longitudinal consistency 199

8.1.4.3.3 Diagnostic data 200

8.1.4.4 Feedback . 201

8.1.5 The user interface . 202

8.2 Fundamentals of user adaption . 203

8.2.1 The meaning of context . 207

8.2.2 Adaptive services and multiple agents208

8.2.3 Modeling techniques . 208

8.2.4 Adaptive axes . 210

9 Design of tutoring and user adaption 211

9.1 Goals of tutoring and user adaption 211

9.2 Methodology of tutoring and user adaption 212

9.3 The domain model . 212

CONTENTS ix

9.3.1 Content decomposition . 213

9.3.2 Considerations for a theory of bugs 215

9.3.2.1 Adjusting the domain model 216

9.3.2.2 Analyzing existing exercise data 216

9.3.2.3 Results and conclusion 217

9.4 Software architecture . 219

10 Architecture of tutoring 221

10.1 Establishing the teaching model 221

10.1.1 Selection criteria . 222

10.1.2 Classical approaches with overlay architecture 222

10.1.3 Cognitive approach . 223

10.1.4 Linguistic approach . 224

10.1.5 Artificial Intelligence based approach 225

10.1.6 Semantic networks and ontologies 227

10.1.7 Frames and scripts . 228

10.1.8 Bayesian networks . 229

10.1.9 Comparison . 230

10.2 Using model tracing for diagnosis during the exercise 232

10.3 Investigating on-line diagnosis 232

10.4 Giving feedback and assistance .. 235

10.4.1 Goal . 235

10.4.2 Assumptions . 236

10.4.3 Challenges . 236

10.4.4 Realization . 237

10.4.4.1 Contents . 237

x CONTENTS

10.4.4.2 Form of feedback 238

10.4.5 Impact on organization of exercises and learning material . . . 239

10.5 Considerations for the user model 240

10.6 Impact on the user interface .241

10.6.1 Communication channels . 242

10.6.2 Analysis of the current user interface 242

10.6.3 Blending information into the web-based user-interface 245

10.7 Summary . 245

11 Architecture of user adaption 247

11.1 Establishing and maintaining the user model 247

11.1.1 Initialization . 248

11.1.2 Clustering . 249

11.1.3 Observed data . 249

11.1.4 Updating the user model . 249

11.1.5 Accommodating plan recognition 250

11.2 Adaptive axes . 251

11.3 Structural consistency .252

11.3.1 Observing exercise velocity 252

11.3.2 Observing mastered skills 253

11.3.3 Observing help requests . 253

11.3.4 Adjusting the user model . 254

11.3.5 A metric for evaluation . 255

11.4 Longitudinal consistency .256

11.4.1 Assumptions and methodology 256

11.4.2 Descriptive analysis . 257

CONTENTS xi

11.4.2.1 Interpolation vs. more data 257

11.4.2.2 Detecting speed changes 257

11.4.2.3 Observations for repeated exercises 257

11.4.2.4 Speed and acceleration of progress 258

11.4.2.5 Data model and storage 258

11.4.2.6 Drawing conclusions from speed and acceleration .258

11.4.3 Indicative analysis . 259

11.5 Personalizing feedback . 260

11.5.1 Adjusting of help contents 260

11.5.2 Handling non-standard exercise progress 261

11.5.3 Adjusting the system . 261

11.5.4 Preventing abuse of the help system 262

11.6 Extending the VUDSL for user adaption 262

11.6.1 VUDSL extensions for structural consistency 263

11.6.2 VUDSL extensions for longitudinal consistency 266

11.6.3 VUDSL extensions for personalized feedback 267

11.6.4 Other VUDSL extensions 267

11.7 Summary . 270

12 Conclusion 271

List of figures 272

List of tables 278

Bibliography 280

A Example exercise components 311

xii CONTENTS

A.1 Exercise texts for users . 311

A.1.1 Network Information System (NIS) exercise 311

A.1.2 Network File System (NFS) exercise 313

A.2 Exercises including text and check data 314

A.2.1 Network Information System (NIS) exercise 314

A.2.2 Network File System (NFS) exercise 318

A.3 The VUDSL processor:uebung2db 321

A.4 Complete lists of checks used in exercises 325

A.4.1 Network Information System (NIS) exercise 325

A.4.2 Network File System (NFS) exercise 326

A.5 List of check scripts and parameters 327

A.6 Selected check scripts . 329

A.6.1 Step I . 329

A.6.1.1 netbsd-check-finger.sh 329

A.6.1.2 netbsd-check-masterpw.sh 330

A.6.1.3 netbsd-check-pkginstalled.sh 330

A.6.1.4 netbsd-check-pw.pl 330

A.6.1.5 netbsd-check-usershell2.sh 331

A.6.1.6 check-program-output 331

A.6.2 Step II . 333

A.6.2.1 admin-check-clearharddisk 333

A.6.2.2 admin-check-makeimage 333

A.6.2.3 check-file-contents 336

A.6.2.4 unix-check-user-exists 337

A.6.2.5 unix-check-user-shell 338

CONTENTS xiii

A.6.2.6 unix-check-user-password 340

A.6.2.7 unix-check-process-running 341

A.6.2.8 netbsd-check-rcvar-set 342

B Database structure 345

B.1 Table:benutzer . 345

B.2 Table:rechner . 345

B.3 Table:images . 346

B.4 Table:uebungen . 346

B.4.1 Definition . 346

B.4.2 Example records . 346

B.5 Table:uebung setup . 347

B.6 Table:uebungs checks . 347

B.6.1 Definition . 347

B.6.2 Example records . 348

B.7 Table:buchungen . 348

B.7.1 Definition . 348

B.7.2 Example records . 348

B.8 Table:ergebnis checks . 349

B.8.1 Definition . 349

B.8.2 Example records . 350

C Evaluation data and code 351

C.1 Questionnaire: questions — raw format 351

C.2 Questionnaire: questions and results 353

C.3 Exercise results: selected SQL queries and results 371

xiv CONTENTS

D A theory of bugs — attempt of a reconstructive approach 383

E Analysis of exercises under tutorial and adaptive aspects 387

Part I

Introduction

Chapter 1

Problem domain and goal of the
Virtual Unix Lab

This work is about education of system administration. Withthe increasing com-
plexity of today’s IT systems and their related management,corresponding education
becomes more and more important. This work describes the Virtual Unix Lab, which
is an interactive course system that supports electronic learning (e-learning) for that
purpose.

The basic implementation of the Virtual Unix Lab as framework for performing practi-
cal exercises for Unix system administration was created during the “Praktikum Unix-
Cluster-Setup” project as part of the “Hochschul-Wissenschafts-Projekt” (HWP) of
the German ministry of education and research (Bundesministerium für Bildung und
Forschung, BMBF). The system was designed to consist of several components1, and
most of the implementation was done as diploma thesis at the University of Applied
Sciences Regensburg, see [Zimmermann, 2003]. The result ofthe project was not
fully functional, and this work puts a focus on those missingcomponents – diagnosis,
feedback, tutoring and user adaption.

This chapter outlines the problem domain in which the following work is performed
in, including a brief description of unterlying terms and related working areas. The
second section identifies the goal of the Virtual Unix Lab andhow it will be reached.

1.1 Problem domain of the Virtual Unix Lab

This work describes the Virtual Unix Lab under aspects of computer science and in-
formation science. This section lists aspects that are related to the problem domain.

1 [Feyrer, 2004c]

3

4
CHAPTER 1. PROBLEM DOMAIN AND GOAL OF THE VIRTUAL UNIX

LAB

What is “e-learning”? Teaching can be seen as knowledge communication. The goal
of knowledge communication is to improve knowledge in a student through
learning. The process of knowledge communication can be enhanced by means
of electronic communication, which converges into the term“electronic learn-
ing” or in short, “e-learning.”1 The Virtual Unix Lab system introduced here
borders both the “knowledge” and the “communication” part in that it defines
what and how to teach.

What does “virtual” mean? The term “virtual” has several meanings. In the educa-
tional environment, separation of space is meant, decoupling the location of the
student from that of the teacher by having them meet in a “virtual classroom”.
The Virtual Unix Lab provides such a separation, which contrasts a real lab in
which a student has to go to for all interaction with the system to happen.

A different approach to the term would be by using virtual machines to realize
the lab environment. This is not on focus here, but a possiblefuture extension as
suggested by some of the related works outlined in chapter 2.

Why system administration? System administration is an area where many students
that graduate in computer science find employment. Following [Hubwieser,
2000, pp. 63], the human role in the management of information systems is
not only setup and maintenance of systems, but also to obtainand provide infor-
mation on the system status and setup.

No fixed curriculum exists for education in the area of systemadministration
in the large. The topic of system administration itself is bordering on many
major technical and administrative topics shown in figure 1.2, of which each
one is taught well to students: operating systems, network management, sys-
tems and software engineering, security, and law. System administration itself
requires comprehensive thinking, combining of known and documented compo-
nents, mental transfer and application of expert knowledge. Furthermore, prob-
lem solving strategies are required, as components donot work as expected or
documented at many times.

This existing situation, plus personal interest in system administration and re-
lated areas, led to work on the Virtual Unix Lab, and this work.

Why Unix? Besides Microsoft Windows, a number of operating systems that can be
found today are grouped under the term “Unix.” Originating from AT&T in
1969, there are many Unix flavours now, of which Solaris, NetBSD and Linux
are just a few examples, see [Lévénez, 2007] for a complete overview. Several
years of experience in administrating various Unix derivatives, esp. Sun’s So-
laris, personal work on NetBSD, a successor of BSD Unix, and work on the g4u
project have influenced the work described here. The influence affects realiza-
tion of the Virtual Unix Lab on one side, and the contents on the Virtual Unix
Lab on the other side.

1 [Kuhlen and Laisiepen, 2004] pp. 469

1.1. PROBLEM DOMAIN OF THE VIRTUAL UNIX LAB 5

Figure 1.1: Instructions for the command line and a graphical user interface. Image
source: [Emzy Bilder Galerie, 2007]

While Unix-derivatives can be managed via graphical user interfaces (GUI), sys-
tem administration usually happens via a command line interface and an assorted
set of command line tools. This has proven to be easier for documentation and
learning, as the steps to perform a certain configuration step shown in figure 1.1
documents: The command is similar for the five Unix systems, but Windows as
a system that requires use of a GUI for administration needs alot more docu-
mentation to perform the same single step.

The text-based nature of Unix is considered a bonus when documenting and
learning to use and administrate a Unix-based operating system1,2. Also, as
Unix systems are compatible among each other, and as many areavailable as
Open Source, their operation can be verified as part of the tutoring and adaption
process. The Unix system interfaces of have remained stableover many years,
which provides enduring benefits and return of investment for learners.

Finally, the increasing popularity of Linux as a Unix-like operating system, and
the demand for knowledge and education on those systems is another reason to
focus on Unix systems. At the same time, the system design of the Virtual Unix
Lab is kept flexible enough to also accommodate exercises in an heterogeneous
environment, or even one that consists only of machines running Microsoft Win-
dows.

Why information science? Information science acts in the triangle of science, infor-
mation technology and man. It uses theories from parts of social sciences and
humanities on one side, and engineering sciences on the other side. Topics that
information science is related to include linguistics, philosophy, computer sci-
ence, communication science, psychology, economics, law,politics and sociol-

1 [Norman, 2007]
2 [Hall, 2007]

6
CHAPTER 1. PROBLEM DOMAIN AND GOAL OF THE VIRTUAL UNIX

LAB

Security

Databases

Administration

System

Law

Education

Engineering
Software

Systems
Operating

Management
Network

Documen−
tation

User

Figure 1.2: Topics related to system administration

ogy. As such, it is an interdisciplinary science1, figure 1.3 illustrates some of its
working areas.

A number of areas which are touched within this work include e-learning, ed-
ucation science, human machine interfacing, tutoring systems, user adaption,
linguistics, knowledge management and information processing.

Both system administration and information science are topics with many facets, which
are combined here to solve the lack of education in former area. This follows the
paradigm described in [Dagdilelis and Satratzemi, 1999] that teaching of technical
topics also needs to give attention to didactics, not only technology.

1.2 The goal of the Virtual Unix Lab

Didactical analysis of the “System Administration” class in chapter 3 identifies a lack
of interactive, hands-on exercises. The goal of the VirtualUnix Lab is to provide a
system that allows students to do practical exercises in system administration, with an
emphasis on cluster management.

The following key items are important for reaching this goal:

1 [Kuhlen and Laisiepen, 2004] pp. 5

1.2. THE GOAL OF THE VIRTUAL UNIX LAB 7

Psychology
Computer
Science

Operations
Research

Communication

Cognitive
Studies

Economics
Science &

Technology
Studies

Law

Computer

Studies of

Human

Interaction

Information
Systems

Social

Computing

Figure 1.3: Topics of information science. Image source: [Cornell University, 2007]

• An interactive course environment for access

• Exercises with full access to lab machines, including system privileges

• Diagnosis via verification and analysis of exercise results

• Elaborated feedback on the exercise results

• A tutorial component to assist learning students

• User adaption to accommodate the system do students

From an instructional design point of view, the Virtual UnixLab provides a “transac-
tion shell” component in the sense of Merrill’s “Component Display Theory”1, where
the component can be understood as a mutual, synchronous exchange of information
between the learner and the learning system, thus allowing case-based learning. The
Virtual Unix Lab acts like the simulations used by Kuyper2 and Schulmeister3, with
the added improvements of result verification, elaborated feedback4, a tutoring com-
ponent, and user adaption. Following Hubwieser, the Virtual Unix Lab acts as medium

1 [Merrill, 1983] pp. 279
2 [Kuyper, 1998] p. 51
3 [Schulmeister, 2007] pp. 351
4 [Schulmeister, 2007] pp. 104

8
CHAPTER 1. PROBLEM DOMAIN AND GOAL OF THE VIRTUAL UNIX

LAB

to support teaching the role of the system administrator foran information system: in-
stalling and maintaining the system as well as obtaining anddisplaying information1.

The key feature of the Virtual Unix Lab is that exercises happen on real systems with
all possible errors and configurations, not on a simulated system with restricted func-
tionality. Analysis of exercise results and feedback are also performed on those real
systems, which sets a number of demands for the result verification process.

Other training systems have tried to provide assistance forUnix systems, too. One
notable example is the Berkeley Unix Consultant project, ofwhich its author stated
that their “goals were not strictly technological, we did not feel that it was necessary
[...] to produce a product that could actually be used in a real-world setting.”2 In
contrast to that, the Virtual Unix Lab has a clear goal of being able to be used in a
real-world exercises, which already is done for the system described so far, in spite of
being not strictly technological in this work. While the architecture definitions for the
tutoring and user adaption do not include practical realization, they are still designed
with this goal to eventually implement them.

The Virtual Unix Lab is intended to provide an adaptive tutoring system, not a learning
management system. Learning management systems and their tasks and possibilities
are described in chapter 3, [Yacef, 2004, p. 344], [Bruns andGajewski, 2002, p. 16].
Embedding an adaptive web based educational system like theVirtual Unix Lab into
a learning management system requires corresponding interfaces. These interfaces
support describing of exercises for selecting and composing courses. This is important,
as learning management platforms are not monolithic, closed platforms (like e.g. Web-
CT and Blackboard) but more and more consist of open architectures with components
that can be freely used, like uPortal, OKI, CampusSource andOpenUSS3. As no single
interface can be considered as established at this point, integration of the Virtual Unix
Lab into a learning management system is not covered in this work.

1.3 How this book is organized

The following chapters show how the goal of the Virtual Unix Lab is reached. They
are separated into three parts.

In the first part, chapter 1 defines the goals of Virtual Unix Lab in this work, followed
by an illustration of related works in chapter 2. Education of system administration
is observed in chapter 3 as background its relationship to the learning system that the
Virtual Unix Lab provides.

The second part covers diagnosis of the Virtual Unix Lab exercise results and feed-

1 [Hubwieser, 2000] p. 39, pp. 63
2 [Wilensky et al., 1988] p. 36
3 [Nodenot et al., 2004] pp. 94

1.3. HOW THIS BOOK IS ORGANIZED 9

back to the user with the help of a domain specific language. The overall design of
the system is outlined in chapter 4, chapter 5 covers the fundamentals of domain spe-
cific langauges, and chapter 6 illustrates architecture andimplementation within the
existing Virtual Unix Lab in detail. The resulting system was evaluated as described
in chapter 7.

The third part adds tutoring and user adaption to the basic Virtual Unix Lab system.
Related fundamentals are covered in chapter 8, and the overall design is outlined in
chapter 9. An architecture for a tutoring component for the Virtual Unix Lab is de-
scribed in chapter 10. Based on tutoring, an architecture ofa user adaptive component
is described in chapter 11.

Chapter 12 draws conclusions from the work on exercise result verification, domain
specific languages, tutoring, and user adaption, and gives future perspectives.

A number of appendices support the above chapters by giving example exercise com-
ponents in appendix A and illustrating the database structure of the Virtual Unix Lab
in appendix B. Appendix C lists data and program code used during evaluation. Ap-
pendix D shows the data that was used to attempt a reconstructive approach for a
theory of bugs in system administration, and appendix E gives details on an analysis
of exercises under tutorial and adaptive aspects.

10
CHAPTER 1. PROBLEM DOMAIN AND GOAL OF THE VIRTUAL UNIX

LAB

Chapter 2

Related works

This chapter shows works that are related to the Virtual UnixLab in some way. It illus-
trates works related to Computer science education in general, and System administra-
tion education in particular. A number of training systems for system administration
and related topics are introduced, which leads to an observation of the status quo on
Domain Specific Languages in the domain of operating systems, to what extent result
verification is available in training systems, and the availability and state of tutoring
systems and adaptive systems in Unix education. Other virtual labs that cover related
topics are considered next, closing with a brief overview ofthe status of virtualization
and emulation.

2.1 Computer science education

The Virtual Unix Lab’s application domain is in the wider field of computer science
education. Related discussion – especially in Europe – is more focused on the di-
dactics of computer science. Related keywords are “Computer Science Education”
(CSE) and “Didaktik der Informatik” (DDI). A list of universities in Europe that do
research and teaching in that field is listed in table 2.1, similar lists for the USA can be
found at the websites of the ACM Special Interest Group for Computer Science Educa-
tion (SIGCSE) at [SIGCSE, 2007], and of the Computer ScienceTeacher Association
(CSTA) at [CSTA, 2007].

Care should be taken that the level of computer science education is often focused on
the level of highschool/K12 rather than the scientific levelof universities or colleges.
Furthermore, computer science education is often performed as part of a general edu-
cation of teachers for e.g. math and physics in the corresponding departments, as they
use the computer as tool. A difference between this focus andthe one of computer
science education in computer science departments can be expected.

11

12 CHAPTER 2. RELATED WORKS

University Homepage

Uni Antwerpen http://www.ua.ac.be/main.aspx?c=.VAKBESE2005&n=2890 7

Uni Athen http://www.di.uoa.gr/en/research_act.php?id=5

Uni Bayreuth http://did.inf.uni-bayreuth.de/

FU Berlin http://www.inf.fu-berlin.de/inst/ag-ddi/

Uni Dortmund http://ddi.cs.uni-dortmund.de/

TU Dresden http://dil.inf.tu-dresden.de/

Uni Erlangen http://ddi.informatik.uni-erlangen.de/

Uni Frankfurt http://www.informatik.uni-frankfurt.de/˜poloczek/

Uni Jena http://www.uni-jena.de/Didaktik_der_Informatik.html

TU München http://ddi.in.tum.de/

Uni Münster http://ddi.uni-muenster.de/

Uni Paderborn http://ddi.uni-paderborn.de/

Uni Passau http://lehramt.fmi.uni-passau.de/informatik/

Uni Potsdam http://ddi.cs.uni-potsdam.de/

ETH Zürich http://www.inf.ethz.ch/education/courses/#dida

Table 2.1: Education of computer science at European universities [cited 2007-08-16]

Both SIGCSE and CSTA offer cooperation in the area of computer science education,
a comparable chapter is available in the German Gesellschaft für Informatik (GI) [GI,
2007]. Related publications that cover computer science education esp. from the di-
dactic side include [Hubwieser, 2000], [Humbert, 2006], and [Schubert and Schwill,
2004].

2.2 System administration education

After graduation, many students of computer science and related technical subjects like
math and physics, find work in the area of system administration. Yet, system admin-
istration education at large is not common as part of computer science education today.
Instead of focusing on system administration, a number of topics touch it from differ-
ent angles as shown in figure 1.2, including operating systems, network management,
databases, and management of information security (MIS)1,2,3,4. This section gives a
number of pointers to ongoing research and education for system administration.

When looking at the list of universities that offer special courses on system adminis-
tration in table 2.2, it is obvious that more entries with “FH” exist, i.e. schools that
are focused more on practice than on theory. This emphasizesthe point that system
administration is mostly used as an add-on when performing education and research

1 [Corbesero, 2003]
2 [Adams and Erickson, 2001]
3 [Mata-Toledo and Reyes-Garcia, 2002]
4 [Yang, 2001]

2.3. TRAINING SYSTEMS FOR SYSTEM ADMINISTRATION 13

University Homepage

FH Augsburg http://www.fh-augsburg.de/informatik/vorlesungen/un ix/index_i.html

FU Berlin http://www.mi.fu-berlin.de/kvv/?veranstaltung=279

Uni Bielefeld http://www.rvs.uni-bielefeld.de/lecture/SysAdmin/

TU Chemnitz http://www.tu-chemnitz.de/urz/lehre/psa/

FH Hagenberg http://cms.fh-hagenberg.at/_studienplan/1_0/sam/

FH Isny http://www.misc.st23.org/sysadmin/

Uni Mainz http://www.zdv.uni-mainz.de/ak-sys/ak-sys-index.htm l

Uni Muenster http://www.uni-muenster.de/ZIV/Lehre/2007_Wintersem ester/kse2.html

FH Regensburg http://www.feyrer.de/SA/

Table 2.2: Education of system administration at universities [cited 2007-08-16]

on other topics, rather than being a separate topic on its own.

A few theoretical considerations about teaching system administration can be found
in [Burgess, 2000], example course material for teaching system administration are
available in [Corbesero, 2003], [Campbell and Cohen, 2005]and [Feyrer, 2005].

Finally, the USENIX Special Interest Group for Sysadmins (SAGE) focuses on sys-
tem administration from various angles, including education and professional devel-
opment. An – unfortunately somewhat dated – overview is available in [Kuncicky and
Wynn, 1998].

2.3 Training systems for system administration

After outlining the general state of computer science and system administration edu-
cation, this section gives an overview of training systems.The choice is split into three
parts, of which the first one describes systems that come closest to the Virtual Unix
Lab due to their focus on education. The second part describes systems that are also
available for training, but where the focus is more on the technical side of the system,
including setup, deployment and access. Last, a few systemsare introduced that al-
low training many Unix and system administration skills by offering user-level access,
with no special emphasis on education, training, or feedback.

2.3.1 Systems focused on education

The following systems offer training for system administration and related topics as
discussed above, and thus come closest to the Virtual Unix Lab:

• The Tele-Lab “IT-Security” offers automatic setup of machines for security ex-

14 CHAPTER 2. RELATED WORKS

ercises. No verification on the results of those exercises isperformed, and no
feedback is given to the student, though – this is left to the student taking part in
the exercise. More information is available in [Hu et al., 2004].

• The TU Chemnitz “Root-lab” offers similar automated setup,and allows giving
courses on topics that require modifications on the operating system and network
configuration level. No support support for evaluation and feedback is available
again. More information on use the system can be found at [Root-Lab, 2007b],
an overview of the available hardware is available at [Root-Lab, 2007a], and
details on the setup of the system are described in [Heinichen et al., 2007].

• The Remote Laboratory Emulation System (RLES) described in[Border, 2007]
uses virtual machines to provide a training environment forchanges on the
system-level. Again, the system does not offer feedback to the student.

• LiveFire Labs offer a Unix system administration course with remote access
to their lab. Again, no mention of feedback is given. Information about the
LiveFire Labs can be found at [LireFire Labs, 2007b], the system administration
course is described at [LireFire Labs, 2007c] and details ontheir Internet Lab
can be found at [LireFire Labs, 2007a].

2.3.2 Systems focused on deployment

The following systems support installation and deploymentof various operating sys-
tems to a number of real and virtual machines, to perform training and research in the
areas of operating systems, networking and related topics:

• The Emulabs project is “a network testbed, giving researchers a wide range of
environments in which to develop, debug, and evaluate theirsystems. The name
Emulab refers both to a facility and to a software system.”1 Facilities offered
include emulated computer systems with a choice of operating systems, 802.11
and mobile wireless networks as well as software-defined radio and sensor net-
works.

More information on the Emulab project is available in [Anderson et al., 2006],
[Lepreau, 2006], and [Eide et al., 2006]. A list of other Emulab testbeds is
available at [Emulab, 2007b].

• The openQRM project provides “an open source systems management platform
that automates enterprise data centers and keeps them running.”2 In a data center
environment, the number of systems is always growing, and automation of setup,
installation and esp. maintenance is needed to assist system administrators from
manually repeating error-prone tasks. The openQRM system offers help in those

1 [Emulab, 2007a]
2 [openQRM, 2007]

2.3. TRAINING SYSTEMS FOR SYSTEM ADMINISTRATION 15

Software Homepage

Acronis True Image http://www.acronis.com/homecomputing/products/truei mage/

g4l http://sourceforge.net/projects/g4l

g4u http://www.feyrer.de/g4u/

Norton Ghost http://www.symantec.com/ghost

Paragon Drive Backup http://www.drive-backup.com/home/personal/

Symantec DriveImage http://www.symantec.com/

YAGI http://dan.deam.org/yagi.php

Table 2.3: Harddisk image cloning software [cited 2007-08-18]

areas, for both heterogeneous x86 PCs and virtual machines.See the openQRM
homepage at [openQRM, 2007] for more information.

None of those systems offer facilities to evaluate status ofthe setup, and compare it to
some goals that are defined in an learning environment. They can still serve as base for
such a system, e.g. the deployment subsystem of the Virtual Unix Lab could benefit
from work of those projects.

Besides those fully integrated systems, a number of low-level software products are
available that help in cloning systems by replication of harddrives, which may be useful
when implementing a similar system, see table 2.3.

2.3.3 Systems offering user-level access

From the number of operating systems available today, some are better fit for operation
and administration from remote systems than others. While Microsoft Windows sys-
tems allow some remote access, Unix systems of any flavour – Linux, Solaris, NetBSD,
and all others1 – can be fully used over the network.

This section outlines a number of systems that offer remote access for using the sys-
tems without admin privileges. No admin privileges means that the systems do not
require fresh setup, and many areas of system administration can be learned without
changing the system, so they are considered an important resource:

• The “Virtual Unix Lab” of the University of Cyprus provides “machines stuck
in a dark room, where users can access from other terminal rooms via telnet,
rsh or x-sessions.”2 Documentation on the lab is only available in greek, see
[University of Cypria, Department of Computer Science, 2007a]. Some more
general information is available in english language at [University of Cypria,
Department of Computer Science, 2007b].

1 [L événez, 2007]
2 [Zoulas, 2007]

16 CHAPTER 2. RELATED WORKS

Similar labs that are accessible for practicing to studentseither for local or re-
mote access can be found at other universities, too.

• There are a number of commercial and free public access Unix systems, e.g. by
the Super Dimension Fortress1, Panix2, Solaria3, and Nixsys4.

• Various vendors and non-profit organizations have setup machines for remote
access so users and developers can experience the hardware and/or specific fea-
tures of the operating system. Examples would be Intel’s cooperation with the
Linux Foundation on the Open Source Lab5, the SourceForge shell service6, and
HP’s TestDrive program7.

2.4 Domain specific languages

This section gives an overview of two areas in which domain specific languages are
employed: generation of system setups, and verification of system status.

The following domain specific languages that are used in creating system setups:

• Cfengine can be used to describe setup for one or many systems, including con-
figuration parameters for the operating system and networking. It can create
configuration for the systems, depending on their exact operating system, envi-
ronment, and other constraints. For more information on cfengine, see [Burgess,
1995] and [Burgess and Frisch, 2007].

• Puppet is intended to be a successor to cfengine. It addresses some of the short-
comings of cfengine in the areas of the configuration language, portability, and
support community. Information on Puppet can be found at [Reductive Labs,
2007b], a comparison between Puppet and cfengine is available at [Reductive
Labs, 2007a].

• In [Zheng et al., 2007, pp. 219], the authors approach the problem of misconfig-
uration for Internet services. They propose a software infrastructure that elim-
inates misconfiguration by defining their own scripting language, configuration
file templates, communicating runtime monitors, and heuristic algorithms to de-
tect dependencies between configuration parameters and select ideal configura-
tions. The scripting language they use is a domain specific language for their
area of application.

1 [Super Dimension Fortress, 2007]
2 [Public Access Networks Corporation, 2007]
3 [sol.net Network Services, 2007]
4 [Nixsys, 2007]
5 [The Linux Foundation, 2007]
6 [SourceForge, 2007]
7 [Hewlett Packard, 2007]

2.5. RESULT VERIFICATION, DIAGNOSIS AND FEEDBACK 17

• [Madhavapeddy et al., 2007, pp. 101] describes an OCAML-based approach to
generate network and application layer protocols, rangingfrom Ethernet to SSH
and BGP.

• [Narain, 2005] also describes model finding in network configurations, defining
the desired configuration and its properties via a domain specific description
language. A similar approach is taken for validation of network configurations
in the Emulab project as described in [Anderson et al., 2006].

The named works have a strong focus on network configuration.Applying standard
interfaces to components in system management will allow toalso apply those mech-
anisms in system administration eventually, and to create system configuration auto-
matically.

Besides system setup, analyzing, troubleshooting and debugging are vital areas that
system administrators need to be trained in. Similar, systems analyzing and evaluating
an administrator’s performance have to evaluate the systemstate. Currently, no system
like the VUDSL is widely deployed, but a number of domain specific languages exist
that perform evaluation for related areas:

• GNU autoconf is used by software programmers to determine inwhat environ-
ment the program will be compiled. Attributes of the environment include the
operating system, installed software packages, places (paths) in which to look
for various programs, and many more. The system itself is based on the m4
macro processor. See [Elliston et al., 2000] for more information.

• Perl’s t/TEST framework is used to implement unit tests for Perl modules and
other software written in the Perl programming language. For more information
see the Perl Test(3) module at CPAN::Test and the related modules in the “See
also” section there.

• Nessus’ “Network Attack Scripting Language” (NASL) allowsto write pro-
grams that automate penetration testing. The programs testfor known issues
in local and network services under security aspects, and report any problems
found. An introduction of the Nessus system can found in [Dhanjani, 2004],
a reference manual of the NASL language can be found in [Bealeand Rogers,
2007, pp. 363, 423].

2.5 Result verification, diagnosis and feedback

In learning systems, feedback to the student is considered important. To provide that,
the student’s actions and/or their cause need to be observed, and a diagnostic process
will lead to feedback to the student. A number of systems today offer an environment

18 CHAPTER 2. RELATED WORKS

in which students can experiment in complex areas, but diagnosis and feedback is
mostly left to the student.

In some systems, the process of giving feedback means to tellthe teacher if he did a
good job, but this is not what is meant here.

The following list reflects the state of result verification after modification of a learning
system:

• Moodle provides a full-featured learning management system that can be used
to provide learning material to students, facilitate communication between stu-
dents and teachers, and offer tests of the students’ knowledge. Unfortunately,
the tests are either simple multiple-choice tests, or tightly coupled to the subject
module, so no general verification of exercise results is available. More informa-
tion can be found in [Rice, 2006], [Cole, 2005], and on the Moodle homepage
at [Moodle, 2007].

• A set of changes that need to be determined on systems is within the security
area, to detect break-ins performed either manually or automatically by some
worm or virus. In general, the detection routines of every virus scanner can be
observed here. The matter comprises problems from linguistics, pattern match-
ing and automata theory. An overview of the area can be found in [Patcha and
Park, 2007], implementation and application examples are given in [Tucek et al.,
2007, pp. 115], [Kolter and Maloof, 2006] and [Zhang et al., 2007].

2.6 Tutoring systems in Unix education

The related works observed so far focus strongly on the domain of system administra-
tion. When widening that focus, a wealth of projects can be found that offer tutoring
for use of Unix systems in general. I.e. instead of administration, emphasis is on use
of the system from a user’s point of view, including tasks like file handling and editing.
Noteworthy projects in this area include:

• The Berkeley Unix Consultant (UC) was a research project that was never in-
tended to be used in practice, see chapter 1. Various aspectsof the tutoring
system are described in [Chin, 1983] and [Wilensky et al., 1988].

• The AQUA project described in [Quilici et al., 1986] and [Quilici, 2000] also
provides a Unix Advisor that observes neophyte users’ behavior, infers plans,
and detects misconceptions.

• TNT, the talking Tutor’n’Trainer, is a system for teaching the use of interactive
computer systems, focusing on the Unix “vi” editor. See [Nakatani et al., 1986].

2.7. ADAPTIVE SYSTEMS IN UNIX EDUCATION 19

• COMFOHELP is an adaptive help system that supports the COMFOTEX graph-
ical text processing program, which is available on some Unix systems. COM-
FOHELP works by observing user actions, determining the user’s plan, and as-
sisting him in reaching that goal. Details can be found in [Krause et al., 1993].

• AutoBash is an assistant that tries to analyze a user’s inputinto a system by
both looking at the commands typed as well as system calls made for interactive
programs. It tries to infer a plan, detect any false approaches, takes wrong steps
back and perform the right operations to get the user to his goal. The system is
described in [Su et al., 2007].

• The NAGLICE system introduced in [Manaris and Pritchard, 1993] and [Ma-
naris et al., 1994] describe development of a natural language interface to the
Unix operating system.

• The GOETHE project described in [Heyer et al., 1990] is a natural language
system focusing on knowledge representation and semanticsin the complex do-
main of the Unix operating system. Focus of the work is on planrecognition via
a frame-based approach.

• The “Yucca-*” project is a successor to a number or projects,and it focuses
on natural language interaction and plan recognition in complex environments.
“Complex” in that context means constructs like Unix shell pipes (“command1
| command1”), which – when compared to the domain of system administra-
tion – puts this project into perspective. See [Hegner, 2000].

2.7 Adaptive systems in Unix education

In the context of research on the Unix operating system’s user interface, some of the
tutoring systems were extended to provide adaption to the user. Here is a selection of
related works:

• Menix is an adaptive user interface that presents a limited set of Unix commands
to a user. The commands presented are selected based on a predefined level
of information for the user, which in term is determined fromthe user’s past
interaction with the Unix system. See [Chauvin, 1991] for more information.

• [Tyler and Treu, 1989] describes an interface architectureto provide an adaptive
task-specific context for the user.

• Other systems that focus on tutoring and that were mentionedin the previous
section also grew extensions for adaption, see e.g. the GOETHE and TNT
projects, and [Chin, 1986] for user modeling in the BerkeleyUnix Consultant.

20 CHAPTER 2. RELATED WORKS

2.8 Other virtual labs

Virtual labs are becoming popular for many areas of application, to decouple time and
physical presence of students from the lab hours and rooms oftraditional labs. While
the above sections have shown that the supply for system administration and its related
topics is scarce, there are still a number of projects that are noteworthy in related
areas. Aspects like general handling, user interfacing, presence of learning material,
and other aspects can be learned from them:

• The Laboratory of Communication Technologies of the University of Applied
Sciences Regensburg, Germany, offers a virtual lab in cooperation with the
Virtuelle Hochschule Bayern (VHB). The lab allows practicing wireless and
wired networks, switch and router setup, offers automatic setup of the exercise
components, and access to the exercise systems via VNC. Verification of exer-
cise results is part of the tasks of the students, and as such performed by the
students. See [Fachhochschule Regensburg, 2007] for more information.

• The “Virtuelles Informatik-Labor” (VILAB) of the FernUniversiẗat Hagen, Ger-
many, allows practice of various topics related to computerscience: program-
ming, neural networks, databases, and knowledge based systems. The system is
designed to give adaptive feedback as described in [Lütticke and Helbig, 2004,
pp. 443], more information on the system can be found at [FernUniversiẗat Ha-
gen, 2007].

• The “Verbund Virtuelles Labor” (VVL) is a collaboration of various universities
from Baden-Ẅurttemberg, Germany, to make virtual labs available for a number
of topics, including robotics, lab engineering, measurement engineering, 2D and
3D graphics, and others. See the homepage at [Virtuelle Hochschule Baden-
Württemberg, 2007] for more information.

Lists of further simulations and virtual labs can be found in[Ma and Nickerson, 2006],
[Kopp and Michl, 2000], and [Bundesministerium für Bildung und Forschung, 2004].

2.9 Virtualization & emulation

The Virtual Unix Lab got its name by providing a “virtual” labenvironment, i.e. one
where the place at which the student takes the exercise is de-coupled from the real lab,
exercise time is not bound to any lab opening hours, and whichstudents can access
from anywhere and at any time.

No virtualization techniques are currently used for the implementation of the Virtual
Unix Lab, and there is a lot of potential in that area, as recent publications show, e.g.

2.9. VIRTUALIZATION & EMULATION 21

[Guruprasad et al., 2005], [Vollrath and Jenkins, 2004], and [Adams and Laverell,
2005]. A comparison of various technologies related to virtualization was done by the
Emulab project and can be found in [Hibler et al., 2004].

For the purpose of further extensions of the Virtual Unix Labto use virtual machines
instead of real ones, an overview of available solutions forvirtualization and emulation
of various systems as of this writing are listed in table 2.4.

Besides virtualization, a number of other technologies that may prove useful for future
works on the Virtual Unix Lab. Given the goal of providing several operating systems,
and not focusing on one system, Solaris Zones1, FreeBSD Jails2,3, and UserMode
Linux4,5 may be of interest.

The topics covered in this work – verification of exercise results, tutoring and user
adaption – are not influenced whether virtualization is usedor not, though.

1 [Sun Microsystems, 2007]
2 [Kamp and Watson, 2007]
3 [The FreeBSD Documentation Project, 2007] Chapter 15: Jails
4 [User Mode Linux, 2007]
5 [Dike, 2006]

22 CHAPTER 2. RELATED WORKS

Software Homepage

Ardi Executor http://www.ardi.com/executor.php

Basilisk II http://basilisk.cebix.net/

bochs http://bochs.sourceforge.net/

CoLinux http://www.colinux.org/

dosbox http://dosbox.sf.net/

FAUmachine http://www.faumachine.org/

gxemul http://gavare.se/gxemul/

JPC http://www.physics.ox.ac.uk/jpc/

LilyVM http://lilyvm.sourceforge.net/

Microsoft Virtual Server http://www.microsoft.com/virtualserver/

Parallels http://www.parallels.com/

PearPC http://pearpc.sourceforge.net/

qemu http://www.qemu.org/

Serenity Virtual Station http://www.serenityvirtual.com/

SIMH http://simh.trailing-edge.com/

SkyEye http://www.skyeye.org/

VirtualBox http://www.virtualbox.org/

VirtualIron http://www.virtualiron.com/

VirtualPC1
http://www.microsoft.com/virtualpc/

Virtuozzo http://www.sw-soft.com/en/products/virtuozzo/

VMWare http://www.VMware.com/

WABI http://docs.sun.com/app/docs/doc/802-6306/

Xen http://www.cl.cam.ac.uk/research/srg/netos/xen/

Table 2.4: Virtualization and emulation software [cited 2007-08-16]

Chapter 3

Education of system administration

This chapter illustrates didactics and education of systemadministration. It introduces
theories of didactics, then applies them to an existing class on system administration.
An analysis of that situation leads to future directions forthe domain of teaching sys-
tem administration.

3.1 Fundamentals of education

There are several aspects to instructional research which will be investigated in this
chapter. First, psychology and learning theory explain howacquisition of new infor-
mation works in the human mind. Second, didactic realization is explained by instruc-
tion theory, which describes how to model information so that it is best fit for one of
several learning theories. Third, instructional design determines how to prepare teach-
ing material to fit for instructional and learning theories1. After looking at the various
theories, dimensions of implementation and adaption will be discussed, followed by
a look at alternative learning-theoretical approaches to consider. This defines an ideal
progression of education, and an optimal set of tools that isapplied to an existing
course on system administration.

3.1.1 Psychology and learning theory

The process of human learning can be approached from two sides: philosophy and
psychology. From the philosophical side, epistemology gives a view on knowledge and
learning with its impact on teaching2. On the other side, psychology has recognized

1 [Kuyper, 1998] p. 49
2 [Hammer and Elby, 2000] p. 2

23

24 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

the relation of human learning with its subject early, and has developed theories of
learning, which in turn emerged into theories of instruction and instructional designs1.

This section gives an overview of the various aspects of teaching, starting with the
psychological learning theories and moving on the possiblerealizations.

Behaviorism: Early learning theories go back to Iwan Pawlow, who observed“condi-
tional reflexes” in his famous “drooling-dog” experiment2, and Edward Thorn-
dike, who found laws about learning by trial and error, by experimenting with
cats3. John Watson and Burrhus Skinner picked up their works, and while Wat-
son coined the term “behaviorist” in his article “Psychology as the Behaviorist
Views it”4, Skinner made experiments with operant conditioning of pigeons5.
Skinner was also influenced by Sidney Pressey’s “testing andlearning” ma-
chines6,7, and in collaboration with James Holland he worked on a “teaching
machine”8, which led him to define the term and concepts of “programmed
teaching.”9

Based on these fundamentals, Norbert Wiener’s theories of cybernetics10, and
Helmar Frank’s “cybernetic pedagogy”11, it was hoped that teaching could be
automated with the aid of machines (computers), so that human learning can be
guided in a better way12.

The focus of the behavioristic approach to teaching is to supply information to
the learner, give him time to understand, then ask questionson the subject taught,
and give feedback based on the quality of the reaction. The whole process can
be seen in figure 3.113,14.

By repeating this sequence, simple tasks can be trained efficiently, as Pawlow
and others have shown. The same method works for training humans as well. A
few examples on how to design instructions to fit behavioristic learning will be
introduced in section 3.1.2.

The behavioristic learning theory is most appropriate for small learning steps.
Bigger learning goals have to be split into several smaller goals, which are usu-
ally presented in a sequential manner15.

1 [Kuyper, 1998] p. 49
2 [Pawlow, 1972] pp. 203
3 [Thorndike, 1911]
4 [Watson, 1913] pp. 158
5 [Skinner, 1947] p. 168ff
6 [Pressey, 1926]
7 [Pressey, 1927]
8 [Holland and Skinner, 1961] p. V
9 [Skinner, 1968]

10 [Wiener, 1948] pp. 11
11 [Frank, 1969]
12 [Seidel and Lipsmeier, 1989] p. 32
13 [Nösekabel, 2005] p. 6, Figure 2
14 [Kerres, 1998] p. 46
15 [Tulodziecki, 2000] pp. 57

3.1. FUNDAMENTALS OF EDUCATION 25

Teacher

Information

Digest

Question

Reaction

Feedback

Time

Learner

Figure 3.1: Behavioristic approach of teaching. Image Source: [Kerres, 1998, p. 46]

Critics of behaviorism point out that the approach does not consider the indi-
vidual nature of human beings enough, e.g. Watson describedthat there is “no
dividing line between man and brute.”1 This led to development of metacogni-
tion and cognitivism as learning theories2.

Cognitivism: The concept of cognitivism goes back to the early days of the 20th
century, notable names are Jean Piaget, Edward Tolman, Jerome Bruners and
Wolfgang Köhler3.

The idea in cognitivism is to view the learner as an individual, which is able to
process external stimulus on his own, and do more than just react to it. As such,
the learner behaves as an interactive receiver of messages that contains news and
knowledge in the sense of Shannon and Weaver’s communication theory, and
messages can be carried in various media4. Learning is considered a creative
process of problem solving5, and Piaget proposed that the learner adapts to the
problem domain and solves it by using assimilation and accommodation6. In this
context, accommodation and assimilation mean to adjust thelearned cognitive
concepts to new environments, and to match new external objects and condi-
tions to the individual’s internal structure by modifying the existing cognitive
structures7. Cognitive development happens through both external influence by
learning material, and internal influence by the learner’s existing cognitive struc-
tures. The learner’s “knowledge” is considered to be the sumof all patterns of
recognition, understanding and processing available to the individual, including
its environment8. A number of ways to model instructions after constructivist
approaches will be illustrated in section 3.1.2.

The cognitivistic learning theory is best used for complex subjects that go be-

1 [Watson, 1913] p. 158
2 [Seidel and Lipsmeier, 1989] pp. 36
3 [Seidel and Lipsmeier, 1989] p. 26
4 [Shannon and Weaver, 1949] pp. 31
5 [Seidel and Lipsmeier, 1989] p. 26
6 [Piaget, 1967] pp. 7
7 [Schulmeister, 2007] p. 67
8 [Tulodziecki, 2000] p. 58

26 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

yond pure factual knowledge. Depending on the learning goals, constructivistic
approaches can be used to1:

• Determine which kind of knowledge structures to build up.

Cognitive theories can not only be used for learning simple facts (declara-
tive knowledge), but also rules (procedural knowledge) andconcepts (con-
textual knowledge).

• Determine how knowledge is stored in the brain.

Various theories can be applied here as well, for example by giving the
topic taught a context with other subjects that it can associate with (theory
of meaning structures), explaining concepts both in words and non-verbal
(dual encoding theory) or trying to analyze all structural and functional
components (theory of mental models).

• Determine if specific topics or general strategies should belearned.

Specific topics such as system administration include various areas of sci-
ence which provide an intellectual challenge. In contrast,it is also possible
to teach general development aspects, e.g. social or moral considerations.

Leaving the possibilities that the constructivist learning theory offers aside, the
basic concept is still based on the interaction between external medial presenta-
tion and internal processing, just as in behaviorism.

Constructivism: The constructivist learning theory is based on works by a number
of philosophers, most notably Jean Piaget. The central thesis is that cognition
is construction and interpretation, and that objective, subject-independent learn-
ing and understanding is not possible2. As such, it goes one step further than
cognitive theory: constructivism emphasizes the “individual” components like
experience and the way of thinking first found in cognitivismeven more, to a
point where it does not include any external instructions tothe learner. Instead,
the idea of constructivism is to act freely in an environment, and construct new
knowledge from existing knowledge and interpretations of feedback given to
various actions in an act of recognition. This act is individual to each learner.

Due to this subjective nature, there is no “best” way of teaching in construc-
tivism. Instead, learning happens by actively dealing withtasks that provides
a context to the learning process, and that make acquired knowledge context-
bound or “situated.” This approach also prevents “inert knowledge”, i.e. knowl-
edge that was once learned, but cannot be applied in a given situation as there is
no mental connection between the context given by the situation and the knowl-
edge needed to be applied3.

During the learning process, knowledge is created dynamically and is not stored
in a fixed way. As a consequence, knowledge cannot be passed onwithout

1 [Tulodziecki, 2000] pp. 58
2 [Bruns and Gajewski, 2002] p. 14
3 [Bruns and Gajewski, 2002] p. 15

3.1. FUNDAMENTALS OF EDUCATION 27

repeating the same learning process in the receiving learner, who has to re-
construct that knowledge1.

The “creation” of knowledge can also be improved by encouraging communi-
cation between students and a teacher or in a learning group among themselves,
which allows changing role and perspective. That way, the classical roles be-
tween teacher and student are not sharply defined any more, and it becomes clear
that social interaction between learners is an important part of constructivism2.

There are several approaches to model “instruction” (put into quotes here as
there is no concept of instruction in constructivism). Among them are the con-
cept of cognitive apprenticeship3, knowledge communities4, and cognitive tools5.
Some of these will be discussed in section 3.1.2.

As a summary, constructivistic approaches are best fit for approaching complex
subjects and learning goals, as it goes far beyond the cognitive teach-review
cycle. There are downsides though, which become obvious when looking at the
didactic realization.

This section introduced three fundamental learning theories with some of their basic
ideas. None of the theories is ideal for teaching every subject – some are better fit for
simple, introductory topics, while others are better fit foradvanced topics. This needs
to be considered when approaching the didactic realizationof a teaching system, which
is what the next section covers.

3.1.2 Didactic realization, instruction theory and instructional de-
sign

The psychological and pedagogical foundations given on learning theories need to be
applied to create learning systems, which is covered in instruction theory and in in-
structional design. Starting from the three learning theories introduced in the previous
section, some methods for realizing them will be introducedhere.

This section only gives an overview on the methods needed to approach system admin-
istration. Related introductory texts on instruction theory and design can be found in
[Eikenbusch and Leuders, 2004, pp. 153] and [Wiggins, 1989], an in-depth coverage
of the topic can be found in [Gagné, 1967], [Gagńe and Briggs, 1974], [Richey, 1986],
[Reigeluth, 1983], and [Schulmeister, 2007].

Behaviorism: The “instruction paradigm” provides a realization of the behavioristic
learning theory. It assigns the learner a passive but nonetheless important role of

1 [Schulmeister, 2007] pp. 67
2 [Bruns and Gajewski, 2002] pp. 15
3 [Schulmeister, 2007] pp. 75
4 [Schulmeister, 2007] pp. 76
5 [Schulmeister, 2007] pp. 79, 315

28 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

Test

Operation

(Incongruity)

(Congruity)

Exit

Figure 3.2: The TOTE model. Image source: [Miller et al., 1960, p. 26]

receiving and processing information and instruction given by a tutor, teacher,
or a teaching program. After each learning unit, feedback isprovided before
moving on to the next unit1. This kind of instruction is also known as “drill
& practice” due to its main components. It provides the basicconcept behind
programmed teaching2.

Big lectures are split into small learning atoms by experts on the subject. It is
possible to teach the learning atoms in several ways, eitherby classroom teach-
ing, by providing it in book form, or via a computer program. In all but the first
case, the learner can decide the speed of progresses on his own3.

With the aid of computer programs, it is even possible to denyprogress to later
learning units until prior ones are mastered successfully.A system to assert
“success” is needed in that case. This schema is reflected in the TOTE-model
developed by Miller, Galanter and Bram in 1960, which consists of four phases
as illustrated in figure 3.2: Test, Operation, Test and Exit.First, a condition
is tested, and unless it is satisfied, a learning operation has to happen. This is
repeated until success of the test is indicated by congruity, leading to an exit of
the procedure4,5.

Cognitivism: As an alternative to the instruction paradigm, the “problemsolving
paradigm” corresponds to realization of a cognitivistic learning theory. The cen-
tral idea there is to provide an environment where learners can search their own
challenges within an open learning environment, or solve given problems with
no clear description of how to solve them. That way, learnersare encouraged
to use their existing knowledge and the tools and information available in the

1 [Bruns and Gajewski, 2002] p. 32
2 [Seidel and Lipsmeier, 1989] p. 40
3 [Kerres, 1998] p. 49
4 [Miller et al., 1960]
5 [Seidel and Lipsmeier, 1989] p. 28

3.1. FUNDAMENTALS OF EDUCATION 29

learning environment to construct new knowledge1.

Environments that encourage this kind of learning are thosefor “explorative
learning” as described in [Bruner, 1961], and as a special case the microworlds
described by Seymour Papert. A microworld in this context means a small (“mi-
cro”) environment (“world”) with a fixed set of rules, withinwhich a given task
should be solved. Probably the best-known microworld includes the “logo” pro-
gramming language. Logo allows teaching procedures, interaction and list pro-
cessing on one side, but as it also provides a facility to movea turtle across the
screen in a way described by the user, it can also be used to teach basic concepts
of computer science and programming2.

In general, several types of tasks can be requested from the learner, depending on
the kind of knowledge that he should build up. On the one hand,correlations can
best be learned by predicting the behavior of the system whenchanging various
parameters. On the other hand, the task can be to explain which parameters
need changing to achieve a certain condition of the system, and problems can be
solved by choosing the proper conditions and changes for a given effect3.

Constructivism: Verbalizing as described in the prior paragraphs helps the learner
order vague concepts that are mentally present and internally connected to a
subject into a clear form needed for communication. Learning in dialog with a
teacher, a tutor, or with other learners in a learning group is good for more than
just working on a given task. Due to the changes in role and position required for
participants of a learning group, it goes beyond the given task, and encourages
constructing new knowledge. Tools found useful for supporting communication
can be divided into synchronous and asynchronous groups4:

• Asynchronous communication toolsinclude email, discussion forums
and electronic bulletin board systems, user galleries, andfacilities for giv-
ing feedback on existing material.

• Synchronous communication toolsinclude video- and audio-conferencing,
application sharing, interactive whiteboards, chat, and instant messaging,

Similar to cognitivism, the approach taken in constructivism is to follow the
“problem solving paradigm.”5 But given the basic idea behind constructivism
that no instructions are given at all, the learning environment needs to be much
more flexible. It has to provide a framework to create reflections of learned
knowledge in various media, communicate and cooperate withothers, and con-
struct new media from existing one6.

1 [Bruns and Gajewski, 2002] p. 32
2 [Papert, 1982] p. 152
3 [Kuyper, 1998] p. 53
4 [Bruns and Gajewski, 2002] pp. 48
5 [Bruns and Gajewski, 2002] p. 32
6 [Bruns and Gajewski, 2002] p. 16

30 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

To allow learners free navigation in a wealth of information, a display of infor-
mation that connects all information with everything related to it is necessary.
In effect, this means building a hypertext or even hypermedia structure as can
be found (to some extent) on the World Wide Web today1. Such a tightly inter-
connected system would allow references to other resourcesof information, as
can be found in electronic libraries, discussion groups like the Usenet etc., and
it would also accommodates a wide variety of media formats, including (hyper-
linked) text, images, audio and video2.

Prospective learners can apply a number of problem solving strategies, e.g.
depth first, width first, hill-climbing and means-end analysis. All of them re-
quire a model of the problem domain, though. These techniques can be used for
plan recognition and automation of assistance as discussedin section 8.1.2.2.

Methodical elements to provide these media and various way for accessing them
include hyperlinked content, guided tours, a document pool, encyclopedia, in-
teractive exercises, business games and map exercises, simulations, online tests,
movies and help-functions for all these facilities3.

Besides offering an environment for communication, collaboration, navigation
and construction, learning systems like microworlds, simulations and intelligent
tutoring systems (ITS) offer interaction within an environment for creating new
knowledge from various views on new and existing knowledge gained through
them. A number of projects realizing these ideas are described in [Schulmeister,
2007, pp. 321, 351, 171] and [Schulmeister, 2002, pp. 16, 178, 241].

Another approach to realize constructivistic learning theories is by not dealing
with a particular subject either directly or via some (possibly simulated) inter-
face, but by talking about it. For this approach, a teacher ortutor is needed to
ask questions that the learner answers. The most well-knownform of this is
known as the “Socratic dialogue.” By considering all aspects of a certain topic,
unknown areas will be discovered, and relationship to existing knowledge can
be used to build up new mental connections, and thus knowledge, through inter-
action with a guiding instance4.

This section covered methods which can be employed to realize various learning theo-
ries. There is a variety of options to choose from, and the effects will also vary widely.
There are various levels at which these methods can be integrated into teaching envi-
ronments, which is covered in the next section.

1 [Schulmeister, 2007] p. 77
2 [Schulmeister, 2007] p. 22
3 [Bruns and Gajewski, 2002] pp. 44
4 [Bruns and Gajewski, 2002] p. 31

3.1. FUNDAMENTALS OF EDUCATION 31

3.1.3 Dimension of implementation and adaption

In 1929, Edward Thorndike and Arthur Gates pondered “If, by amiracle of mechanical
ingenuity, a book could be so arranged that only to him who haddone what was di-
rected on page one would page two become visible, and so on, much that now requires
personal instruction could be managed by print.”1 An early prototype of such a book
was built in Alan Kay’s “DynaBook” project2,3. Looking at this idea from today’s per-
spective, it is obvious that one would use a computer to construct a “book” with these
constraints.

Offering a guided tour through a book is only one of several methodical forms for
teaching. The spectrum ranges from pure classroom teachingas performed in the cur-
rent “System Administration” class as described in section3.2, over a mixture between
presence teaching with virtual components to pure virtual teaching as e.g. offered by
the “Virtuelle Hochschule Bayern” (VHB)4 and others5. When employing methods for
online learning, various degrees exist. Examples include self-paced online learning,
collaborative online learning (tele-tutoring), and live online learning (tele-teaching)6.
The central entity here is the “learning environment”, in which teaching and learning
happens7. Depending on the type of education and the learning theory applied, various
methodical communicative elements can be used, as described in section 3.1.2.

One component of the learning environment not covered yet isthe “feedback” given
to learners, which means the reaction of the learning platform to attempts on solv-
ing a task given to the learner8. While existing platforms often use multiple choice
texts and gaps in a text to fill in, all these test forms train basic behavioristic learning
instead of real understanding of concepts9. On one hand side, more advanced con-
cepts like interactive maps, images, or feedback on a given scenario that the learner
was asked to create are rarely found, even if these advanced ways for evaluation and
feedback are more appropriate for the concepts taught via realizations of cognitivistic
and constructivistic learning approaches10. On the other hand, systems implementing
these methods like simulations or microworlds often do not include any components
for evaluation and feedback at all11.

Comparing learning theories in general12, their realization, and virtual, computer based

1 [Holland and Skinner, 1961] p. V
2 [Kay, 1972]
3 [Ryan, 1991]
4 [Virtuelle Hochschule Bayern, 2001]
5 [Schulmeister, 2002] pp. 228
6 [Bruns and Gajewski, 2002] pp. 39
7 [Schulmeister, 2002] pp. 6
8 [Schulmeister, 2007] pp. 104
9 [Seidel and Lipsmeier, 1989] pp. 53

10 [Schulmeister, 2002] p. 154
11 [Schulmeister, 2002] p. 223
12 [Schuman, 2007]

32 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

ones in particular1, one comes to the conclusion that approaches following construc-
tivistic learning theories are best, but that their realization is just as hard. As a conse-
quence, most of the realizations found so far are incomplete, non-working or otherwise
insufficient2.

Two conclusions can be drawn from this: First, not all subjects can be taught by vir-
tual teaching3, and second, realization of constructivistic approaches,especially ones
which defeat the instructional components of the learning process, may not be the best.
There is room for alternative learning-theoretical approaches4,5, which are described
in the next section.

3.1.4 Alternative learning-theoretical approaches

There are ups and downs to the various learning theories and the instruction designs
resulting from them, as discussed in the previous section. Recognizing this, a number
of approaches have been suggested that take a pragmatic position between cognitivis-
tic and constructivistic approaches6. The instructional design of the 2nd generation
combines elements of constructivism, like explorative learning and communication,
with elements of cognitivism, which intents to add new components into the learner’s
existing knowledge structures, intending an integration of new contents7. The learner
should not be made a reactive entity, but rather made to act proactively. Proactive
learning concepts allow a change of the pedagogical situation towards choices for the
learner, making room for own arrangements and self-organisation of the learning pro-
cess8.

Merrill laid the fundamentals in instruction design with his “Second Generation In-
structional Design” (ID2). ID2 tries to overcome the limitations of what Merrill calls
the “First Generation Instructional Design (ID1)” by integrating sets of knowledge
and skills, producing pedagogical guidelines, selecting and sequencing instructional
transaction sets, and esp. integrating phases of instructional design9. The following
components are part of ID210:

1. A theoretical base that organizes knowledge about instructional design and de-
fines methodology for performing instructional design.

1 [Schulmeister, 2002] p. 223
2 [Schulmeister, 2007] pp. 218
3 [Schulmeister, 2002] p. 160
4 [Schulmeister, 2007] p. 109
5 [Merrill et al., 1991] pp. 3
6 [Tulodziecki, 2000] pp. 59
7 [Bruns and Gajewski, 2002] p. 17
8 [Weidenmann, 1993] pp. 11
9 [Merrill et al., 1991] p. 9

10 [Merrill et al., 1991] p. 10

3.1. FUNDAMENTALS OF EDUCATION 33

2. A knowledge base for domain knowledge, for making instructional decisions.

3. A series of intelligent computer-based design tools for knowledge analysis and
acquisition, strategy analysis, transaction generation,and configuration.

4. A collection of mini-experts with small knowledge bases for one or more in-
structional design decisions each.

5. A library of instructional transactions, with interfaces to add new transactions.

6. An online intelligent advisor program that dynamically customizes the instruc-
tion during delivery, based on a mixed-initiative dialog with the student.

The interfaces mentioned in item 5 are important in learningsystems that incorporate
many sources of teaching materials, teachers and topics taught. For the present discus-
sion, the topic of interfaces and formats of meta-data for easy exchange are beyond the
scope; More information can be found in [Schulmeister, 2002, pp. 202, 207]. The ad-
visor program and dynamic customisations of instruction will be addressed later when
discussing tutoring systems, personalisation and user-adaptive systems.

Other approaches to address the named problems can be found in the concepts of
situated cognition and situated learning.

Situated cognition assumes that thinking and learning are bound to a certain context
in which knowledge is learned. This context is defined by the learning environment,
which also names and defines the goals that should be learned,as learning is most
efficient when the goals are known1.

Situated learning goes into more detail. It emphasizes the fact that an individual’s
learning performance is not only affected by the content presented and his internal
learning processes, but also by the context in which the learning material is presented.
Real world examples are considered important, so the acquired knowledge and prob-
lems solving methods can be applied2. At the same time, a variety of examples should
be used to achieve decontextualisation. Following the concept of situated cognition,
situated learning is employed in a learning environment which gives contextual infor-
mation as well as instructions on goals to achieve. Situatedlearning provides methods
to reach the given goals, and also emphasizes social interaction to facilitate elaboration
and reflection3.

There are a number of approaches to realize situated learning. Choices in implemen-
tation include the degree to which virtualization should beemployed (i.e. whether
a “teacher” is present either in real or in the form of a computer program), if there
is a guide, and how strong didactic embedding ist. The approaches range from a
teacher/student relationship in “Cognitive Apprenticeship” over learning in groups in

1 [Schulmeister, 2007] p. 70
2 [Lave and Wenger, 1991] pp. 32
3 [Mandl et al., 1994] p. 170

34 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

“Knowledge Communities” to using cognition-promoting tools with the “Cognitive
Tools” theory1. Most of these choices use multimedia technology to variousdegrees2.

The difference in situated learning to a pure constructivist approach is that individuals
are both guided in what they should learn, as well as being provided with an environ-
ment that promotes solution of the given problems. The difference between situated
learning and cognitivistic learning approach is that more emphasis is put on the learn-
ing context and elaboration in the former, not only on acknowledging the (internal)
individual character of the learner, but also providing more (external) context for learn-
ing. As such, situated learning can be placed between cognitivistic and constructivistic
teaching approaches.

This section covered various alternative approaches to learning theory and instruction
design. Using a synthesis of the “classical” approaches andtheir derived forms, a set
of powerful teaching tools is available, and it is possible to achieve teaching methods
that are considered ideal in traditional education, as outlined in the next section.

3.1.5 Education – ideal progression and tools

A number of structures for instructional design of lectureshave been proposed3. An
ideal course of teaching is considered to consist of the following steps4:

1. A collection of assignments, collecting and discussing spontaneous ideas for
solving.

2. Defining learning goals, and discussing their meaning.

3. Communication about proceeding towards these goals.

4. Acquiring fundamentals needed to solve the assignment.

5. Putting the assignment into effect.

6. Comparing various solutions, and summarizing what has been learned.

7. Introducing and working on domain specific assignments.

8. Discussing the knowledge learned, and the way it was learned.

So far, discussion has named a number of instruments to realize various learning theo-
ries and instructional designs. A number of these instruments can be used to shift the
focus from the result of the learning process to the learningprocess itself5:
1 [Schulmeister, 2007] p. 75
2 [Mandl et al., 1994] pp. 171
3 [Clark, 2000]
4 [Tulodziecki, 2000] pp. 62
5 [Schulmeister, 2007] pp. 73

3.2. THE “SYSTEM ADMINISTRATION” CLASS 35

• Empowering learning environments, to promote creativity.

• Games to increase motivation.

• Cognitive tools, to promote understanding and representation of cognitive pro-
cesses.

• Tools to support writing and reasoning.

• Programs to support reflection of the mental processes of thelearner.

The above lists are guidelines for realizing learning environments. This section has
discussed the learning theories, instruction designs resulting from them, and circum-
stances in which to use one over another or a mixture of several approaches, to gain a
maximum benefit from all approaches.

3.2 The “System Administration” class

Discussion was kept on a theoretical level in the previous section. This section looks
at the existing class on “System Administration” (SA) as taught at the University of
Applied Sciences Regensburg for several years now. That class is considered equal to
classes on the same topic given at other univiersities, see section 2.2. The goal is to
outline history and target audience of the existing class, describe the contents of the
current curriculum, and discuss the didactic instruments used so far. More details on
the existing class on system administration can be found in [Feyrer, 2007a].

3.2.1 History and target audience

The “System Administration” class is offered to students ofcomputer science at the
University of Applied Sciences Regensburg. It was started as an elective course for
students in their advanced study period, i.e. the 7th or 8th semester, by Prof. J̈urgen
Sauer in 1994, and held until 1998. Since 1999, the course wasgiven by Dipl.-Inf.
Hubert Feyrer. Starting in 2003, the course was added as mandatory for all students.
This discussion only covers the class in its mandatory form as it is given since 2003.

The target audience of the “System Administration” course are students of general
computer science (“Allgemeine Informatik”) in the advanced study period, usually in
their 5th semester. Volunteer students from technical computer science (“Technische
Informatik”) or commercial information technology (“Wirtschaftsinformatik”) are al-
lowed to participate and take the course as elective course.

36 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

3.2.2 Current curriculum

The course consists of two lectures and one lab exercise per week, with the lectures
and the lab exercises being 90 minute each. For lab exercises, the students are split
into two groups due to lack of sufficient working places. On average, a course consists
of 40 students, resulting in two groups of 20 students.

Given other focuses in the curriculum, students usually have little Unix knowledge.
Some understanding of the basic operating system and networking principles are avail-
able from corresponding courses, but experience in using the Unix operating system,
its commands, as well as concepts for automating tasks can not be expected from all
students. As such, a part of the lecture introduces basic commands and concepts of the
Unix operating system, focusing on the latter under the light of system administrative
tasks.

The following topics are covered in the lecture and accompanying lab exercises1:

0. Introduction: The introduction of the class gives a small historical overview of the
past and a description of the class’s overall goals2.

1. Historical Overview: This section illustrates the history of Unix, starting with
AT&T and going to BSD and the various systems derived from it.

Exercises compare various Unix systems using the “Rosetta Stone for Unix”3,
and look at descriptions of commands in standards like POSIXand the Single
Unix Specification4,5.

2. Login process, process correlation:As an introduction, the classical login pro-
cess is discussed, including processes involved. Further concepts like signals,
job control, and general handling of documentation under Unix is discussed6.

3. User commands (standalone and for shell programming):Assuming that only few
students have a sound Unix background, basic Unix commands are discussed
which are useful both when used alone as well as when used in shell program-
ming. Areas covered include managing files and directories,permissions and
access control in a multiuser environment, text processing, and using regular
expressions7.

4. Information about the system: To properly administrate and tune a system, it is
essential to know as much data about the system’s state as possible. This sec-
tion gives related commands, output usually found and how tointerpret it. The

1 [Feyrer, 2007e]
2 [Feyrer, 2007e] “Vorwort”
3 [Hamilton, 2007]
4 [The Open Group, 2004]
5 [Feyrer, 2007e] “Historischer̈Uberblick”
6 [Feyrer, 2007e] “Login Prozeß, Prozeßzusammenhänge”
7 [Feyrer, 2007e] “Hilfsprogramme (Standalone und für Shell-Programmierung”

3.2. THE “SYSTEM ADMINISTRATION” CLASS 37

areas covered are processes, signals, users, installed software, operating system
version, kernel, terminals, remote machines, swap-space,process accounting,
filesystems, disk quotas, device-handling and harddisks1.

5. Shell programming: Assuming a basic understanding of a Unix system, this chap-
ter introduces shell programming using the Bourne shell (/bin/sh) to automate
recurring tasks. Topics include redirection of input and output, expansion of
wildcards, shell and environment variable, quotes, control structures, and shell
functions2.

6. Application of shell scripts: booting and shutdown: Students have been introdu-
ced to all the features that are available in shell programming. This section shows
an application of shell programming by observing the system’s startup mecha-
nism, which is usually realized as a set of shell scripts. Theapproach of letting
students read existing code written by experts, instead of writing their own, is
intended to show solutions for common problems and also practice reading and
understanding the flow of code and data. This section introduces general booting
of systems and outlines the System V “init”-system. Attributes of the init-system
discussed include runlevels, concept and functionality ofstart- and stop-scripts,
and their layout in the filesystem. After the System V “init” system, alterna-
tive approaches for disabling/enabling of services and determining the order in
which to start services are discussed.

Exercises for this section are mostly of analytical nature,as changing the sys-
tem’s boot system to gain experience would require system privileges. Those
cannot be handed out for practical reasons described in section 3.3. As a result,
exercises include analyzing the existing startup systems found on Solaris, SuSE
Linux and NetBSD3.

7. Networking: Students in the 5th semester visit the “Data Communications” lec-
ture in parallel with the system administration lecture, soa basic understanding
of networking and TCP/IP basics can be assumed, and conceptsof addressing,
routing and name services are only repeated briefly. Building upon these, the
network model of Unix is explained, again covering various implementations
with an emphasis on Solaris, but also Linux and NetBSD. With the network
model understood, the next steps covered are how to configurethe system and
name resolving for basic TCP/IP networking. Following thisintroduction, three
topics are picked up that are considered important when managing clusters of
workstations: setup of public key authentication in the Secure Shell (ssh), the
Network File System (NFS) and Network Information System (NIS) clients and
servers.

For practical exercises, the same situation as described above in “Booting and
shutdown” applies: for maximum learning effect, system privileges would be

1 [Feyrer, 2007e] “Informationen̈uber das System”
2 [Feyrer, 2007e] “Shellprogrammierung”
3 [Feyrer, 2007e] “Anwendung von Shellscripten: Hoch- und Runterfahren des Systems”

38 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

needed, but they cannot be handed out to students for the named reasons. As
such, exercises mostly consist of the analysis of existing systems1.

8. The X Window System: An application of networking is the X Window System,
which is the graphical subsystem used on Unix. The interesting fact here is that
the X Window System itself is network transparent, i.e. an application can run
on one machine and display its graphical output on another machine. The lecture
starts with some basic concepts like the client/server architecture, addressing dis-
plays, and simple access control. Redirection of applications across the network
is covered next, using the mechanisms provided by the X Window System and
the secure shell, followed by the startup process of the X Window System with
processes and files involved. Last, the functionality of a “Window Manager” is
explained in the context of a demonstration the KDE desktop environment.

Lab exercises for the X Window System build a graphical environment step by
step from single components, starting with window managers, placing client
windows next, followed by tuning application look and feel2.

9. Security: Security is considered important today, mostly requiring system adminis-
trators to take appropriate measures to establish secure systems. The curriculum
of computer science includes special lectures on security to give basic under-
standing and methods. The system administration lecture approaches “security”
from the practical side by discussing what kinds of problemsmay exist, includ-
ing host and network security, showing that a number of problems have equal
origins. The lecture closes by pointing at various sources of information, from
full disclosure over general security lists to vendor provided information to assist
in securing systems.

Student exercises start by a briefing on the legal situation of computer security,
and that any security holes found should be reported to the system administra-
tor immediately. The lab systems should then be analyzed andmonitored for
the various classes of security problems discussed, followed by finding special
system services that may get exploited3.

10. Practical Extraction and Report Language - Perl: A language found often in
system administration environments is Perl. The introduction given to Perl cov-
ers the difference from other programming languages in datatypes, input/output
and control structures. Features presented include processing of regular expres-
sions, arrays, lists, stacks, and hash tables. The Perl programming language’s
built in functions, creating one’s own functions, using existing modules, and an
overview of all existing modules round up the introduction to Perl.

Exercises for Perl include programming tasks that handle lists and associative
arrays, analysis of web server logfiles and scanning and sorting of mailboxes4.

1 [Feyrer, 2007e] “Networking”
2 [Feyrer, 2007e] “Das X Window System”
3 [Feyrer, 2007e] “Security”
4 [Feyrer, 2007e] “Practical Extraction and Report Language- Perl”

3.2. THE “SYSTEM ADMINISTRATION” CLASS 39

11. User management:This section approaches user management by repeating the
related concepts in Unix, including user databases, password encryption, home-
directories, dot-files, quotas, and site-specific setup steps. The tools used for
user management at the University of Applied Sciences Regensburg’s computer
science faculty are then introduced to show an approach of large scale user han-
dling – the computer science department has an average of 1.000 students which
have access to various Unix machines. Besides showing students how to realize
user management in Perl, it gives students a chance to learn from existing Perl
code.

Unfortunately, exercises are restricted again, as the students can not work with
system administrator privileges. As such, the exercises consist of examining var-
ious operating systems’ tools via their documentation and to the extent possible
with normal user privileges1.

12. Software management:After describing system operations and user manage-
ment, handling application software is the third big topic covered in the “Sys-
tem Administration” lecture. This section introduces the software architecture
found on operating systems including separation into “operating system” and
“applications.” The historical development that led to thevarious models and
components is explained, followed by handling of precompiled binary software.
Software management tools covered include those of Solaris, Linux Systems
that use the RedHat Package Management (RPM) system, and NetBSD.

Exercises for software management involve software installation as a “normal”
user. After getting familiar with various package systems,the meta data used by
these systems is investigated, and dependencies between software packages are
analyzed2.

13. Backups: The last section of the lecture covers backing up data. Topics discussed
include media, various concepts of backups from file based towhole filesystems,
and data compression. An overview of integrated solutions including commer-
cial backup systems closes the chapter.

Lacking not only access to systems on a filesystem/harddisk base, but also back-
up hardware and enterprise solutions for performing backups, practical exercises
are kept on the base of backing up single files and directories3.

This section has described the various topics covered in the“System Administration”
lecture with a focus on the contents taught in class and the lab exercises students are
expected to do. The next section will give more information on the overall layout of
the course and the reasons behind it.

1 [Feyrer, 2007e] “Benutzerverwaltung”
2 [Feyrer, 2007e] “Software-Management”
3 [Feyrer, 2007e] “Datensicherung”

40 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

3.2.3 Course layout

After the previous section discussed the contents of the single lectures in detail, this
section illustrates the overall building blocks of the “System Administration” class,
and how they are arranged to reach the goal of the lecture. Furthermore, it covers
how the building blocks reflect the change demanded in learning strategies, ranging
from behavioristic learning for the fundamentals to cognitivistic learning for the more
advanced topics.

The class has two goals:

1. General understanding of Unix, and that there is not “the one Unix system”, but
several implementations that differ in various details – some minor, some major.

2. System management of large scale clusters, with system, user and software man-
agement as well as procedures to setup the necessary networkinfrastructure

The first goal aims at giving students a general understanding of the Unix operating
systems, assuming they are not familiar with the concepts touse and/or administrate
such a system. Throughout the lecture, exercises are given to show differences in
platforms using the hardware and operating systems available to students at the com-
puter science and computing center’s department of the University of Applied Sciences
Regensburg. The main system that the lecture is based on is Sun Microsystems’ “So-
laris” operating system as incarnation of a System V system,other systems discussed
throughout the class and exercises are “SuSE Linux” as representatin of the Linux
family of operating systems, and “NetBSD” for the BSDs.

The second goal gives a direction for the contents of the lecture. “System Adminis-
tration” itself is a wide field, and the goal of administrating a cluster of workstations
is considered worthwhile. The various steps needed for thisgoal are difficult to learn
e.g. in a self-teaching home-environment, while other topics like setup of mail, DHCP,
DNS, Web and Samba servers may be easy to learn and practice.

For the further discussion, here is a list of the topics covered during the lecture, pre-
sented in detail in section 3.2.2. Short names are given for further reference:

3.2. THE “SYSTEM ADMINISTRATION” CLASS 41

Section Title Short name
0. Introduction -
1. Historical Overview -
2. Login process, process correlation -
3. User commands (standalone and for shell programming) UserCmds
4. Information about the system SysInfo
5. Shell programming ShellProg
6. Application of shell scripts: booting and shutdown Booting
7. Networking Network
8. The X Window System X
9. Security Security

10. Practical Extraction and Report Language Perl
11. User management UserMgmt
12. Software management SWMgmt
13. Backups Backup

When analyzing the structure of these topics, some act as fundamentals to others.
Figure 3.3 displays “Cluster Management” as the main topic of the class, and illustrates
the relations between the various topics discussed.

3.UserCmds

4.SysInfo

5.ShellProg

6.Booting

7.Network

8.X9.Security10.perl

11.UserMgmt 12.SWMgmt

ClusterMgmt

13.Backup

Figure 3.3: Structure of the “System Administration” lecture

The topics shown in figure 3.3 can be divided into three groupsas shown in figure 3.4:

• User Management

• System Operations

• System Startup

42 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

User System
Management Operations

System
Startup

3.UserCmds

4.SysInfo

5.ShellProg

6.Booting

7.Network

8.X9.Security10.perl

11.UserMgmt 12.SWMgmt

ClusterMgmt

13.Backup

Figure 3.4: Thematic groups in the “System Administration”lecture

The “User Management” group on the left of figure 3.4 assumes an understanding of
the Perl programming language, and it also requires understanding of commands from
“System Information, for the areas of user databases, and how to handle them. The
“Systems Startup” group on the right asks for an understanding of shell programming,
which in turn uses a variety of user and system specific commands to determine infor-
mation like which services to start. Finally, the middle group of “System Operations”
is a loosely coupled collection of topic that cover softwaremanagement, security and
networking, which again build up on the information derivedfrom the system as well
as various user commands.

Examining the discussion of the groups, it becomes obvious that each group can be
divided into various levels according to the difficulty or how advanced the topic is, i.e.

• Basic

• Advanced

• High-level

Figure 3.5 illustrates this separation. The basics upon which all other topics rely are
user commands, commands to determine information about thesystem, understanding
of networking concepts, and related configuration. The Perlprogramming language
listed as “advanced” here could be in the “basic” category here too. Advanced topic
are backups, the X window system, shell programming and security. Using all these
basic and advanced topics, the high-level goals of user and software management as

3.2. THE “SYSTEM ADMINISTRATION” CLASS 43

Advanced

Basic

High−level

3.UserCmds

4.SysInfo

5.ShellProg

6.Booting

7.Network

8.X9.Security10.perl

11.UserMgmt 12.SWMgmt

ClusterMgmt

13.Backup

Figure 3.5: Levels of difficulty in the “System Administration” lecture

well as booting of the system (which is important for system configuration esp. in
large scale environments) can be realized. In turn, these are the foundation needed for
management of large clusters of Unix workstations and servers, which is the ultimate
goal of the “System Administration” lecture.

As not all of the fundamentals of such a complex topic can be explained at once, the
lectures have been split both horizontally into various levels of fundamentals building
one upon another (see figure 3.5), and vertically to separatetopical groups that can
be separated to build logical units (see figure 3.4). The result is a collection of single
topics, as presented in section 3.2.2.

3.2.4 Didactic instruments

Besides the learning goals presented in the previous section, there are a number of
didactic instruments that are used in various parts of the lecture and in lab exercises
that are presented in this section, grouped by what part of the course they are used in.

Lecture: The “System Administration” class consists of two lecturesand one lab exer-
cise per week. Each lecture takes 90 minutes, the lab exercise takes 90 minutes,
too. During lectures, a laptop and a video projector are usedto present slides.
Occasionally, examples are developed on the blackboard to illustrate examples
that are not immediately clear from the slides.

The teacher’s notebook is used to display examples for commands, procedures
and to show example outputs of various systems. Either the local laptop is
used, or a remote system is accessed via the ethernet connection available to
the teacher in each classroom.

A number of books covering various topics from the lecture are passed around

44 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

in the first lecture1, but students are not required to read all or parts of them - all
the lecture material is present in the lecture slides and in online lecture notes.

The history of Unix is illustrated by a printout of a graph displaying all historical
Unix releases so far, printed on many sheets of paper and glued together2

Online lecture notes: The online lecture notes are identical to the slide presented dur-
ing the lecture. Each student has online access to the lecture notes so he can print
them in advance, bring them to the lecture and make personal notes if needed.
If a situation is found to be described suboptimally during class, the notes are
updated after the lecture to clarify the situation

Lecture notes are available athttp://www.feyrer.de/SA/ as a set of
HTML files3.

Examples: The lecture notes include examples for many situations thatmay arise in
the topics described. Examples include a description of thesituation, the exact
command name to input and example output. That way, studentsare not required
to sit in front of a computer to learn what a command does, but can do so from the
online lecture notes’ examples only. Examples are designedto be as complete
as live demonstrations for the purpose of learning with no machines at hand,
which is esp. important as the lecture tries to give examplesof many different
machines and operating systems, many of which are not widelyavailable. Figure
3.6 shows an example found in the online lecture script.

Live Demonstrations: System administrative procedures consisting of a number of
steps are demonstrated live. For them, a detailed description of the context in
which the demonstration happens is given, including machine hardware and op-
erating system, goal of the demonstration, and an outline ofthe conceptual steps.
This is followed by a description of commands and tools used.The next step is
an interpretation of the output and other effects resultingfrom the demonstration
steps, as well as an analysis and description of the system after the demonstra-
tion, with retrospect on how each step affected the system.

Analysis of existing systems:Strong emphasis on the multi-platform property of Unix
is given in the entire “System Administration” course. Thisis supported by
many examples and exercises that are intended to be ran on multiple different
systems, to learn the properties of single systems as well asdifferences. That
way, students can infer concepts commonly found on many Unixsystems as
well as others that are only found on single systems, e.g. as discussed during the
“Networking” or “System startup” sections.

For that purpose, a number of machines are available: Solaris/x86, Linux/i386
and NetBSD/i386. Possible systems for future demonstrations may include SGI
machines running Irix, IBM machines running AIX, and Sun machines running

1 [Feyrer, 2007e] “Literatur”
2 [L événez, 2007] .
3 [Feyrer, 2007e]

3.2. THE “SYSTEM ADMINISTRATION” CLASS 45

Figure 3.6: Examples help learning without a computer

Solaris/sparc. Students have logins on all these systems thanks to the NIS/NFS
infrastructure of the computer science department.

Lab exercises for hands-on learning:Each section of the online lecture notes con-
tains suggested exercises that students are expected to work on during lab time.
The lab for these exercises consisted of 15 PCs running a dualboot of So-
laris/x86 and Windows 2000 (of which the latter is little to not used for the
exercises), and four PCs running NetBSD. During lab exercises, machines are
reserved for the students to do the exercises. No solutions to the exercises are
published, to motivate students to come up with their own solutions. Personal
experiences show that when handing out solutions for the mixture of exercises,
students prefer to just read the solution (or learn it by heart), and not go through
all the steps to learn the aspects of the topics discussed.

Attended tutorials: During lab exercises, a tutor is present for answering questions
about the working environment, machines, operating systems, their configura-
tion, the exercise in question, and any related questions. Questions can be an-
swered during lab exercise time; As students are free to do the exercises outside
the lab exercise time, they can contact the teacher via email(and in some rare
occasions via IRC chat) to ask questions. Students are encouraged to use the lab
exercise time for asking questions, though.

The instruments described here are currently in use in the “System Administration”
class given at the University of Applied Sciences Regensburg. The instruments have

46 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

been the same for the past few years that the lecture is given,with only some minor
variety on machines and operating systems that students have access to. A number of
alternative instruments could be used in theory, some of which are discussed in the
next sections.

3.3 Analysis of the current situation

This section analyzes the “System Administration” lecturediscussed in section 3.2
under the light of the learning theories and didactic fundamentals given in section 3.1.
Taking the suggestions for ideal progression and tools for alecture given in section
3.1.5 into account, a list of measures can be identified to improve student orientation
and learning performance of students over the current form of the lecture:

• Define goals at the start of the semester.

Besides setting general, system/distribution-independent understanding of Unix
as a goal, cluster management should be mentioned explicitly.

• Give a better overview of the way how the given goals are reached.

This needs change in two places: First, give an overview overall chapters at the
start of the semester, similar to the overview given in section 3.2.3. Second, at
the start of each chapter, outline the contents that will be presented.

These changes can be accomplished easily in future incarnations of the “System Ad-
ministration” lecture.

Another problem is more difficult to solve, though: In advanced topics, practical exer-
cises are indispensable, which can be seen from the description of the current lecture in
section 3.2.2 and the “wishlist” of alternative instruments given in section 3.4. Merrill
supports this by stating that “much new scientific knowledgeis dynamic in character
and cannot be understood without a more active representation and student involve-
ment.”1 The approaches of situated learning and related cognitive concepts introduced
in section 3.1.4 support this, and Hubwieser also asks for modelling and simulation to
be part of the educational principle, and not part of the lecture contents2.

The course starts out with basic topics that can be easily learned without practical ex-
ercises, by merely looking at examples and descriptions. However, more advanced
sections need practical exercises for understanding. The gradual move from behavior-
istic learning theories for basic topics to cognitivistic learning theories for advanced
topics also shows that these two forms are not the only ones needed to fulfill all the
needed requirements, and that mixed forms like illustratedin section 3.1.4 are needed.

1 [Merrill et al., 1991] p. 7
2 [Hubwieser, 2000] p. 69

3.3. ANALYSIS OF THE CURRENT SITUATION 47

(1) Basic topics learnable in theory,
 applying behaviouristic learning theory

(2) Advanced topics learnable in practice,
 applying cognitivistic learning theory

(1)

(2)
A

pp
lic

ab
ili

ty

Progress of the lecture

Figure 3.7: Change in learning paradigm with advancing level

Figure 3.7 illustrates the correlation between basic and advanced topics: Basics in-
troduced at the start (left) of the lecture can be learned without practical exercises,
applying behavioristic learning theory only. But the more advanced the lecture gets,
both in time and in level of topics discussed, the more practical exercises are needed
for understanding and learning, applying cognitivistic learning theories.

Basic topics can be learned through simple behavioristic learning methods like drill-
and-practice in theoretical manners. But with increasing level of difficulty, practical
exercises following cognitivistic or constructivistic models are required. For the “big”
topics that build the goals of the “System Administration” lecture, it is not sufficient
to cover them on a theoretical level. Instead, practical exercises with full system priv-
ileges are mandatory for throughout understanding.

An operational problem regarding practical exercises withadministrative privileges to
access the system configuration level is present in the lab setup used at the University
of Applied Sciences of Regensburg: If a student used administrative privileges during
an exercise, the machine’s state is not known after the exercise. In order to assure
proper operation of the lab machines for future exercises, the machine would have to
be re-installed. Re-installing the systems is not an option, unfortunately, due to time
constraints and the lack of human ressources.

In summary, there is a need for practical exercises applyingcognitivistic learning meth-
ods in the “System Administration” lecture, esp. with system privileges. Currently, a
lack of manpower and resources to setup and re-install machines prevent this. A pos-
sible solution would be to build a virtual environment that allows practising the real
goals of the course where only theoretical coverage of thesetopics is possible so far.
This approach is also suggested by [Adams and Laverell, 2005].

The implementation of this “Virtual Unix Lab is more demanding, and will be covered
in the remaining chapters of this work.

48 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

3.4 Future directions

There are a number of didactic instruments that are not currently used in the existing
course, but that may be useful for future improvements. Noneof them breaks any
new grounds in education of computer science or system administration, and they may
be found in other courses on system administration and related topics. Still, they are
considered worthwhile:

• Solutions to (selected) exercises could be handed out, including a description of
the solution. Providing well-written examples esp. for theprogramming parts
like Bourne and Perl programming may give students a better idea of how to use
certain constructs.

• Access to more (different) machines with more operating systems would be
helpful for better understanding of system attributes. Useful machines to name
are SGI machines running Irix, Sun SPARC- and AMD-based machines running
Solaris as well as a set of PC machines running different Linux distributions like
RedHat, Gentoo, Debian and Slackware (besides the SuSE already available).
This would allow to analyze setups even without root privileges. For example,
the NIS and NFS client setup could be derived from such machines.

The problems involved here are the cost of hardware and operating systems on
one side, and maintenance of machines on the other side, which the computer
science department cannot provide currently.

• At some points, contents could concentrate on using available GUI tools like
SuSE’s “yast”, Solaris’ “admintool”, or the Solaris Management Console, in-
stead of configuration files and command line tools. These tools could be used
if it was ensured that students understood the underlying concepts properly, e.g.
they would be more appropriate in an “Advanced System Administration” class
instead of a class teaching basics, like the current “SystemAdministration” lec-
ture.

• Section 3.2.2 pointed out that many topics cannot be practiced properly, due to
the lack of machines which can be accessed with system administrator privi-
leges. While a number of workstations are available for all students – 15 run-
ning SuSE Linux, 15 running Solaris/x86, 4 running NetBSD – none of them
are available for practicing system administrative tasks,as all of them are public
machines that other students need to use too. Handing out system administrator
privileges on these machines would require re-installation of the machine after
the exercise, as the system’s state would not be known, and could not be trusted
for public services.

Examples of exercises where exclusive access to hardware would be useful in-
clude:

3.4. FUTURE DIRECTIONS 49

– Setup of various operating systems, and related initial configuration to get
the systems to a predefined state

– Setup of various client/server scenarios, e.g. mail, POP, IMAP, spam filter-
ing, DNS, DHCP, FTP, SSH, Samba, NFS, NIS and many others1.

– Troubleshooting scenarios where systems are setup to misbehave in one
way or another. Students would be expected to identify and solve the prob-
lems.

Due to the lack of manpower, this re-installation cannot be performed after each
lecture, and as there are no machines dedicated for system administration train-
ing, no practical exercises are currently offered for many areas that need these
privileges.

• Besides machines and operating systems, access to other hardware components
would be useful for practicing some of the basic setup and operations principles.
Those components could include network components like cabling, hubs and
switches as well as hardware for backup, such as tape drives of various tech-
nologies like AIT or DLT, and maybe some external disks and RAID arrays.
Again, this is not possible or available at this time due to financial constraints.

• For describing certain setup or troubleshooting situations, it would be useful to
have machines available in exactly such a situation as described, which students
then could pick up for further practicing, realizing an “Anchored Instruction”
approach2.

Besides the lack of hardware resources, such a setup would need a lot of prepa-
ration to define the systems to be in a specific state, and even more effort to
backup and restore exactly that situation for later replay by all students. While
this would be very useful for troubleshooting setups, it is again not possible due
to lack of manpower, machines and money.

• Right now, the whole “System Administration” class is centered around class-
room teaching where students are expected to be present. While students are
free to take the lab exercises outside of the lab hours, it is recommended to take
them when the teacher is in to get optimal feedback on questions and problems.

Moving the lecture into a “virtual” environment, where students decide on the
process themselves would be possible due to the availability of the online lecture
notes. Moving the lab exercises into a completely virtual environment with no
teacher present would be more demanding. Interactive, tutoring and adaptive
components would be needed to help students in situations where teachers can
look over their shoulder today, and react to the situations they see3.

1 [Ernst, 2004]
2 [Mandl et al., 1994] p. 171 and 173
3 [Bruns and Gajewski, 2002] pp. 22

50 CHAPTER 3. EDUCATION OF SYSTEM ADMINISTRATION

This list of further instruments that could be used in the “System Administration”
lecture is by no means complete, but it illustrates a number of approaches that could
be used to improve teaching.

Part II

Diagnosis and feedback
with a domain specific language

Chapter 4

Basic design of the Virtual Unix Lab

This chapter gives an overview of the Virtual Unix Lab that was developed during
the “Praktikum Unix-Cluster-Setup” project from a user perspective. The system pre-
sented here is used as a foundation for the following works. Key design components,
the hardware and network setup are introduced briefly here. See [Feyrer, 2004c] and
[Zimmermann, 2003] for a more detailed description.

4.1 A user-level walkthrough of the Virtual Unix Lab

The Virtual Unix Lab basically has two user modes, one for regular users (students),
and one for administrators (teachers). A brief overview of the student’s perspective
is given in this section to get an overview of the system. The administrative view is
discussed in detail in [Feyrer, 2004a] and in the following chapters.

This tour through the user area of the Virtual Unix Lab coverslogin and account cre-
ation, booking an exercise, taking an exercise and retrieving feedback afterwards. The
walkthrough consists of a number of screenshots displayingthe web based user inter-
face that the Virtual Unix Lab presents in the order that a student using the system
would see:

1. Access to the user interface of the Virtual Unix Lab is through a web browser,
which allows accessing all facilities provided, except performing exercises them-
selves (see below). Language of the user interface is German(only) right now –
internationalisation is on the list of items to do in the future.

When accessing the webpage, the first thing students encounter is a mask to
login as displayed in figure 4.1.

2. If a student does not have a login yet, he can create a new login (“Profil”) using
the form displayed in figure 4.2.

53

54 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

Figure 4.1: Logging into the Virtual Unix Lab

Figure 4.2: Entering data for a new login

4.1. A USER-LEVEL WALKTHROUGH OF THE VIRTUAL UNIX LAB 55

Figure 4.3: Welcome to the Virtual Unix Lab

The student will have to give his student ID number (“Matrikel-Nummer”), first
and last name, an email address where he can be reached and a password (twice).
Upon registration, an email will be sent to the given email address. The email
contains an authentication token that the user has to enter to permanently enable
his account. Accounts not enabled that way will be deleted after 7 days. This
allows instant access to the lab, but ensures that people provide at least a valid
email address if they want to keep using the lab.

3. After successful login into the Virtual Unix Lab, the welcome screen shown in
figure 4.3 is displayed, and users can choose from several actions they want to
do: Update their user settings (“Benutzerdaten”), get a list of available exercises
(“ Übungen auflisten”), book an exercise for a certain time and date (“Buchung
vornehmen”), get a list of past and future exercises, deletefuture exercises and
retrieve feedback on past ones (“Buchungen einsehen”) as well as logout of the
web site.

4. Next, an exercise can be booked. This is done by selecting the “Übung buchen”

56 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

Figure 4.4: Booking an exercise: selecting date and time

menu item. The first step in booking an exercise consists of deciding at which
date and time to take the exercise, which is displayed in figure 4.4.

Exercises are available in three-hour intervals (1.5 hoursfor the exercise, plus
about one hour for preparation of the lab machines and some time for postpro-
cessing). Slots already booked by other users are not displayed. In the screen-
shot, some exercises are not available because of this.

5. After deciding on the date and time for the exercise, the next step is to choose
which actual exercise to take. The exercise name, description and duration are
displayed, and the user has to decide for one as displayed in figure 4.5.

6. After selecting date, time, and which course to take, a final confirmation shown
in figure 4.6 has to be made before the exercise is booked.

7. The exercise is booked at this point, and the system will know when to prepare
the lab machines for the exercises by using an at(1) job.

The student can walk away and prepare for the exercise. Like for a school test,
he should come back to the lab a few minutes before the selected time of the
exercises and log in again as shown in figure 4.1.

8. After the user has logged in again, the system will tell himthat an exercise was
prepared, and that he can already start to prepare the exercise by following the
provided link (“bittehier klicken” in red text) as displayed in figure 4.7.

4.1. A USER-LEVEL WALKTHROUGH OF THE VIRTUAL UNIX LAB 57

Figure 4.5: Booking an exercise: selecting the exercise

58 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

Figure 4.6: Booking an exercise: confirmation

Figure 4.7: An exercise is prepared and waiting

4.1. A USER-LEVEL WALKTHROUGH OF THE VIRTUAL UNIX LAB 59

Figure 4.8: Configuring access to the lab machines

9. Before starting the exercise, the student has to enter theIP address of the ma-
chine from which he wants to access the lab machines. This process is shown
in figure 4.8. The IP address will be used to configure the firewall when the
exercise actually starts, to restrict access so other students cannot disturb the
exercise.

10. Just as in a real test, the student can enter the lab website and sit down, but the
test will not start until the specified time. In a real lab test, this would be when
the teacher hands out the questions. In the Virtual Unix Lab,the student has to
wait for the start of the exercise too, as displayed in figure 4.9.

11. When exercise time is reached, the firewall protecting the lab systems will be
opened to allow (only) the student to access the lab systems,and the exercise
text will be displayed as shown in figure 4.10.

The text is the same as the one provided for looking at before the exercise, so
students can prepare properly. There are few additions to the text, though. First,
a link with help for accessing the lab systems is placed underthe exercise text, so
students not yet familiar with the lab can learn how to accessthe lab machines,
giving proper syntax for telnet, ftp and ssh. Below this link, the time remaining
for the exercise is printed on the lower left (“VerbleibendeZeit”). If the user
decides to finish the exercise before the time runs out, he canpress the “Fertig!”
(done) button.

12. Separate terminal windows have to be opened to access thelab machines and

60 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

Figure 4.9: Waiting for start of exercise time

perform the tasks requested in the exercise text. Figure 4.11 shows access to a
Solaris/sparc (left terminal window) and NetBSD/sparc (right terminal window)
system.

Each lab system offers a “normal” user account as well as one with system ad-
ministrator (root) privileges. The corresponding passwords are given in the in-
structions on how to access the lab machines.

The student can solve the given task by any measures he finds appropriate, using
the full administrative privileges he has available. If oneof the lab machines has
to be rebooted, this can be done as with any remotely administrated machine.

13. After the exercise has ended – either by timeout, or because the student pushed
the “Fertig!”-button – the system will revoke access to the lab systems by re-
enabling the firewall. It then prints a message that the exercise is over, and that
feedback on the exercise can be retrieved from the database within a few minutes
as shown in figure 4.12.

The lab systems are analyzed in the background by a number of scripts. These
scripts know what configuration steps are necessary for successful performance
of the exercise, and will report their findings in the database for later retrieval.

14. Later, students can retrieve feedback on an individual exercise by selecting “Bu-
chungen einsehen” from the main menu. They will see the exercise text, com-
ments on what checks were done (green text), and if the particular task was done
successfully (“OK”) or not (“Nein”). See figure 4.13 for an example.

4.1. A USER-LEVEL WALKTHROUGH OF THE VIRTUAL UNIX LAB 61

Figure 4.10: Display of the exercise text

62 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

Figure 4.11: Logging into lab machines for the exercise

Figure 4.12: End of exercise

4.1. A USER-LEVEL WALKTHROUGH OF THE VIRTUAL UNIX LAB 63

Figure 4.13: Feedback on an exercise taken

64 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

Figure 4.14: The initial implementation of the Virtual UnixLab

This overview illustrates the basic mode of operation a usercan perform in the Virtual
Unix Lab. The next section will describe the hardware components and the network
setup that the Virtual Unix Lab was composed of.

4.2 Hardware and network setup of the Virtual Unix
Lab

This section describes the hardware setup used in the Virtual Unix Lab, some of the
possible alternatives, and why there were (not) used.

Despite its name, the current implementation of the VirtualUnix Lab uses real ma-
chines for performing the exercises on. During the initial design phase of the project
in 2001/2002, virtual machines were slowly starting to become available in widespread
use and were considered a useful alternative1. Due to budget limitations, no hardware
was available to run virtual machines, and so “real” hardware was chosen for the cur-
rent instance. A possible future goal is replacing the real machines with virtual ones.
As such, keeping an eye on developments in that are was alwaysconsidered of impor-
tance during the whole project’s lifecycle so far, even if ifthat aspect is not realized
yet – see chapter 2 for relevant work in that area.

Another design issue was that the production network shouldnot be influenced. Due
to that, the lab machines were put on an extra network behind the Virtual Unix Lab
control machine, through which all access has to go. While keeping the lab machines
from doing any evil on the production network, the added benefit is that access to the
lab machines can be controlled tightly. Using the firewall’sport forwarding, it allows
access to the lab machines only to those users who have bookedan exercise previously.

Figure 4.15 illustrates the setup of the Virtual Unix Lab’s network and the network
services that are available. Figure 4.14 shows a photo of themachine setup as it was
made initially.

Initially, the control machine of the Virtual Unix Lab – shown in the left half of figure
4.14 and in the center of figure 4.15 – ran on a Sun SPARCstation5 with a 85MHz
CPU, 192 MB RAM and three external SCSI disk. An additional SBus ethernet card
was added for connecting the internal lab, the machine ran NetBSD 1.6.2/sparc for

1 [Pratt and Zelkowitz, 2001] pp. 57

4.3. SOFTWARE COMPONENTS OF THE VIRTUAL UNIX LAB 65

20023
20022
20021
10023
10022
10021

telnet
ssh
ftp

telnet
ssh
ftp

web80
22 ssh

Control
machine machines

Lab

��
��
��
��
��

��
��
��
��
��

Figure 4.15: Accessing the lab clients

historic reasons. A hardware upgrade was made in 2005 to a Dell PC with a 3.2GHz
CPU, 1GB RAM and two 100GB harddisks that are used in a software RAID1 con-
figuration. NetBSD was chosen as operating system again, as it was easy to upgrade,
fulfilled all requirements, and experience in its handling was available in-house.

For the lab clients – shown on the right of figures 4.14 and 4.14– two Sun SPARCsta-
tion 4 with 110MHz CPU, 64 MB RAM and 1 GB internal SCSI disk, were used. The
machines run NetBSD/sparc or Solaris/sparc, depending on the exercise.

4.3 Software components of the Virtual Unix Lab

This section gives an overview on the software components ofthe Virtual Unix Lab.
Figure 4.16 illustrates the components and their relationship, a full overview is avail-
able in [Feyrer, 2004c]. A brief discussion of the various components follows:

User: The user is not part of the Virtual Unix Lab, but he is the main active component
in the system. He provides input and interacts with the system, and is as such
considered to be a vital part of the system design. Interaction is done through a
web browser for management of exercises, and though a command line interface
(ssh, ftp, telnet) during the exercises.

Interaction happens with the “User Management” component.

66 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

v
u

l a
 b

Database

Firewall Deployment

User

Course Engine Scheduler

User Management

Figure 4.16: Software components of the Virtual Unix Lab

User Management: This component acts as a single point of contact towards the user.
In cooperation with the Database, Scheduler and Course Engine it performs lo-
gin procedures, account generation, books exercises and acts as user interface
during the exercise. This component is described in [Zimmermann, 2003, pp. 9,
38]. The User Management component is mostly implemented inPHP.

Course Engine: After the User Management component has logged in the user, an
exercise booked earlier may be ready for taking. If so, the handling of this
will be done by the Course Engine: It makes sure that only the specific user
has access to the lab machines by configuring the Firewall, waits for the start
time of the exercise, and displays the exercise text and timeleft for the exercise.
At the end of an exercise, it verifies the exercise results by analyzing the lab
systems and collecting the data that is needed to give feedback to the user on his
performance during the exercise.

The Course Engine component is discussed in detail in the following sections,
an overview is available at [Feyrer, 2004e]. It is implemented as a mixture of
PHP scripts for the user/web frontend parts, and Bourne shell and Perl scripts
for the result verification parts.

Database: All data collected for the user accounts, exercise setup anddeployment,
feedback, etc. is stored in a relational database that all other components access.
Access of the database happens via SQL from Perl and shell scripts.

The database is implemented with PostgreSQL. Reasons for PostgreSQL over
other alternatives, in particular MySQL, are that PostgreSQL is free, and that
it ran on the target platform, whereas MySQL did not work. Thedatabase is
accessed from PHP, Perl and through Bourne shell scripts viathe “psql” utility.
See [Zimmermann, 2003, pp. 9, 69] for more information.

4.3. SOFTWARE COMPONENTS OF THE VIRTUAL UNIX LAB 67

Scheduler: This component has two tasks: First, prepare the lab machines for any
exercises that are booked, so they are ready in time. Second,90 minutes after
the exercise’s scheduled start, the evaluation process is started, and the exercise
is marked as done. If a user takes the exercise and finishes early by clicking
on the “Fertig”-button, this is performed earlier, and the corresponding job is
cancelled not to run after 90 minutes. The point is, if a user books an exercise
but does not take the exercise, it would be marked as ’available’ for an infinite
time, which is suboptimal. By scheduling the second job, this is prevented.

The Unix at(1) facility that’s started by the atrun(8) and cron(8) facility is used to
implement the Scheduler component, the tasks to perform arerealized as Bourne
shell and Perl scripts.

Firewall: Access to the lab’s exercise machines is controlled by a firewall, to ensure
data safety in two ways. It restricts inbound access to the lab machines, and
prevents outbound disruption of the production network that the Virtual Unix
Lab is hooked up, see below. The firewall is configured in interaction with the
Course Engine component.

The firewalling software used is IPfilter1, which is part of the NetBSD operating
system, and which allows dynamic configuration. For more information see
[Feyrer, 2004d].

Deployment: Setup of the lab machines is done by rebooting them via network boot
(netboot), as described in [Feyrer, 2004f]. The netboot environment allows to
access a file server, which provides harddisk images that arethen written to the
client’s harddisk. After another reboot, the client boots from harddisk and is
freshly installed. This deployment process is initiated bythe Scheduler Compo-
nent for every lab machine that needs to be setup for a particular exercise, the
data for which is taken from the database.

The implementation of this is by performing a netboot of the Sun SPARCstation
4 machines via their OpenBoot PROM, use DHCP and TFTP to load NetBSD
as base for deploying the harddisk image2. The lab client’s harddisk image is
loaded via the network file system (NFS) just like the netbootsystem itself. The
design of this was influenced by previous experience from theg4u project3. See
also [Feyrer, 2004b] for more details about the deployment process.

This section gives some understanding of the overall structure of the Virtual Unix Lab,
which will be referred to further in this work from several places.

1 [Reed, 2007]
2 [The NetBSD Foundation, 2007]
3 [Feyrer, 2007b]

68 CHAPTER 4. BASIC DESIGN OF THE VIRTUAL UNIX LAB

Chapter 5

Introduction of domain specific
languages

The Virtual Unix Lab uses a domain specific language to realize diagnosis and feed-
back in chapter 6. Domain Specific Languages (DSLs) or “Minilanguages” are pro-
gramming and data description languages that are intended to be used for a special
“domain”, a field of application that does not use the full potential of a language1.

This chapter classifies programming languages, lists criteria by which to recognize
Domain Specific Languages from traditional programming languages, and explains
how they are related. An overview of design patterns is givento determine ways to
implement DSLs for an application domain, and criteria for the selection process as
well as a DSL candidate is introduced.

5.1 Classification of languages

There are a number of ways to classify a language, and research on Domain Specific
Languages is still ongoing. Judging purely by the term, DSLsare languages that are
designed to serve a certain area (domain) of application to which they are specific, and
which they intend to serve well.

When comparing programming languages, distinctions can bemade according to vari-
ous attributes and paradigms, e.g. as listed by Finkel2, Abelson and Sussman3, Hoare4,

1 [Raymond, 2003] pp. 183
2 [Finkel et al., 1995] pp. 1 and 3
3 [Abelson et al., 1985] pp. 335
4 [Hoare, 1973]

69

70 CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

Aho1, Raymond2 and Pratt and Zelkowitz3.

Describing how to design a new language is beyond the scope ofthis document, guide-
lines on language design, syntax, semantics and how to writea compiler or interpreter
can be found e.g. in [Wirth, 1974], [Wexelblat, 1976], [Hoare, 1973], [Hilfinger, 1981],
[Floyd, 1979], [Finkel et al., 1995], [Pratt and Zelkowitz,2001], and [Aho et al., 2003],
with ongoing research being discussed e.g. in the ACM SIGPLAN’s “Programming
Language Design and Implementation” (PLDI) group4.

When writing a computer program, two approaches are possible. One is compiling
a source code written in a certain programming language intoexecutable machine
code5, the other is defining an “evaluator” or “interpreter” that interprets instructions
and performs operations6,7. Compiling a language is a process that takes some effort
once for lexical and syntactical analysis, code optimisation and code generation, but
results in a fast executable when ran later, assuming the program is not modified very
often. When a program is expected to change often, the overhead of interpreting the
source language is not too high, or the program should be written once to be used on
several different machine architecture, an interpreted language can be used - Spinellis
talks about the distinction between “deep or shallow translation” here8. Medvidovic
and Rosenblum also note that compiling a program into machine executable code is
“simply a special case of architectural refinement” stepping down from a high level
“boxes and arrows” design9.

Another aspect of current programming language evolution is that due to the ever-
increasing processing speed of computers, the runtime overhead of interpreters is
getting less and less of an issue10, and scripting languages11 like Perl12, Python13,14,
Ruby15 and PHP16 are becoming more and more attractive today, which also benefits
any domain specific languages that are based on scripting languages instead of being
compiled into machine code.

A recent trend is to use a hybrid approach that compiles code from a high-level lan-
guage into bytecode, which is then interpreted by a virtual machine instead of a “real”

1 [Aho et al., 2003]
2 [Raymond, 2003] pp. 183
3 [Pratt and Zelkowitz, 2001] pp. 19 and pp. 114
4 [PLDI, 2007]
5 [Aho et al., 2003]
6 [Abelson et al., 1985] p. 294
7 [di Forino, 1969] p. 68
8 [Spinellis, 2001] p. 96
9 [Medvidovic and Rosenblum, 1997] pp. 5

10 [Wirth, 1974] p. 28
11 [Wikipedia, 2007] “Scripting programming language”
12 [Wall et al., 1996]
13 [Rossum and Drake, 2003]
14 [Rossum and Fred L. Drake, 2003]
15 [Matsumoto, 2001]
16 [The PHP Project, 2007]

5.2. ATTRIBUTES OF DOMAIN SPECIFIC LANGUAGES 71

CPU. The compilation step ensures type safety and optimization, and the virtual ma-
chine offers the same platform on every hardware and operating system which which
it is available. The result is a trade-off between safety in programming and portability,
with minor impact on performance. Languages to name in this area are Java1 and C#2.

Modifying an existing language to adjust it for a special application domain3 leads
to a Domain Specific Language. There are several ways to create a domain specific
language, as will be discussed in the next section.

5.2 Attributes of domain specific languages

By definition, Domain Specific Languages are limited to a small area of application,
and often embedded into a larger system with the goal to reduce the semantic distance
between a problem and the program. Spinellis lists the following attributes as specific
to DSLs, which set them apart from “normal” languages4:

Concrete expression of domain logic:Instead of using an existing programming lan-
guage and overloading it with details from the application domain, the details are
put into the DSL. This removes details that are not of interest to the application
domain, and programmers can concentrate on issues related to the domain.

Direct involvement of domain experts results from the above. As there is no exces-
sive ballast between the application domain and the person with expert knowl-
edge of the application domain, the domain expert can directly model any do-
main knowledge with no person in between that needs to translate from the ap-
plication domain into a programming language.

Expressivenessis the other result from removing unneccessary parts of a language.
What is left is explicitly expressing knowledge of the application domain only,
no superfluous code that only exists to support the programming system or ap-
plication language. Instead, all this meta-knowledge is moved into the DSL’s
processing system.

Runtime efficiency: Possible interactions between different elements of general pur-
pose languages can have negative impacts on performance, e.g. from type sys-
tems and conversion of data between multiple internal formats. Using a DSL
focused on the problem can provide optimisation and lead to efficiency here.

Modest implementation costs:DSL systems are usually implemented within a larger
system, and as such, they can use tools and interfaces already available. Also, as

1 [Gosling and McGilton, 1996]
2 [ISO 23270, 2006]
3 [Wirth, 1974] p. 29
4 [Spinellis, 2001] p. 91

72 CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

they are directed toward a certain (small) goal and not towards solving a general
problem, implementation costs can be kept low by only makingthem handle that
area of application (and possibly hand over remaining tasksto other subsystems
or languages).

Reliability follows from this immediately, as the language does not intend to be of
general purpose. Handling only a small scope can often be easier, if not trivially,
verified to be correct.

Tool support limitations might be a problem with DSLs, as existing software tools
and languages like editors, CASE tools, build systems, debuggers and version
control systems may not be prepared to handle a new, unknown language. Ad
hoc solutions need to be developed to integrate DSLs into tools to solve that
problem.

Training costs arise from the fact that system implementers and maintainers as well
as domain experts have by definition no prior experience in the new DSL, and
thus need training to get familiar with the new language and possibly its integra-
tion into the development process and environment.

Software process integrationcan not be expected in currently established software
processes. CASE tools and processes usually assume alreadyexisting, well
known programming languages and are flexible enough to integrate languages
that reflect application specific properties rarely, and thus need to be modified,
if possible.

Design experienceis needed for creating a DSL that will actually solve problems in-
stead of creating new ones. There are several guidelines fordoing so, as outlined
in the next section.

The above list of attributes was compiled by Spinellis1, similar findings can be found
in [Bentley, 1986]pp. 719 and [Mernik et al., 2005].

5.3 Design patterns

In the previous sections, different kinds of programming languages following different
paradigms and areas of application were observed. If a language does not fully fit a
certain application, it can be changed to fit better. If a new language needs to be created
for a certain kind of application, it can often be based on or derived from an existing
language. In either way, a Domain Specific Language (DSL) is the result, and we will
look at various approaches to do so in this section.

1 [Spinellis, 2001]

5.3. DESIGN PATTERNS 73

Raymond describes three ways to create a domain specific language or “minilan-
guage”, two “right” ones and a “wrong” one. The two “right” ones are recognizing
upfront that an existing language needs to be extended and pushed up to a higher level
of abstraction, and noticing that a data file format starts containing complex structures
and elements that imply action. The “wrong” approach to add one feature after another
to a data or configuration file, as this will lead to an inconsistent language that may be
difficult or impossible to verify, or even provide insecure exits to routines not origi-
nally intended. A solution to avoid designing a bad languageby accident is to know
how to do it right1. For this reason, the patterns that can be identified when designing
a domain specific language are introduced here.

Spinellis uses design patterns to describe ways for constructing programming lan-
guages2, and he cites Christopher Alexander, who defined design patterns as the re-
lationship between recurring problems and their respective solutions: “Each pattern
describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the sameway twice”3.

Spinellis identifies the following design patterns for domain specific languages4:

Language extension:If an existing language is mostly fit for a particular application,
but lacks some constructs, the language can be extended to support the addi-
tional features5. Most of the existing language is kept in use for this, including
command structure and type system. Only the few constructs that are needed for
the DSL are added, usually by a preprocessor that transformsthe extended lan-
guage into the original one without burdening the domain expert with the details
of the implementation. Notable examples of this pattern arethe original C++ im-
plementation via the “cfront” preprocessor6, and the “Rational Fortran” (Ratfor)
compiler that provided elements of structured programmingfor Fortran7.

Piggyback: If a new language needs to be created due to lack of an existinglanguage
that can be extended, it is likely that features like controlstructures, type sys-
tem and procedure handling are needed8 that are already present in an existing
programming language and its processing tools (compiler orinterpreter). Con-
struction of the new DSL including definition of grammar, syntax and semantics
can still happen independent of any existing language, while implementation can
be done by using common elements shared with the existing language9. Possi-
ble ways are to either translate into existing source code ofan already-existing

1 [Raymond, 2003] pp. 183
2 [Spinellis, 2003] pp. 331
3 [Alexander, 1995] p. X (Foreword)
4 [Spinellis, 2001]
5 [Spinellis, 2001] p. 95
6 [Stroustrup, 1994] pp. 66
7 [Kernighan, 1975]
8 [Ledgard, 1971]
9 [Spinellis, 2001] p. 93

74 CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

language and let the existing compiler system handle the code, or even to cre-
ate a compiler-frontend that translates into machine-readable intermediate code
that can then use the compiler’s optimizer and code generator. The latter ap-
proach needs intimate knowledge of the interface between the compiler fron-
tend and backend and the (machine-readable) data format passed between them.
Translation using (human-readable) source code is usuallyfound easier for faster
progress, less compiler-internals to consider and easier debugging. Notable tools
for aiding in a piggyback design are lex1 and yacc2.

Language specialization:At times, it happens that a language is needed for an area
of application that should not allow certain constructs, like for example dynamic
memory allocation, references to static and/or dynamic memory (pointers), type-
free programming (C: “void * ”) and jumps (goto s)3. Reasons for this may
be easier verification and increased security of programs written in the new lan-
guage. A possible approach is to “remove” the unwanted constructs from an
existing language4. Examples where major languages had some features re-
moved are Javalight

5, the Automotive “Save Subset” of C6, and both HTML7

and XML8 as a special form of SGML9.

Lexical Processing: Due to the limited field of applicability, it is possible to create
DSLs by using techniques of simple lexical processing and substitution. Instead
of a full, tree-based syntax analysis, lexical hints can be embedded into a lan-
guage that are used to identify tokens that need special processing, e.g. by adding
a special prefix and/or postfix for variables10. The form of lexical processing can
also be used together with the piggyback approach to translate the DSL into its
base language by applying simple lexical translation, and then handing off the
result to the base language’s processing tools.

Using the technique of lexical processing and substitutionreduces implementa-
tion costs as it makes creating special languages possible where a full tree-based
approach would demand too many ressources in knowledge, implementation ef-
fort, and effectively time and money. Often, interpreters or rapid prototyping
languages are used for implementing the lexical process, which allows design
and implementation of the DSL to happen as an iterative process. Tools often

1 [Lesk and Schmidt, 1975]
2 [Johnson, 1975]
3 [Wirth, 1974] p. 25
4 [Spinellis, 2001] p. 95
5 [Nipkow and von Oheimb, 1998]
6 [Edwards et al., 1997]
7 [Berners-Lee et al., 1999]
8 [Derose, 1997]
9 [ISO 8879, 1986]

10 [Spinellis, 2001] pp. 94

5.3. DESIGN PATTERNS 75

found in realizing a DSL this way include sed1,2, awk3,4, m45,6, the C Prepro-
cessor7, Perl8 and Python9. All of these tools offer easy to use ways for lexical
processing and substitution, often based on regular expressions10,11.

Data Structure Representation: It is not always program code that is special to a
particular area of application. At times, data needs to be structured for a certain
application. Describing it in a form that’s close to the application domain and
then transforming it from a domain-specific representationto an implementa-
tion-specific representation offers all the benefits found in domain specific ap-
plication languages, like easier use by domain experts and possibility of verifi-
cation during the transformation process. Spinellis argues that anything beyond
initialisation of a simple rectangular array should be represented by a DSL, and
the more complicated data becomes by means of interconnection and intercor-
relation, the more important consistency, automated consistency checking, and
validation of input are12. No matter what the complexity is, keeping the repre-
sentation in the application domain allows transforming itinto various internal
ways along with choosing an optimal internal representation by e.g. replacing
linear lists with trees or hash tables13. Prominent examples where this approach
is used is the transformation of lists in Perl as well as many Lisp and Prolog
dialects into more efficient internal representations at runtime, as well as the
internal tables used by lexical analyzers and parsers created by lex14 and yacc15.

Source-to-Source Transformation: As already mentioned, there are several approa-
ches when creating a DSL. Doing simple lexical substitutionis one way, full
lexical and syntactical analysis, constructing an internal tree based on grammar,
doing possible optimisation and generating code is another. Spinellis calls it the
difference between “shallow or deep translation.”16 As described above at the
“Piggyback” pattern, the latter approach is possible, but not easy in terms of
implementation costs, testing, debugging, verification and knowledge needed.
When using this pattern, the goal is to transform the DSL intoan existing source
language that can then be processed by the existing compiler, optimizer and de-

1 [Dougherty and Robbins, 1997]
2 [The Open Group, 2004] Base Specifications Issue 6: “sed - stream editor”
3 [Aho et al., 1988]
4 [The Open Group, 2004] Base Spec. Issue 6: “awk - pattern scanning and processing language”
5 [Kernighan and Ritchie, 1994]
6 [The Open Group, 2004] Base Specifications Issue 6: “m4 - macro processor”
7 [Kernighan and Ritchie, 1988] pp. 192
8 [Wall et al., 1996]
9 [Dougherty and Robbins, 1997]

10 [Friedl, 1997]
11 [The Open Group, 2004] Base Specifications Issue 6: “9. Regular Expressions”
12 [Spinellis, 2001] pp. 96
13 [Ledgard, 1971] pp. 134
14 [Lesk and Schmidt, 1975]
15 [Johnson, 1975]
16 [Spinellis, 2001] p. 96

76 CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

bugger1. Another advantage is that the output of the DSL “compile” (transfor-
mation) process is still human-readable, which makes verifying and debugging
much easier. An example for this pattern can be found in the PIC picture lan-
guage and its use as a target language for the CHEM language preprocessor2.

Pipeline: Domain specific languages by definition intend to do a small job well. When
several similar tasks need to be performed, extending a language is one thing,
splitting it into two separate tools with each tool only covering its area of excel-
lence and depending on other tools to do the remaining work isanother option3.
This is the principle of “pipelining” languages and tool – feed a source language
in on one end, get it processed by one language and tool, then pass its output on
to the next one after possibly rewriting the input. At the end, the result is influ-
enced by all tools that processed the input4. This approach encourages splitting
up a language into several smaller parts, with each one having the benefits of a
DSL. Assembling the single parts can then happen by using facilities found on
many modern operating systems, like the command line processors and utilities
that can be found on Unix systems5,6. Examples that use the pipelining pattern
are the PBMplus image manipulation tools7 and the “troff” set of typesetting
tools8. The latter come with specialized tools and languages for handling equa-
tions, tables, references, pictures and derivations like directed graphs, chemical
structures, that are all transformed back into the basic format before being pro-
cessed eventually9.

System Front-End: In large systems that have several ways to access and config-
ure internal objects, e.g. using either graphical user interfaces, programming
libraries or command line options, it is useful to provide a DSL that allows users
to perform these actions. This leads to a declarative, maintainable, organized
and open-ended mechanism for accessing these areas. When exposing settings
and objects via some variables and functions of a DSL, it may be useful to re-
move code manipulating these settings and objects from the original system, and
rewrite them in the DSL for simplicity of implementation, prevention of code
redundancy, and easier maintenance. Besides simplifying asystem, inventing a
DSL leads to other benefits like making the system extendablevia the DSL (e.g.
via some plugins or loadable scripts), the DSL provides a common language for
its users, and it also allows third parties to supply products based on the interface
provided by the DSL10.

Existing languages that are used for customizing and adapting large software

1 [Spinellis, 2001] p. 96
2 [Bentley, 1986] pp. 716
3 [Spinellis, 2001] p. 95
4 [Bentley, 1986] pp. 712
5 [Salus, 1994] pp. 50
6 [Meunier, 1995]
7 [Poskanzer, 2007]
8 [Ossanna and Kernighan, 1976]
9 [Bentley, 1986] pp. 716

10 [Spinellis, 2001] pp. 97

5.4. CHOOSING AN IMPLEMENTATION LANGUAGES 77

products include Lisp for the Emacs1,2 editor and AutoCAD3, Microsoft’s Ap-
plication Basic4 for Microsoft’s Office suite and ABAP5 for the SAP ERP sys-
tem. Numerous small DSLs exist for many of the tools found on Unix systems,
including mail readers, shells and graphical application6.

The above list contains single patterns that can be employedon existing general and
domain specific languages alone or in combination to create new DSLs with the goal
that the new language is better suited to the area of application. A similar list can be
found in [Mernik et al., 2005, pp. 320].

Whether an existing language is better suited for applying any of the patterns or for
implementing a translator for a DSL depends on the language’s characteristics, which
are illustrated in the next section.

5.4 Choosing an implementation languages

When looking at a language for use in a DSL creation process, an existing program-
ming language may be used in either of two positions7:

• Use as abase languageby extending an existing language for a new DSL. See
section 5.3 for a discussion of possible design patterns that can be employed for
this task.

• Use as animplementation languagefor the translator (compiler) or evalua-
tor (interpreter) of the new language. Various requirements for this are listed
in [Spinellis, 2001], among them are presence of lexical methods and in-depth
knowledge of interfaces between compiler frontends and backends for possible
reuse of compiler backends.

Other attributes that are considered imporant here are:

• Integration layer : At which level can a DSL process be installed8? Source
level is one possibility, using existing interfaces between compiler frontend and

1 [Chassell, 2004]
2 [Glickstein, 2004]
3 [Rawls and Hagen, 1998]
4 [Boctor, 1999]
5 [Keller and Kr̈uger, 2001]
6 [Raymond, 2003] pp. 183
7 [Bentley, 1986] pp. 717
8 [Spinellis, 2001] p. 94

78 CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

backend or between bytecode compiler and bytecode interpreter may be possi-
ble, but depends on accessibility and documentation of thatinterface. This may
be implementation specific.

• Compiler or Interpreter: The fact whether a resulting executable depends on
a certain machine architecture but does not need an exhaustive runtime system –
as in a compiler scenario – or if a program can run on many platforms but needs
an appropriate runtime system – usually in the form of an interpreter – may be
less interesting from the design point of view of a DSL, but when using the result
later, it may very well be a limitation1, and needs to be considered early in the
design process, see “platform-availability” below. Also,scalability limits may
be encountered, depending on the approach chosen here2.

• Platform-availability can be a limiting factor in existing projects, as DSLs have
to work in the environment they are designed for, and can not dictate that envi-
ronment per definition. The question is if an implementationis available on
the platform – hardware and operating system – of choice. When looking at
operating systems, mostly Microsoft Windows and Unix basedsystems are of
interest today, where “Unix” includes all POSIX-compliantflavours from both
commercial vendors like Sun’s Solaris, IBM’s AIX, Apple’s Mac OS X, and
HP’s HP/UX as well as free systems like Linux and NetBSD. The language in
question may be part of the base operating system, being available either through
commercial vendors or as freeware.

A programming language that fulfills the above criteria was needed for the creation of
a domain specific language in chapters 6 and on. The choice fell on the Perl program-
ming language for the following reasons:

• The Perl programming language contains features of C, sed, awk and the Bourne
shell3. It offers control structures needed for structured programming, Perl ver-
sion 5 and later also offers the option of object oriented programming, which is
not imposed upon the programmer by following the Perl mantra: “There is more
than one way to do it.” Data representation in Perl programs is mostly strings,
with implicit data conversion for numerical context. Advanced data structures
are available as lists and hash tables, more complex structures can be realized
with the OOP framework.

• Perl itself works as a interpreter – internally, the source code is compiled into a
bytecode that is then interpreted, but there is no easy to useinterface available
for accessing the bytecode to modify it or feed created bytecode to the execution
backend, and extend Perl that way. An interface for embedding Perl language
support into existing programs is available though, and thefact that Perl code is
interpreted gives it platform independence.

1 [Spinellis and Guruprasad, 1997] p. 2
2 [Spinellis and Guruprasad, 1997] p. 8
3 [Wall et al., 2000]

5.4. CHOOSING AN IMPLEMENTATION LANGUAGES 79

• In contrast to C, C++ and Java, Perl provides built-in support for handling regular
expressions, and combined with its strong string processing model, this makes
Perl an ideal choice for an implementation language for a DSLs, and there are
indeed many examples of this1,2,3,4. While handcrafting lexical analysis is easy
using Perl’s built in regular expression feature, analysing syntax can be handed
off to tools like py5 if needed.

• Platform availability for Perl is excellent, for both operating systems and hard-
ware platforms covered. Perl is written in C using portable system interfaces,
which ensures that it works on all platforms that provide POSIX compatibility -
initially being developed on Unix, Perl has been ported to Microsoft Windows
and also many more platforms. The Perl source code is freely available6, and
a big collection of routines and modules is available in the Comprehensive Perl
Archive Network (CPAN)7.

The overview given for domain specific languages, their associated design patterns
and the choise of an implementation languages will be applied to the architecture and
implementation of diagnosis and feedback in the Virtual Unix Lab in section 6. The
next chapter illustrates the related design.

1 [Spinellis, 2007]
2 [Spinellis and Gritzalis, 2000]
3 [Ramming, 1997]
4 [Ball, 1999]
5 [py, 2007]
6 [CPAN, 2007] “Perl Source Code”
7 [CPAN, 2007] “Perl Modules”

80 CHAPTER 5. INTRODUCTION OF DOMAIN SPECIFIC LANGUAGES

Chapter 6

Architecture and implementation of
diagnosis and feedback with a domain
specific language

A major task of the Virtual Unix Lab is to perform diagnosis and verification of the
exercise results, and provide feedback to the student. Thischapter discusses verifica-
tion of exercises results performed in the Virtual Unix Lab by using Domain Specific
Language (DSL) techniques. The basics of DSLs were discussed in section 5, and the
requirements, design, and implementation for the Virtual Unix Lab will be described
in this chapter.

A more in-depth description of the implementation including many technical details
can be found in [Feyrer, 2007d].

6.1 Requirements of exercise verification

There are a number of requirements tied to the result verification framework, that will
be discussed in this section. This includes portability of verification checks, an efficient
verification interface to the lab systems, integration of verification into exercise-design,
and storing results for evaluation purpose.

Portability of checks: The ultimate goal of the Virtual Unix Lab is not to be specific
to Unix only, but to also offer exercises for other, non-Unix(like) systems like
Microsoft Windows. While the Virtual Unix Lab engine will remain on one
machine using whatever platform, it has to be flexible enoughto execute code
for verification purpose on many systems.

An exercise consists of several individual task. Successful performance of each

81

82
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

task can be verified by testing one or more system settings on the lab machine.
Verification of a single setting is done via a so-called “check-script”, a small
code fragment that inspects only that fact, and that returnseither “true” to indi-
cate that the setting was in favour of the exercise’s goal, or“false” indicating that
the setting was not tuned properly to solve the task. The exact range of checks
to perform is specific to the exercise and lab system(s) as described in the next
sections.

A requirement of the verification mechanism is to be independent of machine ar-
chitecture and operating system where possible: The first implementation of the
Virtual Unix Lab used two Sun SPARCstations running NetBSD and Solaris as
lab machines, but the goal was to also include PCs running Linux and Windows.
For this, the check-scripts had to be general enough to checkone aspect on as
many systems as possible. Aspects that were specific to a certain hardware or
operating system were still possible, and runnable only on one system then, but
the general goal was portability of the checks.

Example:A script that checks if a file is present should be usable on as many
systems as possible. A C program will only run on one (CPU, operating system)
combination, so an interpreter was required to run on the system and take more
abstract commands.

Efficient interface to the lab systems:A requirement tightly coupled to portability
is to have a way to run the check scripts on the lab machines in an efficient way.
There are several ways across different operating systems that had to be evalu-
ated, and the goal was to find one method that was common to mostsystems.

Example:Be able to have one script that checks if a certain file was present when
the target system to verify runs either Unix or Windows.

A second requirement of the remote execution system was thatit is fast. Only
one setting was checked by each check-script call, and a number of calls were
needed to acquire the full state of the lab system to give an overview of the
overall success or failure of the system.

Example:Doing a ssh-call to a 75MHz SPARCstation 4 is quite slow thanks to
the cryptographic methods used by ssh. rsh is much better in this regard1,2.

The third and last requirement for the interface system to the lab machines was
passing back the check-result. As passing of complex data isnot easily possible,
a simple boolean value indicating success or failure was chosen as the result,
which was passed back to the calling system.

Example:The above-mentioned script that checks if a file is present should say
if it is there or not. Other checks are made for file contents orother files.

Integration into exercise-design: The first approach for the Virtual Unix Lab exer-
cise design was to have exercise texts separated from verification of the exercise

1 [Feyrer, 2001] “Beschreibung der Berechnungsvorgänge”
2 [Schaumann, 2004] p. 146

6.2. ROADMAP OF IMPLEMENTATION 83

goals (see sections 6.3 and 6.4 below). It quickly became obvious that having a
connection between a part of an exercise’s text and the corresponding aspects to
test to see if that part was successful was helpful both for designing the exercise
as well as to provide feedback to the user later.

The requirements for this connection between the exercise text and the verifi-
cation checks had to be easy to realize, but also to be flexibleenough to allow
storing the result for later evaluation.

Storing results: The results of checks need to be stored for later evaluation.For ex-
ample, to compare the performance of all students on a certain exercise or part
of it, how an individual student performs on a class of exercises, or to identify
special areas where a lack of knowledge exists and should be filled by better ed-
ucation. Other applications would be a tutoring component that could act based
on the results of earlier exercises of an individual or all students, or a system that
may adapt to the user, again based on results of earlier exercises of an individual
or all students. See chapters 10 for tutoring extensions to the Virtual Unix Lab,
and chapter 11 for a discussion of user adaption.

In summary, it is desirable to store information on the granularity of the check-
level, and associate each check result with a context identified by the student,
and the exercise that the result was performed in.

6.2 Roadmap of implementation

6.2.1 Stepwise refinement

Implementing verification of exercise results in the Virtual Unix Lab consists of sev-
eral design and implementation steps described below, displaying an evolutionary de-
sign1,2, which is common for complex learning systems today3.

Cocke and Schwartz suggest the following four steps to express complex functions like
the verification of the exercises’ results4:

1. Find a set of “stereotypes”, i.e. functional abstractions, that cover as much of
the field to investigate as possible.

2. Analyze the stereotypes for repetitive patterns and develop a framework to call
them, including any possible parameters.

1 [Wirth, 1974] p. 29
2 [Hoare, 1973] pp. 25
3 [Kölle, 2007] pp. 139
4 [Cocke and Schwartz, 1970] pp. 10

84
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

3. Design a “language processor” (interpreter) or compilerthat understands the
overall structure.

4. When steps 1-3 are implemented properly, a domain specificlanguage and pro-
cessor will be available to efficiently implement verification of results in the
Virtual Unix Lab.

The steps involved in the design and implementation of the verification of exercise
results in the Virtual Unix Lab do not follow the scheme described above in an exact
way. To allow early testing, a simple abstraction of stereotypes with a framework for
creating and calling them was chosen and implemented first, which was refined in later
steps. As such, the system evolved in a rapid approach, following methods from agile
programming and extreme programming, with special emphasis to ensure a test driven
development (TDD)1,2,3.

6.2.2 Exercise phases

The following phases of the exercise are involved in the result verification process.
They are covered for each of the design steps:

Preparation: Describes the procedure to create a new exercise. Items involved are
the text of the exercise that is presented to to the student during the “Exercise”
phase, and the program code to perform the actual verification called in the “Ver-
ification” phase.

Exercise: after the initial preparation, the text of the exercise is presented. Possible
preprocessing that is done at runtime instead of during the preparation phase is
described here.

Verification: After the student has ended the exercise, the system performs the verifi-
cation steps by running the code to check what was done and what was not, and
stores the results in the database.

Feedback: After the verification has stored the results of the various checks in the
database, methods for feedback will access the data. Ranging from simple eval-
uation of one student’s performance in one particular exercise (“This is how you
performed in the preceding exercise”) to more sophisticated analysis involving
several students and/or exercises.

Providing feedback is discussed in section 6.5.3.

1 [Cunningham, 2001]
2 [Beck, 1999]
3 [Beck, 2002]

6.2. ROADMAP OF IMPLEMENTATION 85

Problem solved,
system behaves
differently

Original
system

1) Semantic layer
 (Footprint tracing)

Steps to solve problem

2) Pragmatic layer
 (Result−Verification)

Verify that system
behaves in the
expected way

Figure 6.1: Verifying on the semantic and pragmatic layer

6.2.3 What and how to verify

Following Morris’ theory of signs, there are several semiotic layers on which signs can
be interpreted. Such signs can be actions and/or states in a computer system in general,
or during verification of exercise results in particular. The signs can be interpreted on
the syntactic, semantic and pragmatic layer1:

Syntactic layer: Interaction with the systems happens through single mouse strokes,
keys and mouse buttons pressed. Intercepting all these interaction “events” is
possible, and the “higher-level” actions initiated by any number of these “low-
level” actions can be determined with some effort. This is useful for finding how
basic interaction with the system is performed, e.g. if manycommands are mis-
typed and corrected or if many menus are searched before finding and selecting
the required item.

Semantic layer: There are several logical steps involved to solve a problem,for exam-
ple each consisting of one or several commands being run or items in graphical
user interfaces being clicked on. The execution of each of these logical steps
can be verified, and testing on the semantic layer means to verify if any of these
pre-defined steps were performed properly (“Footprint-Tracing”). This process
is also known as causality tracking2. Examples are software packages installed,
files created, entries made to configuration files etc.

Pragmatic layer: Ignoring the wayhow a problem was solved, the system can be
checked to determine if the requested result was reached or not, i.e. if it be-
haves in a different way as if the problem in question was not solved (“Result-
Verification”). Examples here are verification if a certain service like web, mail
or file service runs, or if a configuration problem no longer exists.

In the Virtual Unix Lab, no testing is performed on the syntactical layer, as this is
difficult to realize. The higher levels are more appropriateto determine outcome of
the exercises. Figure 6.1 illustrates how verification on the semantic and pragmatic
layers can be performed. See also the discussion of diagnostic data in section 8.1.4.3.3,
methods for plan recognition in section 8.1.2.2 and on-linediagnosis in section 10.3.

In summary, besides thewhatto verify there is also ahowto verify:

1 [Morris, 1938] pp. 20
2 [Alvisi et al., 2002]

86
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Exercise Text
~~~~~~~~~
~~~~~~~~
~~~~~~~
.......

#!/bin/sh
....

Check−Script

DB

Exercise:

Verification:

Figure 6.2: Step 0: Separate exercise text and verification check script

What to verify depends on thetasksthat are to be solved as part of the exercise, and
also of the goals of the exercise that the student should learn.

How to verify depends on thesystem environmentthat the exercise defines, as for
some systems doing one way or the other may be easier.

6.3 Step 0: Basic design

An exercise in the Virtual Unix Lab consists of two parts, theexercise text and the cor-
responding check scripts. The exercise text is presented asa web page to the student,
which describes all the tasks to perform. The check scripts are ran when the lab exer-
cise is over, either when time runs out, or when the user clicks on the “Fertig”-button.
The results found by the check scripts are stored in the database for later analysis and
evaluation. Figure 6.2 illustrates the basic idea.

The verification process itself is controlled by the VirtualUnix Lab’s Course Engine,
which is omitted from figure 6.2 to make the basic flow of information clearer.

The scheme displayed here was never implemented in any of thedesign and imple-
mentation steps of the Virtual Unix Lab, as a single, monolithic check script to do all
the verification steps does not allow passing the result backin an easy way. Also, code
re-usability would have been more difficult.

The following sections describe steps that were actually implemented in the Virtual
Unix Lab, and they address the flaws mentioned in this basic design.



6.4. STEP I: INSTRUCTIONS AND CHECKS NOT COUPLED 87

6.4 Step I: Instructions and checks not coupled

This section describes the first design step of the result verification architecture imple-
mented in the Virtual Unix Lab. A description of the design with the key components
their integration is given, followed by a discussion of possible improvements for the
second design iteration in step II.

6.4.1 Components

The Virtual Unix Lab result verification architecture consists of a number of key com-
ponents that reflect the exercise and which interact in certain ways. This section intro-
duces these components.

Exercise text: In the first incarnation of the Virtual Unix Lab’s result verification ar-
chitecture, the exercise text was stored in plain HTML text and displayed at
exercise time. The HTML text was embedded into a larger document that gave
the usual web layout, a display of the time remaining and a button to indicate
that all tasks were completed and the exercise was finished early.

See figure 6.3 for an example of the plain exercise, figure 6.4 shows the text
rendered in a HTML browser. The full texts of the exercises presented to the
students can be found in appendix A.1.

Check-scripts: They run either on of the lab machines or an “outside” machineto
check if an aspect of the exercise was performed successfully or not. The whole
exercise consists of a number of checks to verify all parts ofthe exercise.

Following Cocke and Schwartz’ “stereotype” paradigm, check scripts are ab-
stractions to map complex verification operations expressed in an arbitrary lan-
guage (usually a Perl or Bourne shell script) into abstract primitives that perform
their pre-defined task, and report success or failure upon completion1.

To determine which primitives are needed for a certain task,getting an overview
of the problem area in question e.g. as expressed in [Ernst, 2004] was a good
first step. Looking at the possible areas that the Virtual Unix Lab would be used
for, various groups can be identified for which check primitives will be needed:

• Networking: Example primitives could verify configurations and settings,
conformance to specifications like RFCs, proper network throughput, a list
of open or closed ports, and standard replies to various network protocols.

• Operating systems: Checking would be for type, version, system plat-
form, installation of system and application software, files, processes and
other topics covered e.g. in standards like POSIX and SUSv32.

1 [Cocke and Schwartz, 1970] pp. 6
2 [The Open Group, 2004]



88
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Figure 6.3: Exercise text with no associated checks, in plain ASCII



6.4. STEP I: INSTRUCTIONS AND CHECKS NOT COUPLED 89

Figure 6.4: Exercise text with no associated checks, rendered in web browser



90
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

• System interfaces:Testing presence of facilities needed for certain tasks
like file locking interfaces, thread availability, determining which interface
to use e.g. for system installation and service configuration, packaging
systems, startup system, etc.

Depending on the scenario and system environment that should be examined,
primitives could be grouped according to their availability and scope:

• Primitives forall systems, e.g. TCP/IP networking, basic file attributes.

• Primitives for agroup of systems, e.g. Unix/POSIX like systems and their
specific services, or any Microsoft Windows version.

• Primitives for asingle systemonly, e.g. Microsoft Windows in a specific
version (95, 98, ME, 2000, XP), Novell, BeOS as well as specific Unix
systems (Solaris, NetBSD) or Linux distributions (SuSE, Red Hat, Gentoo,
Mandrake).

In the Virtual Unix Lab, the two exercises “Network Information Service” (NIS)
and “Network File System” (NFS) were examined closer. A listof needed check
primitives was identified and realized for each exercise.

For NIS, an overall number of 43 items to test was identified, see appendix A.4.1
for a full list. Some notable examples of checks needed for NIS are:

• Check if domainname(1) and/etc/defaultdomain are set on both
machines.

• Do files like /var/yp/Makefile , /var/yp/passwd , /var/yp-
/binding/vulab/ypservers and/var/yp/passwd.time exist
on the NIS server?

• Does ypwhich(1) return the correct NIS server?

• Do passwd-, host- and group-NIS-maps contain the expected data?

• Is /etc/nsswitch.conf properly set up to search passwd, group and
host-information in NIS?

• Is /etc/rc.conf setup to start rpcbind and ypbind on NetBSD?

• Are home directory and shell of the “ypuser” user set according to the
exercise text on the NIS server?

• Is account information for the “ypuser” user provided properly via NIS?

• Is “ypuser” member of the group “benutzer”?

• Can the host “tab” be pinged (assuming the name is resolved via NIS)?

• Are tcsh and/or bash installed on Solaris and/or NetBSD?

For NFS, 36 items to test were identified, see appendix A.4.2 for a full list.
Among them:



6.4. STEP I: INSTRUCTIONS AND CHECKS NOT COUPLED 91

• Is the/usr/homes filesystem exported properly in the file/etc/dfs/-
dfstab on the (Solaris) NFS server?

• Do the NFS server processes rpcbind, mountd, nfsd, statd, lockd run on the
NFS server?

• Do the NFS client processes rpcbind, rpc.lockd, rpc.statd run on the (Net-
BSD) NFS client?

• Can the remote filesystem be mounted on the client manually and via
/etc/fstab ?

• Is the filesystem exported so clients can access it with root privileges?

• Does the user “nfsuser exist on both machines, and does he ownhis home
directory/usr/homes/nfsuser on both machines?

• Are files created on one machine accessible and owned on the other one?

• Are tcsh and/or bash installed on Solaris and/or NetBSD?

Database with web-interface to define checks:Check scripts are stored on the Vir-
tual Unix Lab master machine, which installs the lab machines, runs the check
scripts for result verification, and also the web frontend for course manage-
ment. All data on exercises is stored in various tables of thedatabase, and the
“uebungs checks ” table describes the connection between an exercise and a
check. It uses the following information from appendix B.6:

• A unique identifier for the exercise, e.g. “nis”, “nfs”, ...

• Filename of the check-script, e.g.check-domainname-set

• Which machine to run the check-script on, e.g.VULAB 1, VULAB 2 or LO-
CALHOST for the Virtual Unix Lab master machine

• A description of what the check-script does, to be printed when giving the
user feedback about the exercise’s result, e.g. “Was domainname(1) set
properly?”

Besides the data on which check to run (and on what lab machine), there was an-
other table (“ergebnis checks ”) in the database that describes the checks’
results. Basically the check associated with the exercise and a boolean “success”
value is stored for evaluation and feedback purpose.

Section 6.4.2, appendix A.1.1, the “preparation” in figure 6.5 and the “verifi-
cation” phase in figure 6.7 contain more details on the database and the web
frontend.

Result verification engine: This is the part where all the components are tied to-
gether: exercises, the checks as stored in the database, evaluation of the checks
and storing the results. All this is done by the scriptuebung auswerten
which is described in more detail in the “verification” part of section 6.4.2.



92
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

DB

Web−Browser/GUI

...

check2@vulab2
check1@vulab1

check3@vulab2

Figure 6.5: Step I: Preparation

Exercise Text
~~~~~~~~~
~~~~~~~~
~~~~~~~
.......

Figure 6.6: Step I: Exercise

6.4.2 Integration and interaction

This section describes how the components of the first implementation of the Virtual
Unix Lab result verification architecture that were introduced in the previous section
are integrated, and how they interact with each other. Figures 6.5, 6.6, and 6.7 give an
overview of the exercise phases that were introduced in section 6.2.2, and which are
involved in the process of result verification.

Preparation: Preparation of an exercise in the first implementation consisted of sev-
eral parts:

1. Define the general parameters as of the exercise using the web interface
shown in figures 6.8 to 6.10. Parameters include name and description of
the exercise, duration, preparation- and post-processingtime, name of the
exercise file, and which harddisk image to use for installingeach of the lab
machines.

6.4. STEP I: INSTRUCTIONS AND CHECKS NOT COUPLED 93

DB

check2=false
check1=true

...

DB

vulab1
Machine

Machine
vulab2

1

2

3

check2 @ vulab2
check3 @ vulab2

check1 @ vulab1

uebung_auswerten

true

run check1

run check2

false

Check2:

#!/usr/bin/perl
....

Check1:

#!/usr/bin/perl
....

Figure 6.7: Step I: Verification

94
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Figure 6.8: Defining an exercise, step 1: general properties

Figure 6.9: Defining an exercise, step 2: which image to deploy on which lab machine

6.4. STEP I: INSTRUCTIONS AND CHECKS NOT COUPLED 95

Figure 6.10: Defining an exercise, step 3: what checks to run on which machine

2. Write the exercise text as a HTML file, which is stored in thepublic -
html/texte directory of the Virtual Unix Lab HTML code.

3. Determine which checks are needed to verify if the exercise is completed
successfully, and write the corresponding check-scripts.
Which checks are needed depended on the task to be performed,as dictated
by the exercise text and the way chosen to check if the task wasperformed
correctly, see section 6.2.3. Also, if an already existing check handled a
similar task, copying the corresponding check script and adjusting just one
or two parameters usually gave a working shell script.
Example:The script to check if the shell of the “nisuser” from the NIS exer-
cise existed was derived from the check that did the same for the “nfsuser”
from the NFS exercise.
It became clear quickly that a way to parametrize the check scripts was
needed, but this had to wait for the second implementation step of the Vir-
tual Unix Lab, see chapter 9.

4. Associate the checks with the exercise in the database, using the web fron-
tend.
After the check scripts were put into the/vulab directory on the master
machine, the web frontend could be used to create entries in the database
that described which checks to run on which machine after an exercise was
completed, see section 6.4.1.
Although data entry via the web frontend is not very difficult, using the
web frontend to enter 30-40 checks was tedious. This point was addressed
in the second implementation, see chapter 9.

96
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Exercise: After the exercise was written and stored on the Virtual UnixLab master
machine, nothing needs to be done at runtime. The PHP script that displayed
the exercise text read the exercise text file, added HTML header and footer, and
displayed it to the student.

Verification: At the end of the exercise, the verification process is started. The three
steps involved in the verification process are illustrated in figures 6.5, 6.6, and
6.7:

1. Determine which checks to run on which lab machine.

The database contained all the information about the checksthat were part
of the exercise’s verification step, and what check script torun on which
lab machine.

2. Get the lab machine to run the check script, and collect theresult.

The check script needed to be run either on the Virtual Unix Lab master
machine or on one of the lab machines, as described in the database. Run-
ning the check on the master machine was easy, running it on the remote
machine required the script to be transported to the remote machine first,
then executed (by running it through the right script interpreter), and col-
lecting the result of the test afterwards.

3. Store the check’s result in the database.

Following the requirements, the result was then stored in the database’s
“ergebnis checks ” table for later retrieval, evaluation, and feedback.

Feedback: No feedback on the results stored in the database was realized for the
first implementation of the Virtual Unix Lab, neither for users to query their
individual results, nor for teachers to get an overview of the overall performance
for each test. During the design of exercises it became clearthat the combination
of exercise in one file and definition of checks in the databasewas too hard to
maintain when exercises needed adjusting during their design phase. As a result
no real exercises were done on the first implementation of theVirtual Unix Lab
that yielded any values to analyze.

Another major reason for moving towards the second implementation of the Vir-
tual Unix Lab was that for analysis of individual exercises and giving feedback
to students, doing so in the context of the single tasks of theexercise is much
clearer than giving feedback without that context.

Example:An exercise consists of two tasks, A and B. The result of task Awas
verified by checks 1, 2 and 3, and task B was verified by checks 4 and 5. The
first implementation of the Virtual Unix Lab did not allow giving feedback for
checks 1–3 associated to task A and checks 4–5 associated to task B, but only a
list of checks 1–5 and their results, without saying which check was associated
to which task. This was of little use for users who wanted to learn from their
errors. Figure 6.14 illustrates this.

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 97

6.4.3 Summary and suggested improvements

This section looks at what has been achieved in step I, and suggests improvements for
step II. In the context of Domain Specific Languages, stereotypes have been identi-
fied and implemented via check scripts. They were a good starting point to continue.
Initially, they were inflexible, as different scripts were required to verify the results of
different but similar tasks. Flexibility was improved by providing a set of check scripts
for basic operations, plus adding a parameter passing mechanism.

Beyond stereotypes for result verification, no real “language” has been defined at this
point that embeds the stereotypes as activators for the specified actions. In the con-
text of the Virtual Unix Lab, this became obvious as there wasno direct connection
between the exercise text and the verification steps carriedout by the check scripts.
The loose coupling of exercise text and checks was not enoughfor giving detailed
feedback as described in the “Analysis” part of section 6.4.2. This can be improved
by embedding activators for the check scripts into the exercise text. With a close cou-
pling between exercise text and checks, it is possible to give feedback on parts of the
exercise, telling the student which parts of the exercise were solved successfully, and
which were not.

All the above points are addressed in step II of the Virtual Unix Lab.

6.5 Step II: Instructions and checks coupled

This section describes the version of the Virtual Unix Lab that addresses the issues
identified in step I, and that was used for evaluation in section 7. This section describes
how check scripts were improved, and how coupling of exercise text and checks was
achieved by creating a domain specific language. This also allows to give elaborated
feedback, and it allowed creating a system front-end with check primitives. For these
aspects, integration and interaction with the existing system are illustrated.

6.5.1 Improved check primitives

The check scripts that implement the verification primitives were improved in several
ways. To be of more general use, the checks were implemented using one common
language and framework for all scripts. Common tasks were identified and expressed
in more generic scripts, which were taught how to handle parameters, to accommodate
the scripts to the specific tests. The following items describe the changes in detail.

Rewrite all check scripts in Perl: Implementing check scripts in the Bourne shell is
fast if the shell supports the task intended to be performed,or if there is an

98
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

external program to do the verification and report back success or failure. While
this is possible for a number of tests, the shell does not provide internal methods
to test system specific items. Relying on external programs is problematic as
these commands may or may not be present between different systems, they
may be named differently, or have different calling conventions1.

An alternative to avoid those problems with portability andinteroperability is to
use another language for implementing the check primitives. Section 5.4 dis-
cusses possible options, and with the given requirements, Perl is a good candi-
date: it is available on many platforms, and also provides many operating system
specific interfaces.

For step II of the Virtual Unix Lab, all check scripts were rewritten in Perl. At
the same time, their names were changed to indicate their scope of applicability,
i.e. if they can be used on all systems, on Unix systems, or only on specific
Unix(like) systems, by giving them common filename prefixes.See appendix
A.5 for examples.

Extend check scripts to handle parameters:Check scripts often verify similar re-
sults. For the first implementation, scripts were often copied, and similar items –
filenames, text patterns, etc. – were changed. Sometimes thecomponents likely
to be changed were even put into internal variables that wereset at the start of the
script, and that were the only parts of the scripts that needed changing. While it
was an improvement that not the whole script had to be understood when deriv-
ing a new test from an existing one, copying the script was still necessary with
all the drawbacks. Those drawback included the need to understand internals of
the Virtual Unix Lab, and redundant maintenance effort whenthe core part of
the check script had to be changed, e.g. for feature improvements or bug fixing.
As such, it quickly became clear that a method to pass these parameters to the
check script would be of benefit.

Passing parameters into a check script involved several of the Virtual Unix Lab
components: Besides the check scripts that needed changes to accept parame-
ters, the parameters had to be stored in the database. The webbased interface to
store and edit the check data in the database had to be adjusted, and an interface
had to be defined to pass the parameters from the database to the scripts when
running it. Furthermore, an interface was introduced to query a check script for
its purpose and the parameters it supported.

To realize this, the following changes were made:

• Check scripts: All check scripts were changed to use Perl as the only lan-
guage, as described above. At the same time, a framework was introduced
to make passing and querying parameters more easy.

• Database:Theuebungs checks table (see appendix B.6) was extended
by a “parameter” field to store an arbitrary string that can then be processed
lexically into single parameters and arguments.

1 [Mayer, 2001] pp. 24

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 99

Figure 6.11: Extended web interface to enter parameters forcheck script

• Web interface to database:The web interface realized in step I was ex-
tended by a field for a string of parameters that was stored into the database
as described above. See figure 6.11 for a screenshot.

• Parameter-passing interface:As the check script is ran either on the Vir-
tual Unix Lab master machine or copied to one of the lab machines and
executed there, the parameters need to be passed. From several possible
ways (passing on as command line arguments, via a file descriptor like
standard input, or as environment variable), passing as environment vari-
able was chosen.

• Interface to query possible parameters:
Check scripts were extended by a querying interface to retrieve their gen-
eral purpose, a list of possible parameters, and their description. This in-
formation is displayed in the web-based user interface for entering and
changing check scripts. Figure 6.12 shows a choice of available check
scripts (read from the harddisk’s/vulab directory), a description the pa-
rameter(s) of theunix-check-user-shell check script is shown in
figure 6.13.

Improvements of check scripts: The check scripts used in step I of the Virtual Unix
Lab only tested one aspect of the system. Testing two similaraspects following
the same concept required two separate shell scripts. Following the description
of Cocke and Schwartz, the check scripts were improved to provide “indicative
subpatterns” to be embedded into exercise texts. These “subpatterns” provide the
“contextually implied information”, i.e. they act as a collection of subroutines

100
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Figure 6.12: Listing existing checks

Figure 6.13: Possible parameters of a check script, and their description

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 101

that can be called for specific check tasks when needed, the context is defined
by parameters1.

Improvements made were:

• Output of programs and contents of files were first compared against fixed
values, the final check scripts then compared against patterns directly.

Example:The following transition was made from a check script that checked
a program’s output to determine the contents of a file into onethat checked
the contents of a given file. In effect, the scope of the scriptwas thus nar-
rowed, and the complexity of parameters was reduced.

Before:
Script: check-program-output (see appendix A.6.1.6)
Parameters:
PROGRAM=’grep "ˆPWDIR. * =. * /var/yp" /var/yp/Makefile | wc -l’

OUTPUT_SHOULD=1

After:
Script: check-file-contents (see appendix A.6.2.3)
Parameters:
FILE=/var/yp/Makefile

CONTENTS_SHOULD=’"ˆPWDIR.* =. * /var/yp"’

• Specific checks were implemented to test various attributesof user ac-
counts, e.g.

– if a user account exists at all2

– if a user has a certain login shell3

– if a user has a certain password4

• Output of the same program was compared against different values. Pass-
ing these values by parameters made it possible to use the same check script
to test various aspects in different exercises, by passing different parame-
ters.

Example:The scriptunix-check-process-running (see appendix
A.6.2.7) was designed to take a process name as parameter, and check if
the named process is running. The following database query shows the
places where this is used:

vulab=> select distinct uebung_id, bezeichnung, paramete r
vulab-> from uebungs_checks
vulab-> where script=’unix-check-process-running’;

uebung_id | bezeichnung | parameter
-----------+------------------+-------------------

nfs | L äuft lockd? | PROCESS=lockd

1 [Cocke and Schwartz, 1970] pp. 10
2 See theunix-check-user-exists script in appendix A.6.2.4
3 See theunix-check-user-shell script in appendix A.6.2.5
4 See theunix-check-user-password script in appendix A.6.2.6

102
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

nfs | L äuft mountd? | PROCESS=mountd
nfs | L äuft nfsd? | PROCESS=nfsd
nfs | L äuft rpc.lockd? | PROCESS=rpc.lockd
nfs | L äuft rpc.statd? | PROCESS=rpc.statd
nfs | L äuft rpcbind? | PROCESS=rpcbind
nfs | L äuft statd? | PROCESS=statd
nis | rpcbind l äuft? | PROCESS=rpcbind
nis | ypbind l äuft? | PROCESS=ypbind

(9 rows)

• Checks that queried specific system databases by using a program and
checking its output were changed to get the fields to query only, and re-
turn if the field is set.

Example:Checks existed to test if a certain service was started in theboot
process of NetBSD, as defined in the/etc/rc.conf file. They were
implemented by looking for a certain pattern in that file. These checks
were replaced by a script that only specified the field to query, and that
either returned success or failure, whether the field was setor not.

Before:
Script: check-file-contents (see appendix A.6.2.3)
Parameters:
FILE=/etc/rc.conf

CONTENT_SHOULD=’ˆrc_configured. * =. * [Yy][Ee][Ss]’

After:
Script: netbsd-check-rcvar-set (see appendix A.6.2.8)
Parameters:
RCVAR=’rc_configured’

Similar checks that are specific to one operating system can be written e.g.
for the Irix startup system’s database or the Windows registry.

As a summary, the initial set of task-specific check scripts was changed into a set of
check scripts that are more general. Parameters can be givento the scripts to specify
which aspects of the specific subsystem to examine closer.

6.5.2 Coupling of exercise text and checks

The example at the end of section 6.4.2 illustrates one of theproblems in step I of the
Virtual Unix Lab: Giving useful feedback after an exercise was not possible. Exercise
text and check scripts were completely separated, and as a result it was not possible
to tell the student which of the exercise’s tasks were solvedsuccessfully, and which
were not. To give detailed feedback on each task of the exercise, an association needs
to be made between the textual description of a specific task of the exercise, and the
check(s) that verify the results of that task.

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 103

check 1
check 2
check 3
check 4
check 5

task A

task B

text

task A

task B

text

check 1
check 2
check 3
check 4
check 5

b)

a)

Figure 6.14: Exercise text and checks: a) uncoupled in step I, b) coupled in step II

Figure 6.14 a) illustrates the uncoupled exercise text and checks used in step I of the
Virtual Unix Lab, while figure 6.14 b) shows the coupling realized in step II.

6.5.2.1 Options

Several ways for coupling exercise text and checks are possible:

• Split the exercise text into single tasks, associate the tasks with the exercise, and
the checks with tasks:

exercise← task← checks

instead of the

exercise← checks

association used so far, in effect splitting a “big” exercise into several smaller
ones. Instead of writing one HTML file for the whole exercise text, several files
would be needed, one per task.

The maintenance impact of this was considered to be too much of an issue to
realize this solution.

104
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

• Write check code inline into exercise text, i.e. mix the HTML/PHP code used to
describe tasks with code to check the results.

There are a number of problems involved in this solution. First, putting the code
for the tests directly into the exercise text would (re)create redundancy of code
that was removed with the work to use generic check scripts. Second, an as-
sociation between the result of the check and the check must still be made to
give feedback for a particular exercise to the user and say ifthe exercise was
solved successful or not. For this association, an identifier is still required that
maps between the check and its result. Third, as the code needs to be executed
either on the master or one of the lab machines, extracting the code from the ex-
ercise text would be necessary, either at test time without storing the verification
code anywhere, or with extracting it once and storing it intoa place that would
need management. This would make the whole exercise handling complex and
complicated.

• The last alternative for coupling exercise text and checks is a hybrid version of
the above solutions: The exercise text is augmented with “calls” or “activators”
to check scripts. The check script is stored separately, andthe result of its exe-
cution is stored in the database for later retrieval using a unique identifier for the
(booked exercise, check number) combination.

The advantages of this approach is that the code doing the verification itself can
be abstracted in the check scripts as described above. Results can be stored
and retrieved for feedback by giving them a unique identifierfor the check and
one for the booked exercise, and the existing verification engine can be used
unchanged.

From these three approaches, the last one was chosen to implement coupling of exer-
cise text and checks for step II of the Virtual Unix Lab. Reasons for this decision are
that it allows to reuse existing code from the check scripts and the result verification
engine, is has a low overhead on maintenance, and that it keeps the abstraction between
check script stereotypes and their implementation.

The information needed for a single check to run are the checkscript name, any possi-
ble parameters, which host to run it on as well as a textual description what the check
does, for giving user feedback. Also, an identifier for the particular check is needed to
identify the result of the particular check for a particularexercise taken.

In step I, the main tasks for creating an exercise were writing of the exercise text and
associating checks with the exercise using the web frontend. Using the web interface
for a large number of checks (43 for the NIS exercise, 36 for the NFS exercise) was not
practical, and it also split the exercises’ parts into two places. This split made it hard to
maintain a full overview over a particular exercise and all the associated checks, and as
a result exercise maintenance was hard. To solve this problem, integrating check data
into the exercise was chosen following the “Data Structure Representation” pattern for
domain specific languages described in section 5.3, with an additional twist.

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 105

6.5.2.2 Data structure representation

So far, the per-check data – check script name, parameters, which host to run on and a
textual description for the user feedback – was stored in theuebungs checks table,
filled in using the web interface. The idea for improvement was to place this data into
the exercise text, to keep check data near the exercise text.

That is, the idea was to have something like this in the exercise text:

1. Perform some task on host vulab1 with parameters x and y.
// Check 1: run check-task-done (no parameters) on host vula b1
// Feedback: ‘‘Was the task performed successfully?’’
// Check 2: run check-task-parm (PARM=x) on host vulab1
// Feedback: ‘‘Does the task use parameter x?’’
// Check 3: run check-task-parm (PARM=y) on host vulab1
// Feedback: ‘‘Does the task use parameter y?’’

This example first describes the task to the user in textual form, then contains some
comments to indicate the check data. It uses “// ” as an indicator for the processing
engine to not include the check data when displaying the exercise text to the user.
While preventing the displaying of the check data was possible by using HTML or
PHP comments, there were two problems given with this approach. First, how to
extract the check data for running when the exercise is over,and second, how to display
the feedback to the user.

The first problem was solved by a processor that realizes the “data structure representa-
tion” pattern from section 5.3. This processor extracts thecheck data from the exercise
text and stores it into the database’suebungs checks table. The check data can be
stored as comments in the exercise text, and then get extracted into the database, where
it can be edited using the existing web interface, and executed by using the existing
result verification engine as described in section 6.4. Effectively, using a processor to
extract the data from the exercise text into the database prevented a need to change
the whole result verification engine. It still allowed usingthe existing web interface
to edit checks when needed, and most important, keeping all the data for an exercise
in one file. This was was considered a key item for keeping maintenance of exercises
manageable. The processor is described in more detail in section 6.5.5.

What is not described so far is how feedback for the user is given after an exercise was
taken, which leads to the second problem and the “twist” mentioned before.

To give feedback after the exercise, hiding the check data aspassive comments in the
exercise text as displayed in the above example is not possible. An active component
needs to remain, which acts as an activator to display the comment stored for feedback
purpose (“Was the task performed successfully?”, ...) as well as an indicator for suc-
cess or failure of the exercise, retrieved from the database. A unique identifier for each
check was needed, and the check ID stored in the “check id ” field already present

106
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Figure 6.15: Example exercise text with check data

in theuebungs checks table fits this purpose. Finally, deciding whether to display
feedback or not was handed over to a PHP function, which can bedefined to hide the
feedback before and during the exercise, and show it when theuser requests feedback
after the exercise was taken. So as a twist, feedback is givenor not depending on a
single function definition, which is different before/while and after the exercise, see
section 6.5.3.

The final exercise design consists of the exercise text beingwritten in HTML text with
PHP functions included that control printing of evaluationas well as feedback text
stored as PHP comment. This gives the data for the associatedcheck, and is stored in
the database by theuebung2db processor.

An example exercise text is displayed in figure 6.15, appendix A.2 lists full exercise
texts for the NIS and NFS exercises as used for evaluation of the Virtual Unix Lab
described in chapter 7.

6.5.2.3 Forming a domain specific language

Given the above design, exercise texts contain a number of details. First, the checks,
its parameters, and which lab machine to run it on are extracted from comments in the
exercise text, and stored into the database by theuebung2db processor. This realizes
the “data structure representation” pattern described in section 5.3 and by Spinellis1.
Second, information on the check script names are given in the comments, which

1 [Spinellis, 2001] p. 96

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 107

acts as calls to functions. The functions are defined by the check scripts as discussed
in section 6.5.1. Last, the exercise text is augmented with PHP function calls that
give feedback depending on the context that the functions are called in. This forms
a domain specific language which is further refered to as “Verification Unit Domain
Specific Language” (VUDSL).

Details on the PHP functions as well as the feedback they allow is given in section
6.5.3, and a summary of the Verification Unit Domain Specific Language can be found
in section 6.6.

6.5.3 Giving feedback

Giving proper feedback on what tasks of an exercise where solved successfully and
which were not was one of the primary design goals of step II ofthe Virtual Unix
Lab. Given the exercise design described in the previous section, it was easy to realize
giving different feedback to single users and teachers.

Key elements for giving feedback are the PHP functions embedded into the exercise
text as shown in figure 6.15. They controll what checks are printed if feedback is
requested:

• auswertung ueberschrift()

• auswertung teiluebungen()

• auswertung zusammenfassung()

For presenting the exercise text to the user when previewingand while taking the
exercise, these functions do not print anything at all.

To give feedback for a user after the exercise, these functions are defined differ-
ently. While auswertung ueberschrift() andauswertung zusammen-
fassung() give general information including a header and footer for the exercise,
the main work is done byauswertung teiluebungen() . The function takes a
list of check IDs, and it retrieves and prints the corresponding textual description of
the check (from the “bezeichnung ” field of the uebungs checks table) as well
as the result of the check (stored in the “erfolg ” field of the ergebnis checks
table). Figure 6.16 shows a screenshot of feedback for a single user.

While single users are only interested in their own performance, teachers are interested
in statistics on how the whole study group performed. Step IIof the Virtual Unix Lab
allows users with admin privileges to retrieve such information for all users. Using the
named PHP functions, a routine can be added forauswertung teiluebungen()
to print the following information in addition to “normal” user feedback:

108
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Figure 6.16: Giving feedback on an exercise for a single user

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 109

Figure 6.17: Giving teacher/admin feedback for all users which took an exercise

110
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

• The number of students who solved the task successfully, both by count and
percentage

• The number of students who did not solve the task successfully, again given by
count and percentage.

• The count of students who took the exercise, and either succeeded or failed.

• A bar of “’o”s is printed besides each result, with one “o” representing one
student. This allows to get a quick visual overview of the results.

Figure 6.17 displays an example of feedback on how all users performed on a certain
exercise, with all the data mentioned above.

Many other ideas for giving feedback to single users and esp.analysis of performance
of whole groups of students are possible. For a first overview, the ones implemented
in step II of the Virtual Unix Lab were considered adequate.

6.5.4 Creating a system front-end with check scripts

Besides exercise texts, the other important part of an exercise is the machine setup
provided for an exercises that users start with. This machine setup is stored in form
of harddisk images that are written to the lab machines’ harddisks before the exercise
starts as described in section 4.3. Sometimes a harddisk image needs to be updated
or newly created. The process to update/create an image is tofirst install an existing
image or install the machine from CDROM, then store the machine’s harddisk image
to an image file that can then be used for exercises as shown in figure 6.9.

Before step II, the process of creating or updating a harddisk image was done man-
ually by first preventing any exercises from being taken for some time (by disabling
logins in the Virtual Unix Lab), then – when updating an existing image – issuing the
command to deploy an existing image manually, or installinga machine from CDROM
and configure it so that its configuration can be used for the exercise in mind. After
that, the machine had to be shut down and netbooted. From the netboot environment,
the harddisk image was taken and written to the Virtual Unix Lab master machine via
NFS. After entering the newly created image file into theimages table with an appro-
priate SQL statement, the new/updated image was ready to be used in newly created
exercises.

The process where these manual steps were used for updating the NetBSD client image
from NetBSD 1.5.2 to NetBSD 1.6.

This process is tedious, prone to errors, and many internal details of the Virtual Unix
Lab need to be known. Looking closer at the process, most of these steps can be
done automatically easily though: The normal exercise system can be used to book a

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 111

certain “admin-type” exercise. It will prevent users from interrupting the process, and
also install a predefined image on the lab machine for updating (if wanted). Normal
users are prevented from booking the exercise by entering the administrator’s login
name into the “Nur f̈ur” (only for) field so only the named administrator can book the
admin-type exercise. The exercise text file has to exist, butcan be empty. See figure
6.18 for an example setup.

When the exercise time arrives, the machine will be prepared, and instead of doing a
predefined exercise, the administrator changes the client machine as needed.

The verification of the exercise results consists of two special check scripts that will
care to do the postprocessing,admin-check-clearharddisk 1 and admin-
check-make-image 2. The first script cleans up any unused space on the lab ma-
chine’s harddisk and prepares it to be better compressible3 while the second script does
all the real work of shutting down the lab machine, taking precautions so a netboot will
create a harddisk image in a given file, perform the netboot, wait until the image file is
created, and storing the newly created image’s filename in the images table. Image
6.20 shows an example setup in the web user interface.

Figures 6.18, 6.19, and 6.20 show the steps of an example exercise setup that was used
to update the Solaris image for some minor changes. Important items to notice are:

• The exercise can only be booked by one user, “admin”, as that login name is
entered in the “Nur f̈ur” (only for, see image 6.18 field of the first mask

• The exercise text in the “Pfad zur Textdatei” (path to exercise text file, see image
6.18 must exist so it can be displayed. As it is expected that the admin taking the
“exercise” knows what he wants to change, not much text needsto be put there,
and the file can be empty as well.

• Both machines have “benötigtes Image” (required harddisk image, see image
6.19 set so that they get Solaris installed. Only one machinewill be modified
and taken an image from, but the other one will be useful for reference, so both
are given the same default installation.

• Theadmin-check-clearharddisk check script is started on theVULAB 1
lab machine to clean up the harddisk before generating an image. This will result
in a smaller image, as it is expected that there is unused random data left on the
disk which would prevent optimal compression of the harddisk image.

• Theadmin-check-makeimage check script is run onLOCALHOST, i.e. the
Virtual Unix Lab master machine and not on one of the lab machines. This is
required because the script needs to access the netboot areaand the database,

1 See appendix A.6.2.1
2 See appendix A.6.2.2
3 [Feyrer, 2007b] Section “5.10 Reducing the image size”

112
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Figure 6.18: Defining an admin-only exercise to update the Solaris image, step 1: only
“admin” may book

Figure 6.19: Defining an admin-only exercise to update the Solaris image, step 2:
Solaris will be preinstalled

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 113

Figure 6.20: Defining an admin-only exercise to update the Solaris image, step 3: the
disk will be cleaned and put into an image file after the exercise

114
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

which it can not do from a lab machine. Parameters are passed to tell the script
from which machine’s harddisk the image should be used (“RECHNER=vu-
lab1 ”), and in which file in/vulab to store it on the master machine (“IMG-
FILE=solaris29-2.img.gz ”).

• The check scripts are run in order of their ascending number,which will assure
that first the harddisk is cleared before it is put into an image.

In summary, it was possible to add a high-level interface formodifying an important
part of an exercise by adding two special check scripts – a task which required intimate
knowledge of the design and implementation of the Virtual Unix Lab before, and which
was greatly simplified that way. As such, the newly created facility can be viewed as a
system front-end following the corresponding “System Front-End” pattern described
in section 5.3 as well as in [Spinellis, 2001, pp. 97] and [Mernik et al., 2005, p. 323].

6.5.5 Integration and interaction

So far, all the major new components and features of step II ofthe Virtual Unix Lab-
were described. This section goes into detail how all the components from both step
I and step II fit together, and how they interact to provide theresult verification archi-
tecture of the Virtual Unix Lab. Figures 6.21, 6.22, 6.23, and 6.24 give an overview of
the various components involved as well as their interaction.

Preparation: Creation of an exercise in step II of the Virtual Unix Lab is similar to
step I with a few changes in detail:

• Define the exercise with its general parameters by using the web frontend
from step I as displayed in figures 6.8 to 6.10. The definition of check
scripts in the third screen (shown in figure 6.10 can be left empty, as the
initial set of checks will be derived from the exercise text.

• Write the exercise text in HTML as in step I, and add hints for result veri-
fication and giving feedback embedded as comments comes next. See sec-
tion 6.5.3 for details and examples. As the check-numbers which identify
each individual check and which are given to the “auswertung teil-
uebungen() ” PHP functions are not known when writing the exercise,
“XXX” should be put in as a placeholder, which will be filled in automati-
cally later. See figure 6.25 for an example.

• After writing the exercise text, the hints are extracted into the database
by running the script “uebung2db ” as shown in figure 6.26. Parameters
given on the command line are the exercise name, the filename containing
the exercise text, and a filename which will contain the exercise with the
check-numbers filled in.

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 115

 // "Is bar set to Z on the client?"

DB

check 1: check−script−foo(par1=X) @ vulab1,
 "Is foo set to X on the server?"
check 2: check−script−foo(par1=Y) @ vulab2,
 "Is foo set to Y on the client?"
check 3: check−script−bar(par1=Z) @ vulab2,
 "is bar set to Z on the client?"
...

Web−Browser/GUI

uebung2db

 * Task 2: Do ...

 * Task 3: Do ...

 auswertung_teiluebungen(

 2); // vulab2: check−script−foo par1=Y

 3); // vulab2: check−script−bar par1=Z

Exercise Text (Template):
 * Task 1: Do ...
 auswertung_teiluebungen(

 // "Is foo set to X on the server?"
 1, // vulab1: check−script−foo par1=X

 // "Is foo set to Y on the client?"

Figure 6.21: Step II: Preparation

 (Check−data not shown)

.....
 * Task3: Do ...

 * Task1: Do ...

 * Task2: Do ...

Exercise Text:

Figure 6.22: Step II: Exercise

116
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

false

DB

check2=false
check1=true

...

uebung_auswerten

true

DB

check2: check−script−foo(par1=Y, ...)@vulab2
check3: check−script−bar(par1=Z, ...)@vulab2

check1: check−script−foo(par1=X, ...)@vulab1

vulab1
Machine

Machine
vulab2

run check−script−foo
(par2=Y, ...)

(par1=X, ...)
run check−script−foo

1

2

3

#!/usr/bin/perl
........

Check1:

#!/usr/bin/perl

Check2:

Figure 6.23: Step II: Verification

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 117

Is foo set to X on the server?
Is foo set to Y on the client?

...
 * Task 3: Do ...

 * Task 2: Do ...
Is bar set to Z on the client?

Feedback:

yes
no

...

...

check1:
check2: "Is foo set to Y on the client?"
check3: "Is bar set to Z on the client?"

"Is foo set to X on the server?"

true
falsecheck2 =

...

check1 =

 * Task 1: Do ...

 * Task 2: Do ...

 * Task 3: Do ...
...

 auswertung_teiluebungen(check3);

Exercise text (Template):

 auswertung_teiluebungen(check1, check2);

DB DB

 * Task 1: Do ...

Figure 6.24: Step II: Feedback

At this point, the database’suebungs checks table is filled with the
checks from the exercise text’s comments, and the second filegiven to the
“uebung2db ” call will contain the original file’s contents with the check
numbers filled in from theuebungs checks table for the “XXX”s. Fig-
ure 6.27 illustrates the difference between the original and the updated ex-
ercise text using the diff(1) output format.

• After the updated exercise text has been reviewed, it needs to be put into
the place where the Virtual Unix Lab expects exercise texts to be stored.
The corresponding subdirectory ispublic html/texts , the file name
is given in the web user interface’s “Pfad auf die Textdatei”(path to text
file) field.

Optionally, the updated exercise text can be committed to a content man-
agement system (CMS) like the CVS repository used for development of
the Virtual Unix Lab, as shown in figure 6.28.

After these steps – define general properties, write exercise text, extract data
from the exercise text into the database, move updated exercise text into place –
the exercise is prepared, and it can be used for exercises by students.

Exercise: The exercise text is stored in a HTML file with calls to PHP function
auswertung ueberschrift() , auswertung teiluebungen() and
auswertung zusammenfassung() as described in section 6.5.3. When
displaying the text during the exercise, only the plain textand no feedback on
success is displayed. This is achieved by signalling the PHPfunctions to not

118
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

Figure 6.25: Preparing an exercise, part 1: Writing exercise text and hints

Figure 6.26: Preparing an exercise, part 2: Extracting hints into database and writing
new text with check-numbers for feedback hints

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 119

Figure 6.27: Preparing an exercise, part 3: Comparing original and updated exercise
text

Figure 6.28: Preparing an exercise, part 4: Moving the updated exercise into place and
saving to the CMS

120
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

print any feedback data. The signalling is done by the Virtual Unix Lab frame-
work before it pulls in both the functions’ definition and theexercise text.

Verification: Verification of the exercise results consists of almost the same procedure
as in step I, as illustrated in figures 6.21 to 6.24:

1. Query the database to determine which check scripts to run, what parame-
ters to pass to them, and on which machine to run them.

The additional field “parameter ” was added to theuebungs checks
table, where the “uebung2db ” script stored the parameters for the call
of the shell script. This field is retrieved in addition to thedata already
required in step I.

2. Run the check script with the parameters from the database, and collect the
result.

The same procedure is used as in step I, i.e. the script is handed to an
interpreter for execution, and the output is collected to see if the check
indicated success or failure. Parameters for the scripts are passed as envi-
ronment variables.

3. Store the check script’s result into the database.

There is no change from step I here. The textual output of the check script
is scanned for an indicator of success or failure, and the boolean “erfolg ”
(success) field of theergebnis checks table is set accordingly.

Feedback: At any time, a list of all booked exercises ever can be retrieved by selecting
the “Buchungen einsehen” (view booked exercises) menu item. The list contains
both exercises already completed as well as exercises that were booked for future
dates, see figure 6.29. Exercises that have already been taken do have a button
on their right that can be used to analyze that particular exercise and retrieve
feedback it, see figure 6.30 a) for an image of the analyze/feedback-button. If an
exercise was booked but has not been prepared and taken yet, it can be cancelled
by using the button displayed in figure 6.30 b). This works only until the exer-
cise’s preparation time has arrived, which is about 45 minutes before the start
time. An exercise that has been prepared will be recorded as such. If a student
does not show up for a booked and prepared exercise, the system will notice and
keep a record on this.

When an exercise has been completed successfully and the verification of the
exercise’s result is done, feedback on the exercise can be retrieved by pressing
the corresponding button.

As described in section 6.5.3, the Virtual Unix Lab system then displays the exer-
cise text, and runs the embedded PHP functions to show the textual descriptions
of the tasks, details on what the checks tested, and if the tests were successful or
not.

In detail, the PHP code in the exercise text first callsauswertung ueber-
schrift() and prints a header with general information about the exercise:

6.5. STEP II: INSTRUCTIONS AND CHECKS COUPLED 121

Figure 6.29: The list of booked exercises contains both completed exercises for which
feedback can be requested (“freigegeben: nicht-mehr”) as well as uncompleted exer-
cises that have not yet started (“freigegeben: nein”)

a) b)

Figure 6.30: Buttons for a) retrieving feedback on completed exercises, and b) deleting
uncompleted exercise that have not yet started

122
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

date and time of start and end, duration in minutes and the IP number from which
the exercise was taken. The IP number is the one stored by the firewall configu-
ration when the lab was entered for the exercise, as shown in figure 4.8. The ex-
ercise text is displayed next, augmented with calls to theauswertung teil-
uebungen() function, which does the main job of giving feedback.

The auswertung teiluebungen() function takes a variable number of
arguments, each representing a check-number. See figure 6.32 for an example.
For each of the check numbers, the function retrieves:

• the textual description of the check as stored in the “bezeichnung ” (de-
scription) field of theuebungs checks table, and

• the result of the check as stored in the “erfolg ” (success) field of the
ergebnis checks table.

If the feedback is not requested by a “normal” user of the Virtual Unix Lab but by
an administrator, an overview of all students’ performanceis shown in addition
to the single user’s result as discussed in section 6.5.3.

From the description of these phases, it can be seen that there are a number of small
to medium size changes, but that the general design and implementation of the Virtual
Unix Lab result verification architecture could have been kept for step II.

6.5.6 Summary of step II

Comparing the improvements intended for step II of the Virtual Unix Lab and the
changes made, the conclusion can be drawn that the goals weremet within the given
requirements. Step II of the Virtual Unix Lab was realized asdescribed here, and used
as base for the evaluation in chapter 7. During the implementation and evaluation of
step II, a number of possible improvements were identified, which can be addressed
in future implementation steps of the Virtual Unix Lab. Theywill be listed in the con-
clusions drawn on result verification of exercise results after discussing the resulting
Domain Specific Languages in the next section.

6.6 The Verification Unit Domain Specific Language
(VUDSL)

This section summarizes the domain specific language definedfor the Virtual Unix
Lab so far. This DSL was titled and will be refered to as the “Verification Unit Domain
Specific Language” (VUDSL). Exercises in the Virtual Unix Lab described consist of
three major components:

6.6. THE VERIFICATION UNIT DOMAIN SPECIFIC LANGUAGE (VUDSL)123

1. Exercise text, which is displayed both during the exercise and also when giving
feedback.

2. Data on what aspects of the lab machines to evaluate.

3. Display of feedback on the exercise results as established by the data on what to
evaluate from (2.) in the context of the exercise text (1.).

The connection between the data for the actual evaluation (2.), the exercise text (1.) and
its display for the results is implemented by a domain specific language that realized
the “data structure representation pattern.”

As described in section 5, DSLs are usually not described by afull syntax specifica-
tion with a context free grammar, but rather as extension of an existing programming
language. This is also the case for the VUDSL, which is an extension to PHP that
specifies evaluation data. That data is later on stored into the SQL database by the
VUDSL processor, and the resulting database IDs are noted inthe resulting PHP file.

All “real” data for verification of the exercise part’s verification are kept in PHP com-
ments. A full exercise including all VUDSL statements can beseen in appendix A.2.
The examples in figure 6.31 explains the important components of the VUDSL.

Currently there are only two lines of comments, and they are expected to have fixed
format:

1. The first line currently contains the name of the lab machine on which a check
is performed, the name of the check script as the primitive ofthe verification
language, and any possible parameter that may be needed to further specify the
test.

2. The second line of the PHP comments contains the help text that is given as
feedback to the student to give him an idea what the actual check did, in addition
to telling him if that part of the exercise was mastered successfully or not.

The VUDSL processoruebung2db applies lexical analyzing. It extracts the data
from the PHP comments and stores them in the SQL database. It also updates/generates
IDs for the checks, and updates them in the exercise text as shown in figure 6.27.

<?php auswertung_teiluebungen(
??? // vulab1: check-program-output PROGRAM=ypwhich OUTP UT_SHOULD=’vulab1’

// Gibt ypwhich(1) ’vulab1’ zur ück?
); ?>

Figure 6.31: VUDSL example for verifying one aspect of the exercise

124
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

<?php auswertung_teiluebungen(
776, // vulab1: check-file-exists FILE=/var/yp/Makefile

// Existiert /var/yp/Makefile?

777, // vulab1: check-file-exists FILE=/var/yp/binding/ vulab/ypservers
// Existiert /var/yp/binding/vulab/ypservers?

778 // vulab1: check-file-exists FILE=/var/yp/passwd.ti me
// Existiert /var/yp/passwd.time?

); ?>

Figure 6.32: VUDSL example for verifying multiple aspects of the exercise in one go

A list of all check primitives with their assorted parameters for the first line can be
found in appendix A.5. Extensions of the VUDSL to add user adaption in the Virtual
Unix Lab are discussed in section 11.6.

6.7 Conclusion of diagnosis and feedback with a do-
main specific language

This section summarizes the results from the steps taken to design and implement ver-
ification of exercise results in the Virtual Unix Lab and the “Verification Unit Domain
Specific Language”. When viewing result verification in the Virtual Unix Labunder
aspects of Domain Specific Languages, the following key items were covered in this
chapter:

Stereotypesin the form of check scripts for testing single aspects of a system have
been identified, a framework for implementation and runningthose check scripts
was defined, scripts were implemented based on the framework, and the overall
organisation was improved in an iterative approach. The result is a number of
check scripts that can be supplied with parameters to test unique aspects of var-
ious systems, while being used as “activators” (function calls) for the tests from
a programming language view. The scope of most of the check scripts is to be
usable on all systems, but some are tailored towards testingof aspects that are
unique to certain operating system implementations only.

A languagewas defined for the domain of combining exercise texts with result ver-
ification. This was done by embedding activators for the check scripts into the
exercise text, using only special constructs of the PHP language as described by
the “Language Specialization” pattern in section 5.3. Consequences of this are:

• Keeping the check-related data in a place that is close to theapplication
domain of result verification, instead of the place where itsphysical storage
is (the database).

6.8. FUTURE PERSPECTIVES 125

• Easier maintenance of exercises, as all the important partsof an exercise –
exercise text and data on check script calls – can be stored ina single place.

• The possibility to give feedback on exercises for both single users as well
as administrators by coupling exercise texts and checks.

The language only knows about sequences of check script invocations so far.
Extensions for selection of alternatives would be a future goal. No need is cur-
rently seen in implementing iterations as the third basic building block for pro-
gramming languages.

Keeping exercise text and check data in one placeis good for creation and main-
tenance of exercises. To perform the actual result verification after an exercise
and to give feedback, it is easier to access the check-related data using database
access routines though. To achieve this, the exercise text contains the check data
in the form of the above-mentioned “language”, processed bya simple lexical
analyzer which transforms the check data stored in the exercise text and stores
it into the database. This transformation from the data representation which is
close to the application domain of the exercise to the data representation used
in the database realizes the Data Structure Representationpattern described in
section 5.3.

Implement a system front-end for generating and updating harddisk images for
new and updated exercises. This was done by using special check scripts with
the result verification architecture. Instead of requiringa lot of details about the
implementation of the Virtual Unix Lab for creating or updating an exercise,
this special knowledge was moved into two check scripts thatcan be used for
a special kind of exercise. This allows concentrating on thecontents of the
exercise creation without distraction by technical details. The System Front-
End pattern is described in detail in section 5.3, its designand implementation
within the Virtual Unix Lab are described in section 6.5.4.

Descriptions of related items and some implementation details were included to illus-
trate the connections between the key items as well as their integration and interaction,
and to show possible areas for future improvements, which are summarized in the next
section.

6.8 Future Perspectives

While implementing result verification and feedback in stepII of the Virtual Unix Lab,
a number of items were discovered that may be of interest for its future incarnations,
assuming that another design & implementation cycle as described in section 6.2 and
as realized in steps I and II of the Virtual Unix Lab will happen. For this new cycle –
step III – possible areas of improvement are:

126
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

c)

b)

a)

Figure 6.33: Various forms of non-linear exercises

Non-linear exercises:For some types of exercises, better control then strictly linear
evaluation is required, i.e. to also allow users to choose alternative paths for
solving a given problem. Depending on the nature of the decision, it is possible
to either have only single (small) alternatives, or whole (big) trees, depending
on the nature of the alternative.

A “small” alternative can be a single item that can be solved in various ways,
but which will not have an impact on the verification of the further items, as
displayed in figure 6.33 a). An example for this would be the setting of the
domain name on NetBSD in the NIS exercise, which could eitherbe done in
/etc/rc.conf or /etc/defaultdomain .

“Big” differences decide about further tests, the way they are applied, or the
exact state of which object will be checked as shown in figure 6.33 b). This is
of concern if the choice of important software components should be left to the
user, and not restricted by the exercise text. Components where this would apply
are e.g. choice of operating system (Windows vs. NetBSD vs. various Linux
distributions), webserver (Apache vs. Internet Information Server) and database
software (Oracle vs. MS SQL Server vs. MySQL vs. PostgreSQL).

As the result of a check script is a boolean value and thus can only have two
results. To realize multiple choices, a combination of boolean checks has to be
used, as shown in figure 6.33 c).

Possible realization of multiple alternatives based on check results could happen
during evaluation, by using check results and the language features that are pro-
vided by the PHP language, which is already used for evaluation and reporting
of feedback. Theoretical foundations can be found in [Witschital, 1990, pp. 18]
and [Robberecht, 2007].

Assessment:During an early stage, the feedback given to students included a counter

6.8. FUTURE PERSPECTIVES 127

telling that “X out of Y tests were performed successfully.”During the beta test
period, this led students to think they should get as high of a“score” as possible.
This thinking was wrong for two ways: for one, a number of tests were built
into the exercises that were meant to be ok by default, and only to test if the
user damaged a crucial default-setting. Also, when alternative exercise paths (as
described before) are implemented, many checks (50% for each alternate path)
will be wrong. As such, just going for the absolute number of checks performed
successfully is not useful – think of a user trying to installboth Windows and
Unix on the same machine to score both points.

If giving scores like “X out of Y possible points” or “Z% completed success-
fully” should be realized, work is needed to identify which check results should
impact the scoring, and which should not. For alternatives,only one out of two or
more alternatives can score a point. Others tests can influence the score directly,
either in a positive or negative way, i.e. if the user achieved a goal during the
exercise, or if he damaged an important configuration that was working properly
by default (“false positive”) .

Beyond giving scores, it is possible to give grades for completing of exercises,
i.e. excellent ones if all/most of the “important” checks are solved properly,
medium ones if there are some errors and bad ones if the goals of the exercise
were not met. Establishing criteria on which check would have which kind of
impact on the score and grade would need further research. The details could
be encoded in the VUDSL, see section 11.6 for possible ways ofsuch exten-
sions. Existing literature on instructional and test design can be used for this
enhancement1

Creating interfaces and APIs for external assessment toolscould be considered
as an alternative to realizing assessment in the Virtual Unix Lab.

Further check script optimization: Besides the major changes in the way feedback
is given to users, some smaller changes can be done to optimize the implemen-
tation.

One such change is to extract common code from all the check scripts. Currently,
the check scripts define a number of variables to describe purpose of the script,
parameters supported, and Perl function that performs the actual test. Besides
that, each of the check scripts contains code that evaluatesthe variables, checks
parameters, calls the check function etc., which is the samecode for all the
check scripts. As only the first part of all the check script differs, and the second
one is the same for all, the second half could be moved into a separate file and
appended when calling the script, i.e.

“cat foo-check-bar common-body | perl ”

Check script parameter checking in web frontend: Each check script can be queried
for the parameters it accepts. The VUDSL-processor alreadyuses this to verify
check script data before storing it into the database. Another change that has

1 [Eikenbusch and Leuders, 2004] pp. 10

128
CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION OF DIAGNOSIS

AND FEEDBACK WITH A DOMAIN SPECIFIC LANGUAGE

small impact of the functionality of the system but increases stability would be
to add a similar verification to the web GUI. That way, simple errors like typos
could be caught earlier and easily.

The described items would have impact on both functionalityof the Virtual Unix Lab
towards users and administrators designing new exercises.Further improvements to
performance, reliability and usability of the Virtual UnixLab can be made in future
versions by using the same iterative design and implementation cycle that was used in
the first implementation steps described in this chapter.

Chapter 7

Evaluation of the Virtual Unix Lab

This chapter observes the Virtual Unix Lab that was described in the previous chap-
ters, and evaluates it under a number of aspects. So far, onlyteaching of theoretical
knowledge was possible for advanced topics in the system administration class held at
the University of Applied Sciences Regensburg which, as described in chapter 3. Af-
ter the system was realized, it is possible to offer practical exercises for those topics,
and test practical competence, instead of theoretical knowledge. The Virtual Unix Lab
was used to supplement the classroom lecture in the summer semester 2004, and this
chapter covers the experiences that were made during its use.

With the work in the area of diagnosis and giving user feedback, the Virtual Unix Lab
is complete for practical use. As a consequence, the evaluation can concentrate on the
effect of the system as a whole, instead of observing only single components of the
system and their efficiency. Evaluation of the whole system and its reflection on the
user is considered to be more than the sum of its components.

Many aspects of the components of the Virtual Unix Lab, theiruse and he system as a
whole are not covered in detail here, some of which are discussed briefly in the section
7.4.

7.1 What to evaluate

To establish the effect of the Virtual Unix Lab as a whole, thequestion arises if the Vir-
tual Unix Lab is “useful”, i.e. if the students learned “more” or “better” than without
the system.

When observing the impact of a learning tool, an establishedmethod for evaluation is
to create a controlled testing environment by split a class into two groups. One group
uses the platform, and the other group uses an alternative, likely a method that was

129

130 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

used before the new platform was available. After the testing period, the results from
both groups are compared.

This approach would be recommended for use with the Virtual Unix Lab, too: Have
students attend the “System Administration” lecture, let them participate in the usual
lab exercises, but only allow half of the students to use the Virtual Unix Lab in addition.
At the end of the semester, both groups would take the same end-of-term paper test.
The results of that paper test would be examined for impact bythe learning platform.

There are two problems with this approach. The first one is that for small groups,
it is possible that all “good” students are in one group, and all “bad” students are in
the other group. Increasing the group size would help, but this would require more
students than available. The other problem with this approach is that it cannot be
performed in a “live” setup with students, as the “System Administration” lecture is
a mandatory course at the University of Applied Sciences Regensburg, and allowing
part of the students to use a learning material while denyingit to others is not possible.
Arranging for a separate course outside the normal curriculum was unfortunately not
possible due to lack of students and funding for such a venture.

An attempt of comparing existing end of term papers from student groups that did use
the Virtual Unix Lab with the results of students that did notuse the Virtual Unix Lab
was made and described in [Feyrer, 2007c]. Even if the comparisons suggested that
the Virtual Unix Lab indeed had a positive effect on student’s performance in the paper
tests, a control group is really needed for reliable results.

As a result, data that was gathered during existing exercises in the Virtual Unix Lab is
utilized. In particular, the following material is examined for this evaluation:

1. Students were asked to perform two particular exercises in the Virtual Unix Lab.
Data was gathered for the full study group, and analyzed in section 7.2.

2. Students were asked to fill out an online questionnaire after their exercises in the
Virtual Unix Lab. The results from this questionnaire are analyzed in section
7.3.

Other methods like personal interviews or recording the students’ practices on video
would have been possible to obtain information to evaluate in theory. In practice this
would have limited students in their free choice of time and place for doing the ex-
ercises, thus canceling the “virtual” effect of the VirtualUnix Lab. As a result, those
methods were not persued.

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 131

7.2 Analysis of data gathered during student exercises

This section analyzes data that was gathered during the Virtual Unix Lab exercises in
the summer semester 2004. The analysis covers a number of aspects that have impact
on the learning performance.

After a brief introduction of the methodology used, this section first examines exercises
that were taken several times by a user, and makes an investigation of the performance
of those repeated exercises. Next, it was noted that some basic tasks occur in more
than one place in the exercises. An analysis of the performance in similar tasks is
made to determine conceptual problems that need better education. Last, the time at
which exercises were performed, and the duration of those exercises, was observed.

7.2.1 Methodology of the data analysis

This section describes the methods that are used for the evaluation of the Virtual Unix
Lab. It observes data that was gathered during students’ exercises, and utilizes visual-
ization techniques to aid in the evaluation process.

For visualization, methods from statistics are used to compare various values with each
other. Histograms and box-plots (also known as whisker plots) are used in the fol-
lowing sections1,2,3. To also allow visual comparison of median values in box-plots,
“notches” are added to indicate the confidence intervals forthe median of the distribu-
tion. This allows to compare the median of two distributions– if the intervals around
two medians do not overlap, they can be considered differentwith 95% confidence4.
This method allows to tell which median is “better” (higher or lower, depending on
score or grade) by visual inspection of the graph5.

The data used for analysis and evaluation is stored in an SQL database, appendix B has
details on the database structure. Queries to retrieve datafrom the SQL database are
listed in appendix C.3 and referenced from this section where the data is discussed.

In many cases, SQL is not adequate for analyzing data, and theR program was used for
statistical analysis. Export of data from the PostgreSQL database was done by using
using the “psql” command line tool, which was told to print output unaligned (“\a ”),
use a “,” as record separator (“\f , ”), write the results of SQL queries into a file with
colon-separated values (CSV; “\g file.csv ”), and do not include the standard
footer (“\pset footer ”) in the output. Import of data into R was performed by
reading the CSV file into an R table (“table=read.csv("file.csv") ”).

1 [Tukey, 1977] pp. 39
2 [Fahrmeir, 2003] pp. 65
3 [Chambers, 1983] pp. 21
4 [McGill et al., 1978] pp. 12
5 [Garrett and Nash, 2001] pp. 12

132 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

count | uebung_id
-------+-----------

58 | nfs
71 | nis

6 | netbsd
(3 rows)

Table 7.1: Exercise popularity

To examine “similar” exercise tasks, the checks are examined as identified by their
check numbers and the associated data, check scripts name and parameters. Full defi-
nition of the checks are contained in the exercise texts for NIS and NFS. See appendix
A.2.1 for the NIS exercise text, and appendix A.2.2 for NFS. Abrief list of checks
including the description that is printed as feedback for users can be found in appendix
A.4.1 for the NIS exercise and in appendix A.4.2 for the NFS exercise.

7.2.2 Number of exercises taken and repeated

Students were told to perform the NIS and NFS exercises each once at least, with no
restrictions on repeating an exercise several times. This section observes how often
students really booked exercises. For those students that booked an exercise more
than once, any possible differences in performance betweenthe first and last time they
repeated an exercise will be observed. The goal is to determine the impact of use of
the Virtual Unix Lab here.

The number of total exercises (NIS, NFS, NetBSD) every student took1 can be seen
in results of query 5 in appendix C.3. From the 27 students, one student performed
only one exercise (instead of the requested two, NIS and NFS), and three students
performed exactly two exercises. A more detailed overview which includes the exact
exercises2 can be seen in results of query 6 in appendix C.3. 19 students performed
single exercises only once, but the majority of exercises was taken two or more times,
up to a maximum of one student taking the NIS exercise 8 times.

Overall, at the end of the summer semester 2004, 135 exercises were performed by
students in the Virtual Unix Lab. Table 7.1 shows how often each of the exercises was
chosen3 – the NIS and NFS exercises were requested to be taken, the “netbsd” exercise
was offered to become more familiar with the NetBSD operating system.

When examining the number of distinct students that took exercises, it can be seen

1 See query 5 in appendix C.3 on page 372
2 See query 6 in appendix C.3 on page 373
3 See query 7 in appendix C.3 on page 374

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 133

that 26 students took the NIS exercise1, and 27 students took the NFS exercise2 – The
fact that one student only took one of the two exercises that make the difference here
was also seen in the number of total exercises that every student took3. With these
numbers, it can be said that students took the NIS exercise 2.73 times on average4, and
the NFS exercise was booked 2.15 times on average5.

The reason why the NIS exercise was practiced more often thanthe NFS exercise are
not known at this point. While it could be suspected that students may regard NIS as
more difficult, and thus wanted to repeat it more often to get all the tasks in the exercise
right, there is no evidence for this, at least not from the data observed here. See also
section 7.3 for students’ opinions on the Virtual Unix Lab.

7.2.3 Performance of repeated exercises

With the fact that many students repeated an exercise more than once, a comparison
between the various exercise repetitions’ results can be made, to see if a difference in
performance could be found.

To find the first and last repetition of a certain exercise and acertain user, the corre-
sponding booked exercise IDs (“buchungs id ”) need to be known. IDs are numbers
and allocated increasingly for each new exercise that is booked. When looking at the
various booked exercise IDs of a user, it can be assumed that his first exercise had the
smallest (minimum) ID, and the last exercise had the biggest(maximum) ID.

The other question is how to assess an exercise’s performance. For this comparison, the
number of successfully performed tasks are counted, without looking at false positives,
i.e. tasks that would test as successful per default, but that are tested to see if students
broke the configuration for them. A more in-depth look at exercise results for assessing
performance is outside the scope of this discussion. See also section 6.8 for further
information on establishing assessment.

By combining these data points, an investigation can be madeto look at students’ re-
sults of their first and last exercise of a certain kind (NIS, NFS). This can be seen
in results of query 10 in appendix C.36. The list includes the ID (“first id ”,
“ last id ”) and percental score (“f pscore ”, “ l pscore ”) of a student’s first and
last exercise of a certain kind (“uebung id ”) and student, as well as the difference
between the two percental scores (“dpscore ”).

Looking at all exercises, i.e. NIS and NFS, the average scoreof the first exercises is

1 See query 8 in appendix C.3 on page 374
2 See query 9 in appendix C.3 on page 374
3 See results of query 5 in appendix C.3 on page 372
4 71 / 26 = 2.73
5 57 / 27 = 2.15
6 See query 10 in appendix C.3 on page 374

134 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

44.61% and the average score of the last exercises is 62.73%,i.e. between students’
first and last exercise there is an average increase of 18.13%. Figure 7.1 shows the
distributions of the first and last exercises of students. The facts that the notches of
both plots do not overlap shows that there is a statisticallysignificant improvement
between the students’ first and last exercise!

Investigating this further, a comparison of the scores of the first and last exercises with
each sorted ascending can be seen in figure 7.2. The figure shows that the results of
the last exercises are better than the first ones. The figure also suggests a correlation
between the first and last exercise, but to investigate this,the scores have to be dis-
played in pairs of each student’s first and last score. This can be seen in figure 7.3 –
while the results of the first exercises are still sorted ascending, the scores of the last
exercise are printed accordingly. Two results can be seen. First, almost all scores are
higher in the last exercise than in the first exercise, and vice versa, which confirms that
an improvement in performance was achieved. Second, looking at the last exercises
shows that students with low scores on the first result reached more or less the same
scores as students who performed average or good in their first exercise, i.e. most gain
was made by students who performed bad on their first attempts.

As such, no direct correlation between the first and last scores can get established,
which is also confirmed by the Pearson correlation coefficient of 0.4397. Reasons
which influence the overall increase in performance here maybe that students scored
bad scores in the first exercise because the tasks were not clear, not enough informa-
tion to solve the tasks was available, the environment was not as familiar as in later
exercises, or that the feedback provided after the first exercise helped to obtain better
scores on later exercises. Exact reasons for the improvement cannot be given here, and
are subject of further investigation.

Section 7.2.5 observed that the time needed by students for all exercises was influenced
equally by both NIS and NFS. In a similar effort, after observing the results of all
exercises together, the scores observed for NIS and NFS exercises will be examined
separately next, to determine if the Virtual Unix Lab provided the same gain that was
shown for all exercises.

The average percental score of students’ first NIS exercise was 39.58%, and the aver-
age percental score of the last NIS exercise was 67.65%. Thisamounts for an average
increase of 28.08%. For NFS, the average percental score of the first exercises was
53.96% and 64.96% of the last exercise, i.e. a gain of 11.00%.While the first results
were a bit better for NFS than for NIS, the results show that students greatly improved
in the NIS exercise, while results for NFS did increase too, but not as much. Figure
7.4 contains the corresponding box plots - the great improvement between the first and
last NIS exercise is depicted in 7.4 a), while the lesser, butstill existing improvement
can be seen in 7.4 b). Both improvements are statistically significant, as shown by the
non-overlapping notches in figure 7.4 a) and b).

Comparing the two results, the Virtual Unix Lab had a bigger impact for the NIS exer-

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 135

first last

0
20

40
60

80
10

0

Student’s exercise

S
co

re
 (

%
)

Figure 7.1: Comparison of all scores between students’ firstand last exercise

0 10 20 30 40 50

0
20

40
60

80
10

0

Test number

S
co

re
 (

%
)

first exercise
last exercise

Figure 7.2: Score of all first and last exercises ordered ascending

136 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

0 10 20 30 40 50

0
20

40
60

80
10

0

Test number

S
co

re
 (

%
)

first exercise
last exercise

Figure 7.3: Score of all first and last exercises ordered by first exercise

cise than for the NFS exercise. This can also be seen from the distribution of the results
in figure 7.5. While most students scored at best average scores in the first NIS exercise
in figure 7.5 a), the last exercises were much better, reaching 100%. The NFS results
shown in figure 7.5 b) are different here, where good studentshardly increased their
scores, but less scores below average were reached. Figure 7.6 also confirms that in
NIS, most students’ scores did improve, while the NFS exercises mostly had an effect
on students that performed badly in their first attempts. A direct correlation between
“first” and “last” exercises cannot be established for neither NIS nor NFS though, as
indicated by the corresponding Pearson correlation coefficients of 0.26 (NIS) and 0.42
(NFS).

In summary, it can be said with statistical significance thatthe Virtual Unix Lab had a
positive effect for both NIS and NFS exercises, and that the gain was most notable for
the NIS exercise.

7.2.4 Results of selected exercise topics

After observation the impact and benefits of the Virtual UnixLab, topics where stu-
dents still have problems are identified next. The intent is to improve their knowledge
about these topics, e.g. by discussing them in more detail inclass, or by offering
special exercises in the Virtual Unix Lab for these topics.

The identification of common topics will be made by observingtests performed at the

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 137

a) NIS:

first last

20
40

60
80

Student’s exercise

S
co

re
 (

%
)

b) NFS:

first last

0
20

40
60

80
10

0

Student’s exercise

S
co

re
 (

%
)

Figure 7.4: Comparison of a) NIS and b) NFS scores between students’ first and last
exercise

138 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

a) NIS:

0 5 10 15 20 25

20
40

60
80

Test number

S
co

re
 (

%
)

first exercise
last exercise

b) NFS:

0 5 10 15 20 25

0
20

40
60

80
10

0

Test number

S
co

re
 (

%
)

first exercise
last exercise

Figure 7.5: Score of first and last exercise ordered ascending for a) NIS and b) NFS
exercise

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 139

a) NIS:

0 5 10 15 20 25

20
40

60
80

Test number

S
co

re
 (

%
)

first exercise
last exercise

b) NFS:

0 5 10 15 20 25

0
20

40
60

80
10

0

Test number

S
co

re
 (

%
)

first exercise
last exercise

Figure 7.6: Score of first and last exercise ordered by first exercise for a) NIS and b)
NFS exercise

140 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

count | script
-------+-----------------------------

21 | check-program-output
10 | check-file-contents
10 | unix-check-process-running

7 | netbsd-check-rcvar-set
6 | unix-check-file-owner
5 | check-file-exists
4 | netbsd-check-installed-pkg
4 | solaris-check-installed-pkg
4 | unix-check-user-exists
3 | check-directory-exists
1 | unix-check-user-ingroup
1 | unix-check-user-fullname
1 | unix-check-user-password
1 | unix-check-user-shell
1 | unix-check-mount

Table 7.2: Check scripts and their usage in various checks

end of the Virtual Unix Lab. Similar topics are tested by using the same check scripts,
and topics that are tested by the same check script are considered as related.

Table 7.2 shows a list of all check scripts in use in the Virtual Unix Lab1, and a count in
how many places they were used to test for various similar topics by running the same
script on different hosts with possibly different operating systems and with different
parameters.

To compare various results of a single script, it has to be used in more than one place,
obviously - as such, the last five scripts listed in table 7.2 are of limited use in this
discussion. The following scripts and their results will beconsidered in this discussion.
Attention must be brought to “false positive” tests here, asthey are “true” by default
to verify the system is operating properly, and only are “false” if the students break the
configuration. For each script, a short description of the tested topic is given, followed
by a comparison of the various tests by using boxplots, and a summary is drawn from
the results, reflecting on students’ overall performance onthe related topic.

check-program-output : used 21 times, see figure 7.7. No false positives.

This script tests the output of various programs, e.g. “ypwhich”, “domainname”,
“ypcat”, “showmount”, “share”, “mount”, “df”, “cat” and, “ping.” These pro-
grams belong to a wide variety of topics, and are thus of little use to make a
prediction for a particular topic. The non-uniform resultsin figure 7.7 confirm
this.

1 See query 11 in appendix C.3 on page 376

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 141

775 780 782 788 801 803 883 794 871 873 811

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

Check number

S
uc

ce
ss

?

Figure 7.7: Results of check-program-output

check-file-contents : used 10 times, see figure 7.8. No false positives.

This script is used to see if files were edited properly, whereuse of an editor
program was required. See results of query 12 in appendix C.3for a description
of the various editing tasks1. The results in figure 7.8 show that on average, six of
the corresponding tasks were solved successfully while therest were unresolved.
Problems here could be that students were able to use the editor for one task but
not another one, or more likely that students did not know what to edit in the
first place.

unix-check-process-running : used 10 times, see figure 7.9. No false posi-
tives.

The test to see if a certain process runs properly was mostly solved successfully
by students, as can be seen in figure 7.9. An interesting detail is that the boot
system of Solaris needs no special configuration to start processes if a subsystem
is configured, while NetBSD needs additional work. While students coped with
both operating systems, the tests on systems that ran NetBSD(checks 798, 799,
878, 879, 880; see results of query 13 in appendix C.3) were performed slightly
less successfully than on Solaris (checks 865, 867, 868, 869).

The conclusion is that process startup itself is performed properly by most stu-
dents, but more emphasis could be put on understanding of theNetBSD boot
system that is responsible for process startup and its configuration.

1 See query 12 in appendix C.3 on page 376

142 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

790 791 792 793 810 864 882 885 774 783

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

Check number

S
uc

ce
ss

?

Figure 7.8: Results of check-file-contents

netbsd-check-rcvar-set : used 7 times, see figure 7.10. False positives: 795,
874.

This script checks if various services were started properly using the NetBSD
startup mechanism. The results shown in 7.10 confirm the findings from the
unix-check-process-running script above, as the majority of students
had problems configuring the needed processes properly. Exceptions seem to be
the results of checks 795 and 874, but the topics they test – see if the variable
“rc configured” is left at “yes” in/etc/rc.conf , as shown in results of query
14 in appendix C.3 – is properly configured by default (“falsepositives”), so they
cannot be regarded as successfully solved.

In summary, the request for better education of students in the area of the Net-
BSD startup system can be repeated from these results.

unix-check-file-owner : used 6 times, see figure 7.11. No false positives.

This script verifies permission setting skills with a special focus on a distributed
(NFS) environment. The results in figure 7.11 show that thereis a lot of room
for improvements. An interesting side effect is that the setting of permissions
on a local system (checks 890, 892) seems to be easier for students, while the
remaining checks test permission setting via NFS, as can be seen in results of
query 15 in appendix C.3 (the NFS exercise definesVULAB 1 to be the NFS
server with the data on local storage, andVULAB 2 the NFS client).

check-file-exists : used 5 times, see figure 7.12. False positive: 870.

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 143

798 799 865 866 867 868 869 878 879 880

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Check number

S
uc

ce
ss

?

Figure 7.9: Results of unix-check-process-running

This test is used to see if a file exists, usually as a consequence of a user running
a certain setup procedure like the NIS “ypinit” command. As the Solaris oper-
ating system starts the NFS service by default if the proper NFS configuration
is present, check #870 is a false positive1. Regardless of that false positive, the
results in figure figure 7.12 show that most students succeeded in performing the
associated tasks.

netbsd-check-installed-pkg : used 4 times, see figure 7.13. No false posi-
tives.

Installation of binary packages on NetBSD is tested. to see if users installed
either tcsh or bash as “convenience” shells in any of the exercises2. None of
these is needed for successfully performing the NIS or NFS exercise, but the
possibility is offered to users as an alternative to the lessuser-friendly default
shells.

The results in figure 7.13 show that students either did not feel a need to install
those shells, or failed to do so, as very few of them picked up the opportunity of
a more convenient command line interface. The reasons for this are not known,
and could be work of future investigation.

solaris-check-installed-pkg : used 4 times, see figure 7.14. No false pos-
itives.

1 See results of query 16 in appendix C.3 on page 378
2 See results of query 17 in appendix C.3 on page 378

144 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

795 796 797 874 875 876 877

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

Check number

S
uc

ce
ss

?

Figure 7.10: Results of netbsd-check-rcvar-set

Just as with the previous check script, this one tests the installation of packages,
but this time on the Solaris operating system, which differsin some details from
NetBSD. Also, installation of bash and tcsh was offered as convenience again,
but not mandatory for neither the NIS nor the NFS exercise1.

The results shown in figure 7.14 indicate that most students did not attempt to
install any of these packages, but that at least some tried successfully. Whether
more students were interested in installing convenience shells on Solaris than on
NetBSD is unknown (and rather less likely), but it is could bethat it was also
easier for students to install the packages on Solaris as they were provided for
installation on the system in/cdrom , instead of requiring students to download
them from the network, as needed for NetBSD. Whether this wastoo much
effort for students, regarded as plain inconvenient, or if students just did not
know how to handle packages properly is not known, but could be subject of
future research.

unix-check-user-exists : used 4 times, see figure 7.15. No false positives.

One important resource distributed among machines in a NIS and/or NFS en-
vironment are user accounts and related data. This test checks if a certain user
account was created or is accessible properly, i.e. if students were able to apply
the appropriate user management skills that are required properly2.

Looking at the distribution of the results in figure 7.15, some improvements of
the skills needed to manage user accounts, esp. in distributed environments,

1 See results of query 18 in appendix C.3 on page 378
2 See results of query 19 in appendix C.3 on page 378

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 145

890 891 892 893 894 895

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Check number

S
uc

ce
ss

?

Figure 7.11: Results of unix-check-file-owner

seem required. The fact whether the problem here is on the “user management”
or on the “distributed” part cannot be derived from the existing data.

check-directory-exists : used 3 times, see figure 7.16. No false positives.

This last check script and its results are related to the previous one: Checking
for existence of a directory can be used for a number of applications. Within the
Virtual Unix Lab, the primary application is to test if home directories of user
accounts are created properly1.

The results of this exercise are shown in figure 7.16, they aresimilar to the ones
of the previous check – some success, but definitely more education needs to be
done in making sure users understand what the purpose of directory creation is
in the area of user management.

After observing the various areas that are covered in the Virtual Unix Lab, it can be
said that some topics are handled competently by students, while more education and
practice would be appropriate for others. Topics that the students performed good in
are changing system settings by editing files, handling of process startup via the Solaris
boot system and setting up files for the Network Information System (NIS).

Areas that need further investigation are the process startup via the NetBSD boot sys-
tem and its configuration in general, user management in general including creation of
user accounts and making user data accessible and finally some emphasis of handling
software packages on both Solaris and NetBSD.

1 See results of query 20 in appendix C.3 on page 379

146 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

776 777 778 784 870

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Check number

S
uc

ce
ss

?

Figure 7.12: Results of check-file-exists

7.2.5 Exercise duration

The next question to investigate is if the time reserved for exercises was long enough,
or if more time was required to solve them, i.e. if students ended the exercise first, or if
it was ended by the timeout. To answer the question, the ending time of exercises was
observed in relation to the start time, both of which were available for each booked
exercise.

A list of all exercises that were taken in the Virtual Unix Labis displayed in the results
of query 21 in appendix C.31. The “duration” is calculated by the difference between
starttime and end time. Duration of NIS and NFS exercises are90 minutes (1.5 hours,
01:30:00) each. As can be seen from the list, several exercises were not within the nor-
mal exercise period between 0 and 90 minutes. Negative durations and those that were
significantly over 90 minutes (2 hours and up) indicate that technical problems arose
during the exercise, and that manual intervention was needed by an administrator. In
the following discussion, these exercises are thus excluded. Another set of exercises is
also of interest - there are several exercises that took morethan 90 minutes, with ranges
between 90:05 and 98:45 minutes. Possible reasons for this delay could be too much
system workload on the Virtual Unix Lab machine (a 85MHz Sun SPARCstation 5 that
also had to serve other services than the Virtual Unix Lab in summer semester 2004),
or that the mechanism to implement the timeout was inaccurate. Assuming either of
these reasons, the results of the exercises of up to 10 minutes after the “official” end

1 See query 21 in appendix C.3 on page 379

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 147

900 901 904 905

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Check number

S
uc

ce
ss

?

Figure 7.13: Results of netbsd-check-installed-pkg

of an exercise were included in the following analysis. Future versions of the Virtual
Unix Lab should be extended to keep record if an exercise was ended by a user or
aborted by timeout.

The time that students needed for exercises varied. A histogram of the various times
needed by students to perform all NIS and NFS exercises is shown in figure 7.171.
Here, the bigger, white boxes in figure 7.17 a) indicate exercises accumulated over
10 minute intervals, while the smaller grey boxes in figures 7.17 a) and b) indicate
exercises within a resolution of one minute.

The histogram in figure 7.17 a) shows that most exercises tookbetween 40 and 90
minutes, with a significant number of exercises ending in thefinal 10 minutes. This
could either be that the time reserved for the exercise was exactly right for most stu-
dents, or that many exercises were aborted by timeout. As there is no record about the
exercises terminated by timeout, a closer look at the list ofexercises completed around
90 minutes in figure 7.17 b) shows that most exercises were actually endedbeforethe
timeout of 90 minutes, and that very few exercises ended later - if either by timeout
or voluntarily is unknown, but of minor significance, assuming that no exercise was
terminated by timeout before 90 minutes.

The overview of all exercises includes a total of 100 NIS and NFS exercises2, many of
which were finished in between 40 and 90 minutes, and esp. shortly before 90 minutes.

1 See query 23 in appendix C.3 on page 381
2 See query 22 in appendix C.3 on page 381

148 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

898 899 902 903

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Check number

S
uc

ce
ss

?

Figure 7.14: Results of solaris-check-installed-pkg

While no timeout ended any of those exercises, a more detailed analysis seems to be
in order about the distribution, based on the two separate exercises for NIS and NFS.
The 100 exercises observed so far consist of 59 NIS exercises1 and 41 NFS exercises2,
histograms for the NIS exercises are displayed in figure 7.183, the same histograms for
NFS are shown in figure 7.194. Both figures include the number of exercises ended in
10 minute intervals (white boxes) and 1 minute boxes, and also contain an overview of
the exercise duration of 100 minutes in figures 7.18 a) and 7.19 a) as well as zoomed
to the 90th minute in figures 7.18 b) and 7.19 b).

Similar observations as for all exercises can be made for NISand NFS separately –
most exercises took between 40 and 90 minutes, with an absolute majority ending in
the last few minutes, but before the timeout. As such, there seem to be no difference
between the NIS and the NFS exercise. Figure 7.20 compares the distribution of the
NIS and NFS end times, and the overlapping of the notches shows that there is no
significant difference between the two exercises’ durations, i.e. students take equally
long for the NIS and the NFS exercises.

These findings answer the question if the time reserved for exercises was sufficient:
According to the given data, exercise times for NIS as well asNFS were long enough,
but close to the limit. More time for each of the two exercisesshould be considered,
e.g. by changing the exercise time from 90 to 120 minutes, while reducing the post

1 See query 1 in appendix C.3 on page 371
2 See query 3 in appendix C.3 on page 372
3 See query 2 in appendix C.3 on page 371
4 See query 4 in appendix C.3 on page 372

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 149

789 804 888 889

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

Check number

S
uc

ce
ss

?

Figure 7.15: Results of unix-check-user-exists

processing time from 45 minutes to 15 minutes, to keep the 3 hour raster.

A change that should be made to the database structure of the Virtual Unix Lab is
to record if an exercise was ended by the user or by a timeout, to reduce the need
for heuristics to determine between “normal” exercise endsand those terminated by
timeout.

7.2.6 Exercise time

The last aspect of the Virtual Unix Lab exercise results thatis evaluated is the time
of day that exercises were taken. The question that is expected to be answered here
is, at what times students prefer (not) to exercise. This information could be used to
schedule maintenance periods and other downtime.

Exercises in the Virtual Unix Lab can start every three hours, i.e. at 0am, 3am, 6pm,
etc. Table 7.3 lists the start times and number of exercises that were started at the
corresponding time1, figure 7.21 displays the histogram of the same data2.

As can be seen from figure 7.21, most of the exercises were performed in the afternoon
and evening (12am to 9pm). Late evening and early morning (0am and 9pm) were
less popular, and almost no exercises were booked during thelater night and early

1 See query 24 in appendix C.3 on page 382
2 See query 25 in appendix C.3 on page 382

150 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

785 805 887

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

Check number

S
uc

ce
ss

?

Figure 7.16: Results of check-directory-exists

morning hours. This information can be used to determine times for testing and system
maintenance to not disturb students in their “regular” (preferred) practicing hours.

7.2.7 Summary

In this section, the data collected during exercises performed in the Virtual Unix Lab
in summer 2004 and their results were observed under a numberof aspects.

Looking at the frequency and results of the booked exercisesshowed that many users

count | startzeit
-------+-----------

7 | 00:00:00
1 | 06:00:00

11 | 09:00:00
24 | 12:00:00
27 | 15:00:00
32 | 18:00:00
27 | 21:00:00

(7 rows)

Table 7.3: Distribution of exercise start times

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 151

a)

Duration of exercise in minutes

F
re

qu
en

cy

0 20 40 60 80 100

0
10

20
30

40

b)

Duration of exercise in minutes (zoomed)

F
re

qu
en

cy

84 86 88 90 92

0
5

10
15

Figure 7.17: Duration of all exercises: a) overview and b) zoomed to the end of exer-
cise

152 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

a)

Duration of exercise in minutes

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

b)

Duration of exercise in minutes

F
re

qu
en

cy

84 86 88 90 92

0
2

4
6

8
10

12

Figure 7.18: Duration of NIS exercises: a) overview b) zoomed to the end of exercises

7.2. ANALYSIS OF DATA GATHERED DURING STUDENT EXERCISES 153

a)

Duration of exercise in minutes

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

b)

Duration of exercise in minutes

F
re

qu
en

cy

84 86 88 90 92

0
1

2
3

4
5

6

Figure 7.19: Duration of NFS exercises: a) overview b) zoomed to the end of exercises

154 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

NIS NFS

0
20

40
60

80
10

0

Exercise

T
im

e
in

 m
in

ut
es

Figure 7.20: Comparison of durations of NIS and NFS exercises

Hour of day

F
re

qu
en

cy

0 5 10 15 20 25

0
5

10
15

20
25

30

Figure 7.21: Starttime of exercises

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 155

booked the requested exercises more than once each. A directconnection between
weak/strong performance in the first exercise and improved performance in the last
exercise could not be seen. Possible reasons that weak results in the first exercise were
not directly connected to (relatively) strong results in the last exercises may be due to
problems in handling of the system or in understanding of thetasks requested to per-
form in the exercises. However, comparisons of the performance in students’ first and
last exercise showed that there was a significant improvement in overall performance
for both NIS and NFS, which confirms that the request for a controlled testing envi-
ronment from section 7.1 is valid, and that there seems to be apositive impact of the
Virtual Unix Lab.

The investigation about solving of similar tasks in variousexercises, as defined by the
use of the same check script, revealed that a number of tasks were solved properly by
most students, but that there are also a number of areas in which students need to get
trained better or have better information available duringthe exercise.

Looking at the time and duration of exercises, the system is used least at 6am, which
can be used e.g. as a maintenance window. In contrast, many exercises were performed
in the afternoon, evening and night, which – in correspondence with the opening hour
of the school – emphasizes the virtual component of the Virtual Unix Lab. The time
available for students to take the NIS and NFS exercises is very tight, and offering
longer exercises, for example 120 instead of 90 minutes, could make a difference.
Another worthwhile change for future investigations wouldbe to record if an exercise
was aborted by timeout or by a student finishing the exercise.

7.3 Analysis of the user questionnaire

Focus of the evaluation of the Virtual Unix Lab is to evaluatethe system as a whole,
and if students accept it as a useful aid in the learning process. To find out about
students’ acceptance and if they see a benefit in the Virtual Unix Lab, they were asked
to fill out a questionnaire.

Performing a questionnaire was chosen due to the relativelylow effort needed, because
it does not influence students during the exercises. Besidesthe opinion of students
about the Virtual Unix Lab, it shows how student cope with thecourse of exercises,
gets details on students’ use and preference of learning material, and learn about their
overal motivations and background.

7.3.1 Methodology of the questionnaire analysis

Before describing the evaluation of the questionnaire’s results in the next sections, this
section gives an overview of the evaluated aspects, describes design and implemen-

156 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

tation of the questionnaire, and describes the methods usedin the evaluation of the
questionnaire.

7.3.1.1 Aspects evaluated by the questionnaire

Insight of the following aspects is expected from a survey taken by students who used
the Virtual Unix Lab after the “System Administration” lecture:

User acceptance:The first question is, if users find the Virtual Unix Lab a usable ad-
dition to the teaching aids used in the “System Administration” class. Questions
and answers to find out are discussed in section 7.3.2.

Course of the exercise:The question here was how students dealt with the exercises.
This went from choosing the time of the exercises over accessing the Virtual
Unix Lab and mastering the exercises to evaluation and feedback on the exercise
results. The findings are discussed in section 7.3.3.

Use of learning material: The Virtual Unix Lab is intended to supplement the “nor-
mal” exercises as well as the lecture, but what other learning materials are pop-
ular among students? This question is answered in section 7.3.4.

Target audience: While it is known what semester the majority of students who used
the Virtual Unix Lab were in, there is no direct connection from that to their
knowledge and interests which is to be determined to better accustom lecture,
lecture notes and practices. The results for these questions are discussed in sec-
tion 7.3.5

7.3.1.2 Design and implementation of the questionnaire

The first step in conducting the questionnaire on users of theVirtual Unix Lab was
to design it. Theories about questionnaires provide check lists to help during the de-
sign1. Decisions made for the questionnaire were to use a Web basedapproach for
conducting. It was not split on multiple pages to prevent users aborting the survey
before the final page. To encourage users to provide decisiveanswers, no options were
included to voice “no opinion” in most of the cases. If a rank had to be assigned, odd
numbers of options were avoided to prevent undecided users from taking “the middle
way.” For easy evaluation, the use of “free form” text was avoided in favor of offering
multiple choices. The questionnaire shown in appendix C.1 was used for the survey in
the summer term 2004.

To realize the web-based survey, a software was needed to feed in the questionnaire,
and get the HTML pages for the forms, database (table) setup as well as methods to

1 [Bortz and D̈oring, 2002] pp. 244

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 157

retrieve the values for evaluation. No money was available for contracting the survey
or buying commercial software, and the few available Open Source packages found to
fulfill the needs were mostly based on different databases than used for the PostgreSQL
database used for the Virtual Unix Lab. As an example, the “PHP Easy Survey Pack-
age” (phpESP) was HTML-based, but used MySQL as database1. As a solution, a
processor “txt2survey” was written to transform the textual description of the ques-
tionnaire into the necessary HTML, PHP and SQL files.

Before asking students to perform the survey, a group of 20 “beta-testers” was chosen
to perform a test of the survey and ensure that all key items were covered. The beta-
testing group was selected to contain people with basic understanding of Unix system
administration and the areas covered in the Virtual Unix Labexercises, NIS and NFS.
As the whole Virtual Unix Lab as well as the survey were designed to be in German
language, proper understanding of that language was also a requirement for the testers.

After the beta testing period, students who attended the “System Administration” class
in summer 2004 were asked to take the NIS and NFS exercise of the Virtual Unix Lab.
Handing in printouts of feedback on both exercises and answering the questionnaire
was made a mandatory pre-requirement for each student to pass the end-of-term test.
This ensured that 28 out of 33 students who took the exercisesfilled out the question-
naire, even though some questions were left blank. The results are printed in appendix
C.2, the various aspects will be discussed throughout this section.

7.3.1.3 Evaluation methods

Most data in the questionnaire asked is on an ordinal scale, the rest are on a nominal
scale2. Due to this, care has to be taken when choosing the statistical methods used to
analyze the results. In the following discussion, median and modus will be used. The
median is used to determine which value has 50% of the resultsabove and 50% of the
results below it, and thus requires a definition of “above” and “below”, which can only
be found on an ordinal, but not on a nominal scale. The modus isused with both scales
to describe the answer which was chosen most often, on an absolute base3.

As common statistical methods for comparison require not ordinal but interval scaled
values, they cannot be used directly to compare items on an ordinal scale. Ordinal
scales define ordering of items, but not “distance” between them, which prevents ap-
plying methods for interval scaled data. By introducing an assumption of a certain
“distance” between the values, it is possible to transform values from an ordinal scale
to an interval scale, and thus be able to use methods of analytical statistics. In this
discussion, the assumption is to assign fixed distances to values used to describe the
learning materials. They will be used to calculate mean value and quartiles. Box-plots

1 [phpESP, 2007]
2 [Fahrmeir, 2003] pp. 17
3 [Fahrmeir, 2003] pp. 53

158 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

are described in section 7.2.1, they are used to visualize the preference of learning
materials.

For each aspect, results from various questions from the questionnaire are presented
along with references to the exact questions and results in appendix C.2.

7.3.2 Evaluation of user acceptance

Evaluation of user acceptance is a major goal of the questionnaire, and as such, the
relevant parts are discussed first here.

7.3.2.1 Questionnaire results

The first question asked to students was if they found the Virtual Unix Lab a reasonable
supplement to the “system administration” lecture. Most students (15 out of 28) found
it a very reasonable supplement, the remaining 13 students thought it was a reasonable
supplement1.

Asking students if the system was easy to use, most (17 out of 28) agreed. From the
remaining students, more found it to be cumbersome (7 out of 28) rather than very
easy (4 out of 28)2.

When asked if the students felt a general benefit from the Virtual Unix Lab, most found
the benefit as positive (15 out of 28), the majority of the remaining students (8 out of
28) found it as very positive, 4 students found it as neutral and only one felt a negative
benefit3.

The last item of the questionnaire was a free-form field wherestudents could write any
comments they wanted. From the 13 students that used this opportunity, statements
regarding user acceptance show that a two students found theexercise machines to
be slow. Other than that, students wished that the Virtual Unix Lab machines were
available for practicing various topics covered during thefull time of the semester, and
that new exercises be added for setup of firewalls, email, installation of software, and
performing system updates. In general, several students indicated that they had fun
practicing in the Virtual Unix Lab, and that it was a useful supplement to the existing
lecture4.

1 See question #9 in appendix C.2 on page 356
2 See question #11 in appendix C.2 on page 356
3 See question #10 in appendix C.2 on page 356
4 See question #52 in appendix C.2 on page 369

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 159

7.3.2.2 Interpretation of the questionnaire results

Investigating user acceptance of the Virtual Unix Lab showed that students regard the
system as a very good supplement to the existing lecture. They found it easy to use
and that it had a positive benefit on them. This was confirmed bythe wishes students
expressed for using the Virtual Unix Lab for more than just two exercises, and having
it available all the time as well. In general, students indicated having fun using the
Virtual Unix Lab.

The only negative point noted here were slow exercise machines, which is no surprise,
given that the machines run on 75MHz SPARC CPUs, while current Intel and com-
patible CPUs run at 3GHz. Possible solutions here would be touse faster machines or
emulate the exercise machines, see section 2.9.

7.3.3 Evaluation of the course of exercises

To gather data about the course of the exercises performed inthe Virtual Unix Lab, a
number of questions were reserved in the questionnaire. Other methods, like supervis-
ing the exercises by an instructor and/or video, would have been possible in theory, but
hard to implement, due to the fact that the students were intended to do the exercises
at times and places of their choice. The questions discussedhere are in the order of the
exercise process.

7.3.3.1 Questionnaire results

Most students (26 of 28) found that there were enough dates available for exercising.
Only two students found that there were too few1 possible dates.

After booking, most students (20 out of 28, 71%) were using their home machines to
access the Virtual Unix Lab for practicing, while the remaining 7 students (28%) were
using school machines. No student indicated doing the exercises from another place
(e.g. from a company they were working at)2. Most students absolved the exercises
on their own (17 out of 28), 5 of them were in groups of two and 5 in groups of three
students – apparently not everyone filled out the questionnaire3.

When asked if the setup of the machines for the exercises was adequate, no student
found it to be too spartan. Many (11 out of 28) thought of it as slightly spartan, and the
majority of 14 out of 28 considered it acceptable. Only threestudents characterized

1 See question #12 in appendix C.2 on page 357
2 See question #13 in appendix C.2 on page 357
3 See question #16 in appendix C.2 on page 358

160 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

the setup as “comfortable”1. The instructions which described the exercise to perform
that were given to students were found to be too much by only two students out of 28.
The information was exactly right for 9 students, and the majority (16 out of 28) of the
students have wished for more information2.

During the exercise, a majority of students (19 out of 27) wished they had a chance to
ask for more help3. Even more students (22 out of 27) wished the system would have
detected problems automatically, and provided appropriate assistance in that case4.

The time reserved for practice – 90 minutes for the NIS as wellas the NFS exercise,
each – was “too short” for most of the students (15 out of 27), one student found the
time “much too short”, and for 11 out of 27 students the time was “just right”5.

When asked if the feedback given after exercises was detailed enough to understand
mistakes made, about two third of the students (17 out of 26) were able to learn from
their mistakes, while the remaining 9 students still were not sure about what they did
wrong6.

In the field reserved for giving free-form feedback at the endof the questionnaire,
several students asked for more time and information to solve the exercises. Also,
more information was requested by a few students for the feedback after the exercises,
esp. for tasks that were not solved successfully7.

7.3.3.2 Interpretation of the questionnaire results

The schedule of exercises being available in a three-hour pattern was accepted by most
students. Most of them used the “virtual” component of the Virtual Unix Lab to make
the exercises from a location of their choice, instead of being physically present at
school. A similar number of students solving the exercises alone instead of in groups
may lead to the conclusion that students working from their homes did them alone
could not be found true when examining a correlation betweenthese results8.

The exercise machines’ setup was rather spartan when comparing the NetBSD and
Solaris installation to e.g. modern Linux distributions like SuSE, which students were
expected to be most familiar with. As a result, it was expected that students would
find the installation of the exercise machines rather spartan and inadequate for per-
forming the exercises. The results show that most students found the setup acceptable

1 See question #15 in appendix C.2 on page 357
2 See question #18 in appendix C.2 on page 358
3 See question #19 in appendix C.2 on page 359
4 See question #20 in appendix C.2 on page 359
5 See question #17 in appendix C.2 on page 358
6 See question #41 in appendix C.2 on page 366
7 See question #52 in appendix C.2 on page 369
8 The Spearman correlation coefficient between results in question #13 and question #16 was found to

be -0.52.

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 161

or at most slightly spartan, which indicates that the assumptions made about students’
expectations were wrong, in favor of the default installation provided.

An area where work is needed from the teacher’s side are the instructions provided on
the exercise to be performed, as students wished for more information here. Care must
be taken when addressing that point to not give away too much of the solution to the
exercises.

The need for more information and help was also expressed by students. They wished
to either request more help manually, or have the system automatically detect situations
where intervention was needed, and provide help in those situations.

Statements of students that the time for exercises was too short indicate similar prob-
lems: The tasks to perform do not take up much time when understood and all the
needed procedures and commands needed to run are known. Problems in understand-
ing the objectives and how to reach them – searching for information and applying
theories and concepts – cost time, which students seem to lack, as indicated by previ-
ous observations. More practical exercises may be appropriate to make students more
familiar with methods for practical problem solving.

Finally, while a majority of students were able to learn fromthe feedback given to
them after the exercises, one third of the students needed more help and explanations
to understand what they did wrong to not meet the exercise goals. More elaborated
feedback than the one-line summaries given could help here.Possible help could point
at descriptions of the scenarios, procedures to apply in thelecture notes, and lists of
useful commands for setup and troubleshooting for the particular problem.

In summary, it seems students need more information during the exercises to under-
stand what their tasks are and how to solve them. They also want more data given on
feedback to learn from errors.

7.3.4 Evaluation of the use of learning material

Students were provided with a wide range of learning materials for the class, as de-
scribed in section 3.2.4. This section discusses the part ofthe questionnaire that at-
tempted to find out what material was preferred by students.

7.3.4.1 Impact of learning materials in general

The first set of questions asked what source of information the student used most to
learned about the topic of system administration. Possibleanswers were

162 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

1. The “SA” lecture1

2. The lecture notes for the “SA” lecture2

3. Practical exercises accompanying the “SA” lecture3

4. The Virtual Unix Lab4

5. Analyzing school machines5

6. Analyzing own machines6

7. Books7

8. Online information8

For each source of information, the students were asked to indicate how much they
learned from it. The possible answers and their assumed weight as discussed in section
7.3.1.3 were:

4 = A lot (“Sehr viel”)

3 = Some (“Einiges”)

2 = Average (“Geht so”)

1 = Few (“Wenig”)

0 = Nothing (“Nichts”)

Figure 7.22 displays the distribution of the learning materials’ popularity to allow a
comparison with box-plots as described in section 7.2.1. The columns on thex-axis
show the learning materials, while they-axis displays their popularity as described
above.

It is obvious that most students did not like to read books (item #7 in figure 7.22), and
that analysis of school machines (#5) was not very popular either. The most popular
sources of information where students learned most about system administration were
visiting the “SA” lecture (#1) and analyzing of the students’ own machines (#6). The
remaining items were equally popular, with the Virtual UnixLab among them.

1 See question #1 in appendix C.2 on page 353
2 See question #2 in appendix C.2 on page 354
3 See question #3 in appendix C.2 on page 354
4 See question #4 in appendix C.2 on page 354
5 See question #5 in appendix C.2 on page 355
6 See question #6 in appendix C.2 on page 355
7 See question #7 in appendix C.2 on page 355
8 See question #8 in appendix C.2 on page 355

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 163

1 2 3 4 5 6 7 8

0
1

2
3

4

Learning aid (see legend)

P
op

ul
ar

ity

Figure 7.22: Popularity of learning materials among students

7.3.4.2 Impact of learning materials during Virtual Unix La b exercises

The next set of questions asked was how much any of the following learning materials
helped students solve the exercises in the Virtual Unix Lab:

1. The “SA” lecture1

2. Lecture notes for the “SA” lecture2

3. Practical exercises3

4. Analyzing school machines4

5. Analyzing own machines5

6. Books6

7. Online information7

1 See question #21 in appendix C.2 on page 359
2 See question #22 in appendix C.2 on page 360
3 See question #23 in appendix C.2 on page 360
4 See question #24 in appendix C.2 on page 360
5 See question #25 in appendix C.2 on page 361
6 See question #26 in appendix C.2 on page 361
7 See question #27 in appendix C.2 on page 361

164 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

1 2 3 4 5 6 7

0
1

2
3

4

Learning aid (see legend)

P
op

ul
ar

ity

Figure 7.23: Helpful learning material in the Virtual Unix Lab

For each learning material, students were asked to indicatehow much the resource
helped them. The possible answers and their numbers were:

5 = Not used (“Nicht genutzt”) – not included in plot

4 = A lot (“Sehr viel”)

3 = Some (“Einiges”)

2 = Average (“Geht so”)

1 = Few (“Wenig”)

0 = Nothing (“Nichts”)

Figure 7.23 shows that the most popular medium that was used during exercises in the
Virtual Unix Lab were online information (item #7). This is followed by knowledge
gained in the lecture (#1) and the lecture notes (#2), practical exercises performed by
students outside the Virtual Unix Lab (#3) as well as analysis of own machines (#5)
were less popular, and analysis of school machines (#4) and books (#6) were least
used.

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 165

7.3.4.3 Impact of the “SA” lecture for exercises in the Virtual Unix Lab

After observations of the various learning materials, special emphasis was given to
effect of the “SA” lecture and the lecture notes. The next setof questions asked how
much visiting the lecture helped during exercises in the Virtual Unix Lab, in particular
for a number of different tasks:

1. NIS server setup1

2. NIS client setup2

3. NFS server setup3

4. NFS client setup4

5. Handling of Solaris in general5

6. Handling of NetBSD in general6

7. General problem solving7

For each topic, students were asked to indicate how much the lecture helped them.
Again, numerical values are assigned to allow employing statistical methods for com-
parison. The possible answers and their numbers were:

4 = A lot (“Sehr viel”)

3 = Some (“Etwas”)

2 = Average (“Geht so”)

1 = Few (“Wenig”)

0 = Nothing (“Nichts”)

One observation from figure 7.24 is that no student indicatedhe learned nothing from
the lecture for any of the topics, because it is not present onthe scale. The median
of all results shows that students consider having learned above-average skills for all
areas, with the most impact coming from the lecture, i.e. a tendency towards having
learned a lot, in the topics of NFS client setup (item #4) and handling of Solaris (#5)
and NetBSD (#6) in general.

1 See question #28 in appendix C.2 on page 362
2 See question #29 in appendix C.2 on page 362
3 See question #30 in appendix C.2 on page 362
4 See question #31 in appendix C.2 on page 363
5 See question #32 in appendix C.2 on page 363
6 See question #33 in appendix C.2 on page 363
7 See question #34 in appendix C.2 on page 364

166 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

1 2 3 4 5 6 7

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Topic (see legend)

P
op

ul
ar

ity

Figure 7.24: Impact of the “SA” lecture on various topics of the Virtual Unix Lab
exercises

7.3.4.4 Impact of the “SA” lecture notes for exercises in theVirtual Unix Lab

After asking about the impact of the lecture, the importanceof the lecture notes during
the Virtual Unix Lab exercises on the same areas were asked:

1. NIS server setup1

2. NIS client setup2

3. NFS server setup3

4. NFS client setup4

5. Handling of Solaris in general5

6. Handling of NetBSD in general6

1 See question #35 in appendix C.2 on page 364
2 See question #36 in appendix C.2 on page 364
3 See question #37 in appendix C.2 on page 365
4 See question #38 in appendix C.2 on page 365
5 See question #39 in appendix C.2 on page 365
6 See question #40 in appendix C.2 on page 366

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 167

1 2 3 4 5 6

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Topic (see legend)

P
op

ul
ar

ity

Figure 7.25: Impact of the “SA” lecture notes on various topics of the Virtual Unix
Lab exercises

For each topic, students were asked how much the lecture notes helped them. Numer-
ical values are assigned to allow employing statistical methods for comparison. The
possible answers and their numbers were:

4 = A lot (“Sehr”)

3 = Some (“Etwas”)

2 = Average (“Geht so”)

1 = Few (“Wenig”)

0 = Nothing (“Nichts”)

Figure 7.25 shows that the script was regarded as providing above-average help for all
areas, with a tendency towards a lot of information for the Solaris operating system
(item #5).

7.3.4.5 Interpretation of the questionnaire results

This section made observations about the use and preferenceof learning materials of
students in general, and for the exercises in the Virtual Unix Lab in particular.

168 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

In general, students seem to be more interested in reading information online than from
books. Instead of analyzing school machines, which can be assumed to be properly
configured for the various tasks, students use their own (home) machines to learn. The
“System Administration” (SA) lecture seems to be considered a vital source of infor-
mation for practical exercises, and the lecture notes (which are available online!) as
well as other online information are preferred for the practical exercises in the Virtual
Unix Lab. Students confirmed this by stating that the Internet was the #1 reference
material used during the Virtual Unix Lab exercises1. The reason for this may be that
information is quicker and easier to search and obtain when the exact location is not
known. A similar case is that students prefer analyzing (andprobably configuring)
their own machines over the school machines. It can be assumed that they knew their
own machines better, plus they had the credentials to changethe configuration there,
in contrast to the rather unknown school machines, where they were not even allowed
to tune the configuration. More investigation could be done on this topic, which would
go beyond the scope of this investigation.

Visiting the lecture is considered to be important by most students, as it helps some-
what in the various practical tasks that are part of the Virtual Unix Lab. The lecture
script is considered a good source of information, too, especially when it comes to the
Solaris operating system. Possible improvements that could be made are in the areas of
NFS client setup as well as general handling of NetBSD. The question if the demand
for NFS client setup was influenced by the demand for general NetBSD documenta-
tion in the lecture notes would need separate investigation, and goes beyond the scope
of this work.

Another point that may be worth looking into is if the style ofonline information
– usually short, non-prose and keyword-type style – is more appropriate for system
administration than the style of books – prose with introduction, more detailed de-
scription of problems and solutions, and possibly exercises and references. Different
areas to observe are material for acquiring knowledge aboutconcepts and theories in
contrast to reference material and their usage during the course of the learning cycle.

7.3.5 Evaluation of the target audience

Finding out more information about background knowledge and motivation of the stu-
dents participating in the “System Administration” lecture was one of the goals of the
questionnaire which students were asked after completing the NIS and NFS exercise
in the Virtual Unix Lab.

1 See question #52 in appendix C.2 on page 369

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 169

7.3.5.1 Questionnaire results

An absolute majority (21 of 27) of the students had “very big”interest in their study
subject, while the remaining 6 students indicated a “big” interest1. Interest in Unix(like)
operating systems like Linux, Solaris and NetBSD was indicated as “very big” by 16
of 27 students, and with the exception of one student who was only moderately inter-
ested, all other students indicated “big” interest2. In contrast, interest in the “System
administration” topic was a bit lower. While most students (15 of 27) still indicated
“very big” interest, 7 indicated “big” interest and 5 were only moderately interested3.
Asking about the number of lectures visited, 23 of 27 (85%) students visited 9-10
lectures out of ten, most others (11%) came to 4-8 out of ten lectures, and only one
student went to 0-3 out of ten lectures4.

The operating system that students used to start the exercise was some Unix-variant
for most of the students (21 out of 28) while only 7 used Windows5.

To learn more about students’ interest in specific topics that were covered in detail in
class as well as in the Virtual Unix Lab, they were queried howthey estimated the
importance of the “Network File System” (NFS) and “Network Information System”
(NIS). Results show that NFS is considered “big” by most (14 out of 27) students with
a tendency towards moderate interest by a large part (8 of 27)of the remaining group6.
For NIS, importance was only considered as “moderate” by most of the students (12
of 27), with an equal number of students considering its importance as “big” (6 or 27)
and “less” (also 6 of 27)7.

Querying the students if they had prior experience with system administration, e.g.
during internships or from home usage, the majority (22 of 27) of the students did have
prior experience8. To find out what operating system students administrated most, they
were asked to name the operating system they used most, with only one answer pos-
sible to focus on the system they had the most experience with. Answers showed that
most of the students had administrative experience with Linux (16 of 23). 5 Students
had experience with Windows, and one student had worked withSolaris and Novell
each9.

The students who participated in the survey were mostly in their 4th semester (23 out
of 27), one was below the 4th semester, and three students were in semesters 8 or
above10. Gender distribution among students was 96% (26 of 27) male,and 4% (1 of

1 See question #42 in appendix C.2 on page 366
2 See question #44 in appendix C.2 on page 367
3 See question #43 in appendix C.2 on page 367
4 See question #47 in appendix C.2 on page 368
5 See question #14 in appendix C.2 on page 357
6 See question #46 in appendix C.2 on page 368
7 See question #45 in appendix C.2 on page 367
8 See question #48 in appendix C.2 on page 368
9 See question #49 in appendix C.2 on page 368

10 See question #50 in appendix C.2 on page 369

170 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

27) female.

7.3.5.2 Interpretation of the questionnaire results

Comparing the interest of students in their studies in general, in Unix(like) operating
systems, and in system administration in particular, it seems that they have less in-
terest in the subject of system administration than in the other subjects. This may be
due to the fact that the SA lecture is mandatory to all students, in contrast to the SY
lecture which used to be available to volunteer students. This may have an impact on
motivation of students and test result, as was found in section 7.2.

The lack of interest may be due to the selection of topics covered. The fact that the
students consider advanced topics like that of networked filesystems (NFS) and system
management in a distributed environment (NIS) as moderately important supports this
assumption.

If students were confronted with system administration outside the lecture previously,
it was more often with Linux systems than with Windows. Reasons that would need
further investigation (but are outside the scope of this work) could be that Linux sys-
tems need more “administration” than other (Windows) systems, or that students are
more interested in setting up and tuning single-user workstations than being interested
in advanced topics like the management of workstation clusters discussed in the “Sys-
tem Administration” (SA) lecture.

Most students participating in the questionnaire were in their 4th semester, where the
lecture is mandatory for students of (General) Computer Science (“Allgemeine Infor-
matik”). A few students were from higher semesters. From talking to these students,
it can be said that they were not studying (General) ComputerScience, but Computer
Science with either technical or economical emphasis, and that they took the system
administration course voluntarily.

The ration of male to female students was typical for technical study courses.

7.3.6 Summary

Evaluation of the online questionnaire confirms many of the approaches taken in the
Virtual Unix Lab described so far, and also what future improvements can be made in
each of the observed areas:

User acceptance:Students found the Virtual Unix Lab easy to use, that it is a reason-
able supplement of the existing “System Administration” (SA) lecture, and that
use of the Virtual Unix Lab has an overall positive benefit.

7.3. ANALYSIS OF THE USER QUESTIONNAIRE 171

Students requested to keep the Virtual Unix Lab running permanently to allow
doing investigations and testing configuration when needed, including system
privileges. This request could be easily carried out.

Other requests from students to create and offer more exercises in the Virtual
Unix Lab as well as making the machines faster would require more effort. Hu-
man resources and funding are required for creating new exercises, and upgrad-
ing machines needs changes to the Virtual Unix Lab’s software, especially for
the automatic setup and preparation of exercise machines. In addition, funding
would be needed for hardware purchases and associated software changes.

Course of the exercise:The number of possible dates for exercises were enough. The
duration of exercises could have been longer, as was alreadyobserved in section
7.2.5.

Moving from the current 45+90+45 scheme for exercises, which uses 45 min-
utes for preparing the exercise machines, 90 minutes for theexercise and 45
minutes for postprocessing, i.e. the evaluation of the lab machines, would give
chances for either more or longer exercises. For example, going to a 30+90+15
scheme would allow ten exercises per day, 30+90+10 would allow eleven exer-
cises per day, or 45+120+15 would allow eight exercises as right now (which
was found OK by students), but allow longer exercises. Preparation and post-
processing would need to be kept in bounds of the limits set bythe hardware
(for preparation) and the exercise (for postprocessing). The above 45+120+15
scheme would work for the existing setups, assuming exercises do not hang the
system for postprocessing.

Most students used the “virtual” component of the Virtual Unix Lab and ac-
cessed it from home.

More information should be provided with the instructions on the Virtual Unix
Lab exercises, without giving away too much of the solutions. More information
should be provided in the feedback given to students after exercises, esp. on tasks
that were not completed successfully.

If the student needs more information during the exercise, it should be available
on request. As an alternative, instead of having the studentask for help, the
system could monitor the progress, and detect that help is needed or if a situation
is critical, and offer appropriate help automatically. Seechapter 10 for more
ideas in that direction.

Use of learning materials: Students prefer online information to reading books. Stu-
dents also prefer their home machines for analysis over school machines, despite
the fact that the latter are known to be properly configured for tasks, whereas this
is unknown for the former.

Visiting the “System Administration” (SA) lecture is considered important by
students, and the lecture notes are used to a great extent forthe practical exercises
in the Virtual Unix Lab.

172 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

Further studies in this area could compare the use of school vs. students’ ma-
chines as passive vs. active learning materials. Another investigation could be
to evaluate the impact of existing online vs. offline (i.e. book) information on
topics like learning of concepts and theories, in contrast to reference material for
the topic of system administration.

Target audience: Students have great interest in their studies and Unix(like) oper-
ating systems in general. Interest in system administration is a bit less. An
important factor for this may be that the class is mandatory.

The question if students are less interested in system administration and more
interested in using systems to perform tasks not related to the machine and op-
erating system configuration could be the work of future research, but is outside
the scope of this document.

To conclude, the questionnaire showed overall user acceptance of the Virtual Unix
Lab as evaluated, but also that there is a demand for more information in the exercise
description, during the exercises, and when giving feedback after the exercises.

7.4 Other asepcts to evaluate

There are a number of aspects under which the Virtual Unix Labcould be evaluated.
While none of these evaluations is carried out as part of thiswork, they may lead to
overall benefits for the users of the Virtual Unix Lab.

Quality of the VUDSL: One major component that the original version of the Virtual
Unix Lab lacked and that was described in the previous chapters is the DSL
for the verification of exercise results. The question aboutthe quality of that
language arises. Along with that, the question on how to establish the “quality”
of a language arises, though.

Literature on creating languages is scarce, and the situation that judges the qual-
ity of languages is very similar, unfortunately. No established methods were
found by which to judge how “good” the VUDSL is. Possible metrics to apply
could include maintainability, scalability/extendability and tracability of the pro-
gramming language. Similar metrics may be applied not only to the language
(and its manifestation in various programs as exercise texts and their verifica-
tions), but also to the processor of the VUDSL itself.

Dijkstra suggests that a major goal of designing a programming language should
be that its functions can be verified. For that, a language should offer a “small
number of concepts, the more general the better, the more systematic the bet-
ter.”1 This emphasis on verifyability can also be found in modern appraoches

1 [Dijkstra, 1961] p. 4

7.4. OTHER ASEPCTS TO EVALUATE 173

to software engineering, e.g. the V-model specifies use and test cases for each
software feature before looking further at the implementations of the software
features and the tests1,2.

A practical approach to determine the quality of the VUDSL could be to sit
down and write many exercises and the corresponding tests, use the existing
stereotypes (check scripts) and possibly refine them. New language features as
mentioned in section 6.8 could be added as need arises, and the overall qual-
ity of the VUDSL and its processor could be judged by how well they support
those extensions. This approach is tedious, time consuming, and (most likely)
incomplete, and as such not recommended.

No further evaluation attempt at evaluating the “quality” of the VUDSL is made
at this point. The extensions proposed in section 11.6 give hope that the basic
system is extensible and scalable within reasonable amounts of maintenance.

Mobile education: Given its “virtual” nature, the Virtual Unix Lab can be accessed
from anywhere, which was very much accepted by students, as found in the
above evaluation. Accessing the Virtual Unix Lab is not onlypossible from “tra-
ditional” access devices for Unix – PCs, workstations or even dialup-terminals–
but also from mobile devices like PDAs, cell and smart phones. A number of
restrictions still apply for such “mobile” nodes which do not affect the access
devices commonly used, and problems with format and formatting of the Virtual
Unix Lab’s user interface can be expected.

A more in-depth discussion of the issues and challenges of mobile education can
be found in [N̈osekabel, 2005].

Accessibility: A number of considerations are needed to adjust software anduser in-
terfaces to be accessible. Use of color, size of fonts, layout of user interface
components, use of language, using keyboard and mouse alternatively are just a
few examples given in many guidelines that are intended to make software ac-
cessible through various laws3,4,5, general accessibility standards6,7 and a rich
choice of software interfaces and style guides8,9,10,11.

While the benefit of making software accessible to those thatdepend on it is
recognized as important, no effort in that direction is madein this document
with respect to the Virtual Unix Lab. It is left to future works to evaluate, judge
and/or improve the existing situation of the Virtual Unix Lab.

1 [iABG, 2007]
2 [Versteegen, 2001]
3 [Government of the United Kingdom, 2001]
4 [BGG, 2002]
5 [Thomas, 2000]
6 [ISO 16071, 2003]
7 [BITV, 2002]
8 [The KDE Project, 2007]
9 [Trolltech, 2007]

10 [The GNOME Project, 2007]
11 [World Wide Web Consortium, 2007]

174 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

Security: While the system was designed with security in mind, it was never eval-
uated under that aspect. Areas that could be observed in suchan evaluation
are the web based user interface, its implementation1, and precautions against
users breaking out of the exercise lab’s network into the production network to
which the Virtual Unix Lab is connected2. Methods for evaluation could range
from code audits3,4,5 over network audits and penetration tests6,7,8,9 to general
practices of network and system security10,11,12.

Privacy: As an aspect of security, privacy of the system, its users, and their data is not
evaluated per se, as stated above. But in the context of user modeling, privacy is
a concern, and while no full audit is performed, related issues are discussed in
section 8.2.

Usability: The existing user interface was taken as part of the preliminary work on
the Virtual Unix Lab done for the HWP project “Practical Unixcluster setup”,
and the design goals were modeled to the functional requirements there13.

An evaluation of the existing user interface could identifypotential improve-
ments for user guidance in general, and how to realize improved user guidance
for tutoring in particular. While the latter is further discussed in chapter 10, a
full evaluation of the user interface and dialog structuresof the Virtual Unix Lab
under usability aspects are considered outside of the scopeof this work.

Possible methods for further research would be focus groups, expert reviews,
personas and usage scenarios, among others14,15,16.

Check lists for desirable goals in user interface design canbe found in a num-
ber of standards like ISO 924117 and the VDE 5005 standard for “software-
ergonomics in office communication”18. They describe information presenta-
tion19, dialog guidance via on-screen forms20, fundamentals of dialog design21,

1 [Zimmermann, 2003] pp. 9
2 [Feyrer, 2004d]
3 [Heffley and Meunier, 2004] pp. 90278
4 [Hill, 1988] pp. 291
5 [Huang et al., 2004] pp. 45
6 [Lytle et al., 2005] pp. 197
7 [McNab, 2004] pp. 57
8 [nmap, 2007]
9 [Nessus, 2007]

10 [Herold, 2005] pp. 1
11 [Schneier, 2005] pp. 1
12 [Trček, 2005] pp. 43
13 [Zimmermann, 2003] pp. 9
14 [Jakob Nielsen, 1997] pp. 94
15 [Gibbs, 1997]
16 [Shneiderman, 2004] pp. 139-172
17 [ISO 9241, 2003] pp.37
18 [VDI-Gesellschaft Entwicklung Konstruktion Vertrieb, 1990]
19 [ISO 9241, 2003] ISO 9241-12, pp. 111
20 [ISO 9241, 2003] ISO 9241-17, pp. 227
21 [ISO 9241, 2003] ISO 9241-10, pp. 81

7.5. CONCLUSION OF THE EVALUATION 175

and user guidance1.

Full evaluation of all the details addressed in these standards is a lot of work,
even if these standards do provide their own checklists for easier testing and
evaluation. Other approaches to perform these evaluationswould be to employ
evaluation methods like IsoNorm2, IsoMetric3, the Questionnaire for User Inter-
face Satisfaction (QUIS) by Shneiderman, Slaughter and Norman4, the System
Usability Scale (SUS) by Brooke5, the Web Usability Index6 and others7,8, in
addition to the existing guidelines for usability design and engineering9,10.

User Guidance: An analysis of the dialog structure of the Virtual Unix Lab could
be performed to identify places in the user interface that could be improved for
better handling by the users as well as adding components to introduce active
user guidance. Such active user guidance could include usermodeling, tutoring
and user adaption.

An analysis of the Virtual Unix Lab’s user interface under these aspects as well
as investigations on how to realize a tutoring component anduser adaption will
be given in chapters 10 and 11.

7.5 Conclusion of the evaluation

After observing several aspects of the existing Virtual Unix Lab, this section draws
a conclusion on the evaluations performed, i.e. about the Virtual Unix Lab exercise
results in section 7.2.7 and the results from the questionnaire in section 7.3.6.

Examining the results of students who repeated an excises inthe Virtual Unix Lab
more than once, and comparing their first and last results didshow some significant
improve in performance. No Areas where the learning experience can be improved
are partly possible within today’s incarnation of the Virtual Unix Lab, and partly need
deeper changes to it. Among the items that can easily achieved are making exercises
longer (e.g. 120 instead of 90 minutes) and offering more exercises.

Giving more information to students during exercises was requested repeatedly. To
supply more information for assistance of the exercise requires a change in the current
model of the exercise procedure, and thus a change in the Virtual Unix Lab itself.

1 [ISO 9241, 2003] ISO 9241-13, pp. 148
2 [Prümper and Anft, 2006] “Fragebogen ISONORM 9241/10”
3 [Gediga et al., 1999] pp. 151
4 [Harper and Norman, 1993] pp. 224
5 [Brooke, 1996]
6 [Harms et al., 2002]
7 [UsabilityNet, 2007] “Questionnaire ressources”
8 [Baseline, 2007] “Frequently Asked Questions about User Validation: Questionnaires”
9 [Nielsen, 2001]

10 [Nielsen, 1994]

176 CHAPTER 7. EVALUATION OF THE VIRTUAL UNIX LAB

Possible areas for providing better information and assistance are a tutorial component
and user adaption, which are discussed in the following chapters, 9, 10 and 11.

Part III

Tutoring and user adaption

Chapter 8

Introduction of tutoring and user
adaption

The previous parts of this work have introduced the Virtual Unix Lab in general, and
how verification of exercise results can be realized with thehelp of a domain specific
language. The third part of this work describes how the foundation laid out so far can
be used to add tutoring and adaption to the Virtual Unix Lab.

This chapter covers the fundamentals for tutoring and user adaption that are used for
defining corresponding components in the Virtual Unix Lab.

8.1 Fundamentals of tutoring

Using computers to help in teaching is old, and has grown a number of related acronyms
like Computer Aided Instruction (CAI), Intelligent Computer Aided Instruction (ICAI)1,
and Intelligent Tutoring Systems (ITS)2. Related concepts are discussed in this section
are “knowledge”, “communication”3, “intelligence.”

The named concepts are implemented in learning management system (LMS), learn-
ing environments, and tutoring systems, as described in [Darbhamulla and Lawhead,
2004]. A more in-depth discussion of the differences between a tutor, an assistant and
a consulted is given in [Wenger, 1987, pp. 232] and [Davies etal., 2001, pp. 54].

While the Virtual Unix Lab offers a wide field of applications, some topics will not be
discussed here to narrow the focus; references to literature are given here for further
information.

1 [Wenger, 1987] pp. 3
2 [Freedman et al., 2000] pp. 1
3 [Wenger, 1987] pp. 6

179

180 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

Group teaching: Tutoring of groups of students – in contrast to tutoring of a sin-
gle student – allows applying many advanced tutoring techniques in the area
of communication, e.g. discussion forums, mailing lists, promoting students as
tutors of their co-students, and many more - see the methods listed under “Con-
structivism” in section 3.1.2. Keywords to mention for thisarea of research
are Computer Supported Collaborative Work (CSCW) and Computer Supported
Collaborative Learning (CSCL)1.

Texts that discuss group teaching are [Suebnukarn and Haddawy, 2004] for ap-
plication in medical teaching, and [Yin et al., 2000] for a knowledge-based ap-
proach for designing intelligent team training systems. Further texts that cover
group teaching include [Yacef, 2004, pp. 343], [Haake et al., 2004] and [K̈olle,
2007].

Even though group teaching is not discussed in detail here, tutoring and user
adaption can be applied to individual members of a group in ways that would
not be possible otherwise. As such, group teaching is considered an extension
to the tutoring applied to single students that is discussedhere.

Natural language processing:There’s a large base of literature for natural language
processing that is specifically targeting the Unix operating system, its user inter-
face, and how to apply it to tutoring for users that are new to the system. The
area of natural language interfacing is not considered here, as the existing user
interfaces of the Unix operating system should be learned, and no additional
interfaces be provided to (possibly) make learning and using the system easier.

One of the problem areas with natural language interfaces isto understanding
commands, which makes them sub-optimal for the general application area. See
[Hegner, 2000, p. 183] for more information on these problems.

Further discussions of using natural language processing with the Unix operating
system’s user interface can be found in [Wilensky et al., 1984], [Manaris et al.,
1994], [Manaris and Pritchard, 1993], [Chin, 1983], [Wilensky et al., 1988] and
[Kevitt, 2000]

The discussion led in the following sections covers learning theories and instruction
design as discussed in section 3.1.1, including areas from instruction theory.

8.1.1 Approaching tutoring

The basis for tutoring can be found in communication models2. When analyzing tu-
torial support, communication processes and related models of communicable knowl-
edge have to be observed3. In this communication process, the computer acts as rep-
resentational medium, the domain acts as subject matter andthe student as a source of
1 [Haake et al., 2004]
2 [Wenger, 1987] pp. 6
3 [Wenger, 1987] pp. 307

8.1. FUNDAMENTALS OF TUTORING 181

variability in the models of expertise1. Kobsa also states that user models are “a neces-
sary prerequisite for a dialog system to exhibit cooperative dialog behavior”2, and even
for non-cooperative dialog systems user models provide an important improvement of
communication and flexibility.

Knowledge communication consists of several components and levels applied in a
number of communication models3. The following discussion focuses on the model of
intelligent tutorial systems (ITSs) as described in [Freedman et al., 2000] and [Schul-
meister, 2007, p. 171].

The four basic components can be identified4:

• The domain model.

• The teaching model, also called pedagogical or didactic model.

• The user model, also referenced as student model.

• The user interface.

The following sections describe a top-down approach towards a tutoring system that
employs this approach by first analyzing the didactic realization of the teaching model,
providing an analysis of the topics to teach for the domain model, then investigating
tutorial and adaptive help for the student in the user model,and finally by observing
any changes in the user interface of the Virtual Unix Lab thatcould assist in that
process.

Implementation of the tutoring architecture described here and the tutoring design
ourlined in chapter 10 is beyond the scope of this work. For anactual implementation,
it is expected that an iterative development model similar to the two-step approach
chosen to implement verification of exercise results in chapter 6 can be employed.

8.1.2 The teaching model

The teaching model in tutoring systems describes how teaching is performed, and what
related didactic operations are performed. This section outlines a number of possible
approaches that can be used, and gives some guidelines on howto determine which
approach to choose. This serves as decision base in chapter 10.

1 [Wenger, 1987] p. 309
2 [Kobsa, 1990] p. 4
3 [Wenger, 1987] pp. 417
4 [Wenger, 1987] pp. 13

182 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

epistemic individualbehavioral

plan−based
goal

diagnosed
opportunity

didactic domain diagnostic

goals

actions

local monitor

long−term

DIDACTIC
OPERATION

decision base
constraints resources

plan

target level

context

diagnostic
expectations

didactic
episode

Figure 8.1: Aspects of a didactic operation. Image source: [Wenger, 1987, p. 397]

8.1.2.1 Teaching and didactic operations

The teaching model in intelligent tutoring systems is also referred to as didactic or
pedagogic model. It focuses on pedagogical activities thatare intended for a direct
effect on students, not only on diagnostic activities1. There are four characteristic
aspects of a didactic operation: the plan of action that enacts a didactic operation, the
strategic context in which the operation is triggered, the decision base that provides
constraints and resources for the construction of the operation, and the target level of
the student at which the operation is aimed2. Figure 8.1 illustrates the relationship.

Didactic operations influence the plans of actions. Plans exist on all levels, and every
action – however small – can be viewed as a plan. Episodes can be used to create
diagnostic expectations, and the results of the plan can be monitored. For the moni-
toring, the bandwidth of the communication channel betweenthe entity that performs
the monitoring and the monitored entity is of importance. Likewise, the fact that un-
certainty is a fundamental fact of all communication shouldbe remembered3.

For the pedagogical context, the assumption is that “instruction has goals.”4 Activities
can happen either as part of a plan, or on impulse because it isconsidered appropriate
in the given context. This may happen if a situation in which an activity happens
was not brought up as part of a plan, but if the right final step is still recognized as
appropriate. For plan based contexts and strategies, the pedagogic goals dominate.
Mixed strategies are still possible to follow alternative goals at the same time5.

The decision base for didactic operations consists of resources and constraints. Re-

1 [Wenger, 1987] p. 395
2 [Wenger, 1987] p. 396
3 [Wenger, 1987] p. 397
4 [Wenger, 1987] p. 398
5 [Wenger, 1987] pp. 398

8.1. FUNDAMENTALS OF TUTORING 183

sources are required as building material, and constraintsensure didactic effectiveness
and often imply the resolution of conflicts between various competing factors that are
affecting decisions. There are three potential sources of both resources and constraints:
didactic, domain specific, and diagnostic information. Thedidactic base provides ped-
agogical principles and sequencing schemes, e.g. simple tocomplex and focused vs.
diversified. Tailored interventions and tailored sequences address specific issues that
are found during didactic processes, and they describe intervention strategies for those
processes and situations. For this, they can use a lot of diagnostic information if avail-
able1.

The target level of a didactic operation is defined as the level of the student model at
which an operation seeks immediate modification. Possible levels are behavioral, epis-
temic or individual2. At the behavioral level, guidance of a task is performed without
addressing any internalized knowledge3 in any direct or organized fashion. Possible
types of behavioristic actions are specific hints, general advice, error correction by
direct or indirect indication, or suggestions of better solutions4. Guidance at the epis-
temic target level explicitly seeks to modify the student’sknowledge state, either via
direct communication or via practice. The latter is intended to exposing the student to
specific experiences5, see “situated learning” in section 3.1.4. Actions at the individ-
ual target level have positive effects on student learning even if they perform no direct
form of knowledge communication. Instead, this can be individual motivation (e.g. for
despaired students, so further knowledge communication ispossible at all), adjusting
of speed, abandoning a topic temporarily, or congratulating students on a small suc-
cess. Using individual actions reflects on the student as a knowing, performing and
learning being itself. Such a reflexion may be critical to thewhole operation of what
teaching strategies to apply. They can only be discovered inan interactive way, it is
not possible in other “passive” media like books or films6.

Bridging the gap between communicable knowledge and a modelof the student is “ex-
tremely difficult and computationally costly.” As a result,applied didactic knowledge
is applied in compiled form. This could happen via established curricula, tested lesson
plans, libraries of activities, and presentation techniques7.

The organization of teaching can happen in either linear form, where the network of
a student’s knowledge grows incrementally, or as web of topics where the learning
determines the depth rather than the breadth of knowledge. In both organizations, a
difference is made between active and passive assistants. Data acquisition can e.g.
happen by keystroke analysis and other diagnostic methods,and wrong steps can be
determined by applying an existing so-called “theory of bugs”. The interplay of top-

1 [Wenger, 1987] pp. 401–407
2 [Wenger, 1987] pp. 408
3 See “Cognitivism” in section 3.1.1
4 [Wenger, 1987] pp. 408
5 [Wenger, 1987] pp. 410
6 [Wenger, 1987] pp. 411
7 [Wenger, 1987] p. 314

184 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

down expectations and bottom-up reconstruction can be modeled with diagnostic plan
analyzers1. More details on factual vs. procedural knowledge and the relationship be-
tween various levels (behavioristic, cognitivistic, constructivistic) of didactic analysis
can be found in chapter 3 and in [Feyrer, 2005].

8.1.2.2 Methods for plan recognition and assistance

After laying out the didactic foundations of teaching and the requirements for plan
recognition, assistance, and diagnosis, this section describes how to realize them. It
introduces a number of approaches that can be chosen from, starting with classical
approaches, going from cognitive and linguistic methods toartificial intelligence. This
will be used as base for selecting methods that can be used in the Virtual Unix Lab,
which is described in the next section, 8.1.2.3.

8.1.2.2.1 Classical approaches

There are several classical approaches for plan recognition and assistance, which are
introduced here.

The overlay model takes a list of domain concepts as input, and forms its user model by
noting to what extent each concept is believed to be known by the student2,3. Domain
knowledge is split into independent components, and the tagging system maps the
knowledge of the student on the predefined components. The model defined that way is
a subset of the full model, which provides a simple mechanismto determine candidate
areas of pedagogical actions4. One limitation of the overlay model is that it is restricted
to the knowledge of the domain expert. This can be solved by utilizing several experts
plus a meta-expert5. Another issues is that interdependencies between single concepts
are not considered, which are important for procedural knowledge6. Improvements of
the static overlay model can be made by segmenting tasks and components as well as
adjusting them to a genetic graph as described in [Wenger, 1987, pp. 140]. See section
8.1.4 for a further discussion of the student model.

The differential student model offers a procedural networkas contrast to a semantic
network, where major tasks are split into smaller tasks, andtests for possible errors
are included7. In contrast to statistical models, procedural networks can also tell what
wrong thinking (“bug”) may cause a problem, due to their deterministic deep-structure

1 [Wenger, 1987] pp. 224–226
2 [Carr and Goldstein, 1977]
3 [Wenger, 1987] p. 199
4 [Wenger, 1987] p. 346
5 [Wenger, 1987] pp. 232
6 [Wenger, 1987] pp. 137
7 [Wenger, 1987] pp. 154

8.1. FUNDAMENTALS OF TUTORING 185

model. Limitations of this model are that help is pre-determined by the model, and
if a case is not modeled, it can not be trained. Furthermore, no reasoning can be
givenwhya wrong decision was made at a certain point1. A problem of this model is
constructing it, as many cases need to be considered – Wengermentions “110 observed
bugs for subtraction”, “a test capable of distinguishing among 1200 compound bugs
with only 12 problems” and a “place-value subtraction with borrowing [...] turns out
to involve as many as 58 subskills.” He also adds that an existing theory of bugs for
the problem domain will be of valuable help, as it turns the “art of test design” into a
formal process2.

The Leeds Modeling System (LMS) is related in that it compares rules similar to the
before-mentioned sub-goals. But in contrast to only modeling and comparing rules,
it also knows about mal-rules. Those may be generated automatically from existing
data3.

The User Modeling Front End (UMFE) is another extension to the overlay model that
assigns a scale to the tagged domain concepts, indicating how well known a concept
is, see the “three levels of knowledge” in [Michaud et al., 2000]. It also assumes
connections between the concepts, and does not treat them independently. Sources
of evidence on which conclusions are drawn include a stereotype of the user’s initial
understanding, a user’s statements, and inferences drawn via rules. All this is repre-
sented in a framework of the problem space that is split between primitive operators
and conditionals4.

8.1.2.2.2 Cognitive approach

The difference between classical and cognitive tutoring approaches is that the former
try to reflect the learner’s internal line of thinking, whilethe latter “only” provide a
procedure for building up knowledge5.

Tutoring and plan recognition with cognitive approaches assumes that knowledge is
first acquired declaratively through instruction, and thenconverted and reorganized
into procedures through experience, following Piaget’s concept of assimilation and
accommodation described in section 3.1.1. In the first step of knowledge compilation,
general pieces of information are “proceduralized” into specific rules that apply to a
special class of cases. These are collapsed into few rules that are used in sequence
to achieve a goal, which in turn is used to compose a single rule that combines all
their efforts6. The representation of cognitive functions is assumed to happen as set of

1 [Wenger, 1987] pp. 156
2 [Wenger, 1987] p. 165
3 [Wenger, 1987] pp. 194
4 [Wenger, 1987] p. 221
5 [Wenger, 1987] pp. 304
6 [Wenger, 1987] p. 291

186 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

production rules, and no limit on the size of the long-term memory is assumed1.

Comparison with human tutors shows that they never state theproductions that have
to be learned in a declarative way explicitly, especially asproductions are the repre-
sentation of the skills to be learned. Instead, they providea problem solving context
and point out factual problems, without telling how to fix them, i.e. not giving away
procedural knowledge. Those procedural skills should be compiled by the learner dur-
ing problem solving by properly understanding, integrating, and later recalling and
adapting2.

Feedback is considered important in the learning process, and the earlier feedback
happens, the better3. Immediate feedback is considered useful, but care needs tobe
taken in debugging and troubleshooting situations. Testing is done though rules and
mal-rules4.

8.1.2.2.3 Linguistic approach

Using a linguistic approach to plan recognition and tutoring allows to separate syn-
tactic, semantic and pragmatic views on a problem. The challenge is inference of
the pragmatic and semantic view from the corresponding semantic and syntactic view,
though5,6. Augmented Transition Networks (ATNs) and Planning ATNs can help to re-
alize this approach, which is comparable to parsing networking protocols like TCP/IP7.
In that regard, the same principles like Jon Postel’s paradigm of “be liberal in what you
accept and conservative in what you emit”8 can be applied to parsing of the various
semiotic layers. Miller, Goldstein and Genesereth also support this idea by viewing
plan recognition as instance of a parsing problem9,10, where plan recognition is per-
formed in a “bottom-up” fashion, matching expectations that are modeled “top-down.”
Also, software engineering techniques can be applied that way to describe natural lan-
guage problems verbally, and make a transition of the problem domain from natural
language processing to programming11.

8.1.2.2.4 Artificial intelligence

1 [Wenger, 1987] p. 291
2 [Wenger, 1987] pp. 291
3 [Heer et al., 2004] p. 468
4 [Wenger, 1987] pp. 296
5 [Wenger, 1987] pp. 228
6 [Morris, 1938]
7 [Wenger, 1987] p. 229
8 [Postel, 1981] p. 13
9 [Wenger, 1987] p. 234

10 [Genesereth et al., 1982] pp. 124
11 [Wenger, 1987] p. 235

8.1. FUNDAMENTALS OF TUTORING 187

The idea of using artificial intelligence (AI) and expert systems in computer added
instruction (CAI) goes back to Carbonell in 19701. In contrast to the “bottom-up” lin-
guistic approach described in the previous section, this approach assumes a complete
domain model, in which navigation and searching can be performed. This approach
is related to semantic networks, and addresses the drawbacks that they have in the ar-
eas of representation of procedural knowledge by using simulations for feedback and
exercise of debugging and troubleshooting2.

Assistance is given by recognizing the way that the student is solving a problem, and
comparing it with other possible steps. If the student’s approach differs from a possible
solution, he can be brought back on track. Solutions for planrecognition can be found
with strategies like a width first or depth first search of the domain model, or by using
hill-climing or means-end analysis with the student’s input as starting points3.

Historic examples include a framework for integration of intelligent tutoring systems
in a gaming simulation4 and for simulation education5. Kerner and Freedman describe
a “Content Knowledge Base” that takes a start and end condition as well as a list
of known steps and effects, and then determines the proper solution automatically6.
Couch and Gilfix also apply logic programming to plan recognition and tutoring, and
they use Prolog to describe a system that compares current and target state, and that
identifies necessary changes7. Similar systems that solve problems for the domain of
Unix system management are cfEngine8 and LCFG(ng)9. [Narain, 2005] describes
a system that designs a network setup for a given problem description, including all
configuration parameters.

While those systems start to be of use for solving problems, they do not offer a base
for reasoning, and as such are not ripe for use in education and training yet. The
time that has passed between Couch and Gilfix’ Prolog-based approach and Narain’s
implementation show that there’s some more time needed to grow mature.

Another aspect is complexity of the application domain. [Kautz and Selman, 1992]
describes a very simple block-world that needs eleven rules. For a complex system like
Unix, the effort will be much higher. Furthermore, to implement rollback of actions
like deleting files and terminating processes is consideredhard, even if not impossible
through means of speculative execution10.

In summary, realizing plan recognition and tutoring via AI is considered very difficult

1 [Carbonell, 1970]
2 [Wenger, 1987] p. 30
3 [Haberlandt, 1999] pp. 157
4 [Angelides and Paul, 1993]
5 [Taylor and Siemer, 1996]
6 [Kerner and Freedman, 1990]
7 [Alva L. Couch and Gilfix, 1999]
8 [Burgess, 1995]
9 [Anderson and Scobie, 2002]

10 [Su et al., 2007]

188 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

to realize1.

8.1.2.2.5 Semantic networks and ontologies

Semantic networks are directed graphs with nodes that are connected by directed rela-
tions. The nodes represent properties, and the relations indicate a semantic relationship
between the nodes2,3. While the properties and relations can be from a wide field, the
primary area of application is in establishing linguistic models of natural languages.
Associated theories like Schank’s Conceptual Dependency Theory assists in the mod-
eling process for semantic networks4.

Ontologies describe the relations between nodes and relations5. The relation can either
be within a specific domain, forming a domain-specific ontology, or on a more general
scheme across multiple domains, forming a so-called upper ontology6.

Applications of semantic networks can be found in mind maps7,8 and the extension
of the World Wide Web with semantic information into Tim Berners-Lee’s “Semantic
Web”9. Many notations are available for describing elements in semantic networks
and ontologies. Example languages include the Web OntologyLanguage (OWL)10,
the Resource Description Framework (RDF)11, and CycL, the language of the Cyc
knowledge base12.

Semantic networks can be used as model for knowledge representation. It is only
a factual, objective model without personal connotations as would be expected from
cogntivive learning theories. Furthermore, the semanticsare appropriate as a model
for knowledge, but not to reflect a learning process13.

Semantic networks can be extended from reflecting pure factual knowledge into han-
dling procedural knowledge to some extent. The main application lies within factual
knowledge, though14. Pedagogical actions that can be based upon the knowledge rep-
resenation allow reasoning about the student’s knowledge,concepts he has already
learned and what facts he missed, and a system can give hints on related concepts and

1 [Wenger, 1987] p. 18
2 [Quillian, 1967]
3 [Chaffin, 1992]
4 [Schank, 1972]
5 [Staab and Studer, 2004]
6 [Gruber, 2008]
7 [Buzan and Buzan, 2006]
8 [Nast, 2006]
9 [Berners-Lee et al., 2001]

10 [W3C, 2004a]
11 [W3C, 2004b]
12 [Lenat and Guha, 1991]
13 [Quillian, 1988] p. 80
14 [Quillian, 1988] p. 81

8.1. FUNDAMENTALS OF TUTORING 189

terms that the student is found not to be fluent with.

Examples of learning environments that use semantic networks alone or in combina-
tion with other systems include the friendly intelligent tutoring environment described
in [Jerinic and Devedzic, 2000], the WeKnow project described in [Sattari et al., 2007],
and the Electronic Learning Assistant (ELA) described in [Kolovski et al., 2004].

8.1.2.2.6 Frames and scripts

Frames organize and store knowledge in units that represente.g. situations or objects.
Frames consist of slots and filters. Slots describe properties, and filters describe values
and can link to other frames1. If a slot didn’t have a specific value, a default value is
assumed. This reflects the separation into general and specific knowledge2. Scripts
describe sequences of events in a particular context, i.e. provide an extension of the
factual knowledge represented in frames for procedural knowledge3,4.

The application of frames and scripts in education requiresa full model of the domain
in frames and scripts. Assuming the existance of such a domain model, frames and
scripts can be used to identify what solution a user persues for a given problem, detect
deviations from common procedures in the user’s actions, and answer general ques-
tions about the knowledge domain. The drawback of the model is that the underlying
domain model, i.e. the frames and scripts, are hard to model,esp. in complex do-
mains and/or for complex tasks. Frame databases like Lenat’s Cyc project5,6 and the
Maryland PARKA project7,8 show the complexity and effort needed for limited areas
of application.

A rare practical example of a project using frames and scripts is Script Applier Mecha-
nism (SAM) project, which allowed to answer questions aboutfairy tales. Their knowl-
edge representation was based on frames, and scripts were applied to a database that
was derived by semantic network techniques in the MARGIE project9. Other projects
use frames and scripts for educational projects in combination with other techniques,
like the frame-based interaction and learning model for ubiquous learning in [Si et al.,
2006].

1 [Minsky, 1975]
2 [Brewer, 2007]
3 [Schank and Abelson, 1975]
4 [Kirsch, 2003] pp. 11
5 [Lenat and Guha, 1990]
6 [Cycorp, 2007]
7 [Evett, 1994]
8 [PLUS, 2007]
9 [Cullingford, 1981]

190 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

8.1.2.2.7 Bayesian networks

Bayesian networks represent a probabilistical model that is based on an directed acyclic
graph (DAG). In addition, statistical methods exist to model the inter-dependencies be-
tween the nodes. They can be used to predict and classify statements about behaviour
and development within the domain model. A major advantage of bayesian networks
is that they can create a domain model, or improve an existingdomain model without
explicit manual effort1.

The underlying graph of the network needs to exist or be created, and the probability
of moving from one node to another one can be modeled dynamically. Based on this
model, statements about certain developments in user behaviour can be made based on
previous user interactions that built the domain mode. Verification of the statements is
needed, though.

Some applications of bayesian networks in teaching emphasise their supporting nature
of other teaching models, e.g. when recognizing what kind oflearner a certain stu-
dent is: [Garcia et al., 2007] shows that detection is possible if a student’s learning
mode is reflecting or acting, steadily or in fits and starts, and if he learns intuitively or
sensitively. As such, bayesian networks find their application within a so-called “de-
cision support system” (DSS), e.g. within intelligent tutoring systems (ITSs). Other
examples include the long-term modeling of a user’s factualknowledge in the form of
english capitalization and punctuation in [Mayo and Mitrovic, 2001], the web-based
ITS described in [Butz et al., 2006], and [Conati et al., 2002], which describes how
bayesian networks can help to cope with uncertainty in student modeling.

In summary, bayesian network can be considered to be rather asupporting tool for
other methods than as a standalone teaching model2.

8.1.2.3 Choosing a method

The previous section outlined various approaches for realizing assistance in tutoring
systems. To determine which approach is best fit, a number of questions need to be
answered.

The first decision is if a mode based on a psychological approach should be chosen over
a learning theory based on pedagogics3. The system should classify students by their
success or failure4, and it should be considered that constructivistic approaches are

1 [Ben-Gal, 2007]
2 [Ben-Gal, 2007]
3 [Wenger, 1987] p. 305
4 [Wenger, 1987] p. 17, pp. 153

8.1. FUNDAMENTALS OF TUTORING 191

considered difficult to realize1 and “extremely difficult and computationally costly.”2

The diagnostic process may require descriptions in domain specific languages, and the
diagnostic process is accounting for the required data3.

Section 10.1 describes the selection process for tutoring in the Virtual Unix Lab, and
its outcome.

8.1.3 The domain model

The domain model of tutoring system describes the object that the communication is
about. In this regard, a computer acts as the representational medium, the domain is
the subject matter, and students are a source of variabilityin the model of expertise4.
The domain model contains data about the application domainin both compiled and
articulate form5. Furthermore, with the help of the domain model it is – to someextent
– possible to automatically create exercises for students6.

Compiled knowledge is used for several reasons. First, it can be used to indicate
specific circumstances, e.g. illustrate a connection, illustrate causal or temporal con-
nections, or to connect specific actions with specific situations. Second, compiled
knowledge can make working along a certain model or by a specific approach easier.
Third, compiled knowledge can serve a specific purpose e.g. to present a certain setup
in a specific light, possibly simplifying or omitting facts that are not of importance
to the situation or methods to learn. The advantages of compiled knowledge in this
context is that it is highly efficient and simple to apply7.

One application of compiled knowledge could be to evaluate the possible steps for
the domain concept, model the student, offer direct problemsolving with suggestions,
select problems to optimize learning according to its student model, solve examples
step by step for the student to follow and learn when presented with a better solution.
All these points can be used in adaptive interaction, see section 8.2.

Besides compilation of knowledge, articulation can improve the form of communi-
cation towards a certain goal, e.g. causality, structure, functionality, teleology, con-
straints and definitional semantics8. As such, processes can be divided into fine-
grained steps that not only allow to understand the final result, but also the order of
events and decisions that lead to those results. Decomposition can be applied to the
subject matter to split it into various views: a curriculum view for learnable units and

1 [Schulmeister, 2007] pp. 218
2 [Wenger, 1987] pp. 314
3 [Wenger, 1987] p. 18
4 [Wenger, 1987] p. 309
5 [Wenger, 1987] pp. 325–327
6 [Shah and Kumar, 2002] pp. 170
7 [Wenger, 1987] p. 329
8 [Wenger, 1987] pp. 331

192 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

a diagnostic view for perceptual units. The various parts and views of the subject mat-
ter are then compiled again to adjust it to the correspondingtype of teaching1. As an
example, in the Virtual Unix Lab the subject matter could be decomposed into vari-
ous check primitives, and an exercise could then be compiledfrom those checks, see
section 8.1.2.2.1.

After analyzing the data of the problem domain, a possible application is to use that
data to automatically create exercises for students. Whileexercises are usually created
manually, the task is challenging, and if the volume of required exercises raises in
volume, automation is desirable2. For simple problems, automatic exercise creation
can be done by finding exercises with structural analogy, which is difficult for complex
problems as a whole. For them, it would be possible to apply this technique to smaller
areas again. An alternative to analogies would be to use domain-specific operators in
the form of compiled productions. Again, these are found difficult to communicate
and encode without falling back to using examples3.

Examples for automated creation of exercises are discussedin [Fischer and Steinmetz,
2000, pp. 49] and [Fischer, 2001]. The taxonomy and ontologyused in their exam-
ples are not available for the present domain of system administration or any of its
parts, though. Furthermore, the approach is good for creating exercises which check
declarative knowledge of facts, but not so much for procedural knowledge. A transi-
tion from declarative knowledge to procedural knowledge isalso of questionable use.
[Helic et al., 2004] goes one level higher in abstraction andperforms automatic course
sequencing based on pre-defined building blocks. This approach can help to integrate
exercises into existing learning management systems (LMS)by using interfaces like
the ones described in the “Sharable Content Object Reference Model” (SCORM)4. As
written in section 8.1, this work covers the Virtual Unix Labas explorative learning
system with user adaption, and will not concentrate on learning management systems
and how to interface with them. The area of how to provide help– either on demand
or automatically – is considered of much importance, though, and thus covered later
on.

8.1.4 The user model

The model of the user in instructional systems goes back to J.D. Fletcher5. It tries to
answer the question of what’s going on inside the student. Inthe model of knowledge
communication, the student is the receiver of information6, and he has both correct
and incorrect knowledge7. Representation of knowledge in this model can be done in

1 [Wenger, 1987] pp. 336
2 [Shah and Kumar, 2002] pp. 170
3 [Wenger, 1987] p. 303
4 [ADL Technical Team, 2004]
5 [Fletcher, 1975] pp. 118
6 [Wenger, 1987] pp. 307
7 [Wenger, 1987] pp. 16

8.1. FUNDAMENTALS OF TUTORING 193

several ways. One possible solution is to use primitives of alanguage for the domain
that spans both correct and incorrect knowledge. This can bedescribed e.g. within
an expert system or an AI component as described for the teaching model in section
8.1.2.2.4. Another solution is to use a data or model driven approach with a known set
of errors and misconceptions1. A list of possible attributes to store for a user, and a list
of academic and commercial systems that implement user modeling can be found in
[Kobsa, 2001a].

When applying a cognitive learning model, there is a difference between final (abso-
lute) expertise and the expertise as possessed by a student involved in learning. The
dimensions of variety in knowledge states include scope, incorrect knowledge, and
viewpoints2. [Wenger, 1987] describes how to build a “genetic graph” that describes
such a model, and how to determine a finegrained genetic graphfor a given domain
using decomposition of the subject matter and an overlay model3. As an additional
plus, the learning curve can be determined from a genetic graph as described in [Chin,
1986, p. 25]. Taking a genetic graph and overlay model as basefor a tutor, the in-
formation about which deviations to expect in a domain play an important role in a
tutor’s ability to communicate knowledge4. An existing theory of bugs can provide
this information.

8.1.4.1 Theories of bugs

The term “theory of bugs” describes an enumeration of all mistakes that a student can
make when learning to become proficient in a specific domain. There are several enu-
merative, reconstructive and generative theories of bugs that can be used to determine
mistakes by a student5.

Enumerative theories of bugs are usually implemented as catalogue or library of items
that can go wrong, and can be built empirically by observing student errors. Their
representation can exist as a description or rule, which canbe detected by machine-
executable forms as “mal-rule” or “incorrect plan”, or by matching corresponding pat-
terns as described in section 8.1.2.2.3. “Simple” errors can be grouped into classes or
errors, and extended with descriptions of which general errors and wrong assumptions
are being made. From these classes of errors, heuristics forerror detection can be de-
termined. A problem with enumerative theories of bugs is that they are unstructured
and usually extensive6.

Reconstructive theories of bugs try to overcome the limitations of enumerative theories
of bugs. Instead of having fixed catalogues of errors, classes of errors are recognized

1 [Wenger, 1987] p. 45, pp. 205
2 [Wenger, 1987] p. 345
3 [Wenger, 1987] p. 346
4 [Wenger, 1987] p. 347
5 [Wenger, 1987] pp. 347, Figure 16.1
6 [Wenger, 1987] pp. 348

194 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

by general descriptions. They are usually data driven and constructed in a bottom-up
approach, and use data mining procedures on data from existing exercises. Description
of error classes can happen in a (domain) specific language that is specified on a rather
finegrained base1. Parallels to the decomposition process as for the domain model in
section 8.1.3 can be found here.

Generative theories of bugs intend to go one step further andnot only recognize classes
of errors, but to also lead them back on what was learned wrongin the past, explain
to the student what was done wrong, and what he has to do to improve in the future2.
In practice this could be achieved by giving “better” feedback during the exercises.
Wenger found that “incorporation of such dynamic generative theories into a com-
plete tutoring system has never been tried”3, which hints at the availability of practical
experiences for this area, upon which a real system could be built.

When deciding which approach to use for a theory of bugs, there are several considera-
tions to make. The enumerative approach is easy to realize from empirical observations
and it can even cover corner cases that are difficult to catch otherwise. The downside is
that the amount of cases that can be handled is limited. Reconstructive theories of bugs
can often be derived from enumerative ones. By reducing the focus of reconstructive
and generative approaches, more than one assumption can be true for an error, and
there will be the problem of choosing which one really is in effect4. Models and the-
ories from psychology and artificial intelligence can assist here, see the approach of
having several experts plus a meta-expert in classical approaches for plan recognition
and assistance, and overlay architecture in section 8.1.2.2.1.

Mislearning and forgetting are two more problems that need to be addressed. In plan-
ing nets, steps that were learned wrong or that were forgotten can only be recognized
to a limited extent. Replacing planing nets through knowledge in compiled form helps
here, and there is some belief that theories based on planingnets and AI are less reli-
able in practice than simply enumerative approaches5.

8.1.4.2 Viewpoints

Errors and “wrong” knowledge can be viewed from two sides. Onthe one side they
are the manifestation of wrong actions and beliefs, on the other side they are points
where correct knowledge should be taught and wrongly learned knowledge should be
corrected. Basically, viewpoints allow looking at an issuefrom more than one side,
and allow detecting errors and also correct them with “right” knowledge6.

1 [Wenger, 1987] p. 349
2 [Wenger, 1987] pp. 349
3 [Wenger, 1987] p. 350
4 [Wenger, 1987] p. 351
5 [Wenger, 1987] p. 353
6 [Wenger, 1987] p. 355

8.1. FUNDAMENTALS OF TUTORING 195

Viewpoints are usually situation-specific1. To accommodate them to a problem, in-
structions need to be adapted for multiple approaches and solutions – problems can be
viewed and solved in multiple ways, solutions can be constructed in multiple ways,
and identical decisions can have different sources.

The background for viewpoints is that each person has its individual view on the world,
as learning within a domain is tied to background-knowledge(“culture”). In the con-
text of scientific research, there are also “research-traditions” which build a set of
general assumptions about the entities and processes in a domain of study, and about
the appropriate methods to be used for investigating the problems and constructing
the theories in that domain. Wenger recommends that it is useful to view the student
involved in learning as a microcosm of the scientific community2.

Several different viewpoints can exist for a problem, and they can overlap or contra-
dict each other. It is thus not right or useful to merge them. For full comprehension,
a viewpoint must be assumed that covers all the relevant details, which is also why in
practice the sum of all knowledge about a certain topic or domain is called the (sin-
gular!) viewpoint of a person3. Knowledge communication systems used in diagnose
should ideally maintain one viewpoint to an issue, while also offering different alter-
native viewpoints at the same time, which is often difficult to realize in reality4.

8.1.4.3 Diagnosis

Diagnosis describes the task of providing feedback to the learner for the activities
engaged during the learning process. It consists of three tasks: inferences, interpreta-
tion, and classification. Inference reconstructs internalprocesses either by assembling
primitives from data in a “bottom up” manner, inferring semantics from syntax5, or by
testing variations in a model in a “top down” approach. The basic assumption in both
cases is that the reconstruction is performed in a deterministic way. Interpretation then
places the observations made into context, tries to make sense from actions via view-
points and goals, and tries to understand the student beforehelping him, with possible
rationalizations to explain observations. Classificationthen characterizes or evaluates
observations and inferences according to expectations6.

In general, diagnosis is performed on communication, and the communication hap-
pens over a communication channel that has a specific bandwidth. Usually this is a
keyboard, sometimes it is a mouse in addition. Quantitativeand qualitative analysis
of data is still available for diagnostic purposes even withsuch limited bandwidth.
The design of the diagnostic interface can be critical to thesuccess of the diagnos-

1 See Mandl’s “situated learning” in section 3.1.4
2 [Wenger, 1987] p. 358
3 [Wenger, 1987] p. 359
4 [Wenger, 1987] p. 359
5 [Morris, 1938]
6 [Wenger, 1987] pp. 368

196 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

tic module. E.g. the impact of granularity of information retrieved for building the
student model is considered as an additional difficulty to the pedagogical challenge.
Ideally, the level of granularity should match the granularity level of the compiled
model knowledge for optimal operation. One problem to also consider is that immedi-
ate steps may have different semantics than the final solution. E.g. when configuring
a system, it is only natural for it to be in an inconsistent state halfways during the
process.

Another problem, esp. for complex domains, is that reasoning itself can go through
different phases, which makes intermediate steps much moredifficult to understand
than the final solution. For the current area of application in the Virtual Unix Lab, this
means that while final exercise results are easy to judge purely by the fact that they
are final, in contrast to providing assistance during the exercise. While a final solution
can be analyzed behaviorally in terms of notions of correctness in the domain and of
implemented goals, the precise interpretation of intermediate steps requires a complete
model of reasoning within the domain. Without such a model, these steps cannot be
interpreted as they reflect a process, not a state1 .

There are three levels at which information can be relevant for pedagogical purpose and
providing diagnosis. The behavioral level is considered asa pure product of behavior
without tying to any perceived knowledge state involved in its generation. The epis-
temic level also evaluates the knowledge of the student, including factual knowledge
about the domain and strategic knowledge applied to inference procedures. Everything
else is considered at the individual level. This mostly covers all the items that make
the deterministic deduction of intents and knowledge non-deterministic, e.g. due to as-
pects of the teaching and domain architecture, learning model, stereotypes, motivation,
circumstances, and reflexive and reciprocal intents2.

The following sections describe the levels of diagnosis, gives hints at where and how
they can be applied in chapter 10, and discusses acquisitionof diagnostic data.

8.1.4.3.1 Behavioral diagnosis

Behavioral diagnosis can be applied to get an overview of thestudent’s knowledge. It
can happen via a number of different activities, an overviewof which is given in figure
8.2. The activities that are of interest in the context of theVirtual Unix Lab are recon-
structive post-hoc and on-line interpretation. They both use inferential reconstruction
via reconstructive interpretation to draw inferences about the present situation from
events from past events3.

In the case of post-hoc reconstruction, only the final resulting situation is analyzed and

1 [Wenger, 1987] p. 367–390
2 [Wenger, 1987] pp. 368-369
3 [Wenger, 1987] pp. 371

8.1. FUNDAMENTALS OF TUTORING 197

non−inferential
classification

inferential
classification

SOPHIE−I
EXCHECK
ACE
GUIDON
WEST

MYCROFT
TALUS

reconstructive
interpretation

additional
data points

IMAGE
FLOW
WEST

PROUST
ADVISOR

DEBUGGY
LMS

ACM’s
path finder

ADVISOR
PROUST
IMAGE
ODYSSEUS

behavioral diagnosis

evaluation characterization

post hoc on−line procedural
data−drivenmodel−driven

nonprocedural

Figure 8.2: Taxonomy of behavioral diagnostic processes. Image source: [Wenger,
1987, p. 372]

inferences are drawn on how they could have happened. In the Virtual Unix Lab this
is realized via check scripts as described in chapter 6. On-line diagnosis can collect
diagnostic data during the exercise, and draws similar inferences1.

8.1.4.3.2 Epistemic diagnosis

Cognitive psychology offers theories of human knowledge asintroduced in section
3.1.1. Epistemology describes the “theory of knowledge” that covers the philosophical
analysis of human knowledge2. A connection between these areas was described3,4,
and epistemic diagnosis helps to identify areas where tutoring is needed.

Epistemic diagnosis happens in three phases. First, directassignment of credit and
blame determines which elements of knowledge are of interest. Next, structural con-
sistency describes the impact of the affected elements of knowledge on the overall state
of knowledge, and last, longitudinal consistency updates the student (user) model due
to newly learned knowledge5. The following sections provides more details.

8.1.4.3.2.1 Direct assignment of credit and blame

1 [Wenger, 1987] pp. 373
2 [Corlett, 1991b] p. 285
3 [Corlett, 1991b] pp. 285
4 [Corlett, 1991a] pp. 327
5 [Wenger, 1987] pp. 376

198 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

The purpose of direct assignment of credit and blame’s task is twofold. For one, it rec-
ognizes both correct and wrong knowledge that was used, e.g.by applying a modeling
language. It then compares this against a differential expert model to determine which
relevant knowledge was left out and was not applied1.

Extraction of epistemic information from the student’s behavior can be split into three
categories: activities that can be recognized via model tracing, reconstruction of ma-
terial that can not be observed directly, and applying issues to separate the recognition
process from modeling the student behavior. Each of these steps has at least three
dimensions: The level of articulation, the degree up to which existing knowledge can
be recognized and reproduced, and the amount of informationthat is required for the
diagnosis2.

Model tracing takes the knowledge recognized, and comparesit against the compiled
knowledge available. Compiled knowledge merges many smallsteps into larger steps
without describing in detail which exact steps need to be taken, and is thus very close
to the detectable knowledge. As a result, “model tracing” isactually on the border
between behavioral and epistemic diagnosis, as it assigns credit and blame for internal
pieces of knowledge on the one side, but also verifies behavior and knowledge via
wrong or missing rules on the other side3. The automated testing via rules and mal-
rules in model tracing is similar to the list of possible answers in frame-based systems,
where decisions lead to forks in the teaching path. The important difference is that in
model tracing, the results are used to update the whole student model, and can thus
have an influence on any further teaching activities. Of course, this depends on how
much the student model impacts the pedagogic decisions4.

While model tracing draws inference from directly measurable activities, the goal of
reconstruction is to derive beliefs from data that is not directly measurable. This is
considered non-trivial in general, and the analysis of the existing exercises in the Vir-
tual Unix Lab confirm that this is complex. As a result, this approach is not pursued
further here. More information is available in [Wenger, 1987, pp. 379].

Issues are curriculum elements whose participation in decisions can be recognized
and discussed without being modeled explicitly. They can beanything of pedagogical
interest to the system, even a misconception. They are not directly tied to behavior,
and any number of them can be independently recognized as having participated or not
participated in a decision. As issues are not explicitly modeled, it is difficult to include
them into the diagnostic process, though. A possible solution is to have a separate
“expert-module” that knows about relevant issues and brings them up at the right time.
For example, when a student just reboots the system after changing configuration of
a service instead of manually restarting the service, ask the student why he did it that
way – maybe he does not know how to restart a service manually.Realizing such an

1 [Wenger, 1987] pp. 376
2 [Wenger, 1987] pp. 378
3 [Wenger, 1987] pp. 378
4 [Wenger, 1987] pp. 379

8.1. FUNDAMENTALS OF TUTORING 199

expert-model is non-trivial and not considered further here, more information on the
topic is available in [Wenger, 1987, pp. 381].

A hybrid approach of using model tracing, reconstruction and issues together is pos-
sible, as each of them has a different focus, either epistemic or behavioral. With this
approach, it is possible to trace the student’s actions while reconstructing intermediate
steps to infer his plans1.

8.1.4.3.2.2 Structural consistency

Additional constraints provided by the structure of knowledge states can increase the
influence of direct assignment of credit and blame, e.g. correlation between the likeli-
hoods of various pieces of knowledge being mastered as shownin section 7.2.4. The
advantage of those networks is that they can be designed in the absence of epistemo-
logical structure and of a model of conceptual interactions, i.e. without an analysis of
a domain’s compiled knowledge2.

That way, it is not only easy to tell what was learned so far andwhat was not, but also
defining what the student is about to learn next. This can be done by looking at the
concepts he starts to use, but has not mastered yet. A discussion of this concept can be
found in [Michaud et al., 2000].

8.1.4.3.2.3 Longitudinal consistency

Collecting state in an ongoing exercise faces two contradicting requirements: on one
side it has to be sensitive enough to adapt the tutor’s attitude without delay, but on the
other side it also has to be stable enough not to be easily disturbed by local variations
in performance.

Longitudinal consistency indents to balance this requirement. It is often derived em-
pirically, and implemented via scalar attributes such as numerical weights. The at-
tributes are associated with individual elements of the knowledge state in the context
of an overlay, and they are updated by statistical or pseudo-statistical computations as
knowledge manifests itself in behavior3. As an alternative, Bayesian networks can be
used for the implementation as described in [Mayo and Mitrovic, 2001].

An application of longitudinal consistency is to adjust feedback, see section 8.1.4.4.

1 [Wenger, 1987] p. 381
2 [Wenger, 1987] pp. 381
3 [Wenger, 1987] pp. 383

200 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

8.1.4.3.3 Diagnostic data

Diagnostic data is the source upon which didactic analysis is performed, and thus the
source of all evidence. It can be collected either passively, actively or interactively. In
contrast to passive actions, active diagnosis allows the system to test its hypotheses.
Extending the dialog between the user and the system, an interactive diagnosis invites
the student to report on his decisions and his knowledge1.

Active diagnosis can be used to request more data that is required for discriminating
between the competing models that the system inferred from its present data. Difficul-
ties are confidence about what data to acquire, availabilityof methods for acquiring the
exact data required (i.e. if there’s an exact exercise/taskthat can determine the missing
data) and not to speak of how to fit it into the exercise withoutdisturbing continuity,
or if it fits at all.

Dynamically created exercises help here. When adding additional exercises, care
should be taken that a maximum of information is retrieved bythem, to minimize
the number of extra exercises needed2.

Interactive diagnosis can be used to justify predictions orhypotheses in the context
of specific cases (“Why you think that this command ...”) or asking questions about
students’ beliefs. The challenges here are to incorporate the interaction seamlessly into
the exercise, and to also “understand” the reasoning done bythe student, esp. when
using natural language. A domain-specific alternative to using natural language would
be to use menus or graphics.

Even in interactive systems, some inference should happen.For obvious or simple
cases it is better to use inference than to disturb the student with trivial questions.
Furthermore, the student may be unlikely to describe his ideas completely, and thus
additional inference would be needed – to ask intelligent questions, there’s a need to
“understand” what the student is doing anyways3.

Still, an interactive approach to confirm diagnosis is attractive for two reasons. First,
because it involves the user early in the process, and second, because it keeps the
dialog at the level of beliefs, where misconceptions are expected to occur, and hiding
the actual diagnostic process from the user. Once a misconception has been detected
and confirmed, an alternative most closely in line with the student’s own plan can be
offered4.

In diagnosis, comparisons with human teachers are usually not very illuminating, be-
cause classroom teaching is very different from the type of tutoring performed by

1 [Wenger, 1987] p. 390
2 [Wenger, 1987] p. 390
3 [Wenger, 1987] p. 392
4 [Wenger, 1987] p. 236

8.1. FUNDAMENTALS OF TUTORING 201

computer systems, and because human private tutors and their students share extensive
conversational capabilities and common backgrounds that are completely inaccessible
to current computers1.

8.1.4.4 Feedback

In the diagnostic process, feedback serves two purposes: itinforms the student about
the state and progress of his own knowledge, and it helps the system to verify if its
own didactic measures were appropriate2.

The foundations of the “feedback loop” to update the student(user) model are laid
out in section 8.1.4.3.2, more information is available in [Kerner and Freedman, 1990,
p. 895]. See also section 3.1.2 for the meaning of feedback inthe various learning
theories.

Giving feedback to the student leads to an improved locus of control3 and is expected
to increase his motivation. There are different times at which feedback can be given
to the student. Either immediate4, late5 or post-exercise as implemented in chapter 6.
Furthermore, feedback can be provided by the system on its own, or on demand by the
student, where detailed feedback is only given when the student asks for it6,7. Longitu-
dinal adaption to the learner can be done to give ideal, possibly immediate, feedback to
the student, while preventing him from doing the work by repeated requests for help,
i.e. what is called “gaming the system.”8,9

Verifying the impact of didactic operations allows determining what the student has
already learned, what he has not learned yet, and what he is about to learn – [Michaud
et al., 2000] describes a “zone of proximal development” (ZPD) that highlights the
latter. To implement this, some domain specific heuristics are again needed.

To realize a system that pays attention to zones of proximal development, not all in-
formation that is available should be fed to the user immediately, to not confuse or
overburden him. A possible method of filtering such messagesis outlined in [Hylton
et al., 2005]. If filtering of information is not sufficient, other techniques like changing
the viewpoint of the system may help, as outlined in [Dietrich et al., 1993].

Last, when giving elaborated feedback10, hints should be given in great detail, e.g.

1 [Wenger, 1987] p. 394
2 [Heer et al., 2004] pp. 463
3 [Corbett and Anderson, 2001] pp. 245
4 [Corbett and Anderson, 2001] pp. 245
5 [Nathan, 1990] pp. 407
6 [Shah and Kumar, 2002] p. 171
7 [Corbett and Anderson, 2001] pp. 245
8 [Baker et al., 2004] pp. 383
9 [Nathan, 1990] pp. 407

10 See “elaboration” in section 3.1.4

202 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

what scenario and approach are appropriate, which commandscould help, and which
commands would be good for troubleshooting. See section 7.3.3 for more details on
what students considered helpful during the course of exercises in the Virtual Unix
Lab.

8.1.5 The user interface

While the pedagogical, domain and student model provide thebase for didactic actions
and interactions, the user interface is what separates themfrom the user. It processes
data flowing between the user and the system in both directions, and in the process
of doing so translates between the system’s internal representation and some language
that the user understands. The user interface component works closely with the other
components, but as the design for it is still influenced by a number of unique decisions,
it is considered as a separate component1.

The practical impact of the user interface on the success of the system of knowledge
communication has two reasons. First, it is what the user faces and interacts with, and
the external presentation of internal material what makes the student learn in the end.
Qualities like ease of use, attractiveness, usability, andminimizing the load on work-
ing memory can be essential for the acceptance of the system2. Second, the constant
progress in media technology keeps on providing new tools that may be fit better for
the task of knowledge communication than their predecessors, and they can thus have
an impact on the design of the entire system3,4.

Beyond giving status reports for the user, an important taskof the user interface is
to provide on-line analysis of the ongoing activities of theuser, and communicate
feedback. The system can provide more interactivity that way, but the user interface
has to support this style of interaction to e.g. prevent or mitigate dangerous situations.
A possible implementation for the Virtual Unix Lab would require to extend the check-
based testing done on the pragmatical layer realized in chapter 6 to testing on the
syntactical or semantical layers. See the discussion of on-line diagnosis in section
8.1.4.3.1, and section 10.3 for further thoughts.

An advanced requirement of the user interface is that it should support splitting a full
exercise into several smaller parts which may be presented separately, and where each
part is only displayed when the preceding part is solved properly5. Care should be
taken to not limit the explorative character of the exercisesystem by halting the flow
of the exercise, though. For the Virtual Unix Lab, it would bepossible to display the
full exercise text, but to also have a separate tutorial component that interacts with

1 [Wenger, 1987] pp. 21
2 [Shneiderman, 2004] pp. 451
3 [Wenger, 1987] pp. 21, pp. 298, pp. 314
4 [Shneiderman, 2004] pp. 173
5 Compare this to the book suggested by Thorndike and Gates in section 3.1.3

8.2. FUNDAMENTALS OF USER ADAPTION 203

the user on a per-task base, recognizing which task of the exercise the user currently
works on, and providing assistance on that task. This assistance can be offered ei-
ther in cooperative (on-demand) or an automated fashion. See chapter 10 for further
discussion.

Finally, communication between the user and the system can happen in many types of
interaction1,2. Natural language seems obvious, to have the system talk (and under-
stand!) the language of the user, not vice versa. As using natural language in dialog
with a machine may impact user acceptance, placing the user interface in the domain
of contemporary graphical user interface design seems moreappealing, esp. when
considering the experiences made by others in that area, as the discussion about using
natural language processing in section 8.1 shows.

Guidelines for the implementation of user interfaces can befound in parts 10, 11,
and 12 of [ISO 9241, 2003], theoretical foundations can be found in [Nielsen, 2001],
[Shneiderman, 2004], and [Norman, 2002]. A number of tools for evaluating the us-
ability of a user interface and to improve it in a latter implementation steps, tools like
the ISONORM 9241/10 questionnaire3 and the IsoMetrics Usability Inventory4 can be
used.

8.2 Fundamentals of user adaption

In order to use a technical system, a user needs to have an overview of what information
exists in general, which information is available in the system, and how to find it. This
requests a lot of effort from the user, and an alternative forthe system is to help the user
in an active way5. [Johansson, 2002, p. 2] cites Fischer for stating that “thechallenge
in an information-rich world is not only to make informationavailable to people at
any time, at any place, and in any form, but specifically to saythe right thing at the
right time in the right way.” For complex applications, assistance can be provided in
several ways: unused functionality should not get in the wayof used functionality;
unknown existing functionality should be made accessible or delivered at times when
it is needed; and commonly used functionality should not be difficult to be learned,
used and remembered6.

There is an important difference between an assistant and a tutor. While the former
helps the user to complete a task by possibly performing actions automatically, a tutor
helps in learning how to use the system itself, and will not attempt to do the actual
work for the user. A tutor still has to make the right information available at the right

1 [Bruns and Gajewski, 2002] pp. 48
2 [Shneiderman, 2004] pp. 71
3 [Prümper and Anft, 2006]
4 [Gediga et al., 1999]
5 [Kobsa, 1990] pp. 1
6 [Johansson, 2002] p. 3

204 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

Intelligent InterfaceIntelligent Help SystemHelp System

Computer Based Teaching ITS

Static UI Flexible UI Adaptive UI

Figure 8.3: Terms: Adaptive User Interfaces and Intelligent Interfaces. Image source:
[Dietrich et al., 1993, p. 14, Figure 1]

time. Adaption may be needed in the learning environment andexercises that the user
should perform.

The overall benefits that are expected from user adaption in alearning system are
increased effectiveness, efficiency and acceptability1. In order to offer support in the
system, it has to collect data about the user’s goals, plans,beliefs, knowledge and
assumptions. Those build the user model. By analyzing the information that the user
requested, his plans and goals can be learned, and more information can be provided to
him. By taking into account what a user knows or doesn’t know in a specific situation
can prevent the teaching process from becoming boring or asking too much of the user.
Furthermore, wrong assumptions can be recognized and communicated2. Depending
on the system and the specific learning context, specific default assumptions can be
made3, see the discussion of “stereotypes” in section 8.2.3 .

Figure 8.3 lists the various components that are consideredas being part of a “intelli-
gent interface”, and their relationship. In order to provide optimal help for the learner,
an adaptive user interface, an intelligent help system, andthe components of an in-
telligent tutoring as discussed in section 8.1 are considered worthwhile to achieve.
Components that are of interest for adaption also include context-sensitive help, adap-
tive hypertext, assistance in navigation, as well as a personalized news filter in the user
interface. Of these components, the first three are of interest for the Virtual Unix Lab,
and also under the aspects of a learning environment and its help system.

A comment should be made about the term “adaption” here. There are a number of
related terms in that area, e.g. personalization, adaptable, adaption and adaptible sys-
tems. “Personalization” is used here to describe activity that is initiated and controlled
by the user4. It requires a system that can be changed by the user, which iscalled
“adaptable.”5 “Adaption” means a change in the system that is initiated by the system

1 [Johansson, 2002] p. 4
2 [Kobsa, 1990] pp. 243
3 [Kobsa, 1990] p. 5
4 [Dietrich et al., 1993] p. 17
5 [Fischer, 1993] pp. 55

8.2. FUNDAMENTALS OF USER ADAPTION 205

itself to react to activities of the user1. Such a system is called “adaptive.”2 The change
may be verified with the user, i.e. be “user-controlled”, butneed not be. Giving the
user final control e.g. by offering adjustable preferences helps increasing the user’s
motivation via increased locus of control3,4. [Fischer, 1993, pp. 55] continues this
discussion about why design environments should be adaptive and adaptable.

The system discussed here is intended to offer adaption to the user by being adaptive.
The following topics will not be discussed here to down narrow the focus; references
to literature are given here for further information:

Shared decision makingmeans both the system and the user perform adaption. This
topic is not considered here in order to prevent the user fromdistraction from
learning and the goal of the exercises. The topic is further covered in [Fischer,
1993, pp. 58].

Support for a specific application: The student should learn how to use an existing
system. Use of the system itself should not be changed for theuser, in general.
Instead, adaption should happen in the curriculum, exercises and by adjusting
the information given to the student. [Johansson, 2002] further covers this topic.

Group teaching in user adaption is similar to group teaching in tutoring as discussed
in section 8.1. While learning in groups, including adaption of the exercise to the
whole group, is not discussed here, using personalization for individual members
of the group is considered on-topic for two reasons. First, it is expected to have
a very disproportional ratio between students and teachersin the classroom sit-
uation that’s being assisted here. As such, the teacher can offer little or no time
to take individual students into account. Having a trainingsystem that offers
user adaption can assist students where a teacher cannot, esp. if the groups grow
larger5. Second, large groups of students show a variety in background knowl-
edge and motivation. Offering classroom teaching that includes the full range
is not always possible, and again a training system that offers adaption to single
users can help in this situation. In sum, an adaptive tutoring system can help
students in learning, assuming that its role is clear as assistance.

See section 8.1.4 for a discussion of the student model that is being used to
perform adaption upon.

Elderly people and people with disabilities may need specially tailored information,
contents and possibly modes of display. Areas where this mayhave an impact

1 [Dietrich et al., 1993] p. 17
2 [Fischer, 1993] pp. 55
3 [Corbett and Anderson, 2001] pp. 2001
4 [Schulmeister, 2007] pp. 146
5 Personal experience shows that tutoring a group of about 8 students is the maximum where you can

take care of every student’s individual needs. This was confirmed in the Fall term 2005 at Stevens
Institute of Technology in Hoboken, NJ, USA. Student groupsat the University of Applied Sciences,
Regensburg, Germany, are usually between thirty and fifty students, making considerations of single
students in tutoring next to impossible.

206 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

are operation of the computer’s user interface hardware, recognition of the navi-
gation elements and contents as well as visual impacts like issues in color recog-
nition. Measures may require the use of large user interfaceelements or non-
visual methods, e.g. reading what is written on the screen toa visually impaired
user.

While this goal is considered worthwhile in general, it is not in the focus of this
work. At the same time, care is being taken that the work described here will
pose no further restrictions on people with the named issues. More information
on this topic can be found in [Kobsa, 1999].

Privacy: Methods are available to recognize, mitigate and/or prevent activities in sys-
tems that may lead to deprivation of privacy. While they are usually found in the
area of databases or general applications that handle personal data1, they could
be considered for exercise systems like the Virtual Unix Labas well.

Influencing factors are users’ concerns of privacy as well asexisting privacy
legislation. Users’ own preferences on their privacy can betuned on a per appli-
cation base; getting those preferences into accordance with privacy legislation
require customized solutions, as they are too different, and no frameworks exist
that supply solutions that cover both areas2. The fact that privacy laws differ
widely between various countries does not make things easier. When planing a
system, including tutoring systems, that will be deployed in several countries,
this needs to be taken into account upfront to avoid unpleasant surprises later3.
The impact of different countries’ laws can start with different restrictions on the
trans-border flow of personal data, which needs to be considered for Internet-
based systems common today4.

Privacy considerations should be considered when user datais acquired and
stored over long terms. For short term learning goals like inexercise systems,
this should not be a problem in general5, and it is thus not considered further
here.

More information on privacy can be found in [Kobsa, 2002], [Kobsa and Schreck,
2003, pp. 149], [Teltzrow and Kobsa, 2004a], and [Teltzrow and Kobsa, 2004b].
Collaboration in groups was explicitly excluded here, yet privacy is of concern
there too, see [Patil and Kobsa, 2005, pp. 329].

Separation of responsibilities: Responsibilities in a learning environment may in-
clude contents and curriculum, realization, interfaces and integration. In larger
systems where credibility, accountability and accreditation are of importance it
may be required to implement this, to prevent e.g. exam writers from being able
to look at students’ grades or keep interface designers frombeing able to see
details of tests that should be kept confidential.

1 [Kobsa, 1990] p. 12
2 [Kobsa, 2001b] pp. 1
3 [Kobsa, 2002] pp. 1
4 [Kobsa, 2002] p. 69
5 [Kobsa, 1990] pp. 13

8.2. FUNDAMENTALS OF USER ADAPTION 207

The solution to this problem is not only of technical nature with respect to
database schemes and authorization, but corresponding legally binding non-
disclosure agreements should be signed to help in this process1. This topic is not
followed further here, more information is available in [Conlan et al., 2003, pp.
210] and in the literature on privacy, see above.

The following sections first talk about the meaning of “context” in exercise systems.
As main source of information for the user model, it defines the base of user adaption.
Adaptive services and multiple agents are discussed next, followed by techniques for
modeling the system which leads to a definition of adaptive axes.

8.2.1 The meaning of context

In learning systems, “context” means situative information. Following Conland and
Power, it is “any information that can be used to characterize the situation of an entity.
An entity is a person, place or object that is considered relevant to the interaction
between a user and an application, including the user and application themselves.”2

They describe the following types of contexts3:

Computing context: network connectivity and bandwidth, hardware ressources like
I/O devices (mouse, keyboard, display, ...)

User context: user’s profile, location, nearby people, and current socialsituation

Physical context: lighting, noise level, traffic conditions, temperature

When focusing on computer based training systems, the simulated environment and the
tasks given fit between the computing context (for the systemitself) and the training
system and its tasks (for the user context). The task of an adaptive tutoring system is
to analyze the given context for the user, and offer appropriate tutoring4.

To avoid that the user feels helpless with the tutoring system making changes behind
his back, the decisions should be communicated and possiblyconfirmed by personal-
ization of the user5, see the discussion about locus of control in section 8.2 above, and
in section 8.1.4.4.
1 The approach of signing Non-Disclosure Agreements is currently practiced by the BSD Certifi-

cation Group to prevent question writers and system developers from disclosing information that
lead to unfair advantage of third parties during later certification exams. Seehttp://www.
BSDcertification.org/ for more information.

2 [Conlan et al., 2003] p. 207
3 [Conlan et al., 2003] pp. 208
4 [Conlan et al., 2003] p. 208
5 [Conlan et al., 2003] p. 208

208 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

8.2.2 Adaptive services and multiple agents

Adaption can affect communication and functionality of thelearning system. In the
former case, only communication between the system and the student is affected, and
the tasks for the student remain the same. In the latter case,the tasks that the student
has to absolve are adjusted to his performance1. The adaption of interaction can be
realized via adaptive services and multiple agents, by using components that know
details about the user model and context of the current situation2.

Adaptable services and components should be composed in a way that models the flow
of control and information between elemental services, andalso reflect underlying
business process modeling. Realizing a model of adaptable services requires a flow of
information between the various components3. In any case, components can either act
proactive or reactive; it would be anactivehandling of an adaptive system, though, not
a passive one of an adaptable system4.

When multiple sources of data are used to establish the user model, separate software
agents can be used to acquire specific data, act as tutor or – inthe case of collabo-
rating groups which is not covered here – as virtual team members5. Agents have to
understand the task domain, a possible team structure, decision making processes and
information about the user model of participating learner(s). Synthetisizing data from
multiple sources may need classification and filtering. Moreinformation on the topic
of agents in intelligent training systems can be found in [Yin et al., 2000].

8.2.3 Modeling techniques

Originally, constructors of learning systems wanted to imitate human interaction with
computers to reduce cognitive load on the learner. Experience has shown that this was
not successful for a variety of reasons. Since then, it has been established that the
differences in interaction between humans and machines canbe used to retrieve data
that can also be used in building the user’s model and for useradaption6.

Users with different background knowledge do exist, and a number of modeling tech-
niques can be applied to determine in which group a certain user falls. The techniques
introduced here are application of stereotypes, clustering, and plan recognition.

Stereotypes are used to recognize patterns of behavior of a user. Based on the assump-
tion that they were recognized properly, further implications can be made about the

1 [Dietrich et al., 1993] pp. 17
2 [Conlan et al., 2003] p. 208
3 [Conlan et al., 2003] pp. 208
4 [Conlan et al., 2003] p. 209
5 [Kobsa, 2001a] pp. 57
6 [Johansson, 2002] p. 7

8.2. FUNDAMENTALS OF USER ADAPTION 209

user, including his knowledge, plans, and behavior1. Building and recognizing stereo-
types is only possible with some uncertainty. Assumptions are made based on the little
data available from users’ interaction, and which may not beadequate in general2,3,4.

Clustering is another approach. It does not try to categorize the user as a whole, but
only build the user-model for specific areas called “clusters.” The assumption then
is that the user will perform according to those areas. For example, when using a
content-based approach for clustering, a user may have mastered one area, but he may
still be a beginner in another area. In a “clique based” approach, actions of a user
are not observed separately, but in the context of a group of users with a similar goal
in mind, as is e.g. the case for users in the Virtual Unix Lab, see the discussion on
structural consistency in section 8.1.4.3.2.2. Clustering allows for more fine-grained
classification here than use of stereotypes5.

When exercising plan recognition based on a user’s history of interaction with a system
followed by analysis and inference on a user, his knowledge,plans and actions, it
allows making statements with more certainty than when using stereotypes. While this
is desirable, it also requires a lot more data to be obtained in the first place. There’s
still some remaining uncertainty, but less than when using stereotypes or clustered
approaches, as more data is used, and inferences are drawn onsmaller areas based on
that data6,7.

Using stereotypes and clustering require data from existing users. When those are not
available, they can be initialized with values that stem from experience with the ex-
pected user base. An established method for characterizingtypical user scenarios can
be found in Cooper’s “personas”. In a user-centered design,they describes prototyp-
ical users, their expectations, wishes, knowledge and other parameters as determined
by interviews8. While personas are were originally used in software engineering, they
can also be used on the smaller scale of initializing user models9.

Recognition of goals and plans can be achieved through plan composition, which enu-
merates all possible user actions and their results, then narrows down the number of
possible plans until one or few are identified with sufficientconfidence; see the use of
artificial intelligence for plan recognition in section 8.1.2.2.4 and [Kobsa, 1993, p. 6].
Tools that can help in the process of plan recognition are libraries of plans and com-
mon mistakes. The former provides a list of likely goals withassociated actions for
recognition, the latter provides domain-specific lists of mistakes that can be expected1,

1 [Kobsa, 1995] pp. 2
2 [Kobsa, 1990] p. 7
3 [Johansson, 2002] pp. 8
4 [Rich, 1979]
5 [Johansson, 2002] p. 9
6 [Kobsa, 1995] pp. 2
7 [Johansson, 2002] pp. 7
8 [Cooper, 2004] pp. 123
9 [Pruitt and Grudin, 2003]
1 [Kobsa, 1993] p. 6

210 CHAPTER 8. INTRODUCTION OF TUTORING AND USER ADAPTION

see the discussion about theories of bugs in section 8.1.4.1. An alternative to giving
the user full freedom of learning as suggested in constructivistic learning theories2 is
to specify the task for the learner and guide him in that task.This is e.g. used in the
Virtual Unix Lab, and contrasts the “general” help systems that were built to guess
user plans like the Unix Consult3, OSCON4, and GOETHE5.

In sum, stereotypes can be used to determine both user model and system behavior,
with clustering as possible refinement step. Application ofplan recognition and their
associated libraries will need further research. More information on how to apply these
theories to user adaption in the Virtual Unix Lab are listed in chapter 11.

8.2.4 Adaptive axes

Adaptive axes describe the scales and units upon which adaption can be based. One
or more of them can be used to determine how a system should adjust to the learner.
The number depends on the exact area of application, the learning environment and
the amount of data available in the user mode. The scales can contain values that are
either visible or invisible to the student.

Visible attributes could be on a physical level that defines the signals and signs that
are used in the combination in communication with the user – an example is the link
annotation described in [Specht and Kobsa, 1999].

Invisible attributes cover the learning system’s internallogic and can affect attributes
like freshness, progressive assistance, method and modularity shift, level of discourse,
backtracking and graceful failure6. Further examples of levels for adjusting on the tax-
onomy of adaptive user interfaces include the learner’s skill level, the specific area of
the domain that he’s currently practicing, and interactionstyle. The latter can include
using query and answer, menu selection and command languages as well as reactive
error correction versus active help7,8.

2 See section 3.1.1
3 [Wilensky et al., 1988] pp. 35
4 [Kevitt, 2000] pp. 89
5 [Heyer et al., 1990] pp. 361
6 [Heer et al., 2004] pp. 463
7 [Dietrich et al., 1993] p. 19
8 [Fowler et al., 1987] pp. 345

Chapter 9

Design of tutoring and user adaption

The previous chapters from the first main part of this work have laid out the founda-
tions for verification of exercise results in the Virtual Unix Lab. With the discoveries
of the evaluation that more help is desired by students, adding extended help to user
by means of tutorial and user adaptive components is approached in this second main
part of this work.

This chapter outlines the design of the tutorial and user adaptive components for the
Virtual Unix Lab. Topics covered include the goals of those components, the method-
ology used to create them, an overview of the domain model, and an outline of the
software architecture.

9.1 Goals of tutoring and user adaption

After setting up a basic training system, more assistance isdesired to support students
during their exercises. While a human teacher can look over the shoulder of a student
during an in-class exercise, this is not so easy for a computer. The goal here is to
imitate a teacher by using a tutorial component, and adapt itto the specific user using
an adaptive component1.

Currently, the results of an exercise are only verified at theend, establishing success
or failure of single parts of the exercise. While this helps to determine what went right
and what went wrong, it does not tellwhy things went wrong (if so). A more detailed
analysis is needed here. Figure 9.1 illustrates the currentand desired situation in a
different area of application where not only the final resultis of interest, but also the
events that lead to it, to possibly improve the final result.

1 [Wilensky et al., 1988] p. 36

211

212 CHAPTER 9. DESIGN OF TUTORING AND USER ADAPTION

a) Verification after the exercise b) Verification during theexercise

Figure 9.1: System administration is like hitting a nail with a hammer. Sometimes.
Image sources: [Bent Nail, 2007], [Morell, 2004]

9.2 Methodology of tutoring and user adaption

An architecture for tutorial and user adaptive components for the Virtual Unix Lab is
described in chapters 10 and 11. The methodology used is based on the theories and
the models for domain, teaching, users and the user interfaces described in section
8.1 and section 8.2. Utilizing the foundations laid for exercise verification via domain
specific languages in chapter 6, the architecture of the two components are described.
For each component the domain, teaching and user model as well as considerations for
the user interface are discussed.

The approach reflects the iterative design that was used to realize verification of exer-
cise results in chapter 6. This includes repeated steps of evaluation and improvements,
and is recommended in [Manaris et al., 1994, pp. 34].

9.3 The domain model

The domain model describes the topics that the tutoring system is intended to teach. It
is established by two steps. First, the items of interest in the specific part of the domain
are determined by decomposition of the exercise components. This is followed by a
discussion on how to obtain a theory of bugs for this area.

9.3. THE DOMAIN MODEL 213

NIS maps
Create

account
Create

permissions
AdjustSet

domain

Client TransferMaster

NIS

Commands & Files

InitializeSet domain Initialize nsswitch

Figure 9.2: Goals and sub-goals of the Network Information System (NIS)

9.3.1 Content decomposition

The domain model that is used for tutoring and adaption in theVirtual Unix Lab is not
explicitly modeled by rules, but realized by lab exercise machines which reflect the
domain in real.

The domain model is thus modeled implicitly. The student is supported in understand-
ing the domain by the exercises about the Network File System(NFS) and the Network
Information System (NIS) that are available in the Virtual Unix Lab, the lecture notes,
and other material that is available as discussed in section3.2.4. A more fine-grained
analysis of the target domain is discussed in section 8.1.3.

The general goals is to first embed the system as supplement into the existing lecture,
and then allowing transition to a purely virtual training system in a second step as
described in chapter 1. The basic conditions at which the defined system is still targeted
are the same as described section 3, i.e. students of computer science at the University
of Applied Sciences Regensburg.

To refine the learning goal of “Unix Cluster Management” withemphasis on the Net-
work File System (NFS) and the Network Information system (NIS), those areas need
further analysis for their sub-goals and single tasks. Information on the sub-goals like
user and software management, system startup, etc. have to be made available to the
student. In general, instructional information should be designed in multiple layers,
where one layer adds information to the previous one, givinga hierarchical view on
the domain knowledge. This approach is in conformance with Reigeluth’s “elabora-
tion theory” described in [Reigeluth and Stein, 1983]. Figures 9.3 and 9.2 illustrate
this analysis and the various layers involved.

Analysis of the exercises into smaller tasks happens according to the classification
suggested for the Berkeley Unix Consultant. Classificationof the topics involved and
ordering to supplement building of a corresponding overlaymodel also helps with

214 CHAPTER 9. DESIGN OF TUTORING AND USER ADAPTION

management
Service

account
Create

permissions
Adjust

TransferServer Client

management
rpcbind,
mountd

Service (d)fstab rpcbind

Commands & Files

NFS

/etc/exports

Figure 9.3: Goals and sub-goals of the Network File System (NFS)

defining stereotypes and their attributes1. Furthermore, decomposition as suggested in
section 8.1.3 may help in defining the learning curve for students.

The methodology chosen here is to discuss a number of questions for each of the topics
that are currently covered in the existing exercises in the Virtual Unix Lab, realizing
an expert walkthrough. The questions are based on the experiences made in the past
from mentoring students for lab exercises and in the VirtualUnix Lab. Alternatives
would have been to use classification by assigning single commands from the SINIX
manuals to topics and goals, as was done for the “Sinix Consultant”2, or cognitive walk
throughs with students. Use of manuals was rejected as thereis no single manual that
defines all the areas that are covered in the exercises, and cognitive walkthroughs were
considered too time-consuming.

The following items were observed for all the topics of the NFS and NIS exercises in
the Virtual Unix Lab:

What does the student have to do?This identifies on what level the topic is, e.g. ei-
ther specify commands for items that are more on the behavioristic level, or
give an outline of tasks to perform for commands on a higher level that require
epistemic diagnosis.

What problems can occur, how can they be identified?Issues that may arise either
in the learner due to wrong assumptions and beliefs, and thatmay lead to wrong
steps. Also: problems that may arise in system configurationthat will lead to
future problems. For example when a user destroys parts of the system.

Help for the student can be provided either on the behavioristic or epistemic level.
Examples would be to just tell an novice user what command to run (assuming
he does not know the higher level concepts yet), or just indicate the epistemic

1 [Chin, 1986] p. 25
2 [Wahlster et al., 1988] p. 7

9.3. THE DOMAIN MODEL 215

level by giving keywords and concepts to the user (assuming he can connect the
keywords and concepts as appropriate)

Believes - what wrong thinking can cause problems?At times, students have wrong
assumptions and/or knowledge about the system, and based onthat, they will do
the wrong steps. Identifying those steps and the thinking that led to them can
prevent mishap.

What viewpoints may exist: Some problems may be seen from various positions.
When setting up network services, a viewpoint from “inside”the machine (server
view) or from “outside” a machine (client view) may be appropriate.

Issues, Structural and Longitudinal consistencyare important for tutoring. Issues
are discussed in the context of a theory of bugs in section 9.3.2, and consistency
is covered in sections 11.3 and 11.4.

Ways of data acquisition: How can the activity related to the topic be detected? This
is done either by analyzing the system state using a check script as described in
section 6, or by using “on-line” analysis e.g. via keystroketracing as described
in section 8.1.5.

The above catalogue of questions was applied to the exercises that were previously
introduced in chapter 6. Decomposition of the Network Information Service (NIS)
exercise can be seen in appendix E, a similar analysis of the Network File System
(NFS) exercise was considered but deferred. The results of this analysis and their
further application are discussed in section 10.

9.3.2 Considerations for a theory of bugs

The term “theory of bugs” describes the specific mistakes that can be made in learning
to master a certain domain’s knowledge, as described in section 8.1.4.1. Due to the lack
of an existing theory of bugs for the domain of system administration, an attempt was
made to create one as outlined below. The intention was to supplement the design of
tutorial and user adaptive components in the Virtual Unix Lab as described in chapter 9.

This chapter describes the approach chosen for the creationof a (limited) theory of
bugs. It analyzes the data from the Virtual Unix Lab’s database of existing results
as well as the results originating from these efforts in a reconstructive approach as
described in section 8.1.4.1. The exact database queries and their results that were
performed to retrieve the discussed data are listed in appendix D for reference.

216 CHAPTER 9. DESIGN OF TUTORING AND USER ADAPTION

9.3.2.1 Adjusting the domain model

A full theory of bugs for the complete domain of system administration was considered
ways too complex. As a result, a smaller subset of the domain was chosen. As the
Virtual Unix Lab only covers a subset of that domain and as data is available for that
subset of the domain, the focus of this analysis was set on system administration on the
Unix operating system, with special emphasis on administration of both the Network
File System (NFS) and the Network Information Service (NIS), including both client
and server setup for these areas.

9.3.2.2 Analyzing existing exercise data

In order to use a reconstructive approach to determine a (limited) theory of bugs, a
number of queries were performed on the database that kept the exercises and their
results from past exercises from the Virtual Unix Lab. The following list outlines these
queries and their individual results:

1. Determine the overall number of checks performed during exercises on both the
client (vulab1) and server (vulab2)1.

These numbers are used in subsequent calculations that differentiate between
those two machines.

2. Percentual number of checks that students failed to succeed on (numbers calcu-
lated manually)2.

The results show that the failure rate on the client (vulab2)were higher than on
the server (vulab1) for both the NIS and NFS exercises.

3. Determine the number of checks performed for each user andmachine3.

The results show that the number of checks is balanced between the client and
the server. With the previous results, it can be said that more errors are detected
on the client than on the server. Reasons for more errors on the client may be
that its operating system (NetBSD) is less known, as it is notthe primary system
used in the lecture accompanying the exercises. It should benoted that the errors
may not arise from mistakes (only) in the client configuration, though.

4. The next question is to determine the overall number of howoften each check
was ran as well as the number of failed checks, and their percentage4.

The list of check scripts includes ones “false positives”, i.e. the test is usually
successful, and only fail if a user damages a working part of the system. This

1 See results of query 1 in appendix D.
2 See results of query 2 in appendix D.
3 See results of query 3 in appendix D.
4 See results of query 4 in appendix D.

9.3. THE DOMAIN MODEL 217

can be seen in figure 9.4. The “false positive” scripts (check-file-exists
andunix-check-process-running) are failed least often, as can be seen
from their location near the bottom of the figure.

The remaining scripts find errors with a rate between 53% and 86%, i.e. there is
no clear winner that indicates a significant number of errors.

5. A more detailed analysis of the failure distribution is based on both check scripts
and also their parameters1.

The results confirm the fact that the “false positives” are failed least often. Again,
the remaining errors are distributed evenly, no clear class(combination of a cer-
tain script with a specific set of parameters) can be found as failed with a ex-
traordinarily high number, compared to the other ones.

6. Taking the percental distribution of each check script with its varying parame-
ters, a box (scatter) plot can be generated to indicate whereerrors lie in a quan-
titative fashion. Data is taken from the “perc” column of theresults of query 5
in appendix D).

The result is displayed in figure 9.4, it shows several points: The scripts that test
“false positives” (scripts #3, #11) do lead to few errors. Scripts that test a wide
range of topics and complexity (#2, #4) show a correspondingrange, i.e. an
equally wide one. Scripts that check for a specific, complex area are more likely
to fail, the error rate is more than 50% here. Within the “complex” checks,
the error rate is between 60% and 85%, with no clear majority (without further
defining what “complex” means in this context). An explanation why testing for
installed shells (#17) fails often is because the item is marked as optional in the
exercise text.

9.3.2.3 Results and conclusion

From the above examinations, no usable list of checks that fail frequently and that
could be used as foundation for an enumerative theory of bugscan be determined,
even for the limited area of system administration under Unix, with a focus on NIS
and NFS.

The following sections approach tutoring and adaption without relying on a theory of
bugs.

1 See results of query 5 in appendix D.

218 CHAPTER 9. DESIGN OF TUTORING AND USER ADAPTION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

20
40

60
80

10
0

Script #

P
er

ce
nt

 fa
ilu

re

Legend:

| Script
---+------------------------------

1 | check-directory-exists
2 | check-file-contents
3 | check-file-exists
4 | check-program-output
5 | netbsd-check-installed-pkg
6 | netbsd-check-rcvar-set
7 | netbsd-check-user-shell
8 | solaris-check-installed-pkg
9 | unix-check-file-owner

10 | unix-check-mount
11 | unix-check-process-running
12 | unix-check-user-exists
13 | unix-check-user-fullname
14 | unix-check-user-home
15 | unix-check-user-ingroup
16 | unix-check-user-password
17 | unix-check-user-shell

Figure 9.4: Error distribution of check scripts

9.4. SOFTWARE ARCHITECTURE 219

9.4 Software architecture

A lot of software components for learning systems are readily available today, origi-
nating from the open source community1. Even without looking at the quality of those
components, it is difficult to build a learning environment from these components.
Difficulties increase with the requirements that are neededfor an adaptive learning
system2. “Adaptive” can have many meanings in this context, e.g. guidance, presenta-
tion and collaboration, and one author’s assumption does not necessarily match those
of other authors, making it difficult to assemble a system from those components3.

Various architectural suggestions exist for constructingan intelligent tutoring system,
using e.g. object oriented architectures that organize thetutor around objects that rep-
resent the knowledge to be taught, not around the various components of the tutor4.
While it would be possible to realize tutoring and adaptive components for the Virtual
Unix Lab, using this approach would require many changes in the existing system.
Integration into the existing Virtual Unix Lab system is considered important for prac-
tical realization, and even if the immediate goal is “only” to define an architecture,
changing the whole system for the sake of practical realization is beyond the scope
of this work. As a consequence, a software architecture is chosen that allows to keep
the existing system as a base, and extend it instead. Figure 9.5 shows the components
that were added over the first design in figure 4.16 in bold. Thefollowing components
were added:

User interface: Tutorial support and adaption should happen within the existing user
interface of the course engine. While attention of the user is currently split
between the telnet/ssh interface to the lab systems and the course engine which
gives instructions to the user, no third interface should beadded.

User model: Data about the user and the history of his interactions are already stored
in the database. The database scheme can be easily extended to also store infor-
mation about the ongoing exercises and further data on user interaction that can
be used to build the user model.

Tutor: The tutoring component monitors the user’s actions during the exercise with
the help of the scheduler, and updates the user model based onthe available
data. It communicates its decisions and any knowledge communication towards
the user to the course engine, which acts as user interface for the tutor. See
chapter 10 for more information.

Adaption: Equally placed as the tutoring component, the adaption component mon-
itors a user’s exercise, compares it against data availablein the user model and

1 [Fink et al., 1998] pp. 7
2 [Nodenot et al., 2004] p. 95
3 [Nodenot et al., 2004] p. 95
4 [Bonar et al., 1986] pp. 269

220 CHAPTER 9. DESIGN OF TUTORING AND USER ADAPTION

v
u

l a
 b

User Management

User

Firewall Deployment
Tutor

Adaption

+ User Model
DatabaseCourse Engine

= User Interface
Scheduler

Figure 9.5: The Virtual Unix Lab with tutoring and adaption (new components in bold)

updates the user model so the tutor can adjust its feedback strategy. See chapter
11 for more information.

The original design is organized around the curriculum, andthe bite sized architecture
allows easy steering and testing1. Extensions for tutoring and adaption correspond to
the design of the AVANTI system described in [Fink et al., 1998, pp. 5]. The tutoring
and adaptive components contain both the domain modem and the teaching model to
the extent that this can not be placed into the database, preventing hardcoding as much
as possible. Communication between the various componentsis performed by using
SQL and the VUDSL described in chapter 6.

More details on tutoring in the Virtual Unix Lab are described in chapter 10, chapter
11 covers user adaption.

1 [Wenger, 1987] pp. 144

Chapter 10

Architecture of tutoring

A tutoring component for the Virtual Unix Lab is expected to guide students in their
learning experience, and to support the teacher in giving feedback to the student. The
previous chapter outlined the overall design of the VirtualUnix Lab and identified
where components for evolving towards a tutoring system would need to be placed.
This chapter goes forward in that direction and focusses an architecture that can be
used to realize a tutorial component for the Virtual Unix Lab.

Topics discussed here include establishing the teaching model by selecting from a
number of possible approaches for tutoring, applying modeltracing for diagnosis dur-
ing exercises, and on-line diagnosis. Giving feedback and assistance is covered with
details on the exact goals, assumptions made and challengesencountered, as well as
their influences on contents and form of course material. Further topics include con-
siderations for the user model, which is followed by aspectsof the user interface.

10.1 Establishing the teaching model

A number of models for tutoring in learning environments areavailable as outlined in
section 8.1. For practical realization, the question of which model and methods to use
for the intended application arises.

This section describes criteria by which the selection is made for the Virtual Unix Lab,
how they apply to a number of choices outlined in section 8.1.2, and decides upon
one to implement tutoring. Both terms “pedagogical model” and “teaching model” are
used with the same meaning in this section.

221

222 CHAPTER 10. ARCHITECTURE OF TUTORING

10.1.1 Selection criteria

This section outlines criteria to considered for the selection of a pedagogical model
for the Virtual Unix Lab. While a general outline of the selection process is given in
section 8.1.2.3, emphasis is put on to the following points for the selection process:

Pedagogical depth:Does the model offer sufficient pedagogical depth to help the
student, e.g. by supporting views, mal-tests and possibly reasoning?

Procedural knowledge: Can the method be used to model procedural knowledge, or
can it only handle factual knowledge?

State of the art: Is the method described in the literature, and/or are reports on their
realization available? Is the method known and well tested,or is it rather new
and experimental?

Integration: How easy is integration of the method in question with the rest of the
existing system as described so far? What parts are already there, which ones
need to be created? How feasibility is the latter?

Data acquisition: What effort is needed to acquire data necessary for the method? Is
data already available in the system, are extensions to the system needed, or is
data only available under certain constraints.

Exercise maintainability: Creating a system that can assist students is only one part
of the work. Exercises have to be created in the system, and efforts for setup and
maintenance of those exercises are considered important.

Summary: A short summary of the method.

10.1.2 Classical approaches with overlay architecture

The idea behind tutoring with the help of an overlay model is to model the problem
domain and trace both correct and incorrect actions by the user. The idea is like putting
a transparent slide over a map (the problem domain’s model) and tracing the user’s
steps with a pen. The system then classifies the steps and actsaccordingly. Variations
exist to target specific student behavior in a differential manner, to improve detection
of bad decisions and various extensions to adapt to the user.Classical approaches to
tutoring via an overlay architecture are described in detail in section 8.1.2.2.1.

Pedagogical depth:The problem domain is modeled by one or more domain experts
and/or meta-experts, which will determine relevant concepts and misconceptions
for a target area, and define how to react to actions that are identified through the
overlay model.

10.1. ESTABLISHING THE TEACHING MODEL 223

Besides the limitation to the domain experts’ knowledge, the system is restricted
to pointing out problems, but no reasoning or explanation about the origins that
led to the problematic situation is possible. A possible counter-measure for this
is the introduction of “mal-rules” to detect when users strive off the “right” path.

Procedural knowledge: The overlay method was specifically designed to handle pro-
cedural knowledge.

State of the art: A large number of papers describe how to employ this technique to
real-life scenarios, illustrate how to model problem domains, gather data, and
draw conclusions for didactic actions. As such, this approach can be considered
well-documented and ripe for practical use.

Integration: Considering the application area of the Virtual Unix Lab andthe foun-
dations work performed here, the didactic principles for teaching system admin-
istration from chapter 3, and the methods for verifying exercise state and results
from chapter 6, many of the foundations needed to implement tutoring via over-
lays are available.

Data acquisition: The amount of data available during the exercise is considered suf-
ficient to drive the tutoring process.This applies at least for static analysis of
exercise status and progress, and to some extent even for analysis of online in-
teraction of the student.

Exercise maintainability: The preparation efforts for exercises – specifying reactions
to events etc. – are considered acceptable, with an estimateof linear growth of
didactic actions with exercise length/complexity, instead of exponential growth.

Summary: The classical approach using an overlay architecture is flexible, and while
it remains open for extensions like adaption and more fine grained structures, it
is still easy to realize.

10.1.3 Cognitive approach

The cognitive approach goes back to cognitive psychology. Therein, no strict rules
are outlined for the learner, but (internal) ”knowledge” isbuilt up from analyzing and
understanding examples that are presented under varying viewpoints. See sections
3.1.1 and 8.1.2.2.2 for more details.

Pedagogical depth:The pedagogical offers of this approach are considered the best
ones available. Knowledge is gained by the student through learning in different
environments, by changing viewpoints, challenges and tasks without predefined
learning units. The system ideally gives a maximum of feedback to actions taken
by the student, who builds up knowledge about facts and ruleson his own.

Variations exist in the form of changing scenarios given to the student, interac-
tion styles, different kinds of interactivity and feedbackstyles.

224 CHAPTER 10. ARCHITECTURE OF TUTORING

Procedural knowledge: Cognitive and constructive methods can be used for both
procedural and factual knowledge. Methods like decontextualization can be ap-
plied in both cases.

State of the art: There’s a number of documents about the theories behind cognitive
approaches in tutoring. Unfortunately the number of experiences from practical
realizations of those approaches are rather limited.

Integration: Techniques for cognitive tutoring approaches vary widely,ranging from
a number of interaction techniques for single students versus groups of students
over multiple scenarios and points of view for one scenario to the related meth-
ods for data acquisition, which in term vary widely as well.

Within the Virtual Unix Lab, some of these methods and approaches are avail-
able or can be implemented with medium amount of efforts. Full support of
cognitive tutoring requires a wide number of extra changes to be made to the
system, which qualifies this tutoring approach as item for future research, and
not an immediate candidate for easy realization.

Data acquisition: If availability of an appropriate range of cognitive tutoring tools
could be ensured, the existing framework of the Virtual UnixLab as described
so far is expected to deliver the required data to drive this tutoring process.

Exercise maintainability: Preparation efforts for exercises with a cognitive tutoring
approach are acceptable, again assuming that a set of tools to deliver the contents
is available.

Summary: The method is considered as very good, but very difficult to realize, if at
all. See Schulmeister’s judgement in section 3.1.3.

10.1.4 Linguistic approach

The linguistic approach takes events on the syntactical layer, infers actions on the se-
mantical layer, and attempts to determine pragmatical actions from semantical actions.
As such, it is appropriate for finding out about a user/learner’s plans. Further informa-
tion is available in section 8.1.2.2.3.

Pedagogical depth:The model supports plan recognition through defined relations
between syntactical / semantical actions and their corresponding semantical /
pragmatical meaning. Input at the appropriate level, with the corresponding
amount of details, is required for this. A certain level of fault tolerance against
“unimportant” glitches (e.g. mistyped commands) has to be considered, and a
comparison between recognized plans, expectations, and exercise goals has to
be made to determine if intervention is needed.

Didactic actions that are considered after such comparisons are of general nature
and not specific to the linguistic approach of tutoring.

10.1. ESTABLISHING THE TEACHING MODEL 225

Procedural knowledge: Applying linguistic analysis only makes sense to procedural
knowledge. Factual knowledge can not be used in this contextbeyond simple
connections of terms, which is better done with semantic networks if needed.

State of the art: “Plan recognition” is well covered in tutoring and AI literature, esp.
for the domain of Unix operating systems. Most attention is given to recognizing
a user’s plan and assisting him, instead of applying tutoring techniques. The
overall number of theoretical papers describing how to use plan recognition for
tutoring is small, with even fewer practical examples.

Integration: To realize tutoring with linguistic methods, a learner’s plan on how to
solve a given problem needs to be determined. In the current implementation
of the Virtual Unix Lab it is possible to determine the statusof the exercise
systems. Capturing of user input data (via mouse, keyboard,network, etc.) is
not implemented yet, and would be needed for this way of tutoring.

Data acquisition: When methods for capturing user input data are available, itis ex-
pected that the existing Virtual Unix Lab could deliver enough data from user
interaction to properly recognize users’ plans on how they solve given exercises,
and comment on them.

Exercise maintainability: Preparation of new exercises with support for linguistic
tutoring techniques consists of two parts: Defining generalrules that apply to
each part of the exercises (e.g. how to handle mis-typed command names –
when to assume it is a typo, when to assume that a student has problems with
the user interface and to intervene, and when to help the student by suggesting
what to type), and identifying specific patterns that apply only to one or a small
number of steps in an exercise. The overall efforts requiredhere depend on the
level of detail that tutoring is intended for the student: Wenger cites 110 possible
bugs for subtraction1. Considering the complexity of managing an average Unix
system with several services gives an impression of the level of complexity that
can be reached with this approach.

Summary: This approach is good for recognizing unknown plans. For thecontext of
the Virtual Unix Lab this is of less importance, as the general plan is predefined
via the exercise text. As such, the method requires too much effort for too little
win.

10.1.5 Artificial Intelligence based approach

Using Artificial Intelligence (AI) for tutoring is similar to the overlay method, where
user input is compared to expected behavior. The main difference here is that the
problem domain is not explicitly modeled after an expert’s knowledge, but that start

1 [Wenger, 1987]

226 CHAPTER 10. ARCHITECTURE OF TUTORING

and goal are defined, and the ’way’ (list of steps to perform) is found by applying
techniques usually found in AI. See section 8.1.2.2.4 for more information.

Pedagogical depth:Using the AI based approach can lead to finding the possible line
or lines of thinking a student has done to reach a given point in an exercise,
by e.g. taking preconditions and wrong assumptions, determining the possible
lines of steps to reach the current situation to what the student actually did. It
is expected to be able to find wrong assumptions and conclusions this way, that
can then be reacted on with didactic measures.

Like for the linguistic approach, determining what didactic actions to employ to
counter the findings made remains as a separate topic.

Procedural knowledge: Applying AI algorithms to search in the problem domain can
be done on either factual or procedural knowledge, depending on the model of
the domain only. It is expected that a corresponding domain model preferably
constructed for procedural knowledge, though. Factual knowledge would better
be represented via semantic networks.

State of the art: Little literature is available on this approach, esp. not for teaching in
the Unix system administration domain. Related papers can be found for setup
and verification of computer network setups, but again the number is very low,
with no specific discussion about the tutoring techniques stemming from the
findings determined by these techniques.

Integration: To apply AI methods to tutoring in the Virtual Unix Lab, both ade-
scription of possible steps in each situation is needed, as well as an inference
mechanism that determines possible steps, compares them with what the user
actually did, and then communicates the misconceptions that it has found in the
user. While no such inference mechanism is available in the Virtual Unix Lab
today, it is considered to be realizable with acceptable efforts, using common AI
methods.

Data acquisition: Acquiring data for the AI inference engine is similar to the data
acquisition and user input capturing technologies mentioned for overlay and lin-
guistic approaches. Equivalent data would be needed here tocompare users’
steps against various possible lines of thinking.

Exercise maintainability: The real challenge in this approach is the definition of ex-
ercises: For one, a complete Unix system (in all its variants, like Solaris, Linux,
NetBSD, ...) needs to be modeled with the different commands, their options,
in what situation they can be run, and with what effects. Withseveral thousand
commands, many options per command and an almost arbitrary number of situ-
ation that various commands can be used, this is considered daunting – probably
to the extent to not go near this approach for a complex real-life scenario, which
would explain the low quantity of existing literature.

10.1. ESTABLISHING THE TEACHING MODEL 227

Summary: While this approach sounds promising in theory, it is way toocomplex
to model in practice, when including all possible steps a user can do in Unix:
the NetBSD operating system alone has more than 800 commandsin the base
install, and each of those has a moderate number of possible options. Adding
about 100 configuration files in/etc alone gives an idea that this is not going
anywhere in a lifetime.

10.1.6 Semantic networks and ontologies

Semantic networks describe the connections between terms,and ontologies can be
used as formal representation of those connections. See section 8.1.2.2.7 for more
information.

Pedagogical depth:Semantic networks can be used to both verify a student’s compe-
tence in a specific domain, and also provide reasoning about concepts he has not
learned, or learned wrong.

Procedural knowledge: Semantic networks mostly work for factual knowledge. Pro-
cedural knowledge is difficult to represent at best.

State of the art: A number of projects exist that show the use of semantic networks
and related ontologies for teaching projects. The semanticnetworks are mostly
used as a supplement to other teaching mechanisms, though, and rarely applied
alone.

Integration: Integration of semantic networks into the Virtual Unix Lab would re-
quire a corresponding domain model. Given that the requirement for the Virtual
Unix Lab is mostly checking procedural knowledge, the network could test if a
student knows relevant commands, options and files in a givensituation. Verifi-
cation of this could only be used at specific points in an exercise.

Data acquisition: Input required from the Virtual Unix Lab to verify against a se-
mantic network would be single commands and keystrokes, similar to what is
needed for the on-line analysis described in sections 8.1.4.3.1 and 10.3.

Exercise maintainability: Exercises would need to be extended to identify what parts
in a (larger) semantic network are required at a specific point in the exercise, and
what relevant concepts, commands and files could or could notbe expected by
the student. Besides the connection between the exercise’ssingle tasks and the
semantic network, a semantic network for the domain of system administration
and the Unix (or related) operating systems would be required, possibly requir-
ing a corresponding ontology to be defined first. Most of this work would not be
directly related to Virtual Unix Lab. No existing projects taking those efforts are
known.

228 CHAPTER 10. ARCHITECTURE OF TUTORING

Summary: Semantic networks are more useful to apply at factual than atprocedural
knowledge, and related assessment. This, plus the effort oftheir creation don’t
make them a primary candidate for a teaching model in the Virtual Unix Lab.
They could be considered as addition to a primary model in a later step, though.

10.1.7 Frames and scripts

Frames were introduced by Marvin Minsky to describe situations and objects with
associated properties, which can be connected either to stereotpyical defaults, or to
other frames which further specify the property. Scripts are an extension of frames
model procedural knowledge. See section 8.1.2.2.7 for moreinformation.

Pedagogical depth:A model consisting of frames and scripts can help to verify a
learner’s knowledge against what he has already learned, and what he has to
learn yet. When verifying a learner’s knowledge, areas willbe detected where
specific facts are required, but where stereotypical information will be provided.
This can be used as an indicator that the learner is proficientin the general prob-
lem domain by display of the stereotypical information, butnot yet with the
specific situation at hands. Feedback and teaching can be given accordingly.

Procedural knowledge: Frames were created to represent factual knowledge, and to
model the relations between facts. Scripts are an extensionto frames that de-
scribe procedures of events, which happen in the context of frames. The order
of events is pre-defined, thus allowing to detect if a user follows a certain plan
or not.

State of the art: A number of learning systems exist for factual knowledge andminor
procedural problems, but no recent results show an application in the domain of
system administration or any of the related domains.

Integration: To integrate frames and scripts in the Virtual Unix Lab, a corresponding
domain model and a processing engine for it are required. Based on that, situa-
tions could be modeled with frames, and possible ways of interactions could be
described in scripts.

Data acquisition: On-line analysis could be used to verify if a script is followed or
not. The existing diagnosis that is based on verifying the state of the Virtual
Unix Lab would not be sufficient to verify the steps of a script.

Exercise maintainability: Description of the exercise would happen by modeling key
situations like the start and end, and any important intermediate steps as frames.
Scripts would be written to recognize steps that lead from one frame to another
one. Those scripts could include correct steps as well as wrong ones, to detect if
a learner makes mistakes or follows a wrong line of thinking.

10.1. ESTABLISHING THE TEACHING MODEL 229

Summary: Frames and scripts require on-line diagnosis and a complex domain model.
Both require major issue to realize, and thus make this approach unlikely as an
extension of the existing Virtual Unix Lab.

The general approach is worth to re-consider when on-line analysis is available
in the Virtual Unix Lab, though. This is further discussed insection 10.3.

10.1.8 Bayesian networks

Bayesian networks are directed acyclic graphs, which describe situations and the prob-
ability of any succeeding situations. The models can be generated automatically as
described in section 8.1.2.2.7.

Pedagogical depth:Assuming a properly modeled and trained network, bayesian net-
works can be used to predict a user’s behaviour, detect any deviations and pro-
vide feedback at what point the deviation happened, and whatthe proper actions
would have been.

Procedural knowledge: Bayesian networks can be applied to factual and procedural
knowledge equally, and detect changes over time.

State of the art: Bayesian networks are used in several projects. On a number of
them, they are used as supplement for other methods, though,and aren’t used as
the primary teaching model.

Integration: Integration of bayesian networks into the Virtual Unix Lab would re-
quire several steps: first to setup a basic model of the domain, which would then
be trained in a second step, to indicate what steps are expected and “good”, and
also what mistakes can be made. For productive exercises, this model could then
be used as described. Data input for the Virtual Unix Lab would preferably be
gained though on-line analysis as discussed in section 10.3, although the exsting
model of analyzing the current situation of the lab machine’s state may be used
as well, with less confidence for statements.

Data acquisition: Depending on the underlying domain model, the existing analysis
of the lab machine state can be extended with on-line analysis.

Exercise maintainability: Assuming that the Virtual Unix Lab system is extended
to train a bayesian network with data from existing exercises, and to provide
feedback, it is expected that the overall overhead of exercise maintenance is
rather low, assuming that the network is trained by existingexercises. Individual
exercises could extend the graph that reflects the underlying domain model to
some extent.

230 CHAPTER 10. ARCHITECTURE OF TUTORING

Summary: Bayesian networks could be used as supplement to an existingteaching
method, to ensure predictions and statements. The low overhead of when main-
taining exercises is considered good, the neccessary infrastructure needs to be
implemented in the existing system, though. In summary, bayesian networks
could be considered as worthwhile addition for future versions of the Virtual
Unix Lab, but not as primary teaching model.

10.1.9 Comparison

After the previous sections have given an overview of the possible methods for real-
izing tutoring, this section compares them and draws a summary on which method is
most likely to lead to success.

Pedagogical depth:All the named methods have the required pedagogical depths.
Overlays are easiest to realize, cognitive methods would bepreferable from a
strictly pedagogical point of view. The linguistic and AI-based approaches as
well as frames & scripts and bayesian networks would be very good to find
problems, offer reasoning on how and why things went wrong, and how to im-
prove the situation. Semantic networks and ontologies could be added to verify
conceptual knowledge.

Procedural knowledge: The Virtual Unix Lab trains mostly procedural knowledge.
For this, overlay methods, cognitive, linguistic or AI methods are better fit than
semantic networks. Frames & scripts and bayesian networks could be used to
some extent, but are not ideal as primary teaching model. They could be used
for later improvements.

State of the art: The overlay and cognitive methods are well documented, while pub-
lications on linguistic and AI-based approaches are rathersparse. This goes for
both theories as well as practical projects that use them. Similar observations
can be made for semantic networks and ontologies, frames andscripts, as well
as bayesian networks.

Integration: Overlay methods can be easily integrated, while cognitive methods re-
quire a lot more effort, as also observed by Schulmeister. Linguistic and AI-
based approaches could be integrated into the existing system with moderate
efforts. Similar efforts are needed for semantic networks and ontologies, frames
and scripts, and bayesian networks.

Data acquisition: This is easy to realize for overlays in the existing system. Cognitive
methods are doable if appropriate tutoring tools are added to the existing system.
Linguistic methods require inputs from on-line diagnosis,which is challenging
to realize. AI-based methods should be easier, but will require data acquisition
from on-line sampling instruments, too.

10.1. ESTABLISHING THE TEACHING MODEL 231

Approach P
ed

ag
og

ic
al

de
pt

h

P
ro

ce
du

ra
l

kn
ow

le
dg

e

S
ta

te
of

th
e

ar
t

In
te

gr
at

io
n

D
at

a
ac

qu
is

iti
on

E
xe

rc
is

e
m

ai
nt

en
an

ce

S
um

m
ar

y

Classical w/ overlay + ++ + + ++ + ++
Cognitive ++ ++ 0 − 0 + +
Linguistic + + − 0 0 −− 0
AI + + − 0 0 −− 0
Semantic network + − 0 0 − − −
Frames & scripts + + − 0 − 0 0
Bayesian networks 0 + + 0 − 0 0

Figure 10.1: Comparison of tutoring approaches, from best (++) to worst (−−)

Semantic networks and ontologies as well as frames and scripts would require
on-line diagnosis to exist, which is not available in the Virtual Unix Lab as de-
scribed so far. Bayesian networks could benefit from on-linediagnosis as well,
but they could be based on the existing system as well, with a moderate amount
of work.

Exercise maintainability: This is considered easy for overlay methods, with a linear
connection between the amount of maintenance needed and exercise volume.
Bayesian networks are expected to impose a low overhead on exercise mainte-
nance as well. For cognitive methods, semantic networks andframes & scripts
the efforts increase rapidly and can quickly explode into anunmaintainable state.
The effort for both linguistic and AI-based methods is considered very high, too.

Summary: The overlay approach is small and manageable. The cognitiveapproach
needs a lot of work on the course engine. Linguistic and AI-based methods are
too complicated with respect to exercise preparations. Semantic networks and
frames & scripts require both work on the existing Virtual Unix Lab as well
as esp. on exericses, whereas bayesian networks would require changes to the
existing Virtual Unix Lab system as well.

Table 10.1 summarizes the situation. Following it, the further proceeding is to focus
on using an overlay architecture with checks for exercise results, as they are easy to
implement and maintain. Furthermore, the paradigm of direct assignment of credit and
blame is realized for feedback for the same reasons. Due to the lack of a useful theory
of bugs, detection of errors is done in an ad-hoc way with “false positives”, based on
experiences made in prior exercises in the Virtual Unix Lab.

232 CHAPTER 10. ARCHITECTURE OF TUTORING

10.2 Using model tracing for diagnosis during the ex-
ercise

The goal of model tracing for diagnosis during the exercise in the Virtual Unix Lab
is to determine what skills and topics the student is proficient in, and then improve
those skills and topics that need further improvement. Thatway, cognitive adaption
is intended to happen in the learner by giving appropriate feedback to him. See also
section 10.4.5.

The approach outlined here is to apply the direct assignmentof credit and blame
paradigm as described in section 8.1.4.3.2.1. In contrast to the system used for di-
agnosis so far, no pure behavioristic post-hoc diagnosis isused. Instead, model tracing
with the help of an overlay model as described in sections 8.1.4.3.2.1 and 8.1.2.2.1 is
used. In contrast to a semantical network that can be used forrather simple behavioris-
tic tasks, those represented in the Virtual Unix Lab are modeled as procedural network,
see section 8.1.2.2.1.

Realization in the Virtual Unix Lab includes a full analysisand decomposition of the
subject matter as outlined in section 9.3.1, and to define exercises that work from
smaller tasks towards specific learning goals. Verificationof the tasks and goals can
be done by using check scripts, and noting their results to realize model tracing. The
overlay model is implicit in the exercise in this case, defining what should be verified,
and how – which checks to expect to fail, and which to expect tosucceed.

Description of errors and error classes can happen though the VUDSL and its primi-
tives as defined in chapter 6 and section 8.1.4.1. Checks for acommon class of errors
can be realized by passing parameters to check scripts testing for the class by using
the VUDSL. As an example, checks can be made to see if specific settings in the
/etc/rc.conf file were disrupted, important packages were deinstalled, files deleted or
processes terminated. Also, deadlock situations can be detected, like when a NIS/NFS
client is started without a corresponding server, which leads to nasty hangs for these
services1.

10.3 Investigating on-line diagnosis

The check scripts described in the previous section test thesystem state after user
actions. While this is largely sufficient, looking closer atthe user input while changes
are still being made would be useful as supplement, to realize behavioristic on-line
diagnostics as described in section 8.1.4.3.1

1 Clients using the Network File System (NFS) wait until theirserver is (back) up when it is gone.
This waiting can cause the whole system to hang and wait, which led to the expansion of NFS to
“Nightmare File System” as described in [Weise et al., 1994, pp. 283].

10.3. INVESTIGATING ON-LINE DIAGNOSIS 233

Operating
system
kernel

Shellservices driversstack
Network Network Terminal

Figure 10.2: The path of incoming information

Theoretically, diagnosis can be done on a number of semioticlayers:

Syntactical layer: Analyze network traffic, keystrokes and mouse activity and deter-
mine activities performed. This is difficult as no context will be available, e.g.
for things like tab completions, history recall or wildcardexpansion on a com-
mand line interpreter, or for position of a mouse pointer andcontents of a screen
to tell the effects of a mouse click.

Semantical layer: This could analyze the history files written by a shell, or – us-
ing a modified shell – commands typed by users directly as e.g.described in
[Matthews et al., 2000]

Pragmatical layer: This would require knowing/understanding the plan that thestu-
dent expresses towards the system by activities on the semantic and syntactical
layers. Inference of the student’s plans is needed for this,which in turn re-
quires methods that analyze the lower layers again, as the user’s brain cannot be
scanned (yet).

While “context” will still be needed to make use of data from the semantical layer,
choosing an approach on the syntactical layer even more of data. As such, the focus
here will be on the semantical layer.

The general path by which commands enter a Unix based lab system are illustrated in
figure 10.2: The lab machine’s operating system receives input over the network, using
its network stack. The network stack then passes that data onto one of the network
daemons that are used for interaction, e.g. the secure shell(sshd), telnet (telnetd) or
remote shell (rshd) daemon. These pass on the characters extracted from the network
packets to a command shells using the Unix terminal (tty) or pseudo terminal (pty)
interface. The “shell” that gets the characters passed is one of several command line
interpreters available in Unix, e.g. standard systems have“sh” and “csh”, but there are
others that differ slightly in functionality. In turn, theyassemble commands form the
single keystrokes passed in via the network, and then eitherperform internal action or
run other commands from the system via the exec(2) system call1,2,3.

For the practical realization, there are several places in this setup where data can be
acquired, defined by the components outlined above. Here is an analysis of what will
be needed to get data at that part, and how feasible that is to realize:

1 [Mayer, 2001] pp. 24
2 [Stevens, 1992] pp. 325
3 [Stevens, 1994] pp. 162

234 CHAPTER 10. ARCHITECTURE OF TUTORING

Network stack: Mining data at this level would mean to sniff and analyze network
traffic, or hook into the operating system’s network stack. Leaving the technical
difficulties, plus the multitude of possible operating systems that this has to be
done for aside, analysis on this level would require more context than is available
here. I.e. data on the harddisk for wildcard expansion, history substitution,
tab completion, or interpretation of mouse clicks in graphical user interfaces.
Including the technical difficulties, this can be regarded as not feasible.

Network services: Various daemon processes realize the network services thathandle
input and output for command line interfaces, e.g. rshd, sshd and telnetd. They
receive single characters over the network, and again no context is available
for reliable inference of the semantic level. Also, technical realization again is
problematic due to (non)availability of source code and thenumber of network
services and operating systems that would need patching, which also makes this
method not very likely for successful deployment.

Terminal drivers: Intercepting user input at this point means modification to every
operating system’s terminal (tty) and pseudo terminal (pty) drivers, and will
yield only syntactic information again. This fact, the number of systems to
change, their changeability (i.e. non-availability of source code), and the techni-
cal expertise needed for the required modifications speaks against this approach,
too.

Shell: “The shell” is actually available in several incarnations,some available as open
source, but the ones often shipped with commercial Unix systems are of closed
source nature, and thus cannot be changed easily. As the shell would be in a good
position to determine information on the semantic level this would be a good
place to start, as e.g. documented for the USCSH1. Problems arise again from
the number of shells that would need changing, and the partial (non)availability
of source code.

Operating system kernel: In the family of Unix(like) operating systems, commands
are started by exec(2) and a number of related system calls. As every command
is executed that way, they would be an ideal place to harvest diagnostic data.
Problems are (un)availability of source code once more, thenumber of differ-
ent operating systems that would need changing, and the technical expertise to
perform those changes.

An approach of an assistant that performs plan detection andassistance in the
Unix environment by analyzing system calls can be found in [Su et al., 2007].

Others: Another point where diagnostic data for on-line diagnosis and corresponding
analysis could be gained is the firewall that all interactionwith the lab machines
has to pass through. While sources for the IPfilter firewalling software, which is
used in the Virtual Unix Lab, is available, data would be onlyon the syntactic
level again.

1 [Matthews et al., 2000] pp. 121

10.4. GIVING FEEDBACK AND ASSISTANCE 235

When available, system accounting can be used to log all commands executed
by the system. It requires no modification to the system, and in combination
with a separate program that collects and analyzes data, this would be the most
promising approach. Feasibility of the approach would require evaluation of
system accounting in further depth, esp. on what exact data is available, and
with what latency. No system so far is known to use this sourceof diagnostic
data that could be used as reference.

In summary, the idea of collecting on-line data for diagnostic purpose seems easy from
the outside, but the implementation details make the effortquestionable for the Virtual
Unix Lab. For the system level that data is needed for, too many system components
would require changes that are either non-trivial from the technical side, or not possible
as no source code for modifications is available. As not much literature is available for
collecting on-line data for system-level diagnosis either, the following chapters will
focus on a system that does not rely on on-line diagnosis, while keeping the option to
add this at a later time.

10.4 Giving feedback and assistance

This section defines the goals for giving feedback and assistance during an exercise,
then describes some of the challenges to consider, and how tomaster them in the
current system. The changes will have an impact on the organization of exercises and
course material, which is also discussed.

10.4.1 Goal

The goal of giving feedback is to assist the student during the exercise, and show
existing problems in the problem-solving context without giving any hints on their so-
lutions (at first), as discussed by Wenger1 and in section 8.1.2.2.2. During the exercise,
feedback is shown for those parts of the exercise that were already worked on, either
if the work was successful or not. Additional help is given sothat the user understands
what the system is verifying. No feedback is displayed for the parts of the exercise
that haven’t been worked on yet. This scheme scales between the current practice of
not displaying any feedback during the exercise at all to showing full feedback for all
items after the exercise.

To find the part of the exercise that the student is currently working on, checks on the
current situation are performed – see also the Zone of Proximal Development (ZPD) in
[Michaud et al., 2000] and the course of an exercise a studentmay take in figure 10.3.

1 [Wenger, 1987] p. 292

236 CHAPTER 10. ARCHITECTURE OF TUTORING

1. Step: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2. Step: +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3. Step: +++++−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4. Step: ++++++++−−−+++−−−−−−−−−−−−−−−−−−−−−

Figure 10.3: Possible course of an exercise (+=done,- =todo)

The didactic model underlying this approach is based on a teacher wandering around
among students doing exercises in a classroom or lab, looking over their shoulder,
analyzing the current situation and providing help based onthe student’s activities.

10.4.2 Assumptions

Questions to answer at this point are how to recognize what was already worked on,
what is currently being worked on, and what is still open to dofor the student. Some
assumptions based on the existing Virtual Unix Lab and its purpose are being made
here:

• Exercise parts should be worked on in a linear fashion

• Later parts build up on earlier parts; as such, it is better tolearn (only) the basics
in early parts, than to learn advanced skills in later parts,after passing the early
and “easy” parts.

• Even if the student has skipped a part of the exercise and works on a later one,
he will have a reason for this. To be less invasive, it is suggested to support the
student in his move, instead of forcing him to go back to the skipped part.

With these assumptions, the procedure to recognize what part of the exercise the stu-
dent currently works on is as follows: Check from the ’last’ (figure 10.3: rightmost)
part of the exercise to the ’first’ (figure 10.3: leftmost) part to find what part was solved
successfully last. Assuming that the student works in a linear fashion, he will work on
the next unsolved part. Figure 10.4 illustrates this process.

10.4.3 Challenges

Two of the challenges that will be encountered are if a student skips parts of the exer-
cise, and/or if he does not perform them in a linear sequence.

10.4. GIVING FEEDBACK AND ASSISTANCE 237

a)

b)

3. Step: +++++−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 10.4: Going backward to find the latest (a) and next part being worked on (b)

A skipped part is displayed in the 4th step of figure 10.3. Assuming that the student
skipped the missing parts for a reason, no efforts are made tobring him back “on
track” to finish the missing parts if there are other parts still missing in the sequence of
exercises. If the last (rightmost) part of the exercise is found to be completed, guidance
and direction can be offered to help the student solve the missing parts.

Handling exercise parts that are not performed in sequential order is harder. This
situation can occur in two cases. First, when a student performs his first pass through
the exercise parts, and second, after he has finished the majority of the exercises and
gets to pick the parts that are still missing. The assumptionthat exercise parts are
approached in a sequential order from the start may be less true than for the general
flow of the exercise.

Besides the assumption that the student always starts with the first (leftmost) unsolved
exercise part, some heuristics have to be employed to verifywhat parts hereally works
on. Applying the linguistic approach for tutoring based on on-line analysis could offer
the needed data. For the realization, the data model described in figure 6.15 and section
6.6 would need to be extended. The extension would define how to recognize a student
working on the corresponding part of an exercise not only via(post-mortem, so to
speak) checks as right now, but also by what patterns of interaction and commands he
uses.

10.4.4 Realization

To realize feedback, its content and form have to be considered. This is discussed in
the following sections.

10.4.4.1 Contents

Feedback is considered to be part of the user model as described in section 8.1.4.4. To
provide elaborated feedback, the contents have to contain sufficient details. Feedback

238 CHAPTER 10. ARCHITECTURE OF TUTORING

provided by users of the Virtual Unix Lab (see section 7.3.3)and analysis of the exist-
ing exercises (see appendix E) show that the following points should be considered for
detailed feedback:

• What scenario is appropriate?1

• What approach is appropriate?2

• What commands may be of help to solve the given exercise part?3

• What commands may be of help to troubleshoot the given exercise part?4

When providing help, two orders are possible: either provide general cognitive / epis-
temic help first (i.e. hinting at relevant topics, trouble shooting strategies, and so on),
and then move on to behavioristic help (i.e. telling what commands to use, possibly
including the necessary arguments for the situation at hands). If this does’t help the
student, he requests more help. The alternative is move intothe opposite direction,
giving behaviouristic help first, and if the student needs more help, give the neccessary
background later via epistemic help. The former approach isconsidered appropriate
here, based on the assumption that the student will learn what topics are appropriate to
consider to solve the problem, instead of blindly typing in the commands that the help
system may provide when giving behavioristic feedback.

The effect that Baker describes as students “gaming the system”5 can happen in the
first incarnation of the system. Updating the student model each time help is given to
the student and applying adaption based on structural and longitudinal consistency can
be used to detect if a student abuses the feedback system as discussed in sections 10.5
and 11.5. Also, the help previously offered to the student inaddition to the other data
in his user model helps to determine what help is offered next, if more help is needed.

Discussion of the technical realization of displaying feedback during the exercise is
discussed in section 10.6.

10.4.4.2 Form of feedback

The form that feedback is given in can be either in a cooperative (on-demand) way,
or automatically. The underlying pedagogical model for cooperative feedback corre-
sponds to a student asking the teacher for help during a lab exercise. The teacher has
to gain an overview over the situation that the student is in,the attempts that the stu-
dent has made to solve the exercise part at hands, plus the real state of the system to

1 See “viewpoints” in appendix E
2 See “what does the student have to do” in appendix E
3 See “help” in appendix E
4 See “help” in appendix E
5 [Baker et al., 2004]

10.4. GIVING FEEDBACK AND ASSISTANCE 239

give appropriate help. For automatic feedback, the pedagogical model corresponds to
a teacher roaming around among students in the lab, looking over their shoulder and
commenting their work if needed. Feedback can be given either immediately when a
noteworthy situation is found, or after some delay, giving the student time to correct
mistakes on his own, as is discussed in section 8.1.4.4, section 3.1.2 and [Wenger,
1987, pp. 296].

10.4.5 Impact on organization of exercises and learning material

Providing feedback can have an impact on organization of exercises and learning mate-
rial for students. Depending on the pedagogical model to apply, exercises and learning
material can be split into tiny pieces, in order to adjust theflow of exercises more
dynamically to the student’s performance. Organization ofcontent in such a way is
common in constructivistic learning environments and their assorted learning manage-
ment systems. The requirements of such systems and their relation to the Virtual Unix
Lab are discussed in chapter 1.

Possible approaches for sequencing exercises and learningmaterial are outlined in
[Darbhamulla and Lawhead, 2004] and [Helic et al., 2004], a possible architecture
that employs a cycle of “direction→ capture→ analysis→ feedback” that would be
compatible with the Virtual Unix Lab can be found in [Heer et al., 2004]. The mapping
of specific checks to didactic topics can be done via topic-specific parameters and
weights, see the discussion on “weighted polynomials” in [Brusilovsky and Cooper,
2002, pp. 28].

No focus is set on the topic of splitting and sequencing of course material for the
Virtual Unix Lab at this point. Many theoretical foundations for that area are available,
e.g. in [Kobsa et al., 2001], [Helic et al., 2004], [Fischer,2001] and in the whole corpus
of hypertext and hypermedia literature. If need arises, finer grained course sequencing
can be performed at a later step to improve and fine-tune tutoring.

When discovering that more training is needed for a prerequisite, interrupting an ongo-
ing exercise to learn those prerequisites in a separate exercise is challenging not only
to the learning environment and the learning material, but also to the cognitive load
on the student, involving a switch of focus and context back and forth. An alternative
is to not interrupt the ongoing exercise, give the student the option to either learn the
skill on the current exercise, or abort it, then to offer the second training and after that
allow the student to take the first exercise again. Past experience shows that giving
students the opportunity to repeat exercises without penalties is accepted by students,
as described in section 7.2.2.

Figure 10.5 illustrates these two approaches to arrange a “main” exercise that the stu-
dent practices (1) and a second exercise that teaches basicsfor the main exercise (2).
Image 10.5 a) shows interruption of the main exercise (1) forthe prerequisite exer-

240 CHAPTER 10. ARCHITECTURE OF TUTORING

Prerequisite
exercise

Prerequisite
exercise

Main
exercise

Main
exercise

Main
exercise
(continued)

Main
exercise
(repeated)

b)

a)

Figure 10.5: Learning prerequisites by a) interrupting andb) repeating

cise (2) and the following continuation of the main exercise(1). Image 10.5 b) shows
that the main exercise (1) is fully completed first, and afternon-success has been es-
tablished, the neccessary basics are practiced (2) before repeating the main exercise
(1).

Advantages of the second approach are:

• Only a recommendation is given, the final control is left to the student, bothif
he takes the prerequisite exercise, andwhen.

• No distraction is made for the student while he is focused on the main exercise.

• Implementation is a lot easier, both for the course system itself, and for organi-
zation and granularity of course material.

• Giving recommendations on what exercise the student shouldtake next can be
considered as a “light” version of a learning management system.

The feedback given to the student can be used to judge if more basics need to be
learned, in addition to get an evaluation of his performancein the exercise. Individual
feedback can be given here by utilizing user adaption, see section 11.5.

10.5 Considerations for the user model

The approach to giving feedback and assistance to the student in the previous section
also requires considerations for the user model. Data collected during the exercise
includes:

10.6. IMPACT ON THE USER INTERFACE 241

• What specific exercise is currently on, identified by the booking ID. This helps
to find the type of exercise, the associated checks, and what user is working on
the exercise, for updating his user model.

• The number of the verification run within the given exercise.Currently there is
only one such run through all the check scripts at the end of the exercise, so no
bookkeeping is needed. With several runs, this has to change.

• Each exercise’s check has a unique check ID. For each combination of book-
ing ID, check run, and check ID, the result of the test has to berecorded for
evaluation, updating the student model and giving feedback.

• If assistance is given by printing help text, the time and details on the text are
recorded in the student model. If further help is needed at the same point, this
information will help to get more specific and not repeat helppreviously given.

• The reason why help was provided. If help was provided by the system in an
automatic way, or if the user made a request for help. This canhelp to identify
when users abuse the help system.

Based on Nathan’s statement that “ITSs do too much thinking”1, the system is imple-
mented as unintelligent tutor that provides late or very late feedback, with possible
user adaption. In the given context, “late” feedback would be after a part of an exer-
cise was worked on as discussed in the previous section, “very late” feedback would
be after the whole exercise, as is currently done in the Virtual Unix Lab. In contrast,
immediate feedback on the exercise part that the student is still working on is consid-
ered inappropriate as it may lead to confusion of the student, if his line of thinking
(and configuration works) is interrupted by panic messages that the system is in an
inconsistent state (which is a natural thing during system administration configuration
work). Updates to the user model happen accordingly by the data outlined above.

While Nathan suggests to not give any feedback at all, the Virtual Unix Lab is intended
to support the student by giving feedback, so that the burdenof assessment of his
work is not placed on him alone2. This approach can later be extended for individual
feedback and user adaption, see chapter 11.

10.6 Impact on the user interface

In intelligent tutoring systems, the user interface is usedfor communication between
the student and the tutoring system. To extend the Virtual Unix Lab with capabilities
to provide feedback and assistance, extensions to the current user interface are needed.

1 [Nathan, 1990] pp. 407
2 [Nathan, 1990] p. 413

242 CHAPTER 10. ARCHITECTURE OF TUTORING

This needs considering of the relevant communication channels, the current user inter-
face, and how to blend information into the existing web-based user interface.

10.6.1 Communication channels

The user interface provides communication in two ways, taking users’ input, and pre-
senting learning material and feedback to the student. Userinput comes as interaction
with the website, keystrokes from on-line diagnosis (keylogging) and the checks per-
formed by the system to verify the current state of the exercise. Interaction of the
users happens via a web interface for presentation of the exercise text and some feed-
back like remaining time, the lab machines are accessed via separate applications for
FTP/SSH/telnet.

The major challenge to the user interface when adding tutoring to the Virtual Unix
Lab is to integrate the feedback provided by the system to theuser in a seamless,
non-intrusive way.

10.6.2 Analysis of the current user interface

An analysis of the current interaction in the Virtual Unix Lab can help identify the
modules that need to be extended for providing further communication with the stu-
dent, for both acquiring data and providing feedback. An overview of the current user
interactions can be seen in figures 10.6 and 10.7. The generalmenu structure with
its five main menu items is displayed in figure 10.6. The exercise itself is happens
between the “Start exercise” and “End exercise” steps. A zoomed version of that flow
of the exercise itself, with the countdown to end the exercise, possible help for ac-
cessing the lab machines, and the main interaction can be found in figure 10.7. This
main interaction is happening via a command line interface (CLI) in a separate ter-
minal application besides the web application, where the user logs into the two lab
machines, types commands and interacts with the systems to fulfill the requirements
of the exercise.

The two modules that have been identified for possibly providing help to the system
are marked with “Help #1” and “Help #2” in figure 10.7, where the former would
be placed within the web interface, and the latter within thesystems’ command line
interface that the student is accessing with the terminal application. As such, help
can be web-based and/or shell-based. Web-based feedback would happen within the
existing user interface, shell-based feedback would require deeper modifications of
the lab machines. An impression of the work needed can be obtained by observations
made in the Berkeley Unix Consultant project described in [Wilensky et al., 1988] and
in the Unix assistant introduced in [Manaris and Pritchard,1993].

10.6. IMPACT ON THE USER INTERFACE 243

Set new
password
(optional)

Diplay
exercise text

List of exercises
("Übungsliste")

User data
("Benutzerdaten")

Select
exercise

Retrieve
feedback
(after
 exercise)

Delete

exercise
booked

View exercises
("Buchungsliste")

Select
exercise

Update DB
+ at/cron

Confirm
("Werte
übernehmen")

Wait for start
of exercise

Enter IP
number

End exercise

Start exercise

Book exercise
("Buchen")

Update records

Exercise

Select day

Select time

Confirm Confirm

Confirm

Menue

Login

Figure 10.6: The current user interface: Menue structure

244 CHAPTER 10. ARCHITECTURE OF TUTORING

"Help"
#2

"Help"
#1

#1: Web based help

#2: Shell−based help

Help for accessing
the VUlab machines

Enter command

Display prompt

Display response

Display exercise text

Start exercise

Display remaining time
Countdown

VUlab machine(s)
Connect to

Indicate end of exercise
Click "Fertig" (done)

application
(ssh, telnet)

Open terminal

Timeout

End exercise

Perform exercise

VUlab machine(s)
Log into

Log out of
VUlab machine(s)

Figure 10.7: The current user interface: During the exercise

10.7. SUMMARY 245

10.6.3 Blending information into the web-based user-interface

When providing feedback in the existing web interface, thiscan be done either syn-
chronous or asynchronous. Synchronous feedback would be inconnection to some
user event in the web interface. As there is currently only one button in the web inter-
face to indicate the exercise has finished before time is up, this is no help for feedback
during the exercise. A new “help”-button could be introduced to realize the peda-
gogical model of a student raising his hand to call the teacher in a lab exercise, see
“cooperative feedback” section 10.4.4.2.

For asynchronous help, the course engine would have to display feedback without the
user asking for it explicitly. The course engine would consult the user model for its
decisions, and then communicate with the web interface to display the information.
As there may be several items to display to the user, some selection would have to be
made on what feedback to really give to the user. Informationto consider would be
the current exercise situation, the student’s previous history and other data in the user
model. Selection and presentation could be displayed as suggested in the RSS-based
scheme in [Hylton et al., 2005].

For both synchronous and asynchronous delivery of feedback, actually displaying the
feedback should not disturb the information displayed by the student at that point, i.e.
exercise text and remaining exercise time should continue to be visible. A part of the
screen could be reserved to display feedback, possibly witha chance to scroll through
previous messages from the “teacher.” Updates of the text would have to happen in
an asynchronous way based on either actions from the user andthe system. Within
the existing web framework, this could happen by running a JavaScript-based engine
that constantly communicates with the course engine, and which displays information
to the user when needed, without any action from him. A possible implementation of
such a JavaScript-based engine called “Asynchronous JavaScript and XML” or in short
“Ajax” was introduced in [Garrett, 2005].

10.7 Summary

The major components that need work for extending the Virtual Unix Lab to add tu-
toring during the exercise have been discussed in this chapter. While time constraints
prevent realizing them, it is expected that the foundationslaid here are sufficient for
further work on tutoring in the Virtual Unix Lab.

246 CHAPTER 10. ARCHITECTURE OF TUTORING

Chapter 11

Architecture of user adaption

For advanced learning topics, adaping of the learning system to users is considered
beneficial. This chapter describes an architecture for useradaption in the Virtual Unix
Lab.

The adaptive component introduced in this chapter is built upon result verification with
Domain Specific Languages and the “simple” tutorial component as described in the
previous chapters, and extends them. The user model of the tutorial component is
used as base for this extension, as it already contains data on progress of students’
performance during a particular exercise. The data available in the user model reflects
the situative context described in section 8.2.1, which is determined by check scripts.

The data can be used for several applications: An overview ofthe progress of exercises
and students’ learning in general can be gained, and the topics learned can be verified
to be consistent. Better support can be given during the exercise with respect to giving
help and feedback, while at the same time preventing students from abusing the help
system. Further data can be collected to analyze usage of online help contents (Unix
manual pages, online lecture notes) and optimize them. The latter approach is useful
for moving towards a full learning management system, whichis discussed briefly in
chapter 1. The other points are discussed in the following sections.

11.1 Establishing and maintaining the user model

The user model contains data about the user. In the Virtual Unix Lab described so far,
this means data about the students’ performance during and after an exercise. To adjust
the system to the user, it has to draw certain inferences about the user upon which to
act.

This section outlines how the user model’s view of the user isinitialized, what data is

247

248 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

considered relevant, how the initial user model is updated to approximate the real user
behavior, and what inferences to draw from the updated model.

11.1.1 Initialization

Initialization of the user model is based on data available on the user and his exercises
with the intent to classify the user into one of several roleslike “beginner”, “expert”
or a number of intermediate states. Average values for all students as determined
in the evaluation in section 7.2.4 could be used for an initial classification, to which
the student is then compared. In the easiest scenario, belowaverage would mean a
beginner, above average an expert. Of course this can be extended to introduce more
roles if need arises.

To compare a student against the average, data about the student has to be known. As
this is not available for a new student taking his first exercise, several solutions are
possible. It can be assumed that the student performs on average, and assume just the
average values of all previous students’ values. This can beupdated later when more
and more data becomes available, see below.

Another possibility to initialize the user’s initial stateis by a questionnaire, asking the
student questions. This can be done in addition to the use of the existing exercise data.
Some effort is needed to determine the list of questions, andevaluate answers. User
acceptance has to be taken into account, too, when considering using questionnaires.
It is suggested that this approach should be kept for a later stage, if the first iteration of
going with average values turns out not to be sufficient.

Classification into roles can be done on a general scale for all tasks that the student
can be asked to perform, or more fine grained, allowing a student to be a beginner
in one topic, but an expert in others. This is recommended, asit allows to determine
what topics the student has already learned, and what he still has to learn. Topics can
be differentiated either “only” by the check script used to evaluate performance in the
corresponding area, or it can also take the specific parameters given to the script into
account.

An example for the former would be to determine a student’s “editing skills” via the
check-file-contents check scripts after something needs to be changed in an
exercise. Another example would be to see if he has the required “install software
skills” by looking looking if thenetbsd-check-installed-pkg andsola-
ris-check-installed-pkg check scripts find a requested package installed.

An example that also takes the parameters given to a check script into account would
be for scripts that cover broader areas, like verifying the output of a program via
check-program-output .

11.1. ESTABLISHING AND MAINTAINING THE USER MODEL 249

11.1.2 Clustering

Clustering can be applied if the number of check scripts, possibly in combination with
parameters, turns out to be too much data. This way, checks that verify “similar” areas
can be grouped together, like the “software install skill” example above that takes
both package management on Solaris and NetBSD into account.More information
on clustering is available in section 8.2.3. During the firstimplementation of user
adaption, clustering will not be considered, saving it as possible future optimization.

11.1.3 Observed data

The data received, stored, and analyzed for tutoring and adaption can be split into
several groups, some of which are again optional for the firstimplementation.

Data on the progress of exercises, both during the exercisesand after them is already
discussed in the previous chapter, see section 10.3. The data about skills and concepts
learned can be determined by analyzing the check script results as discussed above and
in sections 10.2 and 10.3. On-line diagnostics can help to determine what commands
the user is typing and what information he is looking up in manual and web pages. This
information tells if the user is investigating the right solution, possibly even before he’s
issuing the corresponding commands. A problem with documentation is that the user
may get the required information “out of band” in a way which can not be measured,
e.g. by looking up manual pages on a different system, browsing an offline copy of the
lecture notes or consulting a printout.

11.1.4 Updating the user model

The initial data that is stored in the user model is updated during the exercises by the
new findings made. More information can be inferred by comparing the initial state
and later updates1. The data updated during the exercise is the same that is covered
during initialization of the user model. Specific knowledge-areas and skills are updated
by analyzing the results from check-scripts and possibly their parameters as described
above, and multiple areas and skills can be combined by applying clustering.

When updating the user model, keeping old values for reference and analysis can be
useful. For one, this can help to determine if the initial values chosen for the user
model were chosen appropriately. If many updates happen at the start of an exercise,
the initial values were probably chosen suboptimally. Also, long term observations
can be made about the change in students’ behavior, e.g. if someone was classified as
“beginner” initially, and gradually changes into an “expert.” Such observations can be
made along one or several exercises.

1 [Chin, 1986] pp. 26

250 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

11.1.5 Accommodating plan recognition

The data from the user model is mainly used to give feedback inthe tutorial compo-
nent, see chapter 10. Adapting the data to the user allows to give personalized feedback
that is tailored towards each user individually. There are anumber of other possible
applications, though.

Inferences can be drawn about the plans, intents and knowledge of the user, as outlined
in chapter 10 and by [Fink et al., 1998]. In contrast to universal help systems like
COMFOHELP1 or the Berkeley Unix Consultant, the task for the student to complete
in the Virtual Unix Lab is specified, and as a result the student’s plan is assumed to be
known2. So far, “plan recognition” has not been covered within the Virtual Unix Lab
due to this predetermination.

When a task allows to be solved in more than one way, the resultverification performed
in the current version of the Virtual Unix Lab can be supplemented by a more detailed
analysis of what the student is actually doing. For this, on-line diagnosis as described
in section 10.4.3 will be required. If it is available, the exact task that the student is
currently working on can be determined, and then his exact steps can be observed. The
steps can be evaluated if they lead towards the given goal, oraway from it. A separa-
tion between “good” (appropriate, right, leading towards the goal) and “bad” (wrong,
counter productive, leading away from the given goal) can bemade, and needs to be
reflected in the exercise definition. The exercise specification described in section 6.6
will need to be extended for this, also possibly indicatinghowgood or bad a particular
step is.

A possible application would be to allow the system to interrupt in critical situations
before or right when the student performs an action that would render the system unus-
able. Examples would be if he removes a file that is critical tothe system’s operation,
or if he has setup a NIS or NFS client without a server, and reboots – the client system
would hang infinitely upon reboot, waiting for the server to come up.

Another extension would be to apply “fuzzy” matching to the on-line diagnosis with
the data stored in the exercise, and allow deviations of a certain degree from them to be
more fault tolerant. This can be applied to recognize typingerrors in commands that
would be “on track” otherwise, or when output is not 100% as expected, but is slightly
different. The level to which fuzziness is acceptable or notwould have to be defined
for each individual case, and would also require reflection in the exercise definition.

Those components could greatly help assisting students in the Virtual Unix Lab. Be-
fore realizing them, on-line diagnosis is required as basicbuilding block, though.

1 [Krause et al., 1993]
2 [Chin, 1986] p. 24

11.2. ADAPTIVE AXES 251

2nd Exercise

2nd Exercise

2nd Exercise

1st Exercise

1st Exercise

1st Exercise

User 1

User 2

User 3

Longitudinal consistency

S
tr

uc
tu

ra
l c

on
si

st
en

cy

Figure 11.1: Structural and longitudinal consistency in the Virtual Unix Lab

11.2 Adaptive axes

Adaptive axes describe the scale on which a specific attribute of an adaptive system can
be set. They describe the characteristics for achieving thegiven state, and the results
stemming from a particular state to which the system has beenadapted as described in
section 8.2.4. This section introduces the adaptive axes identified for the Virtual Unix
Lab.

Section 8.1.4.3.2 identified a number of approaches for epistemic diagnosis. In addi-
tion to the direct assignment of credit and blame described in section 10.2, structural
and longitudinal consistency are considered relevant. Consistencies are established
with and compared against data from the user model. As a result, there is an interac-
tion between the tutorial component and the adaptive component of the Virtual Unix
Lab. In order to keep the architectural design easy, they were split, and the adaptive
component is defined here, instead of overloading the tutorial component:

• Tutorial component: collects data, stores it in user model, and gives feedback
based on the data in the user model

• Adaptive component:evaluates data in the user model and updates the decision
base for the tutorial component

When observing consistency in the Virtual Unix Lab, both structural and longitudinal
consistency are taken into account. Sections 8.1.4.3.2.2 and 8.1.4.3.2.3 introduced
the theoretical foundations, and figure 11.1 illustrates the difference within the Virtual
Unix Lab:

• Structural consistencycompares results of various users against each other, to
compare a single student against a group.

252 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

• Longitudinal consistencycompares data of a single user against other incar-
nations of the data, e.g. about profiles built from an earlierphase of the same
exercise, or from other exercises done by the student.

The adaptive axes of structural and longitudinal consistency are discussed further in
sections 11.3 and 11.4. The third axis is personalized feedback. As indicated in the
previous chapter, feedback is important for tutoring, and with the data collected in
the user model, feedback can (and should!) be personalized for optimal feedback and
learning effect in the student. Personalized feedback is discussed in section 11.5.

11.3 Structural consistency

The focus of structural consistency is to compare one student’s performance to that
of other students. The student’s performance is the base forupdating the user model,
which in turn is used to alter the system’s way of handling feedback. This section dis-
cusses exercise velocity, mastered skills, help requests as source of data, outlines how
to reflect this on the user model, and raises the issue on proper metrics for evaluations.

11.3.1 Observing exercise velocity

The first observation made is the speed at which a student makes progress in a given
exercise. The results are compared against similar values determined from other stu-
dents’ exercises, with special attention to the zone of proximal development (ZPD)
described in section 10.4.1.

When comparing a student’s performance at a given point in time against that of other
students at the same time in the same exercise, it is easy to determine if the student is
faster or slower than the other students, with a certain confidence. For example, if a
student has absolved more checks than the average of other students at a certain point
in time, inferences can be drawn about his performance. Of course repeated evaluation
will help to determine if the inferences were drawn correctly.

Taking the average of all other students from a group as the standard against which the
student is compared has drawbacks: A group that is in generalweak or unmotivated
can give unfair advantage to a student with average strengthand motivation due to
their low performance. Also, if a new term or exercise starts, no data is available for
comparison. For such cases, the exercises can be extended toinclude data on what
performance is expected from students during an exercise: What milestone should
be passed after what time, which concepts and skills should be mastered safely, etc.
When noting students’ expectations in the exercise, more time would be reserved for
“difficult” tasks than for “trivial” ones.

11.3. STRUCTURAL CONSISTENCY 253

When extending exercise texts with information about what expectations toput into
students’ performance, this should be done in a second step,after measuring and eval-
uating students’ performance first.

Proper metrics are needed to determine what is and can be expected from students, see
section 11.3.5.

11.3.2 Observing mastered skills

Going plainly by number of exercises correctly solved over time is one approach to
establish how a student compares to others. A more fine-grained approach is to look at
his performance for each skill, as identified by a certain check script and possibly any
related parameters, end then compare that among students.

For example the “edit file” skill can be allowed to fail for 1-2times, but should be
expected to be mastered after that number of attempts. If a student fails more often,
then there is probably a general problem that needs attention. Also, if the failure pattern
is not at random but turns from repeated failures into repeated success, then a point at
which the student did learn the skill in question can be established.

Grouping of “easy” skills may be needed to determine if a “difficult” skill was learned,
e.g. “user management” may require mastering of skills likecreating directories,
changing owners on filesystem objects and modifying system databases. On the other
hand, mastering a skill may well require more knowledge thanjust that of managing
all prerequisites. A detailed analysis of empirical data would be needed to be able to
tell details.

In general, it can be expected that “simple” skills are learned faster/sooner than “dif-
ficult” skills. After an initial round of tests to determine how student’s perform on
average, this can again be reflected in the exercise setup, bynoting expected values.
Examples could be in the form of “the ’modify system database’ skill must never fail”
and “programs printing proper output may fail a few times at the easy/starting or vol-
untary/difficult parts.”

11.3.3 Observing help requests

Another source of data for judging a student’s performance in relation to a group of
students are the offers and/or requests for help he makes in one way or other. In that
context, those requests can be:

• Active help requests by the student, e.g. by pressing a “Help!” button.

254 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

• Offers for help by the system, based on analysis of the current exercise as dis-
cussed in section 10.4.

• Possibly requests for online manual pages and webpages withinformation on
how to solve the exercise. Recognizing this can be challenging as the requests
can happen outside of the Virtual Unix Lab as described in section 11.1.3.

Analyzing help requests can tell if a student asks for help more often than is expected.
On one hand side, there may be valid reasons for the student torequest more informa-
tion, e.g. plain curiosity on what the system has to offer, ormaybe he did not fully
understand the description of the exercise, and hopes to clarify this by asking for help.
On the other side, analyzing help requests can prevent abuseof the help system by
students who are “gaming the system.” The number of help requests that are con-
sidered “normal” or “too many” in this context can be determined by looking at data
from all students again. Each request for help updates the student’s user model with
data on what part of the exercise that help was requested, andwhat help was given in
case there’s more than one hint available – see the separation into “behavioral” and
“epistemic” help in section 10.4.4.1.

Observing help requests of all students also helps to identify tasks where not only
a single student has problems, but where the majority of the student group requests
more help than was expected. This can indicate general problems of understanding
that should be addressed in an appropriate way, e.g. with intensified training in the
classroom or by providing extra exercises for the topic thatstudents find difficult.

Data about the expected volume of help requests can be noted in the exercise text
again. This can e.g. happen in the form of noting tasks where increased help requests
should be expected, or it can also be in combination with the level of skills learned -
e.g. that increased help requests are acceptable as long as aspecific skill is not noted
as learned.

11.3.4 Adjusting the user model

The observations and collection of data discussed in the previous sections can be used
to update the user model of each individual student:

• If the student is faster or slower than the majority of students, in general.

• If he has mastered various skills better or worse than the average.

• What help was given to the student, and at what help level to give the next hint
for the same task, if repeated help is requested.

11.3. STRUCTURAL CONSISTENCY 255

This in turn can lead to reactions such as personalized feedback as discussed in sections
11.1.4 and 11.5.

Furthermore, the data can also be used to determine average patterns of behavior of
whole groups of students against which an individual student can the be compared.
Metrics for these comparisons are discussed in the following section.

11.3.5 A metric for evaluation

To classify what “faster / slower”, “learned” and “too many help-requests” means that
metrics are needed, which can be used to judge what the average learning speed is,
after how many (and which) repetitions a topic can be considered as “learned”, and
asking how many questions and using how much aid is acceptable before considering
it as being “too much.”

Another question is, against what data set the current student is compared, exactly.
Possible options are the average of all students in the same group, median of the group,
and a possible statistical distribution with a certain confidence. When using descriptive
methods instead of indicative methods, a graphical tool like the box/whisker-plots used
during the evaluation in section 7.2.1 will be useful.

For a first pass, using an arithmetic average for non-booleanvalues like general results
and for help-requests, with some percental margin, e.g. a confidence of 95%. For
boolean values like skills mastered, the median can be used for orientation.

More precise statements can only be made after evaluating data from a first round of
exercises. For that, a first round of tests and data gatheringis required. Of course this
is preceded by implementing a system that acts accordingly,and delivers the required
data.

After evaluating data from life exercises, hints can be put into the exercises to start
the next round with better stereotypes. The format of the Virtual Unix Lab’s Verifi-
cation Unit Domain Specific Language (VUDSL) as described insection 6.6 would
need corresponding extensions. Possible facts stated can include how values are mea-
sured (averages, median) and what possible deviation (absolute or in percent) would
be acceptable. A few examples in human-readable notation could be “This part of the
exercise should be completed after 30 minutes±5 minutes”, “SkillS should be mas-
tered from here±2 tasks” and “The student should not be slower than 10% of average
of the group.” Of course the exercise would require those specifications in a machine
readable representation available via the VUDSL. Section 11.6 outlines some of these
extensions.

256 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

11.4 Longitudinal consistency

In contrast to the structural consistency observed in the previous section, the focus
here is to analyze a single exercise, and try to understand the pace at which a student
is making progress in that exercise. The analysis is based onmeasuring the time be-
tween solving various parts of an exercise and acquiring certain skills as outlined in
the previous section, with the eventual goal of identifyingproblems in the progress of
the exercise.

The following sections cover the assumptions made on progress of the exercise dur-
ing the analysis, performing calculations for establishing longitudinal consistency, and
how to perform descriptive and indicative analysis.

11.4.1 Assumptions and methodology

Longitudinal consistency looks at one specific exercise. Data acquisition happens dur-
ing the periodical status verification by running check scripts for the tutorial compo-
nent as described in section 10. This can be compared to the “flashlight” view shown
in figure 9.1 b).

Results of each check-run, i.e. the single results of each check script, will be saved by
using the ID of the booked exercise (“buchungs id ”), and an increasing number or
a timestamp to identify the check-run within the booked exercise.

A number of assumptions are made on how progress happens within an exercise:

• There’s linear progress of the exercise, as shown in figure 10.3

• No parts of the exercise are skipped, ideally

• Parts of the exercise are numbered strictly increasing:u0, u1, . . . (ux)

• Check scripts that implement verification of each part of an exercise do not
“block” but succeed immediately. Blocked scripts can skew the timing obser-
vations made.

• The “state” of an exercise is defined by the last part of an exercise solved suc-
cessfully, i.e. the one located rightmost in figure 10.3

Those assumptions result in a strictly increasing value that can be used for calculations.
For the following analysis,tx denotes the time at which the exercise is at stateux.

The calculations described here aim at specific attributes and properties of a student’s
learning process. Other techniques can be used to establishthe student model, e.g. via
Bayesian networks as described in [Mayo and Mitrovic, 2001].

11.4. LONGITUDINAL CONSISTENCY 257

11.4.2 Descriptive analysis

There are a number of exercise parts between the two statesu0 and u1, with their
associated timest0 andt1. The average velocity that each part of the exercise between
those two states was taken with can be calculated as(u1 − u0)/(t1 − t0) = ∆u/∆t.

11.4.2.1 Interpolation vs. more data

By increasing the frequency of the state checks, i.e. by decreasing∆t, more precise
information can be learned about every single part of the exercise as verified by each
individual check script. An alternative to decreasing∆t is to define the ratio between
the various parts by adding scalars that reflect the ratio. For example, in a 30 minute
period with three exercise parts, this could indicate that the first part takes twenty
minutes, and the second and third part take 5 minutes each.

11.4.2.2 Detecting speed changes

By getting more data – either through interpolation or by more frequent data collec-
tion – the average time needed for each exercise part by the particular student can be
determined. If there’s a constant value, the student works with constant speed and is
making progress. Whether he’s slower or faster than other students can be found by
looking at other students’ speed values. If progress of the students is not constant, this
indicates behavior that needs attention. Information about average durations for each
exercise part and at what time a specific check can be expectedto be positive due to the
underlying skill being learned can also be determined by methods described in section
11.3.

11.4.2.3 Observations for repeated exercises

If a student repeats an exercise, he may expose different speed behavior than in pre-
vious runs of the same exercise by him. While changes can be expected from the
results in section 7.2.3, the point where a student’s speed changes from fast to slow
may change, and it is this point that calls for attention: Thestudent may need more
time because he is not fluent in the required skills or needs more information. This
point the equivalent of Michaud et al’s “Zone of Proximal Development” (ZPD), see
section 10.4. An comparison between the part of the exerciseat which the ZPD shows
up between various repetitions of an exercise may reveal more information.

258 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

11.4.2.4 Speed and acceleration of progress

By observing the derivation of the change in the exercise progress∆u by time∆t with
∆t → 0 = u′, the speed of progress of the exercise at the point at which the student is
currently working can be determined. Movement of the point can be used to make a
statement if the exercise is progressing fast or slow. By observing the change of speed
over time –∆u′ derived by∆t = u′′ – statements on the change of the progress’ speed,
i.e. its acceleration, can be made. E.g. it can be told if the student is speeding up or
slowing down1.

11.4.2.5 Data model and storage

The data model for storing the check results within an exercise should be modeled
to identify each individual check’s result. Currently, each check result is stored in
addition with the booking ID, the check ID and the result of the check script in the
ergebnis checks table as described in appendix B. For multiple check runs during
an exercise, a counter or timestamp needs to be added.

If data from a previous check run is available, information about the exercise’s speed
of progress can be calculated and stored in the database. Likewise, if the data from
the previous run does include information about the speed ofprogress at that time,
information about the change of exercise speed can be calculated and stored.

The question of what data to store exactly should be addressed last. For each check-
run during the exercise, speed and acceleration at that point in time can be calculated
as outlined above, and it would be sufficient to draw conclusions about the progress of
the exercise.

Data about progress of the exercise – indicated by the movement of the part that the
student is currently working on, and reflected by the speed and acceleration of the
exercise – can be stored in a separate database table. The table would have the booking
ID of the exercise and a counter or timestamp to identify the individual check run as
keys, and would include data on speed and acceleration for the current snapshot.

11.4.2.6 Drawing conclusions from speed and acceleration

After determining speed and acceleration of an exercise at acertain points, an eval-
uation may result in adjustments of the system to the student. While it remains to
be determined what a “slow” or a “fast” student exactly is, the system can recognize
such students. For “slow” students, it can provide additional help to solve the exercise
by immediately giving hints that would be given to other students only on demand,

1 [Serway and Jewett, 2004] pp. 1

11.4. LONGITUDINAL CONSISTENCY 259

or after some time. The system could even adjust itself to those students, and save
them doing parts of the exercise. The question of fairness toother students should be
considered when adjusting the exercise system, though.

“Fast” students probably do not need any special attention,likewise no reactions to
speedups (acceleration) is needed during the exercise.

When negative acceleration, i.e. slowdown, is detected during an exercise, this would
be of more interest. Depending on the exercise this may be expected at some points
e.g. when new knowledge is required. For example in the NIS setup, operations like
adding a user to the NIS system is expected to be a challenge tostudents, and thus
more time should be planned as things may go slow at that point. At other points, a
slowdown may indicate that the student has a problem at that point, and this could –
possibly with some threshold to prevent distraction from the internal learning process
– be interpreted as need for help.

An exercise could store those points and indicate what speedis “too slow” at what
points in an exercise a slowdown is expected as normal, when it should not happen,
and how to react if it still does. See section 11.6.2 below forfurther discussion on
VUDSL extensions.

11.4.3 Indicative analysis

Instead of computing values to compare students’ performance in exercises, the same
raw data that is used for those calculations can be used as base for indicative analysis.
Using graphical methods like the box/whisker plots introduced in section 7.2.1, it is
possible to compare a student to a group of students, and alsolook at different exercises
or snapshots of the same exercise from a single student.

When using box/whisker plots for visualization, statements can be made with a cer-
tain confidence. Examples that compare results of later exercises with those of early
exercises can be seen in figures 7.1, 7.4 a), and 7.4 b).

Other methods that do not offer statements on confidence may still be useful to indicate
trends when comparing earlier and later exercises of the same user. Investigations on
general performance and details on every individual part ofan exercises can be made.
Examples for the former can be seen in figures 7.5 a) and b), examples for the latter
can be seen in figures 7.6 a) and b). In any case, statements canbe made if there
is a positive (increasing) or negative (decreasing) trend in performance and exercise
results.

Data that can be observed and compared this way includes:

• The number of checks solved properly, exercise speed and acceleration for a

260 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

single student’s exercise(s) as the basic data to observe.

• A student’s overall progress, compared to a group. This can be used to tell if the
student is working faster or slower than the reference group.

• A student’s overall progress, compared with his earlier exercises. If no progress
can be seen here, demand for increased help and information can be inferred.

• A student’s progress on a particular exercise over time, observing several snap-
shots of results. More detailed statements on progress, speed of progress and
also change in progress, i.e. speedup/slowdown, can be made.

• At what points in an exercise do slowdowns (or even speedups)occur? If those
points show up on all students’ exercises, information and teaching effort seems
appropriate to cover the challenge in the related exercise parts.

While indicative methods that use visualization are good for human interpretation,
they are less useful as decision base for computer programs.Still, they may be very
valuable for verifying operation of the learning system andfor status reports for both
the student as well as the teacher.

11.5 Personalizing feedback

In tutoring systems, help can either be cooperative (on demand) or provided automati-
cally, see section 10.4. In both cases, interaction with theuser model should happen to
determine what help should be given. Data from the user modelthat would be required
is:

• What help was already offered at this place

• A general classification of the student: beginners could getbehavioral / compre-
hensive help e.g. by giving exact commands to type, or hinting them at useful
commands; experts could get epistemic / high level / conceptual help.

The ultimate goal is to personalize the feedback given to thestudent to match his speed
and level of knowledge. At the same time, abuse of the help system through the student
(“gaming the system”) should be prevented.

11.5.1 Adjusting of help contents

If a student is found to be either very far behind the expectedknowledge, or far in
advance of it, some feedback can be retained from him to not overburden or bore him.

11.5. PERSONALIZING FEEDBACK 261

To realize this, items can be classified by where they usuallyappear on the learning
curve, and the student can then be compared against that curve to see where he is
related to that1. See also the discussion on the Genetic Graph in section 8.1.4. Possible
implementation options are to not display information at all, or adjust the information
presented in an “incremental linking” style. Another set ofpossibilities arises from
the choice whether to use restrictive or non-restrictive adaptive methods, e.g. if link
annotation or link hiding should be used2. Also, when on-line diagnosis recognizes
wrong or even dangerous commands being issued, it could warnor plain refuse to
issue these commands.

11.5.2 Handling non-standard exercise progress

Section 11.4 shows how to detect if a student exposes non-standard behavior in solving
exercises, e.g. if he is too fast or too slow, how that can be determined either in general,
or if there is a speedup or slowdown at a specific point in the exercise. One effect that
will happen is that slow students may not complete the exercise and run into timeouts,
but that is not a problem per se - the students can repeat the exercise, and no special
action is needed. If a student makes progress at a certain pace and then slows down at
a certain point, that is of more interest: What happened at that point? Does the student
need help or assistance, or did he just leave for a smoke? On-line analysis can help to
determine the exact circumstances in more detail.

11.5.3 Adjusting the system

If a real slowdown is detected, the question on how to react arises. Possible reactions
include3:

• No action: Having the system offer immediate advice may be too fast and con-
fuse the student who may just be thinking. The didactic modelof this would be
a teacher spotting a problem while looking over a student’s shoulder in a class-
room exercise, but not speaking up when it is obvious that thestudent is working
on a solution to the problem.

• Give information on current situation: The system may or may not fully un-
derstand the current problem at hands. Based on the level of the student as stored
in the user model, help can be given at various levels, ranging from behavioristic
hints to epistemic help.

1 [Chin, 1986] p. 25
2 [Specht and Kobsa, 1999] pp. 1
3 [Schulmeister, 2007] pp. 181

262 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

• Offer an alternative viewpoint: If a student is recognized to approach a certain
problem in a specific manner (as e.g. detected by using on-line diagnosis), he
may have forgotten or not be aware of the fact that there are other approaches to
solve the problem. Information can be given on how to proceedin the current
line of thinking that the student is currently in, or other viewpoints can be out-
lined, possibly with details on how to approach them (depending on the student’s
experience and level).

• Hint at other exercises: If a student did previously slow down at similar exer-
cise parts of the same category, he may need more practice anddeeper under-
standing of the matter at hands. Besides giving more information, suggesting
a specific exercise to the student to improve his skills in that area may help.
Of course this assumes that an appropriate exercise is available. The data for
this hint may be stored in the user model and suggested to the student after the
exercise, to not distract him more than necessary from learning.

• Perform the step requested automatically: In theory, the system could per-
form the steps required to proceed at the point that the student is currently stuck
at. This should be done with quite some consideration though: Users may even-
tually abuse the help system, and the question of fairness toother students that
have successfully mastered the point at hands has to be takeninto account.

Besides exposing these actions when a slowdown in exercise is detected, most of them
can also be applied when the user asks for help actively.

11.5.4 Preventing abuse of the help system

When the above points are realized, detecting when a user is trying to abuse the help
system is possible as described in [Baker et al., 2004]: if a user works slowly but at a
steady pace and he starts requesting help repeatedly at one point, care should be taken.
A comparison with the user’s history of help requests can determine if he needs some
help in general, or if he just tries to trick the system into giving the right information
without making efforts on his own.

11.6 Extending the VUDSL for user adaption

The previous sections have discussed user adaption in the Virtual Unix Lab in the
context of structural and longitudinal consistency as wellas personalizing feedback.
Each of these areas reflects on the definition of the exercise,and this section discusses
possible extensions of the VUDSL for them.

11.6. EXTENDING THE VUDSL FOR USER ADAPTION 263

To extend the existing VUDSL as described in section 6.6, considerations need to be
made about how to extend it. An easily realizable way that is still readable would be to
add an extra keyword to each line that indicates what exactlythe line is for, followed
by data specific to that purpose. E.g. currently data in the auswertungteiluebung()
PHP calls look like this:

<?php auswertung_teiluebungen(
??? // vulab1: check-program-output PROGRAM=ypwhich OUTP UT_SHOULD=’vulab1’

// Does ypwhich(1) return ’vulab1’?

); ?>

In the PHP comments (“// ”), the first line describes what check to run on a specific
system, and the second one determines the feedback given to the student after the ex-
ercise. Adding keywords “On” and “Feedback”, this could e.g. result in the following:

<?php auswertung_teiluebungen(
??? // On vulab1: check-program-output PROGRAM=ypwhich OUTPUT_SH OULD=’vulab1’

// Feedback: Does ypwhich(1) return ’vulab1’?

); ?>

The general approach in the next sections is to first define what needs to be added to
the exercise, before showing how it can be added.

11.6.1 VUDSL extensions for structural consistency

The Verification Unit Domain Specific Language (VUDSL) describes exercises in the
Virtual Unix Lab as introduced in section 6.6. This section covers extensions of the
VUDSL to accommodate data for establishing changes for structural consistency as
discussed in section 11.3.

1. Speed of progress:The timeframe in which an exercise should be solved is
given by the overall time available for the exercise. Withinthe exercises, regions
and milestones can be identified which should be completed atspecific times,
though, see 11.3.1. E.g. if an exercise consists of two parts, the first part may
require 30% of the time, and the second part may take the remaining 70%.

This can be noted in the exercise e.g. by noting at what time a milestone should
be completed. Here is an example telling that the point in question is expected
to be solved after 30 minutes:

Exercise: Minor task

<?php auswertung_teiluebungen(
??? // On vulab1: check-minor-task

264 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

// Feedback: Was the minor task performed successfully
// Expected after: 30min

); ?>

Exercise: Major task
...

Giving time like this is probably easiest for a start. An alternative would be to
give time relative to the exercise’s overall duration, e.g.“Expected after:
25%” to note that after one quarter of the time the exercise is due.

2. Data about expected mastering of skills:If a specific skill is required at a
certain point, the system could observe the user’s past history, and act according
to it. For example, it could give more help from the start, or adapt to the situation.
In order to realize this, the skill required is implicitly encoded by the check script
that verifies the user’s results. What’s lacking is a metric to determine if previous
failures indicate critical misunderstanding or not. To solve this, checks could
contain data on their importance, so that only changes tagged as “Important
skill” are taken into account.

Here is an example:

Exercise 1: Perform important task!

<?php auswertung_teiluebungen(
??? // On vulab1: check-task

// Feedback: Was the important task done?
// Important skill: yes

); ?>

Exercise 2: Perform unimportant task!

<?php auswertung_teiluebungen(
??? // On vulab1: check-task

// Feedback: Was the unimportant task done?
// Important skill: no

); ?>

Exercise 3: Perform another important task!

<?php auswertung_teiluebungen(
??? // On vulab1: check-task

// Feedback: Was the other important task done?
// Important skill: yes

); ?>

After exercises 1 and 2, their results can be observed to see what to do when the
student reaches exercise 3: If the student failed the “important” first task, this
will have a different impact than when he failed the “unimportant” second task.
For this observation, it is important that only skills with the same check script
(and possibly parameters, though not used here), are observed.

3. Data on overall number of acceptable help requests:Section 11.3.3 describes
that the exercise may know about the number of help requests that is acceptable
as “normal” either for the whole exercise, or parts of it. This would serve as
lower bound above which actions will be taken by the system asnoted by the

11.6. EXTENDING THE VUDSL FOR USER ADAPTION 265

“Globally acceptable help requests” and “Acceptable help requests” tags in the
following example:

// Globally acceptable help requests: 1

 Do something!

<?php auswertung_teiluebungen(
??? // On vulab1: check-something

// Feedback: Was something done properly?
// Acceptable help requests: 2
// Hint 1: Further explain task to do
// Hint 2: Given even more details, and first hints on how to so lve
// Hint 3: Hint at how to solve the problem

); ?>

If help requests are accepted as method to further explain the task that the student
has to do, then this should be reflected by appropriate hints that just explain
things in more detail, without giving away help on how to solve the problem at
hands immediately.

4. Data on acceptable help requests considering (un)learned skills: Section
11.3.3 also describes a schema where the number of acceptable help-requests
could be given more fine-grained, based on the finding that thestudent possi-
bly has not mastered the required skill for that exercise part (as identified by
the check script). Numbers for “beginners” that did not master the skill and
“experts” could be given:

 Do something!

<?php auswertung_teiluebungen(
??? // On vulab1: check-something

// Feedback: Was something done properly?
// Acceptable help requests for beginners: 2
// Acceptable help requests for experts: 1
// Hint 1: Further explain task to do
// Hint 2: Given even more details, and first hints on how to so lve
// Hint 3: Hint at how to solve the problem

); ?>

5. What metric to use for measuring and comparing: In the comparisons de-
scribed so far, absolute numbers were used either to describe a user’s expected
behavior, or of any deviations. Section 11.3.5 outlines thealternatives, esp.
when giving the bounds in which deviations from given standard values are de-
scribe.

Instead of a fixed limit, tolerances can be given, e.g. for a given time an absolute
value – given in minutes or as count – can be used to indicate that e.g. for novice
users, more time would be acceptable than for advanced users:

// Expected after: 30min +/- 5min
...
// Acceptable help requests: 2 +/- 1

); ?>

266 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

Instead of giving the acceptable deviation as absolute number, a relative number
can be given as well:

// Expected after: 30min +/- 10%
...

// Acceptable help requests: 2 +/- 50%
); ?>

When establishing the average speed of progress, fixed values can be used as
outlined for the speed of progress above. Instead of taking fixed values, values
from the exercises of other users could be used instead. The values could indicate
what time the majority of users took to solve a specific part ofan exercise, or
how much time was needed to master a given skill to a certain degree. These
numbers can be determined from the existing exercise results in the Virtual Unix
Lab.

A question is how to exactly calculate them, though. Possible ways would in-
clude average, median and modus values for the given data. E.g. for time, an
average may make more sense while for a yes/no item like a skill learned, the
modus may make more sense.

This information can be put into the exercise text as well:

// Expected after: median

...

// Important skill: yes (modus)
); ?>

Besides the exact method onhow to perform the calculation, the question of
what to compare against is important as well. Possible items could be the time
after which an item was solved, or a skill that was mastered.

As in the previous examples, adding knobs to tune – methods totest, and scales
to apply – is only the first part of tuning the exercise. Futureresearch with
practical examinations will reveal what values to apply fora given exercise.

11.6.2 VUDSL extensions for longitudinal consistency

This section describes extensions of the Verification Unit Domain Specific Language to
accommodate data for establishing changes for longitudinal consistency as discussed
in section 11.4.

1. Adjustments for descriptive analysis:

(a) What is “too slow”? When observing progress of a single exercise, the
speed of progress can be determined as outlined in section 11.3.1. Possible
ways to determine valid values here include absolute valuesfrom empirical

11.6. EXTENDING THE VUDSL FOR USER ADAPTION 267

methods, and compare them against other students’ exercises as outlined in
the previous section. The extensions to the VUDSL would be the same, so
no extra changes are needed.

(b) How to handle slowdowncan be defined by marking exercise parts where
slowdown is allowed and acceptable without immediate action, while lack
of progress in other parts may need different behavior from the exercise
system. Hints on where a slowdown is acceptable, where it should or must
not happen can be encoded into the exercise as shown in the following
examples:

// Slowdown: ok
// Slowdown: acceptable
// Slowdown: should-not
// Slowdown: must-not

); ?>

These hints will help the Virtual Unix Lab to react to a possible user behav-
ior. The question on what to do exactly in that case is discussed in section
11.6.3.

2. Adjustments for indicative analysis:

In contrast to the methods described for adjustments of descriptive analysis, re-
sults from indicative analysis are not evaluated by the exercise system. Instead,
the statistics and graphs produces are intended to be used bystudents and teach-
ers, and should thus be comparable and not changed individually.

11.6.3 VUDSL extensions for personalized feedback

Personalizing feedback requires adjustment of the presentation of help contents, and a
decision base on what help should be given. For a first implementation, keeping those
purely in the Virtual Unix Lab’s Course Engine (see chapter 9) should be sufficient. If
customizations turn out to be needed for an exercise or part of an exercise, the VUDSL
can be extended based on these findings at a later step.

11.6.4 Other VUDSL extensions

Besides the extensions discussed in the previous sections,other extensions may be
useful for a number of aspects where the VUDSL is used. Here isa list of areas for
possible future extensions:

1. Giving multiple hints: If the system knows more than one hint at a given exer-
cise, an order needs to be defined for that. This can e.g. be done by numbering
the exercises, and then giving them one after the other. The following example
tags the hints with “Hint” and a number to distinct them.

268 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

Exercise: Determine the currently used NIS server.

<?php auswertung_teiluebungen(
??? // On vulab1: check-program-output PROGRAM=ypwhich OU TPUT_SHOULD=’vulab1’

// Feedback: Does ypwhich(1) return ’vulab1’?
// Hint 1: What command prints the current NIS server?
// Hint 2: Try running ypwhich(1)
// Hint 3: Does ypwhich(1) print ’vulab1’?

); ?>

The number may not be needed technically, but it can be used tooffer some
ranking or ordering of the hints, so the system knows what hint to give first.

2. Marking hints that can be given to a user during the exercise as behavior-
istic or epistemic. Existing hints can be annotated that way. Let’s observe the
ones in this exercise part:

Exercise: Determine the currently used NIS server.

<?php auswertung_teiluebungen(
??? // On vulab1: check-program-output PROGRAM=ypwhich OU TPUT_SHOULD=’vulab1’

// Feedback: Does ypwhich(1) return ’vulab1’?
// Hint 1: What command prints the current NIS server?
// Hint 2: Try running ypwhich(1)
// Hint 3: Does ypwhich(1) print ’vulab1’?

); ?>

The hints could be given in order, assuming that given epistemic, high level hints
will lead to the proper associations in the student, which ofcourse assumes that
he has learned them already. If that’s not the case, the second hint would give
the command to run. If that’s still not enough, another hint could also give the
expected results.

Different approaches to tutoring can be given, e.g. either first give epistemic
hints and then behavioristic ones if the first hints do not lead to proper results. Or
the exercise text could be supplemented with the behavioristic hints immediately
if needed, without any further action by the user.

In either case, the system would need to know what of what kinda specific hint
is. This could be told explicitly, e.g. by tagging the hints as “Behavioral” and
“Epistemic”:

Exercise: Determine the currently used NIS server.

<?php auswertung_teiluebungen(
??? // On vulab1: check-program-output PROGRAM=ypwhich OU TPUT_SHOULD=’vulab1’

// Feedback: Does ypwhich(1) return ’vulab1’?
// Epistemic Hint 1: What command prints the current NIS server?
// Behavioral Hint 1: Try running ypwhich(1)
// Behavioral Hint 2: Does ypwhich(1) print ’vulab1’?

); ?>

3. Handling transient states: The Virtual Unix Lab only observes the current
state of the exercise systems. If a transient event – e.g. a button being pushed
and released – needs to be recorded, this is challenging, as the button may no
longer be pressed when the system’s state is observed. If thebutton does not
have a permanent effect that can be determined later, or if the effect is possibly

11.6. EXTENDING THE VUDSL FOR USER ADAPTION 269

reversed or changed at some point, drawing clear inferencesis challenging. To
solve this problem, exercises should be setup in a way to not rely on transient
events.

If this is not an option, increasing the intervals at which the system examines
the exercise systems is an option to increase the likelihoodto catch the transient
event. Of course this still depends on the event itself – if itis very short-lived
it may be challenging to do busy-polling on the systems. Giving hints here at
which time intervals such behavior would be required to catch such events can
be noted in the exercise.

Here is an outline how to realize an exercise of pressing a button for (say) 10
seconds. Besides pressing the button, the exercise would require preparation
and finalizing steps:

Part 1: Make sure you know where The Button is.

Part 2: Press The Button and hold it down for 10 seconds, then
release it.

Part 3: Continue with the exercise.

After part 3, observing the system will not show if the buttonwas pressed or not.
Taking the time between part 1 and 3 as “critical section” canbe used to notify
the system that increased awareness is required, i.e. that the scanning interval
in which check scripts are ran should be set to something as low as 5 seconds.
Later on, a check would be needed to see if the test for the button was ever true,
and then act appropriately.

Here is an example that increments and decrements scanning,and then tests and
reacts whether the button was pushed after some time. The three changes to the
VUDSL are adding a “Scan” tag to increase check scan intervals, reset them to
the default for the exercise, and add a new PHP functionauswertung teil-
uebung ever() that does not print if the status of the named check was true
at the end of the exercise, but if iteverwas true, and give feedback accordingly:

Part 1: Make sure you know where The Button is.

<?php auswertung_teiluebungen(
??? // On vulab1: unix-check-process-running PROCESS=but tonprog

// Feedback: Is the button-program running?
// Hint: Start the ‘‘button’’-program
// Scan: 5s

); ?>

Part 2: Press The Button and hold it down for 10 seconds, then
release it.

<?php auswertung_teiluebungen _ever(
??? // On vulab1: check-button STATUS=pressed

// Feedback: Was the button pressed for 10 seconds?
// Hint: Press the button for 10 seconds.

); ?>

Part 3: Continue with the exercise.

<?php auswertung_teiluebungen(

270 CHAPTER 11. ARCHITECTURE OF USER ADAPTION

??? // On vulab1: check-other
// Feedback: The exercise was continued successfully!
// Hint: Relax!
// Scan: default

); ?>

11.7 Summary

This chapter discussed user adaption in the Virtual Unix Lab, with special attention to
establishing and maintenance of the user model that stores information about students,
an overview of the adaptive axes used and special attention to structural and longitudi-
nal consistency. Applying these adaptions was discussed for personalizing feedback to
the student, and a number of hints were given on how to extend the existing VUDSL
to give the exercise system more hints on how to handle user behavior.

Many of the items discussed can be implemented with the VUDSLthat is available
in the Virtual Unix Lab. Based on this implementation, fine tuning of the precise
values to use in exercises, and what exact metrics to use cannot be told at this time.
Furthermore, on-line diagnosis would be of benefit for fine-grained analysis. These
areas are expected to provide material for future research.

Chapter 12

Conclusion

The focus throughout this work was on defining a learning system for system adminis-
tration. Emphasis was put on the architecture for result verification and on feedback to
the learner. After laying out the didactic foundations of system administration, the sys-
tem was described, realized, and evaluated. Advanced topics for tutoring and adaption
were discussed, building up on the basic Virtual Unix Lab system.

The result contains more work on the foundations of tutoringand didactics of system
administration as was originally expected. Still, a systemwas realized that is usable in
practice, and that can be used as foundation for future works.

Further areas of work have been identified, most notably teaching of system adminis-
tration and realizing and tuning of tutoring and user adaption. Additional work should
be put into translations of the system from German to Englishlanguage, investigations
of virtualization techniques and their integration in the deployment of the Virtual Unix
Lab, and creation of a theory of bugs for system administration as a whole, or in parts.

As the system with its basic functionality has proven usefulfor the education of system
administration, another possible step for the future wouldbe to market the system, e.g.
to supplement existing training situations as offered by various companies. Companies
that could be interested include specific Unix vendors as well as independent training
institutes. The neccessary funding for future research in the areas named above could
be achieved that way.

Beyond that, it can be said that IT systems keep on growing in complexity, and that
demand on system administrators increases accordingly. And with it, the contents that
need to be taught to them to cope with their workload. This increase in information
and requirements can only be solved by more and better education in system adminis-
tration, and related tools like the Virtual Unix Lab.

271

272 CHAPTER 12. CONCLUSION

List of figures

1.1 Instructions for the command line and a graphical user interface. Im-
age source: [Emzy Bilder Galerie, 2007] 5

1.2 Topics related to system administration 6

1.3 Topics of information science . 7

3.1 Behavioristic approach of teaching. Image Source: [Kerres, 1998, p. 46] 25

3.2 The TOTE model. Image source: [Miller et al., 1960, p. 26]. 28

3.3 Structure of the “System Administration” lecture 41

3.4 Thematic groups in the “System Administration” lecture. 42

3.5 Levels of difficulty in the “System Administration” lecture 43

3.6 Examples help learning without a computer 45

3.7 Change in learning paradigm with advancing level 47

4.1 Logging into the Virtual Unix Lab 54

4.2 Entering data for a new login . 54

4.3 Welcome to the Virtual Unix Lab . 55

4.4 Booking an exercise: selecting date and time 56

4.5 Booking an exercise: selecting the exercise 57

4.6 Booking an exercise: confirmation58

4.7 An exercise is prepared and waiting58

273

274 LIST OF FIGURES

4.8 Configuring access to the lab machines 59

4.9 Waiting for start of exercise time 60

4.10 Display of the exercise text .61

4.11 Logging into lab machines for the exercise 62

4.12 End of exercise . 62

4.13 Feedback on an exercise taken . 63

4.14 The initial implementation of the Virtual Unix Lab 64

4.15 Accessing the lab clients . 65

4.16 Software components of the Virtual Unix Lab 66

6.1 Verifying on the semantic and pragmatic layer 85

6.2 Step 0: Separate exercise text and verification check script 86

6.3 Exercise text with no associated checks, in plain ASCII 88

6.4 Exercise text with no associated checks, rendered in webbrowser . . . 89

6.5 Step I: Preparation . 92

6.6 Step I: Exercise . 92

6.7 Step I: Verification . 93

6.8 Defining an exercise, step 1: general properties 94

6.9 Defining an exercise, step 2: which image to deploy on which lab
machine . 94

6.10 Defining an exercise, step 3: what checks to run on which machine . . 95

6.11 Extended web interface to enter parameters for check script 99

6.12 Listing existing checks . 100

6.13 Possible parameters of a check script, and their description 100

6.14 Exercise text and checks: a) uncoupled in step I, b) coupled in step II . 103

6.15 Example exercise text with check data 106

LIST OF FIGURES 275

6.16 Giving feedback on an exercise for a single user 108

6.17 Giving teacher/admin feedback for all users which tookan exercise . . 109

6.18 Defining an admin-only exercise to update the Solaris image, step 1:
only “admin” may book . 112

6.19 Defining an admin-only exercise to update the Solaris image, step 2:
Solaris will be preinstalled . 112

6.20 Defining an admin-only exercise to update the Solaris image, step 3:
the disk will be cleaned and put into an image file after the exercise . . 113

6.21 Step II: Preparation . 115

6.22 Step II: Exercise . 115

6.23 Step II: Verification . 116

6.24 Step II: Feedback . 117

6.25 Preparing an exercise, part 1: Writing exercise text and hints 118

6.26 Preparing an exercise, part 2: Extracting hints into database and writ-
ing new text with check-numbers for feedback hints 118

6.27 Preparing an exercise, part 3: Comparing original and updated exercise
text . 119

6.28 Preparing an exercise, part 4: Moving the updated exercise into place
and saving to the CMS . 119

6.29 The list of booked exercises contains both completed exercises for
which feedback can be requested (“freigegeben: nicht-mehr”) as well
as uncompleted exercises that have not yet started (“freigegeben: nein”) 121

6.30 Buttons for a) retrieving feedback on completed exercises, and b) delet-
ing uncompleted exercise that have not yet started 121

6.31 VUDSL example for verifying one aspect of the exercise 123

6.32 VUDSL example for verifying multiple aspects of the exercise in one go124

6.33 Various forms of non-linear exercises 126

7.1 Comparison of all scores between students’ first and lastexercise . . . 135

7.2 Score of all first and last exercises ordered ascending 135

276 LIST OF FIGURES

7.3 Score of all first and last exercises ordered by first exercise 136

7.4 Comparison of a) NIS and b) NFS scores between students’ first and
last exercise . 137

7.5 Score of first and last exercise ordered ascending for a) NIS and b)
NFS exercise . 138

7.6 Score of first and last exercise ordered by first exercise for a) NIS and
b) NFS exercise . 139

7.7 Results of check-program-output 141

7.8 Results of check-file-contents .. 142

7.9 Results of unix-check-process-running 143

7.10 Results of netbsd-check-rcvar-set 144

7.11 Results of unix-check-file-owner 145

7.12 Results of check-file-exists .. 146

7.13 Results of netbsd-check-installed-pkg 147

7.14 Results of solaris-check-installed-pkg 148

7.15 Results of unix-check-user-exists 149

7.16 Results of check-directory-exists 150

7.17 Duration of all exercises: a) overview and b) zoomed to the end of
exercise . 151

7.18 Duration of NIS exercises: a) overview b) zoomed to the end of exercises152

7.19 Duration of NFS exercises: a) overview b) zoomed to the end of exercises153

7.20 Comparison of durations of NIS and NFS exercises 154

7.21 Starttime of exercises . 154

7.22 Popularity of learning materials among students 163

7.23 Helpful learning material in the Virtual Unix Lab 164

7.24 Impact of the “SA” lecture on various topics of the Virtual Unix Lab
exercises . 166

LIST OF FIGURES 277

7.25 Impact of the “SA” lecture notes on various topics of theVirtual Unix
Lab exercises . 167

8.1 Aspects of a didactic operation. Image source: [Wenger,1987, p. 397] 182

8.2 Taxonomy of behavioral diagnostic processes. Image source: [Wenger,
1987, p. 372] . 197

8.3 Terms: Adaptive User Interfaces and Intelligent Interfaces. Image
source: [Dietrich et al., 1993, p. 14, Figure 1] 204

9.1 System administration is like hitting a nail with a hammer. Sometimes.
Image sources: [Bent Nail, 2007], [Morell, 2004] 212

9.2 Goals and sub-goals of the Network Information System (NIS) 213

9.3 Goals and sub-goals of the Network File System (NFS) 214

9.4 Error distribution of check scripts 218

9.5 The Virtual Unix Lab with tutoring and adaption (new components in
bold) . 220

10.1 Comparison of tutoring approaches, from best (++) to worst (−−) . . 231

10.2 The path of incoming information233

10.3 Possible course of an exercise (+=done,- =todo) 236

10.4 Going backward to find the latest (a) and next part being worked on (b) 237

10.5 Learning prerequisites by a) interrupting and b) repeating 240

10.6 The current user interface: Menue structure 243

10.7 The current user interface: During the exercise 244

11.1 Structural and longitudinal consistency in the Virtual Unix Lab 251

278 LIST OF FIGURES

List of tables

2.1 Education of computer science at European universities[cited 2007-
08-16] . 12

2.2 Education of system administration at universities [cited 2007-08-16] 13

2.3 Harddisk image cloning software [cited 2007-08-18] 15

2.4 Virtualization and emulation software [cited 2007-08-16] 22

7.1 Exercise popularity . 132

7.2 Check scripts and their usage in various checks 140

7.3 Distribution of exercise start times 150

279

280 LIST OF TABLES

Bibliography

[Abelson et al., 1985] Abelson, H., Sussman, G. J., and Sussman, J. (1985).Structure
and Interpretation of Computer Programms. MIT Press, Cambridge, MA, USA.
Available from: http://mitpress.mit.edu/sicp/full-text/book/
book.html [cited 2007-10-05].

[Adams and Erickson, 2001] Adams, D. R. and Erickson, C. (2001). Teaching net-
working and operating systems to information systems majors. In SIGCSE ’01:
Proceedings of the thirty-second SIGCSE technical symposium on Computer Sci-
ence Education, pages 85–89, New York, NY, USA. ACM Press.

[Adams and Laverell, 2005] Adams, J. C. and Laverell, W. D. (2005). Configuring
a multi-course lab for system-level projects. InSIGCSE ’05: Proceedings of the
36th SIGCSE technical symposium on Computer science education, pages 525–529,
New York, NY, USA. ACM Press.

[ADL Technical Team, 2004] ADL Technical Team. Sharable Content Object
Reference Model (SCORM) Documentation Suite [online]. (2004) [cited
2007-10-15]. Available from: http://www.adlnet.gov/downloads/
DownloadPage.aspx?ID=237 .

[Aho et al., 1988] Aho, A. V., Kernighan, B. W., and Weinberger, P. J. (1988).The
AWK Programming Language. Addison Wesley, Boston, MA, USA.

[Aho et al., 2003] Aho, A. V., Sethi, R., and Ullman, J. D. (2003). Compilers. Princi-
ples, Techniques and Tools.Addison Wesley, Boston, MA, USA.

[Alexander, 1995] Alexander, C. (1995).Eine Muster-Sprache. Löcker Verlag, Vi-
enna, Austria.

[Alva L. Couch and Gilfix, 1999] Alva L. Couch, D. and Gilfix, M.(1999). It’s Ele-
mentary, Dear Watson: Applying Logic Programming To Convergent System Man-
agement Processes. InLISA ’99: Proceedings of the 13th USENIX conference on
System administration, pages 123–138, Boston, MA, USA. USENIX Association.

[Alvisi et al., 2002] Alvisi, L., Bhatia, K., and Marzullo, K. (2002). Causality tracking
in causal message-logging protocols.Distributed Computing, 15(1):1–15.

281

282 BIBLIOGRAPHY

[Anderson et al., 2006] Anderson, D. S., Hibler, M., Stoller, L., Stack, T., and Lep-
reau, J. (2006). Automatic online validation of network configuration in the emulab
network testbed. InProceedings of the Third IEEE International Conference on
Autonomic Computing (ICAC 2006), Los Alamitos, CA, USA. IEEE Computer So-
ciety Press. Available from:http://www.cs.utah.edu/flux/papers/
linktest-icac06.pdf [cited 2007-10-05].

[Anderson and Scobie, 2002] Anderson, P. and Scobie, A. (2002). LCFG: The next
generation. InProceedings of the UKUUG Winter Conference 2002, Buntingford,
UK. United Kingdom Unix User Group. Available from:http://www.lcfg.
org/doc/ukuug2002.pdf [cited 2007-10-05].

[Angelides and Paul, 1993] Angelides, M. C. and Paul, R. J. (1993). Towards a frame-
work for integrating intelligent tutoring systems and gaming-simulation. InWSC
’93: Proceedings of the 25th conference on Winter simulation, pages 1281–1289,
New York, NY, USA. ACM Press.

[Baker et al., 2004] Baker, R. S., Corbett, A. T., Koedinger,K. R., and Wagner, A. Z.
(2004). Off-task behavior in the cognitive tutor classroom: when students ”game
the system”. InCHI ’04: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 383–390, New York, NY, USA. ACM Press.

[Ball, 1999] Ball, T., editor (1999).Proceedings of the 2nd Conference on Domain-
Specific Languages. USENIX Association, Boston, MA, USA.

[Baseline, 2007] BASELINE, editor. Frequently Asked Questions about User Val-
idation: Questionnaires [online]. (2007) [cited 2007-10-05,]. Available from:
http://www.ucc.ie/hfrg/baseline/questionnaires.html .

[Beale and Rogers, 2007] Beale, J. and Rogers, R. (2007).Nessus Network Auditing.
Syngress Publishing, Amsterdam, Netherlands.

[Beck, 1999] Beck, K. (1999).Extreme Programming Explained. Addison Wesley,
Boston, MA, USA.

[Beck, 2002] Beck, K. (2002).Test Driven Development. Addison Wesley, Boston,
MA, USA.

[Ben-Gal, 2007] Ben-Gal, I. (2007). Bayesian Networks. In Ruggeri, F., Kenett, R.,
and Faltin, F., editors,Encyclopedia of Statistics in Quality and Reliability. John
Wiley & Sons, Indianapolis, IN, USA.

[Bent Nail, 2007] Bent Nail. New & Used Building Supplies - Deconstruction, De-
molution & Salvage [online]. (2007) [cited 2007-10-05]. Available from:http:
//www.bentnail.org/bennai/Profile.html .

[Bentley, 1986] Bentley, J. (1986). Programming pearls: Little languages.Communi-
cations of the ACM, 29(8):711–721.

BIBLIOGRAPHY 283

[Berners-Lee et al., 1999] Berners-Lee, T., Fischetti, M.,and Dertouzos, M. L.
(1999). Weaving the Web: The Original Design and Ultimate Destiny ofthe World
Wide Web by its Inventor. Harper San Francisco, San Francisco, CA, USA.

[Berners-Lee et al., 2001] Berners-Lee, T., Lassila, O., and Hendler, J. (2001). The
semantic web.Scientific American, 284(5):34–43.

[BGG, 2002] Bundesministerium für Gesundheit und Soziale Sicherung, editor.
Gesetz zur Gleichstellung behinderter Menschen (BGG)[online]. (2002)
[cited 2007-10-05]. Available from:http://bundesrecht.juris.de/
bundesrecht/bgg/ .

[BITV, 2002] Bundesministerium des Inneren, editor.Verordnung zur Schaffung bar-
rierefreier Informationstechnik nach dem Behindertengleichstellungsgesetz (BITV)
[online]. (2002) [cited 2007-10-05]. Available from:http://bundesrecht.
juris.de/bundesrecht/bitv/ .

[Boctor, 1999] Boctor, D. (1999).Microsoft Office 2000: Visual Basic for Applica-
tions Fundamentals. Microsoft Press, Redmond, WA, USA.

[Bonar et al., 1986] Bonar, J., Cunningham, R., and Schultz,J. (1986). An object-
oriented architecture for intelligent tutoring systems. In OOPLSA ’86: Conference
proceedings on Object-oriented programming systems, languages and applications,
pages 269–276, New York, NY, USA. ACM Press.

[Border, 2007] Border, C. (2007). The development and deployment of a multi-user,
remote access virtualization system for networking, security, and system adminis-
tration classes. InSIGCSE ’07: Proceedings of the 38th SIGCSE technical sympo-
sium on Computer science education, pages 576–580, New York, NY, USA. ACM
Press.

[Bortz and D̈oring, 2002] Bortz, J. and D̈oring, N. (2002).Forschungsmethoden und
Evaluation f̈ur Human- und Sozialwissenschaftler. Springer Verlag, Heidelberg,
Germany.

[Brewer, 2007] Brewer, W. F. Learning Theory – Schema The-
ory [online]. (2007) [cited 2007-12-16]. Available from:
http://education.stateuniversity.com/pages/2175/
Learning-Theory-SCHEMA-THEORY.html .

[Brooke, 1996] Brooke, J. (1996). A quick and dirty usability scale. In Jordan, P. W.,
Thomas, B., Weerdmeester, B. A., and McClelland, I. L., editors,Usability Evalu-
ation in Industry. Taylor & Francis, London, UK.

[Bruner, 1961] Bruner, J. S. (1961). The act of discovery.Harvard Educational Re-
view, 31(1):21–32.

[Bruns and Gajewski, 2002] Bruns, B. and Gajewski, P. (2002). Multimediales Ler-
nen im Netz – Leitfaden für Entscheider und Planer. Springer Verlag, Heidelberg,
Germany.

284 BIBLIOGRAPHY

[Brusilovsky and Cooper, 2002] Brusilovsky, P. and Cooper,D. W. (2002). Domain,
task, and user models for an adaptive hypermedia performance support system. In
IUI ’02: Proceedings of the 7th international conference onIntelligent user inter-
faces, pages 23–30, New York, NY, USA. ACM Press.

[Bundesministerium f̈ur Bildung und Forschung, 2004] Bundesministerium für Bil-
dung und Forschung, editor (2004).Kursbuch eLearning 2004: Produkte aus
dem F̈orderprogramm Neue Medien in der Bildung - Hochschule. Bundesmin-
isterium f̈ur Bildung und Forschung, Bonn, Germany. Available from:http:
//www.bmbf.de/pub/nmb_kursbuch.pdf [cited 2007-10-05].

[Burgess, 1995] Burgess, M. (1995). A site configuration engine.Computing Systems,
8(2):309–337. Available from:http://www.iu.hio.no/˜mark/papers/
paper1.pdf [cited 2007-10-05].

[Burgess, 2000] Burgess, M. (2000). Theoretical system administration. InLISA ’00:
Proceedings of the 14th USENIX conference on System administration, pages 1–14,
Boston, MA, USA. USENIX Association.

[Burgess and Frisch, 2007] Burgess, M. and Frisch, A. (2007). A System Engineer’s
Guide to Host Configuration and Maintenance Using Cfengine. USENIX Asso-
ciation, Boston, MA, USA. Available from:http://www.sage.org/pubs/
16_cfengine/ [cited 2007-10-05].

[Butz et al., 2006] Butz, C. J., Hua, S., and Maguire, R. B. (2006). A web-based
bayesian intelligent tutoring system for computer programming. Web Intelligence
and Agent System, 4(1):77–97.

[Buzan and Buzan, 2006] Buzan, T. and Buzan, B. (2006).The Mind Map Book. Ran-
dom House, New York, NY, USA.

[Campbell and Cohen, 2005] Campbell, W. and Cohen, R. (2005). Using system ad-
ministrator education in developing an IT degree in a computer science department.
In SIGITE ’05: Proceedings of the 6th conference on Information technology edu-
cation, pages 319–321, New York, NY, USA. ACM Press.

[Carbonell, 1970] Carbonell, J. R. (1970). Mixed-initiative man-computer instruc-
tional dialogues. Technical Report 1971, Bolt, Beranek andNewman, Cambridge.

[Carr and Goldstein, 1977] Carr, B. and Goldstein, I. P. (1977). Overlays: a Theory of
Modelling for Computer Aided Instruction. Technical Report AI Memo 406 (Logo
Memo 40), Massachusetts Institute of Technology, Cambridge, MA, USA.

[Chaffin, 1992] Chaffin, R. (1992). The concept of a semantic relation. In Lehrer,
A., editor,Frames, Fields and contrasts, pages 253–288. Lawrence Erlbaum Asso-
ciates, Publishers, Hillsdale, NJ, USA.

[Chambers, 1983] Chambers, J. M. (1983).Graphical methods for data analysis.
Wadsworth International Group, Belmont, CA, USA.

BIBLIOGRAPHY 285

[Chassell, 2004] Chassell, R. J. (2004).An Introduction to Programming in Emacs
Lisp. Free Software Foundation, Boston, MA, USA.

[Chauvin, 1991] Chauvin, Y. (1991). MENIX: A Unix user adaptable Interface.
SIGCHI Bullettin, 23(4):64–65.

[Chin, 1983] Chin, D. N. (1983). Knowledge structures in uc,the unix consultant. In
Proceedings of the 21st annual meeting on Association for Computational Linguis-
tics, pages 159–163, Morristown, NJ, USA. Association for Computational Lin-
guistics.

[Chin, 1986] Chin, D. N. (1986). User modeling in uc, the unixconsultant. InCHI
’86: Proceedings of the SIGCHI conference on Human factors in computing sys-
tems, pages 24–28, New York, NY, USA. ACM Press.

[Clark, 2000] Clark, D. Developing Instruction or Instructional Design [online].
(2000) [cited 2007-10-05]. Available from:http://www.nwlink.com/
˜donclark/hrd/learning/development.html .

[Cocke and Schwartz, 1970] Cocke, J. and Schwartz, J. T. (1970). Programming Lan-
guages and their Compilers. Courant Institute of Mathematical Sciences, New York
Universities, New York, NY, USA.

[Cole, 2005] Cole, J. (2005).Using Moodle. O’Reilly, Sebastopol, CA, USA.

[Conati et al., 2002] Conati, C., Gertner, A., and VanLehn, K. (2002). Using Bayesian
Networks to Manage Uncertainty in Student Modeling.User Modeling and User-
Adapted Interaction, 12(4):371–417.

[Conlan et al., 2003] Conlan, O., Power, R., Higel, S., O’Sullivan, D., and Barrett,
K. (2003). Next generation context aware adaptive services. In ISICT ’03: Pro-
ceedings of the 1st international symposium on Informationand communication
technologies, pages 205–212. Trinity College Dublin.

[Cooper, 2004] Cooper, A. (2004).The Inmates Are Running the Asylum. Sams Pub-
lishing, Indianapolis, IN, USA.

[Corbesero, 2003] Corbesero, S. G. (2003). Teaching systemand network adminis-
tration in a small college environment.Journal of Computing Sciences in Colleges
(JCSC), 19(2):155–163.

[Corbett and Anderson, 2001] Corbett, A. T. and Anderson, J.R. (2001). Locus of
feedback control in computer-based tutoring: impact on learning rate, achievement
and attitudes. InCHI ’01: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 245–252, New York, NY, USA. ACM Press.

[Corlett, 1991a] Corlett, J. A. (1991a). Epistemology and experimental cognitive psy-
chology: A reply to fuller, schmitt, and greenwood.New ideas in Psychology,
9:327–334.

286 BIBLIOGRAPHY

[Corlett, 1991b] Corlett, J. A. (1991b). Some connections between epistemology and
cognitive psychology.New ideas in Psychology, 9:285–306.

[Cornell University, 2007] Cornell University. Program Overview: Information Sci-
ence [online]. (2007) [cited 2007-10-05]. Available from:http://www.
infosci.cornell.edu/about/ .

[CPAN, 2007] Comprehensive Perl Archive Network [online].(2007) [cited 2007-10-
05]. Available from:http://www.cpan.org/ .

[CSTA, 2007] Homepage of the Computer Science Teachers Association [online].
(2007) [cited 2007-10-05]. Available from:http://csta.acm.org/ .

[Cullingford, 1981] Cullingford, R. (1981). SAM. In Schank, R. and Reisbeck, C.,
editors,Inside Computer Understanding. Lawrence Erlbaum Associates, Publish-
ers, Hillsdale, NJ, USA.

[Cunningham, 2001] Cunningham, W. Manifesto for Agile Software Develop-
ment [online]. (2001) [cited 2007-12-22]. Available from:http://www.
agilemanifesto.org/ .

[Cycorp, 2007] Cycorp, editor. Cycorp inc. homepage [online]. (2007) [cited 2007-
12-12]. Available from:http://www.cyc.com/ .

[Dagdilelis and Satratzemi, 1999] Dagdilelis, V. and Satratzemi, M. (1999). Didac-
tics too, not only technology. InITiCSE ’99: Proceedings of the 4th annual
SIGCSE/SIGCUE ITiCSE conference on Innovation and technology in computer
science education, page 183, New York, NY, USA. ACM Press.

[Darbhamulla and Lawhead, 2004] Darbhamulla, R. and Lawhead, P. (2004). Paving
the way towards an efficient learning management system. InACM-SE 42: Pro-
ceedings of the 42nd annual Southeast regional conference, pages 428–433, New
York, NY, USA. ACM Press.

[Davies et al., 2001] Davies, J. R., Gertner, A. S., Lesh, N.,Rich, C., Sidner, C. L., and
Rickel, J. (2001). Incorporating tutorial strategies intoan intelligent assistant. InIUI
’01: Proceedings of the 6th international conference on Intelligent user interfaces,
pages 53–56, New York, NY, USA. ACM Press. Available from:http://www.
merl.com/reports/docs/TR2000-30.pdf [cited 2007-10-05].

[Derose, 1997] Derose, S. J. (1997).The SGML FAQ Book: Understanding the Foun-
dation of HTML and XML. Klower Academic, Dordrecht, Netherlands.

[Deutsches Institut f̈ur Normung, 2003] Deutsches Institut für Normung, editor
(2003). DIN-Taschenbuch 354: Software-Ergonomie. Beuth Verlag, Berlin, Ger-
many.

[Dhanjani, 2004] Dhanjani, N. Writing nessus plugins [online]. (2004) [cited
2007-10-05]. Available from: http://www.oreillynet.com/pub/a/
security/2004/06/03/nessus_plugins.html .

BIBLIOGRAPHY 287

[di Forino, 1969] di Forino, A. C. (1969). Programming languages. InAdvances in
Information Systems Science, volume I. Plenun Press, New York, NY, USA.

[Dietrich et al., 1993] Dietrich, H., Malinowski, U., K̈uhme, T., and Schneider-
Hufschmidt, M. (1993). State of the art in adaptive user interfaces. In Schneider-
Hofschmidt, M., K̈uhme, T., and Malinowski, U., editors,Adaptive User Interfaces.
Elsevier Science Publishers, Amsterdam, Netherlands.

[Dijkstra, 1961] Dijkstra, E. W. (1961). On the Design of Machine independent Pro-
gramming Languages. Technical Report MR 34, Stitching Mathematical Centrum,
Amsterdam. Available from:http://www.cs.utexas.edu/users/EWD/
MCReps/MR34.PDF [cited 2007-10-20].

[Dike, 2006] Dike, J. (2006).User Mode Linux. Pearson Studium Verlag, M̈unchen,
Germany.

[Dougherty and Robbins, 1997] Dougherty, D. and Robbins, A.(1997). Sed & Awk.
O’Reilly, Sebastopol, CA, USA.

[Edwards et al., 1997] Edwards, P., Rivett, R., and McCall, G. (1997). Towards an
automotive safer subset of C. In Daniel, P., editor,Proceedings of the 16th Inter-
national Conference on Computer Safety, Reliability and Security, pages 185–195,
Heidelberg, Germany. Springer Verlag.

[Eide et al., 2006] Eide, E., Stoller, L., Stack, T., Freire,J., and Lepreau, J. (2006).
Integrated scientific workflow management for the emulab network testbed. In
Proceedings of the 2006 USENIX Annual Technical Conference, pages 363–368,
Boston, MA, USA. Available from: http://www.cs.utah.edu/flux/
papers/workflow-usenix06-base.html [cited 2007-10-05].

[Eikenbusch and Leuders, 2004] Eikenbusch, G. and Leuders,T., editors (2004).
Lehrer-Kursbuch Statistik. Cornelsen Verlag Scriptor, Berlin, Germany.

[Elliston et al., 2000] Elliston, B., Gkioulas, Taylor, Tromey, and Vaughan (2000).
Autoconf, Automake and Libtool. Que Publishing, Indianapolis, IN, USA.

[Emulab, 2007a] Emulab - Network Emulation Testbed Home [online]. (2007) [cited
2007-10-05]. Available from:http://www.emulab.net/ .

[Emulab, 2007b] Other Emulab Testbeds [online]. (2007) [cited 2007-10-05]. Avail-
able from: http://www.emulab.net/docwrapper.php3?docname=
otheremulabs.html .

[Emzy Bilder Galerie, 2007] Emzy Bilder Galerie. NT versus Unix [online]. (2007)
[cited 2007-10-05]. Available from:http://www.emzy.de/gallery/fun/
NTvsUnix .

[Ernst, 2004] Ernst, T. (2004). M̈ogliche Szenarien für das Virtuelle Unix Labor.
Technical report, Fachhochschule Regensburg, Computer Science Department.

288 BIBLIOGRAPHY

[Evett, 1994] Evett, M. P. (1994).PARKA: A System for Massively Parallel Knowl-
edge Representation. PhD thesis, University of Maryland.

[Fachhochschule Regensburg, 2007] Fachhochschule Regensburg. Laboratory of
Communication Technologies [online]. (2007) [cited 2007-10-05]. Available from:
http://comserver.fh-regensburg.de/ .

[Fahrmeir, 2003] Fahrmeir, L. (2003).Statistik. Springer Verlag, Heidelberg, Ger-
many.

[FernUniversiẗat Hagen, 2007] FernUniversität Hagen. Virtuelles Informatik-Labor
[online]. (2007) [cited 2007-10-05]. Available from: http://pi7.
fernuni-hagen.de/vilab/ .

[Feyrer, 2001] Feyrer, H. Mit dem Regensburger Marathon-Cluster durch’s Ziel [on-
line]. (2001) [cited 2007-10-05]. Available from:http://www.feyrer.de/
marathon-cluster/ .

[Feyrer, 2004a] Feyrer, H. (2004a). An Introduction to Sysadmin Train-
ing in the Virtual Unix Lab. In EuroBSDCon 2004 Proceedigns, Karl-
sruhe, Germany. Available from:http://www.feyrer.de/Texts/Own/
eurobsdcon2004-vulab-paper.pdf .

[Feyrer, 2004b] Feyrer, H. Virtuelles Unix Labor - Deployment derÜbungsrechner
[online]. (2004) [cited 2007-10-05]. Available from:http://vulab.
fh-regensburg.de/˜feyrer/vulab/hubertf/deployment .

[Feyrer, 2004c] Feyrer, H. Virtuelles Unix Labor - Design [online]. (2004)
[cited 2007-10-05]. Available from:http://vulab.fh-regensburg.de/
˜feyrer/vulab/hubertf/design .

[Feyrer, 2004d] Feyrer, H. Virtuelles Unix Labor - Firewall[online]. (2004)
[cited 2007-10-05]. Available from:http://vulab.fh-regensburg.de/
˜feyrer/vulab/hubertf/firewall .

[Feyrer, 2004e] Feyrer, H. Virtuelles Unix Labor - Kursengine [online]. (2004)
[cited 2007-10-05]. Available from:http://vulab.fh-regensburg.de/
˜feyrer/vulab/hubertf/kursengine .

[Feyrer, 2004f] Feyrer, H. Virtuelles Unix Labor - Netboot Setup [online]. (2004)
[cited 2007-10-05]. Available from:http://vulab.fh-regensburg.de/
˜feyrer/vulab/hubertf/netboot-doku.txt .

[Feyrer, 2005] Feyrer, H. (2005). Didaktik der Systemadministration. In GUUG
Frühjahrsfachgespr̈ach 2005 Proceedings, Munich, Germany. Available from:
http://vulab.fh-regensburg.de/˜feyrer/vulab/hubertf /
guug-sa-did.pdf [cited 2007-10-05].

BIBLIOGRAPHY 289

[Feyrer, 2007a] Feyrer, H. (2007a). Education of System Administration. Tech-
nical report, Computer Science Department of the University of Applied Sci-
ences Regensburg and Information Science Department of theUniversity of
Regensburg. Available from: http://www.feyrer.de/Texts/Own/
article-vulab-didactics.pdf [cited 2007-12-04].

[Feyrer, 2007b] Feyrer, H. g4u - Harddisk Image Cloning for PCs [online]. (2007)
[cited 2007-10-05]. Available from:http://www.feyrer.de/g4u/ .

[Feyrer, 2007c] Feyrer, H. (2007c). Impact of the Virtual Unix Lab: Evaluation
of end-of-semester papers tests. Technical report, Computer Science De-
partment of the University of Applied Sciences Regensburg and Information
Science Department of the University of Regensburg. Available from: http:
//www.feyrer.de/Texts/Own/article-vulab-eval-papers .pdf
[cited 2007-12-04].

[Feyrer, 2007d] Feyrer, H. (2007d). Implementing exerciseresult verification for the
Virtual Unix Lab. Technical report, Computer Science Department of the University
of Applied Sciences Regensburg and Information Science Department of the Uni-
versity of Regensburg. Available from:http://www.feyrer.de/Texts/
Own/article-vulab-resver-implementation.pdf [cited 2007-12-
04].

[Feyrer, 2007e] Feyrer, H. Systemadministration unter Unix [online]. (2007) [cited
2007-10-05]. Available from:http://www.feyrer.de/SA/ .

[Fink et al., 1998] Fink, J., Kobsa, A., and Nill, A. (1998). Towards a user-adapted
information environment on the web. InProceedings of Multimedia and Stan-
dardization 98, Paris, France. Available from:http://www.isr.uci.edu/
˜kobsa/papers/1998-must-kobsa.pdf [cited 2007-10-05].

[Finkel et al., 1995] Finkel, R., Ortega, L., and Shanklin, C. (1995). Advanced Pro-
gramming Languages. Addison Wesley, Boston, MA, USA. Available from:
ftp://aw.com/cseng/authors/finkel/apld [cited 2007-10-05].

[Fischer, 1993] Fischer, G. (1993). Shared knowledge in cooperative problem-
solving systems – integrating adaptive and adaptable components. In Schneider-
Hofschmidt, M., K̈uhme, T., and Malinowski, U., editors,Adaptive User Interfaces.
Elsevier Science Publishers, Amsterdam, Netherlands.

[Fischer, 2001] Fischer, S. (2001). Course and exercise sequencing using metadata
in adaptive hypermedia learning systems.Journal on Educational Resources in
Computing (JERIC), 1(1es):5.

[Fischer and Steinmetz, 2000] Fischer, S. and Steinmetz, R.(2000). Automatic cre-
ation of exercises in adaptive hypermedia learning systems. In HYPERTEXT ’00:
Proceedings of the eleventh ACM on Hypertext and hypermedia, pages 49–55, New
York, NY, USA. ACM Press.

290 BIBLIOGRAPHY

[Fletcher, 1975] Fletcher, J. D. (1975). Modeling of learner in computer-based in-
struction.Journal of Computer-Based Instruction, 1:118–126.

[Floyd, 1979] Floyd, R. W. (1979). The paradigms of programming. Communications
of the ACM, 22(8):455–460.

[Fowler et al., 1987] Fowler, C. J. H., Macaulay, L. A., and Siripoksup, S. (1987). An
evaluation of the effectiveness of the adaptive interface module (aim) in matching
dialogues to users. InProceedings of Third Conference of the British Computer
Society Human-Interactio on People and computers III, pages 345–359, Cambridge,
MA, USA. Cambridge University Press.

[Frank, 1969] Frank, H. (1969).Kybernetische Grundlagen des Lernens und Lehrens.
AGIS Verlag, Baden-Baden, Germany.

[Freedman et al., 2000] Freedman, R., Ali, S. S., and McRoy, S. W. (2000). What
is an intelligent tutoring system? Intelligence, 11(3):15–16. Available from:
http://www.cs.niu.edu/˜freedman/papers/link2000.pdf [cited
2006-05-16].

[Friedl, 1997] Friedl, J. E. F. (1997).Mastering Regular Expressions. O’Reilly, Se-
bastopol, CA, USA.

[Gagńe, 1967] Gagńe, R. (1967). The conditions of learning. Holt, Rinehart and
Winston, New York, NY, USA.

[Gagńe and Briggs, 1974] Gagné, R. M. and Briggs, L. J., editors (1974).Principles
of instructional design. Holt, Rinehart and Winston, New York, NY, USA.

[Garcia et al., 2007] Garcia, P., Amandi, A., Schiaffino, S.,and Campo, M. (2007).
Evaluating Bayesian networks’ precision for detecting students’ learning styles.
Computers & Education, 49(3):794–808. Available from:http://dx.doi.
org/10.1016/j.compedu.2005.11.017 [cited 2007-12-17].

[Garrett, 2005] Garrett, J. J. Ajax: A new approach to web applications [online].
(2005) [cited 2007-10-05]. Available from:http://www.adaptivepath.
com/publications/essays/archives/000385.php .

[Garrett and Nash, 2001] Garrett, L. and Nash, J. C. (2001). Issues in Teaching
the Comparison of Variability to Non-Statistics Students.Journal of Statis-
tics Education, 9(2):12–16. Available from:http://www.amstat.org/
publications/jse/v9n2/garrett.html [cited 2007-10-05].

[Gediga et al., 1999] Gediga, G., Hamborg, K.-C., and Düntsch, I. (1999). The iso-
metrics usability inventory: An operationalisation of iso9241-10. Behaviour and
Information Technology, 18:151–164.

[Genesereth et al., 1982] Genesereth, M., Kehler, T., Barr,A., Finin, T., Friedland, P.,
Miller, J., Miller, M., Soloway, E., and Tennant, H. (1982).Intelligent assistance

BIBLIOGRAPHY 291

for complex systems. InACM 82: Proceedings of the ACM ’82 conference, page
124, New York, NY, USA. ACM Press.

[GI, 2007] Gesellschaft f̈ur Informatik, editor. Informatik und Ausbildung / Di-
daktik der Informatik (IAD) [online]. (2007) [cited 2007-10-05]. Avail-
able from: http://www.gi-ev.de/gliederungen/fachbereiche/
informatik-und-ausbildung-didaktik-der-informatik-i ad/ .

[Gibbs, 1997] Gibbs, A. (1997). Focus Groups.Social Research Update, 19.

[Glickstein, 2004] Glickstein, B. (2004).Writing GNU Emacs Extensions: Editor
Customizations and Creations with Lisp. O’Reilly, Sebastopol, CA, USA.

[Gosling and McGilton, 1996] Gosling, J. and McGilton, H. The Java Language
Environment White Paper [online]. (1996) [cited 2007-10-05]. Available from:
ftp://ftp.javasoft.com/docs/papers/langenviron-pdf. zip .

[Government of the United Kingdom, 2001] Government of the United Kingdom, ed-
itor (2001). Special Educational Needs and Disability Act 2001 (SENDA). The
Stationery Office, London, UK.

[Gruber, 2008] Gruber, T. (2008). Ontology. InEncyclopedia of Database Systems.
Springer Verlag, Heidelberg, Germany.

[Guruprasad et al., 2005] Guruprasad, S., Ricci, R., and Lepreau, J. (2005). In-
tegrated network experimentation using simulation and emulation. In Proceed-
ings of the first International Conference on Testbeds and Research Infrastruc-
tures for the Development of Networks and Communities (Tridentcom 2005),
Trento, Italy. Available from:http://www.cs.utah.edu/flux/papers/
simem-tridentcom05a.pdf [cited 2007-10-05].

[Haake et al., 2004] Haake, J., Schwabe, G., and Wessner, M.,editors (2004).CSCL-
Kompendium. Lehr- und Handbuch zum computerunterstützten kooperativen Ler-
nen. Oldenbourg Verlag, M̈unchen, Germany.

[Haberlandt, 1999] Haberlandt, K. (1999).Human Memory. Allyn & Bacon, Boston,
MA, USA.

[Hall, 2007] Hall, J. M. (2007). Beachhead: Beneath the surface. Linux Journal,
2007(154):16.

[Hamilton, 2007] Hamilton, B. Rosetta Stone for Unix [online]. (2007) [cited 2007-
10-05]. Available from:http://bhami.com/rosetta.html .

[Hammer and Elby, 2000] Hammer, D. and Elby, A. (2000). Epistemological re-
sources. In Fishman, B. J. and O’Connor-Divelbiss, S. F., editors, International
Conference of the Learning Sciences – Facing the Challengesof Complex Real-
World Settings, pages 4–5, University of Michigan, Ann Arbor, USA.

292 BIBLIOGRAPHY

[Harms et al., 2002] Harms, I., Schweibenz, W., and Strobel,J. (2002). Usability
Evaluation von Web-Angeboten mit dem Usability-Index. InProceedings der 24.
DGI-Online-Tagung 2002 - Content in Context, Frankfurt am Main, Germany.

[Harper and Norman, 1993] Harper, B. D. and Norman, K. L. (1993). Improving user
satisfaction: The questionnaire for user interaction satisfaction. InProceedings of
the 1st Annual Mid-Atlantic Human Factors Conference, pages 224–228, Virginia
Beach, VA, USA.

[Heer et al., 2004] Heer, J., Good, N. S., Ramirez, A., Davis,M., and Mankoff, J.
(2004). Presiding over accidents: system direction of human action. InCHI ’04:
Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 463–470, New York, NY, USA. ACM Press. Available from:http://
jheer.org/publications/2004-Direction-CHI.pdf [cited 2007-
10-05].

[Heffley and Meunier, 2004] Heffley, J. and Meunier, P. (2004). Can Source Code
Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate Soft-
ware Security? InProceedings of the 37th Annual Hawaii International Conference
on System Sciences (HICSS’04), page 90277. Available from:http://doi.
ieeecomputersociety.org/10.1109/HICSS.2004.1265654 .

[Hegner, 2000] Hegner, S. J. (2000). Plan realization for complex command interac-
tion in the unix help domain.Artificial Intelligence Review, 14(3):181–228.

[Heinichen et al., 2007] Heinichen, J., Raue, S., and Assman, A. Dokumentation
rootlab [online]. (2007) [cited 2007-10-05]. Available from: http://vsr.
informatik.tu-chemnitz.de/backup3/Rootlab.pdf .

[Helic et al., 2004] Helic, D., Maurer, H., and Scerbakov, N.(2004). Combining in-
dividual tutoring with automatic course sequencing in wbt systems. InWWW Alt.
’04: Proceedings of the 13th international World Wide Web conference on Alternate
track papers & posters, pages 456–457, New York, NY, USA. ACM Press.

[Herold, 2005] Herold, R. (2005).Managing an Information Security and Privacy
Awareness and Training Program. Auerbach Publications, New York, NY, USA.

[Hewlett Packard, 2007] Hewlett Packard. HP TestDrive [online]. (2007) [cited 2007-
10-05]. Available from:http://www.testdrive.hp.com/ .

[Heyer et al., 1990] Heyer, G., Kese, R., Oemig, F., and Dudda, F. (1990). Knowledge
representation and semantics in a complex domain: the unix natural language help
system goethe. InProceedings of the 13th conference on Computational linguistics,
pages 361–363, Morristown, NJ, USA. Association for Computational Linguistics.

[Hibler et al., 2004] Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., tim
Stack, Webb, K., and Lepreau, J. (2004). Feedback-directedvirtualization tech-
niques for scalable network experimentation. Technical Note FTN-2004-02, Flux
Group, University of Utah.

BIBLIOGRAPHY 293

[Hilfinger, 1981] Hilfinger, P. N. (1981).Abstraction mechanisms and language de-
sign. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA.

[Hill, 1988] Hill, G. (1988). A rule-based software engineering tool for code anal-
ysis. InProceedings of the Seventh Annual International Phoenix Conference on
Computers and Communications, pages 291–295.

[Hoare, 1973] Hoare, C. A. R. (1973). Hints on programming language design. Tech-
nical Report AIM-224, STAN-CS-73-403, Stanford University, Artificial Intelli-
gence Laboratory, Computer Science Department.

[Holland and Skinner, 1961] Holland, J. G. and Skinner, B. F.(1961).The analysis of
behaviour. McGraw Hill, New York, NY, USA.

[Hu et al., 2004] Hu, J., Meinel, C., and Schmitt, M. (2004). Tele-lab it security: an
architecture for interactive lessons for security education. In SIGCSE ’04: Pro-
ceedings of the 35th SIGCSE technical symposium on Computerscience education,
pages 412–416, New York, NY, USA. ACM Press.

[Huang et al., 2004] Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., and Kuo,
S.-Y. (2004). Security and privacy: Securing web application code by static analysis
and runtime protection. InProceedings of the 13th International Conference on
World Wide Web, pages 40–52.

[Hubwieser, 2000] Hubwieser, P. (2000).Didaktik der Informatik. Springer Verlag,
Heidelberg, Germany.

[Humbert, 2006] Humbert, L. (2006).Didaktik der Informatik - mit praxiserprobtem
Unterrichtsmaterial. Teubner Verlag, Wiesbaden, Germany.

[Hylton et al., 2005] Hylton, K., Rosson, M. B., Carroll, J. M., and Ganoe, C. (2005).
When news is more than what makes headlines.ACM Crossroads: Human-
Computer Interaction, 12(2):13–17. Available from:http://www.acm.org/
crossroads/xrds12-2/rss.html [cited 2007-10-05].

[iABG, 2007] iABG, editor. Das V-ModellR© - Homepage [online]. (2007) [cited
2007-11-05]. Available from:http://www.v-modell.iabg.de/ .

[ISO 16071, 2003] ISO 16071 (2003). ISO 16071:2003(E) – Ergonomics of human-
system interaction – Guidance on accessibility for human-computer interfaces. In
[Deutsches Institut f̈ur Normung, 2003].

[ISO 23270, 2006] ISO 23270 (2006). ISO 23270:2006(E) – C# Language
Specification. Available from: http://standards.iso.org/ittf/
PubliclyAvailableStandards/c042926_ISO_IEC_23270_
2006(E).zip [cited 2007-11-19].

[ISO 8879, 1986] ISO 8879 (1986).ISO 8879:1986(E) – Information Processing -
Text and Office Systems - Standard Generalized Markup Language (SGML). Inter-
national Organization for Standardization, Geneva, Switzerland.

294 BIBLIOGRAPHY

[ISO 9241, 2003] ISO 9241 (2003). ISO 9241:2003(D) – Ergonomische Anforderun-
gen f̈ur Büroẗatigkeiten mit Bildschirmger̈aten. In [Deutsches Institut für Normung,
2003].

[Jakob Nielsen, 1997] Jakob Nielsen (1997). The Use and Misuse of Focus Groups.
IEEE Software, 14(1):94–95.

[Jerinic and Devedzic, 2000] Jerinic, L. and Devedzic, V. (2000). The friendly intelli-
gent tutoring environment.SIGCHI Bull., 32(1):83–94.

[Johansson, 2002] Johansson, P. (2002). User modeling in dialog systems. Techni-
cal Report SAR 02-2, St. Anna. Available from:http://www.ida.liu.se/
˜ponjo/downloads/papers/johansson_sar2002.pdf [cited 2007-
10-05].

[Johnson, 1975] Johnson, S. C. (1975). Yacc: Yet Another Compiler Compiler. Tech-
nical Report Computing Science Technical Report No. 32, Bell Laboratories, Mur-
ray Hill, NJ, USA.

[Kamp and Watson, 2007] Kamp, P.-H. and Watson, R. N. M. Jails: Confining the
omnipotent root [online]. (2007) [cited 2007-10-05]. Available from: http://
docs.freebsd.org/44doc/papers/jail/jail.html .

[Kautz and Selman, 1992] Kautz, H. and Selman, B. (1992). Planning as satisfia-
bility. In ECAI ’92: Proceedings of the 10th European conference on Artificial
intelligence, pages 359–363, Indianapolis, IN, USA. John Wiley & Sons.

[Kay, 1972] Kay, A. (1972). A personal computer for childrenof all ages. InPro-
ceedings of the ACM National Conference, Boston, MA, USA. Available from:
http://www.mprove.de/diplom/gui/Kay72a.pdf [cited 2007-11-19].

[Keller and Kr̈uger, 2001] Keller, H. and Krüger, S. (2001). ABAP Objects:
Einführung in die SAP-Programmierung. SAP Press, Bonn, Germany.

[Kerner and Freedman, 1990] Kerner, J. T. and Freedman, R. S.(1990). Developing
intelligent tutoring systems with a Hypermedia Object-Based Intelligent Educator
(HOBIE). In IEA/AIE ’90: Proceedings of the 3rd international conference on
Industrial and engineering applications of artificial intelligence and expert systems,
pages 890–897, New York, NY, USA. ACM Press.

[Kernighan and Ritchie, 1988] Kernighan, B. W. and Ritchie,D. M. (1988). The C
Programming Language. Prentice-Hall, Upper Saddle River, NJ, USA.

[Kernighan and Ritchie, 1994] Kernighan, B. W. and Ritchie,D. M. (1994). The M4
Macro Processor. In4.4BSD Programmer’s Supplementary Documents. O’Reilly,
Sebastopol, CA, USA.

[Kernighan, 1975] Kernighan, K. W. (1975). RATFOR – A Preprocessor for a Ratio-
nal Fortran.Software Practice and Experience, 5:395–406.

BIBLIOGRAPHY 295

[Kerres, 1998] Kerres, M., editor (1998).Multimediale und telemediale Lernumge-
bungen: Konzeption und Entwicklung. Oldenbourg Verlag, M̈unchen, Germany.

[Kevitt, 2000] Kevitt, P. M. (2000). The oscon operating system consultant.Artificial
Intelligence Review, 14(1-2):89–119.

[Kirsch, 2003] Kirsch, S. M. (2003). Frames, Scripts and Plans. Technical report, In-
stitut für Kommunikationsforschung und Phonetik, Rheinische Friedrich-Wilhems-
Universiẗat Bonn. Available from: http://sites.inka.de/moebius/
docs/framesscripts-ho.pdf [cited 2007-12-16].

[Kobsa, 1990] Kobsa, A. (1990). User modeling in dialog systems: potentials and
hazards.AI & Society, 4(3):214–231. Available from:http://www.isr.uci.
edu/˜kobsa/papers/1990-AISoc-kobsa.pdf [cited 2007-10-05].

[Kobsa, 1993] Kobsa, A. (1993). Adaptivität und Benutzermodellierung in interak-
tiven Softwaresystemen. InProceedings der 17. Fachtagung für Künstliche Intel-
ligenz, Informatik Aktuell series, pages 152–166, Heidelberg, Germany. Springer
Verlag. Available from: http://www.isr.uci.edu/˜kobsa/papers/
1993-DKIT93-kobsa.pdf [cited 2007-10-05].

[Kobsa, 1995] Kobsa, A. (1995). Supporting user interfacesfor all through user mod-
eling. In Proceedings of the Sixth International Conference on Human-Computer
Interaction, volume I, pages 155–157. Available from:http://www.ics.uci.
edu/˜kobsa/papers/1995-HCI95-kobsa.pdf [cited 2007-10-05].

[Kobsa, 1999] Kobsa, A. (1999). Adapting web information todisabled and elderly
users. InProceedings of WebNet 99- World Conference on the WWW and Internet,
volume 2, pages 32–37, Charlottesville, VA, USA. Association for the Advance-
ment of Computing in Eduction (AACE). Available from:http://www.ics.
uci.edu/˜kobsa/papers/1998-NRHM-kobsa.pdf [cited 2007-10-05].

[Kobsa, 2001a] Kobsa, A. (2001a). Generic user modeling systems. User Modeling
and User-Adapted Interaction, 11(1-2):49–63.

[Kobsa, 2001b] Kobsa, A. (2001b). Tailoring privacy to users’ needs. InUM
’01: Proceedings of the 8th International Conference on User Modeling 2001,
pages 303–313, Heidelberg, Germany. Springer Verlag. Available from: http:
//www.ics.uci.edu/˜kobsa/papers/2001-UM01-kobsa.pdf [cited
2007-10-05].

[Kobsa, 2002] Kobsa, A. (2002). Personalized hypermedia and international privacy.
Communications of the ACM, 45(8):64–67.

[Kobsa et al., 2001] Kobsa, A., Koenemann, J., and Pohl, W. (2001). Personalized Hy-
permedia Presentation Techniques for Improving Online Customer Relationships.
The Knowledge Engineering Review, 16:111–155.

296 BIBLIOGRAPHY

[Kobsa and Schreck, 2003] Kobsa, A. and Schreck, J. (2003). Privacy through
pseudonymity in user-adaptive systems.ACM Transansactions on Internet Tech-
nology (TOIT), 3(2):149–183. Available from:http://www.ics.uci.edu/
˜kobsa/papers/2003-TOIT-kobsa.pdf [cited 2007-10-05].

[Kolovski et al., 2004] Kolovski, V., Jordanov, S., and Galletly, J. (2004). An elec-
tronic learning assistant. InCompSysTech ’04: Proceedings of the 5th interna-
tional conference on Computer systems and technologies, pages 1–6, New York,
NY, USA. ACM.

[Kolter and Maloof, 2006] Kolter, J. Z. and Maloof, M. A. (2006). Learning to detect
and classify malicious executables in the wild.The Journal of Machine Learning
Research, 7:2721–2744.

[Kopp and Michl, 2000] Kopp, H. and Michl, W. (2000).MeiLe - Neue Medien in der
Lehre. Luchterhand Literaturverlag, K̈oln, Germany.

[Krause et al., 1993] Krause, J., Mittermaier, E., and Hirschmann, A. (1993). The
Intelligent Help System COMFOHELP.User Modeling and User-Adapted Interac-
tion, 3(3):249–282.

[Kuhlen and Laisiepen, 2004] Kuhlen, R. and Laisiepen, K. (2004). Grundlagen der
praktischen Information und Dokumentation. Saur Verlag, M̈unchen, Germany, 5th
edition.

[Kuncicky and Wynn, 1998] Kuncicky, D. and Wynn, B. A. (1998). Short Topics in
System Administration #4: Educating and Training System Administrators: A Sur-
vey. USENIX Association, Boston, MA, USA.

[Kuyper, 1998] Kuyper, M. (1998).Knowledge Engineering for Usability. PhD thesis,
University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, Netherlands.

[Kölle, 2007] K̈olle, R. (2007). Java lernen in virtuellen Teams. Verlag Werner
Hülsbusch, Boizenburg, Germany.

[Lave and Wenger, 1991] Lave, J. and Wenger, E. (1991).Situated learning. Cam-
bridge University Press, Cambridge, MA, USA.

[Ledgard, 1971] Ledgard, H. F. (1971). Ten mini-languages:A study of topical issues
in programming languages.ACM Computing Surveys (CSUR), 3(3):115–146.

[Lenat and Guha, 1990] Lenat, D. B. and Guha, R. V. (1990).Building Large
Knowledge-Based Systems: Representation and Inference inthe CYC Project. Ad-
dison Wesley, Boston, MA, USA.

[Lenat and Guha, 1991] Lenat, D. B. and Guha, R. V. (1991). Theevolution of cycl,
the cyc representation language.SIGART Bull., 2(3):84–87.

BIBLIOGRAPHY 297

[Lepreau, 2006] Lepreau, J. (2006). Emulab: Recent Work, Ongoing Work. InPro-
ceedings of the DETER Community Meeting, USC/ISI. Available from:http://
www.cs.utah.edu/flux/testbed-docs/emulab-dev-jan06. pdf
[cited 2007-10-05].

[Lesk and Schmidt, 1975] Lesk, M. E. and Schmidt, E. (1975). Lex - A Lexical An-
alyzer Generator. Technical Report Computing Science Technical Report No. 39,
Bell Laboratories, Murray Hill, NJ, USA.

[Lévénez, 2007] Ĺevénez, E. Unix History [online]. (2007) [cited 2007-10-05].Avail-
able from:http://www.levenez.com/unix/ .

[LireFire Labs, 2007a] Description Internet Lab [online].(2007) [cited 2007-10-05].
Available from: http://www.livefirelabs.com/info/internet_
lab.htm .

[LireFire Labs, 2007b] Homepage of LifeFire Labs [online].(2007) [cited 2007-10-
05]. Available from:http://www.livefirelabs.com/ .

[LireFire Labs, 2007c] UNIX System Administration course information [online].
(2007) [cited 2007-10-05]. Available from:http://www.livefirelabs.
com/course_info/UNIX_System_Administration.htm .

[Lytle et al., 2005] Lytle, D. P., Resendez, V., and August, R. (2005). Security in the
residential network. InProceedings of the 33rd annual ACM SIGUCCS conference
on User services SIGUCCS ’05, pages 197–201.

[L ütticke and Helbig, 2004] L̈utticke, R. and Helbig, H. (2004). Practical
courses in distance education supported by an interactive tutoring compo-
nent. In Benrath, U. and Szücs, A., editors,3rd EDEN Research Work-
shop, Bibliotheks- und Informationssystem der Universität Oldenburg (BIS):
Supporting the Learner in Distance Education and E-Learning, pages 441–
447. Available from:http://pi7.fernuni-hagen.de/papers/luett/
luett-2004-eden-bis.pdf [cited 2007-10-05].

[Ma and Nickerson, 2006] Ma, J. and Nickerson, J. V. (2006). Hands-on, simulated,
and remote laboratories: A comparative literature review.ACM Computing Surveys
(CSUR), 38(3).

[Madhavapeddy et al., 2007] Madhavapeddy, A., Ho, A., Deegan, T., Scott, D., and
Sohan, R. (2007). Melange: creating a ”functional” internet. ACM SIGOPS Oper-
ating Systems Review, 41(3):101–114.

[Manaris and Pritchard, 1993] Manaris, B. Z. and Pritchard,J. W. (1993). Construct-
ing natural language interface applications to operating systems. InCSC ’93: Pro-
ceedings of the 1993 ACM conference on Computer science, pages 425–432, New
York, NY, USA. ACM Press.

298 BIBLIOGRAPHY

[Manaris et al., 1994] Manaris, B. Z., Pritchard, J. W., and Dominick, W. D. (1994).
Developing a natural language interface for the unix operating system. SIGCHI
Bullettin, 26(2):34–40.

[Mandl et al., 1994] Mandl, H., Gruber, H., and Renkl, A. (1994). Situiertes Lernen
in multimedialen Lernumgebungen. In Issing, L. J. and Klimsa, P., editors,Infor-
mation und Lernen mit Multimedia, pages 167–178. Psychologie Verlags Union,
Weinheim, Germany.

[Mata-Toledo and Reyes-Garcia, 2002] Mata-Toledo, R. A. and Reyes-Garcia, C. A.
(2002). A model course for teaching database administration with personal oracle
8i. Journal of Computing Sciences in Colleges (JCSC), 17(3):125–130.

[Matsumoto, 2001] Matsumoto, Y. (2001).Ruby In A Nutshell. O’Reilly, Sebastopol,
CA, USA.

[Matthews et al., 2000] Matthews, M., Pharr, W., Biswas, G.,and Neelakandan, H.
(2000). Uscsh: An active intelligent assistance system.Artificial Intelligence Re-
view, 14(1-2):121–141.

[Mayer, 2001] Mayer, A. (2001).Shell-Programmierung in Unix. Computer und
Literatur Verlag, B̈oblingen, Germany.

[Mayo and Mitrovic, 2001] Mayo, M. and Mitrovic, A. (2001). Optimising ITS Be-
haviour with Bayesian Networks and Decision Theory.International Journal of Ar-
tificial Intelligence in Education, 12:124–153. Available from:http://aied.
inf.ed.ac.uk/abstracts/Vol_12/mayo.html [cited 2007-12-17].

[McGill et al., 1978] McGill, R., Tukey, J. W., and Larsen, W.A. (1978). Variations
of boxplots.The American Statistician, 32(1):12–16.

[McNab, 2004] McNab, C. (2004).Network Security Assessment. O’Reilly, Se-
bastopol, CA, USA.

[Medvidovic and Rosenblum, 1997] Medvidovic, N. and Rosenblum, D. S. (1997).
Domains of concern in software architectures and architecture description lan-
guages. InProceedings of the Conference on Domain-Specific Languages, Santa
Barbara, California, USA. Available from:http://www.usenix.org/
publications/library/proceedings/dsl97/medvidovic.h tml .

[Mernik et al., 2005] Mernik, M., Heering, J., and Sloane, A.M. (2005). When and
how to develop domain-specific languages.ACM Computing Surveys (CSUR),
37(4):316–344.

[Merrill, 1983] Merrill, D. (1983). Component display theory. In [Reigeluth, 1983],
pages 279–333.

[Merrill et al., 1991] Merrill, D., Li, Z., and Jones, M. (1991). Second Generation
Instructional Design (ID2). Educational Technology, 30(1):7–11. Available from:
http://id2.usu.edu/Papers/ID1&ID2.PDF [cited 2007-10-05].

BIBLIOGRAPHY 299

[Meunier, 1995] Meunier, R. (1995). The pipes and filters architecture. InPattern
Languages of Program Design, pages 427–440. Addison Wesley, Boston, MA,
USA.

[Michaud et al., 2000] Michaud, L. N., McCoy, K. F., and Pennington, C. A. (2000).
An intelligent tutoring system for deaf learners of writtenenglish. InAssets ’00:
Proceedings of the fourth international ACM conference on Assistive technologies,
pages 92–100, New York, NY, USA. ACM Press.

[Miller et al., 1960] Miller, G. A., Galanger, E., and Přibram, K. H. (1960).Plans and
the structure of behavior. Holt, Rinehart and Winston, New York, NY, USA.

[Minsky, 1975] Minsky, M. A. (1975). Framework for representing knowledge. In
Winston, P. H., editor,The Psychology of Computer Vision, pages 211–277. Mc-
Graw Hill, New York, NY, USA.

[Moodle, 2007] Moodle. A Free, Open Source Course Management System for
Online Learning [online]. (2007) [cited 2007-10-05]. Available from: http:
//www.moodle.org/ .

[Morell, 2004] Morell, A. Motion Study of Hammer on Lead [online]. (2004)
[cited 2007-10-05]. Available from:http://www.abelardomorell.net/
recentwork/Motion_Study_Hammer_full.jpg .

[Morris, 1938] Morris, C. W. (1938). Foundations of the theory of signs. In Neurath,
O., editor,International Encyclopedia of Unified Science. University of Chicago
Press, Chicago, MI, USA.

[Nakatani et al., 1986] Nakatani, L. H., Egan, D. E., Ruedisueli, L. W., Hawley, P. M.,
and Lewart, D. K. (1986). TNT: A talking tutor ’n’ trainer forteaching use of
interactive computer systems. InCHI ’86: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 29–34, New York, NY, USA. ACM
Press.

[Narain, 2005] Narain, S. (2005). Network Configuration Management via Model
Finding. In Proceedings of the 19th Large Installation System Administration
(LISA) Conference, San Diego, California, USA.

[Nast, 2006] Nast, J. (2006).Idea Mapping. John Wiley & Sons, Indianapolis, IN,
USA.

[Nathan, 1990] Nathan, M. J. (1990). Empowering the student: prospects for an un-
intelligent tutoring system. InCHI ’90: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 407–414, New York, NY, USA. ACM
Press.

[Nessus, 2007] Nessus – the network vulnerability scanner [online]. (2007). Available
from: http://www.nessus.org/ .

300 BIBLIOGRAPHY

[Nielsen, 1994] Nielsen, J. (1994).Usability Engineering. Morgan Kaufman Publish-
ers, San Francisco, CA, USA.

[Nielsen, 2001] Nielsen, J. (2001).Designing Web Usability. Markt+Technik Verlag,
München, Germany.

[Nipkow and von Oheimb, 1998] Nipkow, T. and von Oheimb, D. (1998). Javalight is
type-safe – definitely. InProceedings of the 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, San Diego, California, USA.

[Nixsys, 2007] Nixsys. Public Access UNIX System (PAUS) [online]. (2007) [cited
2007-10-05]. Available from:https://nixsyspaus.org/ .

[nmap, 2007] Nmap – free security scanner for network exploration & security audits
[online]. (2007) [cited 2007-10-05]. Available from:http://www.insecure.
org/nmap/index.html .

[Nodenot et al., 2004] Nodenot, T., Marquesuzaá, C., Laforcade, P., and Sallaberry,
C. (2004). Model based engineering of learning situations for adaptive web based
educational systems. InWWW Alt. ’04: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, pages 94–103, New
York, NY, USA. ACM Press.

[Norman, 2007] Norman, D. (2007). The next ui breakthrough:command lines.in-
teractions, 14(3):44–45.

[Norman, 2002] Norman, D. A. (2002).The Design of Everyday Things. Basic Books,
New York, NY, USA.

[Nösekabel, 2005] N̈osekabel, H. (2005).Mobile Education. GITO Verlag, Berlin,
Germany.

[openQRM, 2007] openQRM – The open source systems management platform [on-
line]. (2007) [cited 2007-10-05]. Available from:http://www.openqrm.
org/ .

[Ossanna and Kernighan, 1976] Ossanna, J. F. and Kernighan,B. W. (1976).
Nroff/troff user’s manual. Technical Report CSTR #54, AT&TBell Laboratories,
Murray Hill. Available from: http://cm.bell-labs.com/cm/cs/cstr/
54.ps.gz [cited 2007-10-05].

[Papert, 1982] Papert, S. (1982).Mindstorms: Kinder, Computer und neues Lernen.
Birkhäuser Verlag, Basel, Switzerland.

[Patcha and Park, 2007] Patcha, A. and Park, J.-M. (2007). Anoverview of anomaly
detection techniques: Existing solutions and latest technological trends.Computer
Networks, 51(12):3448–3470.

BIBLIOGRAPHY 301

[Patil and Kobsa, 2005] Patil, S. and Kobsa, A. (2005). Privacy in collabo-
ration: Managing impression. InProceedings of the First International
Conference on Online Communities and Social Computing, Las Vegas, NV,
USA. Available from: http://www.ics.uci.edu/˜kobsa/papers/
2005-ICOCSC-kobsa.pdf [cited 2007-10-05].

[Pawlow, 1972] Pawlow, I. P., editor (1972).Die bedingten Reflexe. Kindler Verlag,
München, Germany.

[phpESP, 2007] PHP Easy Survey Package [online]. (2007) [cited 2007-10-05].
Available from:http://phpesp.sourceforge.net/ .

[Piaget, 1967] Piaget, J. (1967).Six psychological studies. Random House, New
York, NY, USA.

[PLDI, 2007] PLDI, A. S. Programming language design and implementation (pldi)
[online]. (2007) [cited 2007-10-05]. Available from:http://www.acm.org/
sigplan/pldi.htm .

[PLUS, 2007] PLUS, editor. Large-Scale Knowledge Representation: The PARKA
Project [online]. (2007) [cited 2007-12-12]. Available from: http://www.cs.
umd.edu/projects/plus/Parka/ .

[Poskanzer, 2007] Poskanzer, J. The extended portable bitmap toolkit (pbmplus) [on-
line]. (2007) [cited 2007-10-05]. Available from:http://www.acme.com/
software/pbmplus/ .

[Postel, 1981] Postel, J. (1981). RFC 793: Transmission Control Protocol. Available
from: ftp://ftp.internic.net/rfc/rfc793.txt [cited 2007-10-05].

[Pratt and Zelkowitz, 2001] Pratt, T. W. and Zelkowitz, M. V.(2001). Programming
Languages: Design and Implementation. Prentice-Hall, Upper Saddle River, NJ,
USA.

[Pressey, 1926] Pressey, S. L. (1926). A simple apparatus which gives tests and scores
- and teaches.School and Society, 23(586):373–376.

[Pressey, 1927] Pressey, S. L. (1927). A machine for automatic teaching of drill ma-
terial. School and Society, 25(645):549–552.

[Pruitt and Grudin, 2003] Pruitt, J. and Grudin, J. (2003). Personas: practice and the-
ory. In DUX ’03: Proceedings of the 2003 conference on Designing foruser expe-
riences, pages 1–15, New York, NY, USA. ACM Press.

[Prümper and Anft, 2006] Prümper, J. and Anft, M. Fragebogen ISONORM
9241/10 [online]. (2006) [cited 2007-10-05]. Available from: http://www.
ergo-online.de/site.aspx?url=html/software/verfahre n_
zur_beurteilung_der/fragebogen_isonorm_online.htm .

302 BIBLIOGRAPHY

[Public Access Networks Corporation, 2007] Public Access Networks Corporation.
Panix Shell Services [online]. (2007) [cited 2007-10-05].Available from:http:
//www.panix.com/shell.html .

[py, 2007] py – Write parser programs in perl [online]. (2007) [cited 2007-10-05].
Available from:http://perl.plover.com/py/ .

[Quilici et al., 1986] Quilici, Dyer, and Flowers (1986). Aqua: An intelligent unix
advisor. InProceedings of the 7th European Conference on Artificial Intelligence
(ECAI), Volume II, pages 33–38, Brighton, England.

[Quilici, 2000] Quilici, A. (2000). Using justification patterns to advise novice unix
users.Artificial Intelligence Review, 14(4-5):403–420.

[Quillian, 1967] Quillian, M. R. (1967). Word concepts. a theory and simulation of
some basic semantic capabilities.Behavioral Science, 12:410–430.

[Quillian, 1988] Quillian, M. R. (1988). Semantic memory. In Minsky, M., editor,Se-
mantic information processing, pages 216–270. MIT Press, Cambridge, MA, USA.

[Ramming, 1997] Ramming, C., editor (1997).Proceedings of the Conference on
Domain-Specific Languages October 15-17. USENIX Association, Boston, MA,
USA.

[Rawls and Hagen, 1998] Rawls, R. R. and Hagen, M. A. (1998).Autolisp Program-
ming: Principles and Techniques. O’Reilly, Sebastopol, CA, USA.

[Raymond, 2003] Raymond, E. S. (2003).The Art of UNIX Programming. Addison
Wesley, Boston, MA, USA. Available from:http://www.faqs.org/docs/
artu/ [cited 2007-10-05].

[Reductive Labs, 2007a] Reductive Labs. Cfengine vs. Puppet [online]. (2007)
[cited 2007-10-05]. Available from:http://reductivelabs.com/trac/
puppet/wiki/CfengineVsPuppet .

[Reductive Labs, 2007b] Reductive Labs. Puppet [online]. (2007) [cited 2007-10-05].
Available from:http://puppet.reductivelabs.com/ .

[Reed, 2007] Reed, D. IP Filter [online]. (2007) [cited 2007-10-05]. Available from:
http://coombs.anu.edu.au/˜avalon/ .

[Reigeluth, 1983] Reigeluth, C., editor (1983).Instructional-Design Theories and
Models. Lawrence Erlbaum Associates, Publishers, Hillsdale, NJ,USA.

[Reigeluth and Stein, 1983] Reigeluth, C. and Stein, F. (1983). The elaboration theory
of instruction. In [Reigeluth, 1983], pages 335–382.

[Rice, 2006] Rice, W. (2006).Moodle E-Learning Course Development. Packt Pub-
lishing Limited, Birmingham, UK.

BIBLIOGRAPHY 303

[Rich, 1979] Rich, E. (1979). User Modeling via Stereotypes. Cognitive Psychology,
3:329–354.

[Richey, 1986] Richey, R., editor (1986).The theoretical and conceptual bases of
instructinal design. Kogan Page, London, UK.

[Robberecht, 2007] Robberecht, R. (2007). Interactive nonlinear learning envi-
ronments. The Electronic Journal of e-Learning (EJEL), 5(1):59–68. Avail-
able from: http://www.ejel.org/Volume-5/v5-i1/Robberecht.
pdf [cited 2008-11-24].

[Root-Lab, 2007a] Hardwareausstattung Root-Labor [online]. (2007) [cited 2007-
10-05]. Available from: http://www.tu-chemnitz.de/informatik/
friz/pool/374/hardware.php .

[Root-Lab, 2007b] Nutzungshinweise Root-Labor [online].(2007) [cited 2007-
10-05]. Available from: http://www.tu-chemnitz.de/informatik/
friz/pool/374//nutzung.php .

[Rossum and Drake, 2003] Rossum, G. V. and Drake, F. L. (2003). An Introduc-
tion to Python. Network Theory, Bristol, UK. Available from:http://www.
network-theory.co.uk/python/manual/ [cited 2007-10-05].

[Rossum and Fred L. Drake, 2003] Rossum, G. V. and Fred L. Drake, J. (2003).The
Python Language Reference. Network Theory, Bristol, UK. Available from:http:
//www.network-theory.co.uk/python/language/ [cited 2007-10-
05].

[Ryan, 1991] Ryan, B. (1991). Dynabook revisited with alan kay. BYTE Magazine,
16(2):203–ff.

[Salus, 1994] Salus, P. H. (1994).A Quarter Century of UNIX. Addison Wesley,
Boston, MA, USA.

[Sattari et al., 2007] Sattari, S., Backhaus, W., and Henning, K. (2007). The web-
based knowledge map: the combination of practise-orientedand scientific knowl-
edge. InWBED’07: Proceedings of the sixth conference on IASTED International
Conference Web-Based Education, pages 475–480, Anaheim, CA, USA. ACTA
Press.

[Schank, 1972] Schank, R. C. (1972). Conceptual Dependency: A Theory of Natural
Language Understanding.Cognitive Psychology, 3(4):pages 532–631.

[Schank and Abelson, 1975] Schank, R. C. and Abelson, R. P. (1975). Scripts, plans,
and knowledge. InProceedings of the 4th International Joint Conference on Artifi-
cial Intelligence.

304 BIBLIOGRAPHY

[Schaumann, 2004] Schaumann, J. (2004). Netbsd/desktop: Scalable worksta-
tion solutions. In EuroBSDCon 2004 Proceedings, pages 141–159, Karl-
sruhe, Germany. Available from:http://www.netbsd.org/˜jschauma/
netbsd-desktop.pdf [cited 2007-10-05].

[Schneier, 2005] Schneier, B. (2005).Applied Cryptography. John Wiley & Sons,
Indianapolis, IN, USA.

[Schubert and Schwill, 2004] Schubert, S. and Schwill, A. (2004). Didaktik der In-
formatik. Spektrum Akademischer Verlag, Heidelberg, Germany.

[Schulmeister, 2002] Schulmeister, R. (2002).Lernplattformen f̈ur das virtuelle Ler-
nen. Oldenbourg Verlag, M̈unchen, Germany.

[Schulmeister, 2007] Schulmeister, R. (2007).Grundlagen hypermedialer Lernsys-
teme. Oldenbourg Verlag, M̈unchen, Germany, 4. edition.

[Schuman, 2007] Schuman, L. Perspectives on Instruction: What are the prob-
lems and strengths of these theories? [online]. (2007) [cited 2007-10-
05]. Available from: http://edweb.sdsu.edu/courses/edtec540/
Perspectives/Perspectives.html .

[Seidel and Lipsmeier, 1989] Seidel, C. and Lipsmeier, A. (1989). Computerun-
tersẗutzes Lernen – Entwicklungen, Möglichkeiten, Perspektiven. Verlag f̈ur Ange-
wandte Psychologie, Stuttgart, Germany.

[Serway and Jewett, 2004] Serway, R. A. and Jewett, J. W. (2004). Physics for Scien-
tists and Engineers. Thomson Brooks/Cole, Belmont, CA, USA, 6th edition.

[Shah and Kumar, 2002] Shah, H. and Kumar, A. N. (2002). A tutoring system for pa-
rameter passing in programming languages. InITiCSE ’02: Proceedings of the 7th
annual conference on Innovation and technology in computerscience education,
pages 170–174, New York, NY, USA. ACM Press.

[Shannon and Weaver, 1949] Shannon, C. E. and Weaver, W. (1949). The mathemati-
cal theory of communication. University of Illinois Press, Urbana, IL, USA.

[Shneiderman, 2004] Shneiderman, B. (2004).Designing the User Interface. Addison
Wesley, Boston, MA, USA, 4th edition.

[Si et al., 2006] Si, N.-K., Weng, J.-F., and Tseng, S.-S. (2006). Building a Frame-
Based Interaction and Learning Model for U-Learning.Lecture Notes in Computer
Science, 4159:796–805.

[SIGCSE, 2007] Homepage of the ACM Special Interest Group onComputer Science
Education [online]. (2007) [cited 2007-10-05]. Availablefrom: http://www.
sigcse.org/ .

BIBLIOGRAPHY 305

[Skinner, 1947] Skinner, B. F. (1947). ’Superstition’ in the pigeon.Journal of Exper-
imental Psychology, 38:168–172. Available from:http://psychclassics.
yorku.ca/Skinner/Pigeon/ [cited 2007-10-05].

[Skinner, 1968] Skinner, B. F. (1968).The technology of teaching. B. F. Skinner
Foundation, Cambridge, MA, USA.

[sol.net Network Services, 2007] sol.net Network Services. Solaria Public Access
UNIX [online]. (2007) [cited 2007-10-05]. Available from:http://www.sol.
net/˜jgreco/solaria/ .

[SourceForge, 2007] SourceForge. Document E07-04: Project Shell Service [on-
line]. (2007) [cited 2007-10-05]. Available from:http://sourceforge.
net/docman/display_doc.php?docid=4297&group_id=1#sh ell .

[Specht and Kobsa, 1999] Specht, M. and Kobsa, A. (1999). Interaction of domain
expertise and interface design in adaptive educational hypermedia. InTUE Com-
puting Science Report 99-07: Proceedings of the Second Workshop on Adap-
tive Systems and User Modeling on the World Wide Web, pages 89–93, Eind-
hoven, Netherlands. Eindhoven University of Technology. Available from:http:
//wwwis.win.tue.nl/asum99/specht/specht.html [cited 2007-10-
05].

[Spinellis, 2001] Spinellis, D. (2001). Notable design patterns for domain-specific
languages.The Journal of Systems and Software, 56(1):91–99.

[Spinellis, 2003] Spinellis, D. (2003).Code Reading. Addison Wesley, Boston, MA,
USA.

[Spinellis, 2007] Spinellis, D. How to embed citations in diagrams [online]. (2007)
[cited 2007-10-05]. Available from:http://www.spinellis.gr/blog/
20070204/index.html .

[Spinellis and Gritzalis, 2000] Spinellis, D. and Gritzalis, D. (2000). A domain-
specific language of intrusion detection. InProceedings of the 1st ACM Work-
shop on Intrusion Detection Systems. ACM. Available from: http://www.
spinellis.gr/pubs/conf/2000-CCS-DSLID/html/paper.ht ml .

[Spinellis and Guruprasad, 1997] Spinellis, D. and Guruprasad, V. (1997).
Lightweight languages as software engineering tools. InProceedings of the
Conference on Domain-Specific Languages, Santa Barbara, California, USA.
Available from: http://www.usenix.org/publications/library/
proceedings/dsl97/spinellis.html .

[Staab and Studer, 2004] Staab, S. and Studer, R. (2004).Handbook on ontologies.
Springer Verlag, Heidelberg, Germany.

[Stevens, 1992] Stevens, R. W. (1992).Advanced Programming in the Unix Environ-
ment. Addison Wesley, Boston, MA, USA.

306 BIBLIOGRAPHY

[Stevens, 1994] Stevens, R. W. (1994).TCP/IP Illustrated, Volume 1: The Protocols.
Addison Wesley, Boston, MA, USA.

[Stroustrup, 1994] Stroustrup, B. (1994).The Design and Evolution of C++. Addison
Wesley, Boston, MA, USA.

[Su et al., 2007] Su, Y.-Y., Attariyan, M., and Flinn, J. (2007). Autobash: improv-
ing configuration management with operating system causality analysis. InSOSP
’07: Proceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles, pages 237–250, New York, NY, USA. ACM.

[Suebnukarn and Haddawy, 2004] Suebnukarn, S. and Haddawy,P. (2004). A collab-
orative intelligent tutoring system for medical problem-based learning. InIUI ’04:
Proceedings of the 9th international conference on Intelligent user interface, pages
14–21, New York, NY, USA. ACM Press.

[Sun Microsystems, 2007] Sun Microsystems. BigAdmin: Solaris Containers (Zones)
[online]. (2007) [cited 2007-10-05]. Available from:http://www.sun.com/
bigadmin/content/zones/ .

[Super Dimension Fortress, 2007] Super Dimension Fortress. SDF Public Access
UNIX System - Free Shell Account and Shell Access [online]. (2007) [cited 2007-
10-05]. Available from:http://sdf.lonestar.org/ .

[Taylor and Siemer, 1996] Taylor, S. J. E. and Siemer, J. (1996). Enhancing simula-
tion education with intelligent tutoring systems. InWSC ’96: Proceedings of the
28th conference on Winter simulation, pages 675–680, New York, NY, USA. ACM
Press.

[Teltzrow and Kobsa, 2004a] Teltzrow, M. and Kobsa, A. (2004a). Communication
of privacy and personalization in e-business. InProceedings of the 1st Workshop
WHOLES: A Multiple View of Individual Privacy in a NetworkedWorld, Stockholm,
Sweden. Available from:http://www.sics.se/privacy/wholes2004/
papers/teltzrow_kobsa.pdf [cited 2007-10-05].

[Teltzrow and Kobsa, 2004b] Teltzrow, M. and Kobsa, A. (2004b). Impacts of user
privacy preferences on personalized systems: a comparative study. InDesigning
personalized user experiences in eCommerce, pages 315–332. Kluwer Academic
Publishers, Norwell, MA, USA. Available from:http://www.ics.uci.edu/
˜kobsa/papers/2004-PersUXinECom-kobsa.pdf [cited 2007-10-05].

[The FreeBSD Documentation Project, 2007] The FreeBSD Documentation Project.
FreeBSD Handbook [online]. (2007) [cited 2007-10-05]. Available from: http:
//www.freebsd.org/doc/en_US.ISO8859-1/books/handboo k/ .

[The GNOME Project, 2007] The GNOME Project, editor. ATK - Accessibil-
ity Toolkit [online]. (2007) [cited 2007-10-05]. Available from: http://
developer.gnome.org/doc/API/2.0/atk/index.html .

BIBLIOGRAPHY 307

[The KDE Project, 2007] The KDE Project, editor. KDE Accessibility Project [on-
line]. (2007) [cited 2007-10-05]. Available from:http://accessibility.
kde.org/ .

[The Linux Foundation, 2007] The Linux Foundation. Lab Activities [online]. (2007)
[cited 2007-10-05]. Available from:http://old.linux-foundation.
org/lab_activities/ .

[The NetBSD Foundation, 2007] The NetBSD Foundation. Diskless netbsd how-to
[online]. (2007) [cited 2007-10-05]. Available from:http://www.NetBSD.
org/Documentation/network/netboot/ .

[The Open Group, 2004] The Open Group (2004).Single Unix Specification. Amer-
ican National Standards Institute, 1430 Broadway, New York, NY 10018, USA.
IEEE Std 1003.1, 2004 Edition. Available from:http://www.opengroup.
org/onlinepubs/007904975/toc.htm [cited 2007-10-05].

[The PHP Project, 2007] Hojtsy, G., editor. PHP Manual [online]. (2007) [cited 2007-
10-05]. Available from:http://www.PHP.net/ .

[Thomas, 2000] Thomas, S. B. (2000). College Students and Disability
Law. The Journal of Special Education, 33(4):248–257. Available from:
http://www.ldonline.org/ld_indepth/legal_legislativ e/
college_students_and_dis_law.html [cited 2007-10-05].

[Thorndike, 1911] Thorndike, E. L. (1911).Animal Intelligence. MacMillan Publish-
ing, New York, NY, USA. Available from:http://psychclassics.yorku.
ca/Thorndike/Animal/ [cited 2007-10-05].

[Trolltech, 2007] Trolltech. Cross-Platform Accessibility Support in Qt 4 [online].
(2007) [cited 2007-10-05]. Available from:http://doc.trolltech.com/
4.0/qt4-accessibility.html .

[Trček, 2005] Třcek, D. (2005).Managing Informatino Systems Security and Privacy.
Springer Verlag, Heidelberg, Germany.

[Tucek et al., 2007] Tucek, J., Lu, S., Huang, C., Xanthos, S., Zhou, Y., Newsome,
J., Brumley, D., and Song, D. (2007). Sweeper: a lightweightend-to-end sys-
tem for defending against fast worms.ACM SIGOPS Operating Systems Review,
41(3):115–128.

[Tukey, 1977] Tukey, J. W. (1977).Exploratory data anlysis. Addison Wesley,
Boston, MA, USA.

[Tulodziecki, 2000] Tulodziecki, G. (2000). Computerunterstütztes Lernen aus medi-
endidaktischer Sicht. In Kammerl, R., editor,Computerunterstütztes Lernen, pages
53–72. Oldenbourg Verlag, M̈unchen, Germany.

308 BIBLIOGRAPHY

[Tyler and Treu, 1989] Tyler, S. W. and Treu, S. (1989). An interface architecture to
provide adaptive task-specific context for the user.International Journal of Man-
Machine Studies, 30(3):303–327.

[University of Cypria, Department of Computer Science, 2007a] University of Cy-
pria, Department of Computer Science.Eργαoτ η̇ριo UNIX µε SUN Solaris(Unix
and Solaris lab) [online]. (2007) [cited 2007-10-05]. Available from: http:
//www5.cs.ucy.ac.cy/Computing/en/Labs/solaris.html .

[University of Cypria, Department of Computer Science, 2007b] University of Cy-
pria, Department of Computer Science. New Users Guide to Computing Systems
[online]. (2007) [cited 2007-10-05]. Available from:http://www5.cs.ucy.
ac.cy/Computing/en/User_Guides/newuserguide.html .

[UsabilityNet, 2007] UsabilityNet, editor. Questionnaire ressources [online]. (2007)
[cited 2007-10-05]. Available from:http://www.usabilitynet.org/
tools/r_questionnaire.htm .

[User Mode Linux, 2007] User Mode Linux. Home Page [online].(2007) [cited
2007-10-05]. Available from:http://user-mode-linux.sourceforge.
net/ .

[VDI-Gesellschaft Entwicklung Konstruktion Vertrieb, 1990] VDI-Gesellschaft En-
twicklung Konstruktion Vertrieb, editor (1990). Software-Ergonomie in der
Bürokommunikation. Beuth Verlag, Berlin, Germany.

[Versteegen, 2001] Versteegen, G. (2001).Das V-Modell in der Praxis. dPunkt Verlag,
Heidelberg, Germany.

[Virtuelle Hochschule Baden-Ẅurttemberg, 2007] Virtuelle Hochschule Baden-
Württemberg. Verbund Virtuelles Labor [online]. (2007) [cited 2007-10-05].
Available from:http://www.vvl.de/VVL/index.html .

[Virtuelle Hochschule Bayern, 2001] Virtuelle HochschuleBayern (2001). Verord-
nungüber die Virtuelle Hochschule Bayern.Hochschulrecht in Bayern, 1180.

[Vollrath and Jenkins, 2004] Vollrath, A. and Jenkins, S. (2004). Using virtual ma-
chines for teaching system administration.Journal of Computing Sciences in Col-
leges (JCSC), 20(2):287–292.

[W3C, 2004a] W3C, editor. OWL Web Ontology Language – Guide [online].
(2004) [cited 2007-12-11]. Available from:http://www.w3.org/TR/
owl-guide/ .

[W3C, 2004b] W3C, editor. Resource Description Framework (RDF) [online]. (2004)
[cited 2007-12-11]. Available from:http://www.w3.org/RDF/ .

[Wahlster et al., 1988] Wahlster, W., Hecking, M., and Kemke, C. (1988).
SC: Ein intelligentes Hilfesystem für SINIX. In Gollan, B., Paul,

BIBLIOGRAPHY 309

W. J., and Schmitt, A., editors,Innovative Informationsinfrastrukturen.
Informatik-Fachberichte 184. Springer Verlag, Heidelberg, Germany. Avail-
able from: http://www.dfki.de/˜wahlster/Publications/SC_
Ein_intelligentes_Hilfesystem_fuer_SINIX.pdf [cited 2007-10-
05].

[Wall et al., 2000] Wall, L., Christiansen, T., and Orwant, J. (2000). Programming
Perl. O’Reilly, Sebastopol, CA, USA.

[Wall et al., 1996] Wall, L., Christiansen, T., and Schwartz, R. L. (1996). Program-
ming Perl. O’Reilly, Sebastopol, CA, USA.

[Watson, 1913] Watson, J. B. (1913). Psychology as the Behaviourist Views it. Psy-
chological Review, 20:158–177. Available from:http://psychclassics.
yorku.ca/Watson/views.htm [cited 2007-10-05].

[Weidenmann, 1993] Weidenmann, B. (1993).Pädagogische Psychologie. Psycholo-
gie Verlags Union, Weinheim, Germany.

[Weise et al., 1994] Weise, D., Garfinkel, S., and Strassmann, S., editors (1994).
The UNIX Hater’s Handbook. IDG Books, Boston, MA, USA. Available
from: http://research.microsoft.com/˜daniel/unix-haters.
html [cited 2007-10-27].

[Wenger, 1987] Wenger, E. (1987).Artificial Intelligence and Tutoring systems –
Computational and Cognitive Approaches to the Communication of Knowledge.
Morgan Kaufman Publishers, San Francisco, CA, USA.

[Wexelblat, 1976] Wexelblat, R. L. (1976). Maxims for malfeasant designers, or how
to design languages to make programming as difficult as possible. In Proceedings
of the 2nd International Conference on Software Engineering, pages 331–336, San
Francisco, CA, USA. IEEE Computer Society Press.

[Wiener, 1948] Wiener, N. (1948).Cybernetics, or control and communication in the
animal and machine. MIT Press, Cambridge, MA, USA.

[Wiggins, 1989] Wiggins, G. (1989). A True Test: Toward MoreAuthentic and Equi-
table Assessment.Delta Phi Kappan, 70(9):7–11.

[Wikipedia, 2007] Wikipedia - the free encyclopedia [online]. (2007) [cited 2007-10-
05]. Available from:http://www.Wikipedia.org/ .

[Wilensky et al., 1984] Wilensky, R., Arens, Y., and Chin, D.(1984). Talking to unix
in english: an overview of uc.Communications of the ACM, 27(6):574–593.

[Wilensky et al., 1988] Wilensky, R., Chin, D. N., Luria, M.,Martin, J., Mayfield, J.,
and Wu, D. (1988). The berkeley unix consultant project.Computer Linguistics,
14(4):35–84.

310 BIBLIOGRAPHY

[Wirth, 1974] Wirth, N. (1974). On the design of programminglanguages. InPro-
ceedings of IFIP Congress 74, pages 23–30, Stokholm, Sweden.

[Witschital, 1990] Witschital, P. (1990).Intelligente Tutorielle Systeme in der Pro-
grammierausbildung. PhD thesis, Technische Universität Braunschweig.

[World Wide Web Consortium, 2007] World Wide Web Consortium, editor. Web Ac-
cessibility Initiative (WAI) [online]. (2007) [cited 2007-10-05]. Available from:
http://www.w3.org/WAI/ .

[Yacef, 2004] Yacef, K. (2004). Making large class teachingmore adaptive with the
logic-ita. InCRPIT ’04: Proceedings of the sixth conference on Australian comput-
ing education, pages 343–347, Darlinghurst, Australia, Australia. Australian Com-
puter Society.

[Yang, 2001] Yang, T. A. (2001). Computer security and impact on computer science
education. InCCSC ’01: Proceedings of the sixth annual CCSC northeasterncon-
ference on The journal of computing in small colleges, pages 233–246, Shelbyville,
IN, USA. Consortium for Computing Sciences in Colleges.

[Yin et al., 2000] Yin, J., Miller, M. S., Ioerger, T. R., Yen,J., and Volz, R. A. (2000).
A knowledge-based approach for designing intelligent teamtraining systems. In
AGENTS ’00: Proceedings of the fourth international conference on Autonomous
agents, pages 427–434, New York, NY, USA. ACM Press.

[Zhang et al., 2007] Zhang, Q., Reeves, D. S., Ning, P., and Iyer, S. P. (2007). An-
alyzing network traffic to detect self-decrypting exploit code. InASIACCS ’07:
Proceedings of the 2nd ACM symposium on Information, computer and communi-
cations security, pages 4–12, New York, NY, USA. ACM Press.

[Zheng et al., 2007] Zheng, W., Bianchini, R., and Nguyen, T.D. (2007). Auto-
matic configuration of internet services.ACM SIGOPS Operating Systems Review,
41(3):219–229.

[Zimmermann, 2003] Zimmermann, S. (2003). Webbasiertes User-Management des
Virtuellen Unix Labors. Technical report, FachhochschuleRegensburg, Computer
Science Department.

[Zoulas, 2007] Zoulas, C. (2007). Private email communication as of 2007-08-16
(Message ID:20070816081952.F162156407@rebar.astron.com).

Appendix A

Example exercise components

A.1 Exercise texts for users

The exercise texts displayed in this section are the plain text given to the user for
practicing. They were the same for step I and II of the VirtualUnix Lab, and were
rendered from HTML into plain text using “lynx -dump ”.

A.1.1 Network Information System (NIS) exercise

The following text displays the NIS exercise’s text:

Übung: NIS Master und Client Setup

In dieser Übung soll auf den beiden vulab-Rechner der Network
Information Service (NIS) installiert werden. Dabei wird a uf dem
Rechner "vulab1" der NIS-Master, auf dem Rechner "vulab2" d er
NIS-Client installiert.

1. Master (Solaris): vulab1

* Stellen Sie sicher dass die n ötigen Pakete (SUNWypr, SUNWypu,
SUNWsprot, ...) installiert sind.

* Setzen Sie den NIS-Dom änenname auf "vulab" (/etc/defaultdomain &
domainname(1))

* Setzen Sie den Rechner mit "ypinit -m" als NIS Master auf

* Sorgen Sie daf ür dass die n ötigen Serverprozesse (ypbind, ypserv,
...) beim booten gestartet werden.

* Starten Sie die Serverdienste!

* Welcher NIS-Server wird verwendet?

* Welche Datei wird f ür die Gruppen-Daten verwendet?

* Welche Datei wird f ür die Passwort-Daten verwendet?

* Überpr üfen Sie ob Gruppen- und Passwort-Informationen über NIS
abgefragt werden k önnen.

* Vergleichen Sie den Passwort-Eintrag des Benutzers "vulab " im NIS
und in den /etc-Dateien. Was stellen Sie fest?

* Sorgen Sie daf ür, dass die Passwort-Informationen k ünftig in der
Datei /var/yp/passwd gehalten werden. Die existierenden L ogins

311

312 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

sollen dabei nicht übernommen werden.

* Legen Sie im NIS eine Kennung "ypuser" mit eindeutiger UID,
Home-Verzeichnis "/usr/homes/ypuser", Korn-Shell als Lo gin-Shell,
und Passwort "ypuser" an.

* Stellen Sie sicher dass der User "ypuser" via finger(1) sich tbar
ist

* Stellen Sie sicher dass sich der User "ypuser" via telnet, ss h und
ftp einloggen kann!

* Stellen Sie sicher, dass der User "ypuser" sein Passwort mit
yppasswd(1) ändern kann.

2. Client (NetBSD): vulab2

* Setzen Sie den Domainnamen auf den selben Namen wie beim
NIS-Master oben.

* Ist das aufsetzen des Clients mit "ypinit -c" n ötig? Ist es
sinnvoll? Warum (nicht)?

* Stellen Sie sicher dass die n ötigen Dienste (ypbind, ...) beim
booten gestartet werden.

* Starten Sie die Dienste!

* Welcher NIS-Server wird verwendet?

* Stellen Sie sicher dass die NIS Maps (group, hosts, ...) abge rufen
werden k önnen

* Stellen Sie sicher dass die NIS-Benutzer mit finger(1) abge fragt
werden k önnen

* Stellen Sie sicher dass sich der oben angelegte Benutzer "yp user"
auf dem Client einloggen kann. Erstellen Sie das Home-Verze ichnis
dazu vorerst manuell.

* Betrachten Sie das Passwort-Feld der Passwort-Datei des Us ers
"ypuser" auf dem NIS Master!.

* Ändern Sie das Passwort von "ypuser" vom Client aus im NIS auf
‘‘myn1spw’’.

* Betrachten Sie das Passwort-Feld der Passwort-Datei des Us ers
"ypuser" auf dem NIS Master erneut. Was stellen Sie fest?

3. Diverses

* Setzen Sie den "Full Name" des Benutzers "ypuser" auf "NIS
Testbenutzer". Verifizieren Sie das Ergebnis mit finger(1). Welche
Methoden zum setzen existieren auf dem NIS Master? Welche au f dem
NIS Client?

* Legen Sie eine NIS-Gruppe "benutzer" an, und machen Sie dies e zur
(prim ären) Gruppe des Benutzers "ypuser". Welche Group-ID w ählen
Sie? Warum?

* Legen Sie im Home-Verzeichnis des Benutzers "ypuser" auf de m
Master und dem Client eine Datei an, und überpr üfen Sie, welcher
Gruppe sie geh ört.

* Sorgen Sie daf ür dass der Benutzer "ypuser" auf dem NetBSD-System
mittels su(1) root-Rechte erhalten kann. Er muss dazu (unte r
NetBSD) zus ätzlich Mitglied der Gruppe "wheel" sein.

* Wie bewerten Sie die Tatsache dass das root-Passwort allein e nicht
reicht, sondern auch die richtige Gruppenzugeh örigkeit
Voraussetzung f ür einen su(1) auf root ist? Vergleichen Sie
zwischen NetBSD, Solaris und Linux!

* Der Rechner "tab" (IP-Nummer: 194.95.108.32) soll via NIS b ekannt
gemacht werden. Tragen Sie den Rechner auf dem Server in die
entsprechende Hosts-Datei ein, aktualisieren Sie die NIS- Map und
verifizieren Sie das Ergebnis mittels ypcat(1) und ping(1) sowohl
auf dem NIS-Master als auch auf dem NIS-Client.

Hinweise:

* Solaris-Pakete f ür bash und tcsh liegen in /cdrom, Installation
mit pkgadd(1).

* NetBSD-Pakete f ür bash und tcsh (und weitere) liegen auf
ftp://ftp.de.netbsd.org/pub/NetBSD/packages/1.6.1/s parc/All,
Installation mit pkg_add(1).

A.1. EXERCISE TEXTS FOR USERS 313

A.1.2 Network File System (NFS) exercise

The following text displays the NFS exercises’s text:

Übung: NFS Server und Client Setup

In dieser Übung soll auf den beiden vulab-Rechner das Network File
System (NFS) installiert werden. Dabei wird auf dem Rechner "vulab1"
der NFS-Server, auf dem Rechner "vulab2" der NFS-Client ins talliert.

1. Server (Solaris): vulab1

Das Dateisystem /usr/homes soll f ür den zweiten Rechner ’vulab2’ per
NFS exportiert werden:

* Sichern Sie die Datei, in der bisher die NFS-Exports notiert sind

* Das Verzeichnis /usr/homes soll f ür den Rechner "vulab2"
freigegeben werden. Tragen Sie dies in die richtige Datei ei n.

* Laufen die n ötigen Serverprozesse? Starten Sie sie ggf. mit Hilfe
der passenden Start-Scripten aus /etc/ * .d.

* Sorgen Sie daf ür dass die Datei (neu) eingelesen wird

* Überpr üfen Sie mit ’showmount -e’ ob die Freigabe besteht!

2. Client (NetBSD): vulab2

Das Verzeichnis /usr/homes soll vom NFS-Server (vulab1) au f /usr/homes
gemountet werden:

* Existiert der Mountpoint /usr/homes auf dem Client?

* Sind Daten im Mountpoint enthalten?

* Überpr üfen Sie mit ’showmount -e’ die NFS-Freigaben des
NFS-Servers ’vulab1’ (10.0.0.1)

* Untersuchen Sie die System-Defaults in /etc/defaults/rc. conf und
tragen Sie f ür NFS n ötige Abweichungen in die Datei /etc/rc.conf
ein. Achten Sie auf rpc.lockd(8) und rpc.statd(8)!

* Starten Sie alle n ötigen Hintergrundprozesse.

* Überpr üfen Sie, ob das Verzeichnis /usr/homes von vulab1 testweis e
auf /mnt gemountet werden kann. Unmounten Sie es anschliess end
wieder!

* Sorgen Sie daf ür daß das Verzeichnis /usr/homes vom NFS-Server
"vulab1" beim Systemstart auf /usr/homes gemountet wird, t ragen
Sie dies in die passenden Konfigurationsdatei ein

* Mounten Sie alle noch nicht gemounteten NFS-Verzeichnisse !

* Überpr üfen Sie mit df(1) und mount(8) daß das Verzeichnis
gemountet ist!

3. Zugriffsrechte

3.1 Rechnerbasiert

* Legen Sie als root auf dem NIS-Client ein Verzeichnis
/usr/homes/nfsuser an! Wie reagiert das System, und warum?

* Lesen Sie auf dem NFS-Server die Manpage zu dfstab(4) und den
darin unter "SEE ALSO" verwiesenen Befehlen (etc.), und sor gen Sie
daf ür, daß Sie als root auf dem NFS-Client vollen Zugriff habe

* Machen Sie die n ötige Änderung in /etc/dfs/dfstab.

* Lesen Sie die Datei neu ein!

* Welche Sicherheitsimplikationen hat der eben vorgenommen e
Konfigurationsschritt? Macht er in der Praxis Sinn? Wie kan n man
ihn umgehen?

* Legen Sie das Verzeichnis /usr/homes/nfsuser an!

3.2 Benutzerbasiert

Es soll ein Benutzer "nfsuser" auf beiden Systemen angelegt werden,
der auf jedem System lokal vermerkt ist (Login, Passwort etc . in

314 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

/etc/...), das Home-Verzeichnis /usr/homes/nfsuser soll aber auf
beiden Rechnern mittels NFS verf ügbar sein!

* Legen Sie auf vulab1 den User an: ‘‘useradd -d /usr/homes/nf suser
nfsuser’’

* Legen Sie auf vulab2 denselben User an: ‘‘useradd -d
/usr/homes/nfsuser nfsuser’’

* Geben Sie dem Benutzer auf beiden Systemen (getrennt) mitte ls
passwd(1) ein Passwort

* Geben Sie das Verzeichnis /usr/homes/nfsuser mittels chow n(1) dem
Benutzer "nfsuser".

* Loggen Sie sich auf beiden Rechner als User "nfsuser" ein und
legen Sie eine Datei "hallo-von-vulab1" bzw. "hallo-von-v ulab2"
an.

* Welches Problem besteht?

* Geben Sie auf beiden Rechnern dem Benutzer "nfsuser" die Use r-ID
2000, stellen Sie sicher dass das Home-Verzeichnis (inkl. I nhalt)
auch dem User geh ört, und legen Sie die beiden Dateien erneut an.

Hinweise:

* Solaris-Pakete f ür bash und tcsh liegen in /cdrom, Installation
mit pkgadd(1).

* NetBSD-Pakete f ür bash und tcsh (und weitere) liegen auf
ftp://ftp.de.netbsd.org/pub/NetBSD/packages/1.6.1/s parc/All,
Installation mit pkg_add(1).

A.2 Exercises including text and check data

The exercise texts displayed in this section are from step IIof the Virtual Unix Lab.
They contain the exercise text as well as data for the checks to be run.

A.2.1 Network Information System (NIS) exercise

<!-- DB updated by feyrer on Sun Feb 22 23:53:01 MET 2004 from n is.php -->
<!-- Id: nis.php,v 1.23 2004/06/03 10:27:12 feyrer Exp -->
<?php auswertung_ueberschrift(); ?>
<!-- --- ------------------ -->

<h1> NIS Master und Client Setup</h1>

In dieser Übung soll auf den beiden vulab-Rechner der Network
Information Service (NIS) installiert werden. Dabei wird a uf dem
Rechner "vulab1" der NIS-Master, auf dem Rechner "vulab2" d er
NIS-Client installiert.
<p>

<h2>1. Master (Solaris): vulab1</h2>

 Stellen Sie sicher dass die n ötigen Pakete (SUNWypr, SUNWypu,

SUNWsprot, ...) installiert sind.
 Setzen Sie den NIS-Dom änenname auf "vulab" (/etc/defaultdomain &

domainname(1))

<?php auswertung_teiluebungen(
774, // vulab1: check-file-contents FILE=/etc/defaultdo main CONTENT_SHOULD=’vulab’

// Dom äne in /etc/defaultdomain gesetzt?

775 // vulab1: check-program-output PROGRAM=domainname O UTPUT_SHOULD=’vulab’
// Dom äne im laufenden System (domainname(1)) gesetzt?

); ?>

 Setzen Sie den Rechner mit "ypinit -m" als NIS Master auf

<?php auswertung_teiluebungen(
776, // vulab1: check-file-exists FILE=/var/yp/Makefile

// Existiert /var/yp/Makefile?

A.2. EXERCISES INCLUDING TEXT AND CHECK DATA 315

777, // vulab1: check-file-exists FILE=/var/yp/binding/ vulab/ypservers
// Existiert /var/yp/binding/vulab/ypservers?

778 // vulab1: check-file-exists FILE=/var/yp/passwd.ti me
// Existiert /var/yp/passwd.time?

); ?>

 Sorgen Sie daf ür dass die n ötigen Serverprozesse (ypbind, ypserv,
...) beim booten gestartet werden.

 Starten Sie die Serverdienste!
 Welcher NIS-Server wird verwendet?

<?php auswertung_teiluebungen(
779 // vulab1: check-program-output PROGRAM=ypwhich OUTP UT_SHOULD=’vulab1’

// Gibt ypwhich(1) ’vulab1’ zur ück?

); ?>

 Welche Datei wird f ür die Gruppen-Daten verwendet?
 Welche Datei wird f ür die Passwort-Daten verwendet?
 Überpr üfen Sie ob Gruppen- und Passwort-Informationen über NIS

abgefragt werden k önnen.

<?php auswertung_teiluebungen(
780, // vulab1: check-program-output PROGRAM=’ypcat pass wd | wc -l’ OUTPUT_SHOULD=’[ˆ0] * ’

// Daten in passwd-Map vorhanden?

781, // vulab1: check-program-output PROGRAM=’ypcat host s | wc -l’ OUTPUT_SHOULD=’[ˆ0] * ’
// Daten in host-Map vorhanden?

782 // vulab1: check-program-output PROGRAM=’ypcat group | wc -l’ OUTPUT_SHOULD=’[ˆ0] * ’
// Daten in group-Map vorhanden?

); ?>

 Vergleichen Sie den Passwort-Eintrag des Benutzers "v ulab" im NIS
und in den /etc-Dateien. Was stellen Sie fest?

 Sorgen Sie daf ür, dass die Passwort-Informationen k ünftig in der
Datei /var/yp/passwd gehalten werden. Die existierenden L ogins
sollen dabei nicht übernommen werden.

<?php auswertung_teiluebungen(
783, // vulab1: check-file-contents FILE=/var/yp/Makefi le CONTENT_SHOULD=’ˆPWDIR.* =. * /var/yp’

// PWDIR in /var/yp/Makefile auf /var/yp gesetzt?

784 // vulab1: check-file-exists FILE=/var/yp/passwd
// Existiert /var/yp/passwd?

); ?>

 Legen Sie im NIS eine Kennung "ypuser" mit eindeutiger U ID,
Home-Verzeichnis "/usr/homes/ypuser", Korn-Shell als Lo gin-Shell,
und Passwort "ypuser" an.

<?php auswertung_teiluebungen(
785, // vulab1: check-directory-exists DIR=/usr/homes/y puser

// Verzeichnis /usr/homes/ypuser existiert?

786, // vulab1: unix-check-user-shell LOGIN=ypuser SHELL _SHOULD="/. * /ksh"
// Shell von ypuser auf ksh gesetzt?

787, // vulab1: check-program-output PROGRAM=’cat /var/y p/passwd | grep ypuser: | wc -l’ OUTPUT_SHOULD=1
// User ypuser in /var/yp/passwd eingetragen?

788 // vulab1: check-program-output PROGRAM=’ypcat passw d | grep ypuser: | wc -l’ OUTPUT_SHOULD=1
// User ypuser in passwd NIS Map vorhanden?

); ?>

 Stellen Sie sicher dass der User "ypuser" via finger(1) sichtbar
ist

<?php auswertung_teiluebungen(
789, // vulab1: unix-check-user-exists LOGIN=ypuser

// User existiert (getpwnam(3))?

790, // vulab1: check-file-contents FILE=/etc/nsswitch. conf CONTENT_SHOULD=’passwd:. * nis’
// passwd-Information wird in NIS gesucht (/etc/nsswitch. conf)?

791, // vulab1: check-file-contents FILE=/etc/nsswitch. conf CONTENT_SHOULD=’group:. * nis’
// group-Information wird in NIS gesucht (/etc/nsswitch.c onf)?

792 // vulab1: check-file-contents FILE=/etc/nsswitch.c onf CONTENT_SHOULD=’hosts:. * nis’
// hosts-Information wird in NIS gesucht (/etc/nsswitch.c onf)?

); ?>

 Stellen Sie sicher dass sich der User "ypuser" via telne t, ssh und
ftp einloggen kann!

 Stellen Sie sicher, dass der User "ypuser" sein Passwor t mit

316 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

yppasswd(1) ändern kann.

<h2>2. Client (NetBSD): vulab2</h2>

 Setzen Sie den Domainnamen auf den selben Namen wie beim NIS-Master

oben.

<?php auswertung_teiluebungen(
793, // vulab2: check-file-contents FILE=/etc/defaultdo main CONTENT_SHOULD=’vulab’

// Domainname in /etc/defaultdomain gesetzt?

794 // vulab2: check-program-output PROGRAM=domainname O UTPUT_SHOULD=’vulab’
// Domainname im laufenden System gesetzt? (domainname(1))

); ?>

 Ist das aufsetzen des Clients mit "ypinit -c" n ötig? Ist es
sinnvoll? Warum (nicht)?

 Stellen Sie sicher dass die n ötigen Dienste (ypbind, ...) beim
booten gestartet werden.

<?php auswertung_teiluebungen(
795, // vulab2: netbsd-check-rcvar-set RCVAR=rc_configu red

// /etc/rc.conf: rc_configured gesetzt?

796, // vulab2: netbsd-check-rcvar-set RCVAR=rpcbind
// /etc/rc.conf: rpcbind gesetzt?

797 // vulab2: netbsd-check-rcvar-set RCVAR=ypbind
// /etc/rc.conf: ypbind gesetzt?

); ?>

 Starten Sie die Dienste!

<?php auswertung_teiluebungen(
798, // vulab2: unix-check-process-running PROCESS=rpcb ind

// rpcbind l äuft?

799 // vulab2: unix-check-process-running PROCESS=ypbin d
// ypbind l äuft?

); ?>

 Welcher NIS-Server wird verwendet?

<?php auswertung_teiluebungen(
800 // vulab2: check-program-output PROGRAM=ypwhich OUTP UT_SHOULD=’vulab1’

// Wird vulab1 als NIS-Server verwendet? (ypwhich(1))

); ?>

 Stellen Sie sicher dass die NIS Maps (group, hosts, ...) abgerufen
werden k önnen

<?php auswertung_teiluebungen(
801, // vulab2: check-program-output PROGRAM=’ypcat pass wd | wc -l’ OUTPUT_SHOULD=’[ˆ0] * ’

// Daten in passwd-Map vorhanden?

802, // vulab2: check-program-output PROGRAM=’ypcat host s | wc -l’ OUTPUT_SHOULD=’[ˆ0] * ’
// Daten in hosts-Map vorhanden?

803 // vulab2: check-program-output PROGRAM=’ypcat group | wc -l’ OUTPUT_SHOULD=’[ˆ0] * ’
// Daten in group-Map vorhanden?

); ?>

 Stellen Sie sicher dass die NIS-Benutzer mit finger(1) abgefragt
werden k önnen

<?php auswertung_teiluebungen(
804 // vulab2: unix-check-user-exists LOGIN=ypuser

// Existiert Benutzer ypuser?

); ?>

 Stellen Sie sicher dass sich der oben angelegte Benutze r "ypuser"
auf dem Client einloggen kann. Erstellen Sie das Home-Verze ichnis
dazu vorerst manuell.

<?php auswertung_teiluebungen(
805 // vulab2: check-directory-exists DIR=/usr/homes/yp user

// Existiert Home-Verzeichnis?

); ?>

 Betrachten Sie das Passwort-Feld der Passwort-Datei d es Users
"ypuser" auf dem NIS Master!.

 Ändern Sie das Passwort von "ypuser" vom Client aus im NIS auf
‘‘myn1spw’’.

A.2. EXERCISES INCLUDING TEXT AND CHECK DATA 317

<?php auswertung_teiluebungen(
806 // vulab2: unix-check-user-password LOGIN=ypuser PAS SWD_SHOULD=myn1spw

// Paßwort richtig gesetzt?

); ?>

 Betrachten Sie das Passwort-Feld der Passwort-Datei d es Users
"ypuser" auf dem NIS Master erneut. Was stellen Sie fest?

<h2>3. Diverses</h2>

 Setzen Sie den "Full Name" des Benutzers "ypuser" auf "N IS

Testbenutzer". Verifizieren Sie das Ergebnis mit finger(1).
Welche Methoden zum setzen existieren auf dem NIS Master? We lche
auf dem NIS Client?

<?php auswertung_teiluebungen(
807 // vulab2: unix-check-user-fullname LOGIN=ypuser FUL LNAME_SHOULD=’NIS Testbenutzer’

// Fullname richtig gesetzt?

); ?>

 Legen Sie eine NIS-Gruppe "benutzer" an, und machen Sie diese zur
(prim ären) Gruppe des Benutzers "ypuser". Welche Group-ID w ählen
Sie? Warum?

<?php auswertung_teiluebungen(
808, // vulab2: unix-check-user-ingroup LOGIN=ypuser GRO UP_SHOULD=benutzer

// Benutzer ’ypuser’ Mitglied der Gruppe ’benutzer’?

809 // vulab2: check-program-output PROGRAM=’ypcat group ’ OUTPUT_SHOULD=’benutzer:’
// Gruppe ’benutzer’ existiert in der group NIS-Map?

); ?>

 Legen Sie im Home-Verzeichnis des Benutzers "ypuser" a uf dem
Master und dem Client eine Datei an, und überpr üfen Sie, welcher
Gruppe sie geh ört.

 Sorgen Sie daf ür dass der Benutzer "ypuser" auf dem NetBSD-System
mittels su(1) root-Rechte erhalten kann. Er muss dazu (unte r
NetBSD) zus ätzlich Mitglied der Gruppe "wheel" sein.

<?php auswertung_teiluebungen(
810 // vulab2: check-file-contents FILE=/etc/group CONTE NT_SHOULD=’"ˆwheel:. * ypuser"’

// ypuser in wheel-Gruppe in /etc/group?

); ?>

 Wie bewerten Sie die Tatsache dass das root-Passwort al leine nicht
reicht, sondern auch die richtige Gruppenzugeh örigkeit
Voraussetzung f ür einen su(1) auf root ist? Vergleichen Sie
zwischen NetBSD, Solaris und Linux!

 Der Rechner "tab" (IP-Nummer: 194.95.108.32) soll via NIS bekannt
gemacht werden. Tragen Sie den Rechner auf dem Server in die
entsprechende Hosts-Datei ein, aktualisieren Sie die
NIS-Map und verifizieren Sie das Ergebnis mittels ypcat(1)
und ping(1) sowohl auf dem NIS-Master als auch auf dem NIS-Cl ient.

<?php auswertung_teiluebungen(
811, // vulab2: check-program-output PROGRAM=’ypcat host s’ OUTPUT_SHOULD=’194.95.108.65. * tab’

// Eintrag mit IP-Nummer und Rechnername in hosts NIS-Map?

812 // vulab2: check-program-output PROGRAM=’/sbin/ping -c 1 tab 2>&1 ; echo result:$?’ OUTPUT_SHOULD=’ˆresult:0$’
// ’tab’ pingbar?

); ?>

<h2>Hinweise:</h2>

 Solaris-Pakete f ür bash und tcsh liegen in /cdrom, Installation

mit pkgadd(1).

<?php auswertung_teiluebungen(
898, // vulab1: solaris-check-installed-pkg PKG=SUNWtcs h

// tcsh auf Solaris installiert? (pkginfo SUNWtcsh)

899 // vulab1: solaris-check-installed-pkg PKG=SUNWbash
// bash auf Solaris installiert? (pkginfo SUNWbash)

); ?>

 NetBSD-Pakete f ür bash und tcsh (und weitere) liegen auf
ftp://ftp.de.netbsd.org/pub/NetBSD/packages/1.6.1/s parc/All,
Installation mit pkg_add(1).

<?php auswertung_teiluebungen(

318 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

900, // vulab2: netbsd-check-installed-pkg PKG=tcsh
// tcsh auf NetBSD installiert? (pkg_info -e tcsh)

901 // vulab2: netbsd-check-installed-pkg PKG=bash
// bash auf NetBSD installiert? (pkg_info -e bash)

); ?>

<!-- --- ------------------ -->
<?php auswertung_zusammenfassung(); ?>

A.2.2 Network File System (NFS) exercise

<!-- DB updated by feyrer on Sun Feb 22 23:54:29 MET 2004 from n fs.php -->
<!-- Id: nfs.php,v 1.15 2004/06/03 10:27:12 feyrer Exp -->
<?php auswertung_ueberschrift(); ?>
<!-- --- ------------------ -->

<h1> NFS Server und Client Setup</h1>

In dieser Übung soll auf den beiden vulab-Rechner das Network File
System (NFS) installiert werden. Dabei wird auf dem Rechner "vulab1"
der NFS-Server, auf dem Rechner "vulab2" der NFS-Client ins talliert.
<p>

<h2>1. Server (Solaris): vulab1</h2>

Das Dateisystem /usr/homes soll f ür den zweiten Rechner ’vulab2’ per
NFS exportiert werden:
<p>

 Sichern Sie die Datei, in der bisher die NFS-Exports not iert sind
 Das Verzeichnis /usr/homes soll f ür den Rechner "vulab2"

freigegeben werden. Tragen Sie dies in die richtige Datei ei n.

<?php auswertung_teiluebungen(
864 // vulab1: check-file-contents FILE=/etc/dfs/dfstab CONTENT_SHOULD=’share.* nfs. * /usr/homes’

// ’share nfs /usr/homes’ in /etc/dfs/dfstab?

); ?>

 Laufen die n ötigen Serverprozesse? Starten Sie sie ggf. mit Hilfe
der passenden Start-Scripten aus /etc/ * .d.

<?php auswertung_teiluebungen(
865, // vulab1: unix-check-process-running PROCESS=rpcb ind

// L äuft rpcbind?

866, // vulab1: unix-check-process-running PROCESS=moun td
// L äuft mountd?

867, // vulab1: unix-check-process-running PROCESS=nfsd
// L äuft nfsd?

868, // vulab1: unix-check-process-running PROCESS=stat d
// L äuft statd?

869, // vulab1: unix-check-process-running PROCESS=lock d
// L äuft lockd?

870 // vulab1: check-file-exists FILE=’/etc/rc3.d/S15nf s.server’
// NFS-Server wird im Runlevel 3 gestartet?

); ?>

 Sorgen Sie daf ür dass die Datei (neu) eingelesen wird

<?php auswertung_teiluebungen(
871 // vulab1: check-program-output PROGRAM=’share’ OUTP UT_SHOULD=’/usr/homes’

// share(1M) listet /usr/homes? (unportabel!)

); ?>

 Überpr üfen Sie mit ’showmount -e’ ob die Freigabe besteht!

<?php auswertung_teiluebungen(
872 // vulab1: check-program-output PROGRAM=’showmount - e localhost’ OUTPUT_SHOULD=’/usr/homes’

// showmount(1) zeigt /usr/homes?

); ?>

<h2>2. Client (NetBSD): vulab2</h2>

A.2. EXERCISES INCLUDING TEXT AND CHECK DATA 319

Das Verzeichnis /usr/homes soll vom NFS-Server (vulab1) au f /usr/homes
gemountet werden:
<p>

 Existiert der Mountpoint /usr/homes auf dem Client?
 Sind Daten im Mountpoint enthalten?
 Überpr üfen Sie mit ’showmount -e’ die NFS-Freigaben des NFS-Serve rs

’vulab1’ (10.0.0.1)

<?php auswertung_teiluebungen(
873 // vulab2: check-program-output PROGRAM=’showmount - e vulab1’ OUTPUT_SHOULD=’/usr/homes’

// showmount(1) zeigt /usr/homes?

); ?>

 Untersuchen Sie die System-Defaults in /etc/defaults /rc.conf und
tragen Sie f ür NFS n ötige Abweichungen in die Datei /etc/rc.conf
ein. Achten Sie auf rpc.lockd(8) und rpc.statd(8)!

<?php auswertung_teiluebungen(
874, // vulab2: netbsd-check-rcvar-set RCVAR=rc_configu red

// /etc/rc.conf: rc_configured gesetzt?

875, // vulab2: netbsd-check-rcvar-set RCVAR=lockd
// /etc/rc.conf: lockd gesetzt?

876, // vulab2: netbsd-check-rcvar-set RCVAR=statd
// /etc/rc.conf: statd gesetzt?

877 // vulab2: netbsd-check-rcvar-set RCVAR=nfs_client
// /etc/rc.conf: nfs_client gesetzt?

); ?>

 Starten Sie alle n ötigen Hintergrundprozesse.

<?php auswertung_teiluebungen(
878, // vulab2: unix-check-process-running PROCESS=rpcb ind

// L äuft rpcbind?

879, // vulab2: unix-check-process-running PROCESS=rpc. lockd
// L äuft rpc.lockd?

880 // vulab2: unix-check-process-running PROCESS=rpc.s tatd
// L äuft rpc.statd?

); ?>

 Überpr üfen Sie, ob das Verzeichnis /usr/homes von vulab1 testweis e
auf /mnt gemountet werden kann. Unmounten Sie es anschliess end
wieder!

<?php auswertung_teiluebungen(
881 // vulab2: unix-check-mount MOUNT_FROM=vulab1:/usr/ homes MOUNT_ON=/mnt

// Manueller mount erfolgreich?

); ?>

 Sorgen Sie daf ür daß das Verzeichnis /usr/homes vom NFS-Server
"vulab1" beim Systemstart auf /usr/homes gemountet wird, t ragen Sie
dies in die passenden Konfigurationsdatei ein

<?php auswertung_teiluebungen(
882 // vulab2: check-file-contents FILE=/etc/fstab CONTE NT_SHOULD=’vulab1:/usr/homes. * /usr/homes. * nfs. * rw’

// Passender Eintrag in /etc/fstab?

); ?>

 Mounten Sie alle noch nicht gemounteten NFS-Verzeichn isse!
 Überpr üfen Sie mit df(1) und mount(8) daß das Verzeichnis gemounte t

ist!

<?php auswertung_teiluebungen(
883, // vulab2: check-program-output PROGRAM=’df -k | grep :’ OUTPUT_SHOULD=’ˆvulab1:/usr/homes. * /usr/homes$’

// Mount ist im df(1) Output sichtbar?

884 // vulab2: check-program-output PROGRAM=’mount | grep nfs’ OUTPUT_SHOULD=’ˆvulab1:/usr/homes on /usr/homes’
// Mount ist im mount(8) Output sichtbar?

); ?>

<h2>3. Zugriffsrechte</h2>

<h3>3.1 Rechnerbasiert</h3>

 Legen Sie als root auf dem NFS-Client ein Verzeichnis

/usr/homes/nfsuser an! Wie reagiert das System, und warum?

320 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

 Lesen Sie auf dem NFS-Server die Manpage zu dfstab(4) un d den darin
unter "SEE ALSO" verwiesenen Befehlen (etc.), und sorgen Si e daf ür,
daß Sie als root auf dem NFS-Client vollen Zugriff habe

 Machen Sie die n ötige Änderung in /etc/dfs/dfstab.

<?php auswertung_teiluebungen(
885 // vulab1: check-file-contents FILE=/etc/dfs/dfstab CONTENT_SHOULD=’root=’

// ’root=’ Eintrag in dfstab?

); ?>

 Lesen Sie die Datei neu ein!

<?php auswertung_teiluebungen(
886 // vulab1: check-program-output PROGRAM=’share’ OUTP UT_SHOULD=’/usr/homes. * root=’

// share(1M) exportiert /usr/homes f ür root zugreifbar?

); ?>

 Welche Sicherheitsimplikationen hat der eben vorgeno mmene
Konfigurationsschritt? Macht er in der Praxis Sinn? Wie kan n man
ihn umgehen?

 Legen Sie das Verzeichnis /usr/homes/nfsuser an!

<?php auswertung_teiluebungen(
887 // vulab1: check-directory-exists DIR=/usr/homes/nf suser

// Existiert Verzeichnis /usr/homes/nfsuser?

); ?>

<h3>3.2 Benutzerbasiert</h3>

Es soll ein Benutzer "nfsuser" auf beiden Systemen angelegt werden,
der auf jedem System lokal vermerkt ist (Login, Passwort etc . in
/etc/...), das Home-Verzeichnis /usr/homes/nfsuser soll aber auf
beiden Rechnern mittels NFS verf ügbar sein!

 Legen Sie auf vulab1 den User an: ‘‘useradd -d /usr/home s/nfsuser

nfsuser’’

<?php auswertung_teiluebungen(
888 // vulab1: unix-check-user-exists LOGIN=nfsuser

// Benutzer ’nfsuser’ existiert auf vulab1?

); ?>

 Legen Sie auf vulab2 denselben User an: ‘‘useradd -d
/usr/homes/nfsuser nfsuser’’

<?php auswertung_teiluebungen(
889 // vulab2: unix-check-user-exists LOGIN=nfsuser

// Benutzer ’nfsuser’ existiert auf vulab2?

); ?>

 Geben Sie dem Benutzer auf beiden Systemen (getrennt) m ittels
passwd(1) ein Passwort

 Geben Sie das Verzeichnis /usr/homes/nfsuser mittels chown(1) dem
Benutzer "nfsuser".

<?php auswertung_teiluebungen(
890, // vulab1: unix-check-file-owner FILE=/usr/homes/n fsuser OWNER_SHOULD=nfsuser

// Geh ört /usr/homes/nfsuser dem Benutzer ’nfsuser’ auf vulab1?

891 // vulab2: unix-check-file-owner FILE=/usr/homes/nf suser OWNER_SHOULD=nfsuser
// Geh ört /usr/homes/nfsuser dem Benutzer ’nfsuser’ auf vulab2?

); ?>

 Loggen Sie sich auf beiden Rechner als User "nfsuser" ei n und legen Sie
eine Datei "hallo-von-vulab1" bzw. "hallo-von-vulab2" an .

 Welches Problem besteht?
 Geben Sie auf beiden Rechnern dem Benutzer "nfsuser" di e User-ID

2000, stellen Sie sicher dass das Home-Verzeichnis (inkl. I nhalt)
auch dem User geh ört, und legen Sie die beiden Dateien erneut an.

<?php auswertung_teiluebungen(
892, // vulab1: unix-check-file-owner FILE=/usr/homes/n fsuser/hallo-von-vulab1 OWNER_SHOULD=nfsuser

// hallo-von-vulab1 geh ört nfsuser auf vulab1?

893, // vulab2: unix-check-file-owner FILE=/usr/homes/n fsuser/hallo-von-vulab1 OWNER_SHOULD=nfsuser
// hallo-von-vulab1 geh ört nfsuser auf vulab2?

894, // vulab1: unix-check-file-owner FILE=/usr/homes/n fsuser/hallo-von-vulab2 OWNER_SHOULD=nfsuser
// hallo-von-vulab2 geh ört nfsuser auf vulab1?

895 // vulab2: unix-check-file-owner FILE=/usr/homes/nf suser/hallo-von-vulab2 OWNER_SHOULD=nfsuser
// hallo-von-vulab2 geh ört nfsuser auf vulab2?

); ?>

A.3. THE VUDSL PROCESSOR:UEBUNG2DB 321

<h2>Hinweise:</h2>

 Solaris-Pakete f ür bash und tcsh liegen in /cdrom, Installation

mit pkgadd(1).

<?php auswertung_teiluebungen(
902, // vulab1: solaris-check-installed-pkg PKG=SUNWtcs h

// tcsh auf Solaris installiert? (pkginfo SUNWtcsh)

903 // vulab1: solaris-check-installed-pkg PKG=SUNWbash
// bash auf Solaris installiert? (pkginfo SUWNbash)

); ?>

 NetBSD-Pakete f ür bash und tcsh (und weitere) liegen auf
ftp://ftp.de.netbsd.org/pub/NetBSD/packages/1.6.1/s parc/All,
Installation mit pkg_add(1).

<?php auswertung_teiluebungen(
904, // vulab2: netbsd-check-installed-pkg PKG=tcsh

// tcsh auf NetBSD installiert? (pkg_info -e tcsh)

905 // vulab2: netbsd-check-installed-pkg PKG=bash
// bash auf NetBSD installiert? (pkg_info -e bash)

); ?>

<!-- --- ------------------ -->
<?php auswertung_zusammenfassung(); ?>

A.3 The VUDSL processor:uebung2db

#!/usr/pkg/bin/perl

use DBI;
use Getopt::Std;

$checkscript_path="/vulab"; # check-script
#HF#$checkscript_path="/home/feyrer/work/vulab/docs /hubertf/code";

getopts(’dv’);

$debug=1
if $opt_d;

$verbose=1
if $opt_v or $opt_d;

$uebung_id = $ARGV[0];
$template = $ARGV[1];
$output = $ARGV[2];

die "Usage: $0 [-dv] uebung_id uebung.php-template neue_u ebung.php\n"
if $uebung_id eq ""

or $template eq ""
or $output eq ""
or $template eq $output;

open(OUTPUT, ">$output")
or die "Can’t write $output: $!\n";

#$dbh = DBI->connect("dbi:Pg:", "vulab", "", { AutoCommit => 0 })
or die "cannot connect to DB";
$dbh = DBI->connect("dbi:Pg:dbname=vulab;host=smaug", "vulab", "vulab", { AutoCommit => 0 })

or die "cannot connect to DB";

%checks_done = ();
$warnings = 0;

header();
main();
delete_old();

close(OUTPUT);

if ($warnings > 0 and !$debug) {
print "Transaction rolled back, output file removed due to w arnings.\n";
print "Please fix!\n";
unlink($output);

$dbh->rollback;

322 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

} else {
$dbh->commit;

}

$dbh->disconnect();

exit(0);

########################
sub warning {

print "WARNING: @_\n";
$warnings++;

}

########################
sub header() {

local($now);
chomp($now = ‘date‘);
print OUTPUT "<!-- DB updated by $ENV{’USER’} on $now from $t emplate -->\n";

}

########################
sub main() {

open(T, $template) or die "can’t read $template: $!\n";
while(<T>) {

chomp;
($check_id, $komma, $rechner, $script, $parameter) =

m@\s* ([0-9X?]+)([,])?\s * //\s+([a-zA-Z0-9_] *):\s+([ˆ] * check-[ˆ]+)\s+(. *)@;

if ($rechner eq "") {
print OUTPUT "$_\n"

if !/Generated by. * on . * from/; # skip header
next;

}

1. Syntax-Check etc.

Check if script present
if (! -f "$checkscript_path/$script") {

warning("missing check-script ’$script’");
next;

}

$interpreter = get_interpreter("$checkscript_path/$sc ript");
print "$check_id: cat $script | ssh $rechner env $parameter ’$interpreter’\n"

if $debug;

chomp($bezeichnung = <T>);
if ($bezeichnung !˜ m@ˆ\s * //\s * \S+\s * @) {

warning("no comment for $check_id ($rechner: $script $par ameter)");
}
$bezeichnung =˜ s,ˆ\s * //\s * ,,;
$bezeichnung =˜ s,\s * $,,;
print " bezeichnung=\"$bezeichnung\"\n"

if $debug;
print "\n"

if $debug;

Rechner bekannt?
$sth = $dbh->prepare("SELECT * ".

"FROM rechner ".
"WHERE bezeichnung=’$rechner’");

$sth->execute();
while(@row = $sth->fetchrow_array) {

if ($row[0] eq $rechner) {
print " rechner OK: $rechner\n"

if $debug;
} else {

warning("rechnercheck unknown host: $rechner");
}

}

Check parameters
Get possible parms
open(P, "$interpreter $checkscript_path/$script listpa rms |")

or die "Can’t listparms for $script: $!\n";
while(<P>) {

@p = split(/\|/);
$par{$p[0]} = $p[1];
#print " $p[0]";

}
close(P);
#print "\n";

Parse into variables using sh & env
open(P, "env -i $parameter env |")

or die "Can’t env(1) $parameter";
while(<P>) {

chomp();
($var, $val) = /([a-zA-Z0-9_]+)=(. *)/;
#print " $var -> $val\n";

A.3. THE VUDSL PROCESSOR:UEBUNG2DB 323

if (exists($par{$var})) {
print " varcheck OK: $var=$val"

if $debug;
if ("$par{$var}" eq "$val") {

print " (default)"
if $debug;

}
print "\n"

if $debug;
} else {

warning("varcheck unknown variable: $var=$val");
}

}
close(P);

2. Check & Insert/Update things into DB
if ($check_id =˜ /\d+/) {

Might be already-existing check, make sure...
$sth = $dbh->prepare("SELECT check_id, uebung_id, script , ".

" bezeichnung, rechner, parameter ".
"FROM uebungs_checks ".
"WHERE check_id=’$check_id’ " .
" AND uebung_id=’$uebung_id’");

$sth->execute();

$cnt=0;
while (@row = $sth->fetchrow_array) {

Check already there, update!
($db_check_id, $db_uebung_id, $db_script, $db_bezeichn ung,

$db_rechner, $db_parameter) = @row;

if ($debug) {
print "\n";
print " In DB, check_id=$check_id:\n ";
print "cat $db_script | ssh $db_rechner env $db_parameter i nterp\n";
print " bezeichnung=\"$db_bezeichnung\"\n";
print "\n";

}

if ($script ne $db_script
or $bezeichnung ne $db_bezeichnung
or $rechner ne $db_rechner
or $parameter ne $db_parameter) {
update_db($check_id, $uebung_id, $script,

$bezeichnung, $rechner, $parameter);
print "check_id $check_id updated\n" if $verbose;

} else {
print "check_id $check_id unchanged\n" if $verbose;

}

$cnt++;
}

if ($cnt == 0) {
Check not there, insert new!
$check_id = insert_into_db($uebung_id, $script,

$bezeichnung, $rechner,
$parameter);

print "check_id $check_id inserted (1)\n" if $verbose;
}

} else {
Check not there, insert new!
$check_id = insert_into_db($uebung_id, $script,

$bezeichnung, $rechner,
$parameter);

print "check_id $check_id inserted (2)\n" if $verbose;
}

3. Write out new file w/ check_ids added
print OUTPUT "\t\t". sprintf("%4d", $check_id).

"$komma // $rechner: $script $parameter\n";
print OUTPUT "\t\t // $bezeichnung\n";

$checks_done{$check_id} = 1;

print "\n"
if $debug;

}
close(T);

}

########################
sub delete_old() {

$ids=join(", ", sort keys %checks_done);
$sql="DELETE FROM uebungs_checks ".

"WHERE check_id NOT IN ($ids) ".
" AND uebung_id=’$uebung_id’";

print " SQL: $sql;\n"

324 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

if $debug;
$sth = $dbh->prepare($sql);
$sth->execute();
print "old checks removed from database\n"

if $verbose;
}

########################
sub update_db() {

local($check_id, $uebung_id, $script, $bezeichnung, $re chner,
$parameter) = @_;

local($sth);

$parameter =˜ s/\\/\\\\/g;
$parameter =˜ s/’/\\’/g;
$bezeichnung =˜ s/\\/\\\\/g;
$bezeichnung =˜ s/’/\\’/g;

$sql = "UPDATE uebungs_checks ".
"SET ".
" uebung_id=’$uebung_id’, ".
" script=’$script’, ".
" bezeichnung=’$bezeichnung’, ".
" rechner=’$rechner’, ".
" parameter=’$parameter’ ".
"WHERE ".
" check_id=’$check_id’";

print " SQL: $sql;\n"
if $debug;

$sth = $dbh->prepare($sql);
$sth->execute();

}

########################
sub insert_into_db() {

local($uebung_id, $script, $bezeichnung, $rechner,
$parameter) = @_;

local($sth);

$parameter =˜ s/\\/\\\\/g;
$parameter =˜ s/’/\\’/g;
$bezeichnung =˜ s/\\/\\\\/g;
$bezeichnung =˜ s/’/\\’/g;

1. insert new
$sql = "INSERT INTO uebungs_checks ".

" (uebung_id, script, bezeichnung, ".
" rechner, parameter) ".
"VALUES ".
" (’$uebung_id’, ’$script’, ’$bezeichnung’, ".
" ’$rechner’, ’$parameter’)";

print " SQL: $sql;\n"
if $debug;

$sth = $dbh->prepare($sql);
$sth->execute();

2. find $new_check_id
$sql = "SELECT check_id ".

"FROM uebungs_checks ".
"WHERE uebung_id=’$uebung_id’ ".
" AND script=’$script’ ".
" AND bezeichnung=’$bezeichnung’ ".
" AND rechner=’$rechner’ ".
" AND parameter=’$parameter’";

print " SQL: $sql;\n"
if $debug;

$sth = $dbh->prepare($sql);
$sth->execute();

while(@row = $sth->fetchrow_array) {
$new_check_id = $row[0];

}
print " new check_id=$new_check_id\n"

if $debug;

return $new_check_id;
}

########################
sub get_interpreter() {

local($file) = @_;
local($i, $rc);

die "No such file: $file\n"
if (! -f $file);

open(F, "$file") or die "can’t open $file: $!\n";
$i = <F>;
close(F);

if ($i =˜ /perl/) {
#$rc="perl || /root/vulab/perl";
$rc="perl";

A.4. COMPLETE LISTS OF CHECKS USED IN EXERCISES 325

} elsif ($i =˜ /[ˆc]sh/) {
$rc = "sh";

}

return $rc;
}

A.4 Complete lists of checks used in exercises

This section provides complete lists of checks that are performed for both thee Network
Information System (NIS) and the Network File System (NFS) exercises. The data is
retrieved from the Virtual Unix Lab’s database, and the SQL queries and their results
are shown.

A.4.1 Network Information System (NIS) exercise

This section lists all the checks that are performed by the NIS exercise as stated in the
Virtual Unix Lab’s database.

vulab=> select check_id,bezeichnung from uebungs_checks where uebung_id=’nis’;
check_id | bezeichnung

----------+-- ----------------------
775 | Dom äne im laufenden System (domainname(1)) gesetzt?
776 | Existiert /var/yp/Makefile?
777 | Existiert /var/yp/binding/vulab/ypservers?
778 | Existiert /var/yp/passwd.time?
779 | Gibt ypwhich(1) ’vulab1’ zur ück?
780 | Daten in passwd-Map vorhanden?
781 | Daten in host-Map vorhanden?
782 | Daten in group-Map vorhanden?
784 | Existiert /var/yp/passwd?
785 | Verzeichnis /usr/homes/ypuser existiert?
786 | Shell von ypuser auf ksh gesetzt?
787 | User ypuser in /var/yp/passwd eingetragen?
788 | User ypuser in passwd NIS Map vorhanden?
789 | User existiert (getpwnam(3))?
790 | passwd-Information wird in NIS gesucht (/etc/nsswitc h.conf)?
791 | group-Information wird in NIS gesucht (/etc/nsswitch .conf)?
792 | hosts-Information wird in NIS gesucht (/etc/nsswitch .conf)?
793 | Domainname in /etc/defaultdomain gesetzt?
795 | /etc/rc.conf: rc_configured gesetzt?
796 | /etc/rc.conf: rpcbind gesetzt?
797 | /etc/rc.conf: ypbind gesetzt?
798 | rpcbind l äuft?
799 | ypbind l äuft?
800 | Wird vulab1 als NIS-Server verwendet? (ypwhich(1))
801 | Daten in passwd-Map vorhanden?
802 | Daten in hosts-Map vorhanden?
803 | Daten in group-Map vorhanden?
804 | Existiert Benutzer ypuser?
805 | Existiert Home-Verzeichnis?
806 | Paßwort richtig gesetzt?
807 | Fullname richtig gesetzt?
808 | Benutzer ’ypuser’ Mitglied der Gruppe ’benutzer’?
809 | Gruppe ’benutzer’ existiert in der group NIS-Map?
810 | ypuser in wheel-Gruppe in /etc/group?

326 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

811 | Eintrag mit IP-Nummer und Rechnername in hosts NIS-Map ?
774 | Dom äne in /etc/defaultdomain gesetzt?
794 | Domainname im laufenden System gesetzt? (domainname(1))
783 | PWDIR in /var/yp/Makefile auf /var/yp gesetzt?
812 | ’tab’ pingbar?
898 | tcsh auf Solaris installiert? (pkginfo SUNWtcsh)
899 | bash auf Solaris installiert? (pkginfo SUNWbash)
900 | tcsh auf NetBSD installiert? (pkg_info -e tcsh)
901 | bash auf NetBSD installiert? (pkg_info -e bash)

(43 rows)

A.4.2 Network File System (NFS) exercise

This section describes the checks that are performed for theNFS exercise.

vulab=> select check_id,bezeichnung from uebungs_checks where uebung_id=’nfs’;
check_id | bezeichnung

----------+-- ----------------------
864 | ’share nfs /usr/homes’ in /etc/dfs/dfstab?
865 | L äuft rpcbind?
866 | L äuft mountd?
867 | L äuft nfsd?
868 | L äuft statd?
869 | L äuft lockd?
870 | NFS-Server wird im Runlevel 3 gestartet?
874 | /etc/rc.conf: rc_configured gesetzt?
875 | /etc/rc.conf: lockd gesetzt?
876 | /etc/rc.conf: statd gesetzt?
877 | /etc/rc.conf: nfs_client gesetzt?
878 | L äuft rpcbind?
879 | L äuft rpc.lockd?
880 | L äuft rpc.statd?
881 | Manueller mount erfolgreich?
882 | Passender Eintrag in /etc/fstab?
883 | Mount ist im df(1) Output sichtbar?
884 | Mount ist im mount(8) Output sichtbar?
885 | ’root=’ Eintrag in dfstab?
887 | Existiert Verzeichnis /usr/homes/nfsuser?
888 | Benutzer ’nfsuser’ existiert auf vulab1?
889 | Benutzer ’nfsuser’ existiert auf vulab2?
890 | Geh ört /usr/homes/nfsuser dem Benutzer ’nfsuser’ auf vulab1?
891 | Geh ört /usr/homes/nfsuser dem Benutzer ’nfsuser’ auf vulab2?
892 | hallo-von-vulab1 geh ört nfsuser auf vulab1?
893 | hallo-von-vulab1 geh ört nfsuser auf vulab2?
894 | hallo-von-vulab2 geh ört nfsuser auf vulab1?
895 | hallo-von-vulab2 geh ört nfsuser auf vulab2?
871 | share(1M) listet /usr/homes? (unportabel!)
872 | showmount(1) zeigt /usr/homes?
873 | showmount(1) zeigt /usr/homes?
886 | share(1M) exportiert /usr/homes f ür root zugreifbar?
902 | tcsh auf Solaris installiert? (pkginfo SUNWtcsh)
903 | bash auf Solaris installiert? (pkginfo SUWNbash)
904 | tcsh auf NetBSD installiert? (pkg_info -e tcsh)
905 | bash auf NetBSD installiert? (pkg_info -e bash)

(36 rows)

A.5. LIST OF CHECK SCRIPTS AND PARAMETERS 327

A.5 List of check scripts and parameters

This section lists check scripts available in step II of the Virtual Unix Lab, a textual
description of what they do as printed by thewhatis parameter and a list of parame-
ters as printed by thelistparms parameter. As step II was in German language, so
are the descriptions given here. A future implementation ofthe Virtual Unix Lab may
pay attention to internationalization.

admin-check-clearharddisk: Festplatte zum Komprimieren optimieren (mit 0-Bits
beschreiben)

Parameters:

• (none)

admin-check-makeimage:Muss auf localhost laufen! Erzeugt Plattenimage von $DISK
von $RECHNER in Datei $IMGFILE.img; Zeit ca. 30min

Parameters:

• RECHNER (Default: ’unset’): Rechner dessen Platte in IMGFILE ver-
packt werden soll (vulab1, ...)

• IMGFILE (Default: ’unset’): Imagefile, relativ zu /vulab

• DISK (Default: ’sd0’): Platte, von der das Image gemacht werden soll

netbsd-check-installed-pkg: Testet ob Paket $PKG unter NetBSD installiert ist

Parameters:

• PKG (Default: ’tcsh’): Package-Pattern fuer pkginfo -e

netbsd-check-rcvar-set: Testet ob Variable RCVAR in /etc/rc.conf gesetzt ist (NetBSD)

Parameters:

• RCVAR (Default: ’rc configured’): Variable, diëuberpr̈uft werden soll

netbsd-check-user-shell:Testet ob Shell von User $LOGIN gleich $SHELLSHOULD
in /etc/master.passwd

Parameters:

• LOGIN (Default: ’test’): Benutzer, dessen Shell ueberprueft werden soll

• SHELL SHOULD (Default: ’/.*/tcsh’): Regulaerer Ausdruck, gegenden
verglichen werden soll.

solaris-check-installed-pkg: Testet ob Paket $PKG unter Solaris installiert ist

Parameters:

• PKG (Default: ’tcsh’): Package-Pattern fuer pkginfo

328 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

unix-check-file-owner: Prueft ob FILE dem Benutzer OWNERSHOULD (Login
oder UID) gehoert.

Parameters:

• FILE (Default: ’/etc/passwd’): Datei oder Verzeichnis, absolut.

• OWNER SHOULD (Default: ’root’): Login-Name oder numerische User-
ID

unix-check-mount: Versucht MOUNTFROM auf MOUNTON zu mounten

Parameters:

• MOUNT FROM (Default: ’foo’): Erstes Argument fuer mount(8)

• MOUNT ON (Default: ’/mnt’): Mountpoint, muss existieren

• MOUNT ARGS (Default: ’none’): Parameter fuer mount(8)

unix-check-process-running: Testet ob PROCESS läuft (Regul̈arer Ausdruck gegen
ps(1)-Output)

Parameters:

• PROCESS (Default: ’init’): Regulärer Ausdruck, gegen den der Output
von ps -elf/aux verglichen wird.

unix-check-user-exists:Testet ob der Benutzer $LOGIN existiert (via getpwnam())

Parameters:

• LOGIN (Default: ’test’): Benutzer, dessen Home-Dir ueberprueft werden
soll

unix-check-user-fullname: Testet ob der volle Name von LOGIN gleich FULLNAMESHOULD
ist (via getpwnam())

Parameters:

• LOGIN (Default: ’root’): Benutzer, dessen Fullnameüberpr̈uft werden soll

• FULLNAME SHOULD (Default: ’Charlie Root’): String auf den der Full-
name gesetzt sein sollte

unix-check-user-home: Testet ob das Home-Verzeichnis von User $LOGIN gleich
$HOME SHOULD ist (via getpwnam())

Parameters:

• LOGIN (Default: ’test’): Benutzer, dessen Home-Dir ueberprueft werden
soll

• HOME SHOULD (Default: ’*’): Pfad auf den das Home-Verzeichnis gesetzt
sein sollte

A.6. SELECTED CHECK SCRIPTS 329

unix-check-user-ingroup: Testet ob User $LOGIN in Gruppe GROUPSHOULD ist
(primary oder supplementary)

Parameters:

• LOGIN (Default: ’test’): Login-Name

• GROUPSHOULD (Default: ’wheel’): Prim̈are oder Supplementäre Gruppe,
in der der Benutzer sei sollte

unix-check-user-password:Testet ob Passwort von User $LOGIN gleich $PASS-
WD SHOULD (plain)

Parameters:

• LOGIN (Default: ’test’): Benutzer, dessen Passwort ueberprueft werden
soll

• PASSWDSHOULD (Default: ’*’): Plaintext-Passwort (unverschluesselt),
gegen das geprueft wird

unix-check-user-shell: Testet ob die Login-Shell von User $LOGIN gleich $SHELL-
SHOULD ist (via getpwnam())

Parameters:

• LOGIN (Default: ’test’): Benutzer, dessen Login-Shell ueberprueft werden
soll

• SHELL SHOULD (Default: ’/bin/sh’): Pfad auf den die Shell gesetztsein
sollte

A.6 Selected check scripts

This section shows the full source code of selected check scripts from step I, i.e. before
optimizing, and from step II, i.e. after optimizing.

A.6.1 Step I

A.6.1.1 netbsd-check-finger.sh

#!/bin/sh
#
Checks if $user exists, NetBSD-specific

user=test

if [‘finger $user | grep Shell: | wc -l‘ = 1]
then

rc=ok

330 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

else
rc=failed

fi

echo $rc

A.6.1.2 netbsd-check-masterpw.sh

#!/bin/sh
#
Checks if $user exists, NetBSD-specific

user=test

grep -l $user /etc/master.passwd 2>&1 >/dev/null
rc=$?

echo $rc

A.6.1.3 netbsd-check-pkginstalled.sh

#!/bin/sh

pkg_info -qe tcsh
tcsh_installed=$?

pkg_info -qe bash
bash_installed=$?

echo tcsh_installed=$tcsh_installed
echo bash_installed=$bash_installed

if [$tcsh_installed = 0 -a $bash_installed = 0]
then

rc=ok
else

rc=failed
fi

echo $rc

A.6.1.4 netbsd-check-pw.pl

#!/usr/local/bin/perl

$user="test";
$should_pwu="vutest";

$is_pwe=(getpwnam($user))[1];
($salt) = ($is_pwe =˜ /ˆ(..)/);
$should_pwe=crypt($should_pwu, $salt);

print "is_pwe=$is_pwe\n";
print "salt=’$salt’\n";
print "should_pwe=$should_pwe\n";

if ($is_pwe eq $should_pwe) {
$rc = "ok";

A.6. SELECTED CHECK SCRIPTS 331

} else {
$rc = "failed";

}

print "$rc\n";

A.6.1.5 netbsd-check-usershell2.sh

#!/bin/sh
#
Tests if shell of user $user is set to $should_shell

user=vulab
should_shell=’/. * /bash’

NO CHANGES FROM HERE

is_shell=‘finger $user | grep Shell | awk ’{print $4}’‘

echo is_shell=$is_shell
echo should_shell=$should_shell

if expr "$is_shell" : "$should_shell" >/dev/null
then

rc=ok
else

rc=wrong
fi

echo $rc

A.6.1.6 check-program-output

#!/usr/bin/perl
########################
Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
$WHATIS=’

*** Testet ob Ausgabe von PROGRAM den regul ären Ausdruck OUTPUT_SHOULD enth ält

’;

Based on work by Thomas Ernst <herr.ernst@gmx.de>

########################
Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#
@vars = (

["PROGRAM", "true",
"Programm f ür sh -c ’$PROGRAM’"],

["OUTPUT_SHOULD", "Hallo Welt!",
"zu suchender Regul ärer Ausdruck"],

["VERBOSE", "",
"Ausgabe ausgeben"]

);

########################
Check-Spezifisch:
sub check()
{

332 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

print "PROGRAM=’$PROGRAM’\n";
print "OUTPUT_SHOULD=’$OUTPUT_SHOULD’\n";
print "VERBOSE=’$VERBOSE’\n";
print "\n";

$rc = "wrong";
if (open(F, "$PROGRAM 2>&1 |")) {

while(<F>){
if(/$OUTPUT_SHOULD/){

print "Match: $_\n";

$rc = "ok";
last;

} elsif ($VERBOSE) {
print "$_";

}
}
close(F);

}

print "$rc\n";
}

########################
Common code:

Variablen übernehmen
sub init()
{

for($i=0; $i<=$#vars; $i++) {
if($ENV{$vars[$i][0]}) {

${$vars[$i][0]} = $ENV{$vars[$i][0]};
} else {

${$vars[$i][0]} = $vars[$i][1];
}

}
}

"Hauptprogramm"
if($ARGV[0] eq "listparms") {

for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";

}
} elsif($ARGV[0] eq "whatis") {

$WHATIS=˜s/ˆ\n * //g;
$WHATIS=˜s/\n\ * \ * \ * ?//g;
$WHATIS=˜s/ˆ\ * \ * \ * ?//g;
$WHATIS=˜s/\n * $//g;
print "$WHATIS\n";

} elsif($ARGV[0] eq "-h") {
print "whatis Kurzbeschreibung des Scripts\n";
print "listparms Listet Variablen mit Default und Beschrei bung\n";
print "-h Alle Parameter\n";
print "sonst Check-Script wird ausgefuehrt\n";

} else {
init();
check();

}

A.6. SELECTED CHECK SCRIPTS 333

A.6.2 Step II

A.6.2.1 admin-check-clearharddisk

#!/bin/sh
########################
Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
WHATIS=’

*** Festplatte zum Komprimieren optimieren (mit 0-Bits beschr eiben)

’

########################
Parameter:

vars=""

########################
Check-Spezifisch:
check()
{

cd /

echo Cleaning empty blocks...
dd if=/dev/zero of=0 bs=1048576

sleep 1
echo ""
echo Cleaning up...
rm -f 0

echo Done.
echo ok

}

########################
AB HIER NICHTS MEHR VERAENDERN !!!
########################
Common code:
Variablen uebernehmen
for var in $vars ; do

eval "$var=\"\${$var:=\${${var}_def}}\""
done

"Hauptprogramm"
if ["$1" = ’listparms’]; then

for var in $vars ; do
eval "echo \"$var|\${${var}_def}|\${${var}_bez}\""

done
elif ["$1" = "whatis"]; then

echo "$WHATIS" | sed -e ’s/ˆ\ * \ * \ * //g’ | grep -v ’ˆ[] * $’
elif ["$1" = "-h"]; then

echo "Usage: $0 [whatis|listargs|-h]"
else

check
fi

A.6.2.2 admin-check-makeimage

#!/bin/sh
#

334 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

Basiert in guten Teilen auf deploy1
#
Sollte nur fuer einmalige Uebungen zur Imageerzeugung ben utzt werden
(anschliessend Uebung im VUlab loeschen!)
#

########################
Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
WHATIS=’

*** Muss auf localhost laufen! Erzeugt Plattenimage von $DISK v on $RECHNER

*** in Datei $IMGFILE.img; Zeit ca. 30min

’

########################
Parameter:

vars="RECHNER IMGFILE DISK"

RECHNER_def=unset
RECHNER_bez="Rechner dessen Platte in IMGFILE verpackt we rden soll (vulab1, ...)"

IMGFILE_def=unset
IMGFILE_bez="Imagefile, relativ zu /vulab"

DISK_def=’sd0’
DISK_bez="Platte, von der das Image gemacht werden soll"

########################
Check-Spezifisch:
check()
{

imagePath="/vulab"
imageHost=smaug

client_log=logs/$RECHNER.log
deployment_done_cookie="VULab Deployment Done"
deployment_poll_interval=60 # seconds
ssh="./rsh-wrapper -p 9999"

if [$RECHNER = unset]; then
echo RECHNER unset
echo failed
exit 0

fi

if [$IMGFILE = unset]; then
echo IMGFILE unset
echo failed
exit 0

fi

if ["‘uname -n‘" != $imageHost]; then
echo muss auf \"localhost\" laufen
echo failed
exit 0

fi

cd $imagePath

echo "RECHNER=$RECHNER"
echo "DISK=$DISK"
echo "IMGFILE=$IMGFILE"
echo "imagePath=$imagePath"
echo ""

echo Starting deployment: ‘date‘

A.6. SELECTED CHECK SCRIPTS 335

Define which image to create
echo ${DISK} ${IMGFILE} >mkimg-${RECHNER}

if ["‘$ssh $RECHNER echo READY‘" != READY]
then

echo "Machine $RECHNER didn’t respond properly via ’$ssh’"
echo failed
exit 0

fi

Setup client logfile
rm -f $client_log
install -m 777 /dev/null $client_log

Kick client into netboot
echo "Starting netboot on $RECHNER in background..."
Pfad fuer Solaris ist /usr/sbin/reboot, redirection Shel l-abhaengig !!!
$ssh $RECHNER "env PATH=/usr/sbin:/sbin /bin/sh -c ’reboo t -- net’ \

</dev/null 2>/dev/null >/dev/null" \
</dev/null 2>/dev/null >/dev/null &

echo "done. (rc=$?)"

Wait for client to startup on netboot properly
echo "Waiting a bit to get to /etc/rc..."
sleep 120 # takes about 70 seconds, plus some extra
if ! grep ˆStarting $client_log >/dev/null 2>/dev/null
then

echo "Client $RECHNER didn’t do netboot properly, aborting ."
exit 1

else
echo "$RECHNER properly netbooted."

fi

Client’s running, now wait for it to be done
while ! grep -q "$deployment_done_cookie" $client_log
do

echo ‘date‘: waiting for $RECHNER to finish: ‘tail -1 $clien t_log‘
sleep $deployment_poll_interval

done
echo done.

Clean up
echo Cleaning up ...
rm -f mkimg-${RECHNER}
echo done.

echo Checking if $RECHNER was installed properly
sleep 120 # time for reboot
if ["‘$ssh $RECHNER echo READY‘" != READY]
then

echo "$0: machine $RECHNER didn’t respond properly via ’$ss h’
after installing"

exit 1
fi
echo OK.

Image in Tabelle ’images’ eintragen:
echo -n Remember image $IMGFILE in database:
echo "INSERT INTO images (bezeichnung) VALUES (’"$IMGFILE "’);" \
| psql -U vulab

echo Deployment done: ‘date‘

echo ok
}

########################
AB HIER NICHTS MEHR VERAENDERN !!!
########################

336 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

Common code:
Variablen uebernehmen
for var in $vars ; do

eval "$var=\"\${$var:=\${${var}_def}}\""
done

"Hauptprogramm"
if ["$1" = ’listparms’]; then

for var in $vars ; do
eval "echo \"$var|\${${var}_def}|\${${var}_bez}\""

done
elif ["$1" = "whatis"]; then

echo "$WHATIS" | sed -e ’s/ˆ\ * \ * \ * //g’ | grep -v ’ˆ[] * $’
elif ["$1" = "-h"]; then

echo "Usage: $0 [whatis|listargs|-h]"
else

check
fi

A.6.2.3 check-file-contents

#!/usr/bin/perl
########################
Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
$WHATIS=’

*** Testet ob FILE den regul ären Ausdruck CONTENT_SHOULD enth ält

’;

Based on work by Thomas Ernst <herr.ernst@gmx.de>

########################
Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#
@vars = (

["FILE", "/etc/motd",
"zu durchsuchende Datei, absoluter Pfad"],

["CONTENT_SHOULD", "Hallo Welt!",
"zu suchender Regul ärer Ausdruck"]

);

########################
Check-Spezifisch:
sub check()
{

print "FILE=$FILE\n";
print "CONTENT_SHOULD=$CONTENT_SHOULD\n";
print "";

$rc = "wrong";
if (open(F, "$FILE")) {

while(<F>){
chomp();
#print "$_\n";
if(/$CONTENT_SHOULD/){

$rc = "ok";
last;

}
}
close(F);

}

print "$rc\n";

A.6. SELECTED CHECK SCRIPTS 337

}

########################
Common code:

Variablen übernehmen
sub init()
{

for($i=0; $i<=$#vars; $i++) {
if(exists($ENV{$vars[$i][0]})) {

${$vars[$i][0]} = $ENV{$vars[$i][0]};
} else {

${$vars[$i][0]} = $vars[$i][1];
}

}
}

"Hauptprogramm"
if($ARGV[0] eq "listparms") {

for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";

}
} elsif($ARGV[0] eq "whatis") {

$WHATIS=˜s/ˆ\n * //g;
$WHATIS=˜s/\n\ * \ * \ * ?//g;
$WHATIS=˜s/ˆ\ * \ * \ * ?//g;
$WHATIS=˜s/\n * $//g;
print "$WHATIS\n";

} elsif($ARGV[0] eq "-h") {
print "whatis Kurzbeschreibung des Scripts\n";
print "listparms Listet Variablen mit Default und Beschrei bung\n";
print "-h Alle Parameter\n";
print "sonst Check-Script wird ausgefuehrt\n";

} else {
init();
check();

}

A.6.2.4 unix-check-user-exists

#!/usr/bin/perl
########################
Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
$WHATIS=’

*** Testet ob der Benutzer $LOGIN existiert (via getpwnam())

’;

########################
Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#
@vars = (

["LOGIN", "test",
"Benutzer, dessen Home-Dir ueberprueft werden soll"],

);

########################
Check-Spezifisch:
sub check()
{

$login_is=(getpwnam($LOGIN))[0];

print "login_is=$login_is\n";

338 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

print "LOGIN=$LOGIN\n";
print "\n";

if ($login_is eq $LOGIN) {
$rc="ok";

} else {
$rc="wrong";

}

print "$rc\n";
}

########################
AB HIER NICHTS MEHR VERAENDERN !!!
########################
Common code:

Variablen übernehmen
sub init()
{

for($i=0; $i<=$#vars; $i++) {
if($ENV{$vars[$i][0]}) {

${$vars[$i][0]} = $ENV{$vars[$i][0]};
} else {

${$vars[$i][0]} = $vars[$i][1];
}

}
}

"Hauptprogramm"
if($ARGV[0] eq "listparms") {

for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";

}
} elsif($ARGV[0] eq "whatis") {

$WHATIS=˜s/ˆ\n * //g;
$WHATIS=˜s/\n\ * \ * \ * ?//g;
$WHATIS=˜s/ˆ\ * \ * \ * ?//g;
$WHATIS=˜s/\n * $//g;
print "$WHATIS\n";

} elsif($ARGV[0] eq "-h") {
print "whatis Kurzbeschreibung des Scripts\n";
print "listparms Listet Variablen mit Default und Beschrei bung\n";
print "-h Alle Parameter\n";
print "sonst Check-Script wird ausgefuehrt\n";

} else {
init();
check();

}

A.6.2.5 unix-check-user-shell

#!/usr/bin/perl
########################
Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
$WHATIS=’

*** Testet ob die Login-Shell von User $LOGIN gleich $SHELL_SHO ULD ist (via getpwnam())

’;

########################
Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#

A.6. SELECTED CHECK SCRIPTS 339

@vars = (
["LOGIN", "test",

"Benutzer, dessen Login-Shell ueberprueft werden soll"],
["SHELL_SHOULD", "/bin/sh",

"Pfad auf den die Shell gesetzt sein sollte"],
);

########################
Check-Spezifisch:
sub check()
{

$shell_is=(getpwnam($LOGIN))[8];

print "LOGIN=$LOGIN\n";
print "shell_is=$shell_is\n";
print "SHELL_SHOULD=$SHELL_SHOULD\n";
print "\n";

if ($shell_is =˜ $SHELL_SHOULD) {
$rc="ok";

} else {
$rc="wrong";

}

print "$rc\n";
}

########################
AB HIER NICHTS MEHR VERAENDERN !!!
########################
Common code:

Variablen übernehmen
sub init()
{

for($i=0; $i<=$#vars; $i++) {
if($ENV{$vars[$i][0]}) {

${$vars[$i][0]} = $ENV{$vars[$i][0]};
} else {

${$vars[$i][0]} = $vars[$i][1];
}

}
}

"Hauptprogramm"
if($ARGV[0] eq "listparms") {

for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";

}
} elsif($ARGV[0] eq "whatis") {

$WHATIS=˜s/ˆ\n * //g;
$WHATIS=˜s/\n\ * \ * \ * ?//g;
$WHATIS=˜s/ˆ\ * \ * \ * ?//g;
$WHATIS=˜s/\n * $//g;
print "$WHATIS\n";

} elsif($ARGV[0] eq "-h") {
print "whatis Kurzbeschreibung des Scripts\n";
print "listparms Listet Variablen mit Default und Beschrei bung\n";
print "-h Alle Parameter\n";
print "sonst Check-Script wird ausgefuehrt\n";

} else {
init();
check();

}

340 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

A.6.2.6 unix-check-user-password

#!/usr/bin/perl
########################
Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
$WHATIS=’

*** Testet ob Passwort von User $LOGIN gleich $PASSWD_SHOULD (p lain)

’;

########################
Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#
@vars = (

["LOGIN", "test",
"Benutzer, dessen Passwort ueberprueft werden soll"],

["PASSWD_SHOULD", " * ",
"Plaintext-Passwort (unverschluesselt), gegen das gepru eft wird"],

);

########################
Check-Spezifisch:
sub check()
{

$passwd_is_e=(getpwnam($LOGIN))[1];
($salt) = ($passwd_is_e =˜ /ˆ(..)/);
$PASSWD_SHOULD_u= $PASSWD_SHOULD;
$PASSWD_SHOULD_e=crypt($PASSWD_SHOULD_u, $salt);

print "passwd_is_e=$passwd_is_e\n";
print "salt=’$salt’\n";
print "PASSWD_SHOULD_u=$PASSWD_SHOULD_u\n";
print "PASSWD_SHOULD_e=$PASSWD_SHOULD_e\n";
print "\n";

if ($PASSWD_SHOULD_e ne "" and $passwd_is_e eq $PASSWD_SHO ULD_e) {
$rc="ok";

} else {
$rc="wrong";

}

print "$rc\n";
}

########################
AB HIER NICHTS MEHR VERAENDERN !!!
########################
Common code:

Variablen übernehmen
sub init()
{

for($i=0; $i<=$#vars; $i++) {
if($ENV{$vars[$i][0]}) {

${$vars[$i][0]} = $ENV{$vars[$i][0]};
} else {

${$vars[$i][0]} = $vars[$i][1];
}

}
}

"Hauptprogramm"
if($ARGV[0] eq "listparms") {

for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";

}

A.6. SELECTED CHECK SCRIPTS 341

} elsif($ARGV[0] eq "whatis") {
$WHATIS=˜s/ˆ\n * //g;
$WHATIS=˜s/\n\ * \ * \ * ?//g;
$WHATIS=˜s/ˆ\ * \ * \ * ?//g;
$WHATIS=˜s/\n * $//g;
print "$WHATIS\n";

} elsif($ARGV[0] eq "-h") {
print "whatis Kurzbeschreibung des Scripts\n";
print "listparms Listet Variablen mit Default und Beschrei bung\n";
print "-h Alle Parameter\n";
print "sonst Check-Script wird ausgefuehrt\n";

} else {
init();
check();

}

A.6.2.7 unix-check-process-running

#!/usr/bin/perl
########################
Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
$WHATIS=’

*** Testet ob PROCESS l äuft (Regul ärer Ausdruck gegen ps(1)-Output)

’;

########################
Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#
@vars = (

["PROCESS", "init",
"Regul ärer Ausdruck, gegen den der Output von ps -elf/aux verglich en wird."],

);

########################
Check-Spezifisch:
sub check()
{

print "PROCESS=$PROCESS\n";

$rc = "wrong";
if (open(P, "ps -elf 2>&1 || ps -auxwww 2>&1 |")) {

while(<P>) {
if (/$PROCESS/) {

print "Match: $_\n";
$rc = "ok";
last;

}
}
close(P);

}

print "$rc\n";
}

########################
AB HIER NICHTS MEHR VERAENDERN !!!
########################
Common code:

Variablen übernehmen
sub init()
{

342 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

for($i=0; $i<=$#vars; $i++) {
if($ENV{$vars[$i][0]}) {

${$vars[$i][0]} = $ENV{$vars[$i][0]};
} else {

${$vars[$i][0]} = $vars[$i][1];
}

}
}

"Hauptprogramm"
if($ARGV[0] eq "listparms") {

for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";

}
} elsif($ARGV[0] eq "whatis") {

$WHATIS=˜s/ˆ\n * //g;
$WHATIS=˜s/\n\ * \ * \ * ?//g;
$WHATIS=˜s/ˆ\ * \ * \ * ?//g;
$WHATIS=˜s/\n * $//g;
print "$WHATIS\n";

} elsif($ARGV[0] eq "-h") {
print "whatis Kurzbeschreibung des Scripts\n";
print "listparms Listet Variablen mit Default und Beschrei bung\n";
print "-h Alle Parameter\n";
print "sonst Check-Script wird ausgefuehrt\n";

} else {
init();
check();

}

A.6.2.8 netbsd-check-rcvar-set

#!/usr/bin/perl
########################
Kurzbeschreibung: "Dieses Script ($0) $WHATIS\n." (1 Zei le)
$WHATIS=’

*** Testet ob Variable RCVAR in /etc/rc.conf gesetzt ist (NetBS D)

’;

########################
Parameter:
["Variable", "Default, "Beschreibung der Variable"]
#
@vars = (

["RCVAR", "rc_configured",
"Variable, die überpr üft werden soll"],

);

########################
Check-Spezifisch:
sub check()
{

$rc=system(". /etc/rc.subr; ".
". /etc/rc.conf; ".
"checkyesno $RCVAR; ".
"exit \$?");

print "RCVAR=$RCVAR\n";
print "rc=$rc\n";
print "\n";

if ($rc == 0) {
$rc="ok";

A.6. SELECTED CHECK SCRIPTS 343

} else {
$rc="wrong";

}

print "$rc\n";
}

########################
AB HIER NICHTS MEHR VERAENDERN !!!
########################
Common code:

Variablen übernehmen
sub init()
{

for($i=0; $i<=$#vars; $i++) {
if($ENV{$vars[$i][0]}) {

${$vars[$i][0]} = $ENV{$vars[$i][0]};
} else {

${$vars[$i][0]} = $vars[$i][1];
}

}
}

"Hauptprogramm"
if($ARGV[0] eq "listparms") {

for($i=0;$i<=$#vars;$i++) {
print "$vars[$i][0]|$vars[$i][1]|$vars[$i][2]\n";

}
} elsif($ARGV[0] eq "whatis") {

$WHATIS=˜s/ˆ\n * //g;
$WHATIS=˜s/\n\ * \ * \ * ?//g;
$WHATIS=˜s/ˆ\ * \ * \ * ?//g;
$WHATIS=˜s/\n * $//g;
print "$WHATIS\n";

} elsif($ARGV[0] eq "-h") {
print "whatis Kurzbeschreibung des Scripts\n";
print "listparms Listet Variablen mit Default und Beschrei bung\n";
print "-h Alle Parameter\n";
print "sonst Check-Script wird ausgefuehrt\n";

} else {
init();
check();

}

344 APPENDIX A. EXAMPLE EXERCISE COMPONENTS

Appendix B

Database structure

This section describes the database tables used in the Virtual Unix Lab, the SQL-
statements that were used to create the tables in the PostgreSQL database, and example
database records in a few selected cases.

B.1 Table: benutzer

This table describes a user in the Virtual Unix Lab.

CREATE TABLE benutzer (
user_id serial NOT NULL, -- unique user id
vorname varchar(50) NOT NULL, -- first name
nachname varchar(50) NOT NULL, -- last name
matrikel_nr numeric(10) NOT NULL, -- student id
email varchar(80) NOT NULL, -- contact email
login varchar(80) NOT NULL, -- vulab login
passwort varchar(15) NOT NULL, -- password
freischalt_secret varchar(30) NOT NULL, -- initial secret
anmeldedatum date NOT NULL, -- sign-on date
typ varchar(80) DEFAULT ’user’ NOT NULL,
PRIMARY KEY (user_id),
UNIQUE (user_id),
UNIQUE (login),
UNIQUE (matrikel_nr)

);

B.2 Table: rechner

This table contains a list of all the lab machines.

CREATE TABLE rechner (

345

346 APPENDIX B. DATABASE STRUCTURE

bezeichnung varchar(30) NOT NULL, -- hostname
PRIMARY KEY (bezeichnung),
UNIQUE (bezeichnung)

);

B.3 Table: images

This table contains a list of all possible images that can be installed on the lab ma-
chines.

CREATE TABLE images (
bezeichnung varchar(150) NOT NULL, -- filename
PRIMARY KEY (bezeichnung),
UNIQUE (bezeichnung)

);

B.4 Table: uebungen

This table lists all possible exercises with their basic properties.

B.4.1 Definition

CREATE TABLE uebungen (
uebung_id varchar(40) NOT NULL, -- exercise id
bezeichnung varchar(150) NOT NULL, -- description
nur_fuer varchar(40), -- user-restriction
vorlauf time NOT NULL, -- preparation time
dauer time NOT NULL, -- exercise duration
nachlauf time NOT NULL, -- time for checks
wiederholbar boolean NOT NULL, -- repeatable?
text varchar(150) NOT NULL, -- exercise text filename
mehr_info varchar(150), -- more information (unused)
PRIMARY KEY (uebung_id),
UNIQUE (uebung_id)

);

B.4.2 Example records

vulab=> select uebung_id, bezeichnung, vorlauf, dauer, te xt from uebungen;
uebung_id | bezeichnung | vorlauf | dauer | text

----------------+---------------------------------- ---------+----------+----------+----------------
pruefung | Verwalten von Benutzern mit Hilfe von NIS | 00:45: 00 | 01:00:00 | pruefung.html
pruefung2 | Verwalten von Benutzern mit Hilfe von NFS | 00:45 :00 | 01:00:00 | pruefung2.html
nfs | Aufsetzen von NFS Client und Server | 00:45:00 | 01:30:0 0 | nfs.php
solaris | Solaris konfigurieren | 00:45:00 | 01:30:00 | sola ris.php
nis | Aufsetzen von NIS Client und Server | 00:45:00 | 01:30:0 0 | nis.php
netbsd | NetBSD konfigurieren | 00:45:00 | 01:30:00 | netbsd .php
update-solaris | Solaris-Image updaten | 00:45:00 | 01:00: 00 | solaris.php

B.5. TABLE: UEBUNG SETUP 347

B.5 Table: uebung setup

This table lists the machines and their images associated with a certain exercise.

CREATE TABLE uebung_setup (
uebung_id varchar(40) NOT NULL, -- exercise id
rechner varchar(30) NOT NULL, -- hostname
image varchar(150) NOT NULL, -- image filename
CONSTRAINT pk_uebung_setup

PRIMARY KEY (uebung_id, rechner),
CONSTRAINT fk_uebung

FOREIGN KEY (uebung_id)
REFERENCES uebungen (uebung_id)
ON DELETE CASCADE
ON UPDATE CASCADE,

CONSTRAINT fk_rechner
FOREIGN KEY (rechner)
REFERENCES rechner (bezeichnung)
ON DELETE CASCADE
ON UPDATE CASCADE,

CONSTRAINT fk_image
FOREIGN KEY (image)
REFERENCES images (bezeichnung)
ON DELETE CASCADE
ON UPDATE CASCADE

);

B.6 Table: uebungs checks

This table contains a list of checks to make at the end of a certain exercise. The
“parameter ” field is only available in implementation step II.

B.6.1 Definition

CREATE TABLE uebungs_checks (
check_id serial NOT NULL, -- check id
uebung_id varchar(80) NOT NULL, -- associated exercise
script varchar(150) NOT NULL, -- which script to run
parameter varchar(300), -- parameters for script (Step II o nly!)
rechner varchar(30) NOT NULL, -- where to run script
bezeichnung varchar(150) NOT NULL, -- text for feedback
PRIMARY KEY (check_id),
UNIQUE (check_id),
CONSTRAINT fk_uebung

FOREIGN KEY (uebung_id)
REFERENCES uebungen (uebung_id)
ON DELETE CASCADE
ON UPDATE CASCADE,

CONSTRAINT fk_rechner
FOREIGN KEY (rechner)
REFERENCES rechner (bezeichnung)
ON DELETE CASCADE
ON UPDATE CASCADE

);

348 APPENDIX B. DATABASE STRUCTURE

B.6.2 Example records

vulab=> select * from uebungs_checks where uebung_id=’netbsd’;
check_id | uebung_id | script | bezeichnung | rechner

----------+-----------+---------------------------- +---+------ --
909 | netbsd | netbsd-check-installed-pkg | bash installie rt? (pkg_info -e bash) | vulab1
910 | netbsd | unix-check-user-exists | Benutzer angelegt? (getpwnam(3)) | vulab1
911 | netbsd | unix-check-user-home | Home-Directory richt ig gesetzt? | vulab1
912 | netbsd | unix-check-user-shell | Shell auf tcsh gesetz t? (getpwnam(3)) | vulab1
913 | netbsd | netbsd-check-user-shell | Shell auch in /etc/ master.passwd gesetzt? | vulab1
914 | netbsd | unix-check-user-password | Passwort richtig gesetzt? (getpwnam(3)) | vulab1
915 | netbsd | unix-check-user-shell | Shell des Users vulab auf bash gesetzt? | vulab1
908 | netbsd | admin-check-clearharddisk | tcsh installier t? (pkg_info -e tcsh) | vulab1

(8 rows)

B.7 Table: buchungen

This table contains entries for exercises actually booked by users, including time and
date of the exercise and which exercise to practice.

B.7.1 Definition

CREATE TABLE buchungen (
buchungs_id serial NOT NULL, -- booked exercise id
user_id int NOT NULL, -- for which user
uebung_id varchar(40) NOT NULL, -- which exercise
datum date NOT NULL, -- when/date
startzeit time NOT NULL, -- when/time
freigegeben varchar(30) DEFAULT ’nein’ NOT NULL, -- exerci se set up?
endzeit time, -- when/ended
at_id int, -- setup at(1) job id
at_id_end int, -- uebung_ende job id
ip varchar(20), -- where user came from
PRIMARY KEY (buchungs_id),
UNIQUE (buchungs_id),
CONSTRAINT fk_uebung

FOREIGN KEY (uebung_id)
REFERENCES uebungen (uebung_id)
ON DELETE CASCADE
ON UPDATE CASCADE,

CONSTRAINT fk_user_id
FOREIGN KEY (user_id)
REFERENCES benutzer (user_id)
ON DELETE CASCADE
ON UPDATE CASCADE

);

B.7.2 Example records

vulab=> select * from buchungen;
buchu- | user | uebung | datum | startzeit | freigegeben | endz eit | at_id | at_id | ip
ngs_id | _id | _id | | | | | at_id | _end |

--------+------+--------+------------+-----------+- ------------+----------+-------+-------+----------- ------
114 | 33 | nfs | 2004-05-03 | 15:00:00 | nicht-mehr | 15:06:18 | 234 | 235 | 132.199.213.37
115 | 33 | nis | 2004-05-11 | 21:00:00 | nicht-mehr | 23:30:05 | 236 | 237 |
116 | 33 | nfs | 2004-05-18 | 11:45:00 | nicht-mehr | 12:05:21 | 238 | 239 | 194.95.108.21
117 | 34 | nfs | 2004-05-20 | 18:00:00 | nicht-mehr | 20:30:05 | 241 | 247 |
123 | 35 | nfs | 2004-05-21 | 15:00:00 | nicht-mehr | 16:20:57 | 248 | 250 | 194.95.108.32
124 | 35 | nis | 2004-05-21 | 21:00:00 | nicht-mehr | 22:28:11 | 249 | 251 | 194.95.108.32

B.8. TABLE: ERGEBNIS CHECKS 349

122 | 37 | nfs | 2004-05-22 | 12:00:00 | nicht-mehr | 13:07:14 | 246 | 252 | 194.95.108.32
120 | 35 | nfs | 2004-05-22 | 15:00:00 | nicht-mehr | 16:10:11 | 244 | 253 | 194.95.108.38
121 | 35 | nis | 2004-05-23 | 12:00:00 | nicht-mehr | 12:51:23 | 245 | 255 | 194.95.108.38
126 | 35 | nis | 2004-05-23 | 15:00:00 | nicht-mehr | 15:01:08 | 256 | 257 | 194.95.108.32
130 | 34 | nfs | 2004-05-25 | 21:00:00 | nicht-mehr | 21:16:40 | 261 | 262 | 194.95.108.32
127 | 37 | nis | 2004-05-26 | 15:00:00 | nicht-mehr | 15:11:11 | 258 | 263 | 194.95.108.38
129 | 38 | netbsd | 2004-05-26 | 18:00:00 | nicht-mehr | 19:29: 04 | 260 | 266 | 82.83.169.114
131 | 44 | nis | 2004-05-27 | 18:00:00 | nicht-mehr | 19:25:03 | 264 | 271 | 132.199.227.122
134 | 43 | nfs | 2004-05-28 | 12:00:00 | nicht-mehr | 14:30:04 | 268 | 273 | 194.95.108.68
136 | 38 | netbsd | 2004-05-28 | 21:00:00 | nicht-mehr | 23:30: 05 | 270 | 274 |
138 | 38 | netbsd | 2004-05-29 | 12:00:00 | nicht-mehr | 12:37: 46 | 275 | 277 | 194.95.108.32
128 | 35 | nis | 2004-05-29 | 15:00:00 | nicht-mehr | 16:28:02 | 259 | 280 | 194.95.108.32
139 | 37 | nis | 2004-05-29 | 18:00:00 | nicht-mehr | 19:38:45 | 276 | 281 | 194.95.108.38
132 | 35 | nis | 2004-05-29 | 21:00:00 | nicht-mehr | 22:25:28 | 265 | 283 | 194.95.108.32
141 | 38 | netbsd | 2004-05-30 | 12:00:00 | nicht-mehr | 14:30: 04 | 279 | 284 |
140 | 38 | nfs | 2004-05-30 | 15:00:00 | nicht-mehr | 17:30:04 | 278 | 285 |
143 | 39 | nfs | 2004-05-31 | 21:00:00 | nicht-mehr | 23:30:03 | 286 | 287 |
144 | 38 | nfs | 2004-06-01 | 21:00:00 | nicht-mehr | 22:27:26 | 288 | 289 | 194.95.108.32
142 | 37 | nis | 2004-06-02 | 15:00:00 | nicht-mehr | 16:13:50 | 282 | 290 | 194.95.108.38
137 | 44 | nis | 2004-06-02 | 18:00:00 | nicht-mehr | 20:30:04 | 272 | 291 | 132.199.227.122
146 | 44 | nis | 2004-06-02 | 21:00:00 | nicht-mehr | 23:30:03 | 293 | 294 | 132.199.227.122
147 | 38 | nfs | 2004-06-03 | 12:00:00 | nicht-mehr | 13:36:55 | 295 | 296 | 194.95.108.132
149 | 50 | nis | 2004-06-07 | 15:00:00 | nein | | 298 | |
145 | 44 | nis | 2004-06-03 | 18:00:00 | nicht-mehr | 18:34:36 | 292 | 300 | 132.199.227.122
150 | 48 | nis | 2004-06-03 | 21:00:00 | nicht-mehr | 22:24:17 | 299 | 302 | 132.199.227.122
155 | 44 | nis | 2004-06-07 | 21:00:00 | nein | | 306 | |
152 | 33 | nfs | 2004-06-04 | 09:00:00 | nicht-mehr | 11:30:05 | 303 | 307 |
153 | 33 | nis | 2004-06-04 | 12:00:00 | nicht-mehr | 14:30:17 | 304 | 308 | 194.95.108.65
156 | 38 | nis | 2004-06-05 | 00:00:00 | nicht-mehr | 01:01:08 | 309 | 310 | 194.95.108.32
157 | 34 | nfs | 2004-06-07 | 18:00:00 | nein | | 311 | |
154 | 48 | nis | 2004-06-07 | 09:00:00 | nicht-mehr | 10:29:55 | 305 | 312 | 132.199.227.122
158 | 48 | nis | 2004-06-08 | 12:00:00 | nein | | 313 | |
159 | 44 | nfs | 2004-06-08 | 15:00:00 | nein | | 314 | |
148 | 50 | nfs | 2004-06-07 | 12:00:00 | nicht-mehr | 13:29:05 | 297 | 315 | 194.95.108.159
160 | 52 | nfs | 2004-06-08 | 21:00:00 | nein | | 316 | |
161 | 34 | nis | 2004-06-10 | 15:00:00 | nein | | 317 | |

(42 rows)

B.8 Table: ergebnis checks

This table lists the results from the checks belonging to a certain booked exercise.

B.8.1 Definition

CREATE TABLE ergebnis_checks (
buchungs_id int NOT NULL, -- booked exercise id
check_id int NOT NULL, -- check id
erfolg boolean NOT NULL, -- result
CONSTRAINT pk_ergebnis_checks

PRIMARY KEY (buchungs_id,
check_id),

CONSTRAINT fk_check_id
FOREIGN KEY (check_id)
REFERENCES uebungs_checks (check_id)
ON DELETE CASCADE
ON UPDATE CASCADE,

CONSTRAINT fk_buchungs_id
FOREIGN KEY (buchungs_id)
REFERENCES buchungen (buchungs_id)
ON DELETE CASCADE
ON UPDATE CASCADE

);

350 APPENDIX B. DATABASE STRUCTURE

B.8.2 Example records

vulab=> select * from ergebnis_checks where buchungs_id=129;
buchungs_id | check_id | erfolg

-------------+----------+--------
129 | 908 | t
129 | 909 | f
129 | 910 | f
129 | 911 | f
129 | 912 | f
129 | 913 | f
129 | 914 | f
129 | 915 | f

(8 rows)

vulab=> select buchungs_id, ergebnis_checks.check_id, b ezeichnung, erfolg
vulab-> from ergebnis_checks,uebungs_checks
vulab-> where buchungs_id=129 and ergebnis_checks.check _id=uebungs_checks.check_id;

buchungs_id | check_id | bezeichnung | erfolg
-------------+----------+-------------------------- -------------------------------+--------

129 | 908 | tcsh installiert? (pkg_info -e tcsh) | t
129 | 909 | bash installiert? (pkg_info -e bash) | f
129 | 910 | Benutzer angelegt? (getpwnam(3)) | f
129 | 911 | Home-Directory richtig gesetzt? | f
129 | 912 | Shell auf tcsh gesetzt? (getpwnam(3)) | f
129 | 913 | Shell auch in /etc/master.passwd (via vipw(1)) ge setzt? | f
129 | 914 | Passwort richtig gesetzt? (getpwnam(3)) | f
129 | 915 | Shell des Users vulab auf bash gesetzt? | f

(8 rows)

Appendix C

Evaluation data and code

C.1 Questionnaire: questions — raw format

The following data was used as input for txt2survey. A LATEX’d form of the questions
including evaluation and extended statistical value are displayed in appendix C.2.

Fragebogen: Akzeptanzuntersuchung zum Virtuellen Unix La bor SS2004
+ Wodurch haben Sie über das Thema "Systemadministration" gelernt?

. Besuch der Vorlesung
((Sehr viel / Einiges / Geht so / Wenig / Nichts))

. Script zur Vorlesung
((Sehr viel / Einiges / Geht so / Wenig / Nichts))

. Übungen zur Vorlesung
((Sehr viel / Einiges / Geht so / Wenig / Nichts))

. Virtuelles Unix Labor
((Sehr viel / Einiges / Geht so / Wenig / Nichts))

. Analyse der FH-Rechner
((Sehr viel / Einiges / Geht so / Wenig / Nichts))

. Analyse eigener Rechner
((Sehr viel / Einiges / Geht so / Wenig / Nichts))

. B ücher
((Sehr viel / Einiges / Geht so / Wenig / Nichts))

. Online-Informationen
((Sehr viel / Einiges / Geht so / Wenig / Nichts))

+ Einbindung des Labors in die Vorlesung
. Ist das Virtuelle Unix Labor generell eine sinnvolle

Erg änzung zur Vorlesung?
((Sehr sinnvoll / Sinnvoll / Geht so / Wenig sinnvoll / Unsinn ig))

. Wie empfanden Sie den Nutzen des Virtuellen Unix Labors?
((sehr positiv / positiv / neutral / negativ / sehr negativ))

+ Benutzung des Virtuellen Unix Labors
. War das System einfach zu benutzen?

((Sehr einfach / Einfach / Umstaendlich / Sehr umstaendlich))
. Waren gen ügend Übungstermine zur Auswahl?

((Zu viele / Gen ügend / Zu wenige))
. Von wo aus haben Sie auf die Übungsrechner zugegriffen

((Zuhause / FH oder Uni / Sonstige))
. Von welchem Betriebssystem aus haben Sie die Übungen

gemacht? ((Windows / Unix (Linux, ...) / Sonstiges))
. War die Ausgangskonfiguration der Rechner ausreichend,

damit Sie die Übung bearbeiten konnten?
(Mussten Sie viele Vorbereitungen treffen, um mit der

351

352 APPENDIX C. EVALUATION DATA AND CODE

eigentlichen Übung beginnen zu k önnen oder
war die vorhandene Uebungsumgebung nach all Ihren W ünschen
eingerichtet?)
((Zu spartanisch / etwas spartanisch / Geht so / Komfortabel

/ Sehr komfortabel))
+ Allgemeines zum Übungsverlauf:

. Haben Sie die Übung alleine oder in einer Gruppe
absolviert? (Bitte jedes Mitglied der Gruppe diesen
Fragebogen ausf üllen!)
((Alleine / Zu zweit / Zu dritt / Zu viert))

. War die Zeit f ür das absolvieren der Übung zu kurz/zu lang?
((Viel zu kurz / Zu kurz / Genau richtig / Zu lang / Viel zu lang))

. Fanden Sie die Aufgabenstellung zu detailiert oder h ätten
sie sich mehr Informationen zum Bearbeiten der Aufgabe gew ünscht?
((Viel zu viel Information / Zuviel Information / Genau rich tig

/ Bitte etwas mehr Informationen / Bitte viel mehr Informati onen))
. H ätten Sie sich w ährend der Übung gewünscht, um Hilfe

anfragen zu k önnen, um weiterzukommen?
((Ja, Hilfe w äre gut gewesen / Nein, bin alleine klargekommen))

. H ätten Sie sich gew ünscht dass das System automatisch Probleme erkennt
und Hilfestellungen anbietet? ((ja / nein))

+ Übungsverlauf: Wieviel haben die folgenden Hilfsmittel zu m Bearbeiten
der Übungen des Virtuellen Unix Labors beigetragen?
. Besuch der Vorlesung

((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts))
. Script zur Vorlesung

((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts))
. Übungen zur Vorlesung

((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts))
. Analyse der FH-Rechner

((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts))
. Analyse eigener Rechner

((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts))
. B ücher

((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts))
. Online-Informationen

((Nicht genutzt / Sehr viel / Einiges / Geht so / Wenig / Nichts))
+ Übungsverlauf: Wieviel hat der Besuch der Vorlesung zum Bea rbeiten

der Übungen des Virtuellen Unix Labors beigetragen?
. War die Vorlesung hilfreich bei der Bearbeitung der Aufgab e zum

NIS Server: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War die Vorlesung hilfreich bei der Bearbeitung der Aufgab e zum

NIS Client: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War die Vorlesung hilfreich bei der Bearbeitung der Aufgab e zum

NFS Server: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War die Vorlesung hilfreich bei der Bearbeitung der Aufgab e zum

NFS Client: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War die Vorlesung hilfreich f ür den Umgang mit Solaris allgemein?

((Sehr / Etwas / Geht so / Wenig / Nichts))
. War die Vorlesung hilfreich f ür den Umgang mit NetBSD allgemein?

((Sehr / Etwas / Geht so / Wenig / Nichts))
. Konnten Sie den nicht direkt vermittelten Stoff aus den

bereitgestellten Informationen (Vorgehensweisen, allge meine
Informationen über Systeme, Vorgehen zur Analyse) ermitteln?
((Sehr / Etwas / Geht so / Wenig / Nichts))

+ Übungsverlauf: Wieviel hat die Benutzung des Scripts zum Be arbeiten
der Übungen des Virtuellen Unix Labors beigetragen?
. War das Script hilfreich bei der Bearbeitung der Aufgabe zu m

NIS Server: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War das Script hilfreich bei der Bearbeitung der Aufgabe zu m

NIS Client: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War das Script hilfreich bei der Bearbeitung der Aufgabe zu m

NFS Server: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War das Script hilfreich bei der Bearbeitung der Aufgabe zu m

NFS Client: ((Sehr / Etwas / Geht so / Wenig / Nichts))
. War das Script hilfreich f ür den Umgang mit Solaris allgemein:

((Sehr / Etwas / Geht so / Wenig / Nichts))
. War das Script hilfreich f ür den Umgang mit NetBSD allgemein:

((Sehr / Etwas / Geht so / Wenig / Nichts))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 353

+ Feedback nach der Übung
. Waren die Informationen der Auswertung detailiert genug, um etwaige

Fehler nachvollziehen zu k önnen?
((Ja, ich konnte aus meinen Fehlern lernen

/ Nein, ich weiss immer noch nicht was falsch war))
+ Angaben zur Person

. Interesse am Studium allgemein
((Sehr gross / Gross / Mittel / Weniger / Gar nicht))

. Interesse am Thema "Systemadministration"
((Sehr gross / Gross / Mittel / Weniger / Gar nicht))

. Interesse an "Unix" (Linux, Solaris, NetBSD, ...)
((Sehr gross / Gross / Mittel / Weniger / Gar nicht))

. Wie sch ätzen Sie die Wichtigkeit des Teilgebiets "NIS" ein?
((Sehr gross / Gross / Mittel / Weniger / Gar nicht))

. Wie sch ätzen Sie die Wichtigkeit des Teilgebiets "NFS" ein?
((Sehr gross / Gross / Mittel / Weniger / Gar nicht))

. Wieviele von 10 Vorlesungsstunden haben Sie besucht?
((0-3 / 4-8 / 9-10))

. Haben Sie bisher ausserhalb der Vorlesung mit Systemverwa ltung
zu tun (Praktikum, Rechner zu Hause, ...)? ((Ja / Nein))

. Wenn ja, mit welchen Betriebssystemen ?
((Windows / Linux / BSD / Solaris / AIX / Novell / sonstige))

. Studiensemester ((unter 4 / 4 / 5 / 6 / 7 / 8 / über 8))

. Geschlecht ((m / w))

. Haben Sie sonstige Anmerkungen? Bitten geben Sie ihr
Feedback per EMail oder hier ab! ((5x_____))

C.2 Questionnaire: questions and results

This section lists the questionnaire that students who usedthe Virtual Unix Lab in the
summer semester 2004 were asked to fill out, and students’ answers. The evaluation of
the results can be found in section 7.3. The questions (and possible answers) presented
here are printed in aSMALL CAPITALS font. For each question, the answers given to
each item are displayed as absolute and relative number, as well as a simplified bar-
graph. For the evaluation, the modus1 is given for all results, and the median2 is printed
for questions whose answers are represented an ordinal scale:

WODURCH HABEN SIE ÜBER DAS THEMA “SYSTEMADMINISTRATION ” GEL -
ERNT?

1. BESUCH DERVORLESUNG

((SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

1 [Fahrmeir, 2003] pp. 53
2 [Fahrmeir, 2003] pp. 55

354 APPENDIX C. EVALUATION DATA AND CODE

Sehr viel: 16 (57%) |oooooooooooooooo
Einiges: 8 (28%) |oooooooo
Geht so: 4 (14%) |oooo
Wenig: 0 (0%) |
Nichts: 0 (0%) |
Summe: 28 (100%)

Modus: Sehr viel (16)
Median: Sehr viel (14)

2. SCRIPT ZURVORLESUNG

((SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

Sehr viel: 11 (39%) |ooooooooooo
Einiges: 13 (46%) |ooooooooooooo
Geht so: 4 (14%) |oooo
Wenig: 0 (0%) |
Nichts: 0 (0%) |
Summe: 28 (100%)

Modus: Einiges (13)
Median: Einiges (14)

3. ÜBUNGEN ZUR VORLESUNG

((SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

Sehr viel: 10 (35%) |oooooooooo
Einiges: 13 (46%) |ooooooooooooo
Geht so: 5 (17%) |ooooo
Wenig: 0 (0%) |
Nichts: 0 (0%) |
Summe: 28 (100%)

Modus: Einiges (13)
Median: Einiges (14)

4. VIRTUELLES UNIX LABOR

((SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

Sehr viel: 9 (32%) |ooooooooo
Einiges: 12 (42%) |oooooooooooo
Geht so: 7 (25%) |ooooooo
Wenig: 0 (0%) |
Nichts: 0 (0%) |
Summe: 28 (100%)

Modus: Einiges (12)
Median: Einiges (14)

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 355

5. ANALYSE DER FH-RECHNER

((SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

Sehr viel: 3 (10%) |ooo
Einiges: 12 (42%) |oooooooooooo
Geht so: 10 (35%) |oooooooooo
Wenig: 3 (10%) |ooo
Nichts: 0 (0%) |
Summe: 28 (100%)

Modus: Einiges (12)
Median: Einiges (14)

6. ANALYSE EIGENERRECHNER

((SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

Sehr viel: 15 (53%) |ooooooooooooooo
Einiges: 10 (35%) |oooooooooo
Geht so: 1 (3%) |o
Wenig: 1 (3%) |o
Nichts: 1 (3%) |o
Summe: 28 (100%)

Modus: Sehr viel (15)
Median: Sehr viel (14)

7. BÜCHER

((SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

Sehr viel: 6 (21%) |oooooo
Einiges: 9 (32%) |ooooooooo
Geht so: 4 (14%) |oooo
Wenig: 7 (25%) |ooooooo
Nichts: 2 (7%) |oo
Summe: 28 (100%)

Modus: Einiges (9)
Median: Einiges (14)

8. ONLINE-INFORMATIONEN

((SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

356 APPENDIX C. EVALUATION DATA AND CODE

Sehr viel: 12 (42%) |oooooooooooo
Einiges: 12 (42%) |oooooooooooo
Geht so: 2 (7%) |oo
Wenig: 2 (7%) |oo
Nichts: 0 (0%) |
Summe: 28 (100%)

Modus: Sehr viel (12)
Median: Einiges (14)

EINBINDUNG DES L ABORS IN DIE VORLESUNG

9. IST DASV IRTUELLE UNIX LABOR GENERELL EINE SINNVOLLEERGÄNZUNG

ZUR VORLESUNG?
((SEHR SINNVOLL / SINNVOLL / GEHT SO / WENIG SINNVOLL / UNSINNIG))

Sehr sinnvoll: 15 (53%) |ooooooooooooooo
Sinnvoll: 13 (46%) |ooooooooooooo
Geht so: 0 (0%) |
Wenig sinnvoll: 0 (0%) |
Unsinnig: 0 (0%) |
Summe: 28 (100%)

Modus: Sehr sinnvoll (15)
Median: Sehr sinnvoll (14)

10. WIE EMPFANDEN SIE DEN NUTZEN DESV IRTUELLEN UNIX LABORS?
((SEHR POSITIV/ POSITIV / NEUTRAL / NEGATIV / SEHR NEGATIV))

sehr positiv: 8 (28%) |oooooooo
positiv: 15 (53%) |ooooooooooooooo
neutral: 4 (14%) |oooo
negativ: 1 (3%) |o
sehr negativ: 0 (0%) |
Summe: 28 (100%)

Modus: positiv (15)
Median: positiv (14)

BENUTZUNG DES V IRTUELLEN UNIX L ABORS

11. WAR DAS SYSTEM EINFACH ZU BENUTZEN?
((SEHR EINFACH / EINFACH / UMSTAENDLICH / SEHR UMSTAENDLICH))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 357

Sehr einfach: 4 (14%) |oooo
Einfach: 17 (60%) |ooooooooooooooooo
Umstaendlich: 7 (25%) |ooooooo
Sehr umstaendlich: 0 (0%)|
Summe: 28 (100%)

Modus: Einfach (17)
Median: Einfach (14)

12. WAREN GENÜGEND ÜBUNGSTERMINE ZURAUSWAHL?
((ZU VIELE / GENÜGEND / ZU WENIGE))

Zu viele: 0 (0%) |
Gen̈ugend: 26 (92%) |oooooooooooooooooooooooooo
Zu wenige: 2 (7%) |oo
Summe: 28 (100%)

Modus: Gen̈ugend (26)
Median: Gen̈ugend (14)

13. VON WO AUS HABEN SIE AUF DIE ÜBUNGSRECHNER ZUGEGRIFFEN?
((ZUHAUSE / FH ODER UNI / SONSTIGE))

Zuhause: 20 (71%) |oooooooooooooooooooo
FH oder Uni: 8 (28%) |oooooooo
Sonstige: 0 (0%) |
Summe: 28 (100%)

Modus: Zuhause (20)
Median: n/a

14. VON WELCHEM BETRIEBSSYSTEM AUS HABENSIE DIE ÜBUNGEN GEMACHT?
((WINDOWS / UNIX (L INUX , ...) / SONSTIGES))

Windows: 7 (25%) |ooooooo
Unix (Linux, ...): 21 (75%) |ooooooooooooooooooooo
Sonstiges: 0 (0%) |
Summe: 28 (100%)

Modus: Unix (Linux, ...) (21)
Median: n/a

15. WAR DIE AUSGANGSKONFIGURATION DERRECHNER AUSREICHEND, DAMIT

SIE DIE ÜBUNG BEARBEITEN KONNTEN? (MUSSTENSIE VIELE VORBERE-
ITUNGEN TREFFEN, UM MIT DER EIGENTLICHEN ÜBUNG BEGINNEN ZU KÖNNEN

ODER WAR DIE VORHANDENEUEBUNGSUMGEBUNG NACH ALL IHREN WÜNSCHEN

EINGERICHTET?)
((ZU SPARTANISCH / ETWAS SPARTANISCH/ GEHT SO / KOMFORTABEL /
SEHR KOMFORTABEL))

358 APPENDIX C. EVALUATION DATA AND CODE

Zu spartanisch: 0 (0%) |
etwas spartanisch: 11 (39%)|ooooooooooo
Geht so: 14 (50%) |oooooooooooooo
Komfortabel: 3 (10%) |ooo
Sehr komfortabel: 0 (0%) |
Summe: 28 (100%)

Modus: Geht so (14)
Median: Geht so (14)

ALLGEMEINES ZUM ÜBUNGSVERLAUF :

16. HABEN SIE DIE ÜBUNG ALLEINE ODER IN EINER GRUPPE ABSOLVIERT?
(BITTE JEDESM ITGLIED DER GRUPPE DIESENFRAGEBOGEN AUSF̈ULLEN !)
((ALLEINE / ZU ZWEIT / ZU DRITT / ZU VIERT))

Alleine: 17 (62%) |ooooooooooooooooo
Zu zweit: 5 (19%) |ooooo
Zu dritt: 5 (19%) |ooooo
Zu viert: 0 (0%) |
Summe: 27 (100%)

Modus: Alleine (17)
Median: Alleine (14)

17. WAR DIE ZEIT FÜR DAS ABSOLVIEREN DERÜBUNG ZU KURZ/ZU LANG?
((V IEL ZU KURZ / ZU KURZ / GENAU RICHTIG / ZU LANG / V IEL ZU LANG

))

Viel zu kurz: 1 (3%) |o
Zu kurz: 15 (53%) |ooooooooooooooo
Genau richtig: 11 (39%) |ooooooooooo
Zu lang: 0 (0%) |
Viel zu lang: 0 (0%) |
Summe: 27 (100%)

Modus: Zu kurz (15)
Median: Zu kurz (14)

18. FANDEN SIE DIE AUFGABENSTELLUNG ZU DETAILIERT ODER ḦATTEN SIE

SICH MEHR INFORMATIONEN ZUM BEARBEITEN DERAUFGABE GEWÜNSCHT?
((V IEL ZU VIEL INFORMATION / ZUVIEL INFORMATION / GENAU RICHTIG /
BITTE ETWAS MEHR INFORMATIONEN / BITTE VIEL MEHR INFORMATIONEN

))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 359

Viel zu viel Information: 0 (0%) |
Zuviel Information: 2 (7%) |oo
Genau richtig: 9 (32%) |ooooooooo
Bitte etwas mehr Informationen: 16 (57%)|oooooooooooooooo
Bitte viel mehr Informationen: 0 (0%) |
Summe: 27 (100%)

Modus: Bitte etwas mehr Informationen (16)
Median: Bitte etwas mehr Informationen (14)

19. HÄTTEN SIE SICH WÄHREND DER ÜBUNG GEWÜNSCHT, UM HILFE ANFRA-
GEN ZU KÖNNEN, UM WEITERZUKOMMEN?
((JA , HILFE WÄRE GUT GEWESEN/ NEIN, BIN ALLEINE KLARGEKOMMEN

))

Ja (...): 19 (70%) |ooooooooooooooooooo
Nein (...): 8 (30%) |oooooooo
Summe: 27 (100%)

Modus: Ja (...) (19)
Median: n/a

20. HÄTTEN SIE SICH GEWÜNSCHT DASS DASSYSTEM AUTOMATISCH PROB-
LEME ERKENNT UND HILFESTELLUNGEN ANBIETET?
((JA / NEIN))

ja: 22 (81%) |oooooooooooooooooooooo
nein: 5 (19%) |ooooo
Summe: 27 (100%)

Modus: ja (22)
Median: n/a

ÜBUNGSVERLAUF : W IEVIEL HABEN DIE FOLGENDEN H ILFSMITTEL ZUM BEAR-
BEITEN DER ÜBUNGEN DES V IRTUELLEN UNIX L ABORS BEIGETRAGEN ?

21. BESUCH DERVORLESUNG

((NICHT GENUTZT / SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

360 APPENDIX C. EVALUATION DATA AND CODE

Nicht genutzt: 0 (0%) |
Sehr viel: 8 (28%) |oooooooo
Einiges: 12 (42%) |oooooooooooo
Geht so: 6 (21%) |oooooo
Wenig: 1 (3%) |o
Nichts: 0 (0%) |
Summe: 27 (100%)

Modus: Einiges (12)
Median: Einiges (14)

22. SCRIPT ZURVORLESUNG

((NICHT GENUTZT / SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

Nicht genutzt: 0 (0%) |
Sehr viel: 7 (25%) |ooooooo
Einiges: 14 (50%) |oooooooooooooo
Geht so: 5 (17%) |ooooo
Wenig: 1 (3%) |o
Nichts: 0 (0%) |
Summe: 27 (100%)

Modus: Einiges (14)
Median: Einiges (14)

23. ÜBUNGEN ZUR VORLESUNG

((NICHT GENUTZT / SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

Nicht genutzt: 3 (10%) |ooo
Sehr viel: 5 (17%) |ooooo
Einiges: 8 (28%) |oooooooo
Geht so: 9 (32%) |ooooooooo
Wenig: 2 (7%) |oo
Nichts: 0 (0%) |
Summe: 27 (100%)

Modus: Geht so (9)
Median: Einiges (14)

24. ANALYSE DER FH-RECHNER

((NICHT GENUTZT / SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 361

Nicht genutzt: 3 (10%) |ooo
Sehr viel: 2 (7%) |oo
Einiges: 8 (28%) |oooooooo
Geht so: 8 (28%) |oooooooo
Wenig: 5 (17%) |ooooo
Nichts: 1 (3%) |o
Summe: 27 (100%)

Modus: Einiges (8)
Median: Geht so (14)

25. ANALYSE EIGENERRECHNER

((NICHT GENUTZT / SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

Nicht genutzt: 2 (7%) |oo
Sehr viel: 4 (14%) |oooo
Einiges: 10 (35%) |oooooooooo
Geht so: 6 (21%) |oooooo
Wenig: 4 (14%) |oooo
Nichts: 1 (3%) |o
Summe: 27 (100%)

Modus: Einiges (10)
Median: Einiges (14)

26. BÜCHER

((NICHT GENUTZT / SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

Nicht genutzt: 11 (39%) |ooooooooooo
Sehr viel: 2 (7%) |oo
Einiges: 4 (14%) |oooo
Geht so: 6 (21%) |oooooo
Wenig: 3 (10%) |ooo
Nichts: 1 (3%) |o
Summe: 27 (100%)

Modus: Nicht genutzt (11)
Median: Einiges (14)

27. ONLINE-INFORMATIONEN

((NICHT GENUTZT / SEHR VIEL / EINIGES / GEHT SO / WENIG / NICHTS))

362 APPENDIX C. EVALUATION DATA AND CODE

Nicht genutzt: 0 (0%) |
Sehr viel: 19 (67%) |ooooooooooooooooooo
Einiges: 5 (17%) |ooooo
Geht so: 2 (7%) |oo
Wenig: 1 (3%) |o
Nichts: 0 (0%) |
Summe: 27 (100%)

Modus: Sehr viel (19)
Median: Sehr viel (14)

ÜBUNGSVERLAUF : W IEVIEL HAT DER BESUCH DER VORLESUNG ZUM BEAR-
BEITEN DER ÜBUNGEN DES V IRTUELLEN UNIX L ABORS BEIGETRAGEN ?

28. WAR DIE VORLESUNG HILFREICH BEI DERBEARBEITUNG DER AUFGABE

ZUM NIS SERVER:
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

Sehr: 4 (14%) |oooo
Etwas: 12 (42%) |oooooooooooo
Geht so: 8 (28%) |oooooooo
Wenig: 2 (7%) |oo
Nichts: 0 (0%) |
Summe: 26 (100%)

Modus: Etwas (12)
Median: Etwas (14)

29. WAR DIE VORLESUNG HILFREICH BEI DERBEARBEITUNG DER AUFGABE

ZUM NIS CLIENT:
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

Sehr: 4 (14%) |oooo
Etwas: 13 (46%) |ooooooooooooo
Geht so: 8 (28%) |oooooooo
Wenig: 1 (3%) |o
Nichts: 0 (0%) |
Summe: 26 (100%)

Modus: Etwas (13)
Median: Etwas (14)

30. WAR DIE VORLESUNG HILFREICH BEI DERBEARBEITUNG DER AUFGABE

ZUM NFS SERVER:
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 363

Sehr: 6 (21%) |oooooo
Etwas: 13 (46%) |ooooooooooooo
Geht so: 5 (17%) |ooooo
Wenig: 1 (3%) |o
Nichts: 0 (0%) |
Summe: 25 (100%)

Modus: Etwas (13)
Median: Etwas (14)

31. WAR DIE VORLESUNG HILFREICH BEI DERBEARBEITUNG DER AUFGABE

ZUM NFS CLIENT:
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

Sehr: 7 (25%) |ooooooo
Etwas: 12 (42%) |oooooooooooo
Geht so: 6 (21%) |oooooo
Wenig: 1 (3%) |o
Nichts: 0 (0%) |
Summe: 26 (100%)

Modus: Etwas (12)
Median: Etwas (14)

32. WAR DIE VORLESUNG HILFREICH F̈UR DEN UMGANG MIT SOLARIS ALLGE-
MEIN?
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

Sehr: 10 (35%) |oooooooooo
Etwas: 9 (32%) |ooooooooo
Geht so: 4 (14%) |oooo
Wenig: 2 (7%) |oo
Nichts: 0 (0%) |
Summe: 25 (100%)

Modus: Sehr (10)
Median: Etwas (14)

33. WAR DIE VORLESUNG HILFREICH F̈UR DEN UMGANG MIT NETBSD ALLGE-
MEIN?
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

364 APPENDIX C. EVALUATION DATA AND CODE

Sehr: 7 (25%) |ooooooo
Etwas: 12 (42%) |oooooooooooo
Geht so: 6 (21%) |oooooo
Wenig: 1 (3%) |o
Nichts: 0 (0%) |
Summe: 26 (100%)

Modus: Etwas (12)
Median: Etwas (14)

34. KONNTEN SIE DEN NICHT DIREKT VERMITTELTEN STOFF AUS DEN BEREIT-
GESTELLTEN INFORMATIONEN (VORGEHENSWEISEN, ALLGEMEINE INFOR-
MATIONEN ÜBER SYSTEME, VORGEHEN ZURANALYSE) ERMITTELN?
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

Sehr: 1 (3%) |o
Etwas: 14 (50%) |oooooooooooooo
Geht so: 9 (32%) |ooooooooo
Wenig: 2 (7%) |oo
Nichts: 0 (0%) |
Summe: 26 (100%)

Modus: Etwas (14)
Median: Etwas (14)

ÜBUNGSVERLAUF : W IEVIEL HAT DIE BENUTZUNG DES SCRIPTS ZUM BEAR-
BEITEN DER ÜBUNGEN DES V IRTUELLEN UNIX L ABORS BEIGETRAGEN ?

35. WAR DAS SCRIPT HILFREICH BEI DERBEARBEITUNG DER AUFGABE ZUM

NIS SERVER:
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

Sehr: 3 (10%) |ooo
Etwas: 14 (50%) |oooooooooooooo
Geht so: 6 (21%) |oooooo
Wenig: 4 (14%) |oooo
Nichts: 0 (0%) |
Summe: 27 (100%)

Modus: Etwas (14)
Median: Etwas (14)

36. WAR DAS SCRIPT HILFREICH BEI DERBEARBEITUNG DER AUFGABE ZUM

NIS CLIENT:
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 365

Sehr: 4 (14%) |oooo
Etwas: 12 (42%) |oooooooooooo
Geht so: 8 (28%) |oooooooo
Wenig: 3 (10%) |ooo
Nichts: 0 (0%) |
Summe: 27 (100%)

Modus: Etwas (12)
Median: Etwas (14)

37. WAR DAS SCRIPT HILFREICH BEI DERBEARBEITUNG DER AUFGABE ZUM

NFS SERVER:
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

Sehr: 4 (14%) |oooo
Etwas: 15 (53%) |ooooooooooooooo
Geht so: 5 (17%) |ooooo
Wenig: 3 (10%) |ooo
Nichts: 0 (0%) |
Summe: 27 (100%)

Modus: Etwas (15)
Median: Etwas (14)

38. WAR DAS SCRIPT HILFREICH BEI DERBEARBEITUNG DER AUFGABE ZUM

NFS CLIENT:
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

Sehr: 4 (14%) |oooo
Etwas: 15 (53%) |ooooooooooooooo
Geht so: 6 (21%) |oooooo
Wenig: 2 (7%) |oo
Nichts: 0 (0%) |
Summe: 27 (100%)

Modus: Etwas (15)
Median: Etwas (14)

39. WAR DAS SCRIPT HILFREICH FÜR DEN UMGANG MIT SOLARIS ALLGEMEIN :
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

366 APPENDIX C. EVALUATION DATA AND CODE

Sehr: 8 (28%) |oooooooo
Etwas: 11 (39%) |ooooooooooo
Geht so: 6 (21%) |oooooo
Wenig: 2 (7%) |oo
Nichts: 0 (0%) |
Summe: 27 (100%)

Modus: Etwas (11)
Median: Etwas (14)

40. WAR DAS SCRIPT HILFREICH FÜR DEN UMGANG MIT NETBSD ALLGEMEIN :
((SEHR / ETWAS / GEHT SO / WENIG / NICHTS))

Sehr: 4 (14%) |oooo
Etwas: 13 (46%) |ooooooooooooo
Geht so: 7 (25%) |ooooooo
Wenig: 3 (10%) |ooo
Nichts: 0 (0%) |
Summe: 28 (100%)

Modus: Etwas (13)
Median: Etwas (14)

FEEDBACK NACH DER ÜBUNG

41. WAREN DIE INFORMATIONEN DER AUSWERTUNG DETAILIERT GENUG, UM

ETWAIGE FEHLER NACHVOLLZIEHEN ZU KÖNNEN?
((JA , ICH KONNTE AUS MEINEN FEHLERN LERNEN / NEIN, ICH WEISS IM-
MER NOCH NICHT WAS FALSCH WAR))

Ja (...): 17 (60%) |ooooooooooooooooo
Nein (...): 9 (32%) |ooooooooo
Summe: 26 (100%)

Modus: Ja (...) (17)
Median: n/a

ANGABEN ZUR PERSON

42. INTERESSE AMSTUDIUM ALLGEMEIN

((SEHR GROSS/ GROSS/ M ITTEL / WENIGER / GAR NICHT))

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 367

Sehr gross: 21 (75%) |ooooooooooooooooooooo
Gross: 6 (21%) |oooooo
Mittel: 0 (0%) |
Weniger: 0 (0%) |
Gar nicht: 0 (0%) |
Summe: 27 (100%)

Modus: Sehr gross (21)
Median: Sehr gross (14)

43. INTERESSE AMTHEMA “SYSTEMADMINISTRATION”
((SEHR GROSS/ GROSS/ M ITTEL / WENIGER / GAR NICHT))

Sehr gross: 15 (53%) |ooooooooooooooo
Gross: 7 (25%) |ooooooo
Mittel: 5 (17%) |ooooo
Weniger: 0 (0%) |
Gar nicht: 0 (0%) |
Summe: 28 (100%)

Modus: Sehr gross (15)
Median: Sehr gross (14)

44. INTERESSE AN“U NIX ” (L INUX , SOLARIS, NETBSD, ...)
((SEHR GROSS/ GROSS/ M ITTEL / WENIGER / GAR NICHT))

Sehr gross: 16 (57%) |oooooooooooooooo
Gross: 10 (35%) |oooooooooo
Mittel: 1 (3%) |o
Weniger: 0 (0%) |
Gar nicht: 0 (0%) |
Summe: 27 (100%)

Modus: Sehr gross (16)
Median: Sehr gross (14)

45. WIE SCHÄTZEN SIE DIE WICHTIGKEIT DES TEILGEBIETS “NIS” EIN?
((SEHR GROSS/ GROSS/ M ITTEL / WENIGER / GAR NICHT))

Sehr gross: 2 (7%) |oo
Gross: 6 (21%) |oooooo
Mittel: 12 (42%) |oooooooooooo
Weniger: 6 (21%) |oooooo
Gar nicht: 1 (3%) |o
Summe: 27 (100%)

Modus: Mittel (12)
Median: Mittel (14)

368 APPENDIX C. EVALUATION DATA AND CODE

46. WIE SCHÄTZEN SIE DIE WICHTIGKEIT DES TEILGEBIETS “NFS” EIN?
((SEHR GROSS/ GROSS/ M ITTEL / WENIGER / GAR NICHT))

Sehr gross: 3 (10%) |ooo
Gross: 14 (50%) |oooooooooooooo
Mittel: 8 (28%) |oooooooo
Weniger: 2 (7%) |oo
Gar nicht: 0 (0%) |
Summe: 27 (100%)

Modus: Gross (14)
Median: Gross (14)

47. WIEVIELE VON 10 VORLESUNGSSTUNDEN HABENSIE BESUCHT?
((0-3 / 4-8 / 9-10))

0-3: 1 (3%) |o
4-8: 3 (10%) |ooo
9-10: 23 (82%) |ooooooooooooooooooooooo
Summe: 27 (100%)

Modus: 9-10 (23)
Median: 9-10 (14)

48. HABEN SIE BISHER AUSSERHALB DERVORLESUNG MIT SYSTEMVERWAL-
TUNG ZU TUN (PRAKTIKUM , RECHNER ZUHAUSE, ...)?
((JA / NEIN))

Ja: 22 (78%) |oooooooooooooooooooooo
Nein: 5 (17%) |ooooo
Summe: 27 (100%)

Modus: Ja (22)
Median: n/a

49. WENN JA, MIT WELCHEN BETRIEBSSYSTEMEN?
((WINDOWS / L INUX / BSD / SOLARIS / AIX / N OVELL / SONSTIGE))

Windows: 5 (17%) |ooooo
Linux: 16 (57%) |oooooooooooooooo
BSD: 0 (0%) |
Solaris: 1 (3%) |o
AIX: 0 (0%) |
Novell: 1 (3%) |o
sonstige: 0 (0%) |
Summe: 23 (100%)

Modus: Linux (16)
Median: n/a

C.2. QUESTIONNAIRE: QUESTIONS AND RESULTS 369

50. STUDIENSEMESTER

((UNTER 4 / 4 / 5 / 6 / 7 / 8 /ÜBER 8))

unter 4: 1 (3%) |o
4: 23 (82%) |ooooooooooooooooooooooo
5: 0 (0%) |
6: 0 (0%) |
7: 0 (0%) |
8: 2 (7%) |oo
über 8: 1 (3%) |o
Summe: 27 (100%)

Modus: 4 (23)
Median: n/a

51. GESCHLECHT

((M / W))

m: 26 (92%) |oooooooooooooooooooooooooo
w: 1 (3%) |o
Summe: 27 (100%)

Modus: m (26)
Median: n/a

52. HABEN SIE SONSTIGEANMERKUNGEN? BITTEN GEBENSIE IHR FEEDBACK

PEREMAIL ODER HIER AB!

• Die Zeit ist teilweise etwas kurz bemessen, gerade wenn man vor einem
Problem steht. Bei den Diensten die zu starten sind wären n̈ahere Informa-
tionen hilfreich (z.B. dass der RPCBIND erforderlich ist für NIS)
Bei der NISÜbung ẅare ein Hinweis auf den korrekten Ablauf trotz Fehler
beim make im Skript/̈Ubungsaufgabe hilfreich.
Die Geschwindigkeit der Rechner lässt zu ẅunschen̈ubrig :)
Dieses Formular lässt keine Mehrfachauswahl bei Betriebssystemen zu :)

• Bei der Auswertung des Virtuellen Unix Labors wäre es evtl. hilfreich,
wenn bei den falschen Antworten ein kleiner Lösungshinweis vorhanden
wäre.

• Ok, der NetBSD Rechner hat a bisserl oft gehangen, aber des kann ja
vorkommen, scḧon wärs wenn die bash vorinstalliert wär, ansonsten is des
Labor wunderbar.

• wird lang ;)
hier im fragebogen ẅaren manchmal mehrfachnennungen hilfreich (z.b.
49).
zu 17: f̈ur nfs reichen auch beim ersten mal, wenn man sich vorbereitet
hat, 60min aus, f̈ur nis ẅaren 120min nicht schlecht, da dieseübung schon
etwas komplizierter ist, und auch länger in der bearbeitung.

370 APPENDIX C. EVALUATION DATA AND CODE

zu 19: vielleicht eine idee, da es aber das internet als nachschlagewerk gibt,
sollte es auch dabei bleiben, damit bleibt dieübung sehr realistisch.
zu 20: auf keinen fall. damit ẅurde man, wie ich finde, dieses realszenario
zu einem art gef̈uhrten tutorial herabsetzen. dadurch würde erstens der
lerneffekt etwas verlorengehen, und zweitens wäre es auch nicht mehr so
interessant, weil man dann einfach mal trial&error machen kann, und das
würde nicht mehr zu einem “real-live-szenario” passen.
hängt naẗurlich davon ab, wieweit diese live-unterstützung geht ...
zu 41: manchmal dachte ich bei der nis, daß die auswertung etwas obskur
wirkt, manche punkte wurden auf nein gesetzt, obwohl wir sieeigentlich
gemacht hatten ...
problem hierbei ist natürlich folgendes: umso mehr informationen man
hier bei der auswertung “preisgibt”, desto eher kann man beim zweiten
versuch einer̈ubung die l̈osung zum teil darauf ausrichten, d.h. genau das
erfüllen, wonach die automatisch auswertung sucht. obwohl dieauswer-
tung an sich schon eine recht diffizile sache ist ...
sonst hat diëubung schon spaß gemacht ... obwohl bei nis schon manchmal
etwas verzweiflung dabei war ;) jedenfalls beim ersten versuch ...

• I don’t know if this is possible, but it would be good having the virtual
servers allways available to access as root whenever we wantin order to e
able to practise more and when we wanted.

• - Verfuegbarkeit des vulab laesst sehr zu wuenschen uebrig.
- Zeit fuer die NIS-Uebung ist etwas zu knapp (Reboot erfolgte waehrend
des finalen ‘make‘ in /var/yp zum Update der group und hosts Maps fuer
Eintrag von ypuser in Group ’wheel’ und ’tab’ in NIS hosts *grrr*).
- NIS Client unter NetBSD; fehlendes /etc/domainname ist nicht falsch
wenn der NIS Domainname z.B. via ’domainname=”vulab”’ in /etc/rc.conf
gesetzt wird.

• Anmerkung zum Skript: Eine Druckversion wäre super, bei der keine Gra-
fiken abgeschnitten werden.
zum VULAB:
Für die erstenÜbungsdurchl̈aufe ẅare mehr Zeit n̈otig, wenn man keinen
Plan hat (so wie ich), dann muss man ewig viel googeln um herauszufinden,
was genau man machen muss.
Vielleicht wäre es noch m̈oglich, eineÜberpr̈ufung einzubauen, ob auf die
Rechner zugegriffen werden kann und die mögliche Fehler gleich weiter
gibt.
Sonst finde ich das Konzept von VULAB echt genial.

• bei frage 49. solte ne mehrfach auswahl möglich sein. eine andwort (Linux
und Windows)

• Im Großen und Ganzen eine sehr lehrreiche Vorlesung.
Eine Verbesserung derÜbungen und des VULAB’s ẅare jedoch ẅunschens-
wert.

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 371

• Beim Fragebogen den Abschnitt “Allgemeines zumÜbungsverlauf” in NIS
und NFS aufteilen, da (nicht nur bei mir) Unterschiede bei Bearbeitungszeit/-
aufwand usw. waren.

Der (BSD)Teufel steckt im Detail ;)

• Das VULab ist grunds̈atzlich eine sehr gelungene Einrichtung, weil man
hier mit mehr oder weniger Begleitung (allein schon durch die Aufgaben)
den Umgang mit UNIX lernt. F̈ur die Zukunft ẅare noch hilfreich, dass
die Rechner ẅahrend derÜbung resetted, also in ihren Ausgangszustand
gebracht werden k̈onnen (sofern dies m̈oglich ist), da es mir auch passiert
ist, dass ich nach einer Fehlkonfiguration nicht mehr auf denClient zu-
greifen konnte. es weiteren könnte ich mir auch noch weiterëUbungen
vorstellen, die ḧaufige T̈atigkeiten im UNIX-Administrations-Bereich zum
Thema haben. (Selbst Kompilieren und Installieren von Software, Ein-
richten einer neuen Kernel-Version,...)

Ich weiß allerdings nicht inwieweit das auf dem System verwirklichbar ist.

C.3 Exercise results: selected SQL queries and results

The following list of Pl/SQL queries to the PostgreSQL database are used in evaluation
of Virtual Unix Lab exercise results in section 7.2:

1. Determine number of valid NIS exercises:

SELECT count(*)
FROM (SELECT extract(hours from endzeit-startzeit) * 60

+extract(minutes from endzeit-startzeit) AS dauer
FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id

AND login != ’feyrer’
AND NOT (endzeit-startzeit>=’1:40’

OR endzeit<startzeit)
AND uebung_id IN (’nis’)
AND buchungen.datum >= ’2004-03-15’
AND buchungen.datum <= ’2004-07-25’

ORDER BY dauer
) AS x;

2. Determine ending times of NIS exercises:

SELECT extract(hours from endzeit-startzeit) * 60
+extract(minutes from endzeit-startzeit) AS dauer

FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id

AND NOT (endzeit-startzeit>=’1:40’
OR endzeit<startzeit)

AND uebung_id in (’nis’)
AND login != ’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

ORDER BY dauer;

372 APPENDIX C. EVALUATION DATA AND CODE

3. Count number of valid NFS exercises:

SELECT count(*)
FROM (SELECT extract(hours from endzeit-startzeit) * 60

+extract(minutes from endzeit-startzeit) AS dauer
FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id

AND NOT (endzeit-startzeit>=’1:40’
OR endzeit<startzeit)

AND uebung_id IN (’nfs’)
AND login != ’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

ORDER BY dauer
) AS x;

4. Determine ending times of NFS exercises:

SELECT extract(hours from endzeit-startzeit) * 60
+extract(minutes from endzeit-startzeit) AS dauer

FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id

AND NOT (endzeit-startzeit>=’1:40’
OR endzeit<startzeit)

AND uebung_id IN (’nfs’)
AND login != ’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

ORDER BY dauer;

5. Which user booked most exercises:

SELECT login, count(*)
FROM buchungen,benutzer

WHERE buchungen.user_id=benutzer.user_id
AND login != ’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

GROUP BY login
ORDER BY count desc;

Results:

login | count
---+-------

pap34148 | 12
punky@schweinemarmelade.de | 11
andreas.fischer@stud.fh-regensburg.de | 10
wes35369 | 7
urk35769 | 7
walter.kern@stud.fh-regensburg.de | 7
martina.heindl@stud.fh-regensburg.de | 6
meindlth@asamnet.de | 6
marius.strobl@stud.fh-regensburg.de | 6
ramon@pangea.org | 5
josef.scheuer@stud.fh-regensburg.de | 5
benjamin.grundstein@stud.fh-regensburg.de | 5
markus@fuchsi.de | 5
gep31844 | 4
ham32330 | 4
trm35740 | 4
luf33607 | 4

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 373

wem35832 | 4
petach@gmx.de | 4
wachenroeder@gmx.de | 3
Dragoonsmail@gmx.de | 3
ch.marchl@gmx.de | 3
tdirscherl@onlinehome.de | 3
Klaus1.Rathmacher@stud.fh-regensburg.de | 2
andreas.pollinger@stud.fh-regensburg.de | 2
bernhard.gammel@stud.fh-regensburg.de | 2
jingjing | 1

(27 rows)

6. Which user booked most exercises, split by exercise:

SELECT login, uebung_id, count(*)
FROM buchungen,benutzer

WHERE buchungen.user_id=benutzer.user_id
AND login != ’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

GROUP BY login, uebung_id
ORDER BY count desc;

Results:

login | uebung_id | count
---+------- ----+-------

andreas.fischer@stud.fh-regensburg.de | nis | 8
pap34148 | nis | 6
pap34148 | nfs | 6
walter.kern@stud.fh-regensburg.de | nis | 5
urk35769 | nis | 5
wes35369 | nis | 4
meindlth@asamnet.de | nfs | 4
markus@fuchsi.de | nis | 4
punky@schweinemarmelade.de | netbsd | 4
punky@schweinemarmelade.de | nis | 4
wes35369 | nfs | 3
benjamin.grundstein@stud.fh-regensburg.de | nfs | 3
josef.scheuer@stud.fh-regensburg.de | nfs | 3
gep31844 | nfs | 3
ramon@pangea.org | nis | 3
ham32330 | nis | 3
martina.heindl@stud.fh-regensburg.de | nfs | 3
wem35832 | nfs | 3
marius.strobl@stud.fh-regensburg.de | nfs | 3
trm35740 | nis | 3
punky@schweinemarmelade.de | nfs | 3
petach@gmx.de | nis | 3
walter.kern@stud.fh-regensburg.de | nfs | 2
ramon@pangea.org | nfs | 2
andreas.fischer@stud.fh-regensburg.de | nfs | 2
Dragoonsmail@gmx.de | nis | 2
josef.scheuer@stud.fh-regensburg.de | nis | 2
ch.marchl@gmx.de | nis | 2
benjamin.grundstein@stud.fh-regensburg.de | nis | 2
wachenroeder@gmx.de | nfs | 2
meindlth@asamnet.de | nis | 2
martina.heindl@stud.fh-regensburg.de | nis | 2
luf33607 | nfs | 2
urk35769 | nfs | 2
tdirscherl@onlinehome.de | nfs | 2
luf33607 | nis | 2
marius.strobl@stud.fh-regensburg.de | nis | 2
marius.strobl@stud.fh-regensburg.de | netbsd | 1

374 APPENDIX C. EVALUATION DATA AND CODE

ch.marchl@gmx.de | nfs | 1
wachenroeder@gmx.de | nis | 1
trm35740 | nfs | 1
bernhard.gammel@stud.fh-regensburg.de | nis | 1
martina.heindl@stud.fh-regensburg.de | netbsd | 1
tdirscherl@onlinehome.de | nis | 1
markus@fuchsi.de | nfs | 1
andreas.pollinger@stud.fh-regensburg.de | nfs | 1
petach@gmx.de | nfs | 1
Klaus1.Rathmacher@stud.fh-regensburg.de | nis | 1
wem35832 | nis | 1
bernhard.gammel@stud.fh-regensburg.de | nfs | 1
Klaus1.Rathmacher@stud.fh-regensburg.de | nfs | 1
ham32330 | nfs | 1
andreas.pollinger@stud.fh-regensburg.de | nis | 1
jingjing | nfs | 1
gep31844 | nis | 1
Dragoonsmail@gmx.de | nfs | 1

(56 rows)

7. Which exercise was booked most, per exercise:

SELECT count(*),uebung_id
FROM buchungen,benutzer

WHERE buchungen.user_id=benutzer.user_id
AND login!=’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

GROUP BY uebung_id;

8. Display how often the NIS exercise was booked:

SELECT count(*)
FROM (SELECT distinct buchungen.user_id, uebung_id

FROM buchungen,benutzer
WHERE buchungen.user_id=benutzer.user_id

AND uebung_id=’nis’
AND login!=’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

) AS foo;

9. Display how often the NFS exercise was booked:

SELECT count(*)
FROM (SELECT distinct buchungen.user_id, uebung_id

FROM buchungen,benutzer
WHERE buchungen.user_id=benutzer.user_id

AND uebung_id=’nfs’
AND login!=’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

) AS foo;

10. Display and compare first and last exercise results of every user/exercise:

CREATE FUNCTION vulab_count(integer) RETURNS bigint AS
’SELECT count(*)

FROM ergebnis_checks
WHERE buchungs_id=$1’ LANGUAGE sql;

CREATE FUNCTION vulab_score(integer) RETURNS bigint AS

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 375

’SELECT count(*) FROM ergebnis_checks
WHERE buchungs_id=$1 and erfolg=TRUE)’ language sql;

CREATE FUNCTION vulab_score_perc(integer) RETURNS bigin t AS
’SELECT 100 * vulab_score($1)/vulab_count($1)’ LANGUAGE sql;

CREATE FUNCTION vulab_score_diff(integer, integer) RETU RNS bigint AS
’SELECT vulab_score_perc($2) - vulab_score_perc($1)’ LA NGUAGE sql;

SELECT min(buchungs_id) AS first_id,
vulab_score_perc(min(buchungs_id)) AS f_pscore,
max(buchungs_id) AS last_id,
vulab_score_perc(max(buchungs_id)) AS l_pscore,
vulab_score_diff(min(buchungs_id),max(buchungs_id)) AS dpscore,
uebung_id,
substring(login from 1 for 12)

FROM buchungen,benutzer
WHERE buchungen.user_id=benutzer.user_id

AND (SELECT count(*)
FROM ergebnis_checks

WHERE ergebnis_checks.buchungs_id = buchungen.buchungs _id) > 0
AND login!=’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

GROUP BY login,uebung_id
ORDER BY login;

Results:

first_id | f_pscore | last_id | l_pscore | dpscore | uebung_i d | substring
----------+----------+---------+----------+-------- -+-----------+--------------

233 | 69 | 233 | 69 | 0 | nfs | Dragoonsmail
234 | 46 | 241 | 79 | 33 | nis | Dragoonsmail
148 | 41 | 148 | 41 | 0 | nfs | Klaus1.Rathm
149 | 4 | 149 | 4 | 0 | nis | Klaus1.Rathm
180 | 0 | 190 | 72 | 72 | nfs | andreas.fisc
191 | 46 | 276 | 88 | 42 | nis | andreas.fisc
247 | 41 | 247 | 41 | 0 | nfs | andreas.poll
249 | 46 | 249 | 46 | 0 | nis | andreas.poll
218 | 41 | 235 | 41 | 0 | nfs | benjamin.gru
267 | 23 | 281 | 39 | 16 | nis | benjamin.gru
237 | 69 | 237 | 69 | 0 | nfs | bernhard.gam
238 | 16 | 238 | 16 | 0 | nis | bernhard.gam
168 | 80 | 168 | 80 | 0 | nfs | ch.marchl@gm
179 | 39 | 186 | 88 | 49 | nis | ch.marchl@gm
117 | 27 | 157 | 61 | 34 | nfs | gep31844
193 | 44 | 193 | 44 | 0 | nis | gep31844
209 | 66 | 209 | 66 | 0 | nfs | ham32330
150 | 44 | 158 | 83 | 39 | nis | ham32330
134 | 47 | 134 | 47 | 0 | nfs | jingjing
160 | 55 | 283 | 69 | 14 | nfs | josef.scheue
278 | 60 | 286 | 95 | 35 | nis | josef.scheue
162 | 55 | 196 | 50 | -5 | nfs | luf33607
202 | 39 | 208 | 90 | 51 | nis | luf33607
225 | 0 | 225 | 0 | 0 | netbsd | marius.strob
226 | 44 | 253 | 94 | 50 | nfs | marius.strob
255 | 86 | 255 | 86 | 0 | nis | marius.strob
272 | 44 | 272 | 44 | 0 | nfs | markus@fuchs
257 | 44 | 273 | 27 | -17 | nis | markus@fuchs
224 | 0 | 224 | 0 | 0 | netbsd | martina.hein
223 | 44 | 263 | 0 | -44 | nfs | martina.hein
222 | 60 | 245 | 53 | -7 | nis | martina.hein
182 | 75 | 217 | 94 | 19 | nfs | meindlth@asa
200 | 41 | 216 | 81 | 40 | nis | meindlth@asa
159 | 94 | 239 | 75 | -19 | nfs | pap34148
131 | 44 | 240 | 81 | 37 | nis | pap34148
280 | 91 | 280 | 91 | 0 | nfs | petach@gmx.d
260 | 4 | 262 | 76 | 72 | nis | petach@gmx.d
129 | 12 | 141 | 0 | -12 | netbsd | punky@schwei
140 | 16 | 147 | 86 | 70 | nfs | punky@schwei

376 APPENDIX C. EVALUATION DATA AND CODE

156 | 27 | 171 | 86 | 59 | nis | punky@schwei
231 | 100 | 236 | 100 | 0 | nfs | ramon@pangea
220 | 46 | 228 | 95 | 49 | nis | ramon@pangea
269 | 16 | 274 | 63 | 47 | nfs | tdirscherl@o
275 | 48 | 275 | 48 | 0 | nis | tdirscherl@o
122 | 86 | 122 | 86 | 0 | nfs | trm35740
127 | 6 | 142 | 90 | 84 | nis | trm35740
242 | 27 | 251 | 50 | 23 | nfs | urk35769
243 | 18 | 284 | 81 | 63 | nis | urk35769
143 | 16 | 176 | 55 | 39 | nfs | wachenroeder
177 | 58 | 177 | 58 | 0 | nis | wachenroeder
120 | 100 | 123 | 72 | -28 | nfs | walter.kern@
121 | 41 | 132 | 93 | 52 | nis | walter.kern@
173 | 44 | 184 | 69 | 25 | nfs | wem35832
185 | 53 | 185 | 53 | 0 | nis | wem35832
201 | 69 | 214 | 69 | 0 | nfs | wes35369
181 | 46 | 205 | 79 | 33 | nis | wes35369

(56 rows)

11. List check scripts (primitives) and how often each is used in the various checks:

SELECT count(script), script
FROM uebungs_checks

WHERE uebung_id = ’nis’
OR uebung_id = ’nfs’

GROUP BY script
ORDER BY count(*) DESC;

12. List all checks that use thecheck-file-contents check script, and de-
scribe what they test:

SELECT check_id, bezeichnung
FROM uebungs_checks

WHERE script=’check-file-contents’;

Results:

check_id | bezeichnung
----------+-- ----------------------

790 | passwd-Information wird in NIS gesucht (/etc/nsswitc h.conf)?
791 | group-Information wird in NIS gesucht (/etc/nsswitch .conf)?
792 | hosts-Information wird in NIS gesucht (/etc/nsswitch .conf)?
793 | Domainname in /etc/defaultdomain gesetzt?
810 | ypuser in wheel-Gruppe in /etc/group?
864 | ’share nfs /usr/homes’ in /etc/dfs/dfstab?
882 | Passender Eintrag in /etc/fstab?
885 | ’root=’ Eintrag in dfstab?
774 | Dom äne in /etc/defaultdomain gesetzt?
783 | PWDIR in /var/yp/Makefile auf /var/yp gesetzt?

(10 rows)

13. Determine checks that test if a certain program is running, the operating system
image that was used for the machine the test was running on (i.e. what operating
system the test was performed on) and list the description for the test:

SELECT check_id, image, bezeichnung
FROM uebungs_checks, uebung_setup

WHERE script=’unix-check-process-running’
AND uebungs_checks.uebung_id=uebung_setup.uebung_id
AND uebungs_checks.rechner=uebung_setup.rechner;

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 377

Results:

check_id | image | bezeichnung
----------+------------------+------------------

798 | netbsd162.img.gz | rpcbind l äuft?
799 | netbsd162.img.gz | ypbind l äuft?
865 | solaris29.img.gz | L äuft rpcbind?
866 | solaris29.img.gz | L äuft mountd?
867 | solaris29.img.gz | L äuft nfsd?
868 | solaris29.img.gz | L äuft statd?
869 | solaris29.img.gz | L äuft lockd?
878 | netbsd162.img.gz | L äuft rpcbind?
879 | netbsd162.img.gz | L äuft rpc.lockd?
880 | netbsd162.img.gz | L äuft rpc.statd?

(10 rows)

14. Determine checks that use thenetbsd-check-rcvar-set script:

SELECT check_id, bezeichnung
FROM uebungs_checks

WHERE script=’netbsd-check-rcvar-set’;

Results:

check_id | bezeichnung
----------+--------------------------------------

795 | /etc/rc.conf: rc_configured gesetzt?
796 | /etc/rc.conf: rpcbind gesetzt?
797 | /etc/rc.conf: ypbind gesetzt?
874 | /etc/rc.conf: rc_configured gesetzt?
875 | /etc/rc.conf: lockd gesetzt?
876 | /etc/rc.conf: statd gesetzt?
877 | /etc/rc.conf: nfs_client gesetzt?

15. Find out places that deal with file ownership:

SELECT check_id, bezeichnung
FROM uebungs_checks

WHERE script=’unix-check-file-owner’;

Results:

check_id | bezeichnung
----------+-- ----------------------

890 | Geh ört /usr/homes/nfsuser dem Benutzer ’nfsuser’ auf vulab1?
891 | Geh ört /usr/homes/nfsuser dem Benutzer ’nfsuser’ auf vulab2?
892 | hallo-von-vulab1 geh ört nfsuser auf vulab1?
893 | hallo-von-vulab1 geh ört nfsuser auf vulab2?
894 | hallo-von-vulab2 geh ört nfsuser auf vulab1?
895 | hallo-von-vulab2 geh ört nfsuser auf vulab2?

(6 rows)

16. Find out about places that check for existence of certainfiles (either created
manually or via some setup procedure):

SELECT check_id, bezeichnung
FROM uebungs_checks

WHERE script=’check-file-exists’;

378 APPENDIX C. EVALUATION DATA AND CODE

Results:

check_id | bezeichnung
----------+-- ----

776 | Existiert /var/yp/Makefile?
777 | Existiert /var/yp/binding/vulab/ypservers?
778 | Existiert /var/yp/passwd.time?
784 | Existiert /var/yp/passwd?
870 | NFS-Server wird im Runlevel 3 gestartet?

(5 rows)

17. Determine checks that regard package installation on NetBSD:

SELECT check_id, bezeichnung
FROM uebungs_checks

WHERE script=’netbsd-check-installed-pkg’
AND uebung_id IN (’nis’, ’nfs’);

Results:

check_id | uebung_id | bezeichnung
----------+-----------+---------------------------- ---------------------

900 | nis | tcsh auf NetBSD installiert? (pkg_info -e tcsh)
901 | nis | bash auf NetBSD installiert? (pkg_info -e bash)
904 | nfs | tcsh auf NetBSD installiert? (pkg_info -e tcsh)
905 | nfs | bash auf NetBSD installiert? (pkg_info -e bash)

(4 rows)

18. Determine checks that regard package installation on Solaris:

SELECT check_id, uebung_id, bezeichnung
FROM uebungs_checks

WHERE script=’solaris-check-installed-pkg’;

Results:

check_id | uebung_id | bezeichnung
----------+-----------+---------------------------- ----------------------

898 | nis | tcsh auf Solaris installiert? (pkginfo SUNWtcsh)
899 | nis | bash auf Solaris installiert? (pkginfo SUNWbash)
902 | nfs | tcsh auf Solaris installiert? (pkginfo SUNWtcsh)
903 | nfs | bash auf Solaris installiert? (pkginfo SUWNbash)

(4 rows)

19. Checks that test for existence of a user account:

SELECT check_id, uebung_id, rechner, bezeichnung
FROM uebungs_checks

WHERE script=’unix-check-user-exists’
AND uebung_id IN (’nis’, ’nfs’);

Results:

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 379

check_id | uebung_id | rechner | bezeichnung
----------+-----------+---------+------------------ ------------------------

789 | nis | vulab1 | User existiert (getpwnam(3))?
804 | nis | vulab2 | Existiert Benutzer ypuser?
888 | nfs | vulab1 | Benutzer ’nfsuser’ existiert auf vulab1?
889 | nfs | vulab2 | Benutzer ’nfsuser’ existiert auf vulab2?

(4 rows)

20. Determine usage of checks that test for existence of directories:

SELECT check_id, uebung_id, rechner, bezeichnung
FROM uebungs_checks

WHERE script=’check-directory-exists’
AND uebung_id IN (’nis’, ’nfs’);

Results:

check_id | uebung_id | rechner | bezeichnung
----------+-----------+---------+------------------ -------------------------

785 | nis | vulab1 | Verzeichnis /usr/homes/ypuser existier t?
805 | nis | vulab2 | Existiert Home-Verzeichnis?
887 | nfs | vulab1 | Existiert Verzeichnis /usr/homes/nfsus er?

(3 rows)

21. An overview of date, start- and endtime as well as duration of exercises:

SELECT datum AS date,
startzeit AS starttime,
endzeit AS endtime,
endzeit-startzeit AS duration,
uebung_id,
substring(login from 1 for 20) AS Login

FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id

AND login != ’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

ORDER BY duration;

Results:

date | starttime | endtime | duration | uebung_id | login
------------+-----------+----------+-----------+--- --------+----------------------

2004-06-08 | 21:00:00 | 00:03:19 | -20:56:41 | nfs | josef.sc heuer@stud.f
2004-06-08 | 18:00:00 | 00:04:23 | -17:55:37 | nfs | luf33607
2004-07-15 | 18:00:00 | 17:13:20 | -00:46:40 | nfs | tdirsche rl@onlinehom
2004-07-08 | 18:00:00 | 17:13:29 | -00:46:31 | nis | andreas. fischer@stud
2004-06-17 | 18:00:00 | 18:00:51 | 00:00:51 | nfs | pap34148
2004-05-23 | 15:00:00 | 15:01:08 | 00:01:08 | nis | walter.ke rn@stud.fh-
2004-06-15 | 00:00:00 | 00:04:19 | 00:04:19 | nfs | wem35832
2004-07-07 | 15:00:00 | 15:08:57 | 00:08:57 | nfs | urk35769
2004-05-26 | 15:00:00 | 15:11:11 | 00:11:11 | nis | trm35740
2004-05-25 | 21:00:00 | 21:16:40 | 00:16:40 | nfs | gep31844
2004-07-16 | 09:00:00 | 09:24:33 | 00:24:33 | nis | urk35769
2004-07-17 | 15:00:00 | 15:27:10 | 00:27:10 | nis | markus@fu chsi.de
2004-07-09 | 09:00:00 | 09:31:28 | 00:31:28 | netbsd | martin a.heindl@stud.
2004-06-03 | 18:00:00 | 18:34:36 | 00:34:36 | nis | pap34148
2004-05-29 | 12:00:00 | 12:37:46 | 00:37:46 | netbsd | punky@ schweinemarmel
2004-07-14 | 15:00:00 | 15:41:24 | 00:41:24 | nis | urk35769
2004-07-16 | 15:00:00 | 15:45:50 | 00:45:50 | nis | benjamin. grundstein@
2004-07-04 | 18:00:00 | 18:45:52 | 00:45:52 | nfs | ramon@pan gea.org

380 APPENDIX C. EVALUATION DATA AND CODE

2004-07-18 | 12:00:00 | 12:45:55 | 00:45:55 | nis | urk35769
2004-07-12 | 12:00:00 | 12:45:59 | 00:45:59 | nfs | martina.h eindl@stud.
2004-07-18 | 18:00:00 | 18:47:37 | 00:47:37 | nis | andreas.f ischer@stud
2004-07-14 | 12:00:00 | 12:47:57 | 00:47:57 | nfs | urk35769
2004-07-08 | 12:00:00 | 12:50:18 | 00:50:18 | nfs | martina.h eindl@stud.
2004-07-05 | 21:00:00 | 21:51:02 | 00:51:02 | nfs | benjamin. grundstein@
2004-05-23 | 12:00:00 | 12:51:23 | 00:51:23 | nis | walter.ke rn@stud.fh-
2004-07-02 | 09:00:00 | 09:52:30 | 00:52:30 | nfs | meindlth@ asamnet.de
2004-07-17 | 18:00:00 | 18:52:54 | 00:52:54 | nfs | pap34148
2004-07-14 | 18:00:00 | 18:57:09 | 00:57:09 | nis | andreas.f ischer@stud
2004-07-03 | 21:00:00 | 21:58:03 | 00:58:03 | nis | ramon@pan gea.org
2004-07-08 | 09:00:00 | 09:58:44 | 00:58:44 | nis | martina.h eindl@stud.
2004-06-29 | 12:00:00 | 12:59:53 | 00:59:53 | nfs | wes35369
2004-07-17 | 21:00:00 | 22:01:06 | 01:01:06 | nis | pap34148
2004-06-05 | 00:00:00 | 01:01:08 | 01:01:08 | nis | punky@sch weinemarmel
2004-07-17 | 00:00:00 | 01:02:18 | 01:02:18 | nfs | petach@gm x.de
2004-06-13 | 18:00:00 | 19:02:33 | 01:02:33 | nis | punky@sch weinemarmel
2004-06-26 | 21:00:00 | 22:03:20 | 01:03:20 | nfs | ham32330
2004-07-16 | 18:00:00 | 19:06:31 | 01:06:31 | nis | urk35769
2004-07-05 | 18:00:00 | 19:07:02 | 01:07:02 | nis | andreas.f ischer@stud
2004-05-22 | 12:00:00 | 13:07:14 | 01:07:14 | nfs | trm35740
2004-06-23 | 18:00:00 | 19:08:23 | 01:08:23 | nis | gep31844
2004-05-22 | 15:00:00 | 16:10:11 | 01:10:11 | nfs | walter.ke rn@stud.fh-
2004-07-05 | 09:00:00 | 10:10:12 | 01:10:12 | nis | Dragoonsm ail@gmx.de
2004-06-10 | 12:00:00 | 13:11:38 | 01:11:38 | nfs | ch.marchl @gmx.de
2004-07-03 | 12:00:00 | 13:13:15 | 01:13:15 | nis | ramon@pan gea.org
2004-06-07 | 18:00:00 | 19:13:18 | 01:13:18 | nfs | gep31844
2004-06-02 | 15:00:00 | 16:13:50 | 01:13:50 | nis | trm35740
2004-06-28 | 21:00:00 | 22:14:18 | 01:14:18 | nfs | wes35369
2004-06-21 | 12:00:00 | 13:15:01 | 01:15:01 | nfs | wem35832
2004-07-04 | 12:00:00 | 13:15:07 | 01:15:07 | nfs | ramon@pan gea.org
2004-06-24 | 21:00:00 | 22:15:20 | 01:15:20 | nis | wes35369
2004-06-08 | 12:00:00 | 13:17:34 | 01:17:34 | nis | ham32330
2004-06-17 | 21:00:00 | 22:20:44 | 01:20:44 | nis | ch.marchl @gmx.de
2004-05-21 | 15:00:00 | 16:20:57 | 01:20:57 | nfs | walter.ke rn@stud.fh-
2004-07-11 | 15:00:00 | 16:22:02 | 01:22:02 | nis | markus@fu chsi.de
2004-06-21 | 21:00:00 | 22:22:40 | 01:22:40 | nis | wes35369
2004-07-05 | 00:00:00 | 01:23:08 | 01:23:08 | nis | Dragoonsm ail@gmx.de
2004-06-08 | 15:00:00 | 16:23:38 | 01:23:38 | nfs | pap34148
2004-06-03 | 21:00:00 | 22:24:17 | 01:24:17 | nis | ham32330
2004-06-20 | 12:00:00 | 13:24:20 | 01:24:20 | nis | ch.marchl @gmx.de
2004-05-27 | 18:00:00 | 19:25:03 | 01:25:03 | nis | pap34148
2004-06-14 | 21:00:00 | 22:25:15 | 01:25:15 | nfs | wem35832
2004-05-29 | 21:00:00 | 22:25:28 | 01:25:28 | nis | walter.ke rn@stud.fh-
2004-06-28 | 09:00:00 | 10:25:40 | 01:25:40 | nis | wes35369
2004-07-05 | 15:00:00 | 16:27:26 | 01:27:26 | nfs | Dragoonsm ail@gmx.de
2004-06-01 | 21:00:00 | 22:27:26 | 01:27:26 | nfs | punky@sch weinemarmel
2004-07-18 | 21:00:00 | 22:27:52 | 01:27:52 | nis | benjamin. grundstein@
2004-07-15 | 15:00:00 | 16:28:02 | 01:28:02 | nfs | markus@fu chsi.de
2004-05-29 | 15:00:00 | 16:28:02 | 01:28:02 | nis | walter.ke rn@stud.fh-
2004-06-26 | 18:00:00 | 19:28:08 | 01:28:08 | nis | andreas.f ischer@stud
2004-05-21 | 21:00:00 | 22:28:11 | 01:28:11 | nis | walter.ke rn@stud.fh-
2004-06-20 | 21:00:00 | 22:28:16 | 01:28:16 | nfs | pap34148
2004-07-08 | 06:00:00 | 07:28:51 | 01:28:51 | nis | andreas.p ollinger@st
2004-07-16 | 21:00:00 | 22:28:54 | 01:28:54 | nis | tdirscher l@onlinehom
2004-07-15 | 21:00:00 | 22:28:55 | 01:28:55 | nfs | tdirscher l@onlinehom
2004-07-07 | 21:00:00 | 22:28:57 | 01:28:57 | nfs | andreas.p ollinger@st
2004-07-18 | 09:00:00 | 10:28:59 | 01:28:59 | nis | josef.sch euer@stud.f
2004-07-17 | 12:00:00 | 13:29:01 | 01:29:01 | nis | josef.sch euer@stud.f
2004-07-18 | 00:00:00 | 01:29:02 | 01:29:02 | nfs | josef.sch euer@stud.f
2004-06-28 | 18:00:00 | 19:29:03 | 01:29:03 | nis | andreas.f ischer@stud
2004-06-23 | 15:00:00 | 16:29:03 | 01:29:03 | nfs | meindlth@ asamnet.de
2004-06-28 | 15:00:00 | 16:29:03 | 01:29:03 | nis | meindlth@ asamnet.de
2004-06-30 | 09:00:00 | 10:29:03 | 01:29:03 | nis | meindlth@ asamnet.de
2004-07-02 | 12:00:00 | 13:29:03 | 01:29:03 | nis | andreas.f ischer@stud
2004-07-02 | 18:00:00 | 19:29:03 | 01:29:03 | nis | ramon@pan gea.org
2004-07-06 | 15:00:00 | 16:29:04 | 01:29:04 | nfs | bernhard. gammel@stud
2004-07-05 | 12:00:00 | 13:29:04 | 01:29:04 | nis | martina.h eindl@stud.
2004-05-26 | 18:00:00 | 19:29:04 | 01:29:04 | netbsd | punky@ schweinemarmel

C.3. EXERCISE RESULTS: SELECTED SQL QUERIES AND RESULTS 381

2004-07-10 | 12:00:00 | 13:29:05 | 01:29:05 | nis | markus@fu chsi.de
2004-06-24 | 18:00:00 | 19:29:05 | 01:29:05 | nfs | luf33607
2004-06-07 | 12:00:00 | 13:29:05 | 01:29:05 | nfs | Klaus1.Ra thmacher@st
2004-07-17 | 09:00:00 | 10:29:09 | 01:29:09 | nfs | josef.sch euer@stud.f
2004-06-13 | 15:00:00 | 16:29:21 | 01:29:21 | nis | punky@sch weinemarmel
2004-06-12 | 21:00:00 | 22:29:21 | 01:29:21 | nis | punky@sch weinemarmel
2004-06-25 | 18:00:00 | 19:29:32 | 01:29:32 | nis | luf33607
2004-07-06 | 18:00:00 | 19:29:37 | 01:29:37 | nis | bernhard. gammel@stud
2004-06-07 | 09:00:00 | 10:29:55 | 01:29:55 | nis | ham32330
2004-07-09 | 18:00:00 | 19:30:05 | 01:30:05 | nis | marius.st robl@stud.f
2004-07-08 | 21:00:00 | 22:30:06 | 01:30:06 | nfs | marius.st robl@stud.f
2004-06-07 | 21:00:00 | 22:30:07 | 01:30:07 | nis | pap34148
2004-06-26 | 15:00:00 | 16:30:13 | 01:30:13 | nis | luf33607
2004-06-20 | 18:00:00 | 19:30:33 | 01:30:33 | nis | wachenroe der@gmx.de
2004-06-19 | 18:00:00 | 19:31:26 | 01:31:26 | nfs | wachenroe der@gmx.de
2004-06-14 | 15:00:00 | 16:31:48 | 01:31:48 | nfs | pap34148
2004-07-01 | 12:00:00 | 13:35:49 | 01:35:49 | nfs | benjamin. grundstein@
2004-06-03 | 12:00:00 | 13:36:55 | 01:36:55 | nfs | punky@sch weinemarmel
2004-06-21 | 15:00:00 | 16:37:34 | 01:37:34 | nis | wem35832
2004-05-29 | 18:00:00 | 19:38:45 | 01:38:45 | nis | trm35740
2004-07-08 | 15:00:00 | 17:13:23 | 02:13:23 | nfs | marius.st robl@stud.f
2004-06-22 | 15:00:00 | 17:30:03 | 02:30:03 | nfs | andreas.f ischer@stud
2004-07-02 | 21:00:00 | 23:30:03 | 02:30:03 | netbsd | marius .strobl@stud.f
2004-06-02 | 21:00:00 | 23:30:03 | 02:30:03 | nis | pap34148
2004-05-31 | 21:00:00 | 23:30:03 | 02:30:03 | nfs | wachenroe der@gmx.de
2004-06-25 | 15:00:00 | 17:30:03 | 02:30:03 | nis | wes35369
2004-07-11 | 18:00:00 | 20:30:04 | 02:30:04 | nis | petach@gm x.de
2004-06-15 | 18:00:00 | 20:30:04 | 02:30:04 | nfs | pap34148
2004-05-28 | 12:00:00 | 14:30:04 | 02:30:04 | nfs | jingjing
2004-05-30 | 12:00:00 | 14:30:04 | 02:30:04 | netbsd | punky@ schweinemarmel
2004-06-02 | 18:00:00 | 20:30:04 | 02:30:04 | nis | pap34148
2004-05-30 | 15:00:00 | 17:30:04 | 02:30:04 | nfs | punky@sch weinemarmel
2004-06-07 | 15:00:00 | 17:30:04 | 02:30:04 | nis | Klaus1.Ra thmacher@st
2004-07-01 | 18:00:00 | 20:30:04 | 02:30:04 | nfs | meindlth@ asamnet.de
2004-07-03 | 15:00:00 | 17:30:04 | 02:30:04 | nfs | benjamin. grundstein@
2004-07-11 | 21:00:00 | 23:30:04 | 02:30:04 | nis | petach@gm x.de
2004-05-28 | 21:00:00 | 23:30:05 | 02:30:05 | netbsd | punky@ schweinemarmel
2004-07-15 | 09:00:00 | 11:30:05 | 02:30:05 | nis | markus@fu chsi.de
2004-07-12 | 18:00:00 | 20:30:05 | 02:30:05 | nis | petach@gm x.de
2004-06-21 | 18:00:00 | 20:30:05 | 02:30:05 | nfs | andreas.f ischer@stud
2004-05-20 | 18:00:00 | 20:30:05 | 02:30:05 | nfs | gep31844
2004-07-16 | 12:00:00 | 14:30:06 | 02:30:06 | nfs | martina.h eindl@stud.
2004-06-25 | 12:00:00 | 14:30:30 | 02:30:30 | nfs | meindlth@ asamnet.de
2004-07-07 | 12:00:00 | 17:13:32 | 05:13:32 | nis | urk35769
2004-07-07 | 09:00:00 | 17:13:25 | 08:13:25 | nis | andreas.f ischer@stud
2004-07-03 | 00:00:00 | 13:13:16 | 13:13:16 | nfs | marius.st robl@stud.f
2004-07-09 | 21:00:00 | | | nis | marius.strobl@stud.f
2004-07-19 | 00:00:00 | | | nfs | wes35369

(135 rows)

22. Determine number of exercises with “sane” duration:

SELECT count(*)
FROM (SELECT extract(hours from endzeit-startzeit) * 60

+extract(minutes from endzeit-startzeit) as dauer
FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id

AND login != ’feyrer’
AND NOT (endzeit-startzeit>=’1:40’

OR endzeit<startzeit)
AND uebung_id IN (’nis’, ’nfs’)
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

ORDER BY dauer
) AS x;

23. Determine ending times of all exercises:

382 APPENDIX C. EVALUATION DATA AND CODE

SELECT extract(hours from endzeit-startzeit) * 60
+extract(minutes from endzeit-startzeit) AS dauer

FROM buchungen, benutzer
WHERE buchungen.user_id=benutzer.user_id

AND login != ’feyrer’
AND NOT (endzeit-startzeit>=’1:40’

OR endzeit<startzeit)
AND uebung_id IN (’nis’, ’nfs’)
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

ORDER BY dauer;

24. Exercise start times and number of exercises booked at that time:

SELECT count(*),startzeit
FROM buchungen, benutzer

WHERE buchungen.user_id=benutzer.user_id
AND uebung_id in (’nis’, ’nfs’)
AND login!=’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

GROUP BY startzeit
ORDER BY startzeit;

25. Exercise start times and number of exercise booked at that time for histogram
plotting, NIS and NFS exercises from students only:

SELECT extract(hours from startzeit)
FROM buchungen, benutzer

WHERE buchungen.user_id=benutzer.user_id
AND uebung_id IN (’nis’, ’nfs’)
AND login!=’feyrer’
AND datum >= ’2004-03-15’
AND datum <= ’2004-07-25’

ORDER BY startzeit;

Appendix D

A theory of bugs — attempt of a
reconstructive approach

The following list of PL/SQL queries to the PostgreSQL database and their results are
used in evaluation of Virtual Unix Lab exercise results in section 9.3.2.2:

1. Query:

SELECT rechner, uebung_id, count(*)
FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_ id
GROUP BY rechner, uebung_id
ORDER BY uebung_id, rechner;

Results:

rechner | uebung_id | count
---------+-----------+-------

vulab1 | netbsd | 120
vulab1 | nfs | 3078
vulab2 | nfs | 3038
vulab1 | nis | 3780
vulab2 | nis | 3960

(5 rows)

2. Query:

Results:

rechner | uebung_id | %
--------+-----------+------
vulab1 | netbsd | 80
vulab1 | nfs | 42
vulab2 | nfs | 61
vulab1 | nis | 36
vulab2 | nis | 68

3. Query:

383

384
APPENDIX D. A THEORY OF BUGS — ATTEMPT OF A

RECONSTRUCTIVE APPROACH

SELECT count(*), rechner, uebung_id
FROM uebungs_checks
GROUP BY uebung_id, rechner
ORDER BY uebung_id, rechner;

Results:

count | rechner | uebung_id
-------+-----------+----------------

8 | vulab1 | netbsd
18 | vulab1 | nfs
18 | vulab2 | nfs
21 | vulab1 | nis
22 | vulab2 | nis

1 | localhost | update-solaris
1 | vulab1 | update-solaris

(7 rows)

4. Query:

CREATE VIEW test1 AS SELECT script
FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_ id
GROUP BY script
ORDER BY script
;

CREATE FUNCTION count_all(uebungs_checks.script%TYPE) RETURNS bigint AS
’
SELECT count(*)

FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_ id

AND script = $1
AND erfolg IN (true, false)

GROUP BY script
ORDER BY script

’ LANGUAGE sql;
CREATE FUNCTION count_fail(uebungs_checks.script%TYPE) RETURNS bigint AS

’
SELECT count(*)

FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_ id

AND script = $1
AND erfolg in (false)

GROUP BY script
ORDER BY script

’ LANGUAGE sql;
SELECT count_all(script), count_fail(script),

100 * count_fail(script) / count_all(script)
AS perc,

script
FROM test1
ORDER BY perc DESC;

DROP FUNCTION count_fail(uebungs_checks.script%TYPE);
DROP FUNCTION count_all(uebungs_checks.script%TYPE);
DROP VIEW test1;

Results:

count_all | count_fail | perc | script
-----------+------------+------+------------------- ----------

15 | 13 | 86 | netbsd-check-user-shell
180 | 152 | 84 | unix-check-user-ingroup
195 | 161 | 82 | unix-check-user-password

385

724 | 588 | 81 | netbsd-check-installed-pkg
180 | 143 | 79 | unix-check-user-fullname

15 | 11 | 73 | unix-check-user-home
1002 | 724 | 72 | unix-check-file-owner

167 | 114 | 68 | unix-check-mount
694 | 452 | 65 | solaris-check-installed-pkg
210 | 123 | 58 | unix-check-user-shell
709 | 408 | 57 | unix-check-user-exists
527 | 296 | 56 | check-directory-exists

3722 | 2010 | 54 | check-program-output
1769 | 940 | 53 | check-file-contents
1224 | 650 | 53 | netbsd-check-rcvar-set

895 | 188 | 21 | check-file-exists
1748 | 357 | 20 | unix-check-process-running

(17 rows)

5. Query:

CREATE VIEW test1 AS SELECT script, parameter
FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_ id
GROUP BY script, parameter
ORDER BY script, parameter
;

CREATE FUNCTION count_all(uebungs_checks.script%TYPE,
uebungs_checks.parameter%TYPE)

RETURNS bigint AS
’
SELECT count(*)

FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_ id

AND script = $1
AND parameter = $2
AND erfolg in (true, false)

GROUP BY script, parameter
ORDER BY script, parameter

’ LANGUAGE sql;
CREATE FUNCTION count_fail(uebungs_checks.script%TYPE ,

uebungs_checks.parameter%TYPE)
RETURNS bigint AS

’
SELECT count(*)

FROM ergebnis_checks, uebungs_checks
WHERE ergebnis_checks.check_id = uebungs_checks.check_ id

AND script = $1
AND parameter = $2
AND erfolg in (false)

GROUP BY script, parameter
ORDER BY script, parameter

’ LANGUAGE sql;
SELECT count_all(script, parameter), count_fail(script , parameter),

100 * count_fail(script, parameter) / count_all(script, param eter)
AS perc,

script, parameter
FROM test1
ORDER BY perc DESC;

DROP FUNCTION count_all(uebungs_checks.script%TYPE,
uebungs_checks.parameter%TYPE) ;

DROP FUNCTION count_fail(uebungs_checks.script%TYPE,
uebungs_checks.parameter%TYPE) ;

DROP VIEW test1;

Results:

count | count | | |

386
APPENDIX D. A THEORY OF BUGS — ATTEMPT OF A

RECONSTRUCTIVE APPROACH

_all | _fail | perc | script | parameter
-------+-------+------+---------------------------- -+--- -------------------------------

180 | 180 | 100 | check-file-contents | FILE=/etc/group CONT ENT_SHOULD=’"ˆwheel:. * ypuser"’
15 | 14 | 93 | unix-check-user-shell | LOGIN=vulab SHELL_SHO ULD=’/. * /bash’

180 | 159 | 88 | check-program-output | PROGRAM=’ypcat hosts ’ OUTPUT_SHOULD=’194.95.108.32. * tab’
15 | 13 | 86 | netbsd-check-user-shell | LOGIN=test SHELL_SH OULD=’/. * /tcsh’
15 | 13 | 86 | unix-check-user-shell | LOGIN=test SHELL_SHOU LD=’/. * /tcsh’
15 | 13 | 86 | unix-check-user-password | LOGIN=test PASSWD_ SHOULD=’vutest’

180 | 153 | 85 | check-program-output | PROGRAM=’/sbin/ping -c 1 tab 2>&1 ; echo result:$?’ OUTPUT_SHOULD=’ˆresult:0$’
180 | 152 | 84 | unix-check-user-ingroup | LOGIN=ypuser GROU P_SHOULD=benutzer
180 | 150 | 83 | check-program-output | PROGRAM=’ypcat group ’ OUTPUT_SHOULD=’benutzer:’
180 | 148 | 82 | unix-check-user-password | LOGIN=ypuser PAS SWD_SHOULD=myn1spw
362 | 298 | 82 | netbsd-check-installed-pkg | PKG=tcsh
362 | 290 | 80 | netbsd-check-installed-pkg | PKG=bash
180 | 143 | 79 | unix-check-user-fullname | LOGIN=ypuser FUL LNAME_SHOULD=’NIS Testbenutzer’
167 | 130 | 77 | check-program-output | PROGRAM=’mount | grep nfs’ OUTPUT_SHOULD=’ˆvulab1:/usr/homes on /usr/homes’
167 | 130 | 77 | check-program-output | PROGRAM=’df -k | grep : ’ OUTPUT_SHOULD=’ˆvulab1:/usr/homes. * /usr/homes$’
167 | 129 | 77 | check-file-contents | FILE=/etc/fstab CONTE NT_SHOULD=’vulab1:/usr/homes. * /usr/homes. * nfs. * rw’
334 | 245 | 73 | unix-check-file-owner | FILE=/usr/homes/nf suser/hallo-von-vulab1 OWNER_SHOULD=nfsuser

15 | 11 | 73 | unix-check-user-home | LOGIN=test HOME_SHOULD =’/home/test’
15 | 11 | 73 | unix-check-user-exists | LOGIN=test

334 | 245 | 73 | unix-check-file-owner | FILE=/usr/homes/nf suser/hallo-von-vulab2 OWNER_SHOULD=nfsuser
347 | 246 | 70 | solaris-check-installed-pkg | PKG=SUNWtcsh
334 | 234 | 70 | unix-check-file-owner | FILE=/usr/homes/nf suser OWNER_SHOULD=nfsuser
167 | 114 | 68 | unix-check-mount | MOUNT_FROM=10.0.0.1:/us r/homes MOUNT_ON=/mnt
171 | 117 | 68 | check-program-output | PROGRAM=’showmount - e vulab1’ OUTPUT_SHOULD=’/usr/homes’
180 | 118 | 65 | netbsd-check-rcvar-set | RCVAR=rpcbind
180 | 114 | 63 | netbsd-check-rcvar-set | RCVAR=ypbind
171 | 107 | 62 | netbsd-check-rcvar-set | RCVAR=lockd
171 | 107 | 62 | netbsd-check-rcvar-set | RCVAR=statd
360 | 217 | 60 | unix-check-user-exists | LOGIN=ypuser
347 | 206 | 59 | solaris-check-installed-pkg | PKG=SUNWbash
167 | 100 | 59 | check-program-output | PROGRAM=’share’ OUTP UT_SHOULD=’/usr/homes. * root=’
171 | 102 | 59 | netbsd-check-rcvar-set | RCVAR=nfs_client
167 | 98 | 58 | check-file-contents | FILE=/etc/dfs/dfstab C ONTENT_SHOULD=’root=’
360 | 207 | 57 | check-directory-exists | DIR=/usr/homes/yp user
180 | 96 | 53 | unix-check-user-shell | LOGIN=ypuser SHELL_S HOULD="/. * /ksh"
334 | 180 | 53 | unix-check-user-exists | LOGIN=nfsuser
167 | 89 | 53 | check-directory-exists | DIR=/usr/homes/nfs user
360 | 185 | 51 | check-program-output | PROGRAM=ypwhich OUTP UT_SHOULD=’vulab1’
180 | 93 | 51 | check-file-contents | FILE=/etc/nsswitch.co nf CONTENT_SHOULD=’hosts:. * nis’
180 | 89 | 49 | check-file-contents | FILE=/etc/nsswitch.co nf CONTENT_SHOULD=’passwd:. * nis’
180 | 89 | 49 | check-file-contents | FILE=/etc/nsswitch.co nf CONTENT_SHOULD=’group:. * nis’
180 | 84 | 46 | check-program-output | PROGRAM=’ypcat passwd | grep ypuser: | wc -l’ OUTPUT_SHOULD=1
360 | 160 | 44 | check-program-output | PROGRAM=’ypcat passw d | wc -l’ OUTPUT_SHOULD=’[ˆ0] * ’
360 | 158 | 43 | check-program-output | PROGRAM=’ypcat group | wc -l’ OUTPUT_SHOULD=’[ˆ0] * ’
360 | 154 | 42 | check-program-output | PROGRAM=’ypcat hosts | wc -l’ OUTPUT_SHOULD=’[ˆ0] * ’
180 | 73 | 40 | check-program-output | PROGRAM=’cat /var/yp/ passwd | grep ypuser: | wc -l’ OUTPUT_SHOULD=1
360 | 135 | 37 | check-file-contents | FILE=/etc/defaultdom ain CONTENT_SHOULD=’vulab’
360 | 136 | 37 | check-program-output | PROGRAM=domainname O UTPUT_SHOULD=’vulab’
175 | 64 | 36 | check-file-contents | FILE=/etc/dfs/dfstab C ONTENT_SHOULD=’share. * nfs. * /usr/homes’
180 | 63 | 35 | check-file-exists | FILE=/var/yp/passwd
175 | 62 | 35 | check-program-output | PROGRAM=’showmount -e localhost’ OUTPUT_SHOULD=’/usr/homes’
180 | 63 | 35 | check-file-contents | FILE=/var/yp/Makefile CONTENT_SHOULD=’ˆPWDIR.* =. * /var/yp’
175 | 59 | 33 | check-program-output | PROGRAM=’share’ OUTPU T_SHOULD=’/usr/homes’
351 | 102 | 29 | netbsd-check-rcvar-set | RCVAR=rc_configur ed
180 | 52 | 28 | unix-check-process-running | PROCESS=ypbind
180 | 45 | 25 | check-file-exists | FILE=/var/yp/binding/vu lab/ypservers
171 | 44 | 25 | unix-check-process-running | PROCESS=rpc.st atd
171 | 44 | 25 | unix-check-process-running | PROCESS=rpc.lo ckd
180 | 42 | 23 | check-file-exists | FILE=/var/yp/passwd.tim e
526 | 121 | 23 | unix-check-process-running | PROCESS=rpcbi nd
175 | 24 | 13 | unix-check-process-running | PROCESS=nfsd
175 | 24 | 13 | unix-check-process-running | PROCESS=mountd
175 | 24 | 13 | unix-check-process-running | PROCESS=lockd
175 | 24 | 13 | check-file-exists | FILE=’/etc/rc3.d/S15nfs .server’
175 | 24 | 13 | unix-check-process-running | PROCESS=statd
180 | 14 | 7 | check-file-exists | FILE=/var/yp/Makefile

(66 rows)

Appendix E

Analysis of exercises under tutorial
and adaptive aspects

The following text displays the NIS exercise’s text with thesingle questions decompo-
sitioned as outlined in section 9.3.1.

<h1> NIS Master und Client Setup</h1>

In dieser Übung soll auf den beiden vulab-Rechner der Network
Information Service (NIS) installiert werden. Dabei wird a uf dem
Rechner "vulab1" der NIS-Master, auf dem Rechner "vulab2" d er
NIS-Client installiert.
<p>

<h2>1. Master (Solaris): vulab1</h2>

 Stellen Sie sicher dass die n ötigen Pakete (SUNWypr, SUNWypu,

SUNWsprot, ...) installiert sind.

- What does the student have to do?

Use pkginfo(1) to verify if the named packages are
installed (they are all installed by default!)

- What problems can occur, how can they be identified?

pkginfo(1) doesn’t show packages
pkginfo not in search path
User doesn’t know about pkginfo, and tries other commands

(pkg_info, rpm, ...)

- Help: behavioristic, epistemic, ...

Give exact commands: pkg_info | egrep ’(SUNWypr|SUNWypu|. ..)’
Refer to pkginfo(8)
Give general information on software management:

http://www.feyrer.de/SA/12-sw.html

- What wrong thinking can cause problems? (Believes)

wrong: The packages are not installed and have to be
installed first

Student may know * some* packaging system, but not this

387

388
APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

one

- What viewpoints may exist:

pkginfo(1) view on installed packages
View on /var/sadm/pkg for installed packages

- Ways of data acquisition: checks, keyboard tracing, ...

checks:
verify that everything is (still!) installed, and
that the student did not remove a package by accident

keyboard tracing:
Recognize if student tries to run several related

commands that are not relevant here (pkg_info, rpm,
...)

 Setzen Sie den NIS-Dom änenname auf "vulab" (/etc/defaultdomain &
domainname(1))

- What does the student have to do?

Need to edit the file, plus make system read it:
1) put domain into /etc/defaultdomain
2) set domainname in system either via domainname(1),

or by some init/rc.d script
or by rebooting

- What problems can occur, how can they be identified?

Student doesn’t know how to write data info file
Student doesn’t know format of /etc/defaultdomain
Student doesn’t know how to set domain in system
Student doesn’t know about domainname(1) or how to use it
Student doesn’t know how to use init/rc.d script to

set domainname from /etc/defaultdomain

Detect by no data in /etc/domainname and domainname(1)
after some time

- Help: behavioristic, epistemic, ...
(Classification of help e.g. via URL or chapter)

Give proper commands:
echo vulab >/etc/defaultdomain
domainname ‘cat /etc/defaultdomain‘

or: sh /etc/init.d/inetinit stop/start
Hint at documentation for commands and files:

domainname(1), defaultdomainname(4)
Give background on NIS:

http://www.feyrer.de/SA/08-networking.html

- What wrong thinking can cause problems?

Expect some GUI program to be needed to set the
domainname (e.g. Yast, smc, admintool)

System recognizes changes to /etc/defaultdomain
automatically

Need special program to set /etc/defaultdomain (or domain
in general)

- What viewpoints may exist:

only "from inside"

- Ways of data acquisition: checks, keyboard tracing, ...

1) check /etc/defaultdomain

389

2) check domainname(1)

Or monitor commands entered, recognize
1) setting /etc/defaultdomain (via echo, vi, ...)
2) running domainname(1), init/rc.d script or reboot
(harder than via checks!)

 Setzen Sie den Rechner mit "ypinit -m" als NIS Master auf

- What does the student have to do?

Hostname and domainname need to be set first
No file backend for all NIS maps may be present, non fatal!

Run "ypinit -m",
enter valid NIS server (10.0.0.1, or hostname from /etc/hos ts)
Judge errors printed as not critical

- What problems can occur, how can they be identified?

hostname given for NIS master, but not in /etc/hosts
errors not identified as non-critical

- Help: behavioristic, epistemic, ...

give exact command and all data
hint at programs: ypinit(8)
give background: http://www.feyrer.de/SA/08-networkin g.html

- What wrong thinking can cause problems? (Believes)

All files must be present to create NIS maps
Must use GUI program to setup NIS master (smc, ...)
Name of NIS master is automatically known (instead of

verifying that it’s in /etc/hosts)
ypinit runs ’make’ in /var/yp automatically (true on

Solaris, false on NetBSD)
ypinit prints no errors
errors printed by ypinit are fatal

- What viewpoints may exist:

from inside
from outside (when service daemons run!):

rpcinfo, grep yp /etc/rc

- Ways of data acquisition: checks, keyboard tracing, ...

keyboard tracing:
catch ’ypinit -m’ and check if prerequisites are met

checks:
/var/yp/Makefile was setup
/var/yp/binding/vulab exists (dir)
/var/yp/binding/vulab/ypservers (file) exists
/var/yp/passwd.time was generated

 Sorgen Sie daf ür dass die n ötigen Serverprozesse (ypbind, ypserv,
...) beim booten gestartet werden.

- What does the student have to do?

Solaris: nothing, processes are started automatically
Solaris’ rc.d scripts look at existing config files, and

start daemons then, no need to edit config files

- What problems can occur, how can they be identified?

390
APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

In theory, processes could not be started.
Detected by missing processes after booting,
resulting in services (mostly RPC) not available

- Help: behavioristic, epistemic, ...

Name processes that need to run, and show how they are
started automatically by pointing at the right rc.d
script

Hint at rc.d scripts
Give Background on how services start up, and how the

process may be influenced:
http://www.feyrer.de/SA/06-booting.html

- What wrong thinking can cause problems? (Believes)

Need to edit some config file for services to start up
(Solaris: things just work; different for other
operating systems!)

wrong: need to edit some file
right: things just work

- What viewpoints may exist:

from inside: ps
from outside: rpcinfo vulab1

- Ways of data acquisition: checks, keyboard tracing, ...

check:
if daemons / services run

typescript:
see if user tries to find/edit some file to enable

daemons (e.g. the BSD /etc/rc.conf)

 Starten Sie die Serverdienste!

- What does the student have to do?

Solaris: reboot,
or run /etc/init.d/{inetinit,rpc}

- What problems can occur, how can they be identified?

Student doesn’t know proper rc.d scripts or
commands to start services manually

- Help: behavioristic, epistemic, ...
(Classification of help e.g. via URL or chapter)

Advise to simply reboot
Hint at proper rc.d scripts / commands
Give Background on how services start up, and how the

process may be influenced:
http://www.feyrer.de/SA/06-booting.html

- What wrong thinking can cause problems? (Believes?)

wrong: need to edit some config file before starting
processes

wrong: editing some config file starts processes automatic ally

- What viewpoints may exist:

from inside: ps
from outside: rpcinfo

391

- Ways of data acquisition: checks, keyboard tracing, ...

checks: ps, rpcinfo
typescript: see if student tries to edit some rc.conf

file, warn if so

 Welcher NIS-Server wird verwendet?

- What does the student have to do?

Run ’ypwhich’ to see if a the NIS server is found

- What problems can occur, how can they be identified?

If no service daemons are started (ypbind, ypserv), then
nothing will be printed.

- Help: behavioristic, epistemic, ...

ypwhich
State that if ypwhich doesn’t’ show a server, there’s

something fundamentally wrong, either on the network
layer, on the NIS client or server part.

Hint at list for troubleshooting NIS setup at
http://www.feyrer.de/SA/08-networking.html

- What wrong thinking can cause problems? (== Believes?)

Student doesn’t know the proper command
Student tries to find some (GUI?) program to show used

nis server

- What viewpoints may exist:

from inside: ypwhich

- Ways of data acquisition: checks, keyboard tracing, ...

checks:
verify the proper server is returned from ypwhich

typescript analysis:
see if student knows the ’ypwhich’ command
see if student tries to guess some other commands
see if student runs ’apropos’ or ’man -k’ to find commands

 Welche Datei wird f ür die Gruppen-Daten verwendet?

- What does the student have to do?

Look through /var/yp/Makefile to see what source is used
for the ’groups’ map(s)

- What problems can occur, how can they be identified?

Student doesn’t know where to start looking
Student names NIS map file instead of its source
Student may mix up source of NIS map (/etc/group) and NIS map

file (== binary DB file, used for ypcat)

- Help: behavioristic, epistemic, ...

Hint at /etc/group
Hint at how the NIS map is produced
Hint at the process performed by /var/yp/Makefile
Outline general operation of NIS at

http://www.feyrer.de/SA/08-networking.html

392
APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

- What wrong thinking can cause problems? (== Believes?)

Student misses parts in the chain of files used between
server and client (/etc/group -> var/yp/group.byname
-> ypserv -> ypbind -> getgrent/ypcat)

- What viewpoints may exist:

from inside

- Ways of data acquisition: checks, keyboard tracing, ...

checks: n/a
typescript: not easily doable either

To improve, tell user to put the filename into some file,
then check the contents of that file later on.

 Welche Datei wird f ür die Passwort-Daten verwendet?

- What does the student have to do?

same as for group file above
think about shadow passwords and their (non)use in NIS

- What problems can occur, how can they be identified?

No technical problems can arise
Student may not understand use of shadow passwords with

NIS; may manifest in student looking at /etc/shadow

- Help: behavioristic, epistemic, ...

Hint at files
Hint at overall process
Hint at shadow passwords, and their (non)use in NIS

- What wrong thinking can cause problems? (== Believes?)

wrong: shadow passwords are being used

- What viewpoints may exist:

from inside (only)

- Ways of data acquisition: checks, keyboard tracing, ...

checks: n/a
typescript: see user browser /var/yp/Makefile,

warn when touching /etc/shadow or /etc/master.passwd?

 Überpr üfen Sie ob Gruppen- und Passwort-Informationen über NIS
abgefragt werden k önnen.

- What does the student have to do?

Run ’ypcat passwd’ and ’ypcat group’

- What problems can occur, how can they be identified?

No data or some error is printed,
or the output doesn’t contain anything that’s in the

relevant NIS maps (e.g. no ’root’ in the passwd map,
etc.)

393

Student uses finger or anything that needs nsswitch
setup, which is not done yet

ypserv and ypbind need to run for this to work

- Help: behavioristic, epistemic, ...

Hint at ’ypcat passwd’, ’ypcat group’ etc.
Give general hint on NIS
http://www.feyrer.de/SA/08-networking.html

- What wrong thinking can cause problems? (== Believes?)

User may try to go one step further and use system
interfaces (getpwent(3), getent(1), ...), but that’s
not configured yet.

User may not be aware of ypcat, it’s existence and
functionality

- What viewpoints may exist:

from inside and from outside the same (but no client
setup yet, and the test would be pretty much the
same)

- Ways of data acquisition: checks, keyboard tracing, ...

checks: not doable
typescript: see if user invokes ypcat with appropriate

arguments

 Vergleichen Sie den Passwort-Eintrag des Benutzers "v ulab" im NIS
und in den /etc-Dateien. Was stellen Sie fest?

- What does the student have to do?

Run ’ypcat passwd’ and determine the password (2nd) field
compare against the password (2nd) field in /etc/passwd
and /etc/shadow
Determine that NIS has the encrypted password (public),

while the password used to be in /etc/shadow (private)

No persistent change has to be made upon comparison.

- What problems can occur, how can they be identified?

Student doesn’t understand/notice that the formerly
private (encrypted) password is now publically
available in NIS.

No change to the system reflects this possible
non-perception. Solution: ask/verify by asking?

- Help: behavioristic, epistemic, ...

Display both passwords.
Ask why the two entries may be different.
Ask about availability of shadow passwords on all Unix syste ms
Ask about security implications.

- What wrong thinking can cause problems? (== Believs?)

Shadow passwords are used with NIS in general

- What viewpoints may exist:

from inside only, to read /etc/passwd

- Ways of data aquisition: checks, keyboard tracing, ...

394
APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

checks: n/a
typescript:

see if commands ’ypcat passwd’ are ran,
see if /etc/passwd is observed
see if /etc/shadow is observed

 Sorgen Sie daf ür, dass die Passwort-Informationen k ünftig in der
Datei /var/yp/passwd gehalten werden. Die existierenden L ogins
sollen dabei nicht übernommen werden.

- What does the student have to do?

create empty file /var/yp/passwd
chanve /var/yp/Makefile to set PWDIR=/var/yp
run ’make’ in /var/yp
restart yppasswdd via /etc/init.d/rpc stop/start,

/usr/lib/netsvc/yp/yp{stop,start}, or manually (kill,
/usr/lib/netsvc/yp/rpc.yppasswdd)

- What problems can occur, how can they be identified?

Student doesn’t know about the PWDIR switch in
/var/yp/Makefile

student copies /etc/passwd to /var/yp/passwd, and gets
duplicate, possibly non-identical accounts

syntax of PWDIR in /var/yp/Makefile is not followed as
exactly as it has to, resulting in yppasswdd not
starting up properly

new NIS map is not built, resulting in difference between
/var/yp/passwd and the NIS maps

yppasswdd is not restarted, and will continue to update
/etc/passwd

- Help: behavioristic, epistemic, ...

Give steps to perform: change PWDIR entry in
/var/yp/Makefile, touch /var/yp/passwd,
etc. etc. (see above)

Outline by what processes the passwd file is
used, and how they know its location (PWDIR setting
in /var/yp/Makefile)

Give general information on NIS components and handling

- What wrong thinking can cause problems? (== Believs?)

wrong: ypserv re-reads /var/yp/Makefile automatically,
wrong: ypserv rebuilds NIS maps automatically
wrong: yppasswdd re-reads /var/yp/Makefile automaticall y

- What viewpoints may exist:

from inside

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
proper entry in /var/yp/Makefile for PWDIR
see if /var/yp/passwd exists
compare output of ’ypcat passwd’ and passwd file to see

if NIS maps were rebuilt
see if yppasswdd works, to determine if the daemon was

restarted

typescript:
see if yppasswdd was restarted (either way!)
see if ypserv is restarted
see if NIS map is rebuilt (make in /var/yp)

395

 Legen Sie im NIS eine Kennung "ypuser" mit eindeutiger U ID,
Home-Verzeichnis "/usr/homes/ypuser", Korn-Shell als Lo gin-Shell,
und Passwort "ypuser" an.

- What does the student have to do?

Put appropriate line into /var/yp/passwd
Rebuild NIS maps

- What problems can occur, how can they be identified?

Student doesn’t know where to put the data
Student doesn’t know proper format
Student doesn’t know how to rebuild the NIS map

- Help: behavioristic, epistemic, ...

Give proper line, file and procedure to rebuild
Hint at file and give a general hint on rebuilding the

NIS map
Explain what to do about the UserID (UID)
Explain how password encryption works
Give URL of documentation for NIS and user management

- What wrong thinking can cause problems? (== Believs?)

useradd(8) or adduser(8) will know how to handle NIS
Incomplete entries (e.g. empty fields) in the passwd file

are ok
User doesn’t know that Korn-Shell == /bin/ksh
User doesn’t know how to determine UID

- What viewpoints may exist:

from inside and outside machine: check NIS map
from inside only: check home directory

- Ways of data aquisition: checks, keyboard tracing, ...

Checks:
passwd file must contain proper fields
home directory must exist and have proper permissions
NIS map must be updated

 Stellen Sie sicher dass der User "ypuser" via finger(1) sichtbar
ist

- What does the student have to do?

enable nis as source for nsswitch in /etc/nsswitch.conf
verify that "finger ypuser" works properly

- What problems can occur, how can they be identified?

fingerd is not started/enabled in inetd.conf
nsswitch.conf is not setup properly
NIS user doesn’t exist (see previous steps)

- Help: behavioristic, epistemic, ...

give exact steps: enable fingerd, fix nsswitch, run
finger

hint at files that may need changing
explain how finger works
explain role of inetd.conf for finger(d)
explain role of nsswitch/getpwnam for finger(d)
give general information on NIS, networking, enabling

network services via inetd.conf, usermanagement

396
APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

- What wrong thinking can cause problems? (== Believs?)

wrong: assume fingerd works per default
wrong: finger needs fingerd
wrong: system will check NIS automatically (instead of

needing nsswitch)

- What viewpoints may exist:

from inside system: finger ypuser
from outside system: finger ypuser@vulab1 (needs fingerd)

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
run finger and expect proper output

 Stellen Sie sicher dass sich der User "ypuser" via telne t, ssh und
ftp einloggen kann!

- What does the student have to do?

log into vulab1 via telnet, ssh, ftp
possibly start sshd first
possibly enable telnet and ftp in inetd.conf (and restart

inetd)

- What problems can occur, how can they be identified?

ftp and/or telnet not enabled in inetd
user does not know how to use telnet, ftp, ssh -

detecting?
logging in with / as home directory -> doesn’t exist
can’t login due to password unknown

- Help: behavioristic, epistemic, ...

discuss using services (ftp, telnet, ssh)
discuss service setup (sshd, telnetd, ftpd)
Explain possible problems during account creation and

login, and how to solve them

- What wrong thinking can cause problems? (== Believs?)

services are enabled by default
login will succeed without making sure password is set

properly
login will succeed flawlessly with no home directory

- What viewpoints may exist:

from inside:
check if processes run and all other pre-requirements

are met to do the login

from outside:
perform logins, and verify it works (easy!)

- Ways of data aquisition: checks, keyboard tracing, ...

checks: perform automated logins from outside

typescript logging: n/a

 Stellen Sie sicher, dass der User "ypuser" sein Passwor t mit

397

yppasswd(1) ändern kann.

- What does the student have to do?

login as ypuser
change password using ’yppasswd’
see it changed in the output of ’ypcat passwd’

- What problems can occur, how can they be identified?

yppasswdd wasn’t restarted after changing PWDIR in
/var/yp/Makefile

- Help: behavioristic, epistemic, ...

First, note doen (encrypted) password
Run yppasswd, logout & login with new password
Use ’ypcat passwd’ to verify if password was changed (and

NIS map updated)

- What wrong thinking can cause problems? (== Believs?)

passwd works always for NIS
yppasswdd catches up PWDIR-change automatically

- What viewpoints may exist:

from inside & outside:
same test, as not only the local passwd file, but also

the update of the NIS map needs to be verified, which
needs to be done via the network interface (ypcat)

- Ways of data aquisition: checks, keyboard tracing, ...

checks: change password manually

typescripts: nothing sensible

<h2>2. Client (NetBSD): vulab2</h2>

 Setzen Sie den Domainnamen auf den selben Namen wie beim NIS-Master

oben.

- [See above]

 Ist das aufsetzen des Clients mit "ypinit -c" n ötig? Ist es
sinnvoll? Warum (nicht)?

- What does the student have to do?

Think what ’ypinit -c’ does
No changes to the system needed

- What problems can occur, how can they be identified?

n/a

- Help: behavioristic, epistemic, ...

ypinit manpage
general documentation on NIS

- What wrong thinking can cause problems? (== Believs?)

398
APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

wrong: ypinit -c must always be run

- What viewpoints may exist:

n/a

- Ways of data aquisition: checks, keyboard tracing, ...

n/a

 Stellen Sie sicher dass die n ötigen Dienste (ypbind, ...) beim
booten gestartet werden.

- [see above]
- NetBSD needs changes to rc.conf

 Starten Sie die Dienste!

- [see above]
- NetBSD has files in /etc/rc.d

 Welcher NIS-Server wird verwendet?

- What does the student have to do?

Run ’ypwhich’ and see which NIS server gets listed

- What problems can occur, how can they be identified?

Student doesn’t know how to determine the said NIS server
Student doesn’t know that the command needed now is

’ypwhich’

- Help: behavioristic, epistemic, ...

Tell student to run ’ypwhich’
Outline how NIS clients are bound to servers (broadcast,

or fixed)
Give general introduction to NIS

- What wrong thinking can cause problems? (== Believs?)

Student may not know what the proper command is
Student may not know where to look for related

information

- What viewpoints may exist:

form inside: run command on client

- Ways of data aquisition: checks, keyboard tracing, ...

checks: n/a

typescripting:
see if student runs ’ypwhich’
recognize student trying various commands but failing

 Stellen Sie sicher dass die NIS Maps (group, hosts, ...) abgerufen
werden k önnen

- What does the student have to do?

run "ypcat passwd", "ypcat group", "ypcat hosts" etc. and
see if the produce proper output

399

- What problems can occur, how can they be identified?

student doesn’t know to use ypcat on the various NIS maps
tries poking around instead (niscat, ...)

- Help: behavioristic, epistemic, ...

give commands to run, and how to interpret output
General NIS documentation

- What wrong thinking can cause problems? (== Believs?)

n/a

- What viewpoints may exist:

from inside client only

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
see if ypcat gives proper data

typescript:
see if student runs ypcat with passwd, group, hosts
see if student tries to guess some command names without

knowing them

 Stellen Sie sicher dass die NIS-Benutzer mit finger(1) abgefragt
werden k önnen

- What does the student have to do?

Fix nsswitch.conf

- What problems can occur, how can they be identified?

Student doesn’t know about /etc/nsswitch.conf
Student doesn’t know what do put there
Student doesn’t know proper order of fields
Student adds ’nis’ to the group/password field in the

nsswitch.conf file, but doesn’t remove ’compat’. This
basically locks up the system.

- Help: behavioristic, epistemic, ...

Print proper filename and contents
Outline how finger(1) gets its information
Refer to documentation about name resolving (which

includes data on nsswitch)

- What wrong thinking can cause problems? (== Believs?)

wrong: finger(1) works out of the box when ypcat works
"the operating system is broken!"

- What viewpoints may exist:

from inside: finger
from outside: finger ypuser@client -> fingerd

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
see if nsswitch.conf lists ’nis’ as data source
see if finger(1) returns proper data
see if getpwnam(3) works properly

400
APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

typescript:
see if student edits nsswitch.conf
see if he uses finger properly for testing

 Stellen Sie sicher dass sich der oben angelegte Benutze r "ypuser"
auf dem Client einloggen kann. Erstellen Sie das Home-Verze ichnis
dazu vorerst manuell.

- What does the student have to do?

setup home directory
login as ’ypuser’ (via telnet, ssh, ftp, login, su)

- What problems can occur, how can they be identified?

user forgets to create home
user doesn’t know how to log in
user can’t login due to incompatible password formats

(des vs. blowfish/md5, ...) - unlikely

- Help: behavioristic, epistemic, ...

give exact commands
refer to documentation for setting up user accounts and

their home directories
refer to NIS documentation
refer to documentation on using su/ssh/telnet/ftp

- What wrong thinking can cause problems? (== Believs?)

wrong: home directory is needed to login

- What viewpoints may exist:

From inside: su / telnet localhost
from outside: ssh, telnet

- Ways of data aquisition: checks, keyboard tracing, ...

Checks:
check if homedir is present
use su from localhost
use ssh/telnet from outside

Typescript:
expect mkdir
expect some login attempts (via telnet, ssh, ...)

either from inside or outside

 Betrachten Sie das Passwort-Feld der Passwort-Datei d es Users
"ypuser" auf dem NIS Master!.

- What does the student have to do?

Run ’ypcat passwd’ and remember the password field
of the ypuser

- What problems can occur, how can they be identified?

Student doesn’t know how to retrieve the NIS password file
or where to find the password file

Student doesn’t know what the password field is

- Help: behavioristic, epistemic, ...

Give command to run and what field to extract
Refer to ypcat and passwd(5) manpage
Refer to general documentation on NIS

401

Refer to general documentation on user management

- What wrong thinking can cause problems? (== Believs?)

Students expects to make changes to system
Student doesn’t know where to locate the requested informat ion

- What viewpoints may exist:

from inside (only)

- Ways of data aquisition: checks, keyboard tracing, ...

Checks:
n/a

Typescript:
see if student looks at /var/yp/passwd file on NIS server

 Ändern Sie das Passwort von "ypuser" vom Client aus im NIS auf
‘‘myn1spw’’.

- What does the student have to do?

run ’yppasswd’ on NIS client

- What problems can occur, how can they be identified?

yppasswdd hasn’t caught up with PWDIR change, will
print error about user not existing

student mis-types password -> error
student doesn’t know how to change password via NIS,

tries ’passwd’ (w/o proper option)

- Help: behavioristic, epistemic, ...

Hint at exact command (yppasswd, passwd -y)
Refer to yppasswd and/or passwd manpage
Give general information about working in a NIS environment

- What wrong thinking can cause problems? (== Believs?)

wrong: the passwd command changes the NIS password automati cally

- What viewpoints may exist:

from inside only

- Ways of data aquisition: checks, keyboard tracing, ...

Checks:
check for new password afterwards

Typescript:
check if user runs the right command successfully
Recognize if user tries to run the wrong program

 Betrachten Sie das Passwort-Feld der Passwort-Datei d es Users
"ypuser" auf dem NIS Master erneut. Was stellen Sie fest?

- What does the student have to do?

Observe the password field in /var/yp/passwd
(or the corresponding NIS map) again, as above.

Note it has changed after running yppasswd from the client

- What problems can occur, how can they be identified?

402
APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

Password hasn’t changed. If so, an error was indicated
in the previous step.

- Help: behavioristic, epistemic, ...

Ask user to check if yppasswdd was restarted after
PWDIR check in /var/yp/Makefile

Hint at troubleshooting NIS setups
Give general documentation on how to operate NIS

- What wrong thinking can cause problems? (== Believs?)

n/a

- What viewpoints may exist:

From inside only:
either on NIS server (-> check /var/yp/passwd)
or on NIS client (-> run ypcat passwd)

- Ways of data aquisition: checks, keyboard tracing, ...

Checks: n/a

Typescript:
see if user looked at /var/yp/passwd (server) or

output of ’ypcat passwd’ (client) again, and
guess that he’s coming to proper conclusions.

Asking the user questions here could help to
verify the thesis of drawing proper conclusions.

<h2>3. Diverses</h2>

 Setzen Sie den "Full Name" des Benutzers "ypuser" auf "N IS

Testbenutzer". Verifizieren Sie das Ergebnis mit finger(1).
Welche Methoden zum setzen existieren auf dem NIS Master? We lche
auf dem NIS Client?

- What does the student have to do?

Client:
use chfn(1)

Server:
edit /var/yp/passwd file directly,
rebuild NIS map

Then:
Use finger(1) on client or server and see if the full

name is set properly

- What problems can occur, how can they be identified?

User doesn’t know which program to use to set the
fullname, tries/guesses some variations

User doesn’t know how to interpret finger(1) output
Student forgets to rebuild NIS maps after editing the

passwd file manually (no need for that when done via
chpasswd(1))

- Help: behavioristic, epistemic, ...

Give exact commands to run: chfn, vi passwd&&make, finger
Hint at possible commands to run

403

Give information about where the full name is stored,
hint at the relationship to NIS, and explain how
finger(1) accessees information from the client to
to the server

- What wrong thinking can cause problems? (== Believs?)

wrong: After changing the passwd file, the NIS server
will pick up the changes automatically, and no
rebuild of the NIS maps is needed

wrong: There’s no way to change the value from the
client,

wrong: the editing must be done as root on the server
wrong: a ’In real life:’ value of ’???’ on Solaris is ok

- What viewpoints may exist:

Change can be done from the client or the server
Verification can happen on both the client and the server

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
verify if fullname was set properly

typechecking:
verify if the name was set from the server (by editing

the passwd file and rebuilding the NIS map)
verify if the name was set from the client (by running

chfn(1))
verify that the finger(1) command was ran properly

("finger ypuser")

 Legen Sie eine NIS-Gruppe "benutzer" an, und machen Sie diese zur
(prim ären) Gruppe des Benutzers "ypuser". Welche Group-ID w ählen
Sie? Warum?

- What does the student have to do?

Edit /etc/group on the server
Create a new line with a distinct GID
Use new GID as primary GID for user ’ypuser’
Rebuild NIS maps

- What problems can occur, how can they be identified?

Student doesn’t know about /etc/group
Student doesn’t know that /etc/group is used for the

corresponding NIS map, and uses /var/yp/group
Student doesn’t recognize format of the group file, and

uses broken syntax (e.g. leaving out single fields!)
Student doesn’t find a distinct GID, re-uses a

pre-existing one
Student doesn’t use new GID for ypuser, leaves it

unchanged ot doesn’t use that of group "benutzer"
Student forgets to rebuild both group and passwd NIS

maps, files and NIS maps are inconsistent

- Help: behavioristic, epistemic, ...

Give exact entries for /etc/group and /var/yp/passwd on
the server and instructions to rebuild NIS maps

Give hints on procedure for rebuilding NIS maps
Give background information on group(5) and passwd(5)
Explain groups (primary, supplementary)

- What wrong thinking can cause problems? (== Believs?)

404
APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

wrong: no need to update NIS maps after editing
group+passwd

wrong: NIS server rebuilds maps automatically
wrong: groups file is under /var/yp
wrong: primary group membership is in group(5) file

instead of the GID in the passwd(5) file

- What viewpoints may exist:

from inside:
changes need to be made from inside the server
checking for proper settings and consistency can be made

on the server
checking for updated NIS maps can be made on the server

from outside:
the client can verify proper settings esp. in the NIS maps

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
see if group ’benutzer’ exists w/ proper values
see if GID in group map and passwd field is consistent

typescript:
see if user edits wrong file (e.g. /var/yp/passwd)
see if user did not run ’make’ in /var/yp on server

 Legen Sie im Home-Verzeichnis des Benutzers "ypuser" a uf dem
Master und dem Client eine Datei an, und überpr üfen Sie, welcher
Gruppe sie geh ört.

- What does the student have to do?

Create file on client and server
Observe group

- What problems can occur, how can they be identified?

File may not belong to group ’benutzer’ on both client
and server, if user didn’t login after changing the
group ownership

- Help: behavioristic, epistemic, ...

Tell user to login again before doing this, on both
client and server

Reference login process, which sets a process’
credentials (group!)

- What wrong thinking can cause problems? (== Believs?)

wrong: changing a user’s entry in the passwd file
automatically updates any process’ credentials

wrong: changing a user’s GID automatically takes his
files to the new group

- What viewpoints may exist:

from inside:
for each of the corresponding machines (server for the

file created on the server, dito for client)

from outside:
for each other of the corresponding machines (from the

server for the file created on the client, and vice
versa)

405

- Ways of data aquisition: checks, keyboard tracing, ...

Checks:
see if the file belongs to the right group for each of

the machines

Typescript:
see if/how user creates file (there are many possible

ways!). Probably better to just check effect...

 Sorgen Sie daf ür dass der Benutzer "ypuser" auf dem NetBSD-System
mittels su(1) root-Rechte erhalten kann. Er muss dazu (unte r
NetBSD) zus ätzlich Mitglied der Gruppe "wheel" sein.

- What does the student have to do?

Add user ’ypuser’ to group ’wheel’ in the client’s
/etc/group

possibly try "su"

- What problems can occur, how can they be identified?

the corresponding user’s primary group is set to wheel
(in the passwd file; which won’t work!)

user is added to the NIS group file - this may not work!

- Help: behavioristic, epistemic, ...

Tell user to put add ",ypuser" to wheel-line of client’s
/etc/group file, then run su(8)

refer to su(8) and group(5) manpages
explain difference between primary and supplementary

groups
refer to login process for when process credentials are

set

- What wrong thinking can cause problems? (== Believs?)

wrong: su(8) will always work
wrong: setting primary group to wheel (0) is ok
wrong: need to change NIS "group" file/map
wrong: change is in effect immediately afterwards,

instead of after next login

- What viewpoints may exist:

from inside client:
change client’s /etc/group file
login, run su(8), see if it works

from inside server:
TRY to change the group file, may not work...

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
see if su(8) succeeds on the client
see if user is in /etc/group on the client

typescript:
see if /etc/group was edited (difficult)
see if user successfully ran su(8)

 Wie bewerten Sie die Tatsache dass das root-Passwort al leine nicht
reicht, sondern auch die richtige Gruppenzugeh örigkeit
Voraussetzung f ür einen su(1) auf root ist? Vergleichen Sie
zwischen NetBSD, Solaris und Linux!

406
APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

- What does the student have to do?

think - no modification to the system required

recognize that proper group membership may not be easy to
achieve by a mallicious user, thus increasing
security by requiring proper group membership

- What problems can occur, how can they be identified?

user does not recognize security benefit,
sees step as extra hassle (see old linux su(8) manpage

WRT system administrators); can’t be detected easily

- Help: behavioristic, epistemic, ...

tell user that security is enhanced because a (already)
previleged account needs to "invite" others

give general information on system security, user
credentials and how to achieve "system" privileges

discuss password security

- What wrong thinking can cause problems? (== Believs?)

wrong: this is too much effort
wrong: this works the same everywhere
wrong: no special group membership is needed for su(8) -

this is special on BSD

- What viewpoints may exist:

form inside client only

from outside: for NIS map delivery at best

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
nothing to check

typescript:
nothing to check

 Der Rechner "tab" (IP-Nummer: 194.95.108.32) soll via NIS bekannt
gemacht werden. Tragen Sie den Rechner auf dem Server in die
entsprechende Hosts-Datei ein, aktualisieren Sie die
NIS-Map und verifizieren Sie das Ergebnis mittels ypcat(1)
und ping(1) sowohl auf dem NIS-Master als auch auf dem NIS-Cl ient.

- What does the student have to do?

add line ’194.95.108.32 tab’ to server’s /etc/hosts
rebuild NIS map(s)
use ’ypcat hosts’ on client and server, verify that ’tab’

is listed
run ’ping tab’ on client and server’

- What problems can occur, how can they be identified?

user doesn’t now proper format for /etc/hosts
user doesn’t remember to rebuild the NIS map
/etc/nsswitch.conf not configured to grab ’hosts’ entries

via ’nis’ (on both client and server)

- Help: behavioristic, epistemic, ...

give exact steps (see above)

407

hint at server’s /etc/hosts and NIS
explain how name resolution works: gethostbynam(),

nsswitch, NIS, ypbind, ypserv, /etc/hosts on server

- What wrong thinking can cause problems? (== Believs?)

wrong: this is related to DNS
wrong: no need to rebuild NIS map

- What viewpoints may exist:

from "inside" NIS domain: both for client & server

from "outside" NIS domain: not doable

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
see if "ping tab" works
see if "ypcat hosts" brings proper entry for ’tab’
see if gethostbynam("tab") returns a proper value,

e.g. with Perl

typescript:
see if /etc/hosts is modified ("vi /etc/hosts")
see if NIS map is rebuilt ("cd /var/yp ; make")
see if ping is ran on client and server

<h2>Hinweise:</h2>

 Solaris-Pakete f ür bash und tcsh liegen in /cdrom, Installation

mit pkgadd(1M).

- What does the student have to do?

cd /cdrom
pkgadd -d . SUNWtcsh
pkgadd -d . SUNWbash

- What problems can occur, how can they be identified?

student doesn’t recognize this step as optional
student doesn’t know how to add binary packages, tries

various commands (rpm, pkg_add, pkgadd with varying
syntax, reads manpages, ...)

- Help: behavioristic, epistemic, ...

give exact commands to run (see above)
hint at pkgadd(1M) manpage
give overview on package management

- What wrong thinking can cause problems? (== Believs?)

wrong: bash & tcsh are installed by default
wrong: pkgadd just uses a package name/directory as

argument, similar to pkg_add / rpm
wrong: package installation can be done w/o root

privileges

- What viewpoints may exist:

from inside only

- Ways of data aquisition: checks, keyboard tracing, ...

408
APPENDIX E. ANALYSIS OF EXERCISES UNDER TUTORIAL AND

ADAPTIVE ASPECTS

checks:
see if SUNW{bash,tcsh} are installed

typescript:
recognize problems as outlines above

 NetBSD-Pakete f ür bash und tcsh (und weitere) liegen auf
ftp://ftp.de.netbsd.org/pub/NetBSD/packages/1.6.1/s parc/All,
Installation mit pkg_add(1).

- What does the student have to do?

use ftp(1) to retrieve file, or use pkg_add(1) directly
use pkg_add(1) to install package

- What problems can occur, how can they be identified?

student doesn’t recognize this step as optional
student doesn’t know how to add binary packages, tries

various commands (rpm, pkg_add, pkgadd with varying
syntax, reads manpages, ...)

Student doesn’t know how to fetch files
Student doesn’t know that pkg_add can fetch the files

automatically
Packages may be moved from the above-named place(!)
Student may not have the necessary directories in $PATH

to run the binaries installed, resulting in "bash:
command not found" etc.

- Help: behavioristic, epistemic, ...

Give exact commands for installation and running
Reference manpages
Hint at adjusting PATH if necessary
Give general information on package handling

- What wrong thinking can cause problems? (== Believs?)

wrong: pkg_add knows where to find binary packages
automatically (w/o setting PKG_PATH)

wrong: Installed executables may reside in $PATH

- What viewpoints may exist:

from inside only

- Ways of data aquisition: checks, keyboard tracing, ...

checks:
see if both packages are installed

typescript:
recognize any problems in operating the commands properly
detect $PATH problems (esp. looking at the output of

commands ran)

