Contents

• What does NetBSD look like?
• So what is NetBSD?
• Introducing NetBSD:
 Some Applications & Products
• NetBSD 4 and beyond
What does NetBSD look like?
NetBSD looks like ... KDE
NetBSD looks like ... GNOME
NetBSD looks like ... XFCE
NetBSD looks like ... Xen
So what is NetBSD?
NetBSD is ...

- A descendant of 4.4BSD Unix
- A “general purpose” Unix/Linux-like Open Source Operating System
- Not Linux – NetBSD has its own kernel and userland
- A small core system that can be adjusted for many purposes via pkgsrc: Desktop, Web and Database servers, Firewalls, ...
- Secure and Performant, of course!
- Focussed on multiplatform portability
Features:

- Thousands of packages via pkgsrc
- Many areas of application
- One Operating System, 1 Source
- Modern & Vintage Hardware
- More than fifty Hardware Platforms
Introducing NetBSD: Some Applications & Products
NetBSD from roof to basement:

- **On Air**: International Space Station, on-plane systems

- **Roof**: WaveLAN routers, surveillance cameras, embedded boards

- **Office**: Highspeed networking, desktop, Embedded development

- **Entertainment**: Various game consoles and robots

- **Basement**: Storage solutions, servers
“Commodity” Networking:

- Various WLAN-Routers and Access-Points by Allied Telesis, IIJ/Root and Apple:

- Seclarity's SiNic Router-on-a-card

- Avocent KVM Switches

- Surveillance- and Webcams by SGI, Panasonic and Brains Inc.
Embedded Boards: PowerPC, MIPS

- MIPS – NetBSD/evbmips
- Malta 4/5kc, Access Cube, AMD Alchemy, Atheros, Meraki Mini

- PowerPC – NetBSD/evbppc
- Virtex-4 ML403 FPGA, Motorola Walnut, Marvell, Plat'Home OpenBlockS
Embedded boards: SH3/4, ARM

• Super-Hitachi - NetBSD/sh3
• CqREEK, Computes 7709, KZ-SH4-01:

• ARM, StrongARM, Xscale – NetBSD/evbarm
• Mesa 4C81, Gumstix + peripherals, Technologic Systems' TS-7200, ...

• Speaking of ARM ...
Of course it runs NetBSD!

dmesg
NetBSD 3.0_BETA (TS7200) #57: Mon Aug 8 00:34:41 MST 2005
joff@sayan.wifi.home:/home/joff/NetBSD-toaster/obj /sys/arch/evbarm/compile/TS7200
total memory = 32768 KB
avail memory = 28196 KB
mainbus0 (root)
cpu0 at mainbus0: ARM920T rev 0 (ARMPTDMI core)
cpu0: DC enabled IC enabled WB enabled EART
cpu0: 16KB/32B 64-way Instruction cache
cpu0: 16KB/32B 64-way write-back-locking-A Data cache
epco0 at mainbus0: Cirrus Logic EF93xx SoC rev 0E
epco0: fclk 200.03 MHz hclk 100.01 MHz pclk 50.01 MHz
ohci0 at epco0 addr 0x80020000-0x80020fff intr 56
epckl0 at epco0 addr 0x80010000-0x800100ff intr 35
epco0 at epco0 addr 0x80010000-0x8001fff intr 39
epco0: MAC address 00:0D:69:4F:AF:76
ukphy0 at epco0 phy 1: Generic IEEE 802.3u media interface
ukphy0: QEI 0x0010ai, model 0x0021, rev. 9
ukphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto
epcom0 at epco0 addr 0x8080c0000-0x8080c0ff intr 52
epcom0 at epco0 addr 0x8080d0000-0x8080d0ff intr 54
epcom0: consoa
ohci10: OHCI version 1.0
usb0 at ohci10: USB revision 1.0
uhub0 at usb0
uhub0: Cirrus Logic OHCI root hub, class 9/0, rev 1.00/1.00, addr 1
uhub0: 3 ports with 3 removable, self powered
tspld0 at mainbus0: Technologic Systems TS-7200 rev C, features 0x1
tspld0: jumpers 0x7
spld0: board temperature 21.93 degC (71.48 degF)
is0 at tspld0: PC/104 expansion bus
tsdlo0 at isa0 port 0x100-0x107: Technologic Systems TS-DIO24
toasterlcd0 at tsdio0: 4x40 text-mode hd44780 LCD
toasterlcd0: using port C, bits 0-7 as DB0-DB7
viewdd0: using port B, bits 0-3 as RS, WR, ENI, EN2
wds0 at toastercdio0 kbdmux 1
wsmux1: connecting to wds0
wds0 at toastercdio0: internal toaster control output
wds0: using port B, bits 4-7 for front panel LEDs
toaster: using port A, bit 0 for magnetic latch
toaster: using port A, bit 1 for burner element
wds0 at tspld0: on-board CompactFlash socket
atubus0 at wdc0 channel 0
toastersensors0 at tspld0: internal toaster sensor inputs
toastersensors0: using signal DIO_0 for toast down sensor
toastersensors0: using signals DIO_1-DIO_5 for panel buttons
toastersensors0: using 12-bit MAX197-ADC channel 0 for burnlevel knob
wskbd0 at toastersensors0 mux 1
wskbd0: connecting to wds0
uhub1 at uhub0 port 1
uhub1: Chicony Generic USB Hub, class 9/0, rev 1.10/1.00, addr 2
uhub1: 3 ports with 2 removable, bus powered
uhidev0 at uhub1 port 1 configuration 1 interface 0
uhidev0: Chicony FPU-65 USB Keyboard, rev 1.10/1.00, addr 3, iclass 3/1
uhbd0 at uhidev0: 8 modifier keys, 6 key codes
wdo0 at atubus0 drive 0:
wd0: drive supports 1-sector PIO transfers, LBA addressing
wd0: 488 MB, 993 cyli, 16 head, 63 sec, 512 bytes/sect x 100944 sectors
wd0: drive supports PIO mode 4, DMA mode 2
wskbd1 at uhbd0 mux 1
wskbd1: connecting to wds0
boot device:
root on wdo0s dumps on wdo0

/bin/sh
/usr/local/bin/toast:
sysctl -w hw.toaster0.magnetic_latch=1
user presses toast lever down now...
sysctl -w hw.toaster0.burner_element = 1
sleep 60
sysctl -w hw.toaster0.burner_element = 0
sysctl -w hw.toaster0.magnetic_latch=0
echo "Toast is done!"
You can, too!

Embedded development and crosscompiling:

- **Build a crosscompiler:**
 `build.sh -m evbarm tools`

- **Cross-compile the NetBSD system:**
 `build.sh -m evbarm distribution`

- **Cross-compile the X Window System:**
 `build.sh -m evbarm -x distribution`

- **Cross-compile a NetBSD kernel:**
 `build.sh -m evbarm kernel=TOASTER`
High-Performance Networking:

Internet Land Speed Record 2004:

1831GB
in 1 hour
=4.3GBit/s
High-Performance Networking:

- Force10 Ethernet Switches: Up to 1260 1Gbit or 224 10GBit Ports

- Brocade Rhapsody SAN Switches: sold by HP, IBM, Dell, ...
Office Apps

• Firewall solutions by Dubbele and concept04

• Ricoh & Savin fotocopier/printer/fax/scanner

• Thin clients - DEC DNARD “Shark”, IBM NetWork Station, Precedence Netmanager
Desktop use

- KDE, GNOME, you name it
- Flash support via nspluginwrapper, to use Linux-Flash-Plugin with native Firefox
- Native OpenOffice.org
- 3D hardware support starting to evolve, eye candy like Compiz works with ATI cards.

Problem: lack of documentation and support by hardware manufacturers! (Hi Adobe, nVidia & AMD/ATI!)
In other Operating Systems:

- Apple's Mac OS X – userland tools, `ip6config`
- Castle's RISC OS uses parts of NetBSD's networking subsystem
- PSO offers a port of NetBSD's TCP/IP stack to VxWorks
- QNX uses the TCP stack and various userland commands (`ftp`, `libsocket`, ...)
- Probably many others – TELL US!
Entertainment

• Game consoles: Sony PSP and many PS2 games use NetBSD's TCP/IP stack via the EEnet (Emotion Engine) library

• Robots: ITR and MiRai RT with NetBSD-based SpeecysOS
Storage & servers

● TeamASA's NPWRserver
● ... and many others via Wasabi Systems

● Iodata's Landisk (SH4) and compatibles: Plextor PX-EH16L, PX-EH25L and PX-EH40L

● ... plus of course the usual Intel, AMD, Alpha, UltraSPARC, etc. based servers to which NetBSD was ported!
NetBSD 4 and beyond
NetBSD 4

ETA: Early May 2007

Changes:
• Improved platform support
• Kernel changes
• Networking improvements
• Filesystem works

Daily beta builds from ftp.NetBSD.org in /pub/NetBSD-daily/netbsd-4
NetBSD 4 – Platform support

- evbmips: Alchemy Au1550 processors and DBAu1550 board, 4G Systems MTX-1 board (MeshCube / AccessCube), Plat'home OpenMicroServer (OMS-AL400/128)

- NEC's MIPS based EWS4800 workstations

- Support for Xen3 DomU and Dom0, HVM
NetBSD 4 with Xen 3.0.4 & HVM

Une meilleure disponibilité des applications

Des outils d’administration nouveaux et améliorés facilitent le déplacement des technologies de haute disponibilité apportant une meilleure continuité de service à vos applications sensibles.
NetBSD 4 - Kernel

- tmpfs – memory efficient ramdisk
- Added VFS hooks interface and simplified NFS exports list handling
- Stateful read-ahead algorithm
- Switch bufq strategy on the fly
- firmload(9) API for loading firmware
- Multiboot support (GRUB)
- iSCSI target (server) support
- W^X support via paxctl(1)
NetBSD 4 - Networking

- agr(4) for link aggregation
- Common Address Redundancy Protocol (CARP) support added
- Bluetooth support was added
- tftp(1) has multicast support
- Support for Explicit Congestion Notification in the TCP/IP stack
- API for TCP congestion control algorithms, selectable via sysctls
NetBSD 4 – File systems

- UDF file system support for optical media and block devices like harddisc partitions and vnd's.
- Support for System V Boot File System
- `pam_afslog(8)`: Obtain AFS tokens from Kerberos5 credentials and create process authentication group
- SPARC can now boot with `/` on a RAIDframe mirror-set
- `puffs - Pass-to-Userspace Framework File System`
NetBSD 4 - Misc

• mail(1): Got MIME and multi-character set handling; command line editing, thread support, and completion.

• veriexecgen(8) for easy and fast generation of Veriexec fingerprints

• proplib(3) API for sending property lists to/from the kernel using ioctl

• ... besides many updates of 3rd party software, imports of external projects and drivers, bugfixes, security updates, etc.
NetBSD-current

Will eventually be the base for NetBSD 5

Changes:

- SMP with 1:1 threading (no more Scheduler Activations), fine-grained locking (no more Big Lock)
- POSIX Asynchronous I/O, Direct I/O
- Improved PUFFS & FUSE compatibility
- SSH-FS, Plan9 filesystem (via puffs)
- Apple HFS+ support

Daily builds on ftp.NetBSD.org in /pub/NetBSD-daily/HEAD
Thanks!

Questions?

www.NetBSD.org

Hubert Feyrer <hubertf@NetBSD.org>