
INTRO (2) NetBSDSystem Calls Manual INTRO (2)

NAME
intro , errno — introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section provides an overview of the system calls, their error returns, and other common definitions and
concepts.

DIAGNOSTICS
Nearly all of the system calls provide an error number in the external variableerrno. errno is implemented
as a macro which expands to a modifiable lvalue of typeint.

When a system call detects an error, it returns an integer value indicating failure (usually −1) and sets the
variable errno accordingly. (This allows interpretation of the failure on receiving a −1 and to take action
accordingly.) Successfulcalls never set errno; once set, it remains until another error occurs. It should only
be examined after an error. Note that a number of system calls overload the meanings of these error num-
bers, and that the meanings must be interpreted according to the type and circumstances of the call.

The manual page for each system call will list some of the common errno codes that system call can return,
but that should not be considered an exhaustive list, i.e. a properly written program should be able to grace-
fully recover from any error that a system call might return. Documenting all the error codes that a system
call can return in a more specification-like manner would take more resources than this project has available.

The following is a complete list of the errors and their names as given in 〈errno.h 〉.

0 Error 0. Not used.

1 EPERM Operation not permitted. An attempt was made to perform an operation limited to processes
with appropriate privileges or to the owner of a file or other resources.

2 ENOENTNo such file or directory. A component of a specified pathname did not exist, or the pathname
was an empty string.

3 ESRCH No such process. No process could be found corresponding to that specified by the given process
ID.

4 EINTR Interrupted function call. An asynchronous signal (such asSIGINT or SIGQUIT) was caught
by the process during the execution of an interruptible function. If the signal handler performs a
normal return, the interrupted function call will seem to have returned the error condition.

5 EIO Input/output error. Some physical input or output error occurred. This error will not be reported
until a subsequent operation on the same file descriptor and may be lost (over written) by any subse-
quent errors.

6 ENXIO Device not configured. Input or output on a special file referred to a device that did not exist, or
made a request beyond the limits of the device. Thiserror may also occur when, for example, a tape
drive is not online or no disk pack is loaded on a drive.

7 E2BIG Arg list too long. The number of bytes used for the argument and environment list of the new
process exceeded the current limit of 218 bytes (ARG_MAXin 〈sys/syslimits.h 〉).

8 ENOEXECExec format error. A request was made to execute a file that, although it has the appropriate
permissions, was not in the format required for an executable file.

NetBSD 3.0 November 4, 2007 1

INTRO (2) NetBSDSystem Calls Manual INTRO (2)

9 EBADF Bad file descriptor. A file descriptor argument was out of range, referred to no open file, had
been revoked by revoke (2), or aread (2) (or write (2)) request was made to a file that was only
open for writing (or reading).

10 ECHILD No child processes. A wait (2) or waitpid (2) function was executed by a process that had
no existing or unwaited-for child processes.

11 EDEADLK Resource deadlock avoided. An attempt was made to lock a system resource that would
have resulted in a deadlock situation.

12 ENOMEM Cannot allocate memory. The new process image required more memory than was allowed
by the hardware or by system-imposed memory management constraints.A lack of swap space is
normally temporary; however, a lack of core is not.Soft limits may be increased to their corre-
sponding hard limits.

13 EACCES Permission denied. An attempt was made to access a file in a way forbidden by its file access
permissions.

14 EFAULT Bad address. The system detected an invalid address in attempting to use an argument of a
call. Thereliable detection of this error cannot be guaranteed and when not detected may result in
the generation of a signal, indicating an address violation, which is sent to the process.

15 ENOTBLK Block device required. A block device operation was attempted on a non-block device or
file.

16 EBUSY Resource busy. An attempt to use a system resource which was in use at the time in a manner
which would have conflicted with the request.

17 EEXIST File exists. An existing file was mentioned in an inappropriate context, for instance, as the
new link name in alink (2) function.

18 EXDEV Improper link. A hard link to a file on another file system was attempted.

19 ENODEV Operation not supported by device. An attempt was made to apply an inappropriate function
to a device, for example, trying to read a write-only device such as a printer.

20 ENOTDIR Not a directory. A component of the specified pathname existed, but it was not a directory,
when a directory was expected.

21 EISDIR Is a directory. An attempt was made to open a directory with write mode specified.

22 EINVAL Invalid argument. Some invalid argument was supplied.(For example, specifying an unde-
fined signal to asignal (3) orkill (2) function).

23 ENFILE Too many open files in system. Maximum number of file descriptors allowable on the system
has been reached and a requests for an open cannot be satisfied until at least one has been closed.

24 EMFILE Too many open files. <As released, the limit on the number of open files per process is 64.>
Thegetrlimit (2) call with theRLIMIT_NOFILE resource will obtain the current limit.

25 ENOTTY Inappropriate ioctl for device. A control function (seeioctl (2)) was attempted for a file or
special device for which the operation was inappropriate.

26 ETXTBSY Te xt file busy. The new process was a pure procedure (shared text) file which was open for
writing by another process, or while the pure procedure file was being executed anopen (2) call
requested write access.

27 EFBIG File too large. The size of a file exceeded the maximum. (The system-wide maximum file size
is 263 bytes. Eachfile system may impose a lower limit for files contained within it).

NetBSD 3.0 November 4, 2007 2

INTRO (2) NetBSDSystem Calls Manual INTRO (2)

28 ENOSPC Device out of space. A write (2) to an ordinary file, the creation of a directory or symbolic
link, or the creation of a directory entry failed because no more disk blocks were available on the file
system, or the allocation of an inode for a newly created file failed because no more inodes were
available on the file system.

29 ESPIPE Illegal seek. An lseek (2) function was issued on a socket, pipe orFIFO.

30 EROFS Read-only file system. An attempt was made to modify a file or directory was made on a file
system that was read-only at the time.

31 EMLINK Too many links. The number of hard links to a single file has exceeded the maximum.(The
system-wide maximum number of hard links is 32767.Each file system may impose a lower limit
for files contained within it).

32 EPIPE Broken pipe. A write on a pipe, socket orFIFO for which there is no process to read the data.

33 EDOM Numerical argument out of domain. A numerical input argument was outside the defined domain
of the mathematical function.

34 ERANGE Result too large or too small. The result of the function is too large or too small to be repre-
sented in the available space.

35 EAGAIN Resource temporarily unavailable. This is a temporary condition and later calls to the same
routine may complete normally.

36 EINPROGRESS Operation now in progress. An operation that takes a long time to complete (such as a
connect (2)) was attempted on a non-blocking object (seefcntl (2)).

37 EALREADY Operation already in progress. An operation was attempted on a non-blocking object that
already had an operation in progress.

38 ENOTSOCK Socket operation on non-socket. Self-explanatory.

39 EDESTADDRREQDestination address required. A required address was omitted from an operation on
a socket.

40 EMSGSIZE Message too long. A message sent on a socket was larger than the internal message buffer
or some other network limit.

41 EPROTOTYPE Protocol wrong type for socket. A protocol was specified that does not support the
semantics of the socket type requested.For example, you cannot use theARPA InternetUDP proto-
col with typeSOCK_STREAM.

42 ENOPROTOOPT Protocol option not available. A bad option or level was specified in a
getsockopt (2) orsetsockopt (2) call.

43 EPROTONOSUPPORTProtocol not supported. The protocol has not been configured into the system or
no implementation for it exists.

44 ESOCKTNOSUPPORTSocket type not supported. The support for the socket type has not been config-
ured into the system or no implementation for it exists.

45 EOPNOTSUPP Operation not supported. The attempted operation is not supported for the type of
object referenced. Usually this occurs when a file descriptor refers to a file or socket that cannot
support this operation, for example, trying toaccepta connection on a datagram socket.

46 EPFNOSUPPORTProtocol family not supported. The protocol family has not been configured into the
system or no implementation for it exists.

NetBSD 3.0 November 4, 2007 3

INTRO (2) NetBSDSystem Calls Manual INTRO (2)

47 EAFNOSUPPORTAddress family not supported by protocol family. An address incompatible with the
requested protocol was used.For example, you shouldn’t necessarily expect to be able to useNS
addresses withARPA Internet protocols.

48 EADDRINUSE Address already in use. Only one usage of each address is normally permitted.

49 EADDRNOTAVAIL Cannot assign requested address. Normally results from an attempt to create a
socket with an address not on this machine.

50 ENETDOWNNetwork is down. A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable. A socket operation was attempted to an unreachable net-
work.

52 ENETRESET Network dropped connection on reset. The host you were connected to crashed and
rebooted.

53 ECONNABORTEDSoftware caused connection abort. A connection abort was caused internal to your
host machine.

54 ECONNRESETConnection reset by peer. A connection was forcibly closed by a peer. This normally
results from a loss of the connection on the remote socket due to a timeout or a reboot.

55 ENOBUFS No buffer space available. An operation on a socket or pipe was not performed because the
system lacked sufficient buffer space or because a queue was full.

56 EISCONN Socket is already connected. A connect (2) request was made on an already connected
socket; or, asendto (2) orsendmsg (2) request on a connected socket specified a destination when
already connected.

57 ENOTCONN Socket is not connected. An request to send or receive data was disallowed because the
socket was not connected and (when sending on a datagram socket) no address was supplied.

58 ESHUTDOWNCannot send after socket shutdown. A request to send data was disallowed because the
socket had already been shut down with a previousshutdown (2) call.

60 ETIMEDOUT Operation timed out. A connect (2) or send (2) request failed because the connected
party did not properly respond after a period of time.(The timeout period is dependent on the com-
munication protocol).

61 ECONNREFUSEDConnection refused. No connection could be made because the target machine
actively refused it. This usually results from trying to connect to a service that is inactive on the for-
eign host.

62 ELOOP Too many levels of symbolic links. A path name lookup involved more than 32
(MAXSYMLINKS) symbolic links.

63 ENAMETOOLONGFile name too long. A component of a path name exceeded 255(MAXNAMELEN)
characters, or an entire path name exceeded 1023 (MAXPATHLEN−1) characters.

64 EHOSTDOWNHost is down. A socket operation failed because the destination host was down.

65 EHOSTUNREACHNo route to host. A socket operation was attempted to an unreachable host.

66 ENOTEMPTY Directory not empty. A directory with entries other than ‘. ’ and ‘.. ’ was supplied to a
remove directory or rename call.

67 EPROCLIM Too many processes.

68 EUSERS Too many users. The quota system ran out of table entries.

NetBSD 3.0 November 4, 2007 4

INTRO (2) NetBSDSystem Calls Manual INTRO (2)

69 EDQUOT Disc quota exceeded. A write (2) to an ordinary file, the creation of a directory or symbolic
link, or the creation of a directory entry failed because the user’s quota of disk blocks was
exhausted, or the allocation of an inode for a newly created file failed because the user’s quota of
inodes was exhausted.

70 ESTALE Stale NFS file handle. An attempt was made to access an open file (on anNFS filesystem)
which is now unavailable as referenced by the file descriptor. This may indicate the file was deleted
on theNFSserver or some other catastrophic event occurred.

72 EBADRPC RPC struct is bad. Exchange ofRPCinformation was unsuccessful.

73 ERPCMISMATCH RPC version wrong. The version ofRPCon the remote peer is not compatible with
the local version.

74 EPROGUNAVAIL RPC prog. not avail. The requested program is not registered on the remote host.

75 EPROGMISMATCHProgram version wrong. The requested version of the program is not available on
the remote host (RPC) .

76 EPROCUNAVAIL Bad procedure for program. An RPC call was attempted for a procedure which
doesn’t exist in the remote program.

77 ENOLCK No locks available. A system-imposed limit on the number of simultaneous file locks was
reached.

78 ENOSYS Function not implemented. Attempted a system call that is not available on this system.

79 EFTYPE Inappropriate file type or format. Attempted a file operation on a file of a type for which it
was inv alid.

80 EAUTH Authentication error. Attempted to use an invalid authentication ticket to mount anNFSfilesys-
tem.

81 ENEEDAUTH Need authenticator. An authentication ticket must be obtained before the given NFS
filesystem may be mounted.

82 EIDRM Identifier removed. An IPC identifier was removed while the current process was waiting on it.

83 ENOMSG No message of the desired type. An IPC message queue does not contain a message of the
desired type, or a message catalog does not contain the requested message.

84 EOVERFLOWValue too large to be stored in data type. A numerical result of the function was too large
to be stored in the caller-provided space.

85 EILSEQ Illegal byte sequence. A wide character/multibyte character encoding error occurred.

86 ENOTSUP Not supported. An attempt was made to set or change a parameter to an unsupported value.

87 ECANCELED Operation canceled. The requested operation was canceled.

88 EBADMSG Bad or corrupt message. A message in the specified message catalog did not satisfy imple-
mentation defined criteria, or a STREAMS operation encountered an invalid message or a file
descriptor at the STREAM head.

89 ENODATA No message available. No message is available on the STREAM head read queue

90 ENOSR No STREAM resources. Buffers could not be allocated due to insufficient STREAMs memory
resources.

91 ENOSTR Not a STREAM. A STREAM is not associated with the specified file descriptor.

NetBSD 3.0 November 4, 2007 5

INTRO (2) NetBSDSystem Calls Manual INTRO (2)

92 ETIME STREAM ioctl timeout. The timer set for a STREAMSioctl (2) operation has expired.

93 ENOATTR Attribute not found. The specified extended attribute does not exist.

94 EMULTIHOP Multihop attempted. Components of path require hopping to multiple remote machines
and the file system does not allow it. It occurs when users try to access remote resources which are
not directly accessible.

95 ENOLINK Link has been severed. Occurs when the link (virtual circuit) connecting to a remote
machine is gone.

96 EPROTO Protocol error. Some protocol error occurred. This error is device-specific, but is generally
not related to a hardware failure.

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a non-negative integer called a process
ID. Therange of this ID is from 0 to 30000.

Parent process ID
A new process is created by a currently active process; (seefork (2)). Theparent process ID of a
process is initially the process ID of its creator. If the creating process exits, the parent process ID
of each child is set to the ID of a system process,init (8).

Process Group
Each active process is a member of a process group that is identified by a non-negative integer called
the process group ID. This is the process ID of the group leader. This grouping permits the signal-
ing of related processes (seetermios (4)) and the job control mechanisms ofcsh (1).

Session
A session is a set of one or more process groups.A session is created by a successful call to
setsid (2), which causes the caller to become the only member of the only process group in the
new session.

Session leader
A process that has created a new session by a successful call tosetsid (2), is known as a session
leader. Only a session leader may acquire a terminal as its controlling terminal (seetermios (4)).

Controlling process
A session leader with a controlling terminal is a controlling process.

Controlling terminal
A terminal that is associated with a session is known as the controlling terminal for that session and
its members.

Terminal Process Group ID
A terminal may be acquired by a session leader as its controlling terminal.Once a terminal is asso-
ciated with a session, any of the process groups within the session may be placed into the fore-
ground by setting the terminal process group ID to the ID of the process group. This facility is used
to arbitrate between multiple jobs contending for the same terminal.(Seecsh (1) andtty (4) for
more information on job control.)

Orphaned Process Group
A process group is considered to beorphanedif it is not under the control of a job control shell.
More precisely, a process group is orphaned when none of its members has a parent process that is
in the same session as the group, but is in a different process group. Note that when a process exits,
the parent process for its children is changed to beinit (8), which is in a separate session. Not all
members of an orphaned process group are necessarily orphaned processes (those whose creating

NetBSD 3.0 November 4, 2007 6

INTRO (2) NetBSDSystem Calls Manual INTRO (2)

process has exited). Theprocess group of a session leader is orphaned by definition.

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups.One of these groups is distinguished from others
and used in implementing accounting facilities. Thepositive integer corresponding to this distin-
guished group is termed the real group ID.

All processes have a real user ID and real group ID.These are initialized from the equivalent
attributes of the process that created it.

Effective User Id, Effective Group Id, and Group Access List
Access to system resources is governed by two values: the effective user ID, and the group access
list. Thefirst member of the group access list is also known as the effective group ID. (In POSIX.1,
the group access list is known as the set of supplementary group IDs, and it is unspecified whether
the effective group ID is a member of the list.)

The effective user ID and effective group ID are initially the process’s real user ID and real group ID
respectively. Either may be modified through execution of a set-user-ID or set-group-ID file (possi-
bly by one its ancestors) (seeexecve (2)). By convention, the effective group ID (the first member
of the group access list) is duplicated, so that the execution of a set-group-ID program does not
result in the loss of the original (real) group ID.

The group access list is a set of group IDs used only in determining resource accessibility. Access
checks are performed as described below in "File Access Permissions".

Saved Set User ID and Saved Set Group ID
When a process executes a new file, the effective user ID is set to the owner of the file if the file is
set-user-ID, and the effective group ID (first element of the group access list) is set to the group of
the file if the file is set-group-ID.The effective user ID of the process is then recorded as the saved
set-user-ID, and the effective group ID of the process is recorded as the saved set-group-ID. These
values may be used to regain those values as the effective user or group ID after reverting to the real
ID (seesetuid (2)). (In POSIX.1, the saved set-user-ID and saved set-group-ID are optional, and
are used in setuid and setgid, but this does not work as desired for the super-user.)

Super-user
A process is recognized as asuper-userprocess and is granted special privileges if its effective user
ID is 0.

Special Processes
The processes with process IDs of 0 and 1 are special.Process 0 is the scheduler. Process 1 is the
initialization processinit (8), and is the ancestor (parent) of every other process in the system.It
is used to control the process structure.The kernel will allocate other kernel threads to handle cer-
tain periodic tasks or device related tasks, such as:

acctwatch System accounting disk watcher, seeacct (2), acct (5).

aiodoned Asynchronous I/O done handler, seeuvm(9).

atabusX AT A bus handler, seeata (4).

cardslotX CardBus slot watcher thread, seecardslot (4).

cryptoret The software crypto daemon.

fssbsX File system snapshot thread, seefss (4).

NetBSD 3.0 November 4, 2007 7

INTRO (2) NetBSDSystem Calls Manual INTRO (2)

ioflush The in-kernel periodic flush the buffer cache to disk task, which replaces the old
updateprogram.

nfsio, nfskqpoll
NFS handing daemons.

lfs_writer Log filesystem writer.

pagedaemon The page daemon.

raidX , raidioX , raid_parity , raid_recon, raid_reconip, raid_copyback
Raid framework related threads, seeraid (4).

scsibusX SCSI bus handler, seescsi (4).

smbiodX, smbkq
SMBFS handling daemon, seenetsmb (4).

swdmover The software data mover I/O thread, seedmoverio (4).

sysmon The systems monitoring framework daemon.

usbX, usbtask
USB bus handler, seeusb (4).

There are more machine-dependent kernel threads allocated by different drivers. Seethe specific
driver manual pages for more information.

Descriptor
An integer assigned by the system when a file is referenced byopen (2) or dup (2), or when a
socket is created bypipe (2), socket (2), orsocketpair (2), which uniquely identifies an access
path to that file or socket from a given process or any of its children.

File Name
Names consisting of up to 255(MAXNAMELEN) characters may be used to name an ordinary file,
special file, or directory.

These characters may be selected from the set of allASCII character excluding 0 (NUL) and the
ASCII code for ‘/ ’ (slash). (Theparity bit, bit 7, must be 0).

Note that it is generally unwise to use ‘∗ ’, ‘ ?’, ‘ [’ or ‘] ’ as part of file names because of the special
meaning attached to these characters by the shell.

Pathname
A path name is aNUL-terminated character string starting with an optional slash ‘/ ’, followed by
zero or more directory names separated by slashes, optionally followed by a file name. The total
length of a path name must be less than 1024 (MAXPATHLEN) characters.

If a path name begins with a slash, the path search begins at theroot directory. Otherwise, the
search begins from the current working directory. A slash by itself names the root directory. An
empty string is not a valid pathname.

Directory
A directory is a special type of file that contains entries that are references to other files.Directory
entries are called links.By convention, a directory contains at least two links, ‘. ’ and ‘.. ’, referred
to asdot anddot-dot respectively. Dot refers to the directory itself and dot-dot refers to its parent
directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working directory for
the purpose of resolving path name searches.A process’s root directory need not be the root direc-

NetBSD 3.0 November 4, 2007 8

INTRO (2) NetBSDSystem Calls Manual INTRO (2)

tory of the root file system.

File Access Permissions
Every file in the file system has a set of access permissions.These permissions are used in deter-
mining whether a process may perform a requested operation on the file (such as opening a file for
writing). Accesspermissions are established at the time a file is created.They may be changed at
some later time through thechmod(2) call.

File access is broken down according to whether a file may be: read, written, or executed. Directory
files use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different classes of
users: the owner of the file, those users in the file’s group, anyone else.Every file has an indepen-
dent set of access permissions for each of these classes. When an access check is made, the system
decides if permission should be granted by checking the access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:

The process’s effective user ID is that of the super-user. (Note: even the super-user cannot execute a
non-executable file).

The process’s effective user ID matches the user ID of the owner of the file and the owner permis-
sions allow the access.

The process’s effective user ID does not match the user ID of the owner of the file, and either the
process’s effective group ID matches the group ID of the file, or the group ID of the file is in the
process’s group access list, and the group permissions allow the access.

Neither the effective user ID nor effective group ID and group access list of the process match the
corresponding user ID and group ID of the file, but the permissions for ‘‘other users’’ allow access.

Otherwise, permission is denied.

Sockets and Address Families
A socket is an endpoint for communication between processes.Each socket has queues for sending
and receiving data.

Sockets are typed according to their communications properties.These properties include whether
messages sent and received at a socket require the name of the partner, whether communication is
reliable, the format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consultsocket (2) for more
information about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols. Each pro-
tocol set supports addresses of a certain format. An Address Family is the set of addresses for a spe-
cific group of protocols. Each socket has an address chosen from the address family in which the
socket was created.

SEE ALSO
intro (3), perror (3)

HISTORY
An intro manual page appeared in Version 6AT&T UNIX .

NetBSD 3.0 November 4, 2007 9

EXIT (2) NetBSD System Calls Manual EXIT (2)

NAME
_Exit, _exit — terminate the calling process

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

void
_Exit (int status);

#include <unistd.h>

void
_exit (int status);

DESCRIPTION
The_Exit () and_exit () functions are equivalent. They each terminate a process with the following con-
sequences:

• All of the descriptors open in the calling process are closed.This may entail delays, for example, waiting
for output to drain; a process in this state may not be killed, as it is already dying.

• If the parent process of the calling process has an outstandingwait (2) call or catches theSIGCHLDsig-
nal, it is notified of the calling process’s termination and thestatusis set as defined bywait (2).

• The parent process-ID of all of the calling process’s existing child processes are set to 1; the initialization
process (see the DEFINITIONS section ofintro (2)) inherits each of these processes.

• If the termination of the process causes any process group to become orphaned (usually because the par-
ents of all members of the group have now exited; see “orphaned process group” inintro (2)), and if
any member of the orphaned group is stopped, theSIGHUPsignal and theSIGCONTsignal are sent to
all members of the newly-orphaned process group.

• If the process is a controlling process (seeintro (2)), theSIGHUP signal is sent to the foreground
process group of the controlling terminal, and all current access to the controlling terminal is revoked.

Most C programs call the library routineexit (3), which flushes buffers, closes streams, unlinks temporary
files, etc., before calling_exit ().

RETURN VALUES
_Exit () and_exit () can never return.

SEE ALSO
fork (2), sigaction (2), wait (2), exit (3)

STANDARDS
The _exit () function conforms toISO/IEC 9945-1:1990 (“POSIX.1”). The_Exit () function conforms to
ISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 April 23, 2002 1

_LWP_CREATE (2) NetBSD System Calls Manual _LWP_CREATE (2)

NAME
_lwp_create — create a new light-weight process

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

int
_lwp_create (ucontext_t ∗ context , unsigned long flags , lwpid_t ∗ new_lwp);

DESCRIPTION
_lwp_create () causes creation of a new light-weight process, or LWP, and adds it to the current process.
The context argument specifies the initial execution context for the new LWP including signal mask,
stack, and machine registers.

The following flags affect the creation of the new LWP:

LWP_DETACHED The LWP is created detached. The resources associated with a detached LWP will be
automatically reclaimed by the system when the LWP exits. Otherwise,a terminated
LWP’s resources will not be reclaimed until its status is reported to another LWP via
_lwp_wait (2).

LWP_SUSPENDED
The LWP is created suspended, and will not begin execution until it is resumed by
another LWP via_lwp_continue (2).

The LWP ID of the new LWP is stored in the location pointed to bynew_lwp.

RETURN VALUES
Upon successful completion,_lwp_create () returns a value of 0.Otherwise, an error code is returned to
indicate the error.

ERRORS
_lwp_create () will fail and no LWP will be created if:

[EAGAIN] The system-imposed limit on the total number of LWPs under execution would be exceeded.
This limit is configuration-dependent.

[ENOMEM] There is insufficient swap space for the new LWP.

[EFAULT] The address pointed to bycontext or new_lwp is outside the process’s allocated address
space.

SEE ALSO
_lwp_continue (2), _lwp_exit (2), _lwp_wait (2), _lwp_makecontext (3)

HISTORY
The_lwp_create () system call first appeared inNetBSD 2.0.

NetBSD 3.0 January 13, 2003 1

_LWP_CTL (2) NetBSD System Calls Manual _LWP_CTL (2)

NAME
_lwp_ctl — prepare per-LWP communication area between kernel and userland

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

int
_lwp_ctl (int features , struct lwpctl ∗∗ address);

DESCRIPTION
_lwp_ctl () prepares per-LWP communication area for the calling LWP, and maps it into the calling
process’ address space. It takes the following arguments.

features The bitwise-OR of the following flags.

LWPCTL_FEATURE_CURCPURequest lc_curcpu.

LWPCTL_FEATURE_PCTR Request lc_pctr.

address The address to store a pointer to lwpctl structure for the calling LWP.

The per-LWP communication area is described by an lwpctl structure. It has following members, depending
onfeatures.

int lc_curcpu The integral identifier of the CPU on which the LWP is running, or
LWPCTL_CPU_NONEwhen the LWP is not running on any CPU. It’s updated by the
kernel and should be considered as read-only for userland.It’s available only if
requested with theLWPCTL_FEATURE_CURCPUflag.

int lc_pctr The integer which is incremented on every context switches to the LWP. It can be used
to detect preemption of the LWP. (thus its name "preemption counter".)It’s updated by
the kernel and should be considered as read-only for userland.It’s available only if
requested with theLWPCTL_FEATURE_PCTRflag.

RETURN VALUES
_lwp_ctl () returns 0 on success. Otherwise, −1 is returned anderrno is set to indicate the error.

SEE ALSO
errno (2)

NetBSD 3.0 May 5, 2008 1

_LWP_DETACH (2) NetBSDSystem Calls Manual _LWP_DETACH (2)

NAME
_lwp_detach — detach a light-weight process

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

int
_lwp_detach (lwpid_t lwp);

DESCRIPTION
_lwp_detach () causes a light-weight process to become detached, having the same effect as if the LWP
was created with theLWP_DETACHEDflag.

The resources associated with a detached LWP will be automatically reclaimed by the system when the LWP
exits. Conversely, an attached LWP’s resources will not be reclaimed until its status is reported to another
LWP via _lwp_wait (2).

RETURN VALUES
A 0 value indicates that the call succeeded.A −1 return value indicates an error occurred anderrno is set to
indicate the reason.

ERRORS
[EINVAL] The LWP is already detached.

[ESRCH] No LWP can be found in the current process corresponding to that specified bylwp.

SEE ALSO
_lwp_create (2), _lwp_wait (2)

HISTORY
The_lwp_detach () system call first appeared inNetBSD 5.0.

NetBSD 3.0 January 20, 2007 1

_LWP_EXIT (2) NetBSD System Calls Manual _LWP_EXIT (2)

NAME
_lwp_exit — terminate the calling light-weight process

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

void
_lwp_exit (void);

DESCRIPTION
_lwp_exit () terminates the calling LWP. If it is the last LWP in the process, the process exits with a status
of 0. If the LWP was not created in a detached state, then the system will not reclaim its LWP ID until its
status is reported to another LWP in the process via_lwp_wait (2).

RETURN VALUES
_lwp_exit () can never return.

SEE ALSO
_exit (2), _lwp_create (2), _lwp_wait (2)

HISTORY
The_lwp_exit () system call first appeared inNetBSD 2.0.

NetBSD 3.0 January 13, 2003 1

_LWP_GETNAME (2) NetBSD System Calls Manual _LWP_GETNAME (2)

NAME
_lwp_getname — get descriptive name of an LWP

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

int
_lwp_getname (lwpid_t target , char ∗ name , size_t len);

DESCRIPTION
_lwp_getname () gets the descriptive name of the LWP. It takes the following arguments.

target The LWP whose descriptive name will be obtained.

name The buffer to be filled with the descriptive name of the LWP.

len The size of the buffername in bytes.

RETURN VALUES
_lwp_getname () returns 0 on success. Otherwise, −1 is returned anderrno is set to indicate the error.

SEE ALSO
top (1), ps (1), errno (2), _lwp_setname (2)

NetBSD 3.0 December 15, 2007 1

_LWP_GETPRIVATE (2) NetBSDSystem Calls Manual _LWP_GETPRIVATE (2)

NAME
_lwp_getprivate , _lwp_setprivate — get and set light-weight process private data

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

void ∗
_lwp_getprivate (void);

void
_lwp_setprivate (void ∗ ptr);

DESCRIPTION
_lwp_setprivate () stores the pointer to private dataptr in a location private to the LWP.

_lwp_getprivate () returns the pointer to private data for the LWP.

ERRORS
The _lwp_getprivate () and _lwp_setprivate () functions are always successful, and no return
value is reserved to indicate an error.

SEE ALSO
_lwp_makecontext (3)

HISTORY
The_lwp_getprivate () and_lwp_setprivate () system calls first appeared inNetBSD 2.0.

NetBSD 3.0 January 16, 2003 1

_LWP_KILL (2) NetBSD System Calls Manual _LWP_KILL (2)

NAME
_lwp_kill — send a signal to a light-weight process

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

int
_lwp_kill (lwpid_t lwp , int sig);

DESCRIPTION
_lwp_kill () sends the signal specified bysig to the light-weight process specified bylwp. If thesig
argument is given as 0 (zero),_lwp_kill will test for the existance of the target LWP, but will take no fur-
ther action.

Job control signals and uncatchable signals can not be directed to a specific LWP: if posted with
_lwp_kill , they will affect all LWPs in the process.

Signals will be posted successfully to suspended LWPs, but will not be handled further until the LWP has
been continued.

RETURN VALUES
A 0 value indicates that the call succeeded.A −1 return value indicates an error occurred anderrno is set to
indicate the reason.

ERRORS
[EINVAL] sig is not a valid signal number.

[ESRCH] No LWP can be found in the current process corresponding to that specified bylwp.

SEE ALSO
_lwp_continue (2), _lwp_suspend (2), kill (2), sigaction (2), signal (7)

HISTORY
The_lwp_kill () system call first appeared inNetBSD 5.0.

NetBSD 3.0 January 20, 2007 1

_LWP_PARK (2) NetBSD System Calls Manual _LWP_PARK (2)

NAME
_lwp_park — wait interruptably in the kernel

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

int
_lwp_park (const struct timespec ∗ abstime , lwpid_t unpark , const void ∗ hint ,

const void ∗ unparkhint);

DESCRIPTION
_lwp_park () can be used to synchronize access to resources among multiple light-weight processes.It
causes the calling LWP to wait interruptably in the kernel, until one of the following conditions is met:

• Theabstime argument is non-NULL, and the absolute UTC time it specifies has passed.

• The LWP receives a directed signal posted using_lwp_kill (), or is elected to handle a signal on
behalf of its containing process.

• The LWP is awoken by another LWP in the same process that has made a call to_lwp_wakeup ().

• The LWP is awoken by another LWP in the same process that has made a call to_lwp_unpark () or
_lwp_unpark_all ().

The preferred method to awaken an LWP sleeping as a result of a call to_lwp_park () is to make a call to
_lwp_unpark (), or _lwp_unpark_all (). The_lwp_wakeup () system call is a more general facility,
and requires more resources to execute.

The optionalhint argument specifies the address of object upon which the LWP is synchronizing.When
the hint value is matched between calls to_lwp_park () and _lwp_unpark () or
_lwp_unpark_all (), it may reduce the time necessary for the system to resume execution of waiting
LWPs.

Theunpark andunparkhint arguments can be used to fold a park operation and unpark operation into a
single system call.If unpark is non-zero, the system will behave as if the following call had been made
before the calling thread begins to wait:

_lwp_unpark(unpark, unparkhint);

RETURN VALUES
_lwp_park () may return a value of 0. Otherwise, −1 is returned anderrno is set to provide more informa-
tion.

ERRORS
[EALREADY]

A request was made to wake the LWP before it began to wait in the kernel.

[EINTR] The LWP has been awoken by a signal or by a call to one of the following functions:
_lwp_unpark (), _lwp_unpark_all (), _lwp_wakeup ().

[EINVAL] The time value specified byabstime is invalid.

[ESRCH] No LWP can be found in the current process corresponding tounpark.

NetBSD 3.0 September 25, 2007 1

_LWP_PARK (2) NetBSD System Calls Manual _LWP_PARK (2)

[ETIMEDOUT]
The UTC time specified byabstime has passed.

SEE ALSO
_lwp_unpark (2), _lwp_unpark_all (2), _lwp_wakeup (2)

HISTORY
The_lwp_park () system call first appeared inNetBSD 5.0.

NetBSD 3.0 September 25, 2007 2

_LWP_SELF (2) NetBSD System Calls Manual _LWP_SELF (2)

NAME
_lwp_self — get light-weight process identification

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

lwpid_t
_lwp_self (void);

DESCRIPTION
_lwp_self () returns the LWP ID of the calling LWP.

ERRORS
The_lwp_self () function is always successful, and no return value is reserved to indicate an error.

SEE ALSO
_lwp_create (2)

HISTORY
The_lwp_self () system call first appeared inNetBSD 2.0.

NetBSD 3.0 January 13, 2003 1

_LWP_SETNAME (2) NetBSD System Calls Manual _LWP_SETNAME (2)

NAME
_lwp_setname — set descriptive name of an LWP

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

int
_lwp_setname (lwpid_t target , const char ∗ name);

DESCRIPTION
_lwp_setname () sets the descriptive name of the LWP. It takes the following arguments.

target The LWP whose descriptive name will be set.

name The string to be used as the descriptive name of the LWP.

The name is used bytop (1) when showing LWPs, for example.

RETURN VALUES
_lwp_setname () returns 0 on success. Otherwise, −1 is returned anderrno is set to indicate the error.

SEE ALSO
top (1), ps (1), errno (2), _lwp_getname (2)

NetBSD 3.0 December 15, 2007 1

_LWP_SUSPEND (2) NetBSD System Calls Manual _LWP_SUSPEND (2)

NAME
_lwp_suspend , _lwp_continue — suspend or continue a light-weight process

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

int
_lwp_suspend (lwpid_t lwp);

int
_lwp_continue (lwpid_t lwp);

DESCRIPTION
_lwp_suspend () suspends execution of the LWP specified bylwp. Once an LWP is suspended, subse-
quent calls to_lwp_suspend () have no effect. Theonly way to resume execution of a suspended LWP is
via _lwp_continue ().

_lwp_continue () resumes execution of the LWP specified bylwp. Once an LWP is resumed, subse-
quent calls to_lwp_continue () have no effect.

RETURN VALUES
Upon successful completion,_lwp_suspend () and_lwp_continue () return a value of 0.Otherwise,
an error code is returned to indicate the error.

ERRORS
_lwp_suspend () and_lwp_continue () will fail if:

[ESRCH] No LWP can be found in the current process corresponding to that specified bylwp.

_lwp_suspend () will fail if:

[EDEADLK] The LWP specified bylwp is the only LWP in the process.

SEE ALSO
_lwp_create (2)

HISTORY
The_lwp_create () system call first appeared inNetBSD 2.0.

NetBSD 3.0 January 13, 2003 1

_LWP_UNPARK (2) NetBSD System Calls Manual _LWP_UNPARK (2)

NAME
_lwp_unpark — resume execution of a waiting LWP

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

int
_lwp_unpark (lwpid_t lwp , const void ∗ hint);

DESCRIPTION
_lwp_unpark () resumes execution of the light-weight processlwp.

The target LWP is assumed to be waiting in the kernel as a result of a call to_lwp_park (). If the target
LWP is not currently waiting, it will return immediatley upon the next call to_lwp_park ().

See_lwp_park (2) for a description of thehint argument.

RETURN VALUES
A 0 value indicates that the call succeeded.A −1 return value indicates an error occurred anderrno is set to
indicate the reason.

ERRORS
[ESRCH] No LWP can be found in the current process corresponding to that specified bylwp.

SEE ALSO
_lwp_park (2), _lwp_unpark_all (2), _lwp_wakeup (2)

HISTORY
The_lwp_unpark () system call first appeared inNetBSD 5.0.

NetBSD 3.0 January 20, 2007 1

_LWP_UNPARK_ALL (2) NetBSD System Calls Manual _LWP_UNPARK_ALL (2)

NAME
_lwp_unpark_all — resume execution of a waiting LWP

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

ssize_t
_lwp_unpark_all (lwpid_t ∗ targets , size_t ntargets , const void ∗ hint);

DESCRIPTION
_lwp_unpark_all () resumes execution of one or more light-weight processes listed in the array pointed
to bytargets.

The target LWPs are assumed to be waiting in the kernel as a result of calls to_lwp_park (). If any of the
target LWPs are not currently waiting, those LWPs will return immediatley upon the next call to
_lwp_park ().

The value pointed to byntargets specifies the size of the array pointed to bytargets. If thetargets
argument is given as NULL, the maximum size of the array (expressed as the number of entries) is returned.

See_lwp_park (2) for a description of thehint argument.

RETURN VALUES
If the maximum size of thetargets array is not being queried, a return of 0 indicates that the call suc-
ceeded. A−1 return value indicates an error occurred anderrno is set to indicate the reason.

ERRORS
[EFAULT] The value specified fortargets is invalid.

[EINVAL] The value specified forntargets is out of range.

[ENOMEM] Insufficient resources are available to complete the operation.

SEE ALSO
_lwp_park (2), _lwp_unpark (2), _lwp_wakeup (2)

HISTORY
The_lwp_unpark_all () system call first appeared inNetBSD 5.0.

NetBSD 3.0 February 10, 2007 1

_LWP_WAIT (2) NetBSD System Calls Manual _LWP_WAIT (2)

NAME
_lwp_wait — wait for light-weight process termination

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

int
_lwp_wait (lwpid_t wlwp , lwpid_t ∗ rlwp);

DESCRIPTION
_lwp_wait () suspends execution of the calling LWP until the LWP specified bywlwp terminates. The
specified LWP must not be detached.If wlwp is 0, then_lwp_wait () waits for any undetached LWP in
the current process.

If rlwp is notNULL, then it points to the location where the LWP ID of the exited LWP is stored.

RETURN VALUES
Upon successful completion,_lwp_wait () returns a value of 0.Otherwise, an error code is returned to
indicate the error.

ERRORS
_lwp_wait () will fail if:

[ESRCH] No undetached LWP can be found in the current process corresponding to that specified by
wlwp.

[EDEADLK] The calling LWP is the only LWP in the process.

[EDEADLK] The LWP ID specified bywlwp is the LWP ID of the calling LWP.

[EINTR] _lwp_wait () was interrupted by a caught signal, or the signal did not have the
SA_RESTARTflag set.

SEE ALSO
_lwp_create (2), _lwp_exit (2)

HISTORY
The_lwp_wait () system call first appeared inNetBSD 2.0.

NetBSD 3.0 January 13, 2003 1

_LWP_WAKEUP (2) NetBSD System Calls Manual _LWP_WAKEUP (2)

NAME
_lwp_wakeup — make a blocked light-weight process runnable

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

int
_lwp_wakeup (lwpid_t lwp);

DESCRIPTION
_lwp_wakeup () makes a blocked LWP runnable.The blocked LWP must be inLSSLEEPstate. Unblock-
ing the LWP does not guarantee that it will make progress; it may block again as soon as it resumes execu-
tion in the kernel.

RETURN VALUES
Upon successful completion,_lwp_wakeup () returns a value of 0.Otherwise, an error code is returned to
indicate the error.

ERRORS
_lwp_wakeup () will fail if:

[ESRCH] No LWP can be found in the current process corresponding to that specified bylwp.

[ENODEV] The specified LWP is not inLSSLEEPstate.

[EBUSY] The specified LWP is blocked in an uninterruptible sleep.

HISTORY
The_lwp_wakeup () system call first appeared inNetBSD 2.0.

NetBSD 3.0 January 13, 2003 1

ACCEPT (2) NetBSD System Calls Manual ACCEPT (2)

NAME
accept — accept a connection on a socket

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

int
accept (int s , struct sockaddr ∗ restrict addr ,

socklen_t ∗ restrict addrlen);

DESCRIPTION
The arguments is a socket that has been created withsocket (2), bound to an address withbind (2), and is
listening for connections after alisten (2). Theaccept () argument extracts the first connection request
on the queue of pending connections, creates a new socket with the same properties ofs and allocates a new
file descriptor for the socket. If no pending connections are present on the queue, and the socket is not
marked as non-blocking,accept () blocks the caller until a connection is present. If the socket is marked
non-blocking and no pending connections are present on the queue,accept () returns an error as described
below. The accepted socket may not be used to accept more connections.The original socket s remains
open.

The argumentaddr is a result parameter that is filled in with the address of the connecting entity, as known
to the communications layer. The exact format of theaddr parameter is determined by the domain in which
the communication is occurring.The addrlen is a value-result parameter; it should initially contain the
amount of space pointed to byaddr; on return it will contain the actual length (in bytes) of the address
returned. Thiscall is used with connection-based socket types, currently withSOCK_STREAM.

It is possible toselect (2) or poll (2) a socket for the purposes of doing anaccept () by selecting or
polling it for read.

For certain protocols which require an explicit confirmation, such asISO or DATAKIT , accept () can be
thought of as merely dequeuing the next connection request and not implying confirmation.Confirmation
can be implied by a normal read or write on the new file descriptor, and rejection can be implied by closing
the new socket.

One can obtain user connection request data without confirming the connection by issuing arecvmsg (2)
call with anmsg_iovlen of 0 and a non-zeromsg_controllen, or by issuing agetsockopt (2)
request. Similarly, one can provide user connection rejection information by issuing asendmsg (2) call
with providing only the control information, or by callingsetsockopt (2).

RETURN VALUES
The call returns −1 on error. If it succeeds, it returns a non-negative integer that is a descriptor for the
accepted socket.

ERRORS
Theaccept () will fail if:

[EAGAIN] The socket is marked non-blocking and no connections are present to be accepted.

[EBADF] The descriptor is invalid.

[ECONNABORTED] A connection has been aborted.

NetBSD 3.0 November 18, 2006 1

ACCEPT (2) NetBSD System Calls Manual ACCEPT (2)

[EFAULT] Theaddr parameter is not in a writable part of the user address space.

[EINTR] Theaccept () call has been interrupted by a signal.

[EINVAL] The socket has not been set up to accept connections (usingbind (2) and
listen (2)).

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[ENOTSOCK] The descriptor references a file, not a socket.

[EOPNOTSUPP] The referenced socket is not of typeSOCK_STREAM.

SEE ALSO
bind (2), connect (2), listen (2), poll (2), select (2), socket (2)

HISTORY
Theaccept () function appeared in 4.2BSD.

NetBSD 3.0 November 18, 2006 2

ACCESS (2) NetBSD System Calls Manual ACCESS (2)

NAME
access — check access permissions of a file or pathname

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
access (const char ∗ path , int mode);

DESCRIPTION
Theaccess () function checks the accessibility of the file named bypath for the access permissions indi-
cated bymode. The value ofmode is the bitwise inclusive OR of the access permissions to be checked
(R_OKfor read permission,W_OKfor write permission andX_OKfor execute/search permission) or the exis-
tence test,F_OK. All components of the pathnamepath are checked for access permissions (including
F_OK).

The real user ID is used in place of the effective user ID and the real group access list (including the real
group ID) are used in place of the effective ID for verifying permission.

If a process has super-user privileges and indicates success forR_OKor W_OK, the file may not actually have
read or write permission bits set. If a process has super-user privileges and indicates success forX_OK, at
least one of the user, group, or other execute bits is set.(However, the file may still not be executable. See
execve (2).)

RETURN VALUES
If path cannot be found or if any of the desired access modes would not be granted, then a −1 value is
returned; otherwise a 0 value is returned.

ERRORS
Access to the file is denied if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file presently being
executed.

[EACCES] Permission bits of the file mode do not permit the requested access, or search permis-
sion is denied on a component of the path prefix.The owner of a file has permission
checked with respect to the ‘‘owner’’ read, write, and execute mode bits, members of
the file’s group other than the owner have permission checked with respect to the
‘‘ group’’ mode bits, and all others have permissions checked with respect to the
‘‘ other’’ mode bits.

NetBSD 3.0 April 1, 1994 1

ACCESS (2) NetBSD System Calls Manual ACCESS (2)

[EFAULT] path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.

SEE ALSO
chmod(2), execve (2), stat (2)

STANDARDS
Theaccess () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

BUGS
access () is a potential security hole and should never be used.

NetBSD 3.0 April 1, 1994 2

ACCT (2) NetBSD System Calls Manual ACCT (2)

NAME
acct — enable or disable process accounting

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
acct (const char ∗ file);

DESCRIPTION
Theacct () call enables or disables the collection of system accounting records. If the argumentfile is a
nil pointer, accounting is disabled.If file is anexisting pathname (null-terminated), record collection is
enabled and for every process initiated which terminates under normal conditions an accounting record is
appended tofile. Abnormal conditions of termination are reboots or other fatal system problems.Records
for processes which never terminate can not be produced byacct ().

For more information on the record structure used byacct (), see/usr/include/sys/acct.h and
acct (5).

This call is permitted only to the super-user.

NOTES
Accounting is automatically disabled when the file system the accounting file resides on runs out of space; it
is enabled when space once again becomes available. For this purpose,acct () creates a kernel thread called
“acctwatch”.

RETURN VALUES
On error −1 is returned. The file must exist and the call may be exercised only by the super-user.

ERRORS
acct () will fail if one of the following is true:

[EPERM] The caller is not the super-user.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix, or the path name is not
a regular file.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] The named file resides on a read-only file system.

[EFAULT] file points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.
Also, acct () fails if failed to create kernel thread described above. Seefork (2) for errnovalue.

NetBSD 3.0 June 4, 1993 1

ACCT (2) NetBSD System Calls Manual ACCT (2)

SEE ALSO
fork (2), acct (5), sa (8)

HISTORY
An acct () function call appeared in Version 7AT&T UNIX .

NetBSD 3.0 June 4, 1993 2

ADJTIME (2) NetBSD System Calls Manual ADJTIME (2)

NAME
adjtime — correct the time to allow synchronization of the system clock

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/time.h>

int
adjtime (const struct timeval ∗ delta , struct timeval ∗ olddelta);

DESCRIPTION
adjtime () makes small adjustments to the system time, as returned bygettimeofday (2), advancing or
retarding it by the time specified by the timeval delta. If delta is negative, the clock is slowed down by
incrementing it more slowly than normal until the correction is complete.If delta is positive, a larger
increment than normal is used. The skew used to perform the correction is generally a fraction of one per-
cent. Thus,the time is always a monotonically increasing function.A time correction from an earlier call to
adjtime () may not be finished whenadjtime () is called again. If olddelta is non-nil, the structure
pointed to will contain, upon return, the number of microseconds still to be corrected from the earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local area network. Such
time servers would slow down the clocks of some machines and speed up the clocks of others to bring them
to the average network time.

If the calling user is not the super user, then theadjtime () function in the standard C library will try to use
theclockctl (4) device if present, thus making possible for non privileged users to adjust the system time.
If clockctl (4) is not present or not accessible, thenadjtime () reverts to theadjtime () system call,
which is restricted to the super user.

RETURN VALUES
A return value of 0 indicates that the call succeeded.A return value of −1 indicates that an error occurred,
and in this case an error code is stored in the global variableerrno.

ERRORS
adjtime () will fail if:

[EFAULT] An argument points outside the process’s allocated address space.

[EPERM] The process’s effective user ID is not that of the super user.

SEE ALSO
date (1), gettimeofday (2), clockctl (4), timed (8), timedc (8)

R. Gusella and S. Zatti,TSP: The Time Synchronization Protocol for UNIX 4.3BSD.

HISTORY
Theadjtime () function call appeared in 4.3BSD.

NetBSD 3.0 June 4, 1993 1

ARM_DRAIN_WRITEBUF (2) NetBSD System Calls Manual ARM_DRAIN_WRITEBUF (2)

NAME
arm_drain_writebuf — drains the CPU write buffer

LIBRARY
ARM Architecture Library (libarm, −larm)

SYNOPSIS
#include <machine/sysarch.h>

int
arm_drain_writebuf ();

DESCRIPTION
arm_drain_writebuf () will make sure that all the entries in the processor write buffer are written out to
memory.

Not all processors support this operation (currently only the SA110). Those processes that do not treat this
function as a null-op.

ERRORS
arm_drain_writebuf () will never fail so will always return 0.

REFERENCES
StrongARM Data Sheet

NetBSD 3.0 March 29, 2002 1

ARM_SYNC_ICACHE (2) NetBSD System Calls Manual ARM_SYNC_ICACHE (2)

NAME
arm_sync_icache — clean the CPU data cache and flush the CPU instruction cache

LIBRARY
ARM Architecture Library (libarm, −larm)

SYNOPSIS
#include <machine/sysarch.h>

int
arm_sync_icache (u_int addr , int len);

DESCRIPTION
arm_sync_icache () will make sure that all the entries in the processor instruction cache are synchro-
nized with main memory and that any data in a write back cache has been cleaned. Some ARM processors
(e.g. SA110) have separate instruction and data caches thus any dynamically generated or modified code
needs to be written back from any data caches to main memory and the instruction cache needs to be syn-
chronized with main memory.

On such processorsarm_sync_icache () will clean the data cache and invalidate the processor instruction
cache to force reloading from main memory. On processors that have a shared instruction and data cache
and have a write through cache (e.g. ARM6) no action needs to be taken.

The routine takes a start addressaddr and a lengthlen to describe the area of memory that needs to be
cleaned and synchronized.

ERRORS
arm_sync_icache () will never fail so will always return 0.

REFERENCES
StrongARM Data Sheet

NetBSD 3.0 March 29, 2002 1

BIND (2) NetBSD System Calls Manual BIND (2)

NAME
bind — bind a name to a socket

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

int
bind (int s , const struct sockaddr ∗ name , socklen_t namelen);

DESCRIPTION
bind () assigns a name to an unnamed socket. Whena socket is created withsocket (2) it exists in a name
space (address family) but has no name assigned.bind () requests thatname be assigned to the socket.
namelen indicates the amount of space pointed to byname, in bytes.

NOTES
Binding a name in theUNIX domain creates a socket in the file system that must be deleted by the caller
when it is no longer needed (usingunlink (2)).

The rules used in name binding vary between communication domains. Consult the manual entries in sec-
tion 4 for detailed information.

RETURN VALUES
If the bind is successful, a 0 value is returned.A return value of −1 indicates an error, which is further speci-
fied in the globalerrno.

ERRORS
Thebind () call will fail if:

[EBADF] s is not a valid descriptor.

[ENOTSOCK] s is not a socket.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EADDRINUSE] The specified address is already in use.

[EINVAL] The socket is already bound to an address.

[EINVAL] The family of the socket and that requested inname->sa_family are not equiv-
alent.

[EACCES] The requested address is protected, and the current user has inadequate permission to
access it.

[EFAULT] Thename parameter is not in a valid part of the user address space.

The following errors are specific to binding names in theUNIX domain.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceededNAME_MAXcharacters, or an entire path name
exceededPATH_MAXcharacters.

NetBSD 3.0 August 30, 2005 1

BIND (2) NetBSD System Calls Manual BIND (2)

[ENOENT] A prefix component of the path name does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EIO] An I/O error occurred while making the directory entry or allocating the inode.

[EROFS] The name would reside on a read-only file system.

[EISDIR] An empty pathname was specified.

SEE ALSO
connect (2), getsockname (2), listen (2), socket (2)

HISTORY
Thebind () function call appeared in 4.2BSD.

SECURITY CONSIDERATIONS
bind () was changed inNetBSD 1.4 to prevent the binding of a socket to the same port as an existing socket
when all of the following is true:

• either of the existing or new addresses isINADDR_ANY,
• the uid of the new socket is not root, and the uids of the creators of the sockets are different,
• the address is not a multicast address, and
• both sockets are not bound toINADDR_ANYwith SO_REUSEPORTset.

This prevents an attack where a user could bind to a port with the host’s IP address (after setting
SO_REUSEADDR) and ‘steal’ packets destined for a server that bound to the same port withINADDR_ANY.

bind () was changed inNetBSD 4.0 to honor the user’s umask when binding sockets in the local domain.
This was done to match the behavior of other operating systems, includingFreeBSD, OpenBSD, and Linux,
and to improve compatibility with some third-party software. Pleasenote that this behavior is not portable.
If you must bind a local socket in a portable and secure way, you need to make a directory with tight permis-
sions and then create the socket inside it.

NetBSD 3.0 August 30, 2005 2

BRK (2) NetBSD System Calls Manual BRK (2)

NAME
brk , sbrk — change data segment size

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
brk (void ∗ addr);

void ∗
sbrk (intptr_t incr);

DESCRIPTION
The brk and sbrk functions are legacy interfaces from before the advent of modern virtual memory
management.

Thebrk () andsbrk () functions are used to change the amount of memory allocated in a process’s data seg-
ment. They do this by moving the location of the “break”. The break is the first address after the end of the
process’s uninitialized data segment (also known as the “BSS”).

While the actual process data segment size maintained by the kernel will only grow or shrink in page sizes,
these functions allow setting the break to unaligned values (i.e. it may point to any address inside the last
page of the data segment).

Thebrk () function sets the break toaddr.

The sbrk () function raises the break by at leastincr bytes, thus allocating at leastincr bytes of new
memory in the data segment. Ifincr is negative, the break is lowered byincr bytes.

sbrk () returns the prior address of the break.The current value of the program break may be determined by
callingsbrk (0). (Seealsoend (3)).

The getrlimit (2) system call may be used to determine the maximum permissible size of thedata seg-
ment; it will not be possible to set the break beyond theRLIMIT_DATA rlim_maxvalue returned from a call
to getrlimit (2), e.g. “etext + rlim.rlim_max”. (seeend (3) for the definition ofetext).

RETURN VALUES
brk () returns 0 if successful; otherwise −1 witherrnoset to indicate why the allocation failed.

Thesbrk () function returns the prior break value if successful; otherwise ((void ∗)−1) is returned anderrno
is set to indicate why the allocation failed.

ERRORS
brk () or sbrk () will fail and no additional memory will be allocated if one of the following are true:

[ENOMEM] The limit, as set bysetrlimit (2), was exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the system) was
exceeded.

[ENOMEM] Insufficient space existed in the swap area to support the expansion.

NetBSD 3.0 July 12, 1999 1

BRK (2) NetBSD System Calls Manual BRK (2)

SEE ALSO
execve (2), getrlimit (2), mmap(2), end (3), free (3), malloc (3), sysconf (3)

HISTORY
A brk () function call appeared in Version 7AT&T UNIX .

BUGS
Note that mixingbrk () andsbrk () with malloc (3), free (3), and similar functions may result in non-por-
table program behavior. Caution is advised.

Setting the break may fail due to a temporary lack of swap space.It is not possible to distinguish this from a
failure caused by exceeding the maximum size of the data segment without consultinggetrlimit (2).

NetBSD 3.0 July 12, 1999 2

CHDIR (2) NetBSD System Calls Manual CHDIR (2)

NAME
chdir , fchdir — change current working directory

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
chdir (const char ∗ path);

int
fchdir (int fd);

DESCRIPTION
Thepath argument points to the pathname of a directory. The chdir () function causes the named direc-
tory to become the current working directory, that is, the starting point for path searches of pathnames not
beginning with a slash, ‘/ ’.

The fchdir () function causes the directory referenced byfd to become the current working directory, the
starting point for path searches of pathnames not beginning with a slash, ‘/ ’.

In order for a directory to become the current directory, a process must have execute (search) access to the
directory.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
chdir () will fail and the current working directory will be unchanged if one or more of the following are
true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named directory does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.

fchdir () will fail and the current working directory will be unchanged if one or more of the following are
true:

[EACCES] Search permission is denied for the directory referenced by the file descriptor.

[ENOTDIR] The file descriptor does not reference a directory.

[EBADF] The argumentfd is not a valid file descriptor.

NetBSD 3.0 December 11, 1993 1

CHDIR (2) NetBSD System Calls Manual CHDIR (2)

[EPERM] The argumentfd references a directory which is not at or below the current process’s
root directory.

SEE ALSO
chroot (2)

STANDARDS
Thechdir () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
Thefchdir () function call appeared in 4.2BSD.

NetBSD 3.0 December 11, 1993 2

CHFLAGS (2) NetBSD System Calls Manual CHFLAGS (2)

NAME
chflags , lchflags , fchflags — set file flags

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/stat.h>
#include <unistd.h>

int
chflags (const char ∗ path , u_long flags);

int
lchflags (const char ∗ path , u_long flags);

int
fchflags (int fd , u_long flags);

DESCRIPTION
The file whose name is given by path or referenced by the descriptorfd has its flags changed toflags.
For lchflags (), symbolic links are not traversed and thus their modes may be changed with this call.

The flags specified are formed byor’ing the following values:

UF_NODUMP Do not dump the file.
UF_IMMUTABLEThe file may not be changed.
UF_APPEND The file may only be appended to.
UF_OPAQUE The file (if a directory) is opaque for union mounts.
SF_ARCHIVED The file is archived.
SF_IMMUTABLEThe file may not be changed.
SF_APPEND The file may only be appended to.

TheUF_NODUMP, UF_IMMUTABLE, UF_APPEND, and UF_OPAQUEflags may be set or unset by either the
owner of a file or the super-user, except on block and character devices, where only the super-user may set or
unset them.

TheSF_ARCHIVED, SF_IMMUTABLE, and SF_APPENDflags may only be set or unset by the super-user.
Attempts by the non-super-user to set the super-user only flags are silently ignored. These flags may be set at
any time, but normally may only be unset when the system is in single-user mode.(See init (8) for
details.)

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, −1 is returned and the global variableerrno
is set to indicate the error.

ERRORS
chflags () will fail if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named file does not exist.

NetBSD 3.0 May 2, 1995 1

CHFLAGS (2) NetBSD System Calls Manual CHFLAGS (2)

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The effective user ID does not match the owner of the file and the effective user ID is
not the super-user, or the effective user ID is not the super-user and one or more of the
super-user-only flags for the named file would be changed.

[EOPNOTSUPP] The named file resides on a file system that does not support file flags.

[EROFS] The named file resides on a read-only file system.

[EFAULT] path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.

fchflags () will fail if:

[EBADF] The descriptor is not valid.

[EINVAL] fd refers to a socket, not to a file.

[EPERM] The effective user ID does not match the owner of the file and the effective user ID is
not the super-user, or the effective user ID is not the super-user and one or more of the
super-user-only flags for the file would be changed.

[EOPNOTSUPP] The file resides on a file system that does not support file flags.

[EROFS] The file resides on a read-only file system.

[EIO] An I/O error occurred while reading from or writing to the file system.

SEE ALSO
chflags (1), stat (2), init (8), mount_union (8)

HISTORY
The chflags () and fchflags () functions first appeared in 4.4BSD. The lchflags () function first
appeared inNetBSD 1.5.

NetBSD 3.0 May 2, 1995 2

CHMOD (2) NetBSD System Calls Manual CHMOD (2)

NAME
chmod, lchmod , fchmod — change mode of file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/stat.h>

int
chmod(const char ∗ path , mode_t mode);

int
lchmod (const char ∗ path , mode_t mode);

int
fchmod (int fd , mode_t mode);

DESCRIPTION
The functionchmod() sets the file permission bits of the file specified by the pathnamepath to mode.
fchmod () sets the permission bits of the specified file descriptorfd. lchmod () is like chmod() except in
the case where the named file is a symbolic link, in which caselchmod () sets the permission bits of the link,
while chmod() sets the bits of the file the link references.chmod() verifies that the process owner (user)
either owns the file specified bypath (or fd), or is the super-user. A mode is created fromor’d permission
bit masks defined in〈sys/stat.h 〉:

#define S_IRWXU 0000700 / ∗ RWX mask for owner ∗ /
#define S_IRUSR 0000400 / ∗ R f or owner ∗ /
#define S_IWUSR 0000200 / ∗ W for owner ∗ /
#define S_IXUSR 0000100 / ∗ X f or owner ∗ /

#define S_IRWXG 0000070 / ∗ RWX mask for group ∗ /
#define S_IRGRP 0000040 / ∗ R f or group ∗ /
#define S_IWGRP 0000020 / ∗ W for group ∗ /
#define S_IXGRP 0000010 / ∗ X f or group ∗ /

#define S_IRWXO 0000007 / ∗ RWX mask for other ∗ /
#define S_IROTH 0000004 / ∗ R f or other ∗ /
#define S_IWOTH 0000002 / ∗ W for other ∗ /
#define S_IXOTH 0000001 / ∗ X f or other ∗ /

#define S_ISUID 0004000 / ∗ set user id on execution ∗ /
#define S_ISGID 0002000 / ∗ set group id on execution ∗ /
#define S_ISVTX 0001000 / ∗ save swapped text even after use ∗ /

The ISVTX (thesticky bit) indicates to the system which executable files are shareable (the default) and the
system maintains the program text of the files in the swap area. The sticky bit may only be set by the super
user on shareable executable files.

If mode ISVTX (the ‘sticky bit’) is set on a directory, an unprivileged user may not delete or rename files of
other users in that directory. The sticky bit may be set by any user on a directory which the user owns or has
appropriate permissions.For more details of the properties of the sticky bit, seesticky (7).

Changing the owner of a file turns off the set-user-id and set-group-id bits; writing to a file turns off the set-
user-id and set-group-id bits unless the user is the super-user. This makes the system somewhat more secure
by protecting set-user-id (set-group-id) files from remaining set-user-id (set-group-id) if they are modified, at

NetBSD 3.0 January 9, 2007 1

CHMOD (2) NetBSD System Calls Manual CHMOD (2)

the expense of a degree of compatibility.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
chmod() andlchmod () will fail and the file mode will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The effective user ID does not match the owner of the file and the effective user ID is
not the super-user.

[EPERM] The mode includes the setgid bit(S_ISGID) but the file’s group is neither the effec-
tive group ID nor is it in the group access list.

[EROFS] The named file resides on a read-only file system.

[EFAULT] path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EFTYPE] The effective user ID is not the super-user, the mode includes the sticky bit
(S_ISVTX) , andpath does not refer to a directory.

fchmod () will fail if:

[EBADF] The descriptor is not valid.

[EINVAL] fd refers to a socket, not to a file.

[EPERM] The effective user ID does not match the owner of the file and the effective user ID is
not the super-user.

[EPERM] The mode includes the setgid bit(S_ISGID) but the file’s group is neither the effec-
tive group ID nor is it in the group access list.

[EROFS] The file resides on a read-only file system.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EFTYPE] The effective user ID is not the super-user, the mode includes the sticky bit
(S_ISVTX) , andfd does not refer to a directory.

SEE ALSO
chmod(1), chflags (2), chown (2), open (2), stat (2), sticky (7), symlink (7)

STANDARDS
Thechmod() function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 January 9, 2007 2

CHMOD (2) NetBSD System Calls Manual CHMOD (2)

HISTORY
Thefchmod () function call appeared in 4.2BSD. The lchmod () function call appeared inNetBSD 1.3.

NetBSD 3.0 January 9, 2007 3

CHOWN (2) NetBSD System Calls Manual CHOWN (2)

NAME
chown , lchown , fchown — change owner and group of a file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
chown (const char ∗ path , uid_t owner , gid_t group);

int
lchown (const char ∗ path , uid_t owner , gid_t group);

int
fchown (int fd , uid_t owner , gid_t group);

DESCRIPTION
The owner ID and group ID of the file named bypath or referenced byfd is changed as specified by the
argumentsowner andgroup. The owner of a file may change thegroup to a group of which he or she is
a member, but the changeowner capability is restricted to the super-user.

When called to change the owner of a file,chown (), lchown () and fchown () clear the set-user-id
(S_ISUID) bit on the file. When a called to change the group of a file,chown (), lchown () andfchown ()
clear the set-group-id (S_ISGID) bit on the file. These actions are taken to prevent accidental or mis-
chievous creation of set-user-id and set-group-id programs.

lchown () is like chown () except in the case where the named file is a symbolic link, in which case
lchown () changes the owner and group of the link, whilechown () changes the owner and group of the file
the link references.

fchown () is particularly useful when used in conjunction with the file locking primitives (seeflock (2)).

One of the owner or group id’s may be left unchanged by specifying it as (uid_t)−1 or (gid_t)−1 respectively.

RETURN VALUES
Zero is returned if the operation was successful; −1 is returned if an error occurs, with a more specific error
code being placed in the global variableerrno.

ERRORS
chown () andlchown () will fail and the file will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

NetBSD 3.0 April 19, 1994 1

CHOWN (2) NetBSD System Calls Manual CHOWN (2)

[EFAULT] path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.

fchown () will fail if:

[EBADF] fd does not refer to a valid descriptor.

[EINVAL] fd refers to a socket, not a file.

[EPERM] The effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EIO] An I/O error occurred while reading from or writing to the file system.

SEE ALSO
chgrp (1), chmod(2), flock (2), symlink (7), chown (8)

STANDARDS
The chown () function deviates from the semantics defined inISO/IEC 9945-1:1990 (“POSIX.1”), which
specifies that, unless the caller is the super-user, both the set-user-id and set-group-id bits on a file shall be
cleared, regardless of the file attribute changed.The lchown () and fchown () functions, as defined by
X/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”), provide the same semantics.

To retain conformance to these standards, compatibility interfaces are provided by thePOSIX Compatibility
Library (libposix, −lposix) as follows:
• The chown () function conforms toISO/IEC 9945-1:1990 (“POSIX.1”) and X/Open Portability Guide

Issue 4, Version 2 (“XPG4.2”).
• The lchown () and fchown () functions conform toX/Open Portability Guide Issue 4, Version 2

(“XPG4.2”).

HISTORY
Thefchown () function call appeared in 4.2BSD.

The chown () and fchown () functions were changed to follow symbolic links in 4.4BSD. The lchown ()
function call appeared inNetBSD 1.3.

NetBSD 3.0 April 19, 1994 2

CHROOT (2) NetBSDSystem Calls Manual CHROOT (2)

NAME
chroot — change root directory

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
chroot (const char ∗ dirname);

int
fchroot (int fd);

DESCRIPTION
dirname is the address of the pathname of a directory, terminated by an ASCII NUL.chroot () causes
dirname to become the root directory, that is, the starting point for path searches of pathnames beginning
with ‘/ ’.

In order for a directory to become the root directory a process must have execute (search) access for that
directory.

If the current working directory is not at or under the new root directory, it is silently set to the new root
directory. It should be noted that, on most other systems,chroot () has no effect on the process’s current
directory.

This call is restricted to the super-user.

The fchroot () function performs the same operation on an open directory file known by the file descriptor
fd.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate an error.

ERRORS
chroot () will fail and the root directory will be unchanged if:

[ENOTDIR] A component of the path name is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EFAULT] dirname points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EPERM] The effective user ID of the calling process is not the super-user.

fchroot () will fail and the root directory will be unchanged if:

NetBSD 3.0 April 18, 2001 1

CHROOT (2) NetBSDSystem Calls Manual CHROOT (2)

[EACCES] Search permission is denied for the directory referenced by the file descriptor.

[EBADF] The argumentfd is not a valid file descriptor.

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOTDIR] The argumentfd does not reference a directory.

[EPERM] The effective user ID of the calling process is not the super-user.

SEE ALSO
chdir (2)

STANDARDS
The chroot () function conforms toX/Open System Interfaces and Headers Issue 5 (“XSH5”), with the
restriction that the calling process’ working directory must be at or under the new root directory. Otherwise,
the working directory is silently set to the new root directory; this is an extension to the standard.

chroot () was declared a legacy interface, and subsequently removed in IEEE Std 1003.1-2001 (“POSIX.1”).

HISTORY
Thechroot () function call appeared in 4.2BSD. Working directory handling was changed inNetBSD 1.4 to
prevent one way a process could use a secondchroot () call to a different directory to "escape" from the
restricted subtree. Thefchroot () function appeared inNetBSD 1.4.

NetBSD 3.0 April 18, 2001 2

CLOCK_SETTIME (2) NetBSD System Calls Manual CLOCK_SETTIME (2)

NAME
clock_settime , clock_gettime , clock_getres — clock and timer functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>

int
clock_settime (clockid_t clock_id , const struct timespec ∗ tp);

int
clock_gettime (clockid_t clock_id , struct timespec ∗ tp);

int
clock_getres (clockid_t clock_id , struct timespec ∗ res);

DESCRIPTION
The clock_settime () function sets the clock identified byclock_id to the absolute time specified by
tp. If the time specified bytp is not a multiple of the resolution of the clock,tp is truncated to a multiple
of the resolution.

clock_gettime () function stores the time of the clock identified byclock_id into the location speci-
fied bytp.

Theclock_getres () function stores the resolution of the clock identified byclock_id into the location
specified byres, unlessres is NULL.

A clock_id of CLOCK_REALTIMEidentifies the realtime clock for the system.For this clock, the values
specified byclock_settime () and obtained byclock_gettime () represent the amount of time (in
seconds and nanoseconds) since 00:00 Universal Coordinated Time, January 1, 1970.

A clock_id of CLOCK_MONOTONICidentifies a clock that increases at a steady rate (monotonically).
This clock is not affected by calls toadjtime (2) andsettimeofday (2) and will fail with anEINVAL
error if it’s the clock specified in a call toclock_settime (). Theorigin of the clock is unspecified.

If the calling user is not the super-user, then theclock_settime () function in the standard C library will
try to use theclockctl (4) device if present, thus making possible for non privileged users to set the sys-
tem time. If clockctl (4) is not present or not accessible, thenclock_settime () reverts to the
clock_settime () system call, which is restricted to the super user.

RETURN VALUES
A value of 0 is returned on success.Otherwise, a value of −1 is returned anderrno is set to indicate the error.

ERRORS
Theclock_settime (), clock_gettime () andclock_getres () functions will fail if:

[EINVAL] Theclock_id argument does not specify a known clock.

[ENOSYS] The function is not supported by this implementation.

Theclock_settime () function will fail if:

[EINVAL] Thetp argument is outside the range for the specified clock,clock_id.

NetBSD 3.0 February 11, 1999 1

CLOCK_SETTIME (2) NetBSD System Calls Manual CLOCK_SETTIME (2)

[EINVAL] The tp argument specified a nanosecond value less than zero of greater than or equal
1000 million.

[EINVAL] Theclock_id argument is a clock that can not be adjusted.

[EPERM] The calling process does not have the appropriate privilege to set the specified clock,
clock_id.

Theclock_gettime () function will fail if:

[EFAULT] The tp argument specifies an address that is not a valid part of the process address
space.

SEE ALSO
ctime (3), time (3), clockctl (4)

STANDARDS
The clock_settime (), clock_gettime () and clock_getres () functions conform toIEEE Std
1003.1b-1993 (“POSIX.1”).

NetBSD 3.0 February 11, 1999 2

CLONE (2) NetBSD System Calls Manual CLONE (2)

NAME
clone — spawn new process with options

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sched.h>

pid_t
clone (int (∗ func)(void ∗ arg) , void ∗ stack , int flags , void ∗ arg);

pid_t
__clone (int (∗ func)(void ∗ arg) , void ∗ stack , int flags , void ∗ arg);

DESCRIPTION
Theclone system call (and associated library support code) creates a new process in a way that allows the
caller to specify several options for the new process creation.

Unlike fork (2) or vfork (2), in which the child process returns to the call site,clone causes the child
process to begin execution at the function specified byfunc. The argumentarg is passed to the entry
point, as a means for the parent to provide context to the child. The stack pointer for the child process will
be set tostack. Note that theclone interface requires that the application know the stack direction for the
architecture, and that the caller initialize thestack argument as appropriate for the stack direction.

The flags argument specifies several options that control how the child process is created.The lower 8
bits of flags specify the signal that is to be sent to the parent when the child exits. Thefollowing flags
may also be specified by bitwise-or’ing them with the signal value:

CLONE_VM Share the virtual address space with the parent.The address space is shared in the same
way as vfork (2).

CLONE_FS Share the “file system information” with the parent. This include the current working
directory and file creation mask.

CLONE_FILES Share the file descriptor table with the parent.

CLONE_SIGHANDShare the signal handler set with the parent.Note that the signal mask is never shared
between the parent and the child, even if CLONE_SIGHANDis set.

CLONE_VFORK Preserve the synchronization semantics ofvfork (2); the parent blocks until the child
exits.

The clone call returns the pid of the child in the parent’s context. Thechild is provided no return value,
since it begins execution at a different address.

If the child process’s entry point returns, the value it returns is passed to_exit (2), and the child process
exits. Notethat if the child process wants to exit directly, it should use_exit (2), and notexit (3), since
exit (3) will flush and close standard I/O channels, and thereby corrupt the parent process’s standard I/O
data structures (even with fork (2) it is wrong to callexit (3) since buffered data would then be flushed
twice).

Note thatclone is not intended to be used for new native NetBSD applications. Itis provided as a means to
port software originally written for the Linux operating system toNetBSD.

NetBSD 3.0 July 16, 2001 1

CLONE (2) NetBSD System Calls Manual CLONE (2)

RETURN VALUES
Same as forfork (2).

ERRORS
Same as forfork (2).

SEE ALSO
chdir (2), chroot (2), fork (2), sigaction (2), sigprocmask (2), umask(2), vfork (2), wait (2)

HISTORY
Theclone () function call appeared inNetBSD 1.6. It is compatible with the Linux function call of the same
name.

BUGS
The NetBSD implementation ofclone does not implement theCLONE_PIDoption that is present in the
Linux implementation.

The NetBSD implementation ofclone does not implement theCLONE_PTRACEoption that is present in
the Linux implementation.

NetBSD 3.0 July 16, 2001 2

CLOSE (2) NetBSD System Calls Manual CLOSE (2)

NAME
close — delete a descriptor

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
close (int d);

DESCRIPTION
The close () system call deletes a descriptor from the per-process object reference table. If this is the last
reference to the underlying object, the object will be deactivated. For example, on the last close of a file the
currentseekpointer associated with the file is lost; on the last close of asocket (2) associated naming infor-
mation and queued data are discarded; on the last close of a file holding an advisory lock the lock is released
(seeflock (2)).

When a process exits, all associated descriptors are freed, but since there is a limit on active descriptors per
processes, theclose () system call is useful when a large quantity of file descriptors are being handled.

When a process callsfork (2), all descriptors for the new child process reference the same objects as they
did in the parent before thefork (). If a new process is then to be run usingexecve (2), the process would
normally inherit these descriptors. Most of the descriptors can be rearranged withdup2 (2) or deleted with
close () before theexecve () is attempted, but if some of these descriptors will still be needed if the
execve () fails, it is necessary to arrange for them to be closed only if theexecve () succeeds.For this rea-
son, the system call

fcntl (d , F_SETFD , 1);

is provided, which arranges that a descriptor “d” will be closed after a successfulexecve (); the system call

fcntl (d , F_SETFD , 0);

restores the default, which is to not close descriptor “d”.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
close () will fail if:

[EBADF] d is not an active descriptor.

[EINTR] An interrupt was received.

SEE ALSO
accept (2), execve (2), fcntl (2), flock (2), open (2), pipe (2), socket (2), socketpair (2)

STANDARDS
Theclose () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 April 19, 1994 1

CONNECT (2) NetBSD System Calls Manual CONNECT (2)

NAME
connect — initiate a connection on a socket

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

int
connect (int s , const struct sockaddr ∗ name , socklen_t namelen);

DESCRIPTION
The parameters is a socket. If it is of typeSOCK_DGRAM, this call specifies the peer with which the socket
is to be associated; this address is that to which datagrams are to be sent, and the only address from which
datagrams are to be received. If the socket is of typeSOCK_STREAM, this call attempts to make a connec-
tion to another socket. Theother socket is specified byname, which is an address in the communications
space of the socket. namelen indicates the amount of space pointed to byname, in bytes. Eachcommuni-
cations space interprets thename parameter in its own way. Generally, stream sockets may successfully
connect () only once; datagram sockets may useconnect () multiple times to change their association.
Datagram sockets may dissolve the association by connecting to an invalid address, such as a null address.

If a connect () call is interrupted by a signal, it will return with errno set toEINTR and the connection
attempt will proceed as if the socket was non-blocking. Subsequent calls toconnect () will set errno to
EALREADY.

RETURN VALUES
If the connection or binding succeeds, 0 is returned.Otherwise a −1 is returned, and a more specific error
code is stored inerrno.

ERRORS
Theconnect () call fails if:

[EBADF] s is not a valid descriptor.

[ENOTSOCK] s is a descriptor for a file, not a socket.

[EADDRNOTAVAIL]
The specified address is not available on this machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.

[EISCONN] The socket is already connected.

[ETIMEDOUT] Connection establishment timed out without establishing a connection.

[ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH] The network isn’t reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] Thename parameter specifies an area outside the process address space.

[EINPROGRESS] The socket is non-blocking and the connection cannot be completed immediately. It is
possible toselect (2) or poll (2) for completion by selecting or polling the socket
for writing. The success or failure of the connect operation may be determined by
usinggetsockopt (2) to read the socket error status with theSO_ERRORoption at

NetBSD 3.0 May 18, 2004 1

CONNECT (2) NetBSD System Calls Manual CONNECT (2)

theSOL_SOCKETlevel. Thereturned socket error status is zero on success, or one of
the error codes listed here on failure.

[EALREADY] Either the socket is non-blocking mode or a previous call toconnect () was inter-
rupted by a signal, and the connection attempt has not yet been completed.

[EINTR] The connection attempt was interrupted by a signal.

The following errors are specific to connecting names in theUNIX domain. Theseerrors may not apply in
future versions of theUNIX IPC domain.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named socket does not exist.

[EACCES] Search permission is denied for a component of the path prefix, or write access to the
named socket is denied.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

SEE ALSO
accept (2), getsockname (2), getsockopt (2), poll (2), select (2), socket (2)

HISTORY
Theconnect () function call appeared in 4.2BSD.

NetBSD 3.0 May 18, 2004 2

DUP (2) NetBSD System Calls Manual DUP (2)

NAME
dup , dup2 — duplicate an existing file descriptor

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
dup (int oldd);

int
dup2 (int oldd , int newd);

DESCRIPTION
dup () duplicates an existing object descriptor and returns its value to the calling process (newd =
dup (oldd)). Theargumentoldd is a small non-negative integer index in the per-process descriptor table.
The value must be less than the size of the table, which is returned bygetdtablesize (3). Thenew
descriptor returned by the call is the lowest numbered descriptor currently not in use by the process.

The object referenced by the descriptor does not distinguish betweenoldd andnewd in any way. Thus if
newd andoldd are duplicate references to an open file,read (2), write (2) andlseek (2) calls all move a
single pointer into the file, and append mode, non-blocking I/O and asynchronous I/O options are shared
between the references. If a separate pointer into the file is desired, a different object reference to the file
must be obtained by issuing an additionalopen (2) call. The close-on-exec flag on the new file descriptor is
unset.

In dup2 (), the value of the new descriptornewd is specified.If this descriptor is already in use, the descrip-
tor is first deallocated as if aclose (2) call had been done first.If newd andoldd are the same, the call
has no effect.

RETURN VALUES
The value −1 is returned if an error occurs in either call. The external variableerrno indicates the cause of
the error.

ERRORS
dup () anddup2 () fail if:

[EBADF] oldd or newd is not a valid active descriptor

[EMFILE] Too many descriptors are active.

SEE ALSO
accept (2), close (2), fcntl (2), open (2), pipe (2), socket (2), socketpair (2),
getdtablesize (3)

STANDARDS
Thedup () anddup2 () functions conform toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 February 8, 2008 1

EXECVE (2) NetBSD System Calls Manual EXECVE (2)

NAME
execve — execute a file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
execve (const char ∗ path , char ∗ const argv[] , char ∗ const envp[]);

DESCRIPTION
execve () transforms the calling process into a new process. Thenew process is constructed from an ordi-
nary file, whose name is pointed to bypath, called thenew process file. This file is either an executable
object file, or a file of data for an interpreter. An executable object file consists of an identifying header, fol-
lowed by pages of data representing the initial program (text) and initialized data pages. Additional pages
may be specified by the header to be initialized with zero data; seea.out (5).

An interpreter file begins with a line of the form:

#! interpreter [arg]

When an interpreter file isexecve ()d the system runs the specifiedinterpreter. If the optionalarg is speci-
fied, it becomes the first argument to theinterpreter, and the name of the originallyexecve ()d file becomes
the second argument; otherwise, the name of the originallyexecve ()d file becomes the first argument. The
original arguments are shifted over to become the subsequent arguments. Thezeroth argument, normally the
name of theexecve ()d file, is left unchanged.The interpreter named byinterpretermust not itself be an
interpreter file. (Seescript (7) for a detailed discussion of interpreter file execution.)

The argumentargv is a pointer to a null-terminated array of character pointers to null-terminated character
strings. Thesestrings construct the argument list to be made available to the new process. Bycustom, the
first element should be the name of the executed program (for example, the last component ofpath).

The argumentenvp is also a pointer to a null-terminated array of character pointers to null-terminated
strings. Apointer to this array is normally stored in the global variableenviron. These strings pass informa-
tion to the new process that is not directly an argument to the command (seeenviron (7)).

File descriptors open in the calling process image remain open in the new process image, except for those for
which the close-on-exec flag is set (seeclose (2) andfcntl (2)). Descriptorsthat remain open are unaf-
fected byexecve ().

In the case of a new setuid or setgid executable being executed, if file descriptors 0, 1, or 2 (representing
stdin, stdout, and stderr) are currently unallocated, these descriptors will be opened to point to some system
file like /dev/null . The intent is to ensure these descriptors are not unallocated, since many libraries
make assumptions about the use of these 3 file descriptors.

Signals set to be ignored in the calling process are set to be ignored in the new process. Signalswhich are set
to be caught in the calling process image are set to default action in the new process image.Blocked signals
remain blocked regardless of changes to the signal action. The signal stack is reset to be undefined (see
sigaction (2) for more information).

If the set-user-ID mode bit of the new process image file is set (seechmod(2)), the effective user ID of the
new process image is set to the owner ID of the new process image file.If the set-group-ID mode bit of the
new process image file is set, the effective group ID of the new process image is set to the group ID of the
new process image file. (The effective group ID is the first element of the group list.) The real user ID, real
group ID and other group IDs of the new process image remain the same as the calling process image.After

NetBSD 3.0 February 24, 2008 1

EXECVE (2) NetBSD System Calls Manual EXECVE (2)

any set-user-ID and set-group-ID processing, the effective user ID is recorded as the saved set-user-ID, and
the effective group ID is recorded as the saved set-group-ID. Thesevalues may be used in changing the
effective IDs later (seesetuid (2)).

The new process also inherits the following attributes from the calling process:

process ID seegetpid (2)
parent process ID seegetppid (2)
process group ID seegetpgrp (2)
access groups seegetgroups (2)
working directory seechdir (2)
root directory seechroot (2)
control terminal seetermios (4)
resource usages seegetrusage (2)
interval timers seegetitimer (2)
resource limits seegetrlimit (2)
file mode mask seeumask(2)
signal mask seesigaction (2), sigprocmask (2)

When a program is executed as a result of anexecve () call, it is entered as follows:

main(argc, argv, envp)
int argc;
char ∗∗ argv, ∗∗ envp;

whereargc is the number of elements inargv (the “arg count”) andargv points to the array of character
pointers to the arguments themselves.

RETURN VALUES
As theexecve () function overlays the current process image with a new process image the successful call
has no process to return to.If execve () does return to the calling process an error has occurred; the return
value will be −1 and the global variableerrno is set to indicate the error.

ERRORS
execve () will fail and return to the calling process if:

[EAGAIN] A setuid (7) process has exceeded the current resource limit for the number of pro-
cesses it is allowed to run concurrently.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The new process file does not exist.

[ENOENT] The new process file is a script starting with#! and the script interpreter does not
exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EACCES] Search permission is denied for a component of the path prefix, the new process file is
not an ordinary file, its file mode denies execute permission, or it is on a filesystem
mounted with execution disabled (MNT_NOEXECin 〈sys/mount.h 〉).

[ENOEXEC] The new process file has the appropriate access permission, but has an invalid magic
number in its header.

NetBSD 3.0 February 24, 2008 2

EXECVE (2) NetBSD System Calls Manual EXECVE (2)

[ETXTBSY] The new process file is a pure procedure (shared text) file that is currently open for
writing or reading by some process.

[ENOMEM] The new process requires more virtual memory than is allowed by the imposed maxi-
mum (getrlimit (2)) .

[E2BIG] The number of bytes in the new process’s argument list is larger than the system-
imposed limit. The limit in the system as released is 262144 bytes (NCARGSin
〈sys/param.h 〉).

[EFAULT] The new process file is not as long as indicated by the size values in its header.

[EFAULT] path, argv, or envp point to an illegal address.

[EIO] An I/O error occurred while reading from the file system.

SEE ALSO
_exit (2), fork (2), execl (3), environ (7), script (7)

STANDARDS
Theexecve () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
Theexecve () function call first appeared in Version 7AT&T UNIX .

BUGS
If a program issetuidto a non-super-user, but is executed when the realuid is “root”, then the program has
some of the powers of a super-user as well.

NetBSD 3.0 February 24, 2008 3

EXTATTR_GET_FILE (2) NetBSD System Calls Manual EXTATTR_GET_FILE (2)

NAME
extattr_get_fd , extattr_set_fd , extattr_delete_fd , extattr_list_fd ,
extattr_get_file , extattr_set_file , extattr_delete_file , extattr_list_file ,
extattr_get_link , extattr_set_link , extattr_delete_link , extattr_list_link —
system calls to manipulate VFS extended attributes

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/extattr.h>

ssize_t
extattr_get_fd (int fd , int attrnamespace , const char ∗ attrname , void ∗ data ,

size_t nbytes);

int
extattr_set_fd (int fd , int attrnamespace , const char ∗ attrname ,

const void ∗ data , size_t nbytes);

int
extattr_delete_fd (int fd , int attrnamespace , const char ∗ attrname);

ssize_t
extattr_list_fd (int fd , int attrnamespace , void ∗ data , size_t nbytes);

ssize_t
extattr_get_file (const char ∗ path , int attrnamespace , const char ∗ attrname ,

void ∗ data , size_t nbytes);

int
extattr_set_file (const char ∗ path , int attrnamespace , const char ∗ attrname ,

const void ∗ data , size_t nbytes);

int
extattr_delete_file (const char ∗ path , int attrnamespace ,

const char ∗ attrname);

ssize_t
extattr_list_file (const char ∗ path , int attrnamespace , void ∗ data ,

size_t nbytes);

ssize_t
extattr_get_link (const char ∗ path , int attrnamespace , const char ∗ attrname ,

void ∗ data , size_t nbytes);

int
extattr_set_link (const char ∗ path , int attrnamespace , const char ∗ attrname ,

const void ∗ data , size_t nbytes);

int
extattr_delete_link (const char ∗ path , int attrnamespace ,

const char ∗ attrname);

ssize_t
extattr_list_link (const char ∗ path , int attrnamespace , void ∗ data ,

size_t nbytes);

NetBSD 3.0 January 2, 2004 1

EXTATTR_GET_FILE (2) NetBSD System Calls Manual EXTATTR_GET_FILE (2)

DESCRIPTION
Named extended attributes are meta-data associated with vnodes representing files and directories.They
exist as "name=value " pairs within a set of namespaces.

Theextattr_get_file () system call retrieves the value of the specified extended attribute into a buffer
pointed to bydata of sizenbytes. Theextattr_set_file () system call sets the value of the speci-
fied extended attribute to the data described bydata. Theextattr_delete_file () system call deletes
the extended attribute specified.The extattr_list_file () returns a list of attributes present in the
requested namespace, separated by ASCII 0 (nul) characters.The extattr_get_file () and
extattr_list_file () calls consume thedata and nbytes arguments in the style ofread (2);
extattr_set_file () consumes these arguments in the style ofwrite (2).

If data is NULL in a call toextattr_get_file () then the size of defined extended attribute data will be
returned, rather than the quantity read, permitting applications to test the size of the data without performing
a read.

The extattr_delete_link (), extattr_get_link (), and extattr_set_link () system calls
behave in the same way as their _file counterparts, except that they do not follow symlinks.

The extattr_get_fd (), extattr_set_fd (), and extattr_delete_fd () calls are identical to
their "_file " counterparts except for the first argument. The"_fd " functions take a file descriptor, while
the "_file " functions take a path. Botharguments describe a file associated with the extended attribute that
should be manipulated.

The following arguments are common to all the system calls described here:

attrnamespace the namespace in which the extended attribute resides; seeextattr (9)

attrname the name of the extended attribute

Named extended attribute semantics vary by file system implementing the call. Not all operations may be
supported for a particular attribute. Additionally, the format of the data indata is attribute-specific.

For more information on named extended attributes, please seeextattr (9).

RETURN VALUES
If successful, theextattr_get_file () andextattr_set_file () calls return the number of bytes
that were read or written from thedata, respectively, or if data was NULL, thenextattr_get_file ()
returns the number of bytes available to read. If any of the calls are unsuccessful, the value −1 is returned
and the global variableerrno is set to indicate the error.

The extattr_delete_file () function returns the value 0 if successful; otherwise the value −1 is
returned and the global variableerrno is set to indicate the error.

ERRORS
The following errors may be returned by the system calls themselves. Additionally, the file system imple-
menting the call may return any other errors it desires.

[EFAULT] The attrnamespace andattrname arguments, or the memory range defined by
data andnbytes point outside the process’s allocated address space.

[ENAMETOOLONG] The attribute name was longer thanEXTATTR_MAXNAMELEN.

The extattr_get_fd (), extattr_set_fd (), and extattr_delete_fd () system calls may also
fail if:

[EBADF] The file descriptor referenced byfd was inv alid.

NetBSD 3.0 January 2, 2004 2

EXTATTR_GET_FILE (2) NetBSD System Calls Manual EXTATTR_GET_FILE (2)

Additionally, the extattr_get_file (), extattr_set_file (), and extattr_delete_file ()
calls may also fail due to the following errors:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire path name exceeded
1023 characters.

[ENOENT] A component of the path name that must exist does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

SEE ALSO
getextattr (1), extattr (3), extattr (9)

HISTORY
Extended attribute support was developed as part of theTrustedBSDProject, and introduced inFreeBSD5.0
andNetBSD 3.0. It was dev eloped to support security extensions requiring additional labels to be associated
with each file or directory.

CAVEATS
This interface is under active dev elopment, and as such is subject to change as applications are adapted to use
it. Developers are discouraged from relying on its stability.

NetBSD 3.0 January 2, 2004 3

FCNTL (2) NetBSD System Calls Manual FCNTL (2)

NAME
fcntl — file descriptor control

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <fcntl.h>

int
fcntl (int fd , int cmd , ...);

DESCRIPTION
fcntl () provides for control over descriptors. Theargumentfd is a descriptor to be operated on bycmd as
described below. The third parameter is calledarg and is technically a pointer to void, but it is interpreted
as an int by some commands and ignored by others.

Commands are:

F_DUPFD Return a new descriptor as follows:

• Lowest numbered available descriptor greater than or equal toarg, which is inter-
preted as an int.

• Same object references as the original descriptor.
• New descriptor shares the same file offset if the object was a file.
• Same access mode (read, write or read/write).
• Same file status flags (i.e., both file descriptors share the same file status flags).
• The close-on-exec flag associated with the new file descriptor is cleared to remain

open acrossexecve (2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptorfd as FD_CLOEXEC. If the
returned value ANDed withFD_CLOEXECis 0, the file will remain open acrossexec (), oth-
erwise the file will be closed upon execution ofexec () (arg is ignored).

F_SETFD Set the close-on-exec flag associated withfd to arg, where arg is either 0 or
FD_CLOEXEC, as described above.

F_GETFL Get descriptor status flags, as described below (arg is ignored).

F_SETFL Set descriptor status flags toarg, which is interpreted as an int.

F_GETOWN Get the process ID or process group currently receiving SIGIO andSIGURGsignals; process
groups are returned as negative values (arg is ignored).

F_SETOWN Set the process or process group to receive SIGIO andSIGURGsignals; process groups are
specified by supplyingarg as negative, otherwisearg is interpreted as a process ID.The
argumentarg is interpreted as an int.

F_CLOSEM Close all file descriptors greater than or equal tofd.

F_MAXFD Return the maximum file descriptor number currently open by the process.

The flags for theF_GETFLandF_SETFL flags are as follows:

O_NONBLOCK Non-blocking I/O; if no data is available to aread (2) call, or if awrite (2) operation
would block, the read or write call returns −1 with the errorEAGAIN.

NetBSD 3.0 January 3, 2007 1

FCNTL (2) NetBSD System Calls Manual FCNTL (2)

O_APPEND Force each write to append at the end of file; corresponds to theO_APPENDflag of
open (2).

O_ASYNC Enable theSIGIO signal to be sent to the process group when I/O is possible, e.g., upon
availability of data to be read.

Several commands are available for doing advisory file locking; they all operate on the following structure:

struct flock {
off_t l_start; / ∗ starting offset ∗ /
off_t l_len; / ∗ len = 0 means until end of file ∗ /
pid_t l_pid; / ∗ lock owner ∗ /
short l_type; / ∗ lock type: read/write, etc. ∗ /
short l_whence; / ∗ type of l_start ∗ /

};

The commands available for advisory record locking are as follows:

F_GETLK Get the first lock that blocks the lock description pointed to by the third argument,arg, taken
as a pointer to astruct flock (see above). The information retrieved overwrites the
information passed tofcntl in theflock structure. Ifno lock is found that would prevent
this lock from being created, the structure is left unchanged by this function call except for the
lock typel_type, which is set toF_UNLCK.

F_SETLK Set or clear a file segment lock according to the lock description pointed to by the third argu-
ment,arg, taken as a pointer to astruct flock (see above). As specified by the value of
l_type, F_SETLK is used to establish shared (or read) locks(F_RDLCK) or exclusive (or
write) locks, (F_WRLCK) , as well as remove either type of lock(F_UNLCK) . If a shared or
exclusive lock cannot be set,fcntl returns immediately withEAGAIN.

F_SETLKW This command is the same asF_SETLKexcept that if a shared or exclusive lock is blocked by
other locks, the process waits until the request can be satisfied.If a signal that is to be caught
is received while fcntl is waiting for a region, thefcntl will be interrupted if the signal
handler has not specified theSA_RESTART(seesigaction (2)).

When a shared lock has been set on a segment of a file, other processes can set shared locks on that segment
or a portion of it.A shared lock prevents any other process from setting an exclusive lock on any portion of
the protected area.A request for a shared lock fails if the file descriptor was not opened with read access.

An exclusive lock prevents any other process from setting a shared lock or an exclusive lock on any portion
of the protected area.A request for an exclusive lock fails if the file was not opened with write access.

The value ofl_whence is SEEK_SET, SEEK_CUR, or SEEK_ENDto indicate that the relative offset,
l_start bytes, will be measured from the start of the file, current position, or end of the file, respectively.
The value ofl_len is the number of consecutive bytes to be locked. If l_len is negative, the result is
undefined. Thel_pid field is only used withF_GETLKto return the process ID of the process holding a
blocking lock. After a successfulF_GETLKrequest, the value ofl_whence is SEEK_SET.

Locks may start and extend beyond the current end of a file, but may not start or extend before the beginning
of the file. A lock is set to extend to the largest possible value of the file offset for that file ifl_len is set to
zero. Ifl_whence andl_start point to the beginning of the file, andl_len is zero, the entire file is
locked. If an application wishes only to do entire file locking, theflock (2) system call is much more effi-
cient.

There is at most one type of lock set for each byte in the file.Before a successful return from anF_SETLK
or anF_SETLKWrequest when the calling process has previously existing locks on bytes in the region speci-
fied by the request, the previous lock type for each byte in the specified region is replaced by the new lock
type. Asspecified above under the descriptions of shared locks and exclusive locks, anF_SETLK or an

NetBSD 3.0 January 3, 2007 2

FCNTL (2) NetBSD System Calls Manual FCNTL (2)

F_SETLKWrequest fails or blocks respectively when another process has existing locks on bytes in the spec-
ified region and the type of any of those locks conflicts with the type specified in the request.

This interface follows the completely stupid semantics ofAT&T System VUNIX and IEEE Std 1003.1-1988
(“POSIX.1”) that require that all locks associated with a file for a given process are removed whenany file
descriptor for that file is closed by that process.This semantic means that applications must be aware of any
files that a subroutine library may access.For example if an application for updating the password file locks
the password file database while making the update, and then callsgetpwnam (3) to retrieve a record, the
lock will be lost becausegetpwnam (3) opens, reads, and closes the password database. The database close
will release all locks that the process has associated with the database, even if the library routine never
requested a lock on the database. Another minor semantic problem with this interface is that locks are not
inherited by a child process created using thefork (2) function. The flock (2) interface has much more
rational last close semantics and allows locks to be inherited by child processes.Calling flock (2) is rec-
ommended for applications that want to ensure the integrity of their locks when using library routines or
wish to pass locks to their children. Note thatflock (2) andfcntl locks may be safely used concurrently.

All locks associated with a file for a given process are removed when the process terminates.

A potential for deadlock occurs if a process controlling a locked region is put to sleep by attempting to lock
the locked region of another process.This implementation detects that sleeping until a locked region is
unlocked would cause a deadlock and fails with anEDEADLKerror.

RETURN VALUES
Upon successful completion, the value returned depends oncmd as follows:

F_DUPFD A new file descriptor.

F_GETFD Value of flag (only the low-order bit is defined).

F_GETFL Value of flags.

F_GETOWN Value of file descriptor owner.

F_MAXFD Value of the highest file descriptor open by the process.

other Value other than −1.

Otherwise, a value of −1 is returned anderrno is set to indicate the error.

ERRORS
fcntl () will fail if:

[EAGAIN] The argumentarg is F_SETLK, the type of lock (l_type) is a shared lock
(F_RDLCK) or exclusive lock (F_WRLCK) , and the segment of a file to be locked is
already exclusive-locked by another process; or the type is an exclusive lock and some
portion of the segment of a file to be locked is already shared-locked or exclusive-
locked by another process.

[EBADF] fildes is not a valid open file descriptor.

The argumentcmd is F_SETLK or F_SETLKW, the type of lock(l_type) is a
shared lock(F_RDLCK) , andfildes is not a valid file descriptor open for reading.

The argumentcmd is F_SETLK or F_SETLKW, the type of lock(l_type) is an
exclusive lock (F_WRLCK) , and fildes is not a valid file descriptor open for writ-
ing.

NetBSD 3.0 January 3, 2007 3

FCNTL (2) NetBSD System Calls Manual FCNTL (2)

[EDEADLK] The argumentcmd is F_SETLKW, and a deadlock condition was detected.

[EINTR] The argumentcmd is F_SETLKW, and the function was interrupted by a signal.

[EINVAL] cmd is F_DUPFDandarg is negative or greater than the maximum allowable number
(seegetdtablesize (3)).

The argumentcmd is F_GETLK, F_SETLK, or F_SETLKWand the data to which
arg points is not valid, orfildes refers to a file that does not support locking.

[EMFILE] The argumentcmd is F_DUPFDand the maximum number of file descriptors permit-
ted for the process are already in use, or no file descriptors greater than or equal to
arg are available.

[ENFILE] cmd is F_DUPFDand system-wide the maximum allowed number of file descriptors
are currently open.

[ENOLCK] The argumentcmd is F_SETLK or F_SETLKW, and satisfying the lock or unlock
request would result in the number of locked regions in the system exceeding a sys-
tem-imposed limit.

[ESRCH] cmd is F_SETOWNand the process ID given as argument is not in use.

SEE ALSO
close (2), execve (2), flock (2), open (2), sigaction (2), getdtablesize (3)

STANDARDS
Thefcntl () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
Thefcntl () function call appeared in 4.2BSD.

NetBSD 3.0 January 3, 2007 4

FDAT ASYNC (2) NetBSD System Calls Manual FDAT ASYNC (2)

NAME
fdatasync — synchronize the data of a file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
fdatasync (int fd);

DESCRIPTION
The fdatasync () function forces all modified data associated with the file descriptorfd to be flushed to
stable storage.

The functionality is as described forfsync (2), with the exception that file status information need not be
synchronized, which may result in a performance gain, compared tofsync (2). This behaviour is com-
monly known assynchronized I/O data integrity completion.

RETURN VALUES
A value of 0 is returned on success. Otherwise, a value −1 is returned anderrno is set to indicate the error.

ERRORS
Thefdatasync () function will fail if:

[EBADF] Thefd argument is not a valid file descriptor open for writing.

[EINVAL] This implementation does not support synchronized I/O for this file.

[ENOSYS] The fdatasync () function is not supported by this implementation.

In the event that any of the I/O operations to be performed fail, fdatasync () returns the error conditions
defined forread (2) andwrite (2), and outstanding I/O operations are not guaranteed to have been com-
pleted.

SEE ALSO
fsync (2), open (2), read (2), write (2)

STANDARDS
Thefdatasync () function conforms toIEEE Std 1003.1b-1993 (“POSIX.1”).

NetBSD 3.0 October 25, 2003 1

FHOPEN (2) NetBSD System Calls Manual FHOPEN (2)

NAME
fhopen , fhstat , fhstatvfs — access file via file handle

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>

int
fhopen (const void ∗ fhp , size_t fh_size , int flags);

#include <sys/stat.h>

int
fhstat (const void ∗ fhp , size_t fh_size , struct stat ∗ sb);

#include <sys/statvfs.h>

int
fhstatvfs (const void ∗ fhp , size_t fh_size , struct statvfs ∗ buf);

int
fhstatvfs1 (const void ∗ fhp , size_t fh_size , struct statvfs ∗ buf , int flags);

DESCRIPTION
These functions provide a means to access a file given the opaque file handlefhp and the sizefh_size of
the opaque object as returned bygetfh (2). As this method bypasses directory access restrictions, these
calls are restricted to the superuser.

fhopen () opens the file referenced byfhp for reading and/or writing as specified by the argumentflags
and returns the file descriptor to the calling process.Theflags are specified byor’ing together the flags
used for theopen (2) call. All said flags are valid except forO_CREAT.

fhstat (), fhstatvfs (), andfhstatvfs1 () provide the functionality of thefstat (2), fstatvfs (2),
and fstatvfs1 (2) calls except that they return information for the file referred to byfhp rather than an
open file.

RETURN VALUES
Upon successful completion,fhopen () returns the file descriptor for the opened file, whilefhstat (),
fhstatvfs (), and fhstatvfs1 () return 0. Otherwise, −1 is returned anderrno is set to indicate the
error.

ERRORS
In addition to the errors returned byopen (2), fstat (2), fstatvfs (2), andfstatvfs1 (2), respectively,
fhopen (), fhstat (), fhstatvfs (), andfhstatvfs1 () will return

[EINVAL] Calling fhopen () with O_CREATset or invalid fh_size.

[ESTALE] The file handlefhp is no longer valid.

SEE ALSO
fstat (2), fstatvfs (2), fstatvfs1 (2), getfh (2), open (2)

NetBSD 3.0 July 17, 2006 1

FHOPEN (2) NetBSD System Calls Manual FHOPEN (2)

HISTORY
The fhopen (), and fhstat () functions first appeared inNetBSD 1.5. The fhstatvfs () function
replacedfhstatfs () in NetBSD 3.0.

NetBSD 3.0 July 17, 2006 2

FLOCK (2) NetBSD System Calls Manual FLOCK (2)

NAME
flock — apply or remove an advisory lock on an open file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <fcntl.h>
#define LOCK_SH 1 / ∗ shared lock ∗ /
#define LOCK_EX 2 / ∗ exclusive lock ∗ /
#define LOCK_NB 4 / ∗ don’t block when locking ∗ /
#define LOCK_UN 8 / ∗ unlock ∗ /

int
flock (int fd , int operation);

DESCRIPTION
flock () applies or removes an advisory lock on the file associated with the file descriptorfd. A lock is
applied by specifying anoperation parameter that is one ofLOCK_SHor LOCK_EXwith the optional
addition ofLOCK_NB. To unlock an existing lockoperation should beLOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not guarantee
consistency (i.e., processes may still access files without using advisory locks possibly resulting in inconsis-
tencies).

The locking mechanism allows two types of locks:sharedlocks andexclusivelocks. At any time multiple
shared locks may be applied to a file, but at no time are multiple exclusive, or both shared and exclusive,
locks allowed simultaneously on a file.

A shared lock may beupgradedto an exclusive lock, and vice versa, simply by specifying the appropriate
lock type; this results in the previous lock being released and the new lock applied (possibly after other pro-
cesses have gained and released the lock).

Requesting a lock on an object that is already locked normally causes the caller to be blocked until the lock
may be acquired.If LOCK_NBis included inoperation, then this will not happen; instead the call will
fail and the errorEAGAINwill be returned.

NOTES
Locks are on files, not file descriptors. That is, file descriptors duplicated throughdup (2) or fork (2) do not
result in multiple instances of a lock, but rather multiple references to a single lock.If a process holding a
lock on a file forks and the child explicitly unlocks the file, the parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUES
Zero is returned if the operation was successful; on an error a −1 is returned and an error code is left in the
global locationerrno.

ERRORS
Theflock () call fails if:

[EAGAIN] The file is locked and theLOCK_NBoption was specified.

[EBADF] The argumentfd is an invalid descriptor.

NetBSD 3.0 December 11, 1993 1

FLOCK (2) NetBSD System Calls Manual FLOCK (2)

[EOPNOTSUPP] The argumentfd refers to an object other than a file.

[EINVAL] The argument operation does not include one ofLOCK_EX, LOCK_SH or
LOCK_UN.

SEE ALSO
close (2), dup (2), execve (2), fork (2), open (2)

HISTORY
Theflock () function call appeared in 4.2BSD.

NetBSD 3.0 December 11, 1993 2

FORK (2) NetBSD System Calls Manual FORK (2)

NAME
fork — create a new process

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

pid_t
fork (void);

DESCRIPTION
fork () causes creation of a new process. Thenew process (child process) is an exact copy of the calling
process (parent process) except for the following:

• The child process has a unique process ID.

• The child process has a different parent process ID (i.e., the process ID of the parent process).

• The child process has its own copy of the parent’s descriptors. Thesedescriptors reference the
same underlying objects, so that, for instance, file pointers in file objects are shared between the
child and the parent, so that anlseek (2) on a descriptor in the child process can affect a subse-
quentread (2) or write (2) by the parent.This descriptor copying is also used by the shell to
establish standard input and output for newly created processes as well as to set up pipes.

• The child process’ resource utilizations are set to 0; seesetrlimit (2).

In general, the child process should call_exit (2) rather thanexit (3). Otherwise,any stdio buffers that
exist both in the parent and child will be flushed twice.Similarly, _exit (2) should be used to prevent
atexit (3) routines from being called twice (once in the parent and once in the child).

In case of a threaded program, only the thread callingfork () is still running in the child processes.

Child processes of a threaded program have additional restrictions, a child must only call functions that are
async-signal-safe. Very few functions are asynchronously safe and applications should make sure they call
exec (3) as soon as possible.

RETURN VALUES
Upon successful completion,fork () returns a value of 0 to the child process and returns the process ID of
the child process to the parent process. Otherwise, a value of −1 is returned to the parent process, no child
process is created, and the global variableerrno is set to indicate the error.

ERRORS
fork () will fail and no child process will be created if:

[EAGAIN] The system-imposed limit on the total number of processes under execution would be exceeded.
This limit is configuration-dependent.

[EAGAIN] The limit RLIMIT_NPROCon the total number of processes under execution by this user id
would be exceeded.

[ENOMEM] There is insufficient swap space for the new process.

SEE ALSO
execve (2), setrlimit (2), vfork (2), wait (2), pthread_atfork (3)

NetBSD 3.0 June 10, 2004 1

FORK (2) NetBSD System Calls Manual FORK (2)

STANDARDS
Thefork () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
A fork () system call appeared in Version 6AT&T UNIX .

NetBSD 3.0 June 10, 2004 2

FSYNC (2) NetBSD System Calls Manual FSYNC (2)

NAME
fsync , fsync_range — synchronize a file’s in-core state with that on disk

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
fsync (int fd);

int
fsync_range (int fd , int how , off_t start , off_t length);

DESCRIPTION
fsync () causes all modified data and attributes offd to be moved to a permanent storage device. Thisnor-
mally results in all in-core modified copies of buffers for the associated file to be written to a disk.

fsync () should be used by programs that require a file to be in a known state, for example, in building a
simple transaction facility.

fsync_range () causes all modified data starting atstart for lengthlength of fd to be written to per-
manent storage. Note thatfsync_range () requires that the filefd must be open for writing.

fsync_range () may flush the file data in one of two manners:

FDATASYNCSynchronize the file data and sufficient meta-data to retrieve the data for the specified range.

FFILESYNC Synchronize all modified file data and meta-data for the specified range.

By default, fsync_range () does not flush disk caches, assuming that storage media are able to ensure
completed writes are transfered to media.TheFDISKSYNC flag may be included in thehow parameter to
trigger flushing of all disk caches for the file.

If thelength parameter is zero,fsync_range () will synchronize all of the file data.

RETURN VALUES
A 0 value is returned on success.A −1 value indicates an error.

ERRORS
fsync () or fsync_range () fail if:

[EBADF] fd is not a valid descriptor.

[EINVAL] fd refers to a socket, not to a file.

[EIO] An I/O error occurred while reading from or writing to the file system.

Additionally, fsync_range () fails if:

[EBADF] fd is not open for writing.

[EINVAL] start + length is less thanstart.

NOTES
For optimal efficiency, the fsync_range () call requires that the file system containing the file referenced
by fd support partial synchronization of file data.For file systems which do not support partial synchroniza-
tion, the entire file will be synchronized and the call will be the equivalent of callingfsync ().

NetBSD 3.0 November 14, 2003 1

FSYNC (2) NetBSD System Calls Manual FSYNC (2)

SEE ALSO
sync (2), sync (8)

HISTORY
Thefsync () function call appeared in 4.2BSD.

The fsync_range () function call first appeared inNetBSD 2.0 and is modeled after the function available
in AIX.

NetBSD 3.0 November 14, 2003 2

GETCONTEXT (2) NetBSD System Calls Manual GETCONTEXT (2)

NAME
getcontext , setcontext — get and set current user context

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ucontext.h>

int
getcontext (ucontext_t ∗ ucp);

int
setcontext (const ucontext_t ∗ ucp);

DESCRIPTION
Thegetcontext () function initializes the object pointed to byucp to the current user context of the call-
ing thread. The user context defines a thread’s execution environment and includes the contents of its
machine registers, its signal mask, and its current execution stack.

The setcontext () function restores the user context defined in the object pointed to byucp as most
recently initialized by a previous call to eithergetcontext () or makecontext (3). If successful, execu-
tion of the program resumes as defined in theucp argument, andsetcontext () will not return. If ucp
was initialized by thegetcontext () function, program execution continues as if the corresponding invoca-
tion of getcontext () had just returned (successfully).If ucp was initialized by themakecontext (3)
function, program execution continues with the function (and function arguments) passed to
makecontext (3).

RETURN VALUES
On successful completion,getcontext () returns 0 andsetcontext () does not return. Otherwise a
value of −1 is returned anderrno is set to indicate the error.

ERRORS
Thegetcontext () andsetcontext () functions will fail if:

[EFAULT] Theucp argument points to an invalid address.

Thesetcontext () function will fail if:

[EINVAL] The contents of the datum pointed to byucp are invalid.

SEE ALSO
sigprocmask (2), longjmp (3), makecontext (3), setjmp (3), swapcontext (3)

STANDARDS
The getcontext () and setcontext () functions conform toX/Open System Interfaces and Headers
Issue 5 (“XSH5”). Theerrno indications are an extension to the standard.

HISTORY
Thegetcontext () andsetcontext () functions first appeared inAT&T System V.4UNIX .

NetBSD 3.0 October 28, 1999 1

GETDENTS (2) NetBSD System Calls Manual GETDENTS (2)

NAME
getdents — get directory entries in a filesystem independent format

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <dirent.h>

int
getdents (int fd , char ∗ buf , size_t nbytes);

DESCRIPTION
getdents () reads directory entries from the directory referenced by the file descriptorfd into the buffer
pointed to bybuf, in a filesystem independent format. Up tonbytes of data will be transferred.nbytes
must be greater than or equal to the block size associated with the file, seestat (2). Somefilesystems may
not supportgetdents () with buffers smaller than this size.

The data in the buffer is a series ofdirentstructures each containing the following entries:

ino_t d_fileno;
uint16_t d_reclen;
uint16_t d_namlen;
uint8_t d_type;
char d_name[MAXNAMLEN + 1]; / ∗ see below ∗ /

The d_fileno entry is a number which is unique for each distinct file in the filesystem. Files that are
linked by hard links (seelink (2)) have the samed_fileno. If d_fileno is zero, the entry refers to a
deleted file.

Thed_reclen entry is the length, in bytes, of the directory record.

The d_type is the type of file, where the following are possible types:DT_UNKNOWN, DT_FIFO,
DT_CHR, DT_DIR, DT_BLK, DT_REG, DT_LNK, DT_SOCK, andDT_WHT.

Thed_namlen entry specifies the length of the file name excluding the null byte. Thus the actual size of
d_name may vary from 1 toMAXNAMLEN+ 1.

Thed_name entry contains a null terminated file name.

Entries may be separated by extra space.Thed_reclen entry may be used as an offset from the start of a
dirent structure to the next structure, if any.

The actual number of bytes transferred is returned.The current position pointer associated withfd is set to
point to the next block of entries. The pointer may not advance by the number of bytes returned by
getdents (). A value of zero is returned when the end of the directory has been reached.

The current position pointer may be set and retrieved by lseek (2). Thecurrent position pointer should only
be set to a value returned bylseek (2), or zero.

RETURN VALUES
If successful, the number of bytes actually transferred is returned. Otherwise, −1 is returned and the global
variableerrno is set to indicate the error.

ERRORS
getdents () will fail if:

NetBSD 3.0 September 6, 2005 1

GETDENTS (2) NetBSD System Calls Manual GETDENTS (2)

[EBADF] fd is not a valid file descriptor open for reading.

[EFAULT] Eitherbuf points outside the allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EINVAL] A directory was being read on NFS, but it was modified on the server while it was
being read.

SEE ALSO
lseek (2), open (2), dirent (5)

HISTORY
Thegetdents () function first appeared inNetBSD 1.3.

NetBSD 3.0 September 6, 2005 2

GETFH (2) NetBSD System Calls Manual GETFH (2)

NAME
getfh — get file handle

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/mount.h>

int
getfh (const char ∗ path , void ∗ fhp , size_t ∗ fh_size);

DESCRIPTION
getfh () returns a file handle for the specified file or directory in the file handle pointed to byfhp. The
variable pointed to byfh_size has to be initialized to the memory allocated for the variable sized file han-
dle. Onreturn the value will be replaced by the actual size needed (which will vary depending on the file
system the path is on). This system call is restricted to the superuser. To query the necessary size for the
filehandle, aNULL pointer may be passed asfhp, and the value pointed to byfh_size should be initial-
ized to zero.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, −1 is returned and the global variableerrno
is set to indicate the error.

ERRORS
getfh () fails if one or more of the following are true:

[ENOTDIR] A component of the path prefix ofpath is not a directory.

[ENAMETOOLONG] The length of a component ofpath exceeds {NAME_MAX} characters, or the length
of path exceeds {PATH_MAX} characters.

[ENOENT] The file referred to bypath does not exist.

[EACCES] Search permission is denied for a component of the path prefix ofpath.

[ELOOP] Too many symbolic links were encountered in translatingpath.

[EFAULT] fhp points to an invalid address.

[EIO] An I/O error occurred while reading from or writing to the file system.

[E2BIG] The memory allocated for the file handle is too small. The size needed has been writ-
ten to the variable pointed to byfh_size.

[ENOMEM] The kernel failed to allocate temporary memory to create a filehandle of the requested
size.

SEE ALSO
fhstat (2), fhstatvfs (2), fhstatvfs1 (2)

HISTORY
Thegetfh () function first appeared in 4.4BSD.

NetBSD 3.0 October 30, 2006 1

GETGID (2) NetBSD System Calls Manual GETGID (2)

NAME
getgid , getegid — get group process identification

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

gid_t
getgid (void);

gid_t
getegid (void);

DESCRIPTION
The getgid () function returns the real group ID of the calling process,getegid () returns the effective
group ID of the calling process.

The real group ID is specified at login time.

The real group ID is the group of the user who invoked the program. As the effective group ID gives the
process additional permissions during the execution of “set-group-ID” mode processes,getgid () is used to
determine the real-group-id of the calling process.

ERRORS
The getgid () andgetegid () functions are always successful, and no return value is reserved to indicate
an error.

SEE ALSO
getuid (2), setgid (2), setgroups (2), setregid (2)

STANDARDS
getgid () andgetegid () conform toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 October 7, 2006 1

GETGROUPS (2) NetBSD System Calls Manual GETGROUPS (2)

NAME
getgroups — get group access list

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
getgroups (int gidsetlen , gid_t ∗ gidset);

DESCRIPTION
getgroups () gets the current group access list of the current user process and stores it in the array
gidset. The parametergidsetlen indicates the number of entries that may be placed ingidset.
getgroups () returns the actual number of groups returned ingidset. No more than{NGROUPS_MAX}
will ever be returned. Ifgidsetlen is 0,getgroups () returns the number of groups without modifying
thegidset array.

This system call only returns the secondary groups.

RETURN VALUES
A successful call returns the number of groups in the group set.A value of −1 indicates that an error
occurred, and the error code is stored in the global variableerrno.

ERRORS
The possible errors forgetgroups () are:

[EINVAL] The argumentgidsetlen is non-zero and is smaller than the number of groups in
the group set.

[EFAULT] The argumentgidset specifies an invalid address.

SEE ALSO
getegid (2), getgid (2), setgroups (2), initgroups (3)

STANDARDS
Thegetgroups () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
Thegetgroups () function call appeared in 4.2BSD.

NetBSD 3.0 October 7, 2006 1

GETITIMER (2) NetBSD System Calls Manual GETITIMER (2)

NAME
getitimer , setitimer — get/set value of interval timer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/time.h>
#define ITIMER_REAL 0
#define ITIMER_VIRTUAL 1
#define ITIMER_PROF 2

int
getitimer (int which , struct itimerval ∗ value);

int
setitimer (int which , const struct itimerval ∗ restrict value ,

struct itimerval ∗ restrict ovalue);

DESCRIPTION
The system provides each process with three interval timers, defined in〈sys/time.h 〉. The
getitimer () call returns the current value for the timer specified inwhich in the structure atvalue.
The setitimer () call sets a timer to the specifiedvalue (returning the previous value of the timer if
ovalue is non-nil).

A timer value is defined by theitimerval structure:

struct itimerval {
struct timeval it_interval; / ∗ timer interval ∗ /
struct timeval it_value; / ∗ current value ∗ /

};

If it_value is non-zero, it indicates the time to the next timer expiration. Ifit_interval is non-zero,
it specifies a value to be used in reloadingit_value when the timer expires. Settingit_value to 0 dis-
ables a timer. Settingit_interval to 0 causes a timer to be disabled after its next expiration (assuming
it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution (typically 10
milliseconds).

The ITIMER_REAL timer decrements in real time.A SIGALRMsignal is delivered when this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time.It runs only when the process is execut-
ing. A SIGVTALRMsignal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is running on behalf
of the process.It is designed to be used by interpreters in statistically profiling the execution of interpreted
programs. Eachtime theITIMER_PROF timer expires, theSIGPROFsignal is delivered. Becausethis sig-
nal may interrupt in-progress system calls, programs using this timer must be prepared to restart interrupted
system calls.

NOTES
Macros for manipulating time values are defined in〈sys/time.h 〉. timerclear () sets a time value to
zero, timerisset () tests if a time value is non-zero,timercmp () compares two time values,
timeradd () adds a time value to another time value,timersub () computes the time difference between
two time values.

NetBSD 3.0 August 14, 2004 1

GETITIMER (2) NetBSD System Calls Manual GETITIMER (2)

RETURN VALUES
If the calls succeed, a value of 0 is returned. If an error occurs, the value −1 is returned, and a more precise
error code is placed in the global variableerrno.

ERRORS
getitimer () andsetitimer () will fail if:

[EFAULT] Thevalue parameter specified a bad address.

[EINVAL] A value parameter specified a time that was too large to be handled.

SEE ALSO
gettimeofday (2), poll (2), select (2), sigaction (2)

HISTORY
Thegetitimer () function call appeared in 4.2BSD.

NetBSD 3.0 August 14, 2004 2

GETLOGIN (2) NetBSD System Calls Manual GETLOGIN (2)

NAME
getlogin , setlogin — get/set login name

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

char ∗
getlogin (void);

int
setlogin (const char ∗ name);

DESCRIPTION
The getlogin () routine returns the login name of the user associated with the current session, as previ-
ously set bysetlogin (). Thename is normally associated with a login shell at the time a session is cre-
ated, and is inherited by all processes descended from the login shell.(This is true even if some of those pro-
cesses assume another user ID, for example whensu (1) is used.)

setlogin () sets the login name of the user associated with the current session toname. This call is
restricted to the super-user, and is normally used only when a new session is being created on behalf of the
named user (for example, at login time, or when a remote shell is invoked).

NOTE: There is only one login name per session.

It is CRITICALLYimportant to ensure thatsetlogin () is only ever called after the process has taken ade-
quate steps to ensure that it is detached from its parent’s session. TheONLY way to do this is via the
setsid () function. The daemon() function callssetsid () which is an ideal way of detaching from a
controlling terminal and forking into the background.

In particular, neither ioctl (ttyfd , TIOCNOTTY , ...) nor setpgid (...) is sufficient to create a
new session.

Once a parent process has calledsetsid (), it is acceptable for some child of that process to then call
setlogin (), even though it is not the session leader. Bew are, however, that ALL processes in the session
will change their login name at the same time, even the parent.

This is different from traditionalUNIX privilege inheritance and as such can be counter-intuitive.

Since thesetlogin () routine is restricted to the super-user, it is assumed that (like all other privileged pro-
grams) the programmer has taken adequate precautions to prevent security violations.

RETURN VALUES
If a call to getlogin () succeeds, it returns a pointer to a null-terminated string in a static buffer. If the
name has not been set, it returnsNULL. If a call to setlogin () succeeds, a value of 0 is returned.If
setlogin () fails, a value of −1 is returned and an error code is placed in the global locationerrno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] Thename parameter gav ean invalid address.

[EINVAL] Thename parameter pointed to a string that was too long. Login names are limited to
MAXLOGNAME(from 〈sys/param.h 〉) characters, currently 16.

NetBSD 3.0 August 11, 2002 1

GETLOGIN (2) NetBSD System Calls Manual GETLOGIN (2)

[EPERM] The caller tried to set the login name and was not the super-user.

SEE ALSO
setsid (2)

STANDARDS
Thegetlogin () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
Thegetlogin () function first appeared in 4.4BSD.

BUGS
Login names are limited in length bysetlogin (). However, lower limits are placed on login names else-
where in the system (UT_NAMESIZEin 〈utmp.h 〉).

In earlier versions of the system,getlogin () failed unless the process was associated with a login terminal.
The current implementation (usingsetlogin ()) allows getlogin to succeed even when the process has no
controlling terminal. In earlier versions of the system, the value returned bygetlogin () could not be
trusted without checking the user ID. Portable programs should probably still make this check.

NetBSD 3.0 August 11, 2002 2

GETPEERNAME (2) NetBSD System Calls Manual GETPEERNAME (2)

NAME
getpeername — get name of connected peer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

int
getpeername (int s , struct sockaddr ∗ restrict name ,

socklen_t ∗ restrict namelen);

DESCRIPTION
getpeername () returns the name of the peer connected to socket s. One common use occurs when a
process inherits an open socket, such as TCP servers forked frominetd (8). In this scenario,
getpeername () is used to determine the connecting client’s IP address.

getpeername () takes three parameters:

s contains the file descriptor of the socket whose peer should be looked up.

name points to asockaddr structure that will hold the address information for the connected peer. Nor-
mal use requires one to use a structure specific to the protocol family in use, such assockaddr_in (IPv4)
or sockaddr_in6 (IPv6), cast to a (struct sockaddr∗).

For greater portability, especially with the newer protocol families, the new struct
sockaddr_storage should be used.sockaddr_storage is large enough to hold any of the other
sockaddr_∗ variants. Onreturn, it can be cast to the correct sockaddr type, based on the protocol family con-
tained in its ss_family field.

namelen indicates the amount of space pointed to byname, in bytes.

If address information for the local end of the socket is required, thegetsockname (2) function should be
used instead.

If name does not point to enough space to hold the entire socket address, the result will be truncated to
namelen bytes.

RETURN VALUES
If the call succeeds, a 0 is returned andnamelen is set to the actual size of the socket address returned in
name. Otherwise,errno is set and a value of −1 is returned.

ERRORS
The call succeeds unless:

[EBADF] The arguments is not a valid descriptor.

[ENOTSOCK] The arguments is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of the process address
space.

NetBSD 3.0 March 5, 2006 1

GETPEERNAME (2) NetBSD System Calls Manual GETPEERNAME (2)

SEE ALSO
accept (2), bind (2), getsockname (2), socket (2)

HISTORY
Thegetpeername () function call appeared in 4.2BSD.

NetBSD 3.0 March 5, 2006 2

GETPGRP (2) NetBSD System Calls Manual GETPGRP (2)

NAME
getpgrp , getpgid — get process group

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

pid_t
getpgrp (void);

pid_t
getpgid (pid_t pid);

DESCRIPTION
The process group of the current process is returned bygetpgrp (). Theprocess group of thepid process
is returned bygetpgid ().

Process groups are used for distribution of signals, and by terminals to arbitrate requests for their input: pro-
cesses that have the same process group as the terminal are foreground and may read, while others will block
with a signal if they attempt to read.

This call is thus used by programs such ascsh (1) to create process groups in implementing job control.The
tcgetpgrp () andtcsetpgrp () calls are used to get/set the process group of the control terminal.

ERRORS
getpgrp () always succeeds, however getpgid () will succeed unless:

[ESRCH] if there is no process with a process ID equal topid.

SEE ALSO
setpgid (2), termios (4)

STANDARDS
Thegetpgrp () function conforms toIEEE Std 1003.1-1988 (“POSIX.1”).

HISTORY
The getpgrp () function call appeared in 4.0BSD. The getpgid () function call is derived from its usage
in AT&T System V.4UNIX , and first appeared inNetBSD 1.3.

COMPATIBILITY
This version ofgetpgrp () differs from past Berkeley versions by not taking apid_t pid argument.
This incompatibility is required byISO/IEC9945-1:1990 (“POSIX.1”).

From theISO/IEC9945-1:1990 (“POSIX.1”) Rationale:

4.3BSD provides agetpgrp () function that returns the process group ID for a specified process.Although
this function is used to support job control, all known job-control shells always specify the calling process
with this function. Thus, the simpler System Vgetpgrp () suffices, and the added complexity of the
4.3BSD getpgrp () has been omitted from POSIX.1. The old functionality is available from the
getpgid () function.

NetBSD 3.0 August 11, 2002 1

GETPID (2) NetBSD System Calls Manual GETPID (2)

NAME
getpid , getppid — get parent or calling process identification

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

pid_t
getpid (void);

pid_t
getppid (void);

DESCRIPTION
getpid () returns the process ID of the calling process.The ID is guaranteed to be unique and is useful for
constructing temporary file names.

getppid () returns the process ID of the parent of the calling process.

ERRORS
The getpid () andgetppid () functions are always successful, and no return value is reserved to indicate
an error.

SEE ALSO
gethostid (3)

STANDARDS
getpid () andgetppid () conform toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 1

GETPRIORITY (2) NetBSD System Calls Manual GETPRIORITY (2)

NAME
getpriority , setpriority — get/set program scheduling priority

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/resource.h>

int
getpriority (int which , id_t who);

int
setpriority (int which , id_t who , int prio);

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated bywhich andwho is obtained
with thegetpriority () call and set with thesetpriority () call. which is one ofPRIO_PROCESS,
PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a process identifier for
PRIO_PROCESS, process group identifier forPRIO_PGRP, and a user ID forPRIO_USER). A zero value
of who denotes the current process, process group, or user. prio is a value in the range -20 to 20.The
default priority is 0; lower priorities cause more favorable scheduling.A value of 19 or 20 will schedule a
process only when nothing at priority≤ 0 is runnable.

Thegetpriority () call returns the highest priority (lowest numerical value) enjoyed by any of the speci-
fied processes.Thesetpriority () call sets the priorities of all of the specified processes to the specified
value. Onlythe super-user may lower priorities.

RETURN VALUES
Sincegetpriority () can legitimately return the value −1, it is necessary to clear the external variable
errno prior to the call, then check it afterward to determine if a −1 is an error or a legitimate value. The
setpriority () call returns 0 if there is no error, or −1 if there is.

ERRORS
getpriority () andsetpriority () will fail if:

[ESRCH] No process was located using thewhich andwho values specified.

[EINVAL] which was not one ofPRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, setpriority () will fail if:

[EPERM] A process was located, but neither its effective nor real user ID matched the effective
user ID of the caller.

[EACCES] A non super-user attempted to lower a process priority.

SEE ALSO
nice (1), fork (2), renice (8)

HISTORY
Thegetpriority () function call appeared in 4.2BSD.

NetBSD 3.0 April 25, 2004 1

GETRLIMIT (2) NetBSD System Calls Manual GETRLIMIT (2)

NAME
getrlimit , setrlimit — control maximum system resource consumption

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/resource.h>

int
getrlimit (int resource , struct rlimit ∗ rlp);

int
setrlimit (int resource , const struct rlimit ∗ rlp);

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it creates may be
obtained with thegetrlimit () call, and set with thesetrlimit () call. Resources of an arbitrary
process can be obtained/changed usingsysctl (3).

Theresource parameter is one of the following:

RLIMIT_CORE The largest size (in bytes)core file that may be created.

RLIMIT_CPU The maximum amount of CPU time (in seconds) to be used by each process.

RLIMIT_DATA The maximum size (in bytes) of the data segment for a process; this defines how far a
program may extend its break with thesbrk (2) system call.

RLIMIT_FSIZE The largest size (in bytes) file that may be created.

RLIMIT_MEMLOCKThe maximum size (in bytes) which a process may lock into memory using the
mlock (2) function.

RLIMIT_NOFILE The maximum number of open files for this process.

RLIMIT_NPROC The maximum number of simultaneous processes for this user id.

RLIMIT_RSS The maximum size (in bytes) to which a process’s resident set size may grow. This
imposes a limit on the amount of physical memory to be given to a process; if memory
is tight, the system will prefer to take memory from processes that are exceeding their
declared resident set size.

RLIMIT_SBSIZE The maximum size (in bytes) of the socket buffers set by thesetsockopt (2)
SO_RCVBUFandSO_SNDBUFoptions.

RLIMIT_STACK The maximum size (in bytes) of the stack segment for a process; this defines how far a
program’s stack segment may be extended. Stackextension is performed automati-
cally by the system.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process may
receive a signal (for example, if the CPU time or file size is exceeded), but it will be allowed to continue
execution until it reaches the hard limit (or modifies its resource limit).Therlimit structure is used to specify
the hard and soft limits on a resource,

struct rlimit {
rlim_t rlim_cur; / ∗ current (soft) limit ∗ /
rlim_t rlim_max; / ∗ hard limit ∗ /

};

NetBSD 3.0 April 19, 2004 1

GETRLIMIT (2) NetBSD System Calls Manual GETRLIMIT (2)

Only the super-user may raise the maximum limits. Other users may only alterrlim_cur within the range
from 0 torlim_max or (irreversibly) lowerrlim_max.

An “infinite” value for a limit is defined asRLIM_INFINITY .

Because this information is stored in the per-process information, this system call must be executed directly
by the shell if it is to affect all future processes created by the shell. Thus, shells provide built-in commands
to change the limits (limit for csh (1), orulimit for sh (1)).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way: a
brk (2) call fails if the data space limit is reached. When the stack limit is reached, the process receives a
segmentation fault (SIGSEGV) ; if this signal is not caught by a handler using the signal stack, this signal
will kill the process.

A fi le I/O operation that would create a file larger that the process’ soft limit will cause the write to fail and a
signalSIGXFSZ to be generated; this normally terminates the process, but may be caught. When the soft
CPU time limit is exceeded, a signalSIGXCPUis sent to the offending process.

RETURN VALUES
A 0 return value indicates that the call succeeded, changing or returning the resource limit. Otherwise, −1 is
returned and the global variableerrno is set to indicate the error.

ERRORS
Thegetrlimit () andsetrlimit () will fail if:

[EFAULT] The address specified forrlp is invalid.

[EINVAL] Specifiedresource was inv alid.

[EINVAL] In the setrlimit () call, the specifiedrlim_cur exceeds the specified
rlim_max.

[EPERM] The limit specified tosetrlimit () would have raised the maximum limit value, and
the caller is not the super-user.

Thesetrlimit () function may fail if:

[EINVAL] The limit specified tosetrlimit () cannot be lowered, because current usage is
already higher than the limit.

SEE ALSO
csh (1), sh (1), mlock (2), quotactl (2), setsockopt (2), sigaction (2), sigaltstack (2),
sysctl (3)

HISTORY
Thegetrlimit () function call appeared in 4.2BSD.

NetBSD 3.0 April 19, 2004 2

GETRUSAGE (2) NetBSD System Calls Manual GETRUSAGE (2)

NAME
getrusage — get information about resource utilization

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/resource.h>
#define RUSAGE_SELF 0
#define RUSAGE_CHILDREN −1

int
getrusage (int who , struct rusage ∗ rusage);

DESCRIPTION
getrusage () returns information describing the resources used by the current process, or all its terminated
child processes.The who parameter is eitherRUSAGE_SELFor RUSAGE_CHILDREN. The buffer to
whichrusage points will be filled in with the following structure:

struct rusage {
struct timeval ru_utime; / ∗ user time used ∗ /
struct timeval ru_stime; / ∗ system time used ∗ /
long ru_maxrss; / ∗ max resident set size ∗ /
long ru_ixrss; / ∗ integral shared text memory size ∗ /
long ru_idrss; / ∗ integral unshared data size ∗ /
long ru_isrss; / ∗ integral unshared stack size ∗ /
long ru_minflt; / ∗ page reclaims ∗ /
long ru_majflt; / ∗ page faults ∗ /
long ru_nswap; / ∗ swaps ∗ /
long ru_inblock; / ∗ block input operations ∗ /
long ru_oublock; / ∗ block output operations ∗ /
long ru_msgsnd; / ∗ messages sent ∗ /
long ru_msgrcv; / ∗ messages received ∗ /
long ru_nsignals; / ∗ signals received ∗ /
long ru_nvcsw; / ∗ voluntary context switches ∗ /
long ru_nivcsw; / ∗ involuntary context switches ∗ /

};

The fields are interpreted as follows:

ru_utime the total amount of time spent executing in user mode.

ru_stime the total amount of time spent in the system executing on behalf of the process(es).

ru_maxrss the maximum resident set size used (in kilobytes).

ru_ixrss an integral value indicating the amount of memory used by the text segment that was also
shared among other processes. This value is expressed in units of kilobytes∗ ticks-of-
execution.

ru_idrss an integral value of the amount of unshared memory residing in the data segment of a
process (expressed in units of kilobytes∗ ticks-of-execution).

ru_isrss an integral value of the amount of unshared memory residing in the stack segment of a
process (expressed in units of kilobytes∗ ticks-of-execution).

NetBSD 3.0 June 4, 1993 1

GETRUSAGE (2) NetBSD System Calls Manual GETRUSAGE (2)

ru_minflt the number of page faults serviced without any I/O activity; here I/O activity is avoided by
reclaiming a page frame from the list of pages awaiting reallocation.

ru_majflt the number of page faults serviced that required I/O activity.

ru_nswap the number of times a process was swapped out of main memory.

ru_inblock the number of times the file system had to perform input.

ru_oublock the number of times the file system had to perform output.

ru_msgsnd the number of IPC messages sent.

ru_msgrcv the number of IPC messages received.

ru_nsignals the number of signals delivered.

ru_nvcsw the number of times a context switch resulted due to a process voluntarily giving up the
processor before its time slice was completed (usually to await availability of a resource).

ru_nivcsw the number of times a context switch resulted due to a higher priority process becoming
runnable or because the current process exceeded its time slice.

NOTES
The numbersru_inblock and ru_oublock account only for real I/O; data supplied by the caching
mechanism is charged only to the first process to read or write the data.

ERRORS
getrusage () returns −1 on error. The possible errors are:

[EINVAL] Thewho parameter is not a valid value.

[EFAULT] The address specified by therusage parameter is not in a valid part of the process
address space.

SEE ALSO
gettimeofday (2), wait (2)

HISTORY
Thegetrusage () function call appeared in 4.2BSD.

BUGS
There is no way to obtain information about a child process that has not yet terminated.

NetBSD 3.0 June 4, 1993 2

GETSID (2) NetBSD System Calls Manual GETSID (2)

NAME
getsid — get session ID

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

pid_t
getsid (pid_t pid);

DESCRIPTION
Thegetsid function returns the session ID of the process specified bypid. If pid is 0, the session ID of
the calling process is returned.The session ID is defined as the process group ID of the process that is the
session leader.

ERRORS
If an error occurs,getsid returns −1 and the global variableerrno is set to indicate the error, as follows:

[ESRCH] No process can be found corresponding to that specified bypid.

SEE ALSO
getpgid (2), setsid (2), termios (4)

STANDARDS
Thegetsid () function conforms toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

NetBSD 3.0 October 7, 2006 1

GETSOCKNAME (2) NetBSD System Calls Manual GETSOCKNAME (2)

NAME
getsockname — get socket name

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

int
getsockname (int s , struct sockaddr ∗ restrict name ,

socklen_t ∗ restrict namelen);

DESCRIPTION
getsockname () returns the locally bound address information for a specified socket.

Common uses of this function are as follows:

• Whenbind (2) is called with a port number of 0 (indicating the kernel should pick an ephemeral port)
getsockname () is used to retrieve the kernel-assigned port number.

• When a process callsbind (2) on a wildcard IP address,getsockname () is used to retrieve the local IP
address for the connection.

• When a function wishes to know the address family of a socket,getsockname () can be used.

getsockname () takes three parameters:

s, Contains the file descriptor for the socket to be looked up.

name points to asockaddr structure which will hold the resulting address information. Normal use
requires one to use a structure specific to the protocol family in use, such assockaddr_in (IPv4) or
sockaddr_in6 (IPv6), cast to a (struct sockaddr∗).

For greater portability (such as newer protocol families) the new structure sockaddr_storage exists.
sockaddr_storage is large enough to hold any of the other sockaddr_∗ variants. Onreturn, it should be
cast to the correct sockaddr type, according to the current protocol family.

namelen indicates the amount of space pointed to byname, in bytes. Uponreturn,namelen is set to the
actual size of the returned address information.

If the address of the destination socket for a given socket connection is needed, thegetpeername (2) func-
tion should be used instead.

If name does not point to enough space to hold the entire socket address, the result will be truncated to
namelen bytes.

RETURN VALUES
On success,getsockname () returns a 0, andnamelen is set to the actual size of the socket address
returned inname. Otherwise,errno is set, and a value of −1 is returned.

ERRORS
The call succeeds unless:

[EBADF] The arguments is not a valid descriptor.

[ENOTSOCK] The arguments is a file, not a socket.

NetBSD 3.0 August 11, 2002 1

GETSOCKNAME (2) NetBSD System Calls Manual GETSOCKNAME (2)

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of the process address
space.

SEE ALSO
bind (2), socket (2)

HISTORY
Thegetsockname () function call appeared in 4.2BSD.

BUGS
Names bound to sockets in theUNIX domain are inaccessible;getsockname () returns a zero length name.

NetBSD 3.0 August 11, 2002 2

GETSOCKOPT (2) NetBSD System Calls Manual GETSOCKOPT (2)

NAME
getsockopt , setsockopt — get and set options on sockets

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

int
getsockopt (int s , int level , int optname , void ∗ restrict optval ,

socklen_t ∗ restrict optlen);

int
setsockopt (int s , int level , int optname , const void ∗ optval ,

socklen_t optlen);

DESCRIPTION
getsockopt () andsetsockopt () manipulate theoptionsassociated with a socket. Optionsmay exist at
multiple protocol levels; they are always present at the uppermost “socket” level.

When manipulating socket options the level at which the option resides and the name of the option must be
specified. To manipulate options at the socket level, level is specified asSOL_SOCKET. To manipulate
options at any other level the protocol number of the appropriate protocol controlling the option is supplied.
For example, to indicate that an option is to be interpreted by theTCP protocol,level should be set to the
protocol number ofTCP; seegetprotoent (3).

The parametersoptval and optlen are used to access option values forsetsockopt (). For
getsockopt () they identify a buffer in which the value for the requested option(s) are to be returned.For
getsockopt (), optlen is a value-result parameter, initially containing the size of the buffer pointed to by
optval, and modified on return to indicate the actual size of the value returned. If no option value is to be
supplied or returned,optval may be NULL.

optname and any specified options are passed uninterpreted to the appropriate protocol module for interpre-
tation. Theinclude file 〈sys/socket.h 〉 contains definitions for socket level options, described below.
Options at other protocol levels vary in format and name; consult the appropriate entries in section 4 of the
manual, including:clnp (4), faith (4), icmp6 (4), ip (4), ip6 (4), ipsec (4), multicast (4), pim (4),
route (4), tcp (4), tp (4), andunix (4).

Most socket-level options use anint parameter foroptval. For setsockopt (), the parameter should be
non-zero to enable a boolean option, or zero if the option is to be disabled.SO_LINGERuses astruct
linger parameter, defined in〈sys/socket.h 〉, which specifies the desired state of the option and the
linger interval (see below). SO_SNDTIMEOand SO_RCVTIMEOuse astruct timeval parameter,
defined in〈sys/time.h 〉.

The following options are recognized at the socket level. Except as noted, each may be examined with
getsockopt () and set withsetsockopt ().

SO_DEBUG enables recording of debugging information
SO_REUSEADDRenables local address reuse
SO_REUSEPORTenables duplicate address and port bindings
SO_KEEPALIVE enables keep connections alive
SO_DONTROUTEenables routing bypass for outgoing messages

NetBSD 3.0 December 16, 2007 1

GETSOCKOPT (2) NetBSD System Calls Manual GETSOCKOPT (2)

SO_LINGER linger on close if data present
SO_BROADCASTenables permission to transmit broadcast messages
SO_OOBINLINE enables reception of out-of-band data in band
SO_SNDBUF set buffer size for output
SO_RCVBUF set buffer size for input
SO_SNDLOWAT set minimum count for output
SO_RCVLOWAT set minimum count for input
SO_SNDTIMEO set timeout value for output
SO_RCVTIMEO set timeout value for input
SO_TIMESTAMP enables reception of a timestamp with datagrams
SO_TYPE get the type of the socket (get only)
SO_ERROR get and clear error on the socket (get only)

SO_DEBUGenables debugging in the underlying protocol modules.SO_REUSEADDRindicates that the
rules used in validating addresses supplied in abind (2) call should allow reuse of local addresses.
SO_REUSEPORTallows completely duplicate bindings by multiple processes if they all set
SO_REUSEPORTbefore binding the port. This option permits multiple instances of a program to each
receive UDP/IP multicast or broadcast datagrams destined for the bound port.SO_KEEPALIVEenables the
periodic transmission of messages on a connected socket. Shouldthe connected party fail to respond to these
messages, the connection is considered broken and processes using the socket are notified via aSIGPIPE
signal when attempting to send data.SO_DONTROUTEindicates that outgoing messages should bypass the
standard routing facilities. Instead,messages are directed to the appropriate network interface according to
the network portion of the destination address.

SO_LINGERcontrols the action taken when unsent messages are queued on socket and aclose (2) is per-
formed. If the socket promises reliable delivery of data andSO_LINGERis set, the system will block the
process on theclose (2) attempt until it is able to transmit the data or until it decides it is unable to deliver
the information (a timeout period, measured in seconds, termed the linger interval, is specified in the
setsockopt () call whenSO_LINGER is requested).If SO_LINGER is disabled and aclose (2) is
issued, the system will process the close in a manner that allows the process to continue as quickly as possi-
ble.

The optionSO_BROADCASTrequests permission to send broadcast datagrams on the socket. Broadcastwas
a privileged operation in earlier versions of the system.With protocols that support out-of-band data, the
SO_OOBINLINEoption requests that out-of-band data be placed in the normal data input queue as received;
it will then be accessible withrecv (2) or read (2) calls without theMSG_OOBflag. Someprotocols always
behave as if this option is set.SO_SNDBUFandSO_RCVBUFare options to adjust the normal buffer sizes
allocated for output and input buffers, respectively. The buffer size may be increased for high-volume con-
nections, or may be decreased to limit the possible backlog of incoming data. The system places an absolute
limit on these values.

SO_SNDLOWATis an option to set the minimum count for output operations.Most output operations
process all of the data supplied by the call, delivering data to the protocol for transmission and blocking as
necessary for flow control. Nonblockingoutput operations will process as much data as permitted subject to
flow control without blocking, but will process no data if flow control does not allow the smaller of the low
water mark value or the entire request to be processed.A select (2) orpoll (2) operation testing the abil-
ity to write to a socket will return true only if the low water mark amount could be processed. The default
value for SO_SNDLOWATis set to a convenient size for network efficiency, often 1024. SO_RCVLOWATis
an option to set the minimum count for input operations. In general, receive calls will block until any (non-
zero) amount of data is received, then return with the smaller of the amount available or the amount
requested. Thedefault value forSO_RCVLOWATis 1. If SO_RCVLOWATis set to a larger value, blocking
receive calls normally wait until they hav ereceived the smaller of the low water mark value or the requested
amount. Receive calls may still return less than the low water mark if an error occurs, a signal is caught, or
the type of data next in the receive queue is different than that returned.

NetBSD 3.0 December 16, 2007 2

GETSOCKOPT (2) NetBSD System Calls Manual GETSOCKOPT (2)

SO_SNDTIMEOis an option to set a timeout value for output operations. It accepts astruct timeval
parameter with the number of seconds and microseconds used to limit waits for output operations to com-
plete. If a send operation has blocked for this much time, it returns with a partial count or with the error
EAGAIN if no data were sent. In the current implementation, this timer is restarted each time additional data
are delivered to the protocol, implying that the limit applies to output portions ranging in size from the low
water mark to the high water mark for output.SO_RCVTIMEOis an option to set a timeout value for input
operations. Itaccepts astruct timeval parameter with the number of seconds and microseconds used
to limit waits for input operations to complete. In the current implementation, this timer is restarted each
time additional data are received by the protocol, and thus the limit is in effect an inactivity timer. If a
receive operation has been blocked for this much time without receiving additional data, it returns with a
short count or with the errorEAGAIN if no data were received.

If the SO_TIMESTAMPoption is enabled on aSOCK_DGRAMsocket, therecvmsg (2) call will return a
timestamp corresponding to when the datagram was received. Themsg_control field in the msghdr structure
points to a buffer that contains a cmsghdr structure followed by a struct timeval. Thecmsghdr fields have the
following values:

cmsg_len = sizeof(struct timeval)
cmsg_level = SOL_SOCKET
cmsg_type = SCM_TIMESTAMP

Finally, SO_TYPEandSO_ERRORare options used only withgetsockopt (). SO_TYPEreturns the type
of the socket, such asSOCK_STREAM; it is useful for servers that inherit sockets on startup.SO_ERROR
returns any pending error on the socket and clears the error status. It may be used to check for asynchronous
errors on connected datagram sockets or for other asynchronous errors.

RETURN VALUES
A 0 is returned if the call succeeds, −1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The arguments is not a valid descriptor.

[ENOTSOCK] The arguments is a file, not a socket.

[ENOPROTOOPT] The option is unknown at the level indicated.

[EFAULT] The address pointed to byoptval is not in a valid part of the process address space.
For getsockopt (), this error may also be returned ifoptlen is not in a valid part
of the process address space.

SEE ALSO
ioctl (2), poll (2), select (2), socket (2), getprotoent (3), clnp (4), faith (4), icmp6 (4), ip (4),
ip6 (4), ipsec (4), multicast (4), pim (4), route (4), tcp (4), tp (4), unix (4), protocols (5)

HISTORY
Thegetsockopt () system call appeared in 4.2BSD.

BUGS
Several of the socket options should be handled at lower levels of the system.

NetBSD 3.0 December 16, 2007 3

GETTIMEOFDAY (2) NetBSDSystem Calls Manual GETTIMEOFDAY (2)

NAME
gettimeofday , settimeofday — get/set date and time

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/time.h>

int
gettimeofday (struct timeval ∗ restrict tp , void ∗ restrict tzp);

int
settimeofday (const struct timeval ∗ restrict tp ,

const void ∗ restrict tzp);

DESCRIPTION
Note: time zone information is no longer provided by this interface. Seelocaltime (3) for i nforma-
tion on how to retrieve it.

The system’s notion of the current UTC time is obtained with thegettimeofday () call, and set with the
settimeofday () call. The time is expressed in seconds and microseconds since midnight (0 hour), Jan-
uary 1, 1970.The resolution of the system clock is hardware dependent, and the time may be updated con-
tinuously or in ‘‘ticks.’’ I f tp is NULL, the time will not be returned or set.Despite being declaredvoid
∗ , the objects pointed to bytzp shall be of typestruct timezone.

The structures pointed to bytp andtzp are defined in〈sys/time.h 〉 as:

struct timeval {
long tv_sec; / ∗ seconds since Jan. 1, 1970 ∗ /
long tv_usec; / ∗ and microseconds ∗ /

};

struct timezone {
int tz_minuteswest; / ∗ of Greenwich ∗ /
int tz_dsttime; / ∗ type of dst correction to apply ∗ /

};

Thetimezone structure is provided only for source compatibility. It is ignored bysettimeofday (), and
gettimeofday () will always return zeroes.

If the calling user is not the super-user, then thesettimeofday () function in the standard C library will
try to use theclockctl (4) device if present, thus making possible for non privileged users to set the sys-
tem time. If clockctl (4) is not present or not accessible, thensettimeofday () reverts to the
settimeofday () system call, which is restricted to the super user.

RETURN VALUES
A 0 return value indicates that the call succeeded.A −1 return value indicates an error occurred, and in this
case an error code is stored into the global variableerrno.

ERRORS
The following error codes may be set inerrno:

[EFAULT] An argument address referenced invalid memory.

NetBSD 3.0 April 26, 2004 1

GETTIMEOFDAY (2) NetBSDSystem Calls Manual GETTIMEOFDAY (2)

[EPERM] A user other than the super user attempted to set the time, or the specified time was
less than the current time, which was not permitted at the current security level.

SEE ALSO
date (1), adjtime (2), ctime (3), localtime (3), clockctl (4), timed (8)

HISTORY
The gettimeofday () function call appeared in 4.2BSD. The tzp argument was deprecated in 4.4BSD
(and many other systems).

NetBSD 3.0 April 26, 2004 2

GETUID (2) NetBSD System Calls Manual GETUID (2)

NAME
getuid , geteuid — get user identification

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

uid_t
getuid (void);

uid_t
geteuid (void);

DESCRIPTION
Thegetuid () function returns the real user ID of the calling process.Thegeteuid () function returns the
effective user ID of the calling process.

The real user ID is that of the user who has invoked the program. As the effective user ID gives the process
additional permissions during execution of “set-user-ID” mode processes,getuid () is used to determine
the real-user-id of the calling process.

ERRORS
The getuid () andgeteuid () functions are always successful, and no return value is reserved to indicate
an error.

SEE ALSO
getgid (2), setreuid (2)

STANDARDS
Thegeteuid () andgetuid () functions conform toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 1

GETVFSSTAT (2) NetBSDSystem Calls Manual GETVFSSTAT (2)

NAME
getvfsstat — get list of all mounted file systems

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/statvfs.h>

int
getvfsstat (struct statvfs ∗ buf , size_t bufsize , int flags);

DESCRIPTION
getvfsstat () returns information about all mounted file systems.buf is a pointer to an array of
statvfs structures defined instatvfs (5).

The buffer is filled with an array ofstatvfs structures, one for each mounted file system up to the size
specified bybufsize.

If buf is given as NULL, getvfsstat () returns just the number of mounted file systems.

Normally flags should be specified asST_WAIT. If flags is set toST_NOWAIT, getvfsstat () will
return the information it has available without requesting an update from each file system.Thus, some of the
information will be out of date, but getvfsstat () will not block waiting for information from a file sys-
tem that is unable to respond.

RETURN VALUES
Upon successful completion, the number ofstatvfs structures is returned. Otherwise, −1 is returned and
the global variableerrno is set to indicate the error.

ERRORS
getvfsstat () fails if one or more of the following are true:

[EFAULT] buf points to an invalid address.

[EIO] An I/O error occurred while reading from or writing to the file system.

SEE ALSO
statvfs (2), getmntinfo (3), fstab (5), mount (8)

HISTORY
The getvfsstat () function first appeared inNetBSD 3.0 to replacegetfsstat () which appeared in
4.4BSD.

NetBSD 3.0 May 19, 2006 1

I386_GET_LDT (2) NetBSD/i386 System Calls Manual I386_GET_LDT (2)

NAME
i386_get_ldt , i386_set_ldt — manage i386 per-process Local Descriptor Table entries

LIBRARY
i386 Architecture Library (libi386, −li386)

SYNOPSIS
#include <sys/types.h>
#include <machine/segments.h>
#include <machine/sysarch.h>

int
i386_get_ldt (int start_sel , union descriptor ∗ descs , int num_sels);

int
i386_set_ldt (int start_sel , union descriptor ∗ descs , int num_sels);

DESCRIPTION
i386_get_ldt () will return the list of i386 descriptors that the process has in its LDT.
i386_set_ldt () will set a list of i386 descriptors for the current process in its LDT. Both routines accept
a starting selector numberstart_sel , an array of memory that will contain the descriptors to be set or
returneddescs , and the number of entries to set or returnnum_sels.

The argumentdescs can be either segment_descriptor or gate_descriptor and are defined in<i386/seg-
ments.h> .
These structures are defined by the architecture as disjoint bit-fields, so care must be taken in constructing
them.

RETURN VALUES
Upon successful completion,i386_get_ldt () returns the number of descriptors currently in the LDT.
i386_set_ldt () returns the first selector set.Otherwise, a value of −1 is returned and the global variable
errno is set to indicate the error.

ERRORS
i386_get_ldt () andi386_set_ldt () will fail if:

[EINVAL] An inappropriate parameter was used forstart_sel or num_sels.

[EACCES] The caller attempted to use a descriptor that would circumvent protection or cause a failure.

REFERENCES
i386 Microprocessor Programmer’s Reference Manual, Intel

WARNING
You can really hose your process using this.

NetBSD 3.0 September 20, 1993 1

I386_GET_MTRR (2) NetBSD/i386 System Calls Manual I386_GET_MTRR (2)

NAME
i386_get_mtrr , i386_set_mtrr — access Memory Type Range Registers

LIBRARY
i386 Architecture Library (libi386, −li386)

SYNOPSIS
#include <sys/types.h>
#include <machine/sysarch.h>
#include <machine/mtrr.h>

int
i386_get_mtrr (struct mtrr ∗ mtrrp , int ∗ n);

int
i386_set_mtrr (struct mtrr ∗ mtrrp , int ∗ n);

DESCRIPTION
These functions provide an interface to the MTRR registers found on 686-class processors for controlling
processor access to memory ranges. This is most useful for accessing devices such as video accelerators on
pci (4) andagp (4) buses. For example, enabling write-combining allows bus-write transfers to be com-
bined into a larger transfer before bursting over the bus. Thiscan increase performance of write operations
2.5 times or more.

mtrrp is a pointer to one or more mtrr structures, as described below. Then argument is a pointer to an
integer containing the number of structures pointed to bymtrrp. For i386_set_mtrr () the integer
pointed to by n will be updated to reflect the actual number of MTRRs successfully set.For
i386_get_mtrr () no more thann structures will be copied out, and the integer value pointed to byn will
be updated to reflect the actual number of valid structures retrieved. A NULLargument tomtrrp will result
in just the number of MTRRs available being returned in the integer pointed to byn.

The argumentmtrrp has the following structure:

struct mtrr {
uint64_t base;
uint64_t len;
uint8_t type;
int flags;
pid_t owner;

};

The location of the mapping is described by its physical base addressbaseand lengthlen. Valid values for
typeare:

MTRR_TYPE_UC uncached memory
MTRR_TYPE_WC use write-combining
MTRR_TYPE_WT use write-through caching
MTRR_TYPE_WP write-protected memory
MTRR_TYPE_WB use write-back caching

Valid values forflagsare:

MTRR_PRIVATE
own range, reset the MTRR when the current process exits

NetBSD 3.0 November 10, 2001 1

I386_GET_MTRR (2) NetBSD/i386 System Calls Manual I386_GET_MTRR (2)

MTRR_FIXED use fixed range MTRR
MTRR_VALID entry is valid

Theownermember is the PID of the user process which claims the mapping. It is only valid if MTRR_PRI-
VA TE is set inflags. To clear/reset MTRRs, use aflagsfield without MTRR_VALID set.

RETURN VALUES
Upon successful completion zero is returned, otherwise −1 is returned on failure, and the global variable
errno is set to indicate the error. The integer value pointed to byn will contain the number of successfully
processed mtrr structures in both cases.

ERRORS
[ENOSYS] The currently running kernel or CPU has no MTRR support.

[EINVAL] The currently running kernel has no MTRR support, or one of the mtrr structures pointed to by
mtrrp is invalid.

[EBUSY] No unused MTRRs are available.

HISTORY
The i386_get_mtrr () andi386_set_mtrr () functions appeared inNetBSD 1.6.

NetBSD 3.0 November 10, 2001 2

I386_IOPL (2) NetBSD/i386 System Calls Manual I386_IOPL (2)

NAME
i386_iopl — change the i386 I/O privilege level

LIBRARY
i386 Architecture Library (libi386, −li386)

SYNOPSIS
#include <sys/types.h>
#include <machine/sysarch.h>

int
i386_iopl (int iopl);

DESCRIPTION
i386_iopl () sets the i386 I/O privilege level to the value specified byiopl. This call is restricted to the
super-user.

RETURN VALUES
Upon successful completion,i386_iopl () returns 0. Otherwise, a value of −1 is returned and the global
variableerrno is set to indicate the error.

ERRORS
i386_iopl () will fail if:

[EPERM] The caller was not the super-user, or the operation was not permitted at the current security
level.

REFERENCES
i386 Microprocessor Programmer’s Reference Manual, Intel

WARNING
You can really hose your machine if you enable user-level I /O and write to hardware ports without care.

NetBSD 3.0 April 12, 2004 1

I386_PMC_INFO (2) NetBSD/i386 System Calls Manual I386_PMC_INFO (2)

NAME
i386_pmc_info , i386_pmc_startstop , i386_pmc_read — interface to CPU performance coun-
ters

LIBRARY
i386 Architecture Library (libi386, −li386)

SYNOPSIS
#include <sys/types.h>
#include <machine/sysarch.h>
#include <machine/specialreg.h>

int
i386_pmc_info (struct i386_pmc_info_args ∗ ia);

int
i386_pmc_startstop (struct i386_pmc_startstop_args ∗ ssa);

int
i386_pmc_read (struct i386_pmc_read_args ∗ ra);

DESCRIPTION
These functions provide an interface to the CPU performance counters on the 586-class and 686-class pro-
cessors.

i386_pmc_info () will return information about the available CPU counters. The information is returned
in ia having the following structure:

struct i386_pmc_info_args {
int type;
int flags;

};

Thetypemember describes the class of performance counters available. Valid values are:

PMC_TYPE_NONE No PMC support
PMC_TYPE_I586 586-class CPUs
PMC_TYPE_I686 686-class Intel CPUs
PMC_TYPE_K7 686-class AMD CPUs

Theflagsmember describes additional capabilities of the processor. Valid values are:

PMC_INFO_HASTSC
CPU has time-stamp counter

i386_pmc_startstop () is used to start and stop the measurement of the CPU performance counters.
The argumentssa has the following structure:

struct i386_pmc_startstop_args {
int counter;
uint64_t val;
uint8_t event;
uint8_t unit;
uint8_t compare;
uint8_t flags;

};

NetBSD 3.0 November 10, 2001 1

I386_PMC_INFO (2) NetBSD/i386 System Calls Manual I386_PMC_INFO (2)

The counter specified by the membercounteris started if the memberflagshas PMC_SETUP_KERNEL or
PMC_SETUP_USER set, otherwise the counter is stopped. The initial value of the counter is set toval.
Additional values for theflagsmember are PMC_SETUP_EDGE and PMC_SETUP_INV. Theeventmem-
ber specifies some event written to the control register. The unit member specifies the measurement units.
Thecomparemember is a mask for the counter.

i386_pmc_read () will return information about a specific CPU counter measured during the last measure-
ment period determined by the calling ofi386_pmc_startstop (). The information is returned inra
having the following structure:

struct i386_pmc_read_args {
int counter;
uint64_t val;
uint64_t time;

};

The counter to read should be specified by thecounter member. Counters are numbered from 0 to
PMC_NCOUNTERS. The value of the counter is returned in theval member. The time since epoch, mea-
sured in CPU clock cycles, is returned in thetimemember.

RETURN VALUES
Upon successful completion zero is returned, otherwise −1 is returned on failure.

NetBSD 3.0 November 10, 2001 2

I386_VM86 (2) NetBSD/i386 System Calls Manual I386_VM86 (2)

NAME
i386_vm86 — set virtual 8086 processor registers and mode

LIBRARY
i386 Architecture Library (libi386, −li386)

SYNOPSIS
#include <sys/types.h>
#include <signal.h>
#include <machine/mcontext.h>
#include <machine/segments.h>
#include <machine/sysarch.h>
#include <machine/vm86.h>

int
i386_vm86 (struct vm86_struct ∗ vmcp);

DESCRIPTION
i386_vm86 () will set the process into virtual 8086 mode using the registers and selectors specified by the
context pointed to byvmcp. The processor registers are set fromvmcp->substr.regs, and the emu-
lated processor type fromvmcp->substr.ss_cpu_type.

The kernel keeps a pointer to the context, and uses the tables stored atvmcp->int_byuser and
vmcp->int21_byuser for fast virtual interrupt handling. If then th bit is clear in the first of these
arrays, then the kernel may directly emulate the real-mode x86 INTn instruction handling.If the n th bit is
set, then the process is delivered a signal when an INT instruction is executed.

Since MS-DOS puts many DOS functions onto interrupt 21, it is handled specially:the k th bit in the
vmcp->int21_byuser array is checked when INT21 is requested and theah register isk.

RETURN VALUES
This routine does not normally return: 32-bit mode will be restored by the delivery of a signal to the process.
In case of an error in setting the VM86 mode, a value of −1 is returned and the global variableerrno is set to
indicate the error.

ERRORS
i386_vm86 () will fail if:

[EFAULT] The state atvmcp was not readable to the user process.

REFERENCES
i386 Microprocessor Programmer’s Reference Manual, Intel

NetBSD 3.0 February 20, 1996 1

IOCTL (2) NetBSD System Calls Manual IOCTL (2)

NAME
ioctl — control device

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/ioctl.h>

int
ioctl (int d , unsigned long request , void ∗ argp);

DESCRIPTION
The ioctl () function manipulates the underlying device parameters of special files. In particular, many
operating characteristics of character special files (e.g. terminals) may be controlled withioctl () requests.
The argumentd must be an open file descriptor.

An ioctl request has encoded in it whether the argument is an “in” parameter or “out” parameter, and the
size of the argumentargp in bytes. Macros and defines used in specifying an ioctlrequest are located in
the file〈sys/ioctl.h 〉.

GENERIC IOCTLS
Some ioctls are applicable to any file descriptor. These include:

FIOCLEX
Set close-on-exec flag. Thefile will be closed whenexec (3) is invoked.

FIONCLEX
Clear close-on-exec flag. Thefile will remain open acrossexec (3).

Some generic ioctls are not implemented for all types of file descriptors. These include:

FIONREAD int
Get the number of bytes that are immediately available for reading.

FIONWRITE int
Get the number of bytes in the descriptor’s send queue. These bytes are data which has been writ-
ten to the descriptor but which are being held by the kernel for further processing. The nature of
the required processing depends on the underlying device. For tty devices, these bytes are typi-
cally queued for delivery to the tty hardware. For TCP sockets, these bytes have not yet been
acknolwedged by the other side of the connection.For files, this operation always returns zero as
files do not have send queues.

FIONSPACE int
Get the free space in the descriptor’s send queue.This value is the size of the send queue minus
the number of bytes being held in the queue. Note: while this value represents the number of bytes
that may be added to the queue, other resource limitations may cause a write not larger than the
send queue’s space to be blocked. Onesuch limitation would be a lack of network buffers for a
write to a network connection.

FIONBIO int
Set non-blocking I/O mode if the argument is non-zero. In non-blocking mode,read (2) or
write (2) calls return −1 and seterrno to EAGAIN immediately when no data is available.

FIOASYNC int
Set asynchronous I/O mode if the argument is non-zero. In asynchronous mode, the process or
process group specified byFIOSETOWNwill start receiving SIGIO signals when data is available.

NetBSD 3.0 November 6, 2004 1

IOCTL (2) NetBSD System Calls Manual IOCTL (2)

TheSIGIO signal will be delivered when data is available on the file descriptor.

FIOSETOWN, FIOGETOWN int
Set/get the process or the process group (if negative) that should receive SIGIO signals when data
is available.

RETURN VALUES
If an error has occurred, a value of −1 is returned anderrno is set to indicate the error.

ERRORS
ioctl () will fail if:

[EBADF] d is not a valid descriptor.

[ENOTTY] d is not associated with a character special device.

[ENOTTY] The specified request does not apply to the kind of object that the descriptord refer-
ences.

[EINVAL] request or argp is not valid.

[EFAULT] argp points outside the process’s allocated address space.

SEE ALSO
mt(1), execve (2), fcntl (2), intro (4), tty (4)

HISTORY
An ioctl () function call appeared in Version 7AT&T UNIX .

NetBSD 3.0 November 6, 2004 2

ISSETUGID (2) NetBSD System Calls Manual ISSETUGID (2)

NAME
issetugid — is current process tainted by uid or gid changes

SYNOPSIS
#include <unistd.h>

int
issetugid (void);

DESCRIPTION
The issetugid () function returns 1 if the process environment or memory address space is considered
“tainted”, and returns 0 otherwise.

A process is tainted if it was created as a result of anexecve (2) system call which had either of the setuid
or setgid bits set (and extra privileges were given as aresult) or if it has changed any of its real, effective or
saved user or group ID’s since it began execution.

This system call exists so that library routines (e.g., libc, libtermcap) can reliably determine if it is safe to use
information that was obtained from the user, in particular the results fromgetenv (3) should be viewed with
suspicion if it is used to control operation.

A “ tainted” status is inherited by child processes as a result of thefork (2) system call (or other library code
that calls fork, such aspopen (3)).

It is assumed that a program that clears all privileges as it prepares to execute another will also reset the envi-
ronment, hence the “tainted” status will not be passed on.This is important for programs such assu (1)
which begin setuid but need to be able to create an untainted process.

ERRORS
The issetugid () function is always successful, and no return value is reserved to indicate an error.

SEE ALSO
execve (2), fork (2), setegid (2), seteuid (2), setgid (2), setregid (2), setreuid (2),
setuid (2)

HISTORY
A issetugid () function call first appeared inOpenBSD2.0 and was also implemented inFreeBSD3.0.
FreeBSDimplementation was imported inNetBSD 1.5.

NetBSD 3.0 April 22, 2000 1

KILL (2) NetBSD System Calls Manual KILL (2)

NAME
kill — send signal to a process

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
kill (pid_t pid , int sig);

DESCRIPTION
Thekill () function sends the signal given by sig to pid, a process or a group of processes.sig may be
one of the signals specified insigaction (2) or it may be 0, in which case error checking is performed but
no signal is actually sent. This can be used to check the validity ofpid.

For a process to have permission to send a signal to a process designated bypid, the real or effective user ID
of the receiving process must match that of the sending process or the user must have appropriate privileges
(such as given by a set-user-ID program or the user is the super-user). Asingle exception is the signal SIG-
CONT, which may always be sent to any descendant of the current process.

If pid is greater than zero:
sig is sent to the process whose ID is equal topid.

If pid is zero:
sig is sent to all processes whose group ID is equal to the process group ID of the sender, and for
which the process has permission; this is a variant ofkillpg (3).

If pid is −1:
If the user has super-user privileges, the signal is sent to all processes excluding system processes
and the process sending the signal. If the user is not the super user, the signal is sent to all processes
with the same uid as the user excluding the process sending the signal. No error is returned if any
process could be signaled.

For compatibility with System V, if the process number is negative but not −1, the signal is sent to all pro-
cesses whose process group ID is equal to the absolute value of the process number. This is a variant of
killpg (3).

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
kill () will fail and no signal will be sent if:

[EINVAL] sig is not a valid signal number.

[ESRCH] No process can be found corresponding to that specified bypid.

[ESRCH] The process id was given as 0 but the sending process does not have a process group.

[EPERM] The sending process is not the super-user and its effective user id does not match the
effective user-id of the receiving process.When signaling a process group, this error
is returned if any members of the group could not be signaled.

NetBSD 3.0 April 19, 1994 1

KILL (2) NetBSD System Calls Manual KILL (2)

SEE ALSO
getpgrp (2), getpid (2), sigaction (2), killpg (3), signal (7)

STANDARDS
Thekill () function is expected to conform toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 April 19, 1994 2

KQUEUE (2) NetBSD System Calls Manual KQUEUE (2)

NAME
kqueue , kevent — kernel event notification mechanism

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/event.h>
#include <sys/time.h>

int
kqueue (void);

int
kevent (int kq , const struct kevent ∗ changelist , size_t nchanges ,

struct kevent ∗ eventlist , size_t nevents ,
const struct timespec ∗ timeout);

EV_SET(&kev , ident , filter , flags , fflags , data , udata);

DESCRIPTION
kqueue () provides a generic method of notifying the user when an event happens or a condition holds,
based on the results of small pieces of kernel code termed filters.A kev ent is identified by the (ident, filter)
pair; there may only be one unique kev ent per kqueue.

The filter is executed upon the initial registration of a kev ent in order to detect whether a preexisting condi-
tion is present, and is also executed whenever an event is passed to the filter for evaluation. If the filter deter-
mines that the condition should be reported, then the kev ent is placed on the kqueue for the user to retrieve.

The filter is also run when the user attempts to retrieve the kev ent from the kqueue. If the filter indicates that
the condition that triggered the event no longer holds, the kev ent is removed from the kqueue and is not
returned.

Multiple events which trigger the filter do not result in multiple kev ents being placed on the kqueue; instead,
the filter will aggregate the events into a single struct kev ent. Calling close () on a file descriptor will
remove any kev ents that reference the descriptor.

kqueue () creates a new kernel event queue and returns a descriptor. The queue is not inherited by a child
created withfork (2).

kevent () is used to register events with the queue, and return any pending events to the user.
changelist is a pointer to an array ofkevent structures, as defined in〈sys/event.h 〉. All changes
contained in thechangelist are applied before any pending events are read from the queue.nchanges
gives the size ofchangelist. eventlist is a pointer to an array of kev ent structures.nevents deter-
mines the size ofeventlist. If timeout is a non-NULLpointer, it specifies a maximum interval to wait
for an event, which will be interpreted as a struct timespec.If timeout is aNULLpointer,kevent () waits
indefinitely. To effect a poll, thetimeout argument should be non-NULL, pointing to a zero-valued
timespecstructure. Thesame array may be used for thechangelist andeventlist.

EV_SET() is a macro which is provided for ease of initializing a kev ent structure.

Thekeventstructure is defined as:

struct kevent {
uintptr_t ident; / ∗ identifier for this event ∗ /
uint32_t filter; / ∗ filter for event ∗ /
uint32_t flags; / ∗ action flags for kqueue ∗ /

NetBSD 3.0 February 4, 2003 1

KQUEUE (2) NetBSD System Calls Manual KQUEUE (2)

uint32_t fflags; / ∗ filter flag value ∗ /
int64_t data; / ∗ filter data value ∗ /
intptr_t udata; / ∗ opaque user data identifier ∗ /

};

The fields ofstruct kevent are:

ident Value used to identify this event. The exact interpretation is determined by the
attached filter, but often is a file descriptor.

filter Identifies the kernel filter used to process this event. Thereare pre-defined system fil-
ters (which are described below), and other filters may be added by kernel subsystems
as necessary.

flags Actions to perform on the event.

fflags Filter-specific flags.

data Filter-specific data value.

udata Opaque user-defined value passed through the kernel unchanged.

Theflagsfield can contain the following values:

EV_ADD Adds the event to the kqueue. Re-adding an existing event will modify the
parameters of the original event, and not result in a duplicate entry. Adding an
ev ent automatically enables it, unless overridden by the EV_DISABLE flag.

EV_ENABLE Permitkevent () to return the event if it is triggered.

EV_DISABLE Disable the event sokevent () will not return it. The filter itself is not disabled.

EV_DELETE Removes the event from the kqueue.Events which are attached to file descrip-
tors are automatically deleted on the last close of the descriptor.

EV_ONESHOT Causes the event to return only the first occurrence of the filter being triggered.
After the user retrieves the event from the kqueue, it is deleted.

EV_CLEAR After the event is retrieved by the user, its state is reset. This is useful for filters
which report state transitions instead of the current state.Note that some filters
may automatically set this flag internally.

EV_EOF Filters may set this flag to indicate filter-specific EOF condition.

EV_ERROR SeeRETURN VALUES below.

Filters
Filters are identified by a number. There are two types of filters; pre-defined filters which are described
below, and third-party filters that may be added withkfilter_register (9) by kernel sub-systems,
third-party device drivers, or loadable kernel modules.

As a third-party filter is referenced by a well-known name instead of a statically assigned number, two
ioctl (2)s are supported on the file descriptor returned bykqueue () to map a filter name to a filter number,
and vice-versa (passing arguments in a structure described below):

KFILTER_BYFILTER Mapfilter to name, which is of sizelen.

KFILTER_BYNAME Map nameto filter. len is ignored.

The following structure is used to pass arguments in and out of theioctl (2):

NetBSD 3.0 February 4, 2003 2

KQUEUE (2) NetBSD System Calls Manual KQUEUE (2)

struct kfilter_mapping {
char ∗ name; / ∗ name to lookup or return ∗ /
size_t len; / ∗ length of name ∗ /
uint32_t filter; / ∗ filter to lookup or return ∗ /

};

Arguments may be passed to and from the filter via thefflags anddatafields in the kev ent structure.

The predefined system filters are:

EVFILT_READ Takes a descriptor as the identifier, and returns whenever there is data available to read.
The behavior of the filter is slightly different depending on the descriptor type.

Sockets
Sockets which have previously been passed tolisten () return when there is an
incoming connection pending.data contains the size of the listen backlog (i.e., the
number of connections ready to be accepted withaccept (2).)

Other socket descriptors return when there is data to be read, subject to the
SO_RCVLOWATvalue of the socket buffer. This may be overridden with a per-filter
low water mark at the time the filter is added by setting the NOTE_LOWA T flag in
fflags, and specifying the new low water mark indata. On return,datacontains the
number of bytes in the socket buffer.

If the read direction of the socket has shutdown, then the filter also sets EV_EOF in
flags, and returns the socket error (if any) infflags. It is possible for EOF to be
returned (indicating the connection is gone) while there is still data pending in the
socket buffer.

Vnodes
Returns when the file pointer is not at the end of file.data contains the offset from
current position to end of file, and may be negative.

Fifos, Pipes
Returns when the there is data to read;datacontains the number of bytes available.

When the last writer disconnects, the filter will set EV_EOF inflags. This may be
cleared by passing in EV_CLEAR, at which point the filter will resume waiting for
data to become available before returning.

EVFILT_WRITE Takes a descriptor as the identifier, and returns whenever it is possible to write to the
descriptor. For sockets, pipes, fifos, and ttys,data will contain the amount of space
remaining in the write buffer. The filter will set EV_EOF when the reader disconnects,
and for the fifo case, this may be cleared by use of EV_CLEAR. Note that this filter is
not supported for vnodes.

For sockets, the low water mark and socket error handling is identical to the
EVFILT_READ case.

EVFILT_AIO This is not implemented inNetBSD.

EVFILT_VNODE Takes a file descriptor as the identifier and the events to watch for infflags, and returns
when one or more of the requested events occurs on the descriptor. The events to moni-
tor are:

NOTE_DELETE unlink () was called on the file referenced by the descriptor.

NetBSD 3.0 February 4, 2003 3

KQUEUE (2) NetBSD System Calls Manual KQUEUE (2)

NOTE_WRITE A write occurred on the file referenced by the descriptor.

NOTE_EXTEND The file referenced by the descriptor was extended.

NOTE_ATTRIB The file referenced by the descriptor had its attributes changed.

NOTE_LINK The link count on the file changed.

NOTE_RENAME The file referenced by the descriptor was renamed.

NOTE_REVOKE Access to the file was revoked via revoke (2) or the underlying
fileystem was unmounted.

On return,fflags contains the events which triggered the filter.

EVFILT_PROC Takes the process ID to monitor as the identifier and the events to watch for infflags,
and returns when the process performs one or more of the requested events. If a process
can normally see another process, it can attach an event to it. The events to monitor are:

NOTE_EXIT The process has exited.

NOTE_FORK The process has calledfork ().

NOTE_EXEC The process has executed a new process viaexecve (2) or simi-
lar call.

NOTE_TRACK Follow a process acrossfork () calls. The parent process will
return with NOTE_TRACK set in thefflags field, while the child
process will return with NOTE_CHILD set infflags and the par-
ent PID indata.

NOTE_TRACKERR This flag is returned if the system was unable to attach an event
to the child process, usually due to resource limitations.

On return,fflags contains the events which triggered the filter.

EVFILT_SIGNAL Takes the signal number to monitor as the identifier and returns when the given signal is
delivered to the current process.This coexists with thesignal () andsigaction ()
facilities, and has a lower precedence. The filter will record all attempts to deliver a sig-
nal to a process, even if the signal has been marked as SIG_IGN.Event notification
happens after normal signal delivery processing.data returns the number of times the
signal has occurred since the last call tokevent (). This filter automatically sets the
EV_CLEAR flag internally.

EVFILT_TIMER Establishes an arbitrary timer identified byident. When adding a timer, data specifies
the timeout period in milliseconds. The timer will be periodic unless EV_ONESHOT is
specified. Onreturn,data contains the number of times the timeout has expired since
the last call tokevent (). Thisfilter automatically sets the EV_CLEAR flag internally.

RETURN VALUES
kqueue () creates a new kernel event queue and returns a file descriptor. If there was an error creating the
kernel event queue, a value of −1 is returned and errno set.

kevent () returns the number of events placed in theeventlist, up to the value given by nevents. If
an error occurs while processing an element of thechangelist and there is enough room in the
eventlist, then the event will be placed in theeventlist with EV_ERRORset inflagsand the system
error indata. Otherwise,−1 will be returned, anderrno will be set to indicate the error condition. If the
time limit expires, thenkevent () returns 0.

NetBSD 3.0 February 4, 2003 4

KQUEUE (2) NetBSD System Calls Manual KQUEUE (2)

ERRORS
Thekqueue () function fails if:

[ENOMEM] The kernel failed to allocate enough memory for the kernel queue.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

Thekevent () function fails if:

[EACCES] The process does not have permission to register a filter.

[EFAULT] There was an error reading or writing thekeventstructure.

[EBADF] The specified descriptor is invalid.

[EINTR] A signal was delivered before the timeout expired and before any events were placed
on the kqueue for return.

[EINVAL] The specified time limit or filter is invalid.

[ENOENT] The event could not be found to be modified or deleted.

[ENOMEM] No memory was available to register the event.

[ESRCH] The specified process to attach to does not exist.

SEE ALSO
ioctl (2), poll (2), read (2), select (2), sigaction (2), write (2), signal (3),
kfilter_register (9), knote (9)

HISTORY
Thekqueue () andkevent () functions first appeared inFreeBSD4.1, and then inNetBSD 2.0.

AUTHORS
The kqueue () system and this manual page were written by Jonathan Lemon〈 jlemon@FreeBSD.org〉.
NetBSD port and manpage additions were done by
Luke Mewburn 〈 lukem@NetBSD.org〉,
Jason Thorpe〈thorpej@NetBSD.org〉, and
Jaromir Dolecek〈 jdolecek@NetBSD.org〉.

NetBSD 3.0 February 4, 2003 5

KTRACE (2) NetBSD System Calls Manual KTRACE (2)

NAME
ktrace — process tracing

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/ktrace.h>

int
ktrace (const char ∗ tracefile , int ops , int trpoints , pid_t pid);

int
fktrace (int fd , int ops , int trpoints , pid_t pid);

DESCRIPTION
The ktrace () function enables or disables tracing of one or more processes. Users may only trace their
own processes. Onlythe super-user can trace setuid or setgid programs.

Thetracefile gives the pathname of the file to be used for tracing. The file must exist and be writable by
the calling process. All trace records are always appended to the file, so the file must be truncated to zero
length to discard previous trace data. If tracing points are being disabled (see KTROP_CLEAR below),
tracefile may be NULL. If usingfktrace () then instead of passing a filename astracefile, a file
descriptor is passed asfd and behaviour is otherwise the same.

Theops parameter specifies the requested ktrace operation. The defined operations are:

KTROP_SET Enabletrace points specified intrpoints.
KTROP_CLEAR Disabletrace points specified intrpoints.
KTROP_CLEARFILE Stopall tracing.
KTRFLAG_DESCEND Thetracing change should apply to the specified process and all its

current children.

Thetrpoints parameter specifies the trace points of interest. The defined trace points are:

KTRFAC_SYSCALL Trace system calls.
KTRFAC_SYSRET Trace return values from system calls.
KTRFAC_NAMEI Trace name lookup operations.
KTRFAC_GENIO Trace all I/O (note that this option can generate much output).
KTRFAC_PSIG Trace posted signals.
KTRFAC_CSW Trace context switch points.
KTRFAC_EMUL Trace emulation changes.
KTRFAC_INHERIT Inherittracing to future children.

Each tracing event outputs a record composed of a generic header followed by a trace point specific struc-
ture. Thegeneric header is:

struct ktr_header {
int ktr_len; / ∗ length of buf ∗ /
short ktr_type; / ∗ trace record type ∗ /
pid_t ktr_pid; / ∗ process id ∗ /
char ktr_comm[MAXCOMLEN+1]; / ∗ command name ∗ /
struct timeval ktr_time; / ∗ timestamp ∗ /
caddr_t ktr_buf;

NetBSD 3.0 June 4, 1993 1

KTRACE (2) NetBSD System Calls Manual KTRACE (2)

};

Thektr_len field specifies the length of thektr_type data that follows this header. Thektr_pid and
ktr_comm fields specify the process and command generating the record.The ktr_time field gives the
time (with microsecond resolution) that the record was generated.The ktr_buf is an internal kernel
pointer and is not useful.

The generic header is followed byktr_len bytes of aktr_type record. Thetype specific records are
defined in the<sys/ktrace.h> include file.

RETURN VALUES
On successful completion a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
show the error.

ERRORS
ktrace () will fail if:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire path name exceeded
1023 characters.

[ENOENT] The named tracefile does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EIO] An I/O error occurred while reading from or writing to the file system.

SEE ALSO
kdump(1), ktrace (1)

HISTORY
A ktrace function call first appeared in 4.4BSD.

NetBSD 3.0 June 4, 1993 2

LFS_BMAPV (2) NetBSD System Calls Manual LFS_BMAPV (2)

NAME
lfs_bmapv — retrieve disk addresses for arrays of blocks

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <ufs/lfs/lfs.h>

int
lfs_bmapv (fsid_t ∗ fsidp , BLOCK_INFO ∗ blkiov , int blkcnt);

DESCRIPTION
lfs_bmapv () fills in the bi_daddr field for every block listed in the block arrayblkiov with the disk
address corresponding to the logical blockbi_lbn of the file with inodebi_inode. If bi_lbn is
LFS_UNUSED_LBN, the disk location of the inode block containing the file’s inode will be returned in
bi_daddr instead.

Thefsidp argument contains the id of the file system to which the inodes and blocks belong.Theblkiov
argument is an array of BLOCK_INFO structures (see below). Theblkcnt argument determines the size
of theblkiov array.

typedef struct block_info {
ino_t bi_inode; / ∗ inode # ∗ /
ufs_daddr_t bi_lbn; / ∗ logical block w/in file ∗ /
ufs_daddr_t bi_daddr; / ∗ disk address of block ∗ /
time_t bi_segcreate; / ∗ origin segment create time ∗ /
int bi_version; / ∗ file version number ∗ /
void ∗ bi_bp; / ∗ data buffer ∗ /
int bi_size; / ∗ size of the block (if fragment) ∗ /

} B LOCK_INFO;

RETURN VALUES
lfs_bmapv () returns 0 on success, or −1 on error.

ERRORS
An error return fromlfs_bmapv () indicates:

[EFAULT] fsidp points outside the process’s allocated address space.

[EINVAL] ∗ fsidp does not specify a valid file system.

SEE ALSO
lfs_markv (2), lfs_segclean (2), lfs_segwait (2), lfs_cleanerd (8)

HISTORY
The lfs_bmapv () function call appeared in 4.4BSD.

NetBSD 3.0 May 23, 2000 1

LFS_MARKV (2) NetBSD System Calls Manual LFS_MARKV (2)

NAME
lfs_markv — rewrite disk blocks to new disk locations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <ufs/lfs/lfs.h>

int
lfs_markv (fsid_t ∗ fsidp , BLOCK_INFO ∗ blkiov , int blkcnt);

DESCRIPTION
lfs_markv () rewrites the blocks specified inblkiov to new disk locations, for the purposes of grouping
them next to one another, or to move them out of a segment to clean it. All fields of the BLOCK_INFO
structure must be filled in, except forbi_segcreate. If bi_daddr is not the correct current address for
logical blockbi_lbn of the file with inode numberbi_inode, or if the file’s version number does not
matchbi_version, the block will not be written to disk, but no error will be returned.

Thefsidp argument contains the id of the filesystem to which the inodes and blocks belong.Thebi_bp
field containsbi_size bytes of data to be written into the appropriate block.If bi_lbn is specified as
LFS_UNUSED_LBN, the inode itself will be rewritten.

Theblkiov argument is an array of BLOCK_INFO structures (see below). Theblkcnt argument deter-
mines the size of theblkiov array.

typedef struct block_info {
ino_t bi_inode; / ∗ inode # ∗ /
ufs_daddr_t bi_lbn; / ∗ logical block w/in file ∗ /
ufs_daddr_t bi_daddr; / ∗ disk address of block ∗ /
time_t bi_segcreate; / ∗ origin segment create time ∗ /
int bi_version; / ∗ file version number ∗ /
void ∗ bi_bp; / ∗ data buffer ∗ /
int bi_size; / ∗ size of the block (if fragment) ∗ /

} B LOCK_INFO;

RETURN VALUES
lfs_markv () returns 0 on success, or −1 on error.

ERRORS
An error return fromlfs_markv () indicates:

[EFAULT] fsidp points outside the process’s allocated address space.

[EINVAL] ∗ fsidp does not specify a valid filesystem.

[EBUSY] One or more of the inodes whose blocks were to be written was locked, and its blocks
were not rewritten.

SEE ALSO
lfs_segclean (2), lfs_segwait (2), lfs_cleanerd (8)

NetBSD 3.0 May 23, 2000 1

LFS_MARKV (2) NetBSD System Calls Manual LFS_MARKV (2)

HISTORY
The lfs_markv () function call appeared in 4.4BSD.

BUGS
The functionality oflfs_markv () does not really belong in user space. Among other things it could be
used to work around the SF_IMMUTABLE and SF_APPEND file flags (seechflags (2)).

NetBSD 3.0 May 23, 2000 2

LFS_SEGCLEAN (2) NetBSD System Calls Manual LFS_SEGCLEAN (2)

NAME
lfs_segclean — mark a segment clean

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>

int
lfs_segclean (fsid_t ∗ fsidp , u_long segment);

DESCRIPTION
lfs_segclean () marks segment numbersegment in LFS filesystem∗ fsidp "clean" or available for
writing.

RETURN VALUES
lfs_segclean () returns 0 on success, or −1 on error.

ERRORS
An error return fromlfs_segclean () indicates:

[EFAULT] fsidp points outside the process’s allocated address space.

[EINVAL] ∗ fsidp does not specify a valid filesystem.

[EBUSY] segment is marked SU_ACTIVE, meaning that it does not yet belong to a valid
checkpoint.

SEE ALSO
lfs_bmapv (2), lfs_markv (2), lfs_segwait (2), lfs_cleanerd (8)

HISTORY
The lfs_segclean () function call appeared in 4.4BSD.

NetBSD 3.0 May 23, 2000 1

LFS_SEGWAIT (2) NetBSD System Calls Manual LFS_SEGWAIT (2)

NAME
lfs_segwait — wait until a segment is written

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>

int
lfs_segwait (fsid_t ∗ fsidp , struct timeval ∗ tv);

DESCRIPTION
lfs_segwait () blocks until a new segment is acquired for writing by the filesystem specified by∗ fsidp
or if ∗ fsidp is −1, until a segment is acquired for writing by any LFS filesystem.

If timeout is non-zero,lfs_segwait () will return aftertimeout milliseconds regardless of whether a
new segment has been designated for writing or not.

RETURN VALUES
lfs_segwait () returns 0 if a new segment was acquired; 1 if it timed out; or −1 on error.

ERRORS
An error return fromlfs_segwait () indicates:

[EFAULT] fsidp points outside the process’s allocated address space.

[EINTR] A signal was delivered before the time limit expired and before a new segment was
designated for writing.

[EINVAL] The specified time limit is negative.

SEE ALSO
lfs_bmapv (2), lfs_markv (2), lfs_segclean (2), lfs_cleanerd (8)

HISTORY
The lfs_segwait () function call appeared in 4.4BSD.

NetBSD 3.0 May 23, 2000 1

LINK (2) NetBSD System Calls Manual LINK (2)

NAME
link — make a hard file link

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
link (const char ∗ name1 , const char ∗ name2);

DESCRIPTION
The link () function call atomically creates the specified directory entry (hard link)name2 with the
attributes of the underlying object pointed at byname1. If the link is successful: the link count of the under-
lying object is incremented;name1 andname2 share equal access and rights to the underlying object.

If name1 is removed, the filename2 is not deleted and the link count of the underlying object is decre-
mented.

name1 must exist for the hard link to succeed and bothname1 andname2 must be in the same file system.
name1 may not be a directory unless the caller is the super-user and the file system containing it supports
linking to directories.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
link () will fail and no link will be created if:

[ENOTDIR] A component of either path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search permission, or the requested link
requires writing in a directory with a mode that denies write permission.

[ELOOP] Too many symbolic links were encountered in translating one of the pathnames.

[ENOENT] The file named byname1 does not exist.

[EOPNOTSUPP] The file system containing the file named byname1 does not support links.

[EMLINK] The link count of the file named byname1 would exceed{LINK_MAX} .

[EEXIST] The link named byname2 does exist.

[EPERM] The file named byname1 is a directory and the effective user ID is not super-user, or
the file system containing the file does not permit the use oflink () on a directory.

[EXDEV] The link named byname2 and the file named byname1 are on different file systems.

[ENOSPC] The directory in which the entry for the new link is being placed cannot be extended

NetBSD 3.0 January 12, 1994 1

LINK (2) NetBSD System Calls Manual LINK (2)

because there is no space left on the file system containing the directory.

[EDQUOT] The directory in which the entry for the new link is being placed cannot be extended
because the user’s quota of disk blocks on the file system containing the directory has
been exhausted.

[EIO] An I/O error occurred while reading from or writing to the file system to make the
directory entry.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EFAULT] One of the pathnames specified is outside the process’s allocated address space.

SEE ALSO
symlink (2), unlink (2)

STANDARDS
The link () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 January 12, 1994 2

LISTEN (2) NetBSD System Calls Manual LISTEN (2)

NAME
listen — listen for connections on a socket

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

int
listen (int s , int backlog);

DESCRIPTION
To accept connections, a socket is first created withsocket (2), a willingness to accept incoming connec-
tions and a queue limit for incoming connections are specified withlisten (), and then the connections are
accepted withaccept (2). The listen () call applies only to sockets of typeSOCK_STREAMor
SOCK_SEQPACKET.

Thebacklog parameter defines the maximum length the queue of pending connections may grow to. If a
connection request arrives with the queue full the client may receive an error with an indication of
ECONNREFUSED, or, if the underlying protocol supports retransmission, the request may be ignored so that
retries may succeed.

RETURN VALUES
A 0 return value indicates success; −1 indicates an error.

ERRORS
listen () will fail if:

[EBADF] The arguments is not a valid descriptor.

[ENOTSOCK] The arguments is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the operationlisten ().

SEE ALSO
accept (2), connect (2), socket (2)

HISTORY
The listen () function call appeared in 4.2BSD.

BUGS
Thebacklog is currently limited (silently) to 128.

NetBSD 3.0 December 11, 1993 1

LSEEK (2) NetBSD System Calls Manual LSEEK (2)

NAME
lseek , seek — reposition read/write file offset

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

off_t
lseek (int fildes , off_t offset , int whence);

DESCRIPTION
The lseek () function repositions the offset of the file descriptorfildes to the argumentoffset accord-
ing to the directive whence. The argumentfildes must be an open file descriptor. lseek () repositions
the file pointerfildes as follows:

If whence is SEEK_SET, the offset is set tooffset bytes.

If whence is SEEK_CUR, the offset is set to its current location plusoffset bytes.

If whence is SEEK_END, the offset is set to the size of the file plusoffset bytes.

The lseek () function allows the file offset to be set beyond the end of the existing end-of-file of the file.If
data is later written at this point, subsequent reads of the data in the gap return bytes of zeros (until data is
actually written into the gap).

Some devices are incapable of seeking. The value of the pointer associated with such a device is undefined.

RETURN VALUES
Upon successful completion,lseek () returns the resulting offset location as measured in bytes from the
beginning of the file. Otherwise, a value of −1 is returned anderrno is set to indicate the error.

ERRORS
lseek () will fail and the file pointer will remain unchanged if:

[EBADF] fildes is not an open file descriptor.

[ESPIPE] fildes is associated with a pipe, socket, or FIFO.

[EINVAL] whence is not a proper value, or the resulting file offset would be invalid.

SEE ALSO
dup (2), open (2)

STANDARDS
The lseek () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

BUGS
This document’s use ofwhence is incorrect English, but is maintained for historical reasons.

NetBSD 3.0 April 19, 1994 1

M68K_SYNC_ICACHE (2) NetBSD/m68k System Calls Manual M68K_SYNC_ICACHE (2)

NAME
m68k_sync_icache — instruction cache synchronization

LIBRARY
m68k Architecture Library (libm68k, −lm68k)

SYNOPSIS
#include <sys/types.h>
#include <m68k/sync_icache.h>

void
m68k_sync_icache (void ∗ start , size_t size);

DESCRIPTION
m68k_sync_icache () synchronizes data and instruction caches over the specified region. It should be
called prior to executing newly generated code.

The affected address range starts atstart and continues forsize bytes. Ifstart is 0, all the address
space of the current execution thread is affected. Addressesoutside the specified region may be synchro-
nized, too.

The call always succeeds.

SEE ALSO
arm32_sync_icache (2)

HISTORY
m68k_sync_icache () appeared first inNetBSD 1.4.

AUTHORS
Ignatios Souvatzis

NetBSD 3.0 February 9, 1998 1

MADVISE (2) NetBSD System Calls Manual MADVISE (2)

NAME
madvise — giv e advice about use of memory

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/mman.h>

int
madvise (void ∗ addr , size_t len , int behav);

int
posix_madvise (void ∗ addr , size_t len , int advice);

DESCRIPTION
Themadvise () system call allows a process that has knowledge of its memory behavior to describe it to the
system. Theposix_madvise () interface is identical and is provided for standards conformance.

The known behaviors are:

MADV_NORMALTells the system to revert to the default paging behavior.

MADV_RANDOMIs a hint that pages will be accessed randomly, and prefetching is likely not advantageous.

MADV_SEQUENTIAL
Causes the VM system to depress the priority of pages immediately preceding a given page
when it is faulted in.

MADV_WILLNEED
Causes pages that are in a given virtual address range to temporarily have higher priority,
and if they are in memory, decrease the likelihood of them being freed.Additionally, the
pages that are already in memory will be immediately mapped into the process, thereby
eliminating unnecessary overhead of going through the entire process of faulting the pages
in. ThisWILL NOT fault pages in from backing store, but quickly map the pages already
in memory into the calling process.

MADV_DONTNEED
Allows the VM system to decrease the in-memory priority of pages in the specified range.
Additionally future references to this address range will incur a page fault.

MADV_FREE Gives the VM system the freedom to free pages, and tells the system that information in the
specified page range is no longer important.

Portable programs that call theposix_madvise () interface should use the aliases
POSIX_MADV_NORMAL, POSIX_MADV_SEQUENTIAL, POSIX_MADV_RANDOM,
POSIX_MADV_WILLNEED, andPOSIX_MADV_DONTNEEDrather than the flags described above.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
madvise () will fail if:

NetBSD 3.0 April 19, 2008 1

MADVISE (2) NetBSD System Calls Manual MADVISE (2)

[EINVAL] Invalid parameters were provided.

SEE ALSO
mincore (2), mprotect (2), msync (2), munmap(2), posix_fadvise (2)

STANDARDS
Theposix_madvise () system call is expected to conform to theIEEE Std 1003.1-2001 (“POSIX.1”) stan-
dard.

HISTORY
The madvise system call first appeared in 4.4BSD, but until NetBSD 1.5 it did not perform any of the
requests on, or change any behavior of the address range given. Theposix_madvise () was invented in
NetBSD 5.0.

NetBSD 3.0 April 19, 2008 2

MINCORE (2) NetBSD System Calls Manual MINCORE (2)

NAME
mincore — determine residency of memory pages

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/mman.h>

int
mincore (void ∗ addr , size_t len , char ∗ vec);

DESCRIPTION
The mincore () system call allows a process to obtain information about whether pages are core resident.
The status of the memory range is returned in the character-per-page arrayvec. If the page is resident, the
least significant bit of the corresponding character invec will be set. Other bits are reserved for additional
information which future implementations may return.

Note that the status of each page may change between the call tomincore () and the return of the page sta-
tus information.In order to guarantee that pages will remain in core, the address range must be locked with
mlock (2).

RETURN VALUES
mincore () returns 0 on success, or −1 on failure and sets the variableerrno to indicate the error.

ERRORS
Themincore () call will fail if:

[EFAULT] vec points to an illegal address.

[EINVAL] addr is not a multiple of the system page size.

[EINVAL] len is equal to 0.

[ENOMEM] The address range specified is invalid for the calling process, or one or more of the
pages specified in the range are not mapped.

SEE ALSO
madvise (2), mlock (2), mprotect (2), msync (2), munmap(2), sysconf (3)

HISTORY
Themincore () function first appeared in 4.4BSD.

NetBSD 3.0 June 6, 1999 1

MINHERIT (2) NetBSD System Calls Manual MINHERIT (2)

NAME
minherit — control the inheritance of pages

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/mman.h>

int
minherit (void ∗ addr , size_t len , int inherit);

DESCRIPTION
Theminherit () system call changes the specified range of virtual addresses to have the specified fork-time
inheritance characteristicinherit, which can be set toMAP_INHERIT_NONE, MAP_INHERIT_COPY,
or MAP_INHERIT_SHARE. Also possible is MAP_INHERIT_DEFAULT, which defaults to
MAP_INHERIT_COPY. Not all implementations will guarantee that the inheritance characteristic can be set
on a page basis; the granularity of changes may be as large as an entire region.

Normally, the entire address space is marked MAP_INHERIT_COPY; when the process callsfork (), the
child receives a (virtual) copy of the entire address space.Pages or regions markedMAP_INHERIT_SHARE
are shared between the address spaces, while pages or regions marked MAP_INHERIT_NONEwill be
unmapped in the child.

RETURN VALUES
Theminherit () function returns the value 0 if successful; otherwise the value −1 is returned and the global
variableerrno is set to indicate the error.

ERRORS
minherit () will fail if:

[EINVAL] An invalid region or invalid parameters were specified.

SEE ALSO
fork (2), madvise (2), mincore (2), mprotect (2), msync (2), munmap(2)

HISTORY
Theminherit () function first appeared inOpenBSD.

BUGS
If a particular port does not support page-granularity inheritance, there’s no way to figure out how large a
region is actually affected byminherit ().

NetBSD 3.0 October 7, 2006 1

MKDIR (2) NetBSD System Calls Manual MKDIR (2)

NAME
mkdir — make a directory file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/stat.h>

int
mkdir (const char ∗ path , mode_t mode);

DESCRIPTION
The directorypath is created with the access permissions specified bymode and restricted by the
umask(2) of the calling process.

The directory’s owner ID is set to the process’s effective user ID. The directory’s group ID is set to that of
the parent directory in which it is created.

RETURN VALUES
A 0 return value indicates success.A −1 return value indicates an error, and an error code is stored inerrno.

ERRORS
mkdir () will fail and no directory will be created if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[ENOSPC] The new directory cannot be created because there is no space left on the file system
that will contain the directory.

[ENOSPC] There are no free inodes on the file system on which the directory is being created.

[EDQUOT] The new directory cannot be created because the user’s quota of disk blocks on the file
system that will contain the directory has been exhausted.

[EDQUOT] The user’s quota of inodes on the file system on which the directory is being created
has been exhausted.

[EIO] An I/O error occurred while making the directory entry or allocating the inode.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EFAULT] path points outside the process’s allocated address space.

NetBSD 3.0 December 27, 2005 1

MKDIR (2) NetBSD System Calls Manual MKDIR (2)

SEE ALSO
chmod(2), stat (2), umask(2)

STANDARDS
Themkdir () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 December 27, 2005 2

MKFIFO (2) NetBSD System Calls Manual MKFIFO (2)

NAME
mkfifo — make a fifo file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/stat.h>

int
mkfifo (const char ∗ path , mode_t mode);

DESCRIPTION
mkfifo () creates a new fifo file with namepath. The access permissions are specified bymode and
restricted by theumask(2) of the calling process.

The fifo’s owner ID is set to the process’s effective user ID. The fifo’s group ID is set to that of the parent
directory in which it is created.

RETURN VALUES
A 0 return value indicates success.A −1 return value indicates an error, and an error code is stored inerrno.

ERRORS
mkfifo () will fail and no fifo will be created if:

[EOPNOTSUPP] The kernel has not been configured to support fifo’s.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[ENOSPC] The directory in which the entry for the new fifo is being placed cannot be extended
because there is no space left on the file system containing the directory.

[ENOSPC] There are no free inodes on the file system on which the fifo is being created.

[EDQUOT] The directory in which the entry for the new fifo is being placed cannot be extended
because the user’s quota of disk blocks on the file system containing the directory has
been exhausted.

[EDQUOT] The user’s quota of inodes on the file system on which the fifo is being created has
been exhausted.

[EIO] An I/O error occurred while making the directory entry or allocating the inode.

[EIO] An I/O error occurred while reading from or writing to the file system.

NetBSD 3.0 June 4, 1993 1

MKFIFO (2) NetBSD System Calls Manual MKFIFO (2)

[EFAULT] path points outside the process’s allocated address space.

SEE ALSO
chmod(2), stat (2), umask(2)

STANDARDS
Themkfifo function call conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 2

MKNOD (2) NetBSD System Calls Manual MKNOD (2)

NAME
mknod — make a special file node

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/stat.h>

int
mknod(const char ∗ path , mode_t mode , dev_t dev);

DESCRIPTION
The device special filepath is created with the major and minor device numbers specified bydev. The
access permissions ofpath are extracted frommode, modified by theumask(2) of the parent process.

mknod() requires super-user privileges.

RETURN VALUES
Upon successful completion a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
mknod() will fail and the file will be not created if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The process’s effective user ID is not super-user.

[EIO] An I/O error occurred while making the directory entry or allocating the inode.

[ENOSPC] The directory in which the entry for the new node is being placed cannot be extended
because there is no space left on the file system containing the directory.

[ENOSPC] There are no free inodes on the file system on which the node is being created.

[EDQUOT] The directory in which the entry for the new node is being placed cannot be extended
because the user’s quota of disk blocks on the file system containing the directory has
been exhausted.

[EDQUOT] The user’s quota of inodes on the file system on which the node is being created has
been exhausted.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[EFAULT] path points outside the process’s allocated address space.

NetBSD 3.0 January 18, 2007 1

MKNOD (2) NetBSD System Calls Manual MKNOD (2)

SEE ALSO
chmod(2), mkfifo (2), stat (2), umask(2)

HISTORY
A mknod() function call appeared in Version 6AT&T UNIX .

NetBSD 3.0 January 18, 2007 2

MLOCK (2) NetBSD System Calls Manual MLOCK (2)

NAME
mlock , munlock — lock (unlock) physical pages in memory

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/mman.h>

int
mlock (void ∗ addr , size_t len);

int
munlock (void ∗ addr , size_t len);

DESCRIPTION
Themlock system call locks into memory the physical pages associated with the virtual address range start-
ing ataddr for len bytes. Themunlock call unlocks pages previously locked by one or moremlock
calls. For both, theaddr parameter should be aligned to a multiple of the page size.If the len parameter
is not a multiple of the page size, it will be rounded up to be so. The entire range must be allocated.

After anmlock call, the indicated pages will cause neither a non-resident page nor address-translation fault
until they are unlocked. They may still cause protection-violation faults or TLB-miss faults on architectures
with software-managed TLBs. The physical pages remain in memory until all locked mappings for the pages
are removed. Multiple processes may have the same physical pages locked via their own virtual address
mappings. Asingle process may likewise have pages multiply-locked via different virtual mappings of the
same pages or via nestedmlock calls on the same address range. Unlocking is performed explicitly by
munlock or implicitly by a call tomunmapwhich deallocates the unmapped address range.Locked map-
pings are not inherited by the child process after afork (2).

Since physical memory is a potentially scarce resource, processes are limited in how much they can lock
down. A single process canmlock the minimum of a system-wide ‘‘wired pages’’ l imit and the per-process
RLIMIT_MEMLOCKresource limit.

RETURN VALUES
A return value of 0 indicates that the call succeeded and all pages in the range have either been locked or
unlocked. A return value of −1 indicates an error occurred and the locked status of all pages in the range
remains unchanged. In this case, the global locationerrno is set to indicate the error.

ERRORS
mlock () will fail if:

[EINVAL] The address given is not page aligned or the length is negative.

[EAGAIN] Locking the indicated range would exceed either the system or per-process limit for
locked memory.

[ENOMEM] Some portion of the indicated address range is not allocated. There was an error fault-
ing/mapping a page.

[EPERM] mlock () was called by non-root on an architecture where locked page accounting is
not implemented.

munlock () will fail if:

NetBSD 3.0 June 2, 1993 1

MLOCK (2) NetBSD System Calls Manual MLOCK (2)

[EINVAL] The address given is not page aligned or the length is negative.

[ENOMEM] Some portion of the indicated address range is not allocated.Some portion of the indi-
cated address range is not locked.

SEE ALSO
fork (2), mincore (2), mmap(2), munmap(2), setrlimit (2), getpagesize (3)

STANDARDS
Themlock () andmunlock () functions conform toIEEE Std 1003.1b-1993 (“POSIX.1”).

HISTORY
Themlock () andmunlock () functions first appeared in 4.4BSD.

BUGS
The per-process resource limit is a limit on the amount of virtual memory locked, while the system-wide
limit is for the number of locked physical pages. Hence a process with two distinct locked mappings of the
same physical page counts as 2 pages against the per-process limit and as only a single page in the system
limit.

NetBSD 3.0 June 2, 1993 2

MLOCKALL (2) NetBSD System Calls Manual MLOCKALL (2)

NAME
mlockall , munlockall — lock (unlock) the address space of a process

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/mman.h>

int
mlockall (int flags);

int
munlockall (void);

DESCRIPTION
The mlockall system call locks into memory the physical pages associated with the address space of a
process until the address space is unlocked, the process exits, or execs another program image.

The following flags affect the behavior ofmlockall :

MCL_CURRENTLock all pages currently mapped into the process’s address space.

MCL_FUTURE Lock all pages mapped into the process’s address space in the future, at the time the map-
ping is established.Note that this may cause future mappings to fail if those mappings
cause resource limits to be exceeded.

Since physical memory is a potentially scarce resource, processes are limited in how much they can lock
down. A single process can lock the minimum of a system-wide “wired pages” limit and the per-process
RLIMIT_MEMLOCKresource limit.

The munlockall call unlocks any locked memory regions in the process address space.Any regions
mapped after anmunlockall call will not be locked.

RETURN VALUES
A return value of 0 indicates that the call succeeded and all pages in the range have either been locked or
unlocked. A return value of −1 indicates an error occurred and the locked status of all pages in the range
remains unchanged. In this case, the global locationerrno is set to indicate the error.

ERRORS
mlockall () will fail if:

[EINVAL] Theflags argument is zero, or includes unimplemented flags.

[ENOMEM] Locking the indicated range would exceed either the system or per-process limit for
locked memory.

[EAGAIN] Some or all of the memory mapped into the process’s address space could not be
locked when the call was made.

[EPERM] The calling process does not have the appropriate privilege to perform the requested
operation.

SEE ALSO
mincore (2), mlock (2), mmap(2), munmap(2), setrlimit (2)

NetBSD 3.0 June 12, 1999 1

MLOCKALL (2) NetBSD System Calls Manual MLOCKALL (2)

STANDARDS
Themlockall () andmunlockall () functions conform toIEEE Std 1003.1b-1993 (“POSIX.1”).

HISTORY
Themlockall () andmunlockall () functions first appeared inNetBSD 1.5.

BUGS
The per-process resource limit is a limit on the amount of virtual memory locked, while the system-wide
limit is for the number of locked physical pages. Hence a process with two distinct locked mappings of the
same physical page counts as 2 pages against the per-process limit and as only a single page in the system
limit.

NetBSD 3.0 June 12, 1999 2

MMAP (2) NetBSD System Calls Manual MMAP (2)

NAME
mmap— map files or devices into memory

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/mman.h>

void ∗
mmap(void ∗ addr , size_t len , int prot , int flags , int fd , off_t offset);

DESCRIPTION
The mmapfunction causes the pages starting ataddr and continuing for at mostlen bytes to be mapped
from the object described byfd, starting at byte offsetoffset. If len is not a multiple of the pagesize,
the mapped region may extend past the specified range.Any such extension beyond the end of the mapped
object will be zero-filled.

If addr is non-zero, it is used as a hint to the system. (As a convenience to the system, the actual address of
the region may differ from the address supplied.)If addr is zero, an address will be selected by the system.
The actual starting address of the region is returned.A successfulmmap deletes any previous mapping in the
allocated address range.

The protections (region accessibility) are specified in theprot argument byOR’ing the following values:

PROT_EXEC Pages may be executed.

PROT_READ Pages may be read.

PROT_WRITE Pages may be written.

PROT_NONE Pages may not be accessed.

Note that, due to hardware limitations, on some platforms PROT_WRITEmay imply PROT_READ, and
PROT_READmay imply PROT_EXEC. Portable programs should not rely on these flags being sepa-
rately enforceable.

Theflags parameter specifies the type of the mapped object, mapping options and whether modifications
made to the mapped copy of the page are private to the process or are to be shared with other references.
Note that eitherMAP_SHARED, MAP_PRIVATEor MAP_COPYmust be specified.Sharing, mapping type
and options are specified in theflags argument byOR’ing the following values:

MAP_ALIGNED(n) Request that the allocation be aligned to the given boundary. The parametern
should be the base 2 logarithm of the desired alignment (e.g., to request align-
ment to 16K, use 14 as the value for n). The alignment must be equal to or
greater than the platform’s page size as returned bysysconf (3) with the
_SC_PAGESIZErequest.

MAP_ANON Map anonymous memory not associated with any specific file. The file descrip-
tor is not used for creatingMAP_ANONregions, and must be specified as −1.
The mapped memory will be zero filled.

MAP_FILE Mapped from a regular file or character-special device memory.

MAP_FIXED Do not permit the system to select a different address than the one specified.If
the specified address cannot be used,mmapwill f ail. If MAP_FIXED is speci-
fied,addr must be a multiple of the pagesize.Use of this option is discouraged.

NetBSD 3.0 October 6, 2003 1

MMAP (2) NetBSD System Calls Manual MMAP (2)

MAP_HASSEMAPHORENotify the kernel that the region may contain semaphores and that special han-
dling may be necessary.

MAP_INHERIT Permit regions to be inherited acrossexecve (2) system calls.

MAP_TRYFIXED Attempt to use the addressaddr ev en if it f alls within the normally protected
process data or text segment memory regions. Ifthe requested region of memory
is actually present in the memory map, a different address will be selected as if
MAP_TRYFIXED had not been specified.If addr is NULL, this flag is ignored
and the system will select a mapping address.

MAP_WIRED Lock the mapped region into memory as withmlock (2).

MAP_PRIVATE Modifications made by this process are private, however modifications made by
other processes usingMAP_SHAREDwill be seen.

MAP_SHARED Modifications are shared.

MAP_COPY Modifications are private, including other processes.

Theclose (2) function does not unmap pages, seemunmap(2) for further information.

The current design does not allow a process to specify the location of swap space. In the future we may
define an additional mapping type,MAP_SWAP, in which the file descriptor argument specifies a file or
device to which swapping should be done.

If MAP_FIXED is not specified, the system will attempt to place the mapping in an unused portion of the
address space chosen to minimize possible collision between mapped regions and the heap.

RETURN VALUES
Upon successful completion,mmap returns a pointer to the mapped region. Otherwise,a value of
MAP_FAILEDis returned anderrno is set to indicate the error. The symbolMAP_FAILEDis defined in the
header〈sys/mman.h 〉. No successful return frommmap() will return the valueMAP_FAILED.

ERRORS
mmap() will fail if:

[EACCES] The flagPROT_READwas specified as part of theprot parameter andfd was not
open for reading. The flagsMAP_SHAREDandPROT_WRITEwere specified as part
of theflags andprot parameters andfd was not open for writing.

[EBADF] fd is not a valid open file descriptor.

[EINVAL] MAP_FIXEDwas specified and theaddr parameter was not page aligned or was out-
side of the valid address range for a process.MAP_ANON was specified and
fd was not −1.

[ENODEV] fd did not reference a regular or character special file.

[ENOMEM] MAP_FIXED was specified and theaddr parameter wasn’t available. MAP_ANON
was specified and insufficient memory was available.

[EOVERFLOW] fd references a regular file and the value ofoffset pluslen would exceed the off-
set maximum established in its open file description.

SEE ALSO
madvise (2), mincore (2), mlock (2), mprotect (2), msync (2), munmap(2), getpagesize (3),
sysconf (3)

NetBSD 3.0 October 6, 2003 2

MMAP (2) NetBSD System Calls Manual MMAP (2)

BUGS
The MAP_COPYflag is not implemented.The currentMAP_COPYsemantics are the same as those of the
MAP_PRIVATEflag.

NetBSD 3.0 October 6, 2003 3

MOUNT (2) NetBSD System Calls Manual MOUNT (2)

NAME
mount , unmount — mount or dismount a file system

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/param.h>
#include <sys/mount.h>

int
mount (const char ∗ type , const char ∗ dir , int flags , void ∗ data ,

size_t data_len);

int
unmount (const char ∗ dir , int flags);

DESCRIPTION
The mount () function grafts a file system object onto the system file tree at the pointdir. The argument
data describes the file system object to be mounted, and isdata_len bytes long. The argumenttype
tells the kernel how to interpretdata (Seetype below). Thecontents of the file system become available
through the new mount pointdir. Any files indir at the time of a successful mount are swept under the
carpet so to speak, and are unavailable until the file system is unmounted.

The followingflags may be specified to suppress default semantics which affect file system access.

MNT_RDONLY The file system should be treated as read-only; even the super-user may not write on
it.

MNT_NOEXEC Do not allow files to be executed from the file system.

MNT_NOSUID Do not honor setuid or setgid bits on files when executing them.

MNT_NODEV Do not interpret special files on the file system.

MNT_UNION Union with underlying filesystem instead of obscuring it.

MNT_SYNCHRONOUSAll I/O to the file system should be done synchronously.

MNT_ASYNC All I/O to the file system should be done asynchronously.

MNT_NOCOREDUMPDo not allow programs to dump core files on the file system.

MNT_NOATIME Never update access time in the file system.

MNT_SYMPERM Recognize the permission of symbolic link when reading or traversing.

MNT_NODEVMTIMENever update modification time of device files.

MNT_SOFTDEP Use soft dependencies.

The MNT_UPDATEand theMNT_GETARGSflags indicate that the mount command is being applied to an
already mounted file system.The MNT_UPDATEflag allows the mount flags to be changed without requir-
ing that the file system be unmounted and remounted.Some file systems may not allow all flags to be
changed. For example, most file systems will not allow a change from read-write to read-only. The
MNT_GETARGSflag does not alter any of the mounted filesystem’s properties, but returns the filesystem-spe-
cific arguments for the currently mounted filesystem.

Thetype argument defines the type of the file system.The types of file systems known to the system are
defined in〈sys/mount.h 〉. data is a pointer to a structure that contains the type specific arguments to

NetBSD 3.0 July 14, 2007 1

MOUNT (2) NetBSD System Calls Manual MOUNT (2)

mount. Someof the currently supported types of file systems and their type specific data are:

MOUNT_FFS
struct ufs_args {

char ∗ fspec; / ∗ block special file to mount ∗ /
};

MOUNT_NFS
struct nfs_args {

int version; / ∗ args structure version ∗ /
struct sockaddr ∗ addr; / ∗ file server address ∗ /
int addrlen; / ∗ length of address ∗ /
int sotype; / ∗ Socket type ∗ /
int proto; / ∗ and Protocol ∗ /
u_char ∗ fh; / ∗ File handle to be mounted ∗ /
int fhsize; / ∗ Size, in bytes, of fh ∗ /
int flags; / ∗ flags ∗ /
int wsize; / ∗ write size in bytes ∗ /
int rsize; / ∗ read size in bytes ∗ /
int readdirsize; / ∗ readdir size in bytes ∗ /
int timeo; / ∗ initial timeout in .1 secs ∗ /
int retrans; / ∗ times to retry send ∗ /
int maxgrouplist; / ∗ Max. size of group list ∗ /
int readahead; / ∗ # of b locks to readahead ∗ /
int leaseterm; / ∗ Term (sec) of lease ∗ /
int deadthresh; / ∗ Retrans threshold ∗ /
char ∗ hostname; / ∗ server’s name ∗ /

};

MOUNT_MFS
struct mfs_args {

char ∗ fspec; / ∗ name to export for statfs ∗ /
struct export_args30 pad; / ∗ unused ∗ /
caddr_t base; / ∗ base of file system in mem ∗ /
u_long size; / ∗ size of file system ∗ /

};

Theunmount () function call disassociates the file system from the specified mount pointdir.

Theflags argument may specifyMNT_FORCEto specify that the file system should be forcibly unmounted
ev en if fi les are still active. Active special devices continue to work, but any further accesses to any other
active files result in errors even if the file system is later remounted.

RETURN VALUES
mount () returns the value 0 if the mount was successful, the number of bytes written todata for
MNT_GETARGS, otherwise −1 is returned and the variableerrno is set to indicate the error.

unmount () returns the value 0 if the unmount succeeded; otherwise −1 is returned and the variableerrno is
set to indicate the error.

ERRORS
mount () will fail when one of the following occurs:

NetBSD 3.0 July 14, 2007 2

MOUNT (2) NetBSD System Calls Manual MOUNT (2)

[EPERM] The caller is not the super-user.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ELOOP] Too many symbolic links were encountered in translating a pathname.

[ENOENT] A component ofdir does not exist.

[ENOTDIR] A component ofname is not a directory, or a path prefix ofspecial is not a direc-
tory.

[EBUSY] Another process currently holds a reference todir.

[EFAULT] dir points outside the process’s allocated address space.

The following errors can occur for aufsfile system mount:

[ENODEV] A component of ufs_argsfspec does not exist.

[ENOTBLK] Fspec is not a block device.

[ENXIO] The major device number offspec is out of range (this indicates no device driver
exists for the associated hardware).

[EBUSY] Fspec is already mounted.

[EMFILE] No space remains in the mount table.

[EINVAL] The super block for the file system had a bad magic number or an out of range block
size.

[ENOMEM] Not enough memory was available to read the cylinder group information for the file
system.

[EIO] An I/O error occurred while reading the super block or cylinder group information.

[EFAULT] Fspec points outside the process’s allocated address space.

The following errors can occur for anfsfile system mount:

[ETIMEDOUT] Nfs timed out trying to contact the server.

[EFAULT] Some part of the information described by nfs_args points outside the process’s allo-
cated address space.

The following errors can occur for amfsfile system mount:

[EMFILE] No space remains in the mount table.

[EINVAL] The super block for the file system had a bad magic number or an out of range block
size.

[ENOMEM] Not enough memory was available to read the cylinder group information for the file
system.

[EIO] A paging error occurred while reading the super block or cylinder group information.

[EFAULT] Namepoints outside the process’s allocated address space.

unmount () may fail with one of the following errors:

[EPERM] The caller is not the super-user.

NetBSD 3.0 July 14, 2007 3

MOUNT (2) NetBSD System Calls Manual MOUNT (2)

[ENOTDIR] A component of the path is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EINVAL] The requested directory is not in the mount table.

[EBUSY] A process is holding a reference to a file located on the file system.

[EIO] An I/O error occurred while writing cached file system information.

[EFAULT] dir points outside the process’s allocated address space.

A ufsor mfsmount can also fail if the maximum number of file systems are currently mounted.

SEE ALSO
getvfsstat (2), nfssvc (2), getmntinfo (3), symlink (7), mount (8), sysctl (8), umount (8)

HISTORY
Themount () andumount () (nowunmount ()) function calls appeared in Version 6AT&T UNIX .

Prior to NetBSD 4.0 themount call was used to NFS export filesystems. This is now done through
nfssvc ().

Thedata_len argument was added for NetBSD 5.0.

BUGS
Some of the error codes need translation to more obvious messages.

Far more filesystems are supported than those those listed.

NetBSD 3.0 July 14, 2007 4

MPROTECT (2) NetBSD System Calls Manual MPROTECT (2)

NAME
mprotect — control the protection of pages

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/mman.h>

int
mprotect (void ∗ addr , size_t len , int prot);

DESCRIPTION
Themprotect () system call changes the specified pages to have protectionprot. Not all implementations
will guarantee protection on a page basis; the granularity of protection changes may be as large as an entire
region.

The protections (region accessibility) are specified in theprot argument byOR’ing the following values:

PROT_EXEC Pages may be executed.

PROT_READ Pages may be read.

PROT_WRITEPages may be written.

PROT_NONE No permissions.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
[EACCES] A memory protection violation occurred, or thePROT_EXECUTEflag was attempted

on pages which belong to a filesystem mounted with theNOEXEC flag.

[EINVAL] An invalid memory range, or invalid parameters were provided.

[ENOMEM] A resource shortage occurred while internally callinguvm_map_protect ().

SEE ALSO
madvise (2), mincore (2), msync (2), munmap(2)

HISTORY
Themprotect () function first appeared in 4.4BSD.

NetBSD 3.0 October 7, 2006 1

MREMAP (2) NetBSD System Calls Manual MREMAP (2)

NAME
mremap — re-map a virtual memory address

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/mman.h>

void ∗
mremap(void ∗ oldp , size_t oldsize , void ∗ newp , size_t newsize , int flags);

DESCRIPTION
Themremap() function resizes the mapped range (seemmap(2)) starting atoldp and having sizeoldsize
to newsize. The following arguments can beOR’ed together in theflags argument:

MAP_ALIGNED(n) The allocation should be aligned to the given boundary, i.e. ensure that the lowest
n bits of the address are zero. The parametern should be the base 2 logarithm of
the desired alignment (e.g., to request alignment to 16K, use 14 as the value for n).
The alignment must be equal to or greater than the platform’s page size as
returned bysysconf (3) with the_SC_PAGESIZErequest.

MAP_FIXED newp is tried andmremap() fails if that address can’t be used as new base
address for the range.Otherwise,oldp andnewp are used as hints for the posi-
tion, factoring in the given alignment.

RETURN VALUES
mremap() returns the new address orMAP_FAILED, if the remap failed.

HISTORY
Themremap() system call appeared inNetBSD 5.0. Itwas based on the code that supportsmremap() com-
patibility for Linux binaries.

COMPATIBILITY
The semantics ofmremap() differ from the one provided by glibc on Linux in that thenewp argument was
added and a different set offlags are implemented.

SEE ALSO
mmap(2), munmap(2)

NetBSD 3.0 February 14, 2008 1

MSGCTL (2) NetBSD System Calls Manual MSGCTL (2)

NAME
msgctl — message control operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/msg.h>

int
msgctl (int msqid , int cmd , struct msqid_ds ∗ buf);

DESCRIPTION
Themsgctl () system call performs control operations on the message queue specified bymsqid.

Each message queue has amsqid_dsstructure associated with it which contains the following members:

struct ipc_perm msg_perm; / ∗ msg queue permission bits ∗ /
msgqnum_t msg_qnum; / ∗ # of m sgs in the queue ∗ /
msglen_t msg_qbytes; / ∗ max # of bytes on the queue ∗ /
pid_t msg_lspid; / ∗ pid of last msgsnd() ∗ /
pid_t msg_lrpid; / ∗ pid of last msgrcv() ∗ /
time_t msg_stime; / ∗ time of last msgsnd() ∗ /
time_t msg_rtime; / ∗ time of last msgrcv() ∗ /
time_t msg_ctime; / ∗ time of last msgctl() ∗ /

The ipc_perm structure used inside themsgid_dsstructure is defined in〈sys/ipc.h 〉 and contains the fol-
lowing members:

uid_t cuid; / ∗ creator user id ∗ /
gid_t cgid; / ∗ creator group id ∗ /
uid_t uid; / ∗ user id ∗ /
gid_t gid; / ∗ group id ∗ /
mode_t mode; / ∗ permission (lower 9 bits) ∗ /

The operation to be performed bymsgctl () is specified incmd and is one of:

IPC_STAT Gather information about the message queue and place it in the structure pointed to bybuf.

IPC_SET Set the value of themsg_perm.uid, msg_perm.gid, msg_perm.modeandmsg_qbytesfields in
the structure associated withmsqid. The values are taken from the corresponding fields in
the structure pointed to bybuf. This operation can only be executed by the super-user, or a
process that has an effective user id equal to eithermsg_perm.cuidor msg_perm.uidin the
data structure associated with the message queue. The value ofmsg_qbytescan only be
increased by the super-user. Values formsg_qbytesthat exceed the system limit (MSGMNB
from 〈sys/msg.h 〉) are silently truncated to that limit.

IPC_RMID Remove the message queue specified bymsqid and destroy the data associated with it.Only
the super-user or a process with an effective uid equal to themsg_perm.cuidor msg_perm.uid
values in the data structure associated with the queue can do this.

The permission to read from or write to a message queue (seemsgsnd(2) andmsgrcv (2)) is determined by
the msg_perm.modefield in the same way as is done with files (seechmod(2)), but the effective uid can
match either themsg_perm.cuidfield or themsg_perm.uidfield, and the effective gid can match either
msg_perm.cgidor msg_perm.gid.

NetBSD 3.0 August 25, 1999 1

MSGCTL (2) NetBSD System Calls Manual MSGCTL (2)

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, −1 is returned and the global variableerrno
is set to indicate the error.

ERRORS
msgctl () will fail if:

[EPERM] cmd is equal toIPC_SET or IPC_RMID and the caller is not the super-user, nor does
the effective uid match either themsg_perm.uidor msg_perm.cuidfields of the data
structure associated with the message queue.

An attempt was made to increase the value ofmsg_qbytesthroughIPC_SET, but the
caller is not the super-user.

[EACCES] cmd is IPC_STAT and the caller has no read permission for this message queue.

[EINVAL] msqid is not a valid message queue identifier.

cmd is not a valid command.

[EFAULT] buf specifies an invalid address.

SEE ALSO
msgget (2), msgrcv (2), msgsnd(2)

STANDARDS
Themsgctl system call conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Message queues appeared in the first release ofAT&T System VUNIX .

NetBSD 3.0 August 25, 1999 2

MSGGET (2) NetBSD System Calls Manual MSGGET (2)

NAME
msgget — get message queue identifier

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/msg.h>

int
msgget (key_t key , int msgflg);

DESCRIPTION
The msgget () system call returns the message queue identifier associated withkey. A message queue
identifier is a unique integer greater than zero.

A message queue is created if eitherkey is equal toIPC_PRIVATE , or key does not have a message queue
identifier associated with it and theIPC_CREATbit is set inmsgflg. If both theIPC_CREATbit and the
IPC_EXCL bit are set inmsgflg, and key has a message queue identifier associated with it already, the
operation will fail.

If a new message queue is created, the data structure associated with it (themsqid_dsstructure, see
msgctl (2)) is initialized as follows:

• msg_perm.cuidandmsg_perm.uidare set to the effective uid of the calling process.

• msg_perm.gidandmsg_perm.cgidare set to the effective gid of the calling process.

• msg_perm.modeis set to the lower 9 bits ofmsgflg.

• msg_qnum, msg_lspid, msg_lrpid, msg_rtime, andmsg_stimeare set to 0.

• msg_qbytesis set to the system wide maximum value for the number of bytes in a queue (MSGMNB) .

• msg_ctimeis set to the current time.

RETURN VALUES
Upon successful completion a positive message queue identifier is returned. Otherwise, −1 is returned and
the global variableerrno is set to indicate the error.

ERRORS
[EACCES] A message queue is already associated withkey and the caller has no permission to

access it.

[EEXIST] Both IPC_CREAT and IPC_EXCL are set inmsgflg, and a message queue is
already associated withkey.

[ENOSPC] A new message queue could not be created because the system limit for the number of
message queues has been reached.

[ENOENT] IPC_CREAT is not set inmsgflg and no message queue associated withkey was
found.

SEE ALSO
msgctl (2), msgrcv (2), msgsnd(2), ftok (3)

NetBSD 3.0 May 13, 2004 1

MSGGET (2) NetBSD System Calls Manual MSGGET (2)

STANDARDS
Themsgget system call conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Message queues appeared in the first release ofAT&T System VUNIX .

NetBSD 3.0 May 13, 2004 2

MSGRCV (2) NetBSD System Calls Manual MSGRCV (2)

NAME
msgrcv — receive a message from a message queue

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/msg.h>

ssize_t
msgrcv (int msqid , void ∗ msgp , size_t msgsz , long msgtyp , int msgflg);

DESCRIPTION
The msgrcv () function receives a message from the message queue specified inmsqid, and places it into
the user-defined structure pointed to bymsgp. This structure must contain a first field of typelong that will
indicate the user-defined type of the message. The remaining fields will contain the contents of the message.
The following is an example of what this user-defined structure might look like:

struct mymsg {
long mtype; / ∗ message type ∗ /
char mtext[1]; / ∗ body of message ∗ /

};

mtypeis an integer greater than 0 that can be used to select messages.mtextis an array of bytes, with size up
to the system limitMSGMAX.

The value ofmsgtyp has one of the following meanings:

• msgtyp is greater than 0. The first message of typemsgtyp will be received.

• msgtyp is equal to 0. The first message on the queue will be received.

• msgtyp is less than 0. The first message of the lowest message type that is less than or equal to the
absolute value ofmsgtyp will be received.

msgsz specifies the maximum length of the requested message. If the received message has a length greater
thanmsgsz it will be silently truncated if theMSG_NOERRORflag is set inmsgflg, otherwise an error will
be returned.

If no matching message is present on the message queue specified bymsqid, the behaviour ofmsgrcv ()
depends on whether theIPC_NOWAIT flag is set inmsgflg or not. If IPC_NOWAIT is set, then
msgrcv () will immediately return a value of −1 and seterrno to EAGAIN. If IPC_NOWAIT is not set, the
calling process will block until:

• A message of the requested type becomes available on the message queue.

• The message queue is removed, in which case −1 will be returned anderrnoset toEIDRM.

• A signal is received and caught. −1 is returned anderrno is set toEINTR.

If a message is successfully received, the data structure associated withmsqid is updated as follows:

• msg_lrpidis set to the pid of the caller.

• msg_lrtimeis set to the current time.

• msg_qnumis decremented by 1.

NetBSD 3.0 August 25, 1999 1

MSGRCV (2) NetBSD System Calls Manual MSGRCV (2)

RETURN VALUES
Upon successful completion,msgrcv () returns the number of bytes received into themtextfield of the struc-
ture pointed to bymsgp. Otherwise, −1 is returned, anderrnoset to indicate the error.

ERRORS
msgrcv () will fail if:

[EINVAL] msqid is not a valid message queue identifier

The message queue was removed while msgrcv () was waiting for a message of the
requested type to become available in it.

msgsz is less than 0.

[E2BIG] A matching message was received, but its size was greater thanmsgsz and the
MSG_NOERRORflag was not set inmsgflg.

[EACCES] The calling process does not have read access to the message queue.

[EFAULT] msgp points to an invalid address.

[EINTR] The system call was interrupted by the delivery of a signal.

[EAGAIN] There is no message of the requested type available on the message queue, and
IPC_NOWAITis set inmsgflg.

[EIDRM] The message queue identifiermsqid is removed from the system.

[ENOMSG] The queue does not contain a message of the desired type andIPC_NOWAITis set.

SEE ALSO
msgctl (2), msgget (2), msgsnd(2)

STANDARDS
Themsgrcv system call conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Message queues appeared in the first release ofAT&T System VUNIX .

NetBSD 3.0 August 25, 1999 2

MSGSND (2) NetBSD System Calls Manual MSGSND (2)

NAME
msgsnd — send a message to a message queue

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/msg.h>

int
msgsnd(int msqid , const void ∗ msgp , size_t msgsz , int msgflg);

DESCRIPTION
The msgsnd() function sends a message from the message queue specified inmsqid. msgp points to a
user-defined structure containing the message.This structure must contain a first field of typelong that will
indicate the user-defined type of the message. The remaining fields will contain the contents of the message.
The following is an example of what this user-defined structure might look like:

struct mymsg {
long mtype; / ∗ message type ∗ /
char mtext[1]; / ∗ body of message ∗ /

};

mtypeis an integer greater than 0 that can be used for selecting messages (seemsgrcv (2)). mtextis an array
of bytes, with size up to the system limitMSGMAX.

If the number of bytes already on the message queue plusmsgsz is greater than the maximum number of
bytes in the message queue (msg_qbytes, seemsgctl (2)), or if the number of messages on all queues sys-
tem-wide is already equal to the system limit,msgflg determines the action ofmsgsnd(). If msgflg has
IPC_NOWAITmask set in it, the call will return immediately. If msgflg does not have IPC_NOWAITset
in it, the call will block until:

• The condition which caused the call to block no longer exists. Themessage was sent.

• The message queue is removed, in which case −1 will be returned anderrnoset toEINVAL.

• The caller catches a signal. The call returns witherrnoset toEINTR.

After a successful call, the data structure associated with the message queue is updated in the following way:

• msg_qnumis incremented by 1.

• msg_lspidis set to the pid of the calling process.

• msg_stimeis set to the current time.

RETURN VALUES
Upon successful completion, 0 is returned. Otherwise, −1 is returned anderrno is set to indicate the error.

ERRORS
msgsnd() will fail if:

[EINVAL] msqid is not a valid message queue identifier, or the value ofmtype is less than 1.

The message queue was removed while msgsnd() was waiting for a resource to
become available in order to deliver the message.

NetBSD 3.0 August 17, 1995 1

MSGSND (2) NetBSD System Calls Manual MSGSND (2)

msgsz is less than 0, or greater thanmsg_qbytes.

[EACCES] The calling process does not have write access to the message queue.

[EAGAIN] There was no space for this message either on the queue or in the whole system, and
IPC_NOWAITwas set inmsgflg.

[EFAULT] msgp points to an invalid address.

[EINTR] The system call was interrupted by the delivery of a signal.

SEE ALSO
msgctl (2), msgget (2), msgrcv (2)

STANDARDS
Themsgsnd system call conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Message queues appeared in the first release ofAT&T System VUNIX .

NetBSD 3.0 August 17, 1995 2

MSYNC (2) NetBSD System Calls Manual MSYNC (2)

NAME
msync — synchronize a mapped region

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/mman.h>

int
msync (void ∗ addr , size_t len , int flags);

DESCRIPTION
The msync () system call writes all pages with shared modifications in the specified region of the process’s
address space back to permanent storage, and, if requested, invalidates cached data mapped in the region. If
len is 0, all modified pages within the region containingaddr will be flushed; iflen is non-zero, only
modified pages containingaddr andlen succeeding locations will be flushed.Any required synchroniza-
tion of memory caches will also take place at this time. Filesystem operations on a file that is mapped for
shared modifications are unpredictable except after anmsync ().

Theflags argument is formed byor’ing the following values

MS_ASYNC Perform asynchronous writes.
MS_SYNC Perform synchronous writes.
MS_INVALIDATE Invalidate cached data after writing.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
The following errors may be reported:

[EBUSY] The MS_INVALIDATE flag was specified and a portion of the specified region was
locked withmlock (2).

[EINVAL] The specifiedflags argument was invalid.

[EINVAL] Theaddr parameter was not page aligned.

[EINVAL] Theaddr parameter did not specify an address part of a mapped region.

[EINVAL] Thelen parameter was negative.

[EIO] An I/O error occurred while writing to the file system.

[ENOMEM] Addresses in the specified region are outside the range allowed for the address space
of the process, or specify one or more pages which are unmapped.

SEE ALSO
mlock (2), mmap(2), munlock (2)

HISTORY
The msync () function first appeared in 4.4BSD. It was modified to conform toIEEE Std 1003.1b-1993
(“POSIX.1”) in NetBSD 1.3.

NetBSD 3.0 October 17, 2005 1

MUNMAP (2) NetBSD System Calls Manual MUNMAP (2)

NAME
munmap— remove a mapping

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/mman.h>

int
munmap(void ∗ addr , size_t len);

DESCRIPTION
The munmap() system call deletes the mappings for the specified address range, and causes further refer-
ences to addresses within the range to generate invalid memory references.

RETURN VALUES
Upon successful completion,munmapreturns zero.Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
munmap() will fail if:

[EINVAL] The addr parameter was not page aligned, thelen parameter was negative, or some
part of the region being unmapped is outside the valid address range for a process.

SEE ALSO
madvise (2), mincore (2), mlock (2), mmap(2), mprotect (2), msync (2), getpagesize (3)

HISTORY
Themunmap() function first appeared in 4.4BSD.

NetBSD 3.0 May 27, 1994 1

NANOSLEEP (2) NetBSD System Calls Manual NANOSLEEP (2)

NAME
nanosleep — high resolution sleep

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>

int
nanosleep (const struct timespec ∗ rqtp , struct timespec ∗ rmtp);

DESCRIPTION
The nanosleep () suspends execution of the calling process until either the number of seconds and
nanoseconds specified byrqtp have elapsed or a signal is delivered to the calling process and its action is to
invoke a signal catching function or to terminate the process.The suspension time may be longer than
requested due to the scheduling of other activity by the system.

RETURN VALUES
If the nanosleep () function returns because the requested time has elapsed, the value returned will be
zero.

If the nanosleep () function returns due to the delivery of a signal, the value returned will be the −1, and
the global variableerrno will be set to indicate the interruption.If rmtp is non-NULL, the timespec struc-
ture it references is updated to contain the unslept amount (the request time minus the time actually slept).

ERRORS
If any of the following conditions occur, thenanosleep function shall return −1 and seterrno to the corre-
sponding value.

[EFAULT] Either rqtp or rmtp points to memory that is not a valid part of the process address
space.

[EINTR] nanosleep was interrupted by the delivery of a signal.

[EINVAL] rqtp specified a nanosecond value less than zero or greater than 1000 million.

[ENOSYS] nanosleep is not supported by this implementation.

SEE ALSO
sleep (3)

STANDARDS
Thenanosleep () function conforms toIEEE Std 1003.1b-1993 (“POSIX.1”).

NetBSD 3.0 April 17, 1997 1

NFSSVC (2) NetBSD System Calls Manual NFSSVC (2)

NAME
nfssvc — NFS services

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>
#include <nfs/nfs.h>

int
nfssvc (int flags , void ∗ argstructp);

DESCRIPTION
Thenfssvc () function is used by the NFS daemons to pass information into and out of the kernel and also
to enter the kernel as a server daemon.Theflags argument consists of several bits that show what action
is to be taken once in the kernel and theargstructp points to one of three structures depending on which
bits are set in flags.

Calls used bynfsd (8)
On the server side,nfssvc () is called with the flagNFSSVC_NFSDand a pointer to a

struct nfsd_srvargs {
struct nfsd ∗ nsd_nfsd; / ∗ Pointer to in kernel nfsd struct ∗ /
uid_t nsd_uid; / ∗ Effective uid mapped to cred ∗ /
u_long nsd_haddr; / ∗ Ip address of client ∗ /
struct ucred nsd_cr; / ∗ Cred. uid maps to ∗ /
int nsd_authlen; / ∗ Length of auth string (ret) ∗ /
char ∗ nsd_authstr; / ∗ Auth string (ret) ∗ /

};

to enter the kernel as annfsd (8) daemon.Whenever an nfsd (8) daemon receives a Kerberos authentica-
tion ticket, it will return fromnfssvc () with errno set toENEEDAUTH. The nfsd (8) will attempt to
authenticate the ticket and generate a set of credentials on the server for the “user id” specified in the field
nsd_uid. Thisis done by first authenticating the Kerberos ticket and then mapping the Kerberos principal to
a local name and getting a set of credentials for that user viagetpwnam (3) andgetgrouplist (3). If
successful, thenfsd (8) will call nfssvc () with the NFSSVC_NFSDand NFSSVC_AUTHINflags set to
pass the credential mapping in nsd_cr into the kernel to be cached on the server socket for that client. If the
authentication failed,nfsd (8) callsnfssvc () with the flagsNFSSVC_NFSDandNFSSVC_AUTHINFAIL
to denote an authentication failure.

The masternfsd (8) server daemon callsnfssvc () with the flagNFSSVC_ADDSOCKand a pointer to a

struct nfsd_args {
int sock; / ∗ Socket to serve ∗ /
caddr_t name; / ∗ Client address for connection based sockets ∗ /
int namelen; / ∗ Length of name ∗ /

};

to pass a server sideNFSsocket into the kernel for servicing by thenfsd (8) daemons.

Calls used bymountd (8)
The mountd (8) server daemon callsnfssvc () with the flagNFSSVC_SETEXPORTSLISTand a pointer
to astruct mountd_exports_list object to atomically change the exports lists of a specific file sys-
tem. Thisstructure has the following fields:

NetBSD 3.0 December 30, 2006 1

NFSSVC (2) NetBSD System Calls Manual NFSSVC (2)

const char ∗ mel_path
Path to the file system that will have its exports list replaced by the one described in the other
fields.

size_t mel_nexports
Number of valid entries in themel_export field. If zero, the exports list will be cleared for the
given file system.

struct export_args mel_export[AF_MAX]
Set of exports to be used for the given file system.

RETURN VALUES
Usually nfssvc does not return unless the server is terminated by a signal when a value of 0 is returned.
Otherwise, −1 is returned and the global variableerrno is set to specify the error.

ERRORS
[ENEEDAUTH] This special error value is really used for authentication support, particularly Kerberos,

as explained above.

[EPERM] The caller is not the super-user.

SEE ALSO
mount_nfs (8), nfsd (8)

HISTORY
Thenfssvc function first appeared in 4.4BSD.

BUGS
Thenfssvc system call is designed specifically for theNFSsupport daemons and as such is specific to their
requirements. Itshould really return values to indicate the need for authentication support, since
ENEEDAUTHis not really an error. Sev eral fields of the argument structures are assumed to be valid and
sometimes to be unchanged from a previous call, such thatnfssvc must be used with extreme care.

NetBSD 3.0 December 30, 2006 2

NTP_ADJTIME (2) NetBSD System Calls Manual NTP_ADJTIME (2)

NAME
ntp_adjtime , ntp_gettime — Network Time Protocol (NTP) daemon interface system calls

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/time.h>
#include <sys/timex.h>

int
ntp_adjtime (struct timex ∗);

int
ntp_gettime (struct ntptimeval ∗);

DESCRIPTION
The two system callsntp_adjtime () andntp_gettime () are the kernel interface to the Network Time
Protocol (NTP) daemonntpd (8).

The ntp_adjtime () function is used by the NTP daemon to adjust the system clock to an externally
derived time. The time offset and related variables which are set byntp_adjtime () are used by
hardclock (9) to adjust the phase and frequency of the phase- or frequency-lock loop (PLL resp. FLL)
which controls the system clock.

The ntp_gettime () function provides the time, maximum error (sync distance) and estimated error (dis-
persion) to client user application programs.

In the following, all variables that refer PPS are only relevant if thePPS_SYNCoption (seeoptions (4)) is
enabled in the kernel.

ntp_adjtime () has as argument astruct timex∗ of the following form:

struct timex {
unsigned int modes; / ∗ clock mode bits (wo) ∗ /
long offset; / ∗ time offset (us) (rw) ∗ /
long freq; / ∗ frequency offset (scaled ppm) (rw) ∗ /
long maxerror; / ∗ maximum error (us) (rw) ∗ /
long esterror; / ∗ estimated error (us) (rw) ∗ /
int status; / ∗ clock status bits (rw) ∗ /
long constant; / ∗ pll time constant (rw) ∗ /
long precision; / ∗ clock precision (us) (ro) ∗ /
long tolerance; / ∗ clock frequency tolerance (scaled

∗ ppm) (ro) ∗ /
/ ∗

∗ The following read-only structure members are implemented
∗ only if the PPS signal discipline is configured in the
∗ kernel.
∗ /

long ppsfreq; / ∗ pps frequency (scaled ppm) (ro) ∗ /
long jitter; / ∗ pps jitter (us) (ro) ∗ /
int shift; / ∗ interval duration (s) (shift) (ro) ∗ /
long stabil; / ∗ pps stability (scaled ppm) (ro) ∗ /
long jitcnt; / ∗ jitter limit exceeded (ro) ∗ /
long calcnt; / ∗ calibration intervals (ro) ∗ /

NetBSD 3.0 September 4, 2001 1

NTP_ADJTIME (2) NetBSD System Calls Manual NTP_ADJTIME (2)

long errcnt; / ∗ calibration errors (ro) ∗ /
long stbcnt; / ∗ stability limit exceeded (ro) ∗ /

};

The members of this struct have the following meanings when used as argument forntp_adjtime ():
modes Defines what settings should be changed with the currentntp_adjtime () call (write-only).

Bitwise OR of the following:
MOD_OFFSET set time offset
MOD_FREQUENCY

set frequency offset
MOD_MAXERROR

set maximum time error
MOD_ESTERROR

set estimated time error
MOD_STATUS set clock status bits
MOD_TIMECONST

set PLL time constant
MOD_CLKA set clock A
MOD_CLKB set clock B

offset Time offset (in microseconds), used by the PLL/FLL to adjust the system time in small incre-
ments (read-write).

freq Frequency offset (scaled ppm) (read-write).
maxerror Maximum error (in microseconds). Initialized by anntp_adjtime () call, and increased by

the kernel once each second to reflect the maximum error bound growth (read-write).
esterror Estimated error (in microseconds). Set and read byntp_adjtime (), but unused by the ker-

nel (read-write).
status System clock status bits (read-write). Bitwise OR of the following:

STA_PLL Enable PLL updates (read-write).
STA_PPSFREQ Enable PPS freq discipline (read-write).
STA_PPSTIME Enable PPS time discipline (read-write).
STA_FLL Select frequency-lock mode (read-write).
STA_INS Insert leap (read-write).
STA_DEL Delete leap (read-write).
STA_UNSYNC Clock unsynchronized (read-write).
STA_FREQHOLD Hold frequency (read-write).
STA_PPSSIGNAL PPS signal present (read-only).
STA_PPSJITTER PPS signal jitter exceeded (read-only).
STA_PPSWANDER

PPS signal wander exceeded (read-only).
STA_PPSERROR PPS signal calibration error (read-only).
STA_CLOCKERR Clock hardware fault (read-only).

constant PLL time constant, determines the bandwidth, or “stiffness”, of the PLL (read-write).
precision Clock precision (in microseconds). In most cases the same as the kernel tick variable (see

hz (9)). If a precision clock counter or external time-keeping signal is available, it could be
much lower (and depend on the state of the signal) (read-only).

tolerance Maximum frequency error, or tolerance of the CPU clock oscillator (scaled ppm).Ordinarily
a property of the architecture, but could change under the influence of external time-keeping
signals (read-only).

ppsfreq PPS frequency offset produced by the frequency median filter (scaled ppm) (read-only).
jitter PPS jitter measured by the time median filter in microseconds (read-only).

NetBSD 3.0 September 4, 2001 2

NTP_ADJTIME (2) NetBSD System Calls Manual NTP_ADJTIME (2)

shift Logarithm to base 2 of the interval duration in seconds (PPS, read-only).
stabil PPS stability (scaled ppm); dispersion (wander) measured by the frequency median filter

(read-only).
jitcnt Number of seconds that have been discarded because the jitter measured by the time median

filter exceeded the limitMAXTIME(PPS, read-only).
calcnt Count of calibration intervals (PPS, read-only).
errcnt Number of calibration intervals that have been discarded because the wander exceeded the

limit MAXFREQor where the calibration interval jitter exceeded two ticks (PPS, read-only).
stbcnt Number of calibration intervals that have been discarded because the frequency wander

exceeded the limitMAXFREQ/4 (PPS, read-only).
After thentp_adjtime () call, thestruct timex ∗ structure contains the current values of the corresponding
variables.

ntp_gettime () has as argument astruct ntptimeval∗ with the following members:

struct ntptimeval {
struct timespec time; / ∗ current time (ro) ∗ /
long maxerror; / ∗ maximum error (us) (ro) ∗ /
long esterror; / ∗ estimated error (us) (ro) ∗ /
/ ∗ the following are placeholders for now ∗ /
long tai; / ∗ TAI offset ∗ /
int time_state; / ∗ time status ∗ /

};

These have the following meaning:
time Current time (read-only).
maxerror Maximum error in microseconds (read-only).
esterror Estimated error in microseconds (read-only).

RETURN VALUES
ntp_adjtime () andntp_gettime () return the current state of the clock on success, or any of the errors
of copyin (9) and copyout (9). ntp_adjtime () may additionally returnEPERMif the user calling
ntp_adjtime () does not have sufficient permissions.

Possible states of the clock are:
TIME_OK Everything okay, no leap second warning.
TIME_INS “insert leap second” warning.
TIME_DEL “delete leap second” warning.
TIME_OOP Leap second in progress.
TIME_WAIT Leap second has occurred.
TIME_ERROR

Clock not synchronized.

SEE ALSO
options (4), ntpd (8), hardclock (9), hz (9)

J. Mogul, D. Mills, J. Brittenson, J. Stone, and U. Windl,Pulse-Per-Second API for UNIX-like Operating
Systems, RFC 2783, March 2000.

NetBSD 3.0 September 4, 2001 3

OPEN (2) NetBSD System Calls Manual OPEN (2)

NAME
open — open or create a file for reading or writing

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <fcntl.h>

int
open (const char ∗ path , int flags , mode_t mode);

DESCRIPTION
The file name specified bypath is opened for reading and/or writing as specified by the argumentflags
and the file descriptor returned to the calling process.Theflags are specified byor’ing the values listed
below. Applications must specify exactly one of the first three values (file access methods):

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Any combination of the following may be used:

O_NONBLOCKDo not block on open or for data to become available.

O_APPEND Append to the file on each write.

O_CREAT Create the file if it does not exist, in which case the file is created with modemode as
described inchmod(2) and modified by the process’ umask value (seeumask(2)).

O_TRUNC Truncate size to 0.

O_EXCL Error if O_CREATand the file already exists.

O_SHLOCK Atomically obtain a shared lock.

O_EXLOCK Atomically obtain an exclusive lock.

O_NOFOLLOWIf last path element is a symlink, don’t follow it. Thisoption is provided for compati-
bility with other operating systems, but its security value is questionable.

O_DSYNC If set, write operations will be performed according to synchronized I/O data
integrity completion: each write will wait for the file data to be committed to stable
storage.

O_SYNC If set, write operations will be performed according to synchronized I/O file integrity
completion: each write will wait for both the file data and file status to be committed
to stable storage.

O_RSYNC If set, read operations will complete at the same level of integrity which is in effect
for write operations: if specified together withO_SYNC, each read will wait for the
file status to be committed to stable storage.

CombiningO_RSYNCwith O_DSYNConly, or specifying it without any other syn-
chronized I/O integrity completion flag set, has no further effect.

O_ALT_IO Alternate I/O semantics will be used for read and write operations on the file descrip-
tor. Alternate semantics are defined by the underlying layers and will not have any
alternate effect in most cases.

NetBSD 3.0 October 23, 2006 1

OPEN (2) NetBSD System Calls Manual OPEN (2)

O_NOCTTY If the file is a terminal device, the opened device is not made the controlling terminal
for the session.This flag has no effect onNetBSD, since the system defaults to the
abovementioned behaviour. The flag is present only for standards conformance.

O_DIRECT If set on a regular file, data I/O operations will not buffer the data being transferred in
the kernel’s cache, but rather transfer the data directly between user memory and the
underlying device driver if possible. Thisflag is advisory; the request may be per-
formed in the normal buffered fashion if certain conditions are not met, e.g. if the
request is not sufficiently aligned or if the file is mapped.

To meet the alignment requirements for direct I/O, the file offset, the length of the
I/O and the address of the buffer in memory must all be multiples ofDEV_BSIZE
(512 bytes).If the I/O request is made using an interface that supports scatter/gather
via struct iovec, each element of the request must meet the above alignment con-
straints.

Opening a file withO_APPENDset causes each write on the file to be appended to the end.If O_TRUNCis
specified and the file exists, the file is truncated to zero length.

If O_EXCLis set withO_CREATand the file already exists,open () returns an error. This may be used to
implement a simple exclusive access locking mechanism.If O_EXCLis set and the last component of the
pathname is a symbolic link,open () will fail even if the symbolic link points to a non-existent name.

If the O_NONBLOCKflag is specified, do not wait for the device or file to be ready or available. If the
open () call would result in the process being blocked for some reason (e.g., waiting for carrier on a dialup
line), open () returns immediately. This flag also has the effect of making all subsequent I/O on the open file
non-blocking.

When opening a file, a lock withflock (2) semantics can be obtained by settingO_SHLOCKfor a shared
lock, or O_EXLOCKfor an exclusive lock. If creating a file withO_CREAT, the request for the lock will
never fail (provided that the underlying filesystem supports locking).

If open () is successful, the file pointer used to mark the current position within the file is set to the begin-
ning of the file.

When a new file is created it is given the group of the directory which contains it.

The new descriptor is set to remain open acrossexecve (2) system calls; seeclose (2) andfcntl (2).

The system imposes a limit on the number of file descriptors open simultaneously by one process.Calling
getdtablesize (3) returns the current system limit.

RETURN VALUES
If successful,open () returns a non-negative integer, termed a file descriptor. Otherwise, a value of −1 is
returned anderrno is set to indicate the error.

ERRORS
The named file is opened unless:

[EPERM] The file’s flags (seechflags (2)) don’t allow the file to be opened.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceededNAME_MAXcharacters, or an entire path name
exceededPATH_MAXcharacters.

[ENOENT] O_CREATis not set and the named file does not exist, or a component of the path
name that must exist does not exist.

NetBSD 3.0 October 23, 2006 2

OPEN (2) NetBSD System Calls Manual OPEN (2)

[EACCES] Search permission is denied for a component of the path prefix, the required permis-
sions (for reading and/or writing) are denied for the given flags, orO_CREATis speci-
fied, the file does not exist, and the directory in which it is to be created does not per-
mit writing.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EISDIR] The named file is a directory, and the arguments specify it is to be opened for writing.

[EROFS] The named file resides on a read-only file system, and the file is to be modified.

[EMFILE] The process has already reached its limit for open file descriptors.

[ENFILE] The system file table is full.

[ENXIO] The named file is a character special or block special file, and the device associated
with this special file does not exist, or the named file is aFIFO, O_NONBLOCKand
O_WRONLYis set and no process has the file open for reading.

[EINTR] Theopen () operation was interrupted by a signal.

[EOPNOTSUPP] O_SHLOCKor O_EXLOCKis specified but the underlying filesystem does not support
locking.

[ENOSPC] O_CREATis specified, the file does not exist, and the directory in which the entry for
the new file is being placed cannot be extended because there is no space left on the
file system containing the directory.

[ENOSPC] O_CREATis specified, the file does not exist, and there are no free inodes on the file
system on which the file is being created.

[EDQUOT] O_CREATis specified, the file does not exist, and the directory in which the entry for
the new file is being placed cannot be extended because the user’s quota of disk blocks
on the file system containing the directory has been exhausted.

[EDQUOT] O_CREATis specified, the file does not exist, and the user’s quota of inodes on the file
system on which the file is being created has been exhausted.

[EIO] An I/O error occurred while making the directory entry or allocating the inode for
O_CREAT.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and theopen ()
call requests write access.

[EFAULT] path points outside the process’s allocated address space.

[EEXIST] O_CREATandO_EXCLwere specified and the file exists.

[EOPNOTSUPP] An attempt was made to open a socket (not currently implemented).

SEE ALSO
chmod(2), close (2), dup (2), lseek (2), read (2), umask(2), write (2), getdtablesize (3)

STANDARDS
The open () function conforms toISO/IEC 9945-1:1990 (“POSIX.1”). The flags values O_DSYNC,
O_SYNCandO_RSYNCare extensions defined inIEEE Std 1003.1b-1993 (“POSIX.1”).

The O_SHLOCK, O_EXLOCK, and O_NOFOLLOWflags are non-standard extensions and should not be used
if portability is of concern.

NetBSD 3.0 October 23, 2006 3

OPEN (2) NetBSD System Calls Manual OPEN (2)

HISTORY
An open () function call appeared in Version 6AT&T UNIX .

NetBSD 3.0 October 23, 2006 4

PATHCONF (2) NetBSD System Calls Manual PATHCONF (2)

NAME
pathconf , fpathconf — get configurable pathname variables

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

long
pathconf (const char ∗ path , int name);

long
fpathconf (int fd , int name);

DESCRIPTION
The pathconf () andfpathconf () functions provide a method for applications to determine the current
value of a configurable system limit or option variable associated with a pathname or file descriptor.

For pathconf , thepath argument is the name of a file or directory. For fpathconf , thefd argument is
an open file descriptor. Thename argument specifies the system variable to be queried. Symbolic constants
for each name value are found in the include file<unistd.h> .

The available values are as follows:

_PC_LINK_MAX
The maximum file link count.

_PC_MAX_CANON
The maximum number of bytes in terminal canonical input line.

_PC_MAX_INPUT
The minimum maximum number of bytes for which space is available in a terminal input queue.

_PC_NAME_MAX
The maximum number of bytes in a filename, not including a terminating null character.

_PC_PATH_MAX
The maximum number of bytes in a pathname, including the terminating null character.

_PC_PIPE_BUF
The maximum number of bytes which will be written atomically to a pipe.

_PC_CHOWN_RESTRICTED
Return 1 if appropriate privileges are required for thechown (2) system call, otherwise 0.

_PC_NO_TRUNC
Return 1 if filenames longer than{NAME_MAX}are truncated.

_PC_VDISABLE
Returns the terminal character disabling value.

_PC_SYNC_IO
Returns 1 if synchronized I/O is supported, otherwise 0.

_PC_FILESIZEBITS
If the maximum size file that could ever exist on the mounted file system ismaxsize , then the
returned value is 2 plus the floor of the base 2 logarithm ofmaxsize .

NetBSD 3.0 March 21, 1999 1

PATHCONF (2) NetBSD System Calls Manual PATHCONF (2)

RETURN VALUES
If the call topathconf or fpathconf is not successful, −1 is returned anderrno is set appropriately.
Otherwise, if the variable is associated with functionality that does not have a limit in the system, −1 is
returned anderrno is not modified. Otherwise, the current variable value is returned.

ERRORS
If any of the following conditions occur, thepathconf andfpathconf functions shall return −1 and set
errno to the corresponding value.

[EINVAL] The value of thename argument is invalid.

[EINVAL] The implementation does not support an association of the variable name with the
associated file.

pathconf () will fail if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire path name exceeded
1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EIO] An I/O error occurred while reading from or writing to the file system.

fpathconf () will fail if:

[EBADF] fd is not a valid open file descriptor.

[EIO] An I/O error occurred while reading from or writing to the file system.

SEE ALSO
sysctl (3)

STANDARDS
Thepathconf () andfpathconf () functions conform toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
Thepathconf andfpathconf functions first appeared in 4.4BSD.

NetBSD 3.0 March 21, 1999 2

PIPE (2) NetBSD System Calls Manual PIPE (2)

NAME
pipe — create descriptor pair for interprocess communication

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
pipe (int fildes[2]);

DESCRIPTION
Thepipe () function creates apipe, which is an object allowing unidirectional data flow, and allocates a pair
of file descriptors.The first descriptor connects to theread endof the pipe, and the second connects to the
write end, so that data written tofildes[1] appears on (i.e., can be read from)fildes[0]. This allows
the output of one program to be sent to another program: the source’s standard output is set up to be the write
end of the pipe, and the sink’s standard input is set up to be the read end of the pipe.The pipe itself persists
until all its associated descriptors are closed.

A pipe whose read or write end has been closed is consideredwidowed. Writing on such a pipe causes the
writing process to receive aSIGPIPE signal. Widowing a pipe is the only way to deliver end-of-file to a
reader: after the reader consumes any buffered data, reading a widowed pipe returns a zero count.

RETURN VALUES
On successful creation of the pipe, zero is returned. Otherwise, a value of −1 is returned and the variable
errnoset to indicate the error.

ERRORS
Thepipe () call will fail if:

[EMFILE] Too many descriptors are active.

[ENFILE] The system file table is full.

[EFAULT] The fildes buffer is in an invalid area of the process’s address space. The reliable
detection of this error cannot be guaranteed; when not detected, a signal may be deliv-
ered to the process, indicating an address violation.

SEE ALSO
sh (1), fork (2), read (2), socketpair (2), write (2)

STANDARDS
Thepipe () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
A pipe () function call appeared in Version 6AT&T UNIX .

NetBSD 3.0 July 17, 1994 1

PMC_CONTROL (2) NetBSD System Calls Manual PMC_CONTROL (2)

NAME
pmc_control , pmc_get_info — Hardware Performance Monitoring Interface

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/pmc.h>

int
pmc_control (int ctr , int op , void ∗ argp);

int
pmc_get_info (int ctr , int op , void ∗ argp);

DESCRIPTION
pmc_get_info () returns the number of counters in the system or information on a specified counterctr.
The possible values forop are:

PMC_INFO_NCOUNTERS
When querying the number of counters in the system,ctr is ignored andargp is of typeint ∗ .
Upon return, the integer pointed to byargp will contain the number of counters that are available
in the system.

PMC_INFO_CPUCTR_TYPE
When querying the type of a counter in the system,ctr refers to the counter being queried, and
argp is of typeint ∗ . Upon return, the integer pointed to byargp will contain the implementa-
tion-dependent type of the specified counter.

If ctr is −1, the integer pointed to byargp will contain the machine-dependent type describing the
CPU or counter configuration.

PMC_INFO_COUNTER_VALUE
When querying the value of a counter in the system,ctr refers to the counter being queried, and
argp is of typeuint64_t ∗ . Upon return, the 64-bit integer pointed to byargp will contain the
value of the specified counter.

PMC_INFO_ACCUMULATED_COUNTER_VALUE
When querying the value of a counter in the system,ctr refers to the counter being queried, and
argp is of typeuint64_t ∗ . Upon return, the 64-bit integer pointed to byargp will contain the
sum of the accumulated values of specified counter in all exited subprocesses of the current process.

pmc_control () manipulates the specified counterctr in one of several fashions. Theop parameter
determines the action taken by the kernel and also the interpretation of theargp parameter. The possible
values forop are:

PMC_OP_START
Starts the specifiedctr running. Itmust be preceded by a call withPMC_OP_CONFIGURE. argp
is ignored in this case and may beNULL.

PMC_OP_STOP
Stops the specifiedctr from running.argp is ignored in this case and may beNULL.

PMC_OP_CONFIGURE
Configures the specifiedctr prior to running. argp is a pointer to a struct
pmc_counter_cfg.

NetBSD 3.0 October 27, 2005 1

PMC_CONTROL (2) NetBSD System Calls Manual PMC_CONTROL (2)

struct pmc_counter_cfg {
pmc_evid_t event_id;
pmc_ctr_t reset_value;
uint32_t flags;

};

event_id
is the event ID to be counted.

reset_value
is a value to which the counter should be reset on overflow (if supported by the implemen-
tation). This is most useful when profiling (seePMC_OP_PROFSTART, below). This
value is defined to be the number of counter ticks before the next overflow. So, to get a
profiling tick on every hundredth data cache miss, set theevent_id to the proper value
for “dcache-miss” and setreset_value to 100.

flags Currently unused.

PMC_OP_PROFSTART
Configures the specifiedctr for use in profiling. argp is a pointer to astruct
pmc_counter_cfg as inPMC_OP_CONFIGURE, above. This request allocates a kernel counter,
which will fail if any process is using the requested counter. Not all implementations or counters
may support this option.

PMC_OP_PROFSTOP
Stops the specifiedctr from being used for profiling.argp is ignored in this case and may be
NULL.

RETURN VALUES
A return value of 0 indicates that the call succeeded.Otherwise, −1 is returned and the global variableerrno
is set to indicate the error.

ERRORS
Among the possible error codes frompmc_control () andpmc_get_info () are

[EFAULT] The address specified for theargp is invalid.

[ENXIO] Specified counter is not yet configured.

[EINPROGRESS] PMC_OP_STARTwas passed for a counter that is already running.

[EINVAL] Specified counter was invalid.

[EBUSY] If the requested counter is already in use--either by the current process or by the ker-
nel.

[ENODEV] If and only if the specified counter event is not valid for the specified counter when
configuring a counter or starting profiling.

[ENOMEM] If the kernel is unable to allocate memory.

SEE ALSO
pmc(1), pmc(9)

HISTORY
Thepmc_control () andpmc_get_info () system calls appeared inNetBSD 2.0.

NetBSD 3.0 October 27, 2005 2

POLL (2) NetBSD System Calls Manual POLL (2)

NAME
poll, pollts — synchronous I/O multiplexing

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <poll.h>

int
poll (struct pollfd ∗ fds , nfds_t nfds , int timeout);

#include <poll.h>
#include <signal.h>
#include <time.h>

int
pollts (struct pollfd ∗ restrict fds , nfds_t nfds ,

const struct timespec ∗ restrict ts ,
const sigset_t ∗ restrict sigmask);

DESCRIPTION
poll () andpollts () examine a set of file descriptors to see if some of them are ready for I/O.Thefds
argument is a pointer to an array of pollfd structures as defined in〈poll.h 〉 (shown below). Thenfds
argument determines the size of thefds array.

struct pollfd {
int fd; / ∗ file descriptor ∗ /
short events; / ∗ events to look for ∗ /
short revents; / ∗ events returned ∗ /

};

The fields ofstruct pollfd are as follows:

fd File descriptor to poll.If the value infd is negative, the file descriptor is ignored andre vents
is set to 0.

ev ents Events to poll for. (See below.)

revents Events which may occur. (See below.)

The event bitmasks inevents andrevents have the following bits:

POLLIN Data other than high priority data may be read without blocking.

POLLRDNORM Normal data may be read without blocking.

POLLRDBAND Data with a non-zero priority may be read without blocking.

POLLPRI High priority data may be read without blocking.

POLLOUT Normal data may be written without blocking.

POLLWRNORM Equivalent to POLLOUT.

POLLWRBAND Data with a non-zero priority may be written without blocking.

POLLERR An exceptional condition has occurred on the device or socket. This flag is always
checked, even if not present in theevents bitmask.

NetBSD 3.0 September 8, 2006 1

POLL (2) NetBSD System Calls Manual POLL (2)

POLLHUP The device or socket has been disconnected. This flag is always checked, even if not
present in theevents bitmask. Notethat POLLHUP and POLLOUT should never be
present in therevents bitmask at the same time. If the remote end of a socket is
closed,poll () returns a POLLIN event, rather than a POLLHUP.

POLLNVAL The file descriptor is not open. This flag is always checked, even if not present in the
events bitmask.

If timeout is neither zero nor INFTIM (−1), it specifies a maximum interval to wait for any file descriptor
to become ready, in milliseconds. Iftimeout is INFTIM (−1), the poll blocks indefinitely. If timeout is
zero, thenpoll () will return without blocking.

If ts is a non-null pointer, it references a timespec structure which specifies a maximum interval to wait for
any file descriptor to become ready. If ts is a null pointer, pollts () blocks indefinitely. If ts is a non-
null pointer, referencing a zero-valued timespec structure, thenpollts () will return without blocking.

If sigmask is a non-null pointer, then thepollts () function shall replace the signal mask of the caller by
the set of signals pointed to bysigmask before examining the descriptors, and shall restore the signal mask
of the caller before returning.

RETURN VALUES
poll () returns the number of descriptors that are ready for I/O, or −1 if an error occurred.If the time limit
expires,poll () returns 0.If poll () returns with an error, including one due to an interrupted call, thefds
array will be unmodified.

COMPATIBILITY
This implementation differs from the historical one in that a given file descriptor may not causepoll () to
return with an error. In cases where this would have happened in the historical implementation (e.g. trying to
poll a revoke (2)d descriptor), this implementation instead copies theevents bitmask to therevents
bitmask. Attemptingto perform I/O on this descriptor will then return an error. This behaviour is believed to
be more useful.

ERRORS
An error return frompoll () indicates:

[EFAULT] fds points outside the process’s allocated address space.

[EINTR] A signal was delivered before the time limit expired and before any of the selected
ev ents occurred.

[EINVAL] The specified time limit is negative.

SEE ALSO
accept (2), connect (2), read (2), recv (2), select (2), send (2), write (2)

HISTORY
The poll () function appeared inAT&T System V.3 UNIX . The pollts () function first appeared in
NetBSD 3.0.

BUGS
The distinction between some of the fields in theevents andrevents bitmasks is really not useful with-
out STREAMS. The fields are defined for compatibility with existing software.

NetBSD 3.0 September 8, 2006 2

POSIX_FADVISE (2) NetBSD System Calls Manual POSIX_FADVISE (2)

NAME
posix_fadvise — hint at the future access pattern of a file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/fcntl.h>

int
posix_fadvise (int fd , off_t offset , off_t size , int hint);

DESCRIPTION
posix_fadvise () hints at the application’s access pattern to the file and range given by the file descriptor,
fd, andoffset andsize. If size is zero, it means to the end of file.

hint should be one of the followings.

POSIX_FADV_NORMAL No hint. (default)
POSIX_FADV_RANDOM Random access.
POSIX_FADV_SEQUENTIAL

Sequential access. (from lower offset to higher offset.)
POSIX_FADV_WILLNEED Will be accessed.
POSIX_FADV_DONTNEED Will not be accessed.
POSIX_FADV_NOREUSE Will be accessed just once.

Calling posix_fadvise () doesn’t alter the semantics of the operations, it is only a matter of performance.

RETURN VALUES
On success,posix_fadvise () returns 0. Otherwise, it returns an error number.

SEE ALSO
errno (2), madvise (2)

BUGS
POSIX_FADV_WILLNEED, POSIX_FADV_DONTNEED, and POSIX_FADV_NOREUSEare not imple-
mented.

For POSIX_FADV_NORMAL, POSIX_FADV_RANDOM, and POSIX_FADV_SEQUENTIAL, the current
implementation ignoresoffset andsize, and applies the hint to the whole file.

NetBSD 3.0 February 20, 2006 1

PROFIL (2) NetBSD System Calls Manual PROFIL (2)

NAME
profil — control process profiling

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
profil (char ∗ samples , size_t size , u_long offset , u_int scale);

DESCRIPTION
Theprofil () function enables or disables program counter profiling of the current process. If profiling is
enabled, then at every clock tick, the kernel updates an appropriate count in thesamples buffer.

The buffer samples containssize bytes and is divided into a series of 16-bit bins. Each bin counts the
number of times the program counter was in a particular address range in the process when a clock tick
occurred while profiling was enabled.For a giv en program counter address, the number of the corresponding
bin is given by the relation:

[(pc - offset) / 2] ∗ scale / 65536

The offset parameter is the lowest address at which the kernel takes program counter samples.The
scale parameter ranges from 1 to 65536 and can be used to change the span of the bins.A scale of 65536
maps each bin to 2 bytes of address range; a scale of 32768 gives 4 bytes, 16384 gives 8 bytes and so on.
Intermediate values provide approximate intermediate ranges. Ascale value of 0 disables profiling.

RETURN VALUES
If the scale value is nonzero and the buffer samples contains an illegal address,profil () returns −1,
profiling is terminated anderrno is set appropriately. Otherwiseprofil () returns 0.

FILES
/usr/lib/gcrt0.o profiling C run-time startup file
gmon.out conventional name for profiling output file. This may be different if the PROFDIR

environment variable is set.

ERRORS
The following error may be reported:

[EFAULT] The buffersamples contains an invalid address.

SEE ALSO
gprof (1), moncontrol (3)

BUGS
This routine should be namedprofile ().

Thesamples argument should really be a vector of typeunsigned short.

The format of the gmon.out file is undocumented.

NetBSD 3.0 June 4, 1993 1

PTRACE (2) NetBSD System Calls Manual PTRACE (2)

NAME
ptrace — process tracing and debugging

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/ptrace.h>

int
ptrace (int request , pid_t pid , void ∗ addr , int data);

DESCRIPTION
ptrace () provides tracing and debugging facilities. It allows one process (thetracing process) to control
another (thetracedprocess). Mostof the time, the traced process runs normally, but when it receives a signal
(seesigaction (2)) , it stops. The tracing process is expected to notice this viawait (2) or the delivery
of a SIGCHLD signal, examine the state of the stopped process, and cause it to terminate or continue as
appropriate.ptrace () is the mechanism by which all this happens.

Therequest argument specifies what operation is being performed; the meaning of the rest of the argu-
ments depends on the operation, but except for one special case noted below, all ptrace () calls are made by
the tracing process, and thepid argument specifies the process ID of the traced process.request can be:

PT_TRACE_ME
This request is the only one used by the traced process; it declares that the process expects to
be traced by its parent. All the other arguments are ignored. (If the parent process does not
expect to trace the child, it will probably be rather confused by the results; once the traced
process stops, it cannot be made to continue except viaptrace ().) Whena process has
used this request and callsexecve (2) or any of the routines built on it(such as
execv (3)) , it will stop before executing the first instruction of the new image. Also,any
setuid or setgid bits on the executable being executed will be ignored.

PT_READ_I, PT_READ_D
These requests read a singleint of data from the traced process’ address space.Tradition-
ally, ptrace () has allowed for machines with distinct address spaces for instruction and
data, which is why there are two requests: conceptually, PT_READ_I reads from the instruc-
tion space andPT_READ_Dreads from the data space. In the currentNetBSD implementa-
tion, these two requests are completely identical.Theaddr argument specifies the address
(in the traced process’ virtual address space) at which the read is to be done.This address
does not have to meet any alignment constraints. The value read is returned as the return
value fromptrace ().

PT_WRITE_I , PT_WRITE_D
These requests parallelPT_READ_I and PT_READ_D, except that they write rather than
read. Thedata argument supplies the value to be written.

PT_CONTINUE
The traced process continues execution. addr is an address specifying the place where
execution is to be resumed (a new value for the program counter), or(caddr_t)1 to indi-
cate that execution is to pick up where it left off. data provides a signal number to be
delivered to the traced process as it resumes execution, or 0 if no signal is to be sent.

NetBSD 3.0 March 12, 2007 1

PTRACE (2) NetBSD System Calls Manual PTRACE (2)

PT_KILL The traced process terminates, as ifPT_CONTINUEhad been used withSIGKILL given as
the signal to be delivered.

PT_ATTACH This request allows a process to gain control of an otherwise unrelated process and begin
tracing it. It does not need any cooperation from the to-be-traced process. In this case,pid
specifies the process ID of the to-be-traced process, and the other two arguments are ignored.
This request requires that the target process must have the same real UID as the tracing
process, and that it must not be executing a setuid or setgid executable. (If the tracing
process is running as root, these restrictions do not apply.) Thetracing process will see the
newly-traced process stop and may then control it as if it had been traced all along.

Three other restrictions apply to all tracing processes, even those running as root.First, no
process may trace a system process. Second, no process may trace the process running
init (8). Third, if a process has its root directory set withchroot (2), it may not trace
another process unless that process’s root directory is at or below the tracing process’s root.

PT_DETACH This request is like PT_CONTINUE, except that after it succeeds, the traced process is no
longer traced and continues execution normally.

PT_IO This request is a more general interface that can be used instead ofPT_READ_D,
PT_WRITE_D, PT_READ_I, and PT_WRITE_I . The I/O request is encoded in a
“struct ptrace_io_desc ” defined as:

struct ptrace_io_desc {
int piod_op;
void ∗ piod_offs;
void ∗ piod_addr;
size_t piod_len;

};

wherepiod_offs is the offset within the traced process where the I/O operation should
take place,piod_addr is the buffer in the tracing process, andpiod_len is the length of
the I/O request.Thepiod_op field specifies which type of I/O operation to perform.Pos-
sible values are:

PIOD_READ_D

PIOD_WRITE_D

PIOD_READ_I

PIOD_WRITE_I

See the description ofPT_READ_I for the difference between I and D spaces.A pointer to
the I/O descriptor is passed in theaddr argument toptrace (). Onreturn, thepiod_len
field in the I/O descriptor will be updated with the actual number of bytes transferred.If the
requested I/O could not be successfully performed,ptrace () will return−1 and seterrno.

PT_DUMPCORE
Makes the process specified in thepid pid generate a core dump.The addr argument
should contain the name of the core file to be generated and thedata argument should con-
tain the length of the core filename.This ptrace call currently does not stop the child
process so it can generate inconsistent data.

PT_LWPINFOReturns information about the specific thread from the process specified in thepid argu-
ment. Theaddr argument should contain a “struct ptrace_lwpinfo ” defined as:

NetBSD 3.0 March 12, 2007 2

PTRACE (2) NetBSD System Calls Manual PTRACE (2)

struct ptrace_lwpinfo {
lwpid_t pl_lwpid;
int pl_event;

};

wherepl_lwpid contains the thread for which to get info. Upon returnpl_event con-
tains the event that stopped the thread. Possible values are:

PL_EVENT_NONE

PL_EVENT_SIGNAL

Thedata argument should contain “sizeof(struct ptrace_lwpinfo) ”.

PT_SYSCALL Stops a process before and after executing each system call.

Additionally, the following requests exist but are not available on all machine architectures. The file
〈machine/ptrace.h 〉 lists which requests exist on a given machine.

PT_STEP Execution continues as in request PT_CONTINUE; however as soon as possible after execu-
tion of at least one instruction, execution stops again.

PT_GETREGSThis request reads the traced process’ machine registers into the “struct reg ” (defined in
〈machine/reg.h 〉) pointed to byaddr.

PT_SETREGSThis request is the converse ofPT_GETREGS; it loads the traced process’ machine registers
from the “struct reg ” (defined in〈machine/reg.h 〉) pointed to byaddr.

PT_GETFPREGS
This request reads the traced process’ floating-point registers into the “struct fpreg ”
(defined in〈machine/reg.h 〉) pointed to byaddr.

PT_SETFPREGS
This request is the converse ofPT_GETFPREGS; it loads the traced process’ floating-point
registers from the “struct fpreg ” (defined in 〈machine/reg.h 〉) pointed to by
addr.

PT_DUMPCORE
Cause the traced process to dump core.If the addr argument is notNULL it is taken to be
the pathname of the core file to be generated and thedata argument should contain the
length of the pathname. The pathname may contain% patterns that are expanded as
described insysctl (8). If thedata argument isNULL, the default core file path genera-
tion rules are followed.

ERRORS
Some requests can causeptrace () to return−1 as a non-error value; to disambiguate,errno can be set to 0
before the call and checked afterwards. Thepossible errors are:

[EAGAIN]
Process is currently exec’ing and cannot be traced.

[ESRCH]
No process having the specified process ID exists.

[EINVAL]
• A process attempted to usePT_ATTACHon itself.
• Therequest was not a legal request on this machine architecture.

NetBSD 3.0 March 12, 2007 3

PTRACE (2) NetBSD System Calls Manual PTRACE (2)

• The signal number (indata) to PT_CONTINUEwas neither 0 nor a legal signal number.
• PT_GETREGS, PT_SETREGS, PT_GETFPREGS, or PT_SETFPREGSwas attempted on a

process with no valid register set. (This is normally true only of system processes.)

[EBUSY]
• PT_ATTACHwas attempted on a process that was already being traced.
• A request attempted to manipulate a process that was being traced by some process other than the

one making the request.
• A request (other thanPT_ATTACH) specified a process that wasn’t stopped.

[EPERM]
• A request (other thanPT_ATTACH) attempted to manipulate a process that wasn’t being traced at

all.
• An attempt was made to usePT_ATTACHon a process in violation of the requirements listed

underPT_ATTACHabove.

SEE ALSO
sigaction (2), signal (7)

BUGS
On the SPARC, the PC is set to the provided PC value forPT_CONTINUEand similar calls, but the NPC is
set willy-nilly to 4 greater than the PC value. UsingPT_GETREGSandPT_SETREGSto modify the PC,
passing(caddr_t)1 to ptrace (), should be able to sidestep this.

NetBSD 3.0 March 12, 2007 4

QUOTACTL (2) NetBSD System Calls Manual QUOTACTL (2)

NAME
quotactl — manipulate filesystem quotas

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ufs/ufs/quota.h>

int
quotactl (const char ∗ path , int cmd , int id , void ∗ addr);

DESCRIPTION
Thequotactl () call enables, disables and manipulates filesystem quotas.A quota control command given
by cmd operates on the given filenamepath for the given userid. The address of an optional command
specific data structure,addr, may be given; its interpretation is discussed below with each command.

Currently quotas are supported only for the ‘‘ffs’ ’ and ‘‘lfs’ ’ fi lesystem. For both of them, a command is
composed of a primary command (see below) and a command type used to interpret theid. Types are sup-
ported for interpretation of user identifiers and group identifiers.The ‘‘ffs’ ’ and ‘‘lfs’ ’ specific commands
are:

Q_QUOTAONEnable disk quotas for the filesystem specified bypath. The command type specifies the
type of the quotas being enabled.Theaddr argument specifies a file from which to take the
quotas. Thequota file must exist; it is normally created with thequotacheck (8) program.
Theid argument is unused. Only the super-user may turn quotas on.

Q_QUOTAOFF
Disable disk quotas for the filesystem specified bypath. The command type specifies the
type of the quotas being disabled.Theaddr andid arguments are unused. Only the super-
user may turn quotas off.

Q_GETQUOTA
Get disk quota limits and current usage for the user or group (as determined by the command
type) with identifierid. addr is a pointer to astruct dqblk structure (defined in
〈ufs/ufs/quota.h 〉).

Q_SETQUOTA
Set disk quota limits for the user or group (as determined by the command type) with identi-
fier id. addr is a pointer to a struct dqblk structure (defined in
〈ufs/ufs/quota.h 〉). Theusage fields of thedqblk structure are ignored. This call is
restricted to the super-user.

Q_SETUSE Set disk usage limits for the user or group (as determined by the command type) with identi-
fier id. addr is a pointer to a struct dqblk structure (defined in
〈ufs/ufs/quota.h 〉). Only the usage fields are used. This call is restricted to the super-
user.

Q_SYNC Update the on-disk copy of quota usages. The command type specifies which type of quotas
are to be updated. Theid andaddr parameters are ignored.

RETURN VALUES
A successful call returns 0, otherwise the value −1 is returned and the global variableerrno indicates the rea-
son for the failure.

NetBSD 3.0 March 10, 1995 1

QUOTACTL (2) NetBSD System Calls Manual QUOTACTL (2)

ERRORS
A quotactl () call will fail if:

[EOPNOTSUPP] The kernel has not been compiled with theQUOTAoption.

[EUSERS] The quota table cannot be expanded.

[EINVAL] cmd or the command type is invalid.

[EACCES] In Q_QUOTAON, the quota file is not a plain file, or search permission is denied for a
component of a path prefix.

[ENOTDIR] A component of a path prefix was not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] A fi lename does not exist.

[ELOOP] Too many symbolic links were encountered in translating a pathname.

[EROFS] In Q_QUOTAON, the quota file resides on a read-only filesystem.

[EIO] An I/O error occurred while reading from or writing to a file containing quotas.

[EFAULT] path points outside the process’s allocated address space, or an invalid addr was
supplied; the associated structure could not be copied in or out of the kernel.

[EPERM] The call was privileged and the caller was not the super-user.

SEE ALSO
quota (1), fstab (5), edquota (8), quotacheck (8), quotaon (8), repquota (8)

HISTORY
Thequotactl () function call appeared in 4.3BSD−Reno.

BUGS
There should be some way to integrate this call with the resource limit interface provided bysetrlimit (2)
andgetrlimit (2).

NetBSD 3.0 March 10, 1995 2

RASCTL (2) NetBSD System Calls Manual RASCTL (2)

NAME
rasctl — restartable atomic sequences

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/ras.h>

int
rasctl (void ∗ addr , size_t len , int op);

DESCRIPTION
Restartable atomic sequences are code sequences which are guaranteed to execute without preemption.This
property is assured by the kernel by re-executing a preempted sequence from the start. This functionality
enables applications to build atomic sequences which, when executed to completion, will have executed
atomically. Restartable atomic sequences are intended to be used on systems that do not have hardware sup-
port for low-overhead atomic primitives.

The rasctl function manipulates a process’s set of restartable atomic sequences. If a restartable atomic
sequence is registered and the process is preempted within the rangeaddr andaddr+len, then the process
is resumed ataddr.

As the process execution can be rolled-back, the code in the sequence should have no side effects other than
a final store ataddr+len−1. Thekernel does not guarantee that the sequences are successfully restartable.
It assumes that the application knows what it is doing. Restartable atomic sequences should adhere to the
following guidelines:

• have a single entry point and a single exit point;
• not execute emulated instructions; and
• not invoke any functions or system calls.

Restartable atomic sequences are inherited from the parent by the child during thefork (2) operation.
Restartable atomic sequences for a process are removed duringexec (3).

The operations that can be applied to a restartable atomic sequence are specified by theop argument. Possi-
ble operations are:

RAS_INSTALL Install this sequence.
RAS_PURGE Remove the specified registered sequence for this process.
RAS_PURGE_ALL Remove all registered sequences for this process.

The RAS_PURGEandRAS_PURGE_ALLoperations should be considered to have undefined behaviour if
there are any other runnable threads in the address space which might be executing within the restartable
atomic sequence(s) at the time of the purge. Thecaller must be responsible for ensuring that there is some
form of coordination with other threads to prevent unexpected behaviour.

To preserve the atomicity of sequences, the kernel attempts to protect the sequences from alteration by the
ptrace (2) facility.

RETURN VALUES
Upon successful completion,rasctl () returns zero. Otherwise, −1 is returned anderrno is set to indicate
the error.

NetBSD 3.0 April 29, 2008 1

RASCTL (2) NetBSD System Calls Manual RASCTL (2)

ERRORS
Therasctl function will fail if:

[EINVAL] Invalid input was supplied, such as an invalid operation, an invalid address, or an
invalid length. A process may have a finite number of atomic sequences that is defined
at compile time.

[EOPNOTSUPP] Restartable atomic sequences are not supported by the kernel.

[ESRCH] Restartable atomic sequence not registered.

SEE ALSO
ptrace (2)

HISTORY
The rasctl functionality first appeared inNetBSD 2.0 based on a similar interface that appeared in Mach
2.5.

CAVEATS
Modern compilers reorder instruction sequences to optimize speed. The start address and size of aRASneed
to be protected against this. One level of protection is created by compiler dependent instructions, abstracted
from user level code via the following macros:

RAS_DECL(name) Declares the start and end labels used internally by the other macros to mark aRAS.
The name uniquely identifies theRAS.

RAS_START(name) Marks the start of the code. Each restart returns to the instruction following this
macro.

RAS_END(name) Marks the end of the restartable code.

RAS_ADDR(name) Returns the start address of aRAS and is used to create the first argument to
rasctl .

RAS_SIZE(name) Returns the size of aRASand is used as second argument torasctl .
Recent versions ofgcc (1) require the−fno-reorder-blocks flag to prevent blocks of code wrapped
with RAS_START/RAS_ENDbeing moved outside these labels.However, be aware that this may not always
be sufficient to prevent gcc (1) from generating non-restartable code within theRASdue to register clobbers.
It is, therefore, strongly recommended that restartable atomic sequences are coded in assembly. RASblocks
within assembly code can be specified by using the following macros:

RAS_START_ASM(name) Similar toRAS_STARTbut for use in assembly source code.

RAS_END_ASM(name) Similar toRAS_ENDbut for use in assembly source code.

RAS_START_ASM_HIDDEN(name)Similar to RAS_START_ASMexcept that the symbol will not be
placed in the dynamic symbol table.

RAS_END_ASM_HIDDEN(name) Similar toRAS_END_ASMexcept that the symbol will not be placed
in the dynamic symbol table.

NetBSD 3.0 April 29, 2008 2

READ (2) NetBSD System Calls Manual READ (2)

NAME
read , readv , pread , preadv — read input

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

ssize_t
read (int d , void ∗ buf , size_t nbytes);

ssize_t
pread (int d , void ∗ buf , size_t nbytes , off_t offset);

#include <sys/uio.h>

ssize_t
readv (int d , const struct iovec ∗ iov , int iovcnt);

ssize_t
preadv (int d , const struct iovec ∗ iov , int iovcnt , off_t offset);

DESCRIPTION
read () attempts to readnbytes of data from the object referenced by the descriptord into the buffer
pointed to bybuf. readv () performs the same action, but scatters the input data into theiovcnt buffers
specified by the members of theiov array: iov[0], iov[1], ..., iov[iovcnt − 1]. pread () andpreadv () per-
form the same functions, but read from the specified position in the file without modifying the file pointer.

For readv () andpreadv (), theiovec structure is defined as:

struct iovec {
void ∗ iov_base;
size_t iov_len;

};

Eachiovec entry specifies the base address and length of an area in memory where data should be placed.
readv () will always fill an area completely before proceeding to the next.

On objects capable of seeking, theread () starts at a position given by the file pointer associated withd (see
lseek (2)). Uponreturn fromread (), the file pointer is incremented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of the file pointer
associated with such an object is undefined.

Upon successful completion,read (), readv (), pread (), andpreadv () return the number of bytes actu-
ally read and placed in the buffer. The system guarantees to read the number of bytes requested if the
descriptor references a normal file that has that many bytes left before the end-of-file, but in no other case.

RETURN VALUES
If successful, the number of bytes actually read is returned.Upon reading end-of-file, zero is returned.Oth-
erwise, a −1 is returned and the global variableerrno is set to indicate the error.

ERRORS
read (), readv (), pread (), andpreadv () will succeed unless:

NetBSD 3.0 August 2, 2007 1

READ (2) NetBSD System Calls Manual READ (2)

[EBADF] d is not a valid file or socket descriptor open for reading.

[EFAULT] buf points outside the allocated address space.

[EIO] An I/O error occurred while reading from the file system.

[EINTR] A read from a slow device (i.e. one that might block for an arbitrary amount of time)
was interrupted by the delivery of a signal before any data arrived. See
sigaction (2) for more information on the interaction between signals and system
calls.

[EINVAL] The file pointer associated withd was neg ative.

[EINVAL] The total length of the I/O is more than can be expressed by the ssize_t return value.

[EAGAIN] The file was marked for non-blocking I/O, and no data were ready to be read.

In addition,readv () andpreadv () may return one of the following errors:

[EINVAL] iovcnt was less than or equal to 0, or greater than{IOV_MAX} .

[EINVAL] One of theiov_len values in theiov array was negative.

[EINVAL] The sum of theiov_len values in theiov array overflowed a 32-bit integer.

[EFAULT] Part of theiov points outside the process’s allocated address space.

Thepread () andpreadv () calls may also return the following errors:

[EINVAL] The specified file offset is invalid.

[ESPIPE] The file descriptor is associated with a pipe, socket, or FIFO.

SEE ALSO
dup (2), fcntl (2), open (2), pipe (2), poll (2), select (2), sigaction (2), socket (2),
socketpair (2)

STANDARDS
The read () function conforms toISO/IEC 9945-1:1990 (“POSIX.1”). The readv () andpread () functions
conform toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

HISTORY
The preadv () function call appeared inNetBSD 1.4. The pread () function call appeared inAT&T
System V.4 UNIX . The readv () function call appeared in 4.2BSD. The read () function call appeared in
Version 6AT&T UNIX .

CAVEATS
Error checks should explicitly test for −1. Code such as

while ((nr = read(fd, buf, sizeof(buf))) > 0)

is not maximally portable, as some platforms allow for nbytes to range betweenSSIZE_MAX and
SIZE_MAX− 2, in which case the return value of an error-freeread () may appear as a negative number dis-
tinct from −1. Proper loops should use

while ((nr = read(fd, buf, sizeof(buf))) != -1 && nr != 0)

NetBSD 3.0 August 2, 2007 2

READLINK (2) NetBSD System Calls Manual READLINK (2)

NAME
readlink — read value of a symbolic link

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

ssize_t
readlink (const char ∗ restrict path , char ∗ restrict buf , size_t bufsiz);

DESCRIPTION
readlink () places the contents of the symbolic linkpath in the buffer buf, which has sizebufsiz.
readlink () does not append aNULcharacter tobuf.

RETURN VALUES
The call returns the count of characters placed in the buffer if it succeeds, or a −1 if an error occurs, placing
the error code in the global variableerrno.

EXAMPLES
A typical use is illustrated in the following piece of code which reads the contents of a symbolic link named
/symbolic/link and stores them as null-terminated string:

#include <limits.h>
#include <unistd.h>

char buf[PATH_MAX];
ssize_t len;

if ((len = readlink("/symbolic/link", buf, sizeof(buf)-1)) == -1)
error handling;

buf[len] = ’\0’;

ERRORS
readlink () will fail if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EINVAL] The named file is not a symbolic link.

[EIO] An I/O error occurred while reading from the file system.

[EFAULT] buf extends outside the process’s allocated address space.

NetBSD 3.0 May 11, 2004 1

READLINK (2) NetBSD System Calls Manual READLINK (2)

SEE ALSO
lstat (2), stat (2), symlink (2), symlink (7)

STANDARDS
Thereadlink () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

HISTORY
The readlink () function appeared in 4.2BSD. The type returned was changed fromint to ssize_t in
NetBSD 2.1.

NetBSD 3.0 May 11, 2004 2

REBOOT (2) NetBSDSystem Calls Manual REBOOT (2)

NAME
reboot — reboot system or halt processor

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>
#include <sys/reboot.h>

int
reboot (int howto , char ∗ bootstr);

DESCRIPTION
reboot () reboots the system. Only the super-user may reboot a machine on demand.However, a reboot is
invoked automatically in the event of unrecoverable system failures.

howto is a mask of options; the system call interface allows the following options, defined in the include file
〈sys/reboot.h 〉, to be passed to the new kernel or the new bootstrap and init programs.

RB_AUTOBOOT 0x0000The default, causing the system to reboot in its usual fashion.
RB_ASKNAME 0x0001 Interpreted by the bootstrap program itself, causing it to prompt on the con-

sole as to what file should be booted.Normally, the system is booted from
the file “xx(0,0)netbsd”, wherexx is the default disk name, without prompting
for the file name.

RB_DFLTROOT 0x0020 Use the compiled in root device. Normally, the system uses the device from
which it was booted as the root device if possible. (The default behavior is
dependent on the ability of the bootstrap program to determine the drive from
which it was loaded, which is not possible on all systems.)

RB_DUMP 0x0100 Dump kernel memory before rebooting; seesavecore (8) for more informa-
tion.

RB_HALT 0x0008 the processor is simply halted; no reboot takes place. This option should be
used with caution.

RB_POWERDOWN 0x0808This option is always used in conjunction withRB_HALT, and if the system
hardware supports the function, the system will be powered off, otherwise it
has no effect.

RB_INITNAME 0x0010 An option allowing the specification of an init program (seeinit (8)) other
than /sbin/init to be run when the system reboots. This switch is not
currently available.

RB_KDB 0x0040 Load the symbol table and enable a built-in debugger in the system.This
option will have no useful function if the kernel is not configured for debug-
ging. Several other options have different meaning if combined with this
option, although their use may not be possible via thereboot () call. See
ddb (4) for more information.

RB_NOSYNC 0x0004 Normally, the disks are sync’d (seesync (8)) before the processor is halted or
rebooted. Thisoption may be useful if file system changes have been made
manually or if the processor is on fire.

RB_RDONLY 0x0080 Initially mount the root file system read-only. This is currently the default,
and this option has been deprecated.

RB_SINGLE 0x0002 Normally, the reboot procedure involves an automatic disk consistency check
and then multi-user operations.RB_SINGLEprevents this, booting the sys-
tem with a single-user shell on the console.RB_SINGLE is actually inter-
preted by theinit (8) program in the newly booted system.

NetBSD 3.0 August 5, 2006 1

REBOOT (2) NetBSDSystem Calls Manual REBOOT (2)

When no options are given (i.e., RB_AUTOBOOTis used), the system is
rebooted from file ‘‘netbsd’’ in the root file system of unit 0 of a disk chosen
in a processor specific way. An automatic consistency check of the disks is
normally performed (seefsck (8)).

RB_STRING 0x0400 bootstr is a string passed to the firmware on the machine, if possible, if
this option is set. Currently this is only implemented on the sparc and the
sun3 ports.

RB_USERCONF 0x1000 Initially invoke theuserconf (4) facility when the system starts up again, if
it has been compiled into the kernel that is loaded.

RETURN VALUES
If successful, this call never returns. Otherwise,a −1 is returned and an error is returned in the global vari-
ableerrno.

ERRORS
[EPERM] The caller is not the super-user.

SEE ALSO
ddb (4), crash (8), halt (8), init (8), reboot (8), savecore (8)

HISTORY
Thereboot () function call appeared in 4.0BSD.

TheRB_DFLTROOToption is nowobsolete.

NetBSD 3.0 August 5, 2006 2

RECV (2) NetBSD System Calls Manual RECV (2)

NAME
recv , recvfrom , recvmsg — receive a message from a socket

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

ssize_t
recv (int s , void ∗ buf , size_t len , int flags);

ssize_t
recvfrom (int s , void ∗ restrict buf , size_t len , int flags ,

struct sockaddr ∗ restrict from , socklen_t ∗ restrict fromlen);

ssize_t
recvmsg (int s , struct msghdr ∗ msg , int flags);

DESCRIPTION
recvfrom () andrecvmsg () are used to receive messages from a socket, and may be used to receive data
on a socket whether or not it is connection-oriented.

If from is non-nil, and the socket is not connection-oriented, the source address of the message is filled in.
fromlen is a value-result parameter, initialized to the size of the buffer associated withfrom, and modified
on return to indicate the actual size of the address stored there.

The recv () call is normally used only on aconnectedsocket (seeconnect (2)) and is identical to
recvfrom () with a nilfrom parameter. As it is redundant, it may not be supported in future releases.

All three routines return the length of the message on successful completion.If a message is too long to fit in
the supplied buffer, excess bytes may be discarded depending on the type of socket the message is received
from (seesocket (2)).

If no messages are available at the socket, the receive call waits for a message to arrive, unless the socket is
nonblocking (seefcntl (2)) in which case the value −1 is returned and the external variableerrno set to
EAGAIN. The receive calls normally return any data available, up to the requested amount, rather than wait-
ing for receipt of the full amount requested; this behavior is affected by the socket-level options
SO_RCVLOWATandSO_RCVTIMEOdescribed ingetsockopt (2).

Theselect (2) orpoll (2) call may be used to determine when more data arrive.

Theflags argument to a recv call is formed byor’ing one or more of the values:

MSG_OOB process out-of-band data
MSG_PEEK peek at incoming message
MSG_WAITALL wait for full request or error

TheMSG_OOBflag requests receipt of out-of-band data that would not be received in the normal data stream.
Some protocols place expedited data at the head of the normal data queue, and thus this flag cannot be used
with such protocols.TheMSG_PEEKflag causes the receive operation to return data from the beginning of
the receive queue without removing that data from the queue.Thus, a subsequent receive call will return the
same data.The MSG_WAITALLflag requests that the operation block until the full request is satisfied.
However, the call may still return less data than requested if a signal is caught, an error or disconnect occurs,
or the next data to be received is of a different type than that returned.

Therecvmsg () call uses amsghdr structure to minimize the number of directly supplied parameters.This
structure has the following form, as defined in〈sys/socket.h 〉:

NetBSD 3.0 April 23, 2006 1

RECV (2) NetBSD System Calls Manual RECV (2)

struct msghdr {
void ∗ msg_name; / ∗ optional address ∗ /
socklen_t msg_namelen; / ∗ size of address ∗ /
struct iovec ∗ msg_iov; / ∗ scatter/gather array ∗ /
int msg_iovlen; / ∗ # elements in msg_iov ∗ /
void ∗ msg_control; / ∗ ancillary data, see below ∗ /
socklen_t msg_controllen; / ∗ ancillary data buffer len ∗ /
int msg_flags; / ∗ flags on received message ∗ /

};

Heremsg_name andmsg_namelen specify the source address if the socket is unconnected;msg_name
may be given as a null pointer if no names are desired or required. If the socket is connected,msg_name
andmsg_namelen are ignored.msg_iov andmsg_iovlen describe scatter gather locations, as dis-
cussed inread (2). msg_control, which has lengthmsg_controllen, points to a buffer for other pro-
tocol control related messages or other miscellaneous ancillary data. The messages are of the form:

struct cmsghdr {
socklen_t cmsg_len; / ∗ data byte count, including hdr ∗ /
int cmsg_level; / ∗ originating protocol ∗ /
int cmsg_type; / ∗ protocol-specific type ∗ /

/ ∗ followed by
u_char cmsg_data[]; ∗ /

};
As an example, one could use this to learn of changes in the data-stream in XNS/SPP, or in ISO, to obtain
user-connection-request data by requesting a recvmsg with no data buffer provided immediately after an
accept () call.

Open file descriptors are now passed as ancillary data forAF_LOCALdomain sockets, withcmsg_level
set toSOL_SOCKETandcmsg_type set toSCM_RIGHTS.

The msg_flags field is set on return according to the message received. MSG_EORindicates end-of-
record; the data returned completed a record (generally used with sockets of typeSOCK_SEQPACKET).
MSG_TRUNCindicates that the trailing portion of a datagram was discarded because the datagram was larger
than the buffer supplied.MSG_CTRUNCindicates that some control data were discarded due to lack of space
in the buffer for ancillary data.MSG_OOBis returned to indicate that expedited or out-of-band data were
received.

RETURN VALUES
These calls return the number of bytes received, or −1 if an error occurred.

ERRORS
The calls fail if:

[EBADF] The arguments is an invalid descriptor.

[ENOTCONN] The socket is associated with a connection-oriented protocol and has not been con-
nected (seeconnect (2) andaccept (2)).

[ENOTSOCK] The arguments does not refer to a socket.

[EAGAIN] The socket is marked non-blocking, and the receive operation would block, or a
receive timeout had been set, and the timeout expired before data were received.

[EINTR] The receive was interrupted by delivery of a signal before any data were available.

NetBSD 3.0 April 23, 2006 2

RECV (2) NetBSD System Calls Manual RECV (2)

[EFAULT] The receive buffer pointer(s) point outside the process’s address space.

[EINVAL] The total length of the I/O is more than can be expressed by the ssize_t return value.

recvmsg () will also fail if:

[EMSGSIZE] Themsg_iovlen member of themsg structure is less than or equal to 0 or is greater
than{IOV_MAX} .

SEE ALSO
fcntl (2), getsockopt (2), poll (2), read (2), select (2), socket (2)

HISTORY
Therecv () function call appeared in 4.2BSD.

NetBSD 3.0 April 23, 2006 3

RENAME (2) NetBSD System Calls Manual RENAME (2)

NAME
rename — change the name of a file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

int
rename (const char ∗ from , const char ∗ to);

DESCRIPTION
rename () causes the link namedfrom to be renamed asto. If to exists, it is first removed. Bothfrom
andto must be of the same type (that is, both directories or both non-directories), and must reside on the
same file system.

rename () guarantees that an instance ofto will always exist, even if the system should crash in the middle
of the operation.

If the final component offrom is a symbolic link, the symbolic link is renamed, not the file or directory to
which it points.

If both from andto are pathnames of the same existing file in the file system’s name space,rename ()
returns successfully and performs no other action.

RETURN VALUES
A 0 value is returned if the operation succeeds, otherwiserename () returns −1 and the global variableerrno
indicates the reason for the failure.

ERRORS
rename () will fail and neither of the argument files will be affected if:

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] A component of thefrom path does not exist, or a path prefix ofto does not exist.

[EACCES] A component of either path prefix denies search permission, or the requested link
requires writing in a directory with a mode that denies write permission.

[EPERM] The directory containingfrom is marked sticky, and neither the containing directory
norfrom are owned by the effective user ID. Or theto file exists, the directory con-
tainingto is marked sticky, and neither the containing directory norto are owned by
the effective user ID.

[ELOOP] Too many symbolic links were encountered in translating either pathname.

[ENOTDIR] A component of either path prefix is not a directory, or from is a directory, but to is
not a directory.

[EISDIR] to is a directory, but from is not a directory.

[EXDEV] The link named byto and the file named byfrom are on different logical devices
(file systems).Note that this error code will not be returned if the implementation per-
mits cross-device links.

NetBSD 3.0 December 27, 2005 1

RENAME (2) NetBSD System Calls Manual RENAME (2)

[ENOSPC] The directory in which the entry for the new name is being placed cannot be extended
because there is no space left on the file system containing the directory.

[EDQUOT] The directory in which the entry for the new name is being placed cannot be extended
because the user’s quota of disk blocks on the file system containing the directory has
been exhausted.

[EIO] An I/O error occurred while making or updating a directory entry.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

[EINVAL] from is a parent directory ofto, or an attempt is made to rename ‘. ’ or ‘ .. ’.

[ENOTEMPTY] to is a directory and is not empty.

[EBUSY] from or to is the mount point for a mounted file system.

SEE ALSO
open (2), symlink (7)

STANDARDS
The rename () function deviates from the semantics defined inISO/IEC 9945-1:1990 (“POSIX.1”), which
specifies that if bothfrom andto link to the same existing file,rename () shall return successfully and per-
forms no further action, whereas this implementation will remove the file specified byfrom unless both
from andto are pathnames of the same file in the file system’s name space.

To retain conformance, a compatibility interface is provided by thePOSIX Compatibility Library (libposix,
−lposix) which is also be brought into scope if any of the _POSIX_SOURCE, _POSIX_C_SOURCEor
_XOPEN_SOURCEpreprocessor symbols are defined at compile-time: therename () function conforms to
ISO/IEC9945-1:1990 (“POSIX.1”) andX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

BUGS
The system can deadlock if a loop in the file system graph is present.This loop takes the form of an entry in
directorya, say a/foo , being a hard link to directoryb, and an entry in directoryb, say b/bar , being a
hard link to directorya. When such a loop exists and two separate processes attempt to performrename
a/foo b/bar and rename b/bar a/foo , respectively, the system may deadlock attempting to lock
both directories for modification. Hard links to directories should be replaced by symbolic links by the sys-
tem administrator.

NetBSD 3.0 December 27, 2005 2

REVOKE (2) NetBSD System Calls Manual REVOKE (2)

NAME
revoke — rev oke file access

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
revoke (const char ∗ path);

DESCRIPTION
The revoke function invalidates all current open file descriptors in the system for the file named bypath.
Subsequent operations on any such descriptors fail, with the exceptions that aread () from a character
device file which has been revoked returns a count of zero (end of file), and aclose () call will succeed.If
the file is a special file for a device which is open, the device close function is called as if all open references
to the file had been closed.

Access to a file may be revoked only by its owner or the super user.

revoke is normally used to prepare a terminal device for a new login session, preventing any access by a
previous user of the terminal.

RETURN VALUES
A 0 value indicates that the call succeeded.A −1 return value indicates an error occurred anderrno is set to
indicate the reason.

ERRORS
Access to the named file is revoked unless one of the following:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire path name exceeded
1024 characters.

[ENOENT] The named file or a component of the path name does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EFAULT] path points outside the process’s allocated address space.

[EPERM] The caller is neither the owner of the file nor the super user.

SEE ALSO
close (2), dup (2), fcntl (2), flock (2), fstat (2), read (2), write (2)

HISTORY
Therevoke function was introduced in 4.3BSD−Reno.

NetBSD 3.0 March 22, 1999 1

RMDIR (2) NetBSD System Calls Manual RMDIR (2)

NAME
rmdir — remove a directory file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
rmdir (const char ∗ path);

DESCRIPTION
rmdir () removes a directory file whose name is given by path. The directory must not have any entries
other than ‘. ’ and ‘.. ’.

RETURN VALUES
A 0 is returned if the remove succeeds; otherwise a −1 is returned and an error code is stored in the global
locationerrno.

ERRORS
The named file is removed unless:

[ENOTDIR] A component of the path is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named directory does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[ENOTEMPTY] The named directory contains files other than ‘. ’ and ‘.. ’ in i t.

[EACCES] Search permission is denied for a component of the path prefix, or write permission is
denied on the directory containing the link to be removed.

[EPERM] The directory containing the directory to be removed is marked sticky, and neither the
containing directory nor the directory to be removed are owned by the effective user
ID.

[EBUSY] The directory to be removed is the mount point for a mounted file system.

[EIO] An I/O error occurred while deleting the directory entry or deallocating the inode.

[EROFS] The directory entry to be removed resides on a read-only file system.

[EFAULT] path points outside the process’s allocated address space.

SEE ALSO
mkdir (2), unlink (2)

STANDARDS
Thermdir () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 1

RMDIR (2) NetBSD System Calls Manual RMDIR (2)

HISTORY
Thermdir () function call appeared in 4.2BSD.

NetBSD 3.0 June 4, 1993 2

SA_ENABLE (2) NetBSD System Calls Manual SA_ENABLE (2)

NAME
sa_enable — enable scheduler activation

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sa.h>

int
sa_enable ();

DESCRIPTION
sa_enable () is used to enable scheduler activation.

An upcall handler and upcall stacks should be registered withsa_register () andsa_stacks () before-
hand.

RETURN VALUES
On success,sa_enable () will not return to userland in the normal way. It returns into the upcall hander
with anSA_UPCALL_NEWPROCupcall. Otherwise,a value of −1 is returned anderrno is set to indicate the
error.

SEE ALSO
sa_register (2), sa_stacks (2), pthread (3)

NetBSD 3.0 March 14, 2004 1

SA_REGISTER (2) NetBSD System Calls Manual SA_REGISTER (2)

NAME
sa_register — register a scheduler activation upcall handler

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sa.h>

int
sa_register (sa_upcall_t new , sa_upcall_t ∗ old , int flags ,

ssize_t stackinfo_offset);

DESCRIPTION
sa_register is used to prepare scheduler activation. It registers the upcall handler specified bynew. If
old isn’t NULL, the previous handler will be returned to the location pointed by it.If
SA_FLAG_STACKINFOis specified inflags, stackinfo_offset is used to locate per upcall stack
memory areas shared between userland and kernel. stackinfo_offset is a byte offset from the corre-
sponding upcall stack.

RETURN VALUES
sa_register () returns zero on success. Otherwise, a value of −1 is returned anderrno is set to indicate
the error.

SEE ALSO
pthread (3)

NetBSD 3.0 March 14, 2004 1

SA_CONCURRENCY (2) NetBSD System Calls Manual SA_CONCURRENCY (2)

NAME
sa_setconcurrency — increase the number of virtual processors

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sa.h>

int
sa_setconcurrency (int concurrency);

DESCRIPTION
sa_setconcurrency () is used to increase the number of scheduler activation virtual processors used by
the process.sa_setconcurrency () increases the number of virtual processors, i.e., execution concur-
rency, up to concurrency. Howev er, sa_setconcurrency () won’t try to allocate more virtual pro-
cessors than there are physical processors on the system.

Scheduler activation should be enabled bysa_enable () beforehand.

RETURN VALUES
On success,sa_setconcurrency () returns the number of newly added virtual processors. Otherwise, a
value of −1 is returned anderrno is set to indicate the error.

SEE ALSO
pthread (3)

NetBSD 3.0 September 6, 2005 1

SA_STACKS (2) NetBSD System Calls Manual SA_STACKS (2)

NAME
sa_stacks — register scheduler activation upcall stacks

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sa.h>

int
sa_stacks (int num , stack_t ∗ stacks);

DESCRIPTION
sa_stacks () is used to register scheduler activation upcall stacks.stacks is an array ofnum of
stack_t.

An upcall handler should be registered bysa_register () beforehand.

RETURN VALUES
On success,sa_stacks () returns the number of stacks registered. Otherwise,a value of −1 is returned and
errno is set to indicate the error.

SEE ALSO
sa_register (2), pthread (3)

NetBSD 3.0 December 12, 2004 1

SA_YIELD (2) NetBSD System Calls Manual SA_YIELD (2)

NAME
sa_yield — idle a virtual processor

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sa.h>

int
sa_yield ();

DESCRIPTION
sa_yield () is used to idle a virtual processor on which the calling thread is running.It’s typically used
when the process’s userland scheduler has no userland thread to run.

Scheduler activation should be enabled bysa_enable () beforehand.

RETURN VALUES
On success,sa_yield () will not return to userland in the normal way. It returns into an upcall hander with
an upcall. Otherwise, a value of −1 is returned anderrno is set to indicate the error.

SEE ALSO
sa_enable (2), pthread (3)

NetBSD 3.0 May 9, 2004 1

SELECT (2) NetBSD System Calls Manual SELECT (2)

NAME
select , pselect — synchronous I/O multiplexing

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/select.h>

int
select (int nfds , fd_set ∗ restrict readfds , fd_set ∗ restrict writefds ,

fd_set ∗ restrict exceptfds , struct timeval ∗ restrict timeout);

int
pselect (int nfds , fd_set ∗ restrict readfds , fd_set ∗ restrict writefds ,

fd_set ∗ restrict exceptfds , const struct timespec ∗ restrict timeout ,
const sigset_t ∗ restrict sigmask);

FD_SET(int fd , fd_set ∗ fdset);

FD_CLR(int fd , fd_set ∗ fdset);

FD_ISSET(int fd , fd_set ∗ fdset);

FD_ZERO(fd_set ∗ fdset);

DESCRIPTION
select () and pselect () examine the I/O descriptor sets whose addresses are passed inreadfds,
writefds, andexceptfds to see if some of their descriptors are ready for reading, are ready for writing,
or have an exceptional condition pending, respectively. The firstnfds descriptors are checked in each set;
i.e., the descriptors from 0 throughnfds−1 in the descriptor sets are examined. Thismeans thatnfds must
be set to the highest file descriptor of the three sets, plus one.On return,select () andpselect () replace
the given descriptor sets with subsets consisting of those descriptors that are ready for the requested opera-
tion. select () andpselect () return the total number of ready descriptors in all the sets.

The descriptor sets are stored as bit fields in arrays of integers. Thefollowing macros are provided for
manipulating such descriptor sets:FD_ZERO(fdset) initializes a descriptor set pointed to byfdset to the
null set. FD_SET(fd , fdset) includes a particular descriptorfd in fdset. FD_CLR(fd , fdset)
removes fd from fdset. FD_ISSET(fd , fdset) is non-zero iffd is a member offdset, zero other-
wise. Thebehavior of these macros is undefined if a descriptor value is less than zero or greater than or
equal toFD_SETSIZE, which is normally at least equal to the maximum number of descriptors supported
by the system.

If timeout is a non-null pointer, it specifies a maximum interval to wait for the selection to complete.If
timeout is a null pointer, the select blocks indefinitely. To affect a poll, thetimeout argument should be
non-null, pointing to a zero-valued timeval or timespec structure, as appropriate.timeout is not changed
by select (), and may be reused on subsequent calls; however, it is good style to re-initialize it before each
invocation ofselect ().

If sigmask is a non-null pointer, then thepselect () function shall replace the signal mask of the caller
by the set of signals pointed to bysigmask before examining the descriptors, and shall restore the signal
mask of the calling thread before returning.

Any of readfds, writefds, andexceptfds may be given as null pointers if no descriptors are of inter-
est.

NetBSD 3.0 March 5, 2005 1

SELECT (2) NetBSD System Calls Manual SELECT (2)

RETURN VALUES
select () returns the number of ready descriptors that are contained in the descriptor sets, or −1 if an error
occurred. Ifthe time limit expires,select () returns 0. If select () returns with an error, including one
due to an interrupted call, the descriptor sets will be unmodified.

EXAMPLES
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <err.h>
#include <errno.h>
#include <sysexits.h>
#include <sys/types.h>
#include <sys/time.h>

int
main(argc, argv)

int argc;
char∗∗ argv;

{
fd_set read_set;
struct timeval timeout;
int ret, fd, i;

/∗ file descriptor 1 is stdout∗ /
fd = 1;

/∗ Wait for ten seconds.∗ /
timeout.tv_sec = 10;
timeout.tv_usec = 0;

/∗ Initialize the read set to null∗ /
FD_ZERO(&read_set);

/∗ Add file descriptor 1 to read_set∗ /
FD_SET(fd, &read_set);

/∗
∗ Check if data is ready to be readen on
∗ file descriptor 1, give up after 10 seconds.
∗ /
ret = select(fd + 1, &read_set, NULL, NULL, &timeout);

/∗
∗ Returned value is the number of file
∗ descriptors ready for I/O, or -1 on error.
∗ /
switch (ret) {
case −1:

err(EX_OSERR, "select() failed");
break;

NetBSD 3.0 March 5, 2005 2

SELECT (2) NetBSD System Calls Manual SELECT (2)

case 0:
printf("Timeout, no data received.\n");
break;

default:
printf("Data received on %d file desciptor(s)\n", ret);

/∗
∗ select(2) hands back a file descriptor set where
∗ only descriptors ready for I/O are set. These can
∗ be tested using FD_ISSET
∗ /
for (i = 0; i <= fd; i++) {

if (FD_ISSET(i, &read_set)) {
printf("Data on file descriptor %d\n", i);
/∗ Remove the file descriptor from the set∗ /
FD_CLR(fd, &read_set);

}
}
break;

}

return 0;
}

ERRORS
An error return fromselect () indicates:

[EBADF] One of the descriptor sets specified an invalid descriptor.

[EFAULT] One or more ofreadfds, writefds, or exceptfds points outside the process’s
allocated address space.

[EINTR] A signal was delivered before the time limit expired and before any of the selected
ev ents occurred.

[EINVAL] The specified time limit is invalid. Oneof its components is negative or too large.

SEE ALSO
accept (2), connect (2), gettimeofday (2), poll (2), read (2), recv (2), send (2), write (2),
getdtablesize (3)

HISTORY
Theselect () function call appeared in 4.2BSD.

BUGS
Although the provision ofgetdtablesize (3) was intended to allow user programs to be written indepen-
dent of the kernel limit on the number of open files, the dimension of a sufficiently large bit field for select
remains a problem. The default bit size offd_set is based on the symbolFD_SETSIZE (currently 256),
but that is somewhat smaller than the current kernel limit to the number of open files.However, in order to
accommodate programs which might potentially use a larger number of open files with select, it is possible
to increase this size within a program by providing a larger definition ofFD_SETSIZE before the inclusion
of 〈sys/types.h 〉. The kernel will cope, and the userland libraries provided with the system are also
ready for large numbers of file descriptors.

NetBSD 3.0 March 5, 2005 3

SELECT (2) NetBSD System Calls Manual SELECT (2)

Note: rpc (3) library usesfd_set with the default FD_SETSIZE as part of its ABI. Therefore, programs
that userpc (3) routines cannot changeFD_SETSIZE.

Alternatively, to be really safe, it is possible to allocatefd_set bit-arrays dynamically. The idea is to per-
mit a program to work properly even if it i s execve (2)’d with 4000 file descriptors pre-allocated. The fol-
lowing illustrates the technique which is used by userland libraries:

fd_set ∗ fdsr;
int max = fd;

fdsr = (fd_set ∗)calloc(howmany(max+1, NFDBITS),
sizeof(fd_mask));

if (fdsr == NULL) {
...
return (-1);

}
FD_SET(fd, fdsr);
n = s elect(max+1, fdsr, NULL, NULL, &tv);
...
free(fdsr);

Alternatively, it is possible to use thepoll (2) interface. poll (2) is more efficient when the size of
select ()’s fd_set bit-arrays are very large, and for fixed numbers of file descriptors one need not size
and dynamically allocate a memory object.

select () should probably have been designed to return the time remaining from the original timeout, if
any, by modifying the time value in place.Even though some systems stupidly act in this different way, it is
unlikely this semantic will ever be commonly implemented, as the change causes massive source code com-
patibility problems. Furthermore, recent new standards have dictated the current behaviour. In general, due
to the existence of those non-conforming systems, it is unwise to assume that the timeout value will be
unmodified by theselect () call, and the caller should reinitialize it on each invocation. Calculatingthe
delta is easily done by callinggettimeofday (2) before and after the call toselect (), and using
timersub () (as described ingetitimer (2)).

Internally to the kernel,select () works poorly if multiple processes wait on the same file descriptor.

NetBSD 3.0 March 5, 2005 4

SEMCTL (2) NetBSD System Calls Manual SEMCTL (2)

NAME
semctl — semaphore control operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/sem.h>

int
semctl (int semid , int semnum , int cmd , ...);

DESCRIPTION
Thesemctl () system call provides a number of control operations on the semaphore specified bysemnum
andsemid. The operation to be performed is specified incmd (see below). Thefourth argument is optional
and depends upon the operation requested. If required, it is a union of the following fields:

int val; / ∗ value for SETVAL ∗ /
struct semid_ds ∗ buf; / ∗ buffer for IPC_{STAT,SET} ∗ /
u_short ∗ array; / ∗ array for GETALL & SETALL ∗ /

The semid_dsstructure used in theIPC_SET andIPC_STAT commands is defined in〈sys/sem.h 〉 and
contains the following members:

struct ipc_perm sem_perm; / ∗ operation permissions ∗ /
unsigned short sem_nsems; / ∗ number of sems in set ∗ /
time_t sem_otime; / ∗ last operation time ∗ /
time_t sem_ctime; / ∗ last change time ∗ /

The ipc_perm structure used inside thesemid_dsstructure is defined in〈sys/ipc.h 〉 and contains the fol-
lowing members:

uid_t cuid; / ∗ creator user id ∗ /
gid_t cgid; / ∗ creator group id ∗ /
uid_t uid; / ∗ user id ∗ /
gid_t gid; / ∗ group id ∗ /
mode_t mode; / ∗ permission (lower 9 bits) ∗ /

semctl () provides the following operations:

GETVAL Return the value of the semaphore.

SETVAL Set the value of the semaphore toarg.val, wherearg is the fourth argument tosemctl ().

GETPID Return the pid of the last process that did an operation on this semaphore.

GETNCNT Return the number of processes waiting to acquire the semaphore.

GETZCNT Return the number of processes waiting for the value of the semaphore to reach 0.

GETALL Return the values of all the semaphores associated withsemid.

SETALL Set the values of all the semaphores that are associated with the semaphore identifiersemid
to the corresponding values inarg.array, wherearg is the fourth argument tosemctl ().

IPC_STAT Gather information about a semaphore and place the information in the structure pointed to by
arg.buf, wherearg is the fourth argument tosemctl ().

NetBSD 3.0 August 25, 1999 1

SEMCTL (2) NetBSD System Calls Manual SEMCTL (2)

IPC_SET Set the value of thesem_perm.uid, sem_perm.gidandsem_perm.modefields in the structure
associated with the semaphore. The values are taken from the corresponding fields in the
structure pointed to byarg.buf, therearg is the fourth argument tosemctl (). Thisoper-
ation can only be executed by the super-user, or a process that has an effective user id equal to
either sem_perm.cuidor sem_perm.uidin the data structure associated with the message
queue.

IPC_RMID Remove the semaphores associated withsemid from the system and destroy the data struc-
tures associated with it.Only the super-user or a process with an effective uid equal to the
sem_perm.cuidor sem_perm.uidvalues in the data structure associated with the semaphore
can do this.

The permission to read or change a message queue (seesemop(2)) is determined by thesem_perm.mode
field in the same way as is done with files (seechmod(2)), but the effective uid can match either the
sem_perm.cuidfield or thesem_perm.uidfield, and the effective gid can match eithersem_perm.cgidor
sem_perm.gid.

RETURN VALUES
For the GETVAL, GETPID, GETNCNT, and GETZCNToperations,semctl () returns one of the values
described above if successful. Allother operations will make semctl () return 0 if no errors occur. Other-
wise −1 is returned anderrnoset to reflect the error.

ERRORS
semctl () will fail if:

[EPERM] cmd is equal toIPC_SET or IPC_RMID and the caller is not the super-user, nor does
the effective uid match either thesem_perm.uidor sem_perm.cuidfields of the data
structure associated with the message queue.

[EACCES] The caller has no operation permission for this semaphore.

[EINVAL] semid is not a valid message semaphore identifier.

cmdis not a valid command.

[EFAULT] arg.buf or arg.array specifies an invalid address.

[ERANGE] cmd is equal toSETVALor SETALL and the value to be set is greater than the system
semaphore maximum value.

SEE ALSO
semget (2), semop(2)

STANDARDS
Thesemctl system call conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Semaphores appeared in the first release ofAT&T System VUNIX .

NetBSD 3.0 August 25, 1999 2

SEMGET (2) NetBSD System Calls Manual SEMGET (2)

NAME
semget — get set of semaphores

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/sem.h>

int
semget (key_t key , int nsems , int semflg);

DESCRIPTION
Thesemget () system call returns the semaphore identifier associated withkey.

A new set containingnsems semaphores is created if eitherkey is equal toIPC_PRIVATE , or key does
not have a semaphore set associated with it and theIPC_CREAT bit is set insemflg. If both the
IPC_CREATbit and theIPC_EXCL bit are set insemflg, andkey has a semaphore set associated with it
already, the operation will fail.

If a new set of semaphores is created, the data structure associated with it (thesemid_dsstructure, see
semctl (2)) is initialized as follows:

• sem_perm.cuidandsem_perm.uidare set to the effective uid of the calling process.

• sem_perm.gidandsem_perm.cgidare set to the effective gid of the calling process.

• sem_perm.modeis set to the lower 9 bits ofsemflg.

• sem_nsemsis set to the value ofnsems.

• sem_ctimeis set to the current time.

• sem_otimeis set to 0.

RETURN VALUES
semget () returns a non-negative semaphore identifier if successful. Otherwise, −1 is returned anderrno is
set to reflect the error.

ERRORS
[EACCES] The caller has no permission to access a semaphore set already associated withkey.

[EEXIST] Both IPC_CREATandIPC_EXCL are set insemflg, and a semaphore set is already
associated withkey.

[EINVAL] nsemsis less than 0 or greater than the system limit for the number in a semaphore set.

A semaphore set associated withkey exists, but has fewer semaphores than the num-
ber specified innsems.

[ENOSPC] A new set of semaphores could not be created because the system limit for the number
of semaphores or the number of semaphore sets has been reached.

[ENOENT] IPC_CREAT is not set insemflg and no semaphore set associated withkey was
found.

NetBSD 3.0 May 13, 2004 1

SEMGET (2) NetBSD System Calls Manual SEMGET (2)

SEE ALSO
ipcs (1), semctl (2), semop(2), ftok (3)

STANDARDS
Thesemget system call conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Semaphores appeared in the first release ofAT&T System VUNIX .

NetBSD 3.0 May 13, 2004 2

SEMOP (2) NetBSD System Calls Manual SEMOP (2)

NAME
semop — semaphore operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/sem.h>

int
semop(int semid , struct sembuf ∗ sops , size_t nsops);

DESCRIPTION
semop() provides a number of atomic operations on a set of semaphores.The semaphore set is specified by
semid, sops is an array of semaphore operations, andnsops is the number of operations in this array.
Thesembufstructures in the array contain the following members:

unsigned short sem_num; / ∗ semaphore # ∗ /
short sem_op; / ∗ semaphore operation ∗ /
short sem_flg; / ∗ operation flags ∗ /

Each operation (specified insem_op) is applied to semaphore numbersem_numin the set of semaphores
specified bysemid. The value ofsem_opdetermines the action taken in the following way:

• sem_opis less than 0. The current process is blocked until the value of the semaphore is greater than or
equal to the absolute value ofsem_op. The absolute value ofsem_opis then subtracted from the value of
the semaphore, and the calling process continues.Negative values ofsem_opare thus used to enter criti-
cal regions.

• sem_opis greater than 0. Its value is added to the value of the specified semaphore. This is used to leave
critical regions.

• sem_opis equal to 0. The calling process is blocked until the value of the specified semaphore reaches 0.

The behaviour of each operation is influenced by the flags set insem_flgin the following way:

IPC_NOWAIT In the case where the calling process would normally block, waiting for a semaphore to
reach a certain value,IPC_NOWAITmakes the call return immediately, returning a value
of −1 and settingerrno to EAGAIN.

SEM_UNDO Keep track of the changes that this call makes to the value of a semaphore, so that they can
be undone when the calling process terminates. This is useful to prevent other processes
waiting on a semaphore to block forever, should the process that has the semaphore locked
terminate in a critical section.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, −1 is returned and the global variableerrno
is set to indicate the error.

ERRORS
semop() will fail if:

[EINVAL] There is no semaphore associated withsemid.

[EIDRM] The semaphore set was removed while the process was waiting for one of its sema-
phores to reach a certain value.

NetBSD 3.0 November 3, 2005 1

SEMOP (2) NetBSD System Calls Manual SEMOP (2)

[EACCES] The calling process has no permission to access the specified semaphore set.

[E2BIG] The value ofnsops is too big. The maximum is defined asMAX_SOPSin
〈sys/sem.h 〉.

[EFBIG] sem_numin one of the sem_buf structures is less than 0, or greater than the actual
number of semaphores in the set specified bysemid.

[ENOSPC] SEM_UNDOwas requested, and there is not enough space left in the kernel to store the
undo information.

[EAGAIN] The requested operation can not immediately be performed, andIPC_NOWAIT was
set insem_flg.

[EFAULT] sops points to an illegal address.

SEE ALSO
semctl (2), semget (2)

STANDARDS
Thesemop system call conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Semaphores appeared in the first release ofAT&T System VUNIX .

NetBSD 3.0 November 3, 2005 2

SEND (2) NetBSD System Calls Manual SEND (2)

NAME
send , sendto , sendmsg — send a message from a socket

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

ssize_t
send (int s , const void ∗ msg , size_t len , int flags);

ssize_t
sendto (int s , const void ∗ msg , size_t len , int flags ,

const struct sockaddr ∗ to , socklen_t tolen);

ssize_t
sendmsg (int s , const struct msghdr ∗ msg , int flags);

DESCRIPTION
send (), sendto (), andsendmsg () are used to transmit a message to another socket. send () may be used
only when the socket is in aconnectedstate, whilesendto () andsendmsg () may be used at any time.

The address of the target is given by to with tolen specifying its size. The length of the message is given
by len. If the message is too long to pass atomically through the underlying protocol, the errorEMSGSIZE
is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send (). Locally detected errors are indicated by a return
value of −1.

If no messages space is available at the socket to hold the message to be transmitted, thensend () normally
blocks, unless the socket has been placed in non-blocking I/O mode.Theselect (2) or poll (2) call may
be used to determine when it is possible to send more data.

Theflags parameter may include one or more of the following:

#define MSG_OOB 0x0001 / ∗ process out-of-band data ∗ /
#define MSG_PEEK 0x0002 / ∗ peek at incoming message ∗ /
#define MSG_DONTROUTE 0x0004 / ∗ bypass routing, use direct interface ∗ /
#define MSG_EOR 0x0008 / ∗ data completes record ∗ /
#define MSG_NOSIGNAL 0x0400 / ∗ do not generate SIGPIPE on EOF ∗ /

The flag MSG_OOBis used to send “out-of-band” data on sockets that support this notion (e.g.
SOCK_STREAM); the underlying protocol must also support “out-of-band” data.MSG_EORis used to indi-
cate a record mark for protocols which support the concept.MSG_DONTROUTEis usually used only by
diagnostic or routing programs.

Seerecv (2) for a description of themsghdr structure. MSG_NOSIGNALis used to prevent SIGPIPE
generation when writing a socket that may be closed.

RETURN VALUES
The call returns the number of characters sent, or −1 if an error occurred.

ERRORS
send (), sendto (), andsendmsg () fail if:

NetBSD 3.0 May 9, 2008 1

SEND (2) NetBSD System Calls Manual SEND (2)

[EBADF] An invalid descriptor was specified.

[ENOTSOCK] The arguments is not a socket.

[EFAULT] An invalid user space address was specified for a parameter.

[EMSGSIZE] The socket requires that message be sent atomically, and the size of the message to be
sent made this impossible.

[EPIPE] In a connected socket the connection has been broken.

[EDSTADDRREQ] In a non-connected socket a destination address has not been specified.

[EAGAIN|EWOULDBLOCK]
The socket is marked non-blocking and the requested operation would block.

[ENOBUFS] The system was unable to allocate an internal buffer. The operation may succeed
when buffers become available.

[ENOBUFS] The output queue for a network interface was full.This generally indicates that the
interface has stopped sending, but may be caused by transient congestion.

[EACCES] The SO_BROADCAST option is not set on the socket, and a broadcast address was
given as the destination.

[EHOSTUNREACH] The destination for the message is unreachable.

[EHOSTDOWN] The destination is a host on the local subnet and does not respond toarp (4).

[EINVAL] The total length of the I/O is more than can be expressed by the ssize_t return value.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.

sendto () will also fail if:

[EISCONN] A destination address was specified and the socket is already connected.

sendmsg () will also fail if:

[EMSGSIZE] Themsg_iovlen member of themsg structure is less than or equal to 0 or is greater
than{IOV_MAX} .

SEE ALSO
fcntl (2), getsockopt (2), recv (2), select (2), socket (2), write (2)

HISTORY
Thesend () function call appeared in 4.2BSD.

NetBSD 3.0 May 9, 2008 2

SETGROUPS (2) NetBSD System Calls Manual SETGROUPS (2)

NAME
setgroups — set group access list

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/param.h>
#include <unistd.h>

int
setgroups (int ngroups , const gid_t ∗ gidset);

DESCRIPTION
setgroups () sets the group access list of the current user process according to the arraygidset. The
parameter ngroups indicates the number of entries in the array and must be no more than
{NGROUPS_MAX}.

Only the super-user may set new groups.

This system call affects only secondary groups.

RETURN VALUES
A 0 value is returned on success, −1 on error, with an error code stored inerrno.

ERRORS
Thesetgroups () call will fail if:

[EINVAL] The value ofngroups is greater than{NGROUPS_MAX}.

[EPERM] The caller is not the super-user.

[EFAULT] The address specified forgidset is outside the process address space.

SEE ALSO
getgroups (2), setegid (2), setgid (2), setregid (2), initgroups (3)

HISTORY
Thesetgroups () function call appeared in 4.2BSD.

NetBSD 3.0 October 7, 2006 1

SETPGID (2) NetBSD System Calls Manual SETPGID (2)

NAME
setpgid , setpgrp — set process group

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
setpgid (pid_t pid , pid_t pgrp);

int
setpgrp (pid_t pid , pid_t pgrp);

DESCRIPTION
setpgid () sets the process group of the specified processpid to the specifiedpgrp. If pid is zero, then
the call applies to the current process.If pgrp is zero, then the process id of the process specified bypid is
used instead.

If the invoker is not the super-user, then the affected process must have the same effective user-id as the
invoker or be a descendant of the invoking process.

RETURN VALUES
setpgid () returns 0 when the operation was successful. If the request failed, −1 is returned and the global
variableerrno indicates the reason.

ERRORS
setpgid () will fail and the process group will not be altered if:

[EACCES] The value of thepid argument matches the process ID of a child process of the call-
ing process, and the child process has successfully executed one of the exec functions.

[EINVAL] The value of thepgrp argument is less than zero.

[EPERM] The effective user ID of the requested process is different from that of the caller and
the process is not a descendant of the calling process.

[ESRCH] The value of thepid argument does not match the process ID of the calling process or
of a child process of the calling process.

SEE ALSO
getpgrp (2)

STANDARDS
Thesetpgid () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

COMPATIBILITY
setpgrp () is identical tosetpgid (), and is retained for calling convention compatibility with historical
versions ofBSD.

NetBSD 3.0 December 18, 2003 1

SETREGID (2) NetBSD System Calls Manual SETREGID (2)

NAME
setregid — set real and effective group ID’s

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
setregid (gid_t rgid , gid_t egid);

DESCRIPTION
This interface is made obsolete by the saved ID f unctionality in setgid (2) and setegid (2).

The real and effective group ID’s of the current process are set according to the arguments. Ifthe real group
ID is changed, the saved group ID is changed to the new value of the effective group ID.

If rgid or egid is −1, the current gid is filled in by the system.Unprivileged users may change the real
group ID to the effective group ID, and may change the effective group ID to the real group ID or the saved
group ID; only the super-user may make other changes.

Thesetregid () function has been used to swap the real and effective group IDs in set-group-ID programs
to temporarily relinquish the set-group-ID value. Thispurpose is now better served by the use of the
setegid () function (seesetgid (2)).

When setting the real and effective group IDs to the same value, this function is equivalent to thesetgid ()
function. Whensetting only the effective group ID, this function is equivalent to thesetegid () function.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
[EPERM] The current process is not the super-user and a change other than changing the effec-

tive group-id to the real group-id was specified.

SEE ALSO
getgid (2), setegid (2), setgid (2), setuid (2)

HISTORY
Thesetregid () function call appeared in 4.2BSD. An incompatible version was implemented in 4.4BSD.
It was reimplemented inNetBSD 1.2 in a way compatible with 4.3BSD, SunOS and Linux, but should not be
used in new code.

NetBSD 3.0 January 5, 2001 1

SETREUID (2) NetBSD System Calls Manual SETREUID (2)

NAME
setreuid — set real and effective user ID’s

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
setreuid (uid_t ruid , uid_t euid);

DESCRIPTION
This interface is made obsolete by the saved ID f unctionality in setuid (2) and seteuid (2).

The real and effective user ID’s of the current process are set according to the arguments. Ifthe real user ID
is changed, the saved user ID is changed to the new value of the effective user ID.

If ruid or euid is −1, the current uid is filled in by the system.Unprivileged users may change the real
user ID to the effective user ID, and may change the effective user ID to the real user ID or the saved user ID;
only the super-user may make other changes.

Thesetreuid () function has been used to swap the real and effective user IDs in set-user-ID programs to
temporarily relinquish the set-user-ID value. Thispurpose is now better served by the use of theseteuid ()
function (seesetuid (2)).

When setting the real and effective user IDs to the same value, this function is equivalent to thesetuid ()
function. Whensetting only the effective user ID, this function is equivalent to theseteuid () function.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
[EPERM] The current process is not the super-user and a change other than changing the effec-

tive user-id to the real user-id was specified.

SEE ALSO
getuid (2), seteuid (2), setgid (2), setuid (2)

HISTORY
Thesetreuid () function call appeared in 4.2BSD. An incompatible version was implemented in 4.4BSD.
It was reimplemented inNetBSD 1.2 in a way compatible with 4.3BSD, SunOS and Linux, but should not be
used in new code.

NetBSD 3.0 January 5, 2001 1

SETSID (2) NetBSD System Calls Manual SETSID (2)

NAME
setsid — create session and set process group ID

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

pid_t
setsid (void);

DESCRIPTION
Thesetsid function creates a new session. Thecalling process is the session leader of the new session, is
the process group leader of a new process group and has no controlling terminal. The calling process is the
only process in either the session or the process group.

Upon successful completion, thesetsid function returns the value of the process group ID of the new
process group, which is the same as the process ID of the calling process.

ERRORS
If an error occurs,setsid returns −1 and the global variableerrno is set to indicate the error, as follows:

[EPERM] The calling process is already a process group leader, or the process group ID of a
process other than the calling process matches the process ID of the calling process.

SEE ALSO
getsid (2), setpgid (2), tcgetpgrp (3), tcsetpgrp (3)

STANDARDS
Thesetsid function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 October 7, 2006 1

SETUID (2) NetBSD System Calls Manual SETUID (2)

NAME
setuid , seteuid , setgid , setegid — set user and group ID

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
setuid (uid_t uid);

int
seteuid (uid_t euid);

int
setgid (gid_t gid);

int
setegid (gid_t egid);

DESCRIPTION
Thesetuid () function sets the real and effective user IDs and the saved set-user-ID of the current process
to the specified value. Thesetuid () function is permitted if the specified ID is equal to the real user ID of
the process, or if the effective user ID is that of the super user.

The setgid () function sets the real and effective group IDs and the saved set-group-ID of the current
process to the specified value. Thesetgid () function is permitted if the specified ID is equal to the real
group ID of the process, or if the effective user ID is that of the super user. Supplementary group IDs remain
unchanged.

The seteuid () function (setegid ()) sets the effective user ID (group ID) of the current process.The
effective user ID may be set to the value of the real user ID or the saved set-user-ID (seeintro (2) and
execve (2)); in this way, the effective user ID of a set-user-ID executable may be toggled by switching to
the real user ID, then re-enabled by reverting to the set-user-ID value. Similarly, the effective group ID may
be set to the value of the real group ID or the saved set-group-ID.

RETURN VALUES
Upon success, these functions return 0; otherwise −1 is returned.

If the user is not the super user, or the uid specified is not the real, effective ID, or saved ID, these functions
return −1.

SEE ALSO
getgid (2), getgroups (2), getuid (2)

STANDARDS
Thesetuid () andsetgid () functions are compliant with theISO/IEC9945-1:1990 (“POSIX.1”) specifica-
tion with _POSIX_SAVED_IDS not defined.We do not implement the_POSIX_SAVED_IDS option as
specified in the standard because this would make it impossible for a set-user-ID executable owned by a user
other than the super-user to permanently revoke its privileges.

Theseteuid () andsetegid () functions are compliant withIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 October 7, 2006 1

SHMAT (2) NetBSDSystem Calls Manual SHMAT (2)

NAME
shmat , shmdt — map/unmap shared memory

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/shm.h>

void ∗
shmat (int shmid , const void ∗ shmaddr , int shmflg);

int
shmdt (const void ∗ shmaddr);

DESCRIPTION
shmat () maps the shared memory segment associated with the shared memory identifiershmid into the
address space of the calling process.The address at which the segment is mapped is determined by the
shmaddr parameter. If it is equal to 0, the system will pick an address itself. Otherwise, an attempt is
made to map the shared memory segment at the addressshmaddr specifies. IfSHM_RNDis set inshmflg,
the system will round the address down to a multiple of SHMLBAbytes (SHMLBA is defined in
〈sys/shm.h 〉).

A shared memory segment can be mapped read-only by specifying theSHM_RDONLYflag inshmflg.

shmdt () unmaps the shared memory segment that is currently mapped atshmaddr from the calling
process’ address space.shmaddr must be a value returned by a priorshmat () call. A shared memory seg-
ment will remain in existence until it is removed by a call to shmctl (2) with theIPC_RMID command.

RETURN VALUES
shmat () returns the address at which the shared memory segment has been mapped into the calling process’
address space when successful,shmdt () returns 0 on successful completion. Otherwise, a value of −1 is
returned, and the global variableerrno is set to indicate the error.

ERRORS
shmat () will fail if:

[EACCES] The calling process has no permission to access this shared memory segment.

[ENOMEM] There is not enough available data space for the calling process to map the shared
memory segment.

[EINVAL] shmid is not a valid shared memory identifier.

shmaddr specifies an illegal address.

[EMFILE] The number of shared memory segments has reached the system-wide limit.

shmdt () will fail if:

[EINVAL] shmaddr is not the start address of a mapped shared memory segment.

SEE ALSO
ipcrm (1), ipcs (1), mmap(2), shmctl (2), shmget (2)

NetBSD 3.0 June 17, 2002 1

SHMAT (2) NetBSDSystem Calls Manual SHMAT (2)

STANDARDS
Theshmat andshmdt system calls conform toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Shared memory segments appeared in the first release ofAT&T System VUNIX .

NetBSD 3.0 June 17, 2002 2

SHMCTL (2) NetBSD System Calls Manual SHMCTL (2)

NAME
shmctl — shared memory control operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/shm.h>

int
shmctl (int shmid , int cmd , struct shmid_ds ∗ buf);

DESCRIPTION
Theshmctl () system call performs control operations on the shared memory segment specified byshmid.

Each shared memory segment has ashmid_ds structure associated with it which contains the following
members:

struct ipc_perm shm_perm; / ∗ operation permissions ∗ /
size_t shm_segsz; / ∗ size of segment in bytes ∗ /
pid_t shm_lpid; / ∗ pid of last shm op ∗ /
pid_t shm_cpid; / ∗ pid of creator ∗ /
shmatt_t shm_nattch; / ∗ # of c urrent attaches ∗ /
time_t shm_atime; / ∗ last shmat() time ∗ /
time_t shm_dtime; / ∗ last shmdt() time ∗ /
time_t shm_ctime; / ∗ last change by shmctl() ∗ /

The ipc_perm structure used inside theshmid_dsstructure is defined in〈sys/ipc.h 〉 and contains the fol-
lowing members:

uid_t cuid; / ∗ creator user id ∗ /
gid_t cgid; / ∗ creator group id ∗ /
uid_t uid; / ∗ user id ∗ /
gid_t gid; / ∗ group id ∗ /
mode_t mode; / ∗ permission (lower 9 bits) ∗ /

The operation to be performed byshmctl () is specified incmd and is one of:

IPC_STAT Gather information about the shared memory segment and place it in the structure pointed to
by buf.

IPC_SET Set the value of theshm_perm.uid, shm_perm.gidandshm_perm.modefields in the structure
associated withshmid. The values are taken from the corresponding fields in the structure
pointed to bybuf. This operation can only be executed by the super-user, or a process that
has an effective user id equal to eithershm_perm.cuidor shm_perm.uidin the data structure
associated with the shared memory segment.

IPC_RMID Remove the shared memory segment specified byshmid and destroy the data associated with
it. Only the super-user or a process with an effective uid equal to theshm_perm.cuidor
shm_perm.uidvalues in the data structure associated with the queue can do this.

SHM_LOCK Lock the shared memory segment specified byshmid in memory. This operation can only be
executed by the super-user.

SHM_UNLOCK
Unlock the shared memory segment specified byshmid. This operation can only be
executed by the super-user.

NetBSD 3.0 November 25, 2006 1

SHMCTL (2) NetBSD System Calls Manual SHMCTL (2)

The read and write permissions on a shared memory identifier are determined by theshm_perm.modefield in
the same way as is done with files (seechmod(2)), but the effective uid can match either theshm_perm.cuid
field or theshm_perm.uidfield, and the effective gid can match eithershm_perm.cgidor shm_perm.gid.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, −1 is returned and the global variableerrno
is set to indicate the error.

ERRORS
shmctl () will fail if:

[EACCES] The command isIPC_STAT and the caller has no read permission for this shared
memory segment.

[EFAULT] buf specifies an invalid address.

[EINVAL] shmid is not a valid shared memory segment identifier.

cmdis not a valid command.

[ENOMEM] Thecmd is equal toSHM_LOCKand there is not enough physical memory.

[EPERM] cmd is equal toIPC_SET or IPC_RMID and the caller is not the super-user, nor does
the effective uid match either theshm_perm.uidor shm_perm.cuidfields of the data
structure associated with the shared memory segment.

An attempt was made to increase the value ofshm_qbytesthroughIPC_SET but the
caller is not the super-user.

Thecmd is equal toSHM_LOCKor SHM_UNLOCKand the caller is not the super-user.

SEE ALSO
ipcrm (1), ipcs (1), shmat (2), shmget (2)

STANDARDS
Theshmctl system call conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Shared memory segments appeared in the first release ofAT&T System VUNIX .

NetBSD 3.0 November 25, 2006 2

SHMGET (2) NetBSD System Calls Manual SHMGET (2)

NAME
shmget — get shared memory segment

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/shm.h>

int
shmget (key_t key , size_t size , int shmflg);

DESCRIPTION
shmget () returns the shared memory identifier associated with the keykey.

A shared memory segment is created if eitherkey is equal toIPC_PRIVATE , or key does not have a
shared memory segment identifier associated with it, and theIPC_CREATbit is set inshmflg. If both the
IPC_CREATbit and theIPC_EXCL bit are set inshmflg, andkey has a shared memory segment identi-
fier associated with it already, the operation will fail.

If a new shared memory segment is created, the data structure associated with it (theshmid_dsstructure, see
shmctl (2)) is initialized as follows:

• shm_perm.cuidandshm_perm.uidare set to the effective uid of the calling process.

• shm_perm.gidandshm_perm.cgidare set to the effective gid of the calling process.

• shm_perm.modeis set to the lower 9 bits ofshmflg.

• shm_lpid, shm_nattch, shm_atime, andshm_dtimeare set to 0.

• shm_ctimeis set to the current time.

• shm_segszis set to the value ofsize.

RETURN VALUES
Upon successful completion a positive shared memory segment identifier is returned. Otherwise, −1 is
returned and the global variableerrno is set to indicate the error.

ERRORS
[EACCES] A shared memory segment is already associated withkey and the caller has no per-

mission to access it.

[EEXIST] Both IPC_CREATandIPC_EXCL are set inshmflg, and a shared memory segment
is already associated withkey.

[ENOSPC] A new shared memory identifier could not be created because the system limit for the
number of shared memory identifiers has been reached.

[ENOENT] IPC_CREAT is not set inshmflg and no shared memory segment associated with
key was found.

[ENOMEM] There is not enough memory left to create a shared memory segment of the requested
size.

SEE ALSO
ipcrm (1), ipcs (1), mmap(2), shmat (2), shmctl (2), ftok (3)

NetBSD 3.0 May 13, 2004 1

SHMGET (2) NetBSD System Calls Manual SHMGET (2)

STANDARDS
Theshmget system call conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Shared memory segments appeared in the first release ofAT&T System VUNIX .

NetBSD 3.0 May 13, 2004 2

SHUTDOWN (2) NetBSD System Calls Manual SHUTDOWN (2)

NAME
shutdown — shut down part of a full-duplex connection

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

int
shutdown (int s , int how);

DESCRIPTION
The shutdown () call causes all or part of a full-duplex connection on the socket associated withs to be
shut down. Thehow argument specifies which part of the connection will be shut down. Permissiblevalues
are:

SHUT_RD further receives will be disallowed.

SHUT_WR further sends will be disallowed.

SHUT_RDWR further sends and receives will be disallowed.

RETURN VALUES
A 0 is returned if the call succeeds, −1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] s is not a valid descriptor.

[EINVAL] Thehow argument is invalid.

[ENOTCONN] The specified socket is not connected.

[ENOTSOCK] s is a file, not a socket.

SEE ALSO
connect (2), socket (2)

HISTORY
Theshutdown () function call appeared in 4.2BSD. Thehow arguments used to be simply 0, 1, and 2, but
now hav enamed values as specified byX/OpenPortability Guide Issue 4 (“XPG4”).

NetBSD 3.0 August 18, 2002 1

SIGACTION (2) NetBSD System Calls Manual SIGACTION (2)

NAME
sigaction — software signal facilities

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sigaction (int sig , const struct sigaction ∗ restrict act ,

struct sigaction ∗ restrict oact);

DESCRIPTION
The system defines a set of signals that may be delivered to a process.Signal delivery resembles the occur-
rence of a hardware interrupt: the signal is blocked from further occurrence, the current process context is
saved, and a new one is built. A process may specify ahandlerto which a signal is delivered, or specify that
a signal is to beignored. A process may also specify that a default action is to be taken by the system when a
signal occurs.A signal may also beblocked, in which case its delivery is postponed until it isunblocked.
The action to be taken on delivery is determined at the time of delivery. Normally, signal handlers execute
on the current stack of the process. This may be changed, on a per-handler basis, so that signals are taken on
a specialsignal stack.

Signal routines execute with the signal that caused their invocationblocked, but other signals may yet occur.
A global signal maskdefines the set of signals currently blocked from delivery to a process. The signal mask
for a process is initialized from that of its parent (normally empty). It may be changed with a
sigprocmask (2) call, or when a signal is delivered to the process.Signal masks are represented using the
sigset_ttype; thesigsetops (3) interface is used to modify such data.

When a signal condition arises for a process, the signal is added to a set of signals pending for the process.If
the signal is not currentlyblocked by the process then it is delivered to the process. Signals may be delivered
any time a process enters the operating system (e.g., during a system call, page fault or trap, or clock inter-
rupt). If multiple signals are ready to be delivered at the same time, any signals that could be caused by traps
are delivered first. Additional signals may be processed at the same time, with each appearing to interrupt
the handlers for the previous signals before their first instructions.The set of pending signals is returned by
thesigpending (2) function. When a caught signal is delivered, the current state of the process is saved, a
new signal mask is calculated (as described below), and the signal handler is invoked. Thecall to the handler
is arranged so that if the signal handling routine returns normally the process will resume execution in the
context from before the signal’s delivery. If the process wishes to resume in a different context, then it must
arrange to restore the previous context itself.

struct sigactionincludes the following members:

void (∗ sa_sigaction)(int sig, siginfo_t ∗ info, void ∗ ctx);
void (∗ sa_handler)(int sig);
sigset_t sa_mask;
int sa_flags;

When a signal is delivered to a process a new signal mask is installed for the duration of the process’ signal
handler (or until asigprocmask (2) call is made). This mask is formed by taking the union of the current
signal mask, the signal to be delivered, and the signal mask associated with the handler to be invoked,
sa_mask.

sigaction () assigns an action for a specific signal.If act is non-zero, it specifies an action (SIG_DFL,
SIG_IGN , or a handler routine) and mask to be used when delivering the specified signal.If oact is non-

NetBSD 3.0 June 3, 2006 1

SIGACTION (2) NetBSD System Calls Manual SIGACTION (2)

zero, the previous handling information for the signal is returned to the user.

Once a signal handler is installed, it remains installed until anothersigaction () call is made, or an
execve (2) is performed. A signal-specific default action may be reset by settingsa_handler to
SIG_DFL. The defaults are process termination, possibly with core dump; no action; stopping the process;
or continuing the process. See the signal list below for each signal’s default action. If sa_handler is set
to SIG_DFL, the default action for the signal is to discard the signal, and if a signal is pending, the pending
signal is discarded even if the signal is masked. If sa_handler is set toSIG_IGN , current and pending
instances of the signal are ignored and discarded.

Options may be specified by settingsa_flags.

SA_NODEFER If set, then the signal that caused the handler to be executed is not added to the list of
block signals. Please note thatsa_mask takes precedence over SA_NODEFER, so that
if the specified signal is blocked insa_mask, thenSA_NODEFERwill have no effect.

SA_NOCLDSTOP If set when installing a catching function for theSIGCHLDsignal, theSIGCHLDsignal
will be generated only when a child process exits, not when a child process stops.

SA_NOCLDWAIT If set, the system will not create a zombie when the child exits, but the child process will
be automatically waited for. The same effect can be achieved by setting the signal han-
dler forSIGCHLDto SIG_IGN .

SA_ONSTACK If set, the system will deliver the signal to the process on asignal stack, specified with
sigaltstack (2).

SA_RESETHAND If set, the default action will be reinstated when the signal is first posted.

SA_RESTART Normally, if a signal is caught during the system calls listed below, the call may be
forced to terminate with the errorEINTR, the call may return with a data transfer
shorter than requested, or the call may be restarted. Restarting of pending calls is
requested by setting theSA_RESTARTbit in sa_flags. The affected system calls
includeopen (2), read (2), write (2), sendto (2), recvfrom (2), sendmsg (2) and
recvmsg (2) on a communications channel or a slow device (such as a terminal, but not
a regular file) and during await (2) or ioctl (2). However, calls that have already
committed are not restarted, but instead return a partial success (for example, a short
read count).

After a fork (2) or vfork (2) all signals, the signal mask, the signal stack, and the
restart/interrupt flags are inherited by the child.

The execve (2) system call reinstates the default action for all signals which were
caught and resets all signals to be caught on the user stack. Ignored signals remain
ignored; the signal mask remains the same; signals that restart pending system calls con-
tinue to do so.

Seesignal (7) for comprehensive list of supported signals.

SA_SIGINFO If set, the signal handler function will receive additional information about the caught
signal. An alternative handler that gets passed additional arguments will be called
which is namedsa_sigaction. Thesig argument of this handler contains the sig-
nal number that was caught.The info argument contains additional signal specific
information which is listed insiginfo (2). Thectx argument is a pointer to the
ucontext (2) context where the signal handler will return to.

SA_NOKERNINFOThis flag is relevant only toSIGINFO , and turns off printing kernel messages on the tty.
It is similar to theNOKERNINFOflag in termios (4).

NetBSD 3.0 June 3, 2006 2

SIGACTION (2) NetBSD System Calls Manual SIGACTION (2)

Only functions that are async-signal-safe can safely be used in signal handlers, seesignal (7) for a com-
plete list.

NOTES
The mask specified inact is not allowed to blockSIGKILL or SIGSTOP. This is enforced silently by the
system.

RETURN VALUES
A 0 value indicates that the call succeeded.A −1 return value indicates an error occurred anderrno is set to
indicate the reason.

ERRORS
sigaction () will fail and no new signal handler will be installed if one of the following occurs:

[EFAULT] Either act or oact points to memory that is not a valid part of the process address
space.

[EINVAL] sig is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler forSIGKILL or SIGSTOP.

[EINVAL] The sa_flagsword contains bits other thanSA_NOCLDSTOP, SA_NOCLDWAIT,
SA_NODEFER, SA_ONSTACK, SA_RESETHAND, SA_RESTART, and
SA_SIGINFO.

SEE ALSO
kill (1), kill (2), ptrace (2), sigaltstack (2), siginfo (2), sigprocmask (2), sigsuspend (2),
setjmp (3), sigsetops (3), tty (4), signal (7)

STANDARDS
The sigaction () function conforms toISO/IEC 9945-1:1990 (“POSIX.1”). The SA_ONSTACKand
SA_RESTARTflags are Berkeley extensions, available on mostBSD−derived systems.

NetBSD 3.0 June 3, 2006 3

SIGALTSTACK (2) NetBSDSystem Calls Manual SIGALTSTACK (2)

NAME
sigaltstack — set and/or get signal stack context

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

typedef struct sigaltstack {
void ∗ ss_sp;
size_t ss_size;
int ss_flags;

} s tack_t;

int
sigaltstack (const stack_t ∗ restrict ss , stack_t ∗ restrict oss);

DESCRIPTION
sigaltstack () allows users to define an alternative stack on which signals are to be processed.If ss is
non-zero, it specifies a pointer to and the size of asignal stack on which to deliver signals, and tells the sys-
tem if the process is currently executing on that stack. When a signal’s action indicates its handler should
execute on the signal stack (specified with asigaction (2) call), the system checks to see if the process is
currently executing on that stack.If the process is not currently executing on the signal stack, the system
arranges a switch to the signal stack for the duration of the signal handler’s execution.

If SS_DISABLE is set inss_flags, ss_sp andss_size are ignored and the signal stack will be dis-
abled. Trying to disable an active stack will causesigaltstack to return −1 witherrno set toEINVAL.
A disabled stack will cause all signals to be taken on the regular user stack. If the stack is later re-enabled
then all signals that were specified to be processed on an alternative stack will resume doing so.

If oss is non-zero, the current signal stack state is returned.The ss_flags field will contain the value
SS_ONSTACKif the process is currently on a signal stack andSS_DISABLE if the signal stack is currently
disabled.

NOTES
The valueSIGSTKSZ is defined to be the number of bytes/chars that would be used to cover the usual case
when allocating an alternative stack area. The following code fragment is typically used to allocate an alter-
native stack.

if ((sigstk.ss_sp = malloc(SIGSTKSZ)) == NULL)
/ ∗ error return ∗ /

sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk,0) < 0)

perror("sigaltstack");

An alternative approach is provided for programs with signal handlers that require a specific amount of stack
space other than the default size. The valueMINSIGSTKSZ is defined to be the number of bytes/chars that
is required by the operating system to implement the alternative stack feature. In computing an alternative
stack size, programs should addMINSIGSTKSZ to their stack requirements to allow for the operating sys-
tem overhead.

Signal stacks are automatically adjusted for the direction of stack growth and alignment requirements.Sig-
nal stacks may or may not be protected by the hardware and are not ‘‘grown’’ automatically as is done for the

NetBSD 3.0 May 1, 1995 1

SIGALTSTACK (2) NetBSDSystem Calls Manual SIGALTSTACK (2)

normal stack. If the stack overflows and this space is not protected unpredictable results may occur.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
sigaltstack () will fail and the signal stack context will remain unchanged if one of the following occurs.

[EFAULT] Either ss or oss points to memory that is not a valid part of the process address
space.

[EINVAL] An attempt was made to disable an active stack.

[ENOMEM] Size of alternative stack area is less thanMINSIGSTKSZ.

SEE ALSO
sigaction (2), setjmp (3), signal (7)

STANDARDS
Thesigaltstack () function conforms toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

HISTORY
The predecessor tosigaltstack , thesigstack () system call, appeared in 4.2BSD.

NetBSD 3.0 May 1, 1995 2

SIGINFO (2) NetBSD System Calls Manual SIGINFO (2)

NAME
siginfo — signal information

SYNOPSIS
#include <signal.h>

DESCRIPTION
siginfo is a structure type which contains information about a signal delivered to a process.

siginfo includes the following members:

int si_signo;
int si_errno;
int si_code;

si_signo contains the signal number generated by the system.

If si_errno is non-zero, then it contains a system specific error number associated with this signal.This
number is defined inerrno (2).

If si_code is less than or equal to zero, the signal was generated by a user process or a user requested ser-
vice:

SI_USER The signal was generated viakill (2). The siginfo structure contains the following
additional members:

pid_t si_pid;
uid_t si_uid;

Thesi_pid field contains the pid of the sending process and thesi_uid field contains the
user id of the sending process.

SI_TIMER The signal was generated because a timer set bytimer_settime (2) has expired. The
siginfo structure contains the following additional members:

sigval_t si_value;

Thesi_value field contains the value set viatimer_create (2).

SI_ASYNCIO The signal was generated by completion of an asynchronous I/O operation.The siginfo
structure contains the following additional members:

int si_fd;
long si_band;

Thesi_fd argument contains the file descriptor number on which the operation was com-
pleted and thesi_band field contains the side and priority of the operation. If the opera-
tion was a normal read,si_band will contain POLLIN | POLLRDNORM; on an out-of-
band read it will containPOLLPRI | POLLRDBAND; on a normal write it will contain
POLLOUT | POLLWRNORM; on an out-of-band write it will containPOLLPRI |
POLLWRBAND.

If si_code is positive, then it contains a signal specific reason why the signal was generated:

SIGILL

ILL_ILLOPC Illegal opcode

ILL_ILLOPN Ille gal operand

NetBSD 3.0 May 21, 2007 1

SIGINFO (2) NetBSD System Calls Manual SIGINFO (2)

ILL_ILLADR Ille gal addressing mode

ILL_ILLTRP Ille gal trap

ILL_PRVOPC Privileged opcode

ILL_PRVREG Privileged register

ILL_COPROC
Coprocessor error

ILL_BADSTK
Internal stack error

SIGFPE

FPE_INTDIV Integer divide by zero

FPE_INTOVF Integer overflow

FPE_FLTDIV Floating point divide by zero

FPE_FLTOVF Floating point overflow

FPE_FLTUND
Floating point underflow

FPE_FLTRES Floating poing inexact result

FPE_FLTINV Invalid Floating poing operation

FPE_FLTSUB Subscript out of range

SIGSEGV

SEGV_MAPERR
Address not mapped to object

SEGV_ACCERR
Invalid permissions for mapped object

SIGBUS

BUS_ADRALN
Invalid address alignment

BUS_ADRERR
Non-existant physical address

BUS_OBJERR
Object specific hardware error

SIGTRAP

TRAP_BRKPT
Process breakpoint

TRAP_TRACE
Process trace trap

SIGCHLD

CLD_EXITED Child has exited

NetBSD 3.0 May 21, 2007 2

SIGINFO (2) NetBSD System Calls Manual SIGINFO (2)

CLD_KILLED Child has terminated abnormally but did not create a core file

CLD_DUMPED Child has terminated abnormally and created a core file

CLD_TRAPPED Traced child has trapped

CLD_STOPPED Child has stopped

CLD_CONTINUED
Stopped child has continued

SIGPOLL

POLL_IN Data input available

POLL_OUT
Output buffers available

POLL_MSG
Input message available

POLL_ERR
I/O Error

POLL_PRI High priority input available

POLL_HUP
Device disconnected

For SIGILL , SIGFPE, andSIGTRAPthesiginfo structure contains the following additional members:

void ∗ si_addr;
int si_trap;

si_addr contains the address of the faulting instruction andsi_trap contains a hardware specific reason.

For SIGBUSandSIGSEGVthesiginfo structure contains the following additional members:

void ∗ si_addr;
int si_trap;

si_addr contains the address of the faulting data andsi_trap contains a hardware specific reason.

For SIGPOLL thesiginfo structure contains the following additional members:

int si_fd;
long si_band;

The si_fd argument contains the file descriptor number on which the operation was completed and the
si_band field contains the side and priority of the operation as described above.

Finally, for SIGCHLDthesiginfo structure contains the following additional members:

pid_t si_pid;
uid_t si_uid;
int si_status;
clock_t si_utime;
clock_t si_stime;

Thesi_pid field contains the pid of the process who’s status changed, thesi_uid field contains the user
id of the that process, thesi_status field contains a status code described inwaitpid (2), and the
si_utime andsi_stime fields contain the user and system process accounting time.

NetBSD 3.0 May 21, 2007 3

SIGINFO (2) NetBSD System Calls Manual SIGINFO (2)

STANDARDS
Thesiginfo type conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Thesiginfo functionality first appeared inAT&T System V.4UNIX .

NetBSD 3.0 May 21, 2007 4

SIGPENDING (2) NetBSD System Calls Manual SIGPENDING (2)

NAME
sigpending — get pending signals

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sigpending (sigset_t ∗ set);

DESCRIPTION
The sigpending function returns a mask of the signals pending for delivery to the calling process in the
location indicated byset. Signals may be pending because they are currently masked, or they are in transi-
tion before delivery (although the latter case is not normally detectable).

RETURN VALUES
A 0 value indicates that the call succeeded.A −1 return value indicates an error occurred anderrno is set to
indicate the reason.

ERRORS
Thesigpending function does not currently detect any errors.

SEE ALSO
sigaction (2), sigprocmask (2), signal (7)

STANDARDS
Thesigpending function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 January 12, 1994 1

SIGPROCMASK (2) NetBSD System Calls Manual SIGPROCMASK (2)

NAME
sigprocmask — manipulate current signal mask

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sigprocmask (int how , const sigset_t ∗ restrict set ,

sigset_t ∗ restrict oset);

DESCRIPTION
The sigprocmask () function examines and/or changes the current signal mask (those signals that are
blocked from delivery). Signalsare blocked if they are members of the current signal mask set.

If set is not null, the action ofsigprocmask () depends on the value of the parameterhow. The signal
mask is changed as a function of the specifiedset and the current mask.The function is specified byhow
using one of the following values:

SIG_BLOCK The new mask is the union of the current mask and the specifiedset.

SIG_UNBLOCKThe new mask is the intersection of the current mask and the complement of the specified
set.

SIG_SETMASKThe current mask is replaced by the specifiedset.

If oset is not null, it is set to the previous value of the signal mask.

Whenset is null, the value ofhow is insignificant and the mask remains unset providing a way to examine
the signal mask without modification.

The system quietly disallowsSIGKILL or SIGSTOPto be blocked.

RETURN VALUES
A 0 value indicates that the call succeeded.A −1 return value indicates an error occurred anderrno is set to
indicate the reason.

ERRORS
Thesigprocmask () call will fail and the signal mask will be unchanged if one of the following occurs:

[EINVAL] how has a value other than those listed here.

SEE ALSO
kill (2), sigaction (2), sigsuspend (2), pthread_sigmask (3), sigsetops (3), signal (7)

STANDARDS
Thesigprocmask () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 1

SIGSTACK (2) NetBSDSystem Calls Manual SIGSTACK (2)

NAME
sigstack — set and/or get signal stack context

SYNOPSIS
#include <signal.h>

int
sigstack (const struct sigstack ∗ , struct sigstack ∗);

DESCRIPTION
Thesigstack () function has been deprecated in favor of the interface described insigaltstack (2).

SEE ALSO
sigaltstack (2), signal (7)

HISTORY
Thesigstack function call appeared in 4.2BSD.

NetBSD 3.0 June 4, 1993 1

SIGSUSPEND (2) NetBSD System Calls Manual SIGSUSPEND (2)

NAME
sigsuspend — atomically release blocked signals and wait for interrupt

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sigsuspend (const sigset_t ∗ sigmask);

DESCRIPTION
sigsuspend () temporarily changes the blocked signal mask to the set to whichsigmask points, and then
waits for a signal to arrive; on return the previous set of masked signals is restored. The signal mask set is
usually empty to indicate that all signals are to be unblocked for the duration of the call.

In normal usage, a signal is blocked usingsigprocmask (2) to begin a critical section, variables modified
on the occurrence of the signal are examined to determine that there is no work to be done, and the process
pauses awaiting work by usingsigsuspend () with the previous mask returned bysigprocmask (2).

RETURN VALUES
Thesigsuspend () function always terminates by being interrupted, returning −1 witherrnoset toEINTR.

SEE ALSO
sigaction (2), sigprocmask (2), sigsetops (3), signal (7)

STANDARDS
Thesigsuspend function call conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 May 16, 1995 1

SIGTIMEDWAIT (2) NetBSD System Calls Manual SIGTIMEDWAIT (2)

NAME
sigtimedwait , sigwaitinfo , sigwait — wait for queued signals

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sigtimedwait (const sigset_t ∗ restrict set , siginfo_t ∗ restrict info ,

const struct timespec ∗ restrict timeout);

int
sigwaitinfo (const sigset_t ∗ restrict set , siginfo_t ∗ restrict info);

int
sigwait (const sigset_t ∗ restrict set , int ∗ restrict sig);

DESCRIPTION
sigwaitinfo () and sigwait () return the first pending signal from the set specified byset. Should
multiple signals fromset be pending, the lowest numbered one is returned. The selection order between
realtime and non-realtime signals is unspecified. If there is no signal fromset pending at the time of the
call, the calling thread is suspended until one of the specified signals is generated.

sigtimedwait () is exactly equal tosigwaitinfo (), except timeout specifies the maximum time
interval for which the calling thread will be suspended.If timeout is zero (tv_sec == tv_nsec == 0),
sigtimedwait () only checks the currently pending signals and returns immediately. If NULL is used for
timeout, sigtimedwait () behaves exactly likesigwaitinfo () in all regards.

If several threads are waiting for a given signal, exactly one of them returns from the signal wait when the
signal is generated.

Behaviour of these functions is unspecified if any of the signals inset are unblocked at the time these func-
tions are called.

RETURN VALUES
Upon successful completioninfo is updated with signal information, and the function returns 0.Other-
wise, −1 is returned and the global variableerrno indicates the error.

ERRORS
sigwaitinfo () andsigwait () always succeed.

sigtimedwait () will fail and theinfo pointer will remain unchanged if:

[EAGAIN] No signal specified inset was generated in the specifiedtimeout.

sigtimedwait () may also fail if:

[EINVAL] The specifiedtimeout was inv alid.

This error is only checked if no signal fromset is pending and it would be necessary to wait.

SEE ALSO
sigaction (2), sigprocmask (2), signal (7)

NetBSD 3.0 February 10, 2003 1

SIGTIMEDWAIT (2) NetBSD System Calls Manual SIGTIMEDWAIT (2)

STANDARDS
The functionssigtimedwait (), sigwaitinfo (), andsigwait () conform toIEEE Std 1003.1-2001
(“POSIX.1”).

HISTORY
Thesigtimedwait (), sigwaitinfo (), andsigwait () functions appeared inNetBSD 2.0.

AUTHORS
The initial NetBSD implementation of the signal wait functions was written by Jaromir Dolecek
〈 jdolecek@NetBSD.org〉.

NetBSD 3.0 February 10, 2003 2

SOCKET (2) NetBSD System Calls Manual SOCKET (2)

NAME
socket — create an endpoint for communication

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

int
socket (int domain , int type , int protocol);

DESCRIPTION
socket () creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communication will take place;
this selects the protocol family which should be used. These families are defined in the include file
〈sys/socket.h 〉. The currently understood formats are:

PF_LOCAL local (previously UNIX) domain protocols
PF_INET ARPA Internet protocols
PF_INET6 IPv6 (Internet Protocol version 6) protocols
PF_ISO ISO protocols
PF_NS Xerox Network Systems protocols
PF_IMPLINK IMP host at IMP link layer
PF_APPLETALK AppleTalk protocols
PF_BLUETOOTH Bluetooth protocols

The socket has the indicatedtype, which specifies the semantics of communication.Currently defined
types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAMtype provides sequenced, reliable, two-way connection based byte streams. An out-of-
band data transmission mechanism may be supported.A SOCK_DGRAMsocket supports datagrams (connec-
tionless, unreliable messages of a fixed (typically small) maximum length).A SOCK_SEQPACKETsocket
may provide a sequenced, reliable, two-way connection-based data transmission path for datagrams of fixed
maximum length; a consumer may be required to read an entire packet with each read system call.This
facility is protocol specific, and presently implemented only forPF_NS. SOCK_RAWsockets provide access
to internal network protocols and interfaces. ThetypesSOCK_RAW, which is available only to the super-
user, andSOCK_RDM, which is planned, but not yet implemented, are not described here.

Theprotocol specifies a particular protocol to be used with the socket. Normallyonly a single protocol
exists to support a particular socket type within a given protocol family. Howev er, it is possible that many
protocols may exist, in which case a particular protocol must be specified in this manner. The protocol num-
ber to use is particular to the communication domain in which communication is to take place; see
protocols (5).

Sockets of typeSOCK_STREAMare full-duplex byte streams.A stream socket must be in aconnectedstate
before any data may be sent or received on it. A connection to another socket is created with aconnect (2)
call. Onceconnected, data may be transferred usingread (2) andwrite (2) calls or some variant of the
send (2) andrecv (2) calls. When a session has been completed aclose (2) may be performed.Out-of-

NetBSD 3.0 September 6, 2007 1

SOCKET (2) NetBSD System Calls Manual SOCKET (2)

band data may also be transmitted as described insend (2) and received as described inrecv (2).

The communications protocols used to implement aSOCK_STREAMensure that data is not lost or dupli-
cated. Ifa piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with −1 returns and withETIMEDOUTas the specific code in the global variable errno. The protocols
optionally keep sockets “warm” by forcing transmissions roughly every minute in the absence of other activ-
ity. An error is then indicated if no response can be elicited on an otherwise idle connection for an extended
period (e.g., 5 minutes).A SIGPIPE signal is raised if a process sends on a broken stream; this causes
naive processes, which do not handle the signal, to exit.

SOCK_SEQPACKETsockets employ the same system calls asSOCK_STREAMsockets. Theonly difference
is thatread (2) calls will return only the amount of data requested, and any remaining in the arriving packet
will be discarded.

SOCK_DGRAMand SOCK_RAWsockets allow sending of datagrams to correspondents named insend (2)
calls. Datagramsare generally received with recvfrom (2), which returns the next datagram with its return
address.

An fcntl (2) call can be used to specify a process group to receive aSIGURGsignal when the out-of-band
data arrives. Itmay also enable non-blocking I/O and asynchronous notification of I/O events viaSIGIO .

The operation of sockets is controlled by socket level options. These options are defined in the file
〈sys/socket.h 〉. The setsockopt (2) and getsockopt (2) system calls are used to set and get
options, respectively.

RETURN VALUES
A −1 is returned if an error occurs, otherwise the return value is a descriptor referencing the socket.

ERRORS
Thesocket () call fails if:

[EACCES] Permission to create a socket of the specified type and/or protocol is denied.

[EAFNOSUPPORT] The address family (domain) is not supported or the specified domain is not supported
by this protocol family.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[ENOBUFS] Insufficient buffer space is available. Thesocket cannot be created until sufficient
resources are freed.

[EPROTONOSUPPORT]
The protocol family is not supported or the specified protocol is not supported within
this domain.

[EPROTOTYPE] The socket type is not supported by the protocol.

SEE ALSO
accept (2), bind (2), connect (2), getsockname (2), getsockopt (2), ioctl (2), listen (2),
poll (2), read (2), recv (2), select (2), send (2), setsockopt (2), shutdown (2), socketpair (2),
write (2), getprotoent (3)

Stuart Sechrest,An Introductory 4.4BSD Interprocess Communication Tutorial. (see
/usr/share/doc/psd/20.ipctut)

NetBSD 3.0 September 6, 2007 2

SOCKET (2) NetBSD System Calls Manual SOCKET (2)

Samuel J. Leffler, Robert S. Fabry, William N. Joy, Phil Lapsley, Steve Miller, and Chris Torek,Advanced
4.4BSD IPC Tutorial. (see/usr/share/doc/psd/21.ipc)

HISTORY
Thesocket () function call appeared in 4.2BSD.

NetBSD 3.0 September 6, 2007 3

SOCKETPAIR (2) NetBSD System Calls Manual SOCKETPAIR (2)

NAME
socketpair — create a pair of connected sockets

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

int
socketpair (int d , int type , int protocol , int ∗ sv);

DESCRIPTION
The socketpair () call creates an unnamed pair of connected sockets in the specified domaind, of the
specifiedtype, and using the optionally specifiedprotocol. The descriptors used in referencing the new
sockets are returned insv[0] andsv[1]. Thetwo sockets are indistinguishable.

RETURN VALUES
A 0 is returned if the call succeeds, −1 if it fails.

ERRORS
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process.

[ENFILE] The system file table is full.

[EAFNOSUPPORT] The specified address family is not supported on this machine.

[EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOTSUPP] The specified protocol does not support creation of socket pairs.

[EFAULT] The addresssv does not specify a valid part of the process address space.

SEE ALSO
pipe (2), read (2), write (2)

HISTORY
Thesocketpair () function call appeared in 4.2BSD.

BUGS
This call is currently implemented only for theLOCAL domain. Many operating systems only accept a
protocol of PF_UNSPEC, so that should be used instead ofPF_LOCALfor maximal portability.

NetBSD 3.0 August 18, 2002 1

STAT (2) NetBSDSystem Calls Manual STAT (2)

NAME
stat , lstat , fstat — get file status

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/stat.h>

int
stat (const char ∗ path , struct stat ∗ sb);

int
lstat (const char ∗ path , struct stat ∗ sb);

int
fstat (int fd , struct stat ∗ sb);

DESCRIPTION
Thestat () function obtains information about the file pointed to bypath. Read, write or execute permis-
sion of the named file is not required, but all directories listed in the path name leading to the file must be
searchable.

lstat () is like stat () except in the case where the named file is a symbolic link, in which caselstat ()
returns information about the link, whilestat () returns information about the file the link references.

Thefstat () function obtains the same information about an open file known by the file descriptorfd.

The sb argument is a pointer to astat structure as defined by〈sys/stat.h 〉 (shown below) and into
which information is placed concerning the file.

struct stat {
dev_t st_dev; / ∗ device containing the file ∗ /
ino_t st_ino; / ∗ file’s serial number ∗ /
mode_t st_mode; / ∗ file’s mode (protection and type) ∗ /
nlink_t st_nlink; / ∗ number of hard links to the file ∗ /
uid_t st_uid; / ∗ user-id of owner ∗ /
gid_t st_gid; / ∗ group-id of owner ∗ /
dev_t st_rdev; / ∗ device type, for device special file ∗ /

#if defined(_NETBSD_SOURCE)
struct timespec st_atimespec; / ∗ time of last access ∗ /
struct timespec st_mtimespec; / ∗ time of last data modification ∗ /
struct timespec st_ctimespec; / ∗ time of last file status change ∗ /

#else
time_t st_atime; / ∗ time of last access ∗ /
long st_atimensec; / ∗ nsec of last access ∗ /
time_t st_mtime; / ∗ time of last data modification ∗ /
long st_mtimensec; / ∗ nsec of last data modification ∗ /
time_t st_ctime; / ∗ time of last file status change ∗ /
long st_ctimensec; / ∗ nsec of last file status change ∗ /

#endif
off_t st_size; / ∗ file size, in bytes ∗ /
blkcnt_t st_blocks; / ∗ blocks allocated for file ∗ /
blksize_t st_blksize; / ∗ optimal file sys I/O ops blocksize ∗ /
uint32_t st_flags; / ∗ user defined flags for file ∗ /

NetBSD 3.0 June 9, 2007 1

STAT (2) NetBSDSystem Calls Manual STAT (2)

uint32_t st_gen; / ∗ file generation number ∗ /
#if defined(_NETBSD_SOURCE)

struct timespec st_birthtimespec; / ∗ time of inode creation ∗ /
#else

time_t st_birthtime; / ∗ time of inode creation ∗ /
long st_birthtimensec; / ∗ nsec of inode creation ∗ /

#endif
};

The time-related fields ofstruct stat are as follows:

st_atime Time when file data was last accessed. Changed by themknod(2), utimes (2) and
read (2) system calls.

st_mtime Time when file data was last modified. Changed by themknod(2), utimes (2) and
write (2) system calls.

st_ctime Time when file status was last changed (file metadata modification).Changed by the
chflags (2), chmod(2), chown (2), link (2), mknod(2), rename (2), unlink (2),
utimes (2) andwrite (2) system calls.

st_birthtime Time when the inode was created.

If _NETBSD_SOURCEis defined, the time-related fields are defined as:

#if defined(_NETBSD_SOURCE)
#define st_atime st_atimespec.tv_sec
#define st_atimensec st_atimespec.tv_nsec
#define st_mtime st_mtimespec.tv_sec
#define st_mtimensec st_mtimespec.tv_nsec
#define st_ctime st_ctimespec.tv_sec
#define st_ctimensec st_ctimespec.tv_nsec
#define st_birthtime st_birthtimespec.tv_sec
#define st_birthtimensec st_birthtimespec.tv_nsec
#endif

The size-related fields of thestruct stat are as follows:

st_size The size of the file in bytes.A directory will be a multiple of the size of thedirent (5)
structure. Somefilesystems (notably ZFS) return the number of enties in the directory
instead of the size in bytes.

st_blksize The optimal I/O block size for the file.

st_blocks The actual number of blocks allocated for the file in 512-byte units.As short symbolic
links are stored in the inode, this number may be zero.

The status information wordst_mode has the following bits:

#define S_IFMT 0170000 / ∗ type of file ∗ /
#define S_IFIFO 0010000 / ∗ named pipe (fifo) ∗ /
#define S_IFCHR 0020000 / ∗ character special ∗ /
#define S_IFDIR 0040000 / ∗ directory ∗ /
#define S_IFBLK 0060000 / ∗ block special ∗ /
#define S_IFREG 0100000 / ∗ regular ∗ /
#define S_IFLNK 0120000 / ∗ symbolic link ∗ /
#define S_IFSOCK 0140000 / ∗ socket ∗ /
#define S_IFWHT 0160000 / ∗ whiteout ∗ /

NetBSD 3.0 June 9, 2007 2

STAT (2) NetBSDSystem Calls Manual STAT (2)

#define S_ISUID 0004000 / ∗ set user id on execution ∗ /
#define S_ISGID 0002000 / ∗ set group id on execution ∗ /
#define S_ISVTX 0001000 / ∗ save swapped text even after use ∗ /
#define S_IRUSR 0000400 / ∗ read permission, owner ∗ /
#define S_IWUSR 0000200 / ∗ write permission, owner ∗ /
#define S_IXUSR 0000100 / ∗ execute/search permission, owner ∗ /
#define S_IRGRP 0000040 / ∗ read permission, group ∗ /
#define S_IWGRP 0000020 / ∗ write permission, group ∗ /
#define S_IXGRP 0000010 / ∗ execute/search permission, group ∗ /
#define S_IROTH 0000004 / ∗ read permission, other ∗ /
#define S_IWOTH 0000002 / ∗ write permission, other ∗ /
#define S_IXOTH 0000001 / ∗ execute/search permission, other ∗ /

For a list of access modes, see〈sys/stat.h 〉, access (2) andchmod(2).

The status information wordst_flags has the following bits:

#define UF_NODUMP 0x00000001 / ∗ do not dump file ∗ /
#define UF_IMMUTABLE 0x00000002 / ∗ file may not be changed ∗ /
#define UF_APPEND 0x00000004 / ∗ writes to file may only append ∗ /
#define UF_OPAQUE 0x00000008 / ∗ directory is opaque wrt. union ∗ /
#define SF_ARCHIVED 0x00010000 / ∗ file is archived ∗ /
#define SF_IMMUTABLE 0x00020000 / ∗ file may not be changed ∗ /
#define SF_APPEND 0x00040000 / ∗ writes to file may only append ∗ /

For a description of the flags, seechflags (2).

RETURN VALUES
Upon successful completion a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

COMPATIBILITY
Previous versions of the system used different types for thest_dev , st_uid , st_gid , st_rdev ,
st_size , st_blksize andst_blocks fields.

ERRORS
stat () andlstat () will fail if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EFAULT] sb or namepoints to an invalid address.

[ENXIO] The named file is a character special or block special file, and the device associated
with this special file does not exist.

[EIO] An I/O error occurred while reading from or writing to the file system.

NetBSD 3.0 June 9, 2007 3

STAT (2) NetBSDSystem Calls Manual STAT (2)

[EBADF] A badly formed v-node was encountered. This can happen if a file system information
node is incorrect.

fstat () will fail if:

[EBADF] fd is not a valid open file descriptor.

[EFAULT] sb points to an invalid address.

[EIO] An I/O error occurred while reading from or writing to the file system.

SEE ALSO
chflags (2), chmod(2), chown (2), utimes (2), dir (5), symlink (7)

STANDARDS
Thestat () andfstat () functions conform toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
A lstat () function call appeared in 4.2BSD.

BUGS
Applying fstat () to a socket (and thus to a pipe) returns a zero’d buffer, except for the blocksize field, and
a unique device and file serial number.

NetBSD 3.0 June 9, 2007 4

STATVFS (2) NetBSD System Calls Manual STATVFS (2)

NAME
statvfs , statvfs1 , fstatvfs , fstatvfs1 — get file system statistics

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/statvfs.h>

int
statvfs (const char ∗ path , struct statvfs ∗ buf);

int
statvfs1 (const char ∗ path , struct statvfs ∗ buf , int flags);

int
fstatvfs (int fd , struct statvfs ∗ buf);

int
fstatvfs1 (int fd , struct statvfs ∗ buf , int flags);

DESCRIPTION
statvfs () andstatvfs1 () return information about a mounted file system.path is the path name of
any file within the mounted file system.buf is a pointer to astatvfs structure defined instatvfs (5).

fstatvfs () and fstatvfs1 () return the same information about an open file referenced by descriptor
fd.

The statvfs1 () and fstatvfs1 () functions allow an extra flags argument which can beST_WAIT
andST_NOWAIT. WhenST_NOWAITis specified, then only cached statistics are returned.This can result
in significant savings on non-local filesystems, where gathering statistics involves a network communication.

The statvfs () and fstatvfs () calls are equivalent to the respective statvfs1 () and fstatvfs1 ()
calls withST_WAITspecified as theflags argument.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, −1 is returned and the global variableerrno
is set to indicate the error.

ERRORS
statvfs () andstatvfs1 () fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix ofpath is not a directory.

[ENAMETOOLONG] The length of a component ofpath exceedsNAME_MAXcharacters, or the length of
path exceedsPATH_MAXcharacters.

[ENOENT] The file referred to bypath does not exist.

[EACCES] Search permission is denied for a component of the path prefix ofpath.

[ELOOP] Too many symbolic links were encountered in translatingpath.

[EFAULT] buf or path points to an invalid address.

[EIO] An I/O error occurred while reading from or writing to the file system.

fstatvfs () andfstatvfs1 () fail if one or more of the following are true:

NetBSD 3.0 April 14, 2004 1

STATVFS (2) NetBSD System Calls Manual STATVFS (2)

[EBADF] fd is not a valid open file descriptor.

[EFAULT] buf points to an invalid address.

[EIO] An I/O error occurred while reading from or writing to the file system.

SEE ALSO
statvfs (5)

HISTORY
Thestatvfs (), statvfs1 (), fstatvfs (), andfstatvfs1 () functions first appeared inNetBSD 3.0 to
replace thestatfs () family of functions which first appeared in 4.4BSD.

NetBSD 3.0 April 14, 2004 2

SWAPCTL (2) NetBSD System Calls Manual SWAPCTL (2)

NAME
swapctl — modify swap configuration

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>
#include <sys/swap.h>

int
swapctl (int cmd , void ∗ arg , int misc);

DESCRIPTION
Theswapctl function is used to add and delete swap devices, and modify their configuration.

Thecmd parameter specifies the operation to be performed.Thearg andmisc parameters have different
meanings, depending on thecmd parameter.

If cmd is SWAP_NSWAP, the current number of swap devices in the system is returned.Thearg and
misc parameters are ignored.

If cmd is SWAP_STATS, the current statistics for swap devices are returned in thearg parameter.
No more thanmisc swap devices are returned.The arg parameter should point to an array of at
leastmisc struct swapent structures:

struct swapent {
dev_t se_dev; / ∗ device id ∗ /
int se_flags; / ∗ entry flags ∗ /
int se_nblks; / ∗ total blocks ∗ /
int se_inuse; / ∗ blocks in use ∗ /
int se_priority; / ∗ priority ∗ /
char se_path[PATH_MAX+1]; / ∗ path to entry ∗ /

};

The flags are defined as

SWF_INUSE in use: we have swapped here
SWF_ENABLE enabled: we can swap here
SWF_BUSY busy: I/O happening here
SWF_FAKE fake: still being built

If cmd is SWAP_ON, thearg parameter is used as a pathname of a file to enable swapping to. The
misc parameter is used to set the priority of this swap device.

If cmd is SWAP_OFF, thearg parameter is used as the pathname of a file to disable swapping from.
Themisc parameter is ignored.

If cmd is SWAP_CTL, thearg andmisc parameters have the same function as for theSWAP_ON
case, except that they change the priority of a currently enabled swap device.

If cmd is SWAP_DUMPDEV, the arg parameter is used as the pathname of a device to use as the
dump device, should the system panic.

If cmd is SWAP_GETDUMPDEV, thearg parameter points to a dev_t, which is filled in by the current
dump device.

NetBSD 3.0 May 29, 2005 1

SWAPCTL (2) NetBSD System Calls Manual SWAPCTL (2)

When swapping is enabled on a block device, the first portion of the disk is left unused to prevent any diskla-
bel present from being overwritten. Thisspace is allocated from the swap device when theSWAP_ONcom-
mand is used.

The priority of a swap device can be used to fill faster swap devices before slower ones.A priority of 0 is the
highest, with larger numbers having lower priority. For a fuller discussion on swap priority, see theSWAP
PRIORITY section inswapctl (8).

RETURN VALUES
If the cmd parameter isSWAP_NSWAPor SWAP_STATS, swapctl () returns the number of swap devices,
if successful.TheSWAP_NSWAPcommand is always successful. Otherwise it returns 0 on success and −1
on failure, setting the global variableerrno to indicate the error.

ERRORS
swapctl () succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceededNAME_MAXcharacters, or an entire path name
exceededPATH_MAXcharacters.

[ENOENT] The named device does not exist. For theSWAP_CTLcommand, the named device is
not currently enabled for swapping.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The caller is not the super-user.

[EBUSY] The device specified byarg has already been made available for swapping.

[EINVAL] The device configured byarg has no associated size, or thecmd was unknown.

[ENXIO] The major device number ofarg is out of range (this indicates no device driver exists
for the associated hardware).

[ENXIO] The block device specified byarg is not marked as a swap partition in the disklabel.

[EIO] An I/O error occurred while opening the swap device.

[EFAULT] arg points outside the process’ allocated address space.

SEE ALSO
swapctl (8)

HISTORY
Theswapctl () function call appeared inNetBSD 1.3. These_path member was added tostruct swapent
in NetBSD 1.4, when the header file was also moved from 〈vm/vm_swap.h 〉 to its current location in
〈sys/swap.h 〉.

AUTHORS
The current swap system was designed and implemented by Matthew Green〈mrg@eterna.com.au〉, with help
from Paul Kranenburg 〈pk@NetBSD.org〉 and Leo Weppelman〈 leo@NetBSD.org〉, and insights from Jason
R. Thorpe〈thorpej@NetBSD.org〉.

NetBSD 3.0 May 29, 2005 2

SYMLINK (2) NetBSD System Calls Manual SYMLINK (2)

NAME
symlink — make symbolic link to a file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
symlink (const char ∗ name1 , const char ∗ name2);

DESCRIPTION
A symbolic link name2 is created toname1 (name2 is the name of the file created,name1 is the string
used in creating the symbolic link).Either name may be an arbitrary path name; the files need neither to be
on the same file system nor to exist.

RETURN VALUES
Upon successful completion, a zero value is returned. If an error occurs, the error code is stored inerrno and
a −1 value is returned.

ERRORS
The symbolic link succeeds unless:

[ENOTDIR] A component of thename2 prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] A component of thename2 path does not exist.

[EACCES] A component of thename2 path prefix denies search permission.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EEXIST] name2 already exists.

[EIO] An I/O error occurred while making the directory entry forname2, or allocating the
inode forname2, or writing out the link contents ofname2.

[EROFS] The filename2 would reside on a read-only file system.

[ENOSPC] The directory in which the entry for the new symbolic link is being placed cannot be
extended because there is no space left on the file system containing the directory.

[ENOSPC] The new symbolic link cannot be created because there there is no space left on the file
system that will contain the symbolic link.

[ENOSPC] There are no free inodes on the file system on which the symbolic link is being cre-
ated.

[EDQUOT] The directory in which the entry for the new symbolic link is being placed cannot be
extended because the user’s quota of disk blocks on the file system containing the
directory has been exhausted.

[EDQUOT] The new symbolic link cannot be created because the user’s quota of disk blocks on
the file system that will contain the symbolic link has been exhausted.

NetBSD 3.0 June 4, 1993 1

SYMLINK (2) NetBSD System Calls Manual SYMLINK (2)

[EDQUOT] The user’s quota of inodes on the file system on which the symbolic link is being cre-
ated has been exhausted.

[EIO] An I/O error occurred while making the directory entry or allocating the inode.

[EFAULT] name1 or name2 points outside the process’s allocated address space.

SEE ALSO
ln (1), link (2), readlink (2), unlink (2), symlink (7)

HISTORY
Thesymlink () function call appeared in 4.2BSD.

NetBSD 3.0 June 4, 1993 2

SYNC (2) NetBSD System Calls Manual SYNC (2)

NAME
sync — synchronize disk block in-core status with that on disk

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

void
sync (void);

DESCRIPTION
Thesync () function forces a write of dirty (modified) buffers in the block buffer cache out to disk.The ker-
nel keeps this information in core to reduce the number of disk I/O transfers required by the system.As
information in the cache is lost after a system crash, kernel threadioflush ensures that dirty buffers are
synced to disk eventually. By default, a dirty buffer is synced after 30 seconds, but some filesystems exploit
ioflush features to sync directory data and metadata faster (after 15 and 10 seconds, respectively).

The functionfsync (2) may be used to synchronize individual file descriptor attributes.

SEE ALSO
fsync (2), sync (8)

HISTORY
A sync () function call appeared in Version 6AT&T UNIX .

BUGS
sync () may return before the buffers are completely flushed.

NetBSD 3.0 June 4, 1993 1

SYSARCH (2) NetBSD System Calls Manual SYSARCH (2)

NAME
sysarch — architecture-dependent system call

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <machine/sysarch.h>

int
sysarch (int number , void ∗ args);

DESCRIPTION
sysarch () performs the architecture-dependent function specified bynumber with the arguments speci-
fied by theargs pointer. args is a pointer to a structure defining the actual arguments of the function.
Symbolic constants and argument structures for the architecture-dependent functions can be found in the
header file〈machine/sysarch.h 〉.

The sysarch () system call should never be called directly by user programs.Instead, they should access
its functions using the architecture-dependent library.

RETURN VALUES
See the manual pages for specific architecture-dependent function calls for information about their return val-
ues.

HISTORY
Thesysarch () function call appeared inNetBSD 1.0.

NetBSD 3.0 October 11, 1993 1

SYSCALL (2) NetBSD System Calls Manual SYSCALL (2)

NAME
syscall , __syscall — indirect system call

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/syscall.h>
#include <unistd.h>

int
syscall (int number , ...);

quad_t
__syscall (quad_t number , ...);

DESCRIPTION
syscall () performs the system call whose assembly language interface has the specifiednumber with the
specified arguments. Symbolic constants for system calls can be found in the header file
〈sys/syscall.h 〉. The__syscall form should be used when one or more of the parameters is a 64-bit
argument to ensure that argument alignment is correct. This system call is useful for testing new system calls
that do not have entries in the C library.

RETURN VALUES
The return values are defined by the system call being invoked. In general, a 0 return value indicates success.
A −1 return value indicates an error, and an error code is stored inerrno.

HISTORY
Thesyscall () function call appeared in 4.0BSD.

BUGS
There is no way to simulate system calls that have multiple return values such aspipe (2).

Since architectures return 32 bit and 64 bit results in different registers, it may be impossible to portably con-
vert the result of__syscall () to a 32bit value. For instance sparc returns 32 bit values in %o0 and 64 bit
values in %o0:%o1 (with %o0 containing the most significant part) so a 32 bit right shift of the result is
needed to get a correct 32 bit result.

Due to ABI implementation differences in passing struct or union type arguments to system calls between
different processors, all system calls pass instead pointers to such structs or unions, even when the documen-
tation of the system call mentions otherwise.The conversion between passing structs and unions is handled
normally via userland stubs. The correct arguments for the kernel entry points for each system call can be
found in the header file〈sys/syscallargs.h 〉

NetBSD 3.0 November 23, 2006 1

TIMER_CREATE (2) NetBSD System Calls Manual TIMER_CREATE (2)

NAME
timer_create — create a per-process timer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>
#include <signal.h>

int
timer_create (clockid_t clockid , struct sigevent ∗ restrict evp ,

timer_t ∗ restrict timerid);

DESCRIPTION
The timer_create () function creates a per-process timer using the clock specified in theclockid argu-
ment. If it succeeds, thetimer_create () function fills in thetimerid argument with an id associated
with the timer created that can be used by other timer related calls.Theclockid must be a valid clock id
as defined in〈time.h 〉. The timer is created in a disarmed state.

An optional (non-NULL) sigevent argument can be specified by theevp argument. Iftheevp argument is
NULL, then it defaults tosigev_notify set toSIGEV_SIGVAL andsigev_value set totimerid.
Seesiginfo (2) for accessing those values from a signal handler.

NOTES
Timers are not inherited after afork (2) and are disarmed and deleted by anexec (3).

RETURN VALUES
If successful, thetimer_create () function returns 0, and fills in thetimerid argument with the id of
the new timer that was created. Otherwise, it returns −1, and setserrno to indicate the error.

ERRORS
Thetimer_create () function will fail if:

[EAGAIN] The system is out of resources to satisfy this request, or the process has created all the
timers it is allowed.

[EINVAL] The argumentclockid is not a valid clock id.

SEE ALSO
clock_getres (2), clock_gettime (2), clock_settime (2), timer_delete (2),
timer_getoverrun (2), timer_gettime (2), timer_settime (2)

STANDARDS
IEEE Std 1003.1b-1993 (“POSIX.1”), IEEE Std 1003.1i-1995 (“POSIX.1”)

NetBSD 3.0 September 13, 2003 1

TIMER_DELETE (2) NetBSD System Calls Manual TIMER_DELETE (2)

NAME
timer_delete — delete a per-process timer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>

int
timer_delete (timer_t timerid);

DESCRIPTION
The timer_delete () functions deletes the timer specified in thetimerid argument. Thetimerid
argument must point to valid timer id, created bytimer_create (2). If the deletion is successful, the
timer is disarmed and deleted. Pending notification events (signals) may or may not be delivered.

RETURN VALUES
If successful, thetimer_delete () functions returns 0. Otherwise, it returns −1, and setserrno to indi-
cate error.

ERRORS
Thetimer_delete () function will fail if:

[EINVAL] The argumenttimerid is not a valid timer id.

SEE ALSO
timer_create (2), timer_getoverrun (2), timer_gettime (2), timer_settime (2)

STANDARDS
IEEE Std 1003.1b-1993 (“POSIX.1”), IEEE Std 1003.1i-1995 (“POSIX.1”)

NetBSD 3.0 September 13, 2003 1

TIMER_SETTIME (2) NetBSD System Calls Manual TIMER_SETTIME (2)

NAME
timer_settime , timer_gettime , timer_getoverrun — process timer manipulation

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>

int
timer_settime (timer_t timerid , int flags ,

const struct itimerspec ∗ restrict tim ,
struct itimerspec ∗ restrict otim);

int
timer_gettime (timer_t timerid , struct itimerspec ∗ tim);

int
timer_getoverrun (timer_t timerid);

DESCRIPTION
The timer_settime () sets the next expiration time of the timer with idtimerid to theit_value
specified in thetim argument. Ifthe value is 0, the timer is disarmed. If the argumentotim is notNULL
the old timer settingas are returned. If theflags argument is set toTIMER_RELTIME then the expiration
time is set to the value in nanoseconds specified in thetim argument from the time the call to
timer_settime () was made. If theflags argument is set toTIMER_ABSTIME then the expiration
time is set to be equal to the difference between the clock associated with this timer, and the value specified
in thetim argument. Ifthat time has already passed, then the call succeeds, and the expiration notification
occurs.

If theit_interval of thetim argument is non-zero, then the timer reloads upon expiration.

The timer_gettime () function returns the current settings of the timer specified by thetimerid argu-
ment in thetim argument.

Only one notification event (signal) can be pending for a given timer and process. If a timer expires while
the signal is still queued for delivery, then the overrun counter for that timer is increased. The counter can
store values up toDELAYTIMER_MAX. When the signal is finally delivered to the process, then the
timer_getoverrun () function can be used to retrieve the overrun counter for the timer specified in the
timerid argument.

NOTES
Expiration time values are always rounded up to the resolution of the timer, so a notification will never be
sent before the requested time.Values returned in theotim argument oftimer_settime () or in thetim
argment oftimer_gettime () are subject to the above rounding effect and might not exactly match the
requested values by the user.

RETURN VALUES
If successful, the timer_gettime () and timer_settime () functions return 0, and the
timer_getoverrun () function returns the expiration overrun count for the specified timer. Otherwise,
the functions return −1, and seterrno to indicate the error.

NetBSD 3.0 September 13, 2003 1

TIMER_SETTIME (2) NetBSD System Calls Manual TIMER_SETTIME (2)

ERRORS
Thetimer_gettime (), timer_getoverrun (), andtimer_settime () functions will fail if:

[EINVAL] The argumenttimerid does not correspond to a valid timer id as returned by
timer_create () or that timer id has been deleted bytimer_delete ().

Thetimer_settime () function will fail if:

[EINVAL] A nanosecond field in thetim structure specified a value less than zero or greater than
or equal to 10e9.

SEE ALSO
clock_gettime (2), timer_create (2), timer_delete (2)

STANDARDS
IEEE Std 1003.1b-1993 (“POSIX.1”), IEEE Std 1003.1i-1995 (“POSIX.1”)

NetBSD 3.0 September 13, 2003 2

TRUNCATE (2) NetBSD System Calls Manual TRUNCATE (2)

NAME
truncate , ftruncate — truncate a file to a specified length

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
truncate (const char ∗ path , off_t length);

int
ftruncate (int fd , off_t length);

DESCRIPTION
truncate () causes the file named bypath or referenced byfd to have a size oflength bytes. Ifthe file
previously was larger than this size, the extra data is discarded.If it was previously shorter thanlength, its
size is increased to the specified value and the extended area appears as if it were zero-filled.

With ftruncate (), the file must be open for writing; fortruncate (), the process must have write per-
missions for the file.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a −1 is returned, and the global variableerrno
specifies the error.

ERRORS
Error return codes common totruncate () andftruncate () are:

[EISDIR] The named file is a directory.

[EROFS] The named file resides on a read-only file system.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

[EIO] An I/O error occurred updating the inode.

[ENOSPC] There was no space in the filesystem to complete the operation.

Error codes specific totruncate () are:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix, or the named file is
not writable by the user.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EFAULT] path points outside the process’s allocated address space.

Error codes specific toftruncate () are:

NetBSD 3.0 March 16, 2008 1

TRUNCATE (2) NetBSD System Calls Manual TRUNCATE (2)

[EBADF] Thefd is not a valid descriptor.

[EINVAL] Thefd references a socket, not a file, or thefd is not open for writing.

SEE ALSO
open (2)

STANDARDS
Use oftruncate () to extend a file is an IEEE Std 1003.1-2004 " (“POSIX.1”) extension, and is
thus not portable. Files can be extended in a portable way seeking (usinglseek (2)) to the required size and
writing a single character withwrite (2).

HISTORY
Thetruncate () andftruncate () function calls appeared in 4.2BSD.

BUGS
These calls should be generalized to allow ranges of bytes in a file to be discarded.

NetBSD 3.0 March 16, 2008 2

UCONTEXT (2) NetBSD System Calls Manual UCONTEXT (2)

NAME
ucontext — user context

SYNOPSIS
#include <ucontext.h>

DESCRIPTION
ucontext_t is a structure type which is used to describe the context of a thread of control within the
execution of a process.

ucontext_t includes the following members:

ucontext_t ∗ uc_link
sigset_t uc_sigmask
stack_t uc_stack
mcontext_t uc_mcontext

Theuc_link member points to the context that will be resumed after the function specified when modify-
ing a context usingmakecontext (3) has returned.If uc_link is a null pointer, then the context is the
main context, and the process will exit with an exit status of 0 upon return.

The uc_sigmask member is the set of signals that are blocked when the context is activated. Further
information can be found insigprocmask (2).

The uc_stack member defines the stack used by the context. Further information can be found in
sigaltstack (2).

Theuc_mcontext member defines the machine state associated with the context; it may consist of general
registers, floating point registers and other machine-specific information. Its description is beyond the scope
of this manual page; portable applications should not access this structure member.

SEE ALSO
_exit (2), getcontext (2), setcontext (2), sigaltstack (2), sigprocmask (2),
makecontext (3), swapcontext (3)

STANDARDS
Theucontext_t type conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

HISTORY
Themakecontext () andswapcontext () functions first appeared inAT&T System V.4UNIX .

NetBSD 3.0 June 13, 2001 1

UMASK (2) NetBSD System Calls Manual UMASK (2)

NAME
umask — set file creation mode mask

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/stat.h>

mode_t
umask(mode_t numask);

DESCRIPTION
Theumask() routine sets the process’s file mode creation mask tonumask and returns the previous value of
the mask. The 9 low-order access permission bits ofnumask are used by system calls, includingopen (2),
mkdir (2), mkfifo (2) and mknod(2) to turn off corresponding bits requested in file mode.(See
chmod(2)). Thisclearing allows each user to restrict the default access to his files.

The default mask value is S_IWGRP|S_IWOTH (022, write access for the owner only). Child processes
inherit the mask of the calling process.

RETURN VALUES
The previous value of the file mode mask is returned by the call.

ERRORS
Theumask() function is always successful.

SEE ALSO
chmod(2), mkdir (2), mkfifo (2), mknod(2), open (2)

STANDARDS
Theumask() function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 1

UNDELETE (2) NetBSD System Calls Manual UNDELETE (2)

NAME
undelete — attempt to recover a deleted file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
undelete (const char ∗ path);

DESCRIPTION
The undelete () function attempts to recover the deleted file named bypath. Currently, this works only
when the named object is a whiteout in a union filesystem.The system call removes the whiteout causing
any objects in a lower layer of the union stack to become visible once more.

Eventually, the undelete functionality may be expanded to other filesystems able to recover deleted files
such as the log-structured filesystem.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
Theundelete () succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire path name exceeded
1023 characters.

[EEXIST] The path does not reference a whiteout.

[ENOENT] The named whiteout does not exist.

[EACCES] Search permission is denied for a component of the path prefix, or write permission is
denied on the directory containing the name to be undeleted.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The directory containing the name is marked sticky, and the containing directory is not
owned by the effective user ID.

[EIO] An I/O error occurred while updating the directory entry.

[EROFS] The name resides on a read-only file system.

[EFAULT] path points outside the process’s allocated address space.

SEE ALSO
unlink (2), mount_union (8)

HISTORY
An undelete function call first appeared in 4.4BSD -Lite.

NetBSD 3.0 October 18, 1994 1

UNLINK (2) NetBSD System Calls Manual UNLINK (2)

NAME
unlink — remove directory entry

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
unlink (const char ∗ path);

DESCRIPTION
The unlink () function removes the link named bypath from its directory and decrements the link count
of the file which was referenced by the link.If that decrement reduces the link count of the file to zero, and
no process has the file open, then all resources associated with the file are reclaimed. If one or more process
have the file open when the last link is removed, the link is removed, but the removal of the file is delayed
until all references to it have been closed.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
Theunlink () succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix, or write permission is
denied on the directory containing the link to be removed.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The named file is a directory and the effective user ID of the process is not the super-
user, the file system containing the file does not permit the use ofunlink () on a
directory, or the directory containing the file is marked sticky, and neither the contain-
ing directory nor the file to be removed are owned by the effective user ID.

[EBUSY] The entry to be unlinked is the mount point for a mounted file system.

[EIO] An I/O error occurred while deleting the directory entry or deallocating the inode.

[EROFS] The named file resides on a read-only file system.

[EFAULT] path points outside the process’s allocated address space.

SEE ALSO
close (2), link (2), rmdir (2), symlink (7)

STANDARDS
Theunlink () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 1

UNLINK (2) NetBSD System Calls Manual UNLINK (2)

HISTORY
An unlink () function call appeared in Version 6AT&T UNIX .

NetBSD 3.0 June 4, 1993 2

UTIMES (2) NetBSD System Calls Manual UTIMES (2)

NAME
utimes , lutimes , futimes — set file access and modification times

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/time.h>

int
utimes (const char ∗ path , const struct timeval times[2]);

int
lutimes (const char ∗ path , const struct timeval times[2]);

int
futimes (int fd , const struct timeval times[2]);

DESCRIPTION
The access and modification times of the file named bypath or referenced byfd are changed as specified
by the argumenttimes.

If times is NULL, the access and modification times are set to the current time. The caller must be the
owner of the file, have permission to write the file, or be the super-user.

If times is non-NULL, it is assumed to point to an array of two timeval structures. Theaccess time is set to
the value of the first element, and the modification time is set to the value of the second element. The caller
must be the owner of the file or be the super-user.

In either case, the inode-change-time of the file is set to the current time.

lutimes () is like utimes () except in the case where the named file is a symbolic link, in which case
lutimes () changes the access and modification times of the link, whileutimes () changes the times of the
file the link references.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
utimes () andlutimes () will fail if:

[EACCES] Search permission is denied for a component of the path prefix; or thetimes argu-
ment isNULLand the effective user ID of the process does not match the owner of the
file, and is not the super-user, and write access is denied.

[EFAULT] path or times points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading or writing the affected inode.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[ENAMETOOLONG] A component of a pathname exceeded{NAME_MAX} characters, or an entire path
name exceeded{PATH_MAX} characters.

[ENOENT] The named file does not exist.

NetBSD 3.0 April 26, 2004 1

UTIMES (2) NetBSD System Calls Manual UTIMES (2)

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] Thetimes argument is notNULLand the calling process’s effective user ID does not
match the owner of the file and is not the super-user.

[EROFS] The file system containing the file is mounted read-only.

futimes () will fail if:

[EBADF] fd does not refer to a valid descriptor.

[EACCES] Thetimes argument isNULLand the effective user ID of the process does not match
the owner of the file, and is not the super-user, and write access is denied.

[EFAULT] times points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading or writing the affected inode.

[EPERM] Thetimes argument is notNULLand the calling process’s effective user ID does not
match the owner of the file and is not the super-user.

[EROFS] The file system containing the file is mounted read-only.

SEE ALSO
stat (2), utime (3), symlink (7)

HISTORY
The utimes () function call appeared in 4.2BSD. The futimes () function call appeared inNetBSD 1.2.
The lutimes () function call appeared inNetBSD 1.3.

NetBSD 3.0 April 26, 2004 2

UTRACE (2) NetBSD System Calls Manual UTRACE (2)

NAME
utrace — insert user record in ktrace log

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <sys/ktrace.h>

int
utrace (const char ∗ label , void ∗ addr , size_t len);

DESCRIPTION
Adds a record to the process trace with information supplied by user. The record is identified bylabel and
containslen bytes from memory pointed to byaddr. This call only has an effect if the calling process is
being traced.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
[ENOSYS] Currently running kernel was compiled withoutktrace (2) support (option

KTRACE).

[EINVAL] Specified data lengthlen was bigger thanKTR_USER_MAXLEN.

SEE ALSO
kdump(1), ktrace (1), ktruss (1), fktrace (2), ktrace (2), options (4)

HISTORY
The utrace () system call first appeared inFreeBSD2.2. It was added toNetBSD in NetBSD 1.6. The
label argument is aNetBSD extension.

NetBSD 3.0 December 28, 2000 1

UUIDGEN (2) NetBSD System Calls Manual UUIDGEN (2)

NAME
uuidgen — generate universally unique identifiers

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/uuid.h>

int
uuidgen (struct uuid ∗ store , int count);

DESCRIPTION
Theuuidgen () system call generatescount universally unique identifiers (UUIDs) and writes them to the
buffer pointed to bystore. The identifiers are generated according to the syntax and semantics of the DCE
version 1 variant of universally unique identifiers. See below for a more in-depth description of the identi-
fiers. Whenno IEEE 802 address is available for the node field, a random multi-cast address is generated for
each invocation of the system call.According to the algorithm of generating time-based UUIDs, this will
also force a new random clock sequence, thereby increasing the likelihood for the identifier to be unique.

When multiple identifiers are to be generated, theuuidgen () system call will generate a set of identifiers
that is dense in such a way that there is no identifier that is larger than the smallest identifier in the set and
smaller than the largest identifier in the set and that is not already in the set.

Universally unique identifiers, also known as globally unique identifiers (GUIDs), have a binary representa-
tion of 128-bits. The grouping and meaning of these bits is described by the following structure and its
description of the fields that follow it:

struct uuid {
uint32_t time_low;
uint16_t time_mid;
uint16_t time_hi_and_version;
uint8_t clock_seq_hi_and_reserved;
uint8_t clock_seq_low;
uint8_t node[_UUID_NODE_LEN];

};

time_low The least significant 32 bits of a 60-bit timestamp. This field is stored in the
native byte-order.

time_mid The least significant 16 bits of the most significant 28 bits of the 60-bit time-
stamp. Thisfield is stored in the native byte-order.

time_hi_and_version The most significant 12 bits of the 60-bit timestamp multiplexed with a 4-bit
version number. The version number is stored in the most significant 4 bits of
the 16-bit field. This field is stored in the native byte-order.

clock_seq_hi_and_reservedThe most significant 6 bits of a 14-bit sequence number multiplexed with a
2-bit variant value. Notethat the width of the variant value is determined by
the variant itself. Identifiers generated by theuuidgen () system call have
variant value 10b. the variant value is stored in the most significant bits of the
field.

NetBSD 3.0 May 26, 2002 1

UUIDGEN (2) NetBSD System Calls Manual UUIDGEN (2)

clock_seq_low The least significant 8 bits of a 14-bit sequence number.

node The 6-byte IEEE 802 (MAC) address of one of the interfaces of the node. If no
such interface exists, a random multi-cast address is used instead.

The binary representation is sensitive to byte ordering. Any multi-byte field is to be stored in the local or
native byte-order and identifiers must be converted when transmitted to hosts that do not agree on the byte-
order. The specification does not however document what this means in concrete terms and is otherwise
beyond the scope of this system call.

RETURN VALUES
Upon successful completion, the value 0 is returned; otherwise the value −1 is returned and the global vari-
ableerrno is set to indicate the error.

ERRORS
Theuuidgen () system call can fail with:

[EFAULT] The buffer pointed to bystore could not be written to for any or all identifiers.

[EINVAL] Thecount argument is less than 1 or larger than the hard upper limit of 2048.

SEE ALSO
uuidgen (1), uuid (3)

STANDARDS
The identifiers are represented and generated in conformance with the DCE 1.1 RPC specification.The
uuidgen () system call is itself not part of the specification.

HISTORY
Theuuidgen () system call first appeared inFreeBSD5.0 and was subsequently added toNetBSD 2.0.

NetBSD 3.0 May 26, 2002 2

VFORK (2) NetBSD System Calls Manual VFORK (2)

NAME
vfork — spawn new process in a virtual memory efficient way

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

pid_t
vfork (void);

DESCRIPTION
The vfork system call creates a new process that does not have a new virtual address space, but rather
shares address space with the parent, thus avoiding potentially expensive copy-on-write operations normally
associated with creating a new process. Itis useful when the purpose offork (2) would have been to create
a new system context for anexecve (2). Thevfork system call differs fromfork (2) in that the child bor-
rows the parent’s memory and thread of control until a call toexecve (2) or an exit (either by a call to
_exit (2) or abnormally). The parent process is suspended while the child is using its resources.

Thevfork system call returns 0 in the child’s context and (later) the pid of the child in the parent’s context.

Thevfork system call can normally be used just like fork (2). It does not work, however, to return while
running in the childs context from the procedure that calledvfork () since the eventual return fromvfork ()
would then return to a no longer existent stack frame. Be careful, also, to call_exit (2) rather than
exit (3) if you can’t execve (2), sinceexit (3) will flush and close standard I/O channels, and thereby
mess up the standard I/O data structures in the parent process.(Even with fork (2) it is wrong to call
exit (3) since buffered data would then be flushed twice.)

RETURN VALUES
Same as forfork (2).

ERRORS
Same as forfork (2).

SEE ALSO
execve (2), fork (2), sigaction (2), wait (2)

HISTORY
Thevfork () function call appeared in 3.0BSD. In 4.4BSD, the semantics were changed to only suspend the
parent. Theoriginal semantics were reintroduced inNetBSD 1.4.

BUGS
Users should not depend on the memory sharing semantics ofvfork () as other ways of speeding up the fork
process may be developed in the future.

To avoid a possible deadlock situation, processes that are children in the middle of avfork () are never sent
SIGTTOUor SIGTTIN signals; rather, output orioctl (2) calls are allowed and input attempts result in an
end-of-file indication.

NetBSD 3.0 January 3, 1998 1

WAIT (2) NetBSD System Calls Manual WAIT (2)

NAME
wait , waitpid , wait4 , wait3 — wait for process termination

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/wait.h>

pid_t
wait (int ∗ status);

pid_t
waitpid (pid_t wpid , int ∗ status , int options);

#include <sys/resource.h>

pid_t
wait3 (int ∗ status , int options , struct rusage ∗ rusage);

pid_t
wait4 (pid_t wpid , int ∗ status , int options , struct rusage ∗ rusage);

DESCRIPTION
The wait () function suspends execution of its calling process untilstatus information is available for a
terminated child process, or a signal is received. Onreturn from a successfulwait () call, thestatus area
contains termination information about the process that exited as defined below.

The wait4 () call provides a more general interface for programs that need to wait for certain child pro-
cesses, that need resource utilization statistics accumulated by child processes, or that require options.The
other wait functions are implemented usingwait4 ().

Thewpid parameter specifies the set of child processes for which to wait. If wpid is −1, the call waits for
any child process.If wpid is 0, the call waits for any child process in the process group of the caller. If
wpid is greater than zero, the call waits for the process with process idwpid. If wpid is less than −1, the
call waits for any process whose process group id equals the absolute value ofwpid.

Thestatus parameter is defined below.

Theoptions parameter contains the bitwise OR of any of the following options:

WNOHANG This option is used to indicate that the call should not block if there are no processes that wish
to report status.

WUNTRACEDIf this option is set, children of the current process that are stopped due to aSIGTTIN ,
SIGTTOU, SIGTSTP, or SIGSTOPsignal also have their status reported.

WALTSIG If this option is specified, the call will wait only for processes that are configured to post a sig-
nal other thanSIGCHLDwhen they exit. If WALTSIGis not specified, the call will wait only
for processes that are configured to postSIGCHLD.

__WCLONE This is an alias forWALTSIG. It is provided for compatibility with the Linuxclone (2) API.

WALLSIG If this option is specified, the call will wait for all children regardless of what exit signal they
post.

__WALL This is an alias forWALLSIG. It is provided for compatibility with the Linuxclone (2) API .

NetBSD 3.0 May 24, 2004 1

WAIT (2) NetBSD System Calls Manual WAIT (2)

If rusage is non-zero, a summary of the resources used by the terminated process and all its children is
returned (this information is currently not available for stopped processes).

When theWNOHANGoption is specified and no processes wish to report status,wait4 () returns a process id
of 0.

Thewaitpid () call is identical towait4 () with anrusage value of zero. The olderwait3 () call is the
same aswait4 () with awpid value of −1.

The following macros may be used to test the manner of exit of the process. Note that these macros expect
thestatus value itself, not a pointer to thestatus value. Oneof the first three macros will evaluate to a
non-zero (true) value:

WIFEXITED(status)
True if the process terminated normally by a call to_exit (2) orexit (3).

WIFSIGNALED(status)
True if the process terminated due to receipt of a signal.

WIFSTOPPED(status)
True if the process has not terminated, but has stopped and can be restarted. This macro can be true
only if the wait call specified theWUNTRACEDoption or if the child process is being traced (see
ptrace (2)).

Depending on the values of those macros, the following macros produce the remaining status information
about the child process:

WEXITSTATUS(status)
If WIFEXITED(status) is true, evaluates to the low-order 8 bits of the argument passed to
_exit (2) orexit (3) by the child.

WTERMSIG(status)
If WIFSIGNALED(status) is true, evaluates to the number of the signal that caused the termina-
tion of the process.

WCOREDUMP(status)
If WIFSIGNALED(status) is true, evaluates as true if the termination of the process was accom-
panied by the creation of a core file containing an image of the process when the signal was
received.

WSTOPSIG(status)
If WIFSTOPPED(status) is true, evaluates to the number of the signal that caused the process to
stop.

NOTES
Seesigaction (2) for a list of termination signals.A status of 0 indicates normal termination.

If a parent process terminates without waiting for all of its child processes to terminate, the remaining child
processes are assigned the parent process 1 ID (the init process ID).

If a signal is caught while any of thewait () calls is pending, the call may be interrupted or restarted when
the signal-catching routine returns, depending on the options in effect for the signal; seeintro (2), System
call restart.

RETURN VALUES
If wait () returns due to a stopped or terminated child process, the process ID of the child is returned to the
calling process. Otherwise, a value of −1 is returned anderrno is set to indicate the error.

NetBSD 3.0 May 24, 2004 2

WAIT (2) NetBSD System Calls Manual WAIT (2)

If wait4 (), wait3 () or waitpid () returns due to a stopped or terminated child process, the process ID of
the child is returned to the calling process.If there are no children not previously awaited, −1 is returned
with errno set to [ECHILD]. Otherwise,if WNOHANGis specified and there are no stopped or exited chil-
dren, 0 is returned. If an error is detected or a caught signal aborts the call, a value of −1 is returned and
errno is set to indicate the error.

ERRORS
wait () will fail and return immediately if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EFAULT] Thestatus or rusage arguments point to an illegal address. (Maynot be detected
before exit of a child process.)

[EINTR] The call was interrupted by a caught signal, or the signal did not have the
SA_RESTARTflag set.

In addition,wait3 (), wait4 (), andwaitpid () will fail and return immediately if:

[EINVAL] An invalid value was specified foroptions.

SEE ALSO
_exit (2), sigaction (2)

STANDARDS
Thewait () andwaitpid () functions conform toISO/IEC9945-1:1990 (“POSIX.1”); thewait3 () function
conforms toX/Open Portability Guide Issue 4 (“XPG4”); wait4 () is an extension. TheWCOREDUMP()
macro and the ability to restart a pendingwait () call are extensions to the POSIX interface.

HISTORY
A wait () function call appeared in Version 6AT&T UNIX .

NetBSD 3.0 May 24, 2004 3

WRITE (2) NetBSD System Calls Manual WRITE (2)

NAME
write , writev , pwrite , pwritev — write output

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

ssize_t
write (int d , const void ∗ buf , size_t nbytes);

ssize_t
pwrite (int d , const void ∗ buf , size_t nbytes , off_t offset);

#include <sys/uio.h>

ssize_t
writev (int d , const struct iovec ∗ iov , int iovcnt);

ssize_t
pwritev (int d , const struct iovec ∗ iov , int iovcnt , off_t offset);

DESCRIPTION
write () attempts to writenbytes of data to the object referenced by the descriptord from the buffer
pointed to bybuf. writev () performs the same action, but gathers the output data from theiovcnt
buffers specified by the members of theiov array: iov[0], iov[1], ..., iov[iovcnt - 1]. pwrite () and
pwritev () perform the same functions, but write to the specified position in the file without modifying the
file pointer.

For writev () andpwritev (), theiovec structure is defined as:

struct iovec {
void ∗ iov_base;
size_t iov_len;

};

Eachiovec entry specifies the base address and length of an area in memory from which data should be
written. writev () andpwritev () will always write a complete area before proceeding to the next.

On objects capable of seeking, thewrite () starts at a position given by the pointer associated withd (see
lseek (2)). Uponreturn fromwrite (), the pointer is incremented by the number of bytes which were writ-
ten.

Objects that are not capable of seeking always write from the current position.The value of the pointer asso-
ciated with such an object is undefined.

If the real user is not the super-user, thenwrite () clears the set-user-id bit on a file. This prevents penetra-
tion of system security by a user who “captures” a writable set-user-id file owned by the super-user.

If write () succeeds it will update the st_ctime and st_mtime fields of the file’s meta-data (seestat (2)).

When using non-blocking I/O on objects such as sockets that are subject to flow control, write () and
writev () may write fewer bytes than requested; the return value must be noted, and the remainder of the
operation should be retried when possible.

NetBSD 3.0 December 30, 2002 1

WRITE (2) NetBSD System Calls Manual WRITE (2)

RETURN VALUES
Upon successful completion the number of bytes which were written is returned. Otherwise a −1 is returned
and the global variableerrno is set to indicate the error.

ERRORS
write (), writev (), pwrite (), andpwritev () will fail and the file pointer will remain unchanged if:

[EBADF] d is not a valid descriptor open for writing.

[EPIPE] An attempt is made to write to a pipe that is not open for reading by any process.

[EPIPE] An attempt is made to write to a socket of typeSOCK_STREAMthat is not connected
to a peer socket.

[EFBIG] An attempt was made to write a file that exceeds the process’s file size limit or the
maximum file size.

[EFAULT] Part of iov or data to be written to the file points outside the process’s allocated
address space.

[EINVAL] The pointer associated withd was neg ative.

[EINVAL] The total length of the I/O is more than can be expressed by the ssize_t return value.

[ENOSPC] There is no free space remaining on the file system containing the file.

[EDQUOT] The user’s quota of disk blocks on the file system containing the file has been
exhausted.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EINTR] A signal was received before any data could be written to a slow device. See
sigaction (2) for more information on the interaction between signals and system
calls.

[EAGAIN] The file was marked for non-blocking I/O, and no data could be written immediately.

In addition,writev () andpwritev () may return one of the following errors:

[EINVAL] iovcnt was less than or equal to 0, or greater than{IOV_MAX} .

[EINVAL] One of theiov_len values in theiov array was negative.

[EINVAL] The sum of theiov_len values in theiov array overflowed a 32-bit integer.

pwrite () andpwritev () calls may also return the following errors:

[EINVAL] The specified file offset is invalid.

[ESPIPE] The file descriptor is associated with a pipe, socket, or FIFO.

SEE ALSO
fcntl (2), lseek (2), open (2), pipe (2), poll (2), select (2), sigaction (2)

STANDARDS
The write () function is expected to conform toIEEE Std 1003.1-1988 (“POSIX.1”). The writev () and
pwrite () functions conform toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

HISTORY
The pwritev () function call appeared inNetBSD 1.4. Thepwrite () function call appeared inAT&T
System V.4 UNIX . Thewritev () function call appeared in 4.2BSD. Thewrite () function call appeared in

NetBSD 3.0 December 30, 2002 2

WRITE (2) NetBSD System Calls Manual WRITE (2)

Version 6AT&T UNIX .

CAVEATS
Error checks should explicitly test for −1. Code such as

while ((nr = write(fd, buf, sizeof(buf))) > 0)

is not maximally portable, as some platforms allow for nbytes to range betweenSSIZE_MAX and
SIZE_MAX − 2, in which case the return value of an error-free write () may appear as a negative number
distinct from −1. Proper loops should use

while ((nr = write(fd, buf, sizeof(buf))) != -1 && nr != 0)

NetBSD 3.0 December 30, 2002 3

X86_64_GET_MTRR (2) NetBSD/x86_64 System Calls Manual X86_64_GET_MTRR (2)

NAME
x86_64_get_mtrr , x86_64_set_mtrr — access Memory Type Range Registers

LIBRARY
x86_64 Architecture Library (libx86_64, −lx86_64)

SYNOPSIS
#include <sys/types.h>
#include <machine/sysarch.h>
#include <machine/mtrr.h>

int
x86_64_get_mtrr (struct mtrr ∗ mtrrp , int ∗ n);

int
x86_64_set_mtrr (struct mtrr ∗ mtrrp , int ∗ n);

DESCRIPTION
These functions provide an interface to the MTRR registers found on 686-class processors for controlling
processor access to memory ranges. This is most useful for accessing devices such as video accelerators on
pci (4) andagp (4) buses. For example, enabling write-combining allows bus-write transfers to be com-
bined into a larger transfer before bursting over the bus. Thiscan increase performance of write operations
2.5 times or more.

mtrrp is a pointer to one or more mtrr structures, as described below. Then argument is a pointer to an
integer containing the number of structures pointed to bymtrrp. For x86_64_set_mtrr () the integer
pointed to by n will be updated to reflect the actual number of MTRRs successfully set.For
x86_64_get_mtrr () no more thann structures will be copied out, and the integer value pointed to byn
will be updated to reflect the actual number of valid structures retrieved. A NULL argument tomtrrp will
result in just the number of MTRRs available being returned in the integer pointed to byn.

The argumentmtrrp has the following structure:

struct mtrr {
uint64_t base;
uint64_t len;
uint8_t type;
int flags;
pid_t owner;

};

The location of the mapping is described by its physical base addressbaseand lengthlen. Valid values for
typeare:

MTRR_TYPE_UC uncached memory
MTRR_TYPE_WC use write-combining
MTRR_TYPE_WT use write-through caching
MTRR_TYPE_WP write-protected memory
MTRR_TYPE_WB use write-back caching

Valid values forflagsare:

MTRR_PRIVATE
own range, reset the MTRR when the current process exits

NetBSD 3.0 November 10, 2001 1

X86_64_GET_MTRR (2) NetBSD/x86_64 System Calls Manual X86_64_GET_MTRR (2)

MTRR_FIXED use fixed range MTRR
MTRR_VALID entry is valid

Theownermember is the PID of the user process which claims the mapping. It is only valid if MTRR_PRI-
VA TE is set inflags. To clear/reset MTRRs, use aflagsfield without MTRR_VALID set.

RETURN VALUES
Upon successful completion zero is returned, otherwise −1 is returned on failure, and the global variable
errno is set to indicate the error. The integer value pointed to byn will contain the number of successfully
processed mtrr structures in both cases.

ERRORS
[ENOSYS] The currently running kernel or CPU has no MTRR support.

[EINVAL] The currently running kernel has no MTRR support, or one of the mtrr structures pointed to by
mtrrp is invalid.

[EBUSY] No unused MTRRs are available.

HISTORY
The x86_64_get_mtrr () andx86_64_set_mtrr () were derived from their i386 counterparts, which
appeared inNetBSD 1.6.

NetBSD 3.0 November 10, 2001 2

X86_64_IOPL (2) NetBSD/x86_64 System Calls Manual X86_64_IOPL (2)

NAME
x86_64_iopl — change the x86_64 I/O privilege level

LIBRARY
x86_64 Architecture Library (libx86_64, −lx86_64)

SYNOPSIS
#include <sys/types.h>
#include <machine/sysarch.h>

int
x86_64_iopl (int iopl);

DESCRIPTION
x86_64_iopl () sets the x86_64 I/O privilege level to the value specified byiopl. This call is restricted
to the super-user.

RETURN VALUES
Upon successful completion,x86_64_iopl () returns 0. Otherwise, a value of −1 is returned and the
global variableerrno is set to indicate the error.

ERRORS
x86_64_iopl () will fail if:

[EPERM] The caller was not the super-user, or the operation was not permitted at the current security
level.

WARNING
You can really hose your machine if you enable user-level I /O and write to hardware ports without care.

NetBSD 3.0 July 3, 2002 1

