
INTRO (3) NetBSDLibrary Functions Manual INTRO (3)

NAME
intro — introduction to the system libraries

DESCRIPTION
This section provides an overview of the system libraries, their functions, error returns and other common
definitions and concepts. Most of these functions are available from the standard C library, libc. Other
libraries, such as the math library, libm, must be indicated at compile time with the−l option of the com-
piler.

The various system libraries supplied inNetBSD (followed by the linker flags) are:

libasn1 (−l asn1)
The abstract syntax notation (ASN) library provides routines for the specification of abstract
data types.

libbz2 (−l bz2)
Block-sorting compressor library providing routines for fast and efficient compression.

libc (−l c) The standard C library. When using the C compilercc (1), it is not necessary to supply the
linker flag −l c for these functions. There are several subsystems included insidelibc:

standard I/O routines
seestdio (3)

database routines
seedb(3)

bit operators
seebitstring (3)

string operators
seestring (3)

character tests and character operators

encryption and hash routines
seemd4(3) andmd5(3).

storage allocation
seempool (3) andmalloc (3)

time functions
seetime (3)

signal handling
seesignal (3)

libcdk (−l cdk)
Curses development kit (CDK) library. Seecdk (3).

libcom_err (−l com_err)
The common error description library. Seecom_err (3).

libcompat (−l compat)
Functions which are obsolete but are available for compatibility with 4.3BSD. In particular,
a number of system call interfaces provided in previous releases ofBSD have been included
for source code compatibility. Use of these routines should, for the most part, be avoided.
The manual page entry for each compatibility routine indicates the proper interface to use.

NetBSD 3.0 October 4, 2001 1

INTRO (3) NetBSDLibrary Functions Manual INTRO (3)

libcrypt (−l crypt)
The crypt library. Seecrypt (3).

libcrypto (−l crypto)
The OpenSSL cryptographic library. Seecrypto (3).

libcrypto_idea(−l crypto_idea)
The OpenSSL cryptographic library routines for the IDEA algorithm.This algorithm is sep-
arated from libcrypto since the IDEA algorithm is protected by patents and its use is
restricted.

libcrypto_rc5 (−l crypto_rc5)
The OpenSSL cryptographic library routines for the RC5 algorithm. This algorithm is sepa-
rated from libcrypto since the RC5 algorithm is protected by patents and its use is restricted.

libcurses(−l curses −l termcap)
Terminal independent screen management routines for two dimensional non-bitmap display
terminals. Seecurses (3).

libdes (−l des)
The OpenSSL cryptographic library for the DES algorithms. Seedes (3).

libedit (−l edit)
The command-line editor or editline library. The editline library provides generic editing
and history functions. Seeeditline (3).

libform (−l form)
The curses form library provides a terminal-independent form system using the curses
library. The form library provides facilities for defining forms on terminals.Seeforms (3).

libgssapi (−l gssapi)
The Generic Security Services (GSS) API library. This library provides verification services
to applications and usually sits above the cryptographic libraries.

libhesiod (−l hesiod)
The Hesiod library. This library provides routines for performing lookups of Hesiod infor-
mation, which is stored as text records in the Domain Name Service. Seehesiod (3).

libhdb (−l hdb)
The Heimdal Kerberos 5 authentication/authorisation database access library.

libintl (−l intl)
The internationalized message handling library. Seegettext (3).

libipsec (−l ipsec)
The IPsec policy control library. See ipsec_set_policy (3) and
ipsec_strerror (3).

libkadm (−l kadm)
The Kerberos IV administration server and client library.

libkadm5clnt(−l kadm5clnt)
The Kerberos 5 administration client library.

libkadm5srv(−l kadm5srv)
The Kerberos 5 administration server library.

libkafs (−l kafs)
The Kerberos IV AFS library. Seekafs (3).

NetBSD 3.0 October 4, 2001 2

INTRO (3) NetBSDLibrary Functions Manual INTRO (3)

libkdb (−l kdb)
The Kerberos IV authentication/authorisation database access library.

libkrb (−l krb)
The Kerberos IV library.

libkrb5 (−l krb5)
The Kerberos 5 library. Seekrb5 (3).

libkstream(−l kstream)
Kerberos IV encrypted stream library.

libkvm (−l kvm)
Kernel data access library. Seekvm(3).

libl (−l l) The library forlex (1).

libm (−l m) The math library. Seemath (3).

libmenu (−l menu)
The curses menu library. Seemenus(3).

libpcap (−l pcap)
The packet capture library. Seepcap (3).

libpci (−l pci)
The PCI bus access library. Seepci (3).

libposix (−l posix)
The POSIX compatibility library provides a compatibility interface for POSIX functions
which differ from the standard BSD interfaces. Seechown (2) andrename (2).

libresolv (−l resolv)
The DNS resolver library.

librmt (−l rmt)
Remote magnetic tape library. Seermtops (3).

libroken (−l roken)
A l ibrary containing compatibility functions used by Kerberos. Itimplements functionality
required by the Kerberos implementation not implemented in the standardNetBSD libraries.

librpcsvc (−l rpcsvc)
The Remote Procedure Call (RPC) services library. Seerpc (3).

libskey (−l skey)
The S/Key one-time password library. Seeskey (3).

libsl (−l sl)

libss (−l ss)

libssl (−l ssl)
The secure sockets layer (SSL) library. Seessl (3).

libtelnet (−l telnet)
The telnet library.

libtermcap (−l termcap)
The terminal-independent operation library. Seetermcap (3).

NetBSD 3.0 October 4, 2001 3

INTRO (3) NetBSDLibrary Functions Manual INTRO (3)

libusb (−l usb)
The Universal Serial Bus (USB) access library.

libutil (−l util)
The system utilities library. Seeutil (3).

libwrap (−l wrap)
The TCP wrappers library. Seehosts_access (3).

liby (−l y) The library foryacc (1).

libz (−l z) General-purpose compression library.

SEE ALSO
cc (1), ld (1), nm(1), rtld (1), intro (2)

HISTORY
An intro manual appeared in Version 7AT&T UNIX .

NetBSD 3.0 October 4, 2001 4

ASN1_OBJECT_new(3) OpenSSL ASN1_OBJECT_new(3)

NAME
ASN1_OBJECT_new, ASN1_OBJECT_free, − object allocation functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/asn1.h>

ASN1_OBJECT *ASN1_OBJECT_new(void);
void ASN1_OBJECT_free(ASN1_OBJECT *a);

DESCRIPTION
The ASN1_OBJECTallocation routines, allocate and free anASN1_OBJECTstructure, which represents an
ASN1 OBJECT IDENTIFIER.

ASN1_OBJECT_new()allocates and initializes aASN1_OBJECTstructure.

ASN1_OBJECT_free()frees up theASN1_OBJECT structurea.

NOTES
AlthoughASN1_OBJECT_new()allocates a new ASN1_OBJECTstructure it is almost never used in applica-
tions. TheASN1 object utility functions such asOBJ_nid2obj()are used instead.

RETURN VALUES
If the allocation fails, ASN1_OBJECT_new()returnsNULL and sets an error code that can be obtained by
ERR_get_error(3). Otherwiseit returns a pointer to the newly allocated structure.

ASN1_OBJECT_free()returns no value.

SEE ALSO
ERR_get_error(3), d2i_ASN1_OBJECT(3)

HISTORY
ASN1_OBJECT_new()andASN1_OBJECT_free()are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2008-05-09 1

ASN1_STRING_length(3) OpenSSL ASN1_STRING_length(3)

NAME
ASN1_STRING_dup, ASN1_STRING_cmp, ASN1_STRING_set, ASN1_STRING_length,
ASN1_STRING_length_set, ASN1_STRING_type, ASN1_STRING_data − ASN1_STRING utility func-
tions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/asn1.h>

int ASN1_STRING_length(ASN1_STRING *x);
unsigned char * ASN1_STRING_data(ASN1_STRING *x);

ASN1_STRING * ASN1_STRING_dup(ASN1_STRING *a);

int ASN1_STRING_cmp(ASN1_STRING *a, ASN1_STRING *b);

int ASN1_STRING_set(ASN1_STRING *str, const void *data, int len);

int ASN1_STRING_type(ASN1_STRING *x);

int ASN1_STRING_to_UTF8(unsigned char **out, ASN1_STRING *in);

DESCRIPTION
These functions allow an ASN1_STRING structure to be manipulated.

ASN1_STRING_length()returns the length of the content ofx.

ASN1_STRING_data()returns an internal pointer to the data ofx. Since this is an internal pointer it should
not be freed or modified in any way.

ASN1_STRING_dup()returns a copy of the structurea.

ASN1_STRING_cmp()comparesa andb returning 0 if the two are identical. The string types and content
are compared.

ASN1_STRING_set()sets the data of stringstr to the buffer data or lengthlen. The supplied data is copied.
If len is −1 then the length is determined by strlen(data).

ASN1_STRING_type() returns the type of x, using standard constants such as
V_ASN1_OCTET_STRING.

ASN1_STRING_to_UTF8()converts the stringin to UTF8 format, the converted data is allocated in a buffer
in *out . The length ofout is returned or a negative error code. The buffer *out should be free using
OPENSSL_free().

NOTES
Almost all ASN1 types in OpenSSL are represented as anASN1_STRING structure. Other types such as
ASN1_OCTET_STRING are simply typedefed toASN1_STRING and the functions call theASN1_STRING
equivalents. ASN1_STRING is also used for someCHOICE types which consist entirely of primitive string
types such asDirectoryString andTime.

These functions shouldnot be used to examine or modifyASN1_INTEGER or ASN1_ENUMERATED
types: the relevant INTEGER or ENUMERATED utility functions should be used instead.

In general it cannot be assumed that the data returned byASN1_STRING_data()is null terminated or does
not contain embedded nulls. The actual format of the data will depend on the actual string type itself: for
example for and IA5String the data will beASCII, for a BMPString two bytes per character in big endian
format, UTF8String will be inUTF8 format.

Similar care should be take to ensure the data is in the correct format when callingASN1_STRING_set().

RETURN VALUES
SEE ALSO

ERR_get_error(3)

0.9.9-dev 2008-05-09 1

ASN1_STRING_length(3) OpenSSL ASN1_STRING_length(3)

HISTORY

0.9.9-dev 2008-05-09 2

ASN1_STRING_new(3) OpenSSL ASN1_STRING_new(3)

NAME
ASN1_STRING_new, ASN1_STRING_type_new, ASN1_STRING_free − ASN1_STRING allocation
functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/asn1.h>

ASN1_STRING * ASN1_STRING_new(void);
ASN1_STRING * ASN1_STRING_type_new(int type);
void ASN1_STRING_free(ASN1_STRING *a);

DESCRIPTION
ASN1_STRING_new()returns an allocatedASN1_STRING structure. Its type is undefined.

ASN1_STRING_type_new()returns an allocatedASN1_STRING structure of typetype.

ASN1_STRING_free()frees upa.

NOTES
Other string types call theASN1_STRING functions. For example ASN1_OCTET_STRING_new()calls
ASN1_STRING_type(V_ASN1_OCTET_STRING).

RETURN VALUES
ASN1_STRING_new()andASN1_STRING_type_new()return a valid ASN1_STRINGstructure orNULL if
an error occurred.

ASN1_STRING_free()does not return a value.

SEE ALSO
ERR_get_error(3)

HISTORY
TBA

0.9.9-dev 2008-05-09 1

ASN1_STRING_print_ex(3) OpenSSL ASN1_STRING_print_ex(3)

NAME
ASN1_STRING_print_ex, ASN1_STRING_print_ex_fp − ASN1_STRING output routines.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/asn1.h>

int ASN1_STRING_print_ex(BIO *out, ASN1_STRING *str, unsigned long flags);
int ASN1_STRING_print_ex_fp(FILE *fp, ASN1_STRING *str, unsigned long flags);
int ASN1_STRING_print(BIO *out, ASN1_STRING *str);

DESCRIPTION
These functions output anASN1_STRING structure.ASN1_STRING is used to represent all theASN1 string
types.

ASN1_STRING_print_ex()outputs str to out, the format is determined by the optionsflags.
ASN1_STRING_print_ex_fp()is identical except it outputs tofp instead.

ASN1_STRING_print()prints str to out but using a different format toASN1_STRING_print_ex(). It
replaces unprintable characters (other thanCR, LF) with ’.’.

NOTES
ASN1_STRING_print()is a legacy function which should be avoided in new applications.

Although there are a large number of options frequentlyASN1_STRFLGS_RFC2253is suitable, or onUTF8
terminalsASN1_STRFLGS_RFC2253& ˜ ASN1_STRFLGS_ESC_MSB.

The complete set of supported options forflags is listed below.

Various characters can be escaped. IfASN1_STRFLGS_ESC_2253is set the characters determined by
RFC2253are escaped. IfASN1_STRFLGS_ESC_CTRLis set control characters are escaped. IfASN1_STR-
FLGS_ESC_MSBis set characters with theMSB set are escaped: this option shouldnot be used if the termi-
nal correctly interpretsUTF8 sequences.

Escaping takes several forms.

If the character being escaped is a 16 bit character then the form ‘‘\UXXXX’ ’ is used using exactly four
characters for the hex representation. If it is 32 bits then ‘‘\WXXXXXXXX’ ’ is used using eight characters
of its hex representation. These forms will only be used ifUTF8 conversion is not set (see below).

Printable characters are normally escaped using the backslash ’\’ character. If ASN1_STR-
FLGS_ESC_QUOTE is set then the whole string is instead surrounded by double quote characters: this is
arguably more readable than the backslash notation. Other characters use the ‘‘\XX’ ’ using exactly two
characters of the hex representation.

If ASN1_STRFLGS_UTF8_CONVERTis set then characters are converted toUTF8 format first. If the termi-
nal supports the display ofUTF8 sequences then this option will correctly display multi byte characters.

If ASN1_STRFLGS_IGNORE_TYPE is set then the string type is not interpreted at all: everything is
assumed to be one byte per character. This is primarily for debugging purposes and can result in confusing
output in multi character strings.

If ASN1_STRFLGS_SHOW_TYPEis set then the string type itself is printed out before its value (for exam-
ple ‘‘BMPSTRING’’), this actually usesASN1_tag2str().

The content of a string instead of being interpreted can be ‘‘dumped’’: this just outputs the value of the
string using the form #XXXX using hex format for each octet.

If ASN1_STRFLGS_DUMP_ALL is set then any type is dumped.

Normally non character string types (such asOCTET STRING) are assumed to be one byte per character, if
ASN1_STRFLGS_DUMP_UNKNOWN is set then they will be dumped instead.

When a type is dumped normally just the content octets are printed, ifASN1_STRFLGS_DUMP_DERis set

0.9.9-dev 2007-03-06 1

ASN1_STRING_print_ex(3) OpenSSL ASN1_STRING_print_ex(3)

then the complete encoding is dumped instead (including tag and length octets).

ASN1_STRFLGS_RFC2253includes all the flags required byRFC2253. It is equivalent to:
ASN1_STRFLGS_ESC_2253 ASN1_STRFLGS_ESC_CTRL ASN1_STRFLGS_ESC_MSB
ASN1_STRFLGS_UTF8_CONVERT ASN1_STRFLGS_DUMP_UNKNOWN ASN1_STRFLGS_DUMP_DER

SEE ALSO
X509_NAME_print_ex(3), ASN1_tag2str(3)

HISTORY
TBA

0.9.9-dev 2007-03-06 2

ASN1_generate_nconf(3) OpenSSL ASN1_generate_nconf(3)

NAME
ASN1_generate_nconf, ASN1_generate_v3 − ASN1 generation functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/asn1.h>

ASN1_TYPE *ASN1_generate_nconf(char *str, CONF *nconf);
ASN1_TYPE *ASN1_generate_v3(char *str, X509V3_CTX *cnf);

DESCRIPTION
These functions generate theASN1 encoding of a string in anASN1_TYPE structure.

str contains the string to encodenconf or cnf contains the optional configuration information where addi-
tional strings will be read from.nconf will typically come from a config file whereasecnf is obtained from
anX509V3_CTX structure which will typically be used by X509 v3 certificate extension functions.cnf or
nconf can be set toNULL if no additional configuration will be used.

GENERATION STRING FORMAT
The actual data encoded is determined by the stringstr and the configuration information. The general for-
mat of the string is:

[modifier,]type[:value]

That is zero or more comma separated modifiers followed by a type followed by an optional colon and a
value. The formats oftype, value andmodifier are explained below.

SUPPORTED TYPES

The supported types are listed below. Unless otherwise specified only theASCII format is permissible.

BOOLEAN , BOOL
This encodes a boolean type. Thevalue string is mandatory and should beTRUE or FALSE. Additionally
TRUE, true, Y, y, YES, yes, FALSE, false, N, n, NO andno are acceptable.

NULL
Encode theNULL type, thevalue string must not be present.

INTEGER , INT
Encodes anASN1 INTEGER type. Thevalue string represents the value of the integer, it can be pre-
ceeded by a minus sign and is normally interpreted as a decimal value unless the prefix0x is included.

ENUMERATED , ENUM
Encodes theASN1 ENUMERATED type, it is otherwise identical toINTEGER .

OBJECT, OID
Encodes anASN1 OBJECT IDENTIFIER , thevalue string can be a short name, a long name or numeri-
cal format.

UTCTIME , UTC
Encodes anASN1 UTCTime structure, the value should be in the formatYYMMDDHHMMSSZ .

GENERALIZEDTIME , GENTIME
Encodes anASN1 GeneralizedTime structure, the value should be in the formatYYYYMMDDHH-
MMSSZ.

OCTETSTRING , OCT
Encodes anASN1 OCTET STRING . value represents the contents of this structure, the format strings
ASCII andHEX can be used to specify the format ofvalue.

BITSTRING , BITSTR
Encodes anASN1 BIT STRING . value represents the contents of this structure, the format stringsASCII ,
HEX andBITLIST can be used to specify the format ofvalue.

0.9.9-dev 2008-05-09 1

ASN1_generate_nconf(3) OpenSSL ASN1_generate_nconf(3)

If the format is anything other thanBITLIST the number of unused bits is set to zero.

UNIVERSALSTRING , UNIV , IA5 , IA5STRING , UTF8, UTF8String, BMP, BMPSTRING , VISI-
BLESTRING , VISIBLE , PRINTABLESTRING , PRINTABLE , T61, T61STRING, TELETEXSTRING , Gen-
eralString, NUMERICSTRING , NUMERIC

These encode the corresponding string types.value represents the contents of this structure. The format
can beASCII or UTF8.

SEQUENCE, SEQ, SET
Formats the result as anASN1 SEQUENCE or SET type.value should be a section name which will con-
tain the contents. The field names in the section are ignored and the values are in the generated string for-
mat. Ifvalue is absent then an emptySEQUENCEwill be encoded.

MODIFIERS

Modifiers affect the following structure, they can be used to addEXPLICIT or IMPLICIT tagging, add wrap-
pers or to change the string format of the final type and value. The supported formats are documented
below.

EXPLICIT , EXP
Add an explicit tag to the following structure. This string should be followed by a colon and the tag value
to use as a decimal value.

By following the number withU, A, P or C UNIVERSAL, APPLICATION, PRIVATE or CONTEXT SPE-
CIFIC tagging can be used, the default isCONTEXT SPECIFIC.

IMPLICIT , IMP
This is the same asEXPLICIT exceptIMPLICIT tagging is used instead.

OCTWRAP , SEQWRAP, SETWRAP, BITWRAP
The following structure is surrounded by anOCTET STRING, a SEQUENCE, a SET or a BIT STRING
respectively. For aBIT STRING the number of unused bits is set to zero.

FORMAT
This specifies the format of the ultimate value. It should be followed by a colon and one of the strings
ASCII , UTF8, HEX or BITLIST .

If no format specifier is included thenASCII is used. IfUTF8 is specified then the value string must be a
valid UTF8 string. For HEX the output must be a set of hex digits. BITLIST (which is only valid for aBIT
STRING) is a comma separated list of the indices of the set bits, all other bits are zero.

EXAMPLES
A simple IA5String:

IA5STRING:Hello World

An IA5String explicitly tagged:

EXPLICIT:0,IA5STRING:Hello World

An IA5String explicitly tagged usingAPPLICATION tagging:

EXPLICIT:0A,IA5STRING:Hello World

A BITSTRING with bits 1 and 5 set and all others zero:

FORMAT=BITLIST,BITSTRING:1,5

A more complex example using a config file to produce aSEQUENCEconsiting of aBOOL an OID and a
UTF8String:

asn1 = SEQUENCE:seq_section

[seq_section]

0.9.9-dev 2008-05-09 2

ASN1_generate_nconf(3) OpenSSL ASN1_generate_nconf(3)

field1 = BOOLEAN:TRUE
field2 = OID:commonName
field3 = UTF8:Third field

This example produces an RSAPrivateKey structure, this is the key contained in the file client.pem in all
OpenSSL distributions (note: the field names such as ’coeff’ are ignored and are present just for clarity):

asn1=SEQUENCE:private_key
[private_key]
version=INTEGER:0

n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\
D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9

e=INTEGER:0x010001

d=INTEGER:0x6F05EAD2F27FFAEC84BEC360C4B928FD5F3A9865D0FCAAD291E2A52F4A\
F810DC6373278C006A0ABBA27DC8C63BF97F7E666E27C5284D7D3B1FFFE16B7A87B51D

p=INTEGER:0xF3929B9435608F8A22C208D86795271D54EBDFB09DDEF539AB083DA912\
D4BD57

q=INTEGER:0xC50016F89DFF2561347ED1186A46E150E28BF2D0F539A1594BBD7FE467\
46EC4F

exp1=INTEGER:0x9E7D4326C924AFC1DEA40B45650134966D6F9DFA3A7F9D698CD4ABEA\
9C0A39B9

exp2=INTEGER:0xBA84003BB95355AFB7C50DF140C60513D0BA51D637272E355E397779\
E7B2458F

coeff=INTEGER:0x30B9E4F2AFA5AC679F920FC83F1F2DF1BAF1779CF989447FABC2F5\
628657053A

This example is the corresponding public key in a SubjectPublicKeyInfo structure:

Start with a SEQUENCE
asn1=SEQUENCE:pubkeyinfo

pubkeyinfo contains an algorithm identifier and the public key wrapped
in a B IT STRING
[pubkeyinfo]
algorithm=SEQUENCE:rsa_alg
pubkey=BITWRAP,SEQUENCE:rsapubkey

algorithm ID for RSA is just an OID and a NULL
[rsa_alg]
algorithm=OID:rsaEncryption
parameter=NULL

Actual public key: modulus and exponent
[rsapubkey]
n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\
D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9

e=INTEGER:0x010001

RETURN VALUES
ASN1_generate_nconf()andASN1_generate_v3()return the encoded data as anASN1_TYPE structure or
NULL if an error occurred.

The error codes that can be obtained byERR_get_error(3).

SEE ALSO
ERR_get_error(3)

0.9.9-dev 2008-05-09 3

ASN1_generate_nconf(3) OpenSSL ASN1_generate_nconf(3)

HISTORY
ASN1_generate_nconf()andASN1_generate_v3()were added to OpenSSL 0.9.8

0.9.9-dev 2008-05-09 4

BIO_ctrl(3) OpenSSL BIO_ctrl(3)

NAME
BIO_ctrl, BIO_callback_ctrl, BIO_ptr_ctrl, BIO_int_ctrl, BIO_reset, BIO_seek, BIO_tell, BIO_flush,
BIO_eof, BIO_set_close, BIO_get_close, BIO_pending, BIO_wpending, BIO_ctrl_pending,
BIO_ctrl_wpending, BIO_get_info_callback, BIO_set_info_callback − BIO control operations

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

long BIO_ctrl(BIO *bp,int cmd,long larg,void *parg);
long BIO_callback_ctrl(BIO *b, int cmd, void (*fp)(struct bio_st *, int, const char *, int, long, long));
char * BIO_ptr_ctrl(BIO *bp,int cmd,long larg);
long BIO_int_ctrl(BIO *bp,int cmd,long larg,int iarg);

int BIO_reset(BIO *b);
int BIO_seek(BIO *b, int ofs);
int BIO_tell(BIO *b);
int BIO_flush(BIO *b);
int BIO_eof(BIO *b);
int BIO_set_close(BIO *b,long flag);
int BIO_get_close(BIO *b);
int BIO_pending(BIO *b);
int BIO_wpending(BIO *b);
size_t BIO_ctrl_pending(BIO *b);
size_t BIO_ctrl_wpending(BIO *b);

int BIO_get_info_callback(BIO *b,bio_info_cb **cbp);
int BIO_set_info_callback(BIO *b,bio_info_cb *cb);

typedef void bio_info_cb(BIO *b, int oper, const char *ptr, int arg1, long arg2, long arg3);

DESCRIPTION
BIO_ctrl(), BIO_callback_ctrl(), BIO_ptr_ctrl() and BIO_int_ctrl() are BIO ‘‘ control’’ operations taking
arguments of various types. These functions are not normally called directly, various macros are used
instead. The standard macros are described below, macros specific to a particular type ofBIO are described
in the specific BIOs manual page as well as any special features of the standard calls.

BIO_reset()typically resets aBIO to some initial state, in the case of file related BIOs for example it
rewinds the file pointer to the start of the file.

BIO_seek()resets a file relatedBIO’s (that is file descriptor andFILE BIOs) file position pointer toofs bytes
from start of file.

BIO_tell() returns the current file position of a file relatedBIO.

BIO_flush()normally writes out any internally buffered data, in some cases it is used to signalEOFand that
no more data will be written.

BIO_eof()returns 1 if theBIO has readEOF, the precise meaning of ‘‘EOF’’ v aries according to theBIO
type.

BIO_set_close()sets theBIO b close flag toflag. flag can take the valueBIO_CLOSEor BIO_NOCLOSE.
Typically BIO_CLOSE is used in a source/sinkBIO to indicate that the underlying I/O stream should be
closed when theBIO is freed.

BIO_get_close()returns the BIOs close flag.

BIO_pending(), BIO_ctrl_pending(), BIO_wpending()and BIO_ctrl_wpending()return the number of
pending characters in the BIOs read and write buffers. Notall BIOs support these calls.BIO_ctrl_pend-
ing() andBIO_ctrl_wpending()return a size_t type and are functions,BIO_pending()andBIO_wpending()
are macros which callBIO_ctrl().

0.9.9-dev 2001-04-11 1

BIO_ctrl(3) OpenSSL BIO_ctrl(3)

RETURN VALUES
BIO_reset()normally returns 1 for success and 0 or −1 for failure. File BIOs are an exception, they return 0
for success and −1 for failure.

BIO_seek()and BIO_tell() both return the current file position on success and −1 for failure, except file
BIOs which forBIO_seek()always return 0 for success and −1 for failure.

BIO_flush()returns 1 for success and 0 or −1 for failure.

BIO_eof()returns 1 ifEOFhas been reached 0 otherwise.

BIO_set_close()always returns 1.

BIO_get_close()returns the close flag value:BIO_CLOSEor BIO_NOCLOSE.

BIO_pending(), BIO_ctrl_pending(), BIO_wpending()and BIO_ctrl_wpending()return the amount of
pending data.

NOTES
BIO_flush(), because it can write data may return 0 or −1 indicating that the call should be retried later in a
similar manner toBIO_write(). TheBIO_should_retry()call should be used and appropriate action taken is
the call fails.

The return values ofBIO_pending()andBIO_wpending()may not reliably determine the amount of pend-
ing data in all cases. For example in the case of a fileBIO some data may be available in theFILE structures
internal buffers but it is not possible to determine this in a portably way. For other types ofBIO they may
not be supported.

Filter BIOs if they do not internally handle a particularBIO_ctrl() operation usually pass the operation to
the next BIO in the chain. This often means there is no need to locate the requiredBIO for a particular oper-
ation, it can be called on a chain and it will be automatically passed to the relevant BIO. Howev er this can
cause unexpected results: for example no current filter BIOs implementBIO_seek(), but this may still suc-
ceed if the chain ends in aFILE or file descriptorBIO.

Source/sink BIOs return an 0 if they do not recognize theBIO_ctrl() operation.

BUGS
Some of the return values are ambiguous and care should be taken. In particular a return value of 0 can be
returned if an operation is not supported, if an error occurred, ifEOF has not been reached and in the case
of BIO_seek()on a fileBIO for a successful operation.

SEE ALSO
TBA

0.9.9-dev 2001-04-11 2

BIO_f_base64(3) OpenSSL BIO_f_base64(3)

NAME
BIO_f_base64 − base64 BIO filter

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>
#include <openssl/evp.h>

BIO_METHOD * BIO_f_base64(void);

DESCRIPTION
BIO_f_base64()returns the base64BIO method. This is a filterBIO that base64 encodes any data written
through it and decodes any data read through it.

Base64 BIOs do not supportBIO_gets()or BIO_puts().

BIO_flush()on a base64BIO that is being written through is used to signal that no more data is to be
encoded: this is used to flush the final block through theBIO.

The flagBIO_FLAGS_BASE64_NO_NLcan be set withBIO_set_flags()to encode the data all on one line or
expect the data to be all on one line.

NOTES
Because of the format of base64 encoding the end of the encoded block cannot always be reliably deter-
mined.

RETURN VALUES
BIO_f_base64()returns the base64BIO method.

EXAMPLES
Base64 encode the string ‘‘Hello World\n’’ and write the result to standard output:

BIO *bio, *b64;
char message[] = "Hello World \n";

b64 = BIO_new(BIO_f_base64());
bio = BIO_new_fp(stdout, BIO_NOCLOSE);
bio = BIO_push(b64, bio);
BIO_write(bio, message, strlen(message));
BIO_flush(bio);

BIO_free_all(bio);

Read Base64 encoded data from standard input and write the decoded data to standard output:

BIO *bio, *b64, *bio_out;
char inbuf[512];
int inlen;

b64 = BIO_new(BIO_f_base64());
bio = BIO_new_fp(stdin, BIO_NOCLOSE);
bio_out = BIO_new_fp(stdout, BIO_NOCLOSE);
bio = BIO_push(b64, bio);
while((inlen = BIO_read(bio, inbuf, 512)) > 0)

BIO_write(bio_out, inbuf, inlen);

BIO_free_all(bio);

BUGS
The ambiguity ofEOF in base64 encoded data can cause additional data following the base64 encoded
block to be misinterpreted.

There should be some way of specifying a test that theBIO can perform to reliably determineEOF (for
example aMIME boundary).

0.9.9-dev 2006-05-24 1

BIO_f_base64(3) OpenSSL BIO_f_base64(3)

SEE ALSO
TBA

0.9.9-dev 2006-05-24 2

BIO_f_buffer(3) OpenSSL BIO_f_buffer(3)

NAME
BIO_f_buffer − buffering BIO

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_f_buffer(void);

#define BIO_get_buffer_num_lines(b) BIO_ctrl(b,BIO_C_GET_BUFF_NUM_LINES,0,NULL)
#define BIO_set_read_buffer_size(b,size) BIO_int_ctrl(b,BIO_C_SET_BUFF_SIZE,size,0)
#define BIO_set_write_buffer_size(b,size) BIO_int_ctrl(b,BIO_C_SET_BUFF_SIZE,size,1)
#define BIO_set_buffer_size(b,size) BIO_ctrl(b,BIO_C_SET_BUFF_SIZE,size,NULL)
#define BIO_set_buffer_read_data(b,buf,num) BIO_ctrl(b,BIO_C_SET_BUFF_READ_DATA,num,buf)

DESCRIPTION
BIO_f_buffer()returns the bufferingBIO method.

Data written to a buffering BIO is buffered and periodically written to the next BIO in the chain. Data read
from a buffering BIO comes from an internal buffer which is filled from the next BIO in the chain.Both
BIO_gets()andBIO_puts()are supported.

CallingBIO_reset()on a bufferingBIO clears any buffered data.

BIO_get_buffer_num_lines()returns the number of lines currently buffered.

BIO_set_read_buffer_size(), BIO_set_write_buffer_size()and BIO_set_buffer_size()set the read, write or
both read and write buffer sizes tosize. The initial buffer size isDEFAULT_BUFFER_SIZE, currently 1024.
Any attempt to reduce the buffer size below DEFAULT_BUFFER_SIZEis ignored. Any buffered data is
cleared when the buffer is resized.

BIO_set_buffer_read_data()clears the read buffer and fills it withnum bytes ofbuf. If num is larger than
the current buffer size the buffer is expanded.

NOTES
Buffering BIOs implementBIO_gets()by usingBIO_read()operations on the next BIO in the chain. By
prepending a buffering BIO to a chain it is therefore possible to provide BIO_gets()functionality if the fol-
lowing BIOs do not support it (for exampleSSLBIOs).

Data is only written to the next BIO in the chain when the write buffer fills or whenBIO_flush()is called. It
is therefore important to callBIO_flush()whenever any pending data should be written such as when
removing a buffering BIO usingBIO_pop(). BIO_flush()may need to be retried if the ultimate source/sink
BIO is non blocking.

RETURN VALUES
BIO_f_buffer()returns the bufferingBIO method.

BIO_get_buffer_num_lines()returns the number of lines buffered (may be 0).

BIO_set_read_buffer_size(), BIO_set_write_buffer_size()and BIO_set_buffer_size()return 1 if the buffer
was successfully resized or 0 for failure.

BIO_set_buffer_read_data()returns 1 if the data was set correctly or 0 if there was an error.

SEE ALSO
TBA

0.9.9-dev 2001-04-11 1

BIO_f_cipher(3) OpenSSL BIO_f_cipher(3)

NAME
BIO_f_cipher, BIO_set_cipher, BIO_get_cipher_status, BIO_get_cipher_ctx − cipher BIO filter

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>
#include <openssl/evp.h>

BIO_METHOD * BIO_f_cipher(void);
void BIO_set_cipher(BIO *b,const EVP_CIPHER *cipher,

unsigned char *key, unsigned char *iv, int enc);
int BIO_get_cipher_status(BIO *b)
int BIO_get_cipher_ctx(BIO *b, EVP_CIPHER_CTX **pctx)

DESCRIPTION
BIO_f_cipher()returns the cipherBIO method. This is a filterBIO that encrypts any data written through it,
and decrypts any data read from it. It is aBIO wrapper for the cipher routinesEVP_CipherInit(),
EVP_CipherUpdate()andEVP_CipherFinal().

Cipher BIOs do not supportBIO_gets()or BIO_puts().

BIO_flush()on an encryptionBIO that is being written through is used to signal that no more data is to be
encrypted: this is used to flush and possibly pad the final block through theBIO.

BIO_set_cipher()sets the cipher ofBIO b to cipher using key key and IV iv. enc should be set to 1 for
encryption and zero for decryption.

When reading from an encryptionBIO the final block is automatically decrypted and checked whenEOF is
detected.BIO_get_cipher_status()is a BIO_ctrl() macro which can be called to determine whether the
decryption operation was successful.

BIO_get_cipher_ctx()is aBIO_ctrl() macro which retrieves the internalBIO cipher context. The retrieved
context can be used in conjunction with the standard cipher routines to set it up. This is useful when
BIO_set_cipher()is not flexible enough for the applications needs.

NOTES
When encryptingBIO_flush()must be called to flush the final block through theBIO. If i t is not then the
final block will fail a subsequent decrypt.

When decrypting an error on the final block is signalled by a zero return value from the read operation. A
successful decrypt followed byEOFwill also return zero for the final read.BIO_get_cipher_status()should
be called to determine if the decrypt was successful.

As always, if BIO_gets()or BIO_puts()support is needed then it can be achieved by preceding the cipher
BIO with a bufferingBIO.

RETURN VALUES
BIO_f_cipher()returns the cipherBIO method.

BIO_set_cipher()does not return a value.

BIO_get_cipher_status()returns 1 for a successful decrypt and 0 for failure.

BIO_get_cipher_ctx()currently always returns 1.

EXAMPLES
TBA

SEE ALSO
TBA

0.9.9-dev 2003-07-24 1

BIO_f_md(3) OpenSSL BIO_f_md(3)

NAME
BIO_f_md, BIO_set_md, BIO_get_md, BIO_get_md_ctx − message digest BIO filter

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>
#include <openssl/evp.h>

BIO_METHOD * BIO_f_md(void);
int BIO_set_md(BIO *b,EVP_MD *md);
int BIO_get_md(BIO *b,EVP_MD **mdp);
int BIO_get_md_ctx(BIO *b,EVP_MD_CTX **mdcp);

DESCRIPTION
BIO_f_md()returns the message digestBIO method. This is a filterBIO that digests any data passed through
it, it is a BIO wrapper for the digest routinesEVP_DigestInit(), EVP_DigestUpdate()andEVP_DigestFi-
nal().

Any data written or read through a digestBIO usingBIO_read()andBIO_write() is digested.

BIO_gets(), if i ts sizeparameter is large enough finishes the digest calculation and returns the digest value.
BIO_puts()is not supported.

BIO_reset()reinitialises a digestBIO.

BIO_set_md()sets the message digest ofBIO b to md: this must be called to initialize a digestBIO before
any data is passed through it. It is aBIO_ctrl() macro.

BIO_get_md()places the a pointer to the digest BIOs digest method inmdp, it is aBIO_ctrl() macro.

BIO_get_md_ctx()returns the digest BIOs context intomdcp.

NOTES
The context returned byBIO_get_md_ctx()can be used in calls toEVP_DigestFinal()and also the signa-
ture routinesEVP_SignFinal()andEVP_VerifyFinal().

The context returned byBIO_get_md_ctx()is an internal context structure. Changes made to this context
will affect the digestBIO itself and the context pointer will become invalid when the digestBIO is freed.

After the digest has been retrieved from a digestBIO it must be reinitialized by callingBIO_reset(), or
BIO_set_md()before any more data is passed through it.

If an application needs to callBIO_gets()or BIO_puts()through a chain containing digest BIOs then this
can be done by prepending a bufferingBIO.

Before OpenSSL 0.9.9 the call toBIO_get_md_ctx()would only work if theBIO had been initialized for
example by callingBIO_set_md()). In OpenSSL 0.9.9 and later the context is always returned and theBIO
is state is set to initialized. This allows applications to initialize the context externally if the standard calls
such asBIO_set_md()are not sufficiently flexible.

RETURN VALUES
BIO_f_md()returns the digestBIO method.

BIO_set_md(), BIO_get_md()andBIO_md_ctx()return 1 for success and 0 for failure.

EXAMPLES
The following example creates aBIO chain containing anSHA1 andMD5 digestBIO and passes the string
‘‘ Hello World’’ through it. Error checking has been omitted for clarity.

0.9.9-dev 2008-05-09 1

BIO_f_md(3) OpenSSL BIO_f_md(3)

BIO *bio, *mdtmp;
char message[] = "Hello World";
bio = BIO_new(BIO_s_null());
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_sha1());
/* For BIO_push() we want to append the sink BIO and keep a note of

* t he start of the chain.
*/

bio = BIO_push(mdtmp, bio);
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_md5());
bio = BIO_push(mdtmp, bio);
/* Note: mdtmp can now be discarded */
BIO_write(bio, message, strlen(message));

The next example digests data by reading through a chain instead:

BIO *bio, *mdtmp;
char buf[1024];
int rdlen;
bio = BIO_new_file(file, "rb");
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_sha1());
bio = BIO_push(mdtmp, bio);
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_md5());
bio = BIO_push(mdtmp, bio);
do {

rdlen = BIO_read(bio, buf, sizeof(buf));
/* Might want to do something with the data here */

} w hile(rdlen > 0);

This next example retrieves the message digests from aBIO chain and outputs them. This could be used
with the examples above.

BIO *mdtmp;
unsigned char mdbuf[EVP_MAX_MD_SIZE];
int mdlen;
int i;
mdtmp = bio; /* Assume bio has previously been set up */
do {

EVP_MD *md;
mdtmp = BIO_find_type(mdtmp, BIO_TYPE_MD);
if(!mdtmp) break;
BIO_get_md(mdtmp, &md);
printf("%s digest", OBJ_nid2sn(EVP_MD_type(md)));
mdlen = BIO_gets(mdtmp, mdbuf, EVP_MAX_MD_SIZE);
for(i = 0; i < mdlen; i++) printf(":%02X", mdbuf[i]);
printf("\n");
mdtmp = BIO_next(mdtmp);

} w hile(mdtmp);

BIO_free_all(bio);

BUGS
The lack of support forBIO_puts()and the non standard behaviour ofBIO_gets()could be regarded as
anomalous. It could be argued thatBIO_gets()andBIO_puts()should be passed to the next BIO in the chain
and digest the data passed through and that digests should be retrieved using a separateBIO_ctrl() call.

0.9.9-dev 2008-05-09 2

BIO_f_md(3) OpenSSL BIO_f_md(3)

SEE ALSO
TBA

0.9.9-dev 2008-05-09 3

BIO_f_null(3) OpenSSL BIO_f_null(3)

NAME
BIO_f_null − null filter

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_f_null(void);

DESCRIPTION
BIO_f_null()returns the null filterBIO method. This is a filterBIO that does nothing.

All requests to a null filterBIO are passed through to the next BIO in the chain: this means that aBIO chain
containing a null filterBIO behaves just as though theBIO was not there.

NOTES
As may be apparent a null filterBIO is not particularly useful.

RETURN VALUES
BIO_f_null()returns the null filterBIO method.

SEE ALSO
TBA

0.9.9-dev 2001-04-11 1

BIO_f_ssl(3) OpenSSL BIO_f_ssl(3)

NAME
BIO_f_ssl, BIO_set_ssl, BIO_get_ssl, BIO_set_ssl_mode, BIO_set_ssl_renegotiate_bytes,
BIO_get_num_renegotiates, BIO_set_ssl_renegotiate_timeout, BIO_new_ssl, BIO_new_ssl_connect,
BIO_new_buffer_ssl_connect, BIO_ssl_copy_session_id, BIO_ssl_shutdown − SSL BIO

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>
#include <openssl/ssl.h>

BIO_METHOD *BIO_f_ssl(void);

#define BIO_set_ssl(b,ssl,c) BIO_ctrl(b,BIO_C_SET_SSL,c,(char *)ssl)
#define BIO_get_ssl(b,sslp) BIO_ctrl(b,BIO_C_GET_SSL,0,(char *)sslp)
#define BIO_set_ssl_mode(b,client) BIO_ctrl(b,BIO_C_SSL_MODE,client,NULL)
#define BIO_set_ssl_renegotiate_bytes(b,num) \

BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_BYTES,num,NULL);
#define BIO_set_ssl_renegotiate_timeout(b,seconds) \

BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_TIMEOUT,seconds,NULL);
#define BIO_get_num_renegotiates(b) \

BIO_ctrl(b,BIO_C_SET_SSL_NUM_RENEGOTIATES,0,NULL);

BIO *BIO_new_ssl(SSL_CTX *ctx,int client);
BIO *BIO_new_ssl_connect(SSL_CTX *ctx);
BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx);
int BIO_ssl_copy_session_id(BIO *to,BIO *from);
void BIO_ssl_shutdown(BIO *bio);

#define BIO_do_handshake(b) BIO_ctrl(b,BIO_C_DO_STATE_MACHINE,0,NULL)

DESCRIPTION
BIO_f_ssl()returns theSSL BIO method. This is a filterBIO which is a wrapper round the OpenSSLSSL
routines adding aBIO ‘‘ flavour’’ to SSL I/O.

I/O performed on anSSL BIOcommunicates using theSSL protocol with the SSLs read and write BIOs. If
anSSLconnection is not established then an attempt is made to establish one on the first I/O call.

If a BIO is appended to anSSL BIO usingBIO_push()it is automatically used as theSSL BIOs read and
write BIOs.

Calling BIO_reset()on anSSL BIO closes down any current SSL connection by callingSSL_shutdown().
BIO_reset()is then sent to the next BIO in the chain: this will typically disconnect the underlying transport.
TheSSL BIO is then reset to the initial accept or connect state.

If the close flag is set when anSSL BIO is freed then the internalSSL structure is also freed using
SSL_free().

BIO_set_ssl()sets the internalSSLpointer ofBIO b to sslusing the close flagc.

BIO_get_ssl()retrieves theSSL pointer ofBIO b, it can then be manipulated using the standardSSL library
functions.

BIO_set_ssl_mode()sets theSSL BIO mode toclient. If client is 1 client mode is set. Ifclient is 0 server
mode is set.

BIO_set_ssl_renegotiate_bytes()sets the renegotiate byte count tonum. When set after every num bytes of
I/O (read and write) theSSLsession is automatically renegotiated.num must be at least 512 bytes.

BIO_set_ssl_renegotiate_timeout()sets the renegotiate timeout toseconds. When the renegotiate timeout
elapses the session is automatically renegotiated.

BIO_get_num_renegotiates()returns the total number of session renegotiations due to I/O or timeout.

0.9.9-dev 2004-03-19 1

BIO_f_ssl(3) OpenSSL BIO_f_ssl(3)

BIO_new_ssl()allocates anSSL BIOusingSSL_CTXctx and using client mode ifclient is non zero.

BIO_new_ssl_connect()creates a new BIO chain consisting of anSSL BIO (usingctx) followed by a con-
nectBIO.

BIO_new_buffer_ssl_connect()creates a new BIO chain consisting of a buffering BIO, an SSL BIO (using
ctx) and a connectBIO.

BIO_ssl_copy_session_id()copies anSSLsession id betweenBIO chainsfrom andto. It does this by locat-
ing theSSLBIOs in each chain and callingSSL_copy_session_id()on the internalSSLpointer.

BIO_ssl_shutdown()closes down anSSLconnection onBIO chainbio. It does this by locating theSSL BIO
in the chain and callingSSL_shutdown()on its internalSSLpointer.

BIO_do_handshake()attempts to complete anSSL handshake on the suppliedBIO and establish theSSL
connection. It returns 1 if the connection was established successfully. A zero or negative value is returned
if the connection could not be established, the callBIO_should_retry()should be used for non blocking
connect BIOs to determine if the call should be retried. If anSSL connection has already been established
this call has no effect.

NOTES
SSL BIOs are exceptional in that if the underlying transport is non blocking they can still request a retry in
exceptional circumstances. Specifically this will happen if a session renegotiation takes place during a
BIO_read()operation, one case where this happens is whenSGCor step up occurs.

In OpenSSL 0.9.6 and later theSSL flag SSL_AUTO_RETRYcan be set to disable this behaviour. That is
when this flag is set anSSL BIOusing a blocking transport will never request a retry.

Since unknown BIO_ctrl() operations are sent through filter BIOs the servers name and port can be set
usingBIO_set_host()on theBIO returned byBIO_new_ssl_connect()without having to locate the connect
BIO first.

Applications do not have to call BIO_do_handshake()but may wish to do so to separate the handshake
process from other I/O processing.

RETURN VALUES
TBA

EXAMPLE
This SSL/TLSclient example, attempts to retrieve a page from anSSL/TLSweb server. The I/O routines are
identical to those of the unencrypted example inBIO_s_connect(3).

BIO *sbio, *out;
int len;
char tmpbuf[1024];
SSL_CTX *ctx;
SSL *ssl;

ERR_load_crypto_strings();
ERR_load_SSL_strings();
OpenSSL_add_all_algorithms();

/* We would seed the PRNG here if the platform didn’t
* do it a utomatically
*/

ctx = SSL_CTX_new(SSLv23_client_method());

/* We’d normally set some stuff like the verify paths and
* mode here because as things stand this will connect to
* a ny server whose certificate is signed by any CA.
*/

sbio = BIO_new_ssl_connect(ctx);

0.9.9-dev 2004-03-19 2

BIO_f_ssl(3) OpenSSL BIO_f_ssl(3)

BIO_get_ssl(sbio, &ssl);

if(!ssl) {
fprintf(stderr, "Can’t locate SSL pointer\n");
/* whatever ... */

}

/* Don’t want any retries */
SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);

/* We might want to do other things with ssl here */

BIO_set_conn_hostname(sbio, "localhost:https");

out = BIO_new_fp(stdout, BIO_NOCLOSE);
if(BIO_do_connect(sbio) <= 0) {

fprintf(stderr, "Error connecting to server\n");
ERR_print_errors_fp(stderr);
/* whatever ... */

}

if(BIO_do_handshake(sbio) <= 0) {
fprintf(stderr, "Error establishing SSL connection\n");
ERR_print_errors_fp(stderr);
/* whatever ... */

}

/* Could examine ssl here to get connection info */

BIO_puts(sbio, "GET / HTTP/1.0\n\n");
for(;;) {

len = BIO_read(sbio, tmpbuf, 1024);
if(len <= 0) break;
BIO_write(out, tmpbuf, len);

}
BIO_free_all(sbio);
BIO_free(out);

Here is a simple server example. It makes use of a buffering BIO to allow lines to be read from theSSL BIO
using BIO_gets.It creates a pseudo web page containing the actual request from a client and also echoes
the request to standard output.

BIO *sbio, *bbio, *acpt, *out;
int len;
char tmpbuf[1024];
SSL_CTX *ctx;
SSL *ssl;

ERR_load_crypto_strings();
ERR_load_SSL_strings();
OpenSSL_add_all_algorithms();

/* Might seed PRNG here */

ctx = SSL_CTX_new(SSLv23_server_method());

if (!SSL_CTX_use_certificate_file(ctx,"server.pem",SSL_FILETYPE_PEM)
 !SSL_CTX_use_PrivateKey_file(ctx,"server.pem",SSL_FILETYPE_PEM)
 !SSL_CTX_check_private_key(ctx)) {

0.9.9-dev 2004-03-19 3

BIO_f_ssl(3) OpenSSL BIO_f_ssl(3)

fprintf(stderr, "Error setting up SSL_CTX\n");
ERR_print_errors_fp(stderr);
return 0;

}

/* Might do other things here like setting verify locations and
* DH and/or RSA temporary key callbacks
*/

/* New SSL BIO setup as server */
sbio=BIO_new_ssl(ctx,0);

BIO_get_ssl(sbio, &ssl);

if(!ssl) {
fprintf(stderr, "Can’t locate SSL pointer\n");
/* whatever ... */

}

/* Don’t want any retries */
SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);

/* Create the buffering BIO */

bbio = BIO_new(BIO_f_buffer());

/* Add to chain */
sbio = BIO_push(bbio, sbio);

acpt=BIO_new_accept("4433");

/* By doing this when a new connection is established
* we a utomatically have sbio inserted into it. The
* B IO chain is now ’swallowed’ by the accept BIO and
* will be freed when the accept BIO is freed.
*/

BIO_set_accept_bios(acpt,sbio);

out = BIO_new_fp(stdout, BIO_NOCLOSE);

/* Setup accept BIO */
if(BIO_do_accept(acpt) <= 0) {

fprintf(stderr, "Error setting up accept BIO\n");
ERR_print_errors_fp(stderr);
return 0;

}

/* Now wait for incoming connection */
if(BIO_do_accept(acpt) <= 0) {

fprintf(stderr, "Error in connection\n");
ERR_print_errors_fp(stderr);
return 0;

}

/* We only want one connection so remove and free
* a ccept BIO
*/

sbio = BIO_pop(acpt);

BIO_free_all(acpt);

0.9.9-dev 2004-03-19 4

BIO_f_ssl(3) OpenSSL BIO_f_ssl(3)

if(BIO_do_handshake(sbio) <= 0) {
fprintf(stderr, "Error in SSL handshake\n");
ERR_print_errors_fp(stderr);
return 0;

}

BIO_puts(sbio, "HTTP/1.0 200 OK\r\nContent-type: text/plain\r\n\r\n");
BIO_puts(sbio, "\r\nConnection Established\r\nRequest headers:\r\n");
BIO_puts(sbio, "--\r\n");

for(;;) {
len = BIO_gets(sbio, tmpbuf, 1024);
if(len <= 0) break;
BIO_write(sbio, tmpbuf, len);
BIO_write(out, tmpbuf, len);
/* Look for blank line signifying end of headers*/
if((tmpbuf[0] == ’\r’) (tmpbuf[0] == ’\n’)) break;

}

BIO_puts(sbio, "--\r\n");
BIO_puts(sbio, "\r\n");

/* Since there is a buffering BIO present we had better flush it */
BIO_flush(sbio);

BIO_free_all(sbio);

SEE ALSO
TBA

0.9.9-dev 2004-03-19 5

BIO_find_type(3) OpenSSL BIO_find_type(3)

NAME
BIO_find_type, BIO_next − BIO chain traversal

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO * BIO_find_type(BIO *b,int bio_type);
BIO * BIO_next(BIO *b);

#define BIO_method_type(b) ((b)->method->type)

#define BIO_TYPE_NONE 0
#define BIO_TYPE_MEM (1 0x0400)
#define BIO_TYPE_FILE (2 0x0400)

#define BIO_TYPE_FD (4 0x0400 0x0100)
#define BIO_TYPE_SOCKET (5 0x0400 0x0100)
#define BIO_TYPE_NULL (6 0x0400)
#define BIO_TYPE_SSL (7 0x0200)
#define BIO_TYPE_MD (8 0x0200)
#define BIO_TYPE_BUFFER (9 0x0200)
#define BIO_TYPE_CIPHER (10 0x0200)
#define BIO_TYPE_BASE64 (11 0x0200)
#define BIO_TYPE_CONNECT (12 0x0400 0x0100)
#define BIO_TYPE_ACCEPT (13 0x0400 0x0100)
#define BIO_TYPE_PROXY_CLIENT (14 0x0200)
#define BIO_TYPE_PROXY_SERVER (15 0x0200)
#define BIO_TYPE_NBIO_TEST (16 0x0200)
#define BIO_TYPE_NULL_FILTER (17 0x0200)
#define BIO_TYPE_BER (18 0x0200)
#define BIO_TYPE_BIO (19 0x0400)

#define BIO_TYPE_DESCRIPTOR 0x0100
#define BIO_TYPE_FILTER 0x0200
#define BIO_TYPE_SOURCE_SINK 0x0400

DESCRIPTION
The BIO_find_type()searches for aBIO of a given type in a chain, starting atBIO b. If type is a specific
type (such asBIO_TYPE_MEM) then a search is made for aBIO of that type. Iftype is a general type (such
as BIO_TYPE_SOURCE_SINK) then the next matchingBIO of the given general type is searched for.
BIO_find_type()returns the next matchingBIO or NULL if none is found.

Note: not all theBIO_TYPE_* types above hav ecorrespondingBIO implementations.

BIO_next()returns the next BIO in a chain. It can be used to traverse all BIOs in a chain or used in conjunc-
tion with BIO_find_type()to find all BIOs of a certain type.

BIO_method_type()returns the type of aBIO.

RETURN VALUES
BIO_find_type()returns a matchingBIO or NULL for no match.

BIO_next()returns the nextBIO in a chain.

BIO_method_type()returns the type of theBIO b.

NOTES
BIO_next()was added to OpenSSL 0.9.6 to provide a ’clean’ way to traverse aBIO chain or find multiple
matches usingBIO_find_type(). Previous versions had to use:

0.9.9-dev 2001-04-11 1

BIO_find_type(3) OpenSSL BIO_find_type(3)

next = bio->next_bio;

BUGS
BIO_find_type()in OpenSSL 0.9.5a and earlier could not be safely passed aNULL pointer for theb argu-
ment.

EXAMPLE
Trav erse a chain looking for digest BIOs:

BIO *btmp;
btmp = in_bio; /* in_bio is chain to search through */

do {
btmp = BIO_find_type(btmp, BIO_TYPE_MD);
if(btmp == NULL) break; /* Not found */
/* btmp is a digest BIO, do something with it ...*/
...

btmp = BIO_next(btmp);
} w hile(btmp);

SEE ALSO
TBA

0.9.9-dev 2001-04-11 2

BIO_new(3) OpenSSL BIO_new(3)

NAME
BIO_new, BIO_set, BIO_free, BIO_vfree, BIO_free_all − BIO allocation and freeing functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO * BIO_new(BIO_METHOD *type);
int BIO_set(BIO *a,BIO_METHOD *type);
int BIO_free(BIO *a);
void BIO_vfree(BIO *a);
void BIO_free_all(BIO *a);

DESCRIPTION
TheBIO_new()function returns a newBIO using methodtype.

BIO_set()sets the method of an already existingBIO.

BIO_free()frees up a singleBIO, BIO_vfree()also frees up a singleBIO but it does not return a value. Call-
ing BIO_free()may also have some effect on the underlying I/O structure, for example it may close the file
being referred to under certain circumstances. For more details see the individual BIO_METHOD descrip-
tions.

BIO_free_all()frees up an entireBIO chain, it does not halt if an error occurs freeing up an individual BIO
in the chain.

RETURN VALUES
BIO_new()returns a newly createdBIO or NULL if the call fails.

BIO_set(), BIO_free()return 1 for success and 0 for failure.

BIO_free_all()andBIO_vfree()do not return values.

NOTES
Some BIOs (such as memory BIOs) can be used immediately after callingBIO_new(). Others (such as file
BIOs) need some additional initialization, and frequently a utility function exists to create and initialize
such BIOs.

If BIO_free()is called on aBIO chain it will only free oneBIO resulting in a memory leak.

Calling BIO_free_all()a single BIO has the same effect as callingBIO_free()on it other than the discarded
return value.

Normally thetype argument is supplied by a function which returns a pointer to aBIO_METHOD. There is
a naming convention for such functions: a source/sinkBIO is normally called BIO_s_*() and a filterBIO
BIO_f_*();

EXAMPLE
Create a memoryBIO:

BIO *mem = BIO_new(BIO_s_mem());

SEE ALSO
TBA

0.9.9-dev 2001-04-11 1

BIO_push(3) OpenSSL BIO_push(3)

NAME
BIO_push, BIO_pop − add and remove BIOs from a chain.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO * BIO_push(BIO *b,BIO *append);
BIO * BIO_pop(BIO *b);

DESCRIPTION
TheBIO_push()function appends theBIO appendto b, it returnsb.

BIO_pop()removes the BIO b from a chain and returns the next BIO in the chain, orNULL if there is no
next BIO. The removed BIO then becomes a singleBIO with no association with the original chain, it can
thus be freed or attached to a different chain.

NOTES
The names of these functions are perhaps a little misleading.BIO_push()joins two BIO chains whereas
BIO_pop()deletes a singleBIO from a chain, the deletedBIO does not need to be at the end of a chain.

The process of callingBIO_push()andBIO_pop()on aBIO may have additional consequences (a control
call is made to the affected BIOs) any effects will be noted in the descriptions of individual BIOs.

EXAMPLES
For these examples supposemd1 andmd2 are digest BIOs,b64 is a base64BIO andf is a fileBIO.

If the call:

BIO_push(b64, f);

is made then the new chain will beb64−chain. After making the calls

BIO_push(md2, b64);
BIO_push(md1, md2);

the new chain is md1−md2−b64−f. Data written tomd1 will be digested bymd1 and md2, base64
encoded and written tof.

It should be noted that reading causes data to pass in the reverse direction, that is data is read fromf, base64
decodedand digested bymd1 andmd2. If the call:

BIO_pop(md2);

The call will returnb64and the new chain will bemd1−b64−fdata can be written tomd1 as before.

RETURN VALUES
BIO_push()returns the end of the chain,b.

BIO_pop()returns the nextBIO in the chain, orNULL if there is no nextBIO.

SEE ALSO
TBA

0.9.9-dev 2001-04-11 1

BIO_read(3) OpenSSL BIO_read(3)

NAME
BIO_read, BIO_write, BIO_gets, BIO_puts − BIO I/O functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

int BIO_read(BIO *b, void *buf, int len);
int BIO_gets(BIO *b,char *buf, int size);
int BIO_write(BIO *b, const void *buf, int len);
int BIO_puts(BIO *b,const char *buf);

DESCRIPTION
BIO_read()attempts to readlen bytes fromBIO b and places the data inbuf.

BIO_gets()performs the BIOs ‘‘gets’’ operation and places the data inbuf. Usually this operation will
attempt to read a line of data from theBIO of maximum lengthlen. There are exceptions to this however,
for exampleBIO_gets()on a digestBIO will calculate and return the digest and other BIOs may not support
BIO_gets()at all.

BIO_write()attempts to writelen bytes frombuf to BIO b.

BIO_puts()attempts to write a null terminated stringbuf to BIO b

RETURN VALUES
All these functions return either the amount of data successfully read or written (if the return value is posi-
tive) or that no data was successfully read or written if the result is 0 or −1. If the return value is −2 then the
operation is not implemented in the specificBIO type.

NOTES
A 0 or −1 return is not necessarily an indication of an error. In particular when the source/sink is non-block-
ing or of a certain type it may merely be an indication that no data is currently available and that the appli-
cation should retry the operation later.

One technique sometimes used with blocking sockets is to use a system call (such asselect(), poll() or
equivalent) to determine when data is available and then callread() to read the data. The equivalent with
BIOs (that is callselect()on the underlying I/O structure and then callBIO_read()to read the data) should
not be used because a single call toBIO_read()can cause several reads (and writes in the case ofSSL
BIOs) on the underlying I/O structure and may block as a result. Insteadselect()(or equivalent) should be
combined with non blocking I/O so successive reads will request a retry instead of blocking.

SeeBIO_should_retry(3) for details of how to determine the cause of a retry and other I/O issues.

If the BIO_gets()function is not supported by aBIO then it possible to work around this by adding a buffer-
ing BIO BIO_f_buffer(3) to the chain.

SEE ALSO
BIO_should_retry(3)

TBA

0.9.9-dev 2001-04-11 1

BIO_s_accept(3) OpenSSL BIO_s_accept(3)

NAME
BIO_s_accept, BIO_set_accept_port, BIO_get_accept_port, BIO_set_nbio_accept, BIO_set_accept_bios,
BIO_set_bind_mode, BIO_get_bind_mode, BIO_do_accept − accept BIO

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD *BIO_s_accept(void);

long BIO_set_accept_port(BIO *b, char *name);
char *BIO_get_accept_port(BIO *b);

BIO *BIO_new_accept(char *host_port);

long BIO_set_nbio_accept(BIO *b, int n);
long BIO_set_accept_bios(BIO *b, char *bio);

long BIO_set_bind_mode(BIO *b, long mode);
long BIO_get_bind_mode(BIO *b, long dummy);

#define BIO_BIND_NORMAL 0
#define BIO_BIND_REUSEADDR_IF_UNUSED 1
#define BIO_BIND_REUSEADDR 2

int BIO_do_accept(BIO *b);

DESCRIPTION
BIO_s_accept()returns the acceptBIO method. This is a wrapper round the platform’s TCP/IPsocket accept
routines.

Using accept BIOs,TCP/IP connections can be accepted and data transferred using onlyBIO routines. In
this way any platform specific operations are hidden by theBIO abstraction.

Read and write operations on an acceptBIO will perform I/O on the underlying connection. If no connec-
tion is established and the port (see below) is set up properly then theBIO waits for an incoming connec-
tion.

Accept BIOs supportBIO_puts()but not BIO_gets().

If the close flag is set on an acceptBIO then any active connection on that chain is shutdown and the socket
closed when theBIO is freed.

Calling BIO_reset()on a acceptBIO will close any active connection and reset theBIO into a state where it
aw aits another incoming connection.

BIO_get_fd()andBIO_set_fd()can be called to retrieve or set the accept socket. SeeBIO_s_fd(3)

BIO_set_accept_port()uses the stringname to set the accept port. The port is represented as a string of the
form ‘‘host:port’’, where ‘‘host’’ i s the interface to use and ‘‘port’’ is the port. Either or both values can be
‘‘ *’ ’ which is interpreted as meaning any interface or port respectively. ‘‘port’’ has the same syntax as the
port specified inBIO_set_conn_port()for connect BIOs, that is it can be a numerical port string or a string
to lookup usinggetservbyname()and a string table.

BIO_new_accept()combinesBIO_new()andBIO_set_accept_port()into a single call: that is it creates a
new acceptBIO with porthost_port.

BIO_set_nbio_accept()sets the accept socket to blocking mode (the default) if n is 0 or non blocking mode
if n is 1.

BIO_set_accept_bios()can be used to set a chain of BIOs which will be duplicated and prepended to the
chain when an incoming connection is received. This is useful if, for example, a buffering or SSL BIO is
required for each connection. The chain of BIOs must not be freed after this call, they will be automatically
freed when the acceptBIO is freed.

0.9.9-dev 2003-07-24 1

BIO_s_accept(3) OpenSSL BIO_s_accept(3)

BIO_set_bind_mode()and BIO_get_bind_mode()set and retrieve the current bind mode. If
BIO_BIND_NORMAL (the default) is set then another socket cannot be bound to the same port. If
BIO_BIND_REUSEADDR is set then other sockets can bind to the same port. IfBIO_BIND_REUSE-
ADDR_IF_UNUSEDis set then and attempt is first made to useBIO_BIN_NORMAL, if this fails and the port
is not in use then a second attempt is made usingBIO_BIND_REUSEADDR.

BIO_do_accept()serves two functions. When it is first called, after the acceptBIO has been setup, it will
attempt to create the accept socket and bind an address to it. Second and subsequent calls to
BIO_do_accept()will await an incoming connection, or request a retry in non blocking mode.

NOTES
When an acceptBIO is at the end of a chain it will await an incoming connection before processing I/O
calls. When an acceptBIO is not at then end of a chain it passes I/O calls to the nextBIO in the chain.

When a connection is established a new socketBIO is created for the connection and appended to the chain.
That is the chain is now accept−>socket. This effectively means that attempting I/O on an initial accept
socket will await an incoming connection then perform I/O on it.

If any additional BIOs have been set usingBIO_set_accept_bios()then they are placed between the socket
and the acceptBIO, that is the chain will be accept−>otherbios−>socket.

If a server wishes to process multiple connections (as is normally the case) then the acceptBIO must be
made available for further incoming connections. This can be done by waiting for a connection and then
calling:

connection = BIO_pop(accept);

After this callconnectionwill contain aBIO for the recently established connection andacceptwill now be
a single BIO again which can be used to await further incoming connections. If no further connections will
be accepted theacceptcan be freed usingBIO_free().

If only a single connection will be processed it is possible to perform I/O using the acceptBIO itself. This is
often undesirable however because the acceptBIO will still accept additional incoming connections. This
can be resolved by usingBIO_pop()(see above) and freeing up the acceptBIO after the initial connection.

If the underlying accept socket is non-blocking andBIO_do_accept()is called to await an incoming con-
nection it is possible forBIO_should_io_special()with the reasonBIO_RR_ACCEPT. If this happens then it
is an indication that an accept attempt would block: the application should take appropriate action to wait
until the underlying socket has accepted a connection and retry the call.

BIO_set_accept_port(), BIO_get_accept_port(), BIO_set_nbio_accept(), BIO_set_accept_bios(),
BIO_set_bind_mode(), BIO_get_bind_mode()andBIO_do_accept()are macros.

RETURN VALUES
TBA

EXAMPLE
This example accepts two connections on port 4444, sends messages down each and finally closes both
down.

BIO *abio, *cbio, *cbio2;
ERR_load_crypto_strings();
abio = BIO_new_accept("4444");

/* First call to BIO_accept() sets up accept BIO */
if(BIO_do_accept(abio) <= 0) {

fprintf(stderr, "Error setting up accept\n");
ERR_print_errors_fp(stderr);
exit(0);

}

0.9.9-dev 2003-07-24 2

BIO_s_accept(3) OpenSSL BIO_s_accept(3)

/* Wait for incoming connection */
if(BIO_do_accept(abio) <= 0) {

fprintf(stderr, "Error accepting connection\n");
ERR_print_errors_fp(stderr);
exit(0);

}
fprintf(stderr, "Connection 1 established\n");
/* Retrieve BIO for connection */
cbio = BIO_pop(abio);
BIO_puts(cbio, "Connection 1: Sending out Data on initial connection\n");
fprintf(stderr, "Sent out data on connection 1\n");
/* Wait for another connection */
if(BIO_do_accept(abio) <= 0) {

fprintf(stderr, "Error accepting connection\n");
ERR_print_errors_fp(stderr);
exit(0);

}
fprintf(stderr, "Connection 2 established\n");
/* Close accept BIO to refuse further connections */
cbio2 = BIO_pop(abio);
BIO_free(abio);
BIO_puts(cbio2, "Connection 2: Sending out Data on second\n");
fprintf(stderr, "Sent out data on connection 2\n");

BIO_puts(cbio, "Connection 1: Second connection established\n");
/* Close the two established connections */
BIO_free(cbio);
BIO_free(cbio2);

SEE ALSO
TBA

0.9.9-dev 2003-07-24 3

BIO_s_bio(3) OpenSSL BIO_s_bio(3)

NAME
BIO_s_bio, BIO_make_bio_pair, BIO_destroy_bio_pair, BIO_shutdown_wr, BIO_set_write_buf_size,
BIO_get_write_buf_size, BIO_new_bio_pair, BIO_get_write_guarantee, BIO_ctrl_get_write_guarantee,
BIO_get_read_request, BIO_ctrl_get_read_request, BIO_ctrl_reset_read_request − BIO pair BIO

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD *BIO_s_bio(void);

#define BIO_make_bio_pair(b1,b2) (int)BIO_ctrl(b1,BIO_C_MAKE_BIO_PAIR,0,b2)
#define BIO_destroy_bio_pair(b) (int)BIO_ctrl(b,BIO_C_DESTROY_BIO_PAIR,0,NULL)

#define BIO_shutdown_wr(b) (int)BIO_ctrl(b, BIO_C_SHUTDOWN_WR, 0, NULL)

#define BIO_set_write_buf_size(b,size) (int)BIO_ctrl(b,BIO_C_SET_WRITE_BUF_SIZE,size,NULL)
#define BIO_get_write_buf_size(b,size) (size_t)BIO_ctrl(b,BIO_C_GET_WRITE_BUF_SIZE,size,NULL)

int BIO_new_bio_pair(BIO **bio1, size_t writebuf1, BIO **bio2, size_t writebuf2);

#define BIO_get_write_guarantee(b) (int)BIO_ctrl(b,BIO_C_GET_WRITE_GUARANTEE,0,NULL)
size_t BIO_ctrl_get_write_guarantee(BIO *b);

#define BIO_get_read_request(b) (int)BIO_ctrl(b,BIO_C_GET_READ_REQUEST,0,NULL)
size_t BIO_ctrl_get_read_request(BIO *b);

int BIO_ctrl_reset_read_request(BIO *b);

DESCRIPTION
BIO_s_bio()returns the method for aBIO pair. A BIO pair is a pair of source/sink BIOs where data written
to either half of the pair is buffered and can be read from the other half. Both halves must usually by han-
dled by the same application thread since no locking is done on the internal data structures.

SinceBIO chains typically end in a source/sinkBIO it is possible to make this one half of aBIO pair and
have all the data processed by the chain under application control.

One typical use ofBIO pairs is to placeTLS/SSL I/O under application control, this can be used when the
application wishes to use a non standard transport forTLS/SSLor the normal socket routines are inappropri-
ate.

Calls toBIO_read()will read data from the buffer or request a retry if no data is available.

Calls toBIO_write()will place data in the buffer or request a retry if the buffer is full.

The standard callsBIO_ctrl_pending()andBIO_ctrl_wpending()can be used to determine the amount of
pending data in the read or write buffer.

BIO_reset()clears any data in the write buffer.

BIO_make_bio_pair()joins two separate BIOs into a connected pair.

BIO_destroy_pair()destroys the association between two connected BIOs. Freeing up any half of the pair
will automatically destroy the association.

BIO_shutdown_wr()is used to close down aBIO b. After this call no further writes onBIO b are allowed
(they will return an error). Reads on the other half of the pair will return any pending data orEOFwhen all
pending data has been read.

BIO_set_write_buf_size()sets the write buffer size ofBIO b to size. If the size is not initialized a default
value is used. This is currently 17K, sufficient for a maximum sizeTLS record.

BIO_get_write_buf_size()returns the size of the write buffer.

BIO_new_bio_pair() combines the calls to BIO_new(), BIO_make_bio_pair() and
BIO_set_write_buf_size()to create a connected pair of BIOsbio1, bio2 with write buffer sizeswritebuf1

0.9.9-dev 2003-07-24 1

BIO_s_bio(3) OpenSSL BIO_s_bio(3)

and writebuf2 . If either size is zero then the default size is used.BIO_new_bio_pair()does not check
whetherbio1 or bio2 do point to some otherBIO, the values are overwritten,BIO_free()is not called.

BIO_get_write_guarantee()and BIO_ctrl_get_write_guarantee()return the maximum length of data that
can be currently written to theBIO. Writes larger than this value will return a value fromBIO_write() less
than the amount requested or if the buffer is full request a retry. BIO_ctrl_get_write_guarantee()is a func-
tion whereasBIO_get_write_guarantee()is a macro.

BIO_get_read_request()and BIO_ctrl_get_read_request()return the amount of data requested, or the
buffer size if it is less, if the last read attempt at the other half of theBIO pair failed due to an empty buffer.
This can be used to determine how much data should be written to theBIO so the next read will succeed:
this is most useful inTLS/SSLapplications where the amount of data read is usually meaningful rather than
just a buffer size. After a successful read this call will return zero. It also will return zero once new data has
been written satisfying the read request or part of it.Note thatBIO_get_read_request()never returns an
amount larger than that returned byBIO_get_write_guarantee().

BIO_ctrl_reset_read_request()can also be used to reset the value returned byBIO_get_read_request()to
zero.

NOTES
Both halves of aBIO pair should be freed. That is even if one half is implicit freed due to aBIO_free_all()
or SSL_free()call the other half needs to be freed.

When used in bidirectional applications (such asTLS/SSL) care should be taken to flush any data in the
write buffer. This can be done by callingBIO_pending()on the other half of the pair and, if any data is
pending, reading it and sending it to the underlying transport. This must be done before any normal pro-
cessing (such as callingselect()) due to a request andBIO_should_read()being true.

To see why this is important consider a case where a request is sent usingBIO_write()and a response read
with BIO_read(), this can occur during anTLS/SSLhandshake for example.BIO_write() will succeed and
place data in the write buffer. BIO_read()will initially f ail andBIO_should_read()will be true. If the appli-
cation then waits for data to be available on the underlying transport before flushing the write buffer it will
never succeed because the request was never sent!

RETURN VALUES
BIO_new_bio_pair()returns 1 on success, with the new BIOs available in bio1 andbio2, or 0 on failure,
with NULL pointers stored into the locations forbio1 andbio2. Check the error stack for more information.

[XXXXX: More return values need to be added here]

EXAMPLE
TheBIO pair can be used to have full control over the network access of an application. The application can
call select()on the socket as required without having to go through the SSL−interface.

BIO *internal_bio, *network_bio;
...
BIO_new_bio_pair(internal_bio, 0, network_bio, 0);
SSL_set_bio(ssl, internal_bio, internal_bio);
SSL_operations();
...

application TLS-engine

+----------> SSL_operations()

 /\
 \/
 BIO-pair (internal_bio)

+----------< BIO-pair (network_bio)

socket

0.9.9-dev 2003-07-24 2

BIO_s_bio(3) OpenSSL BIO_s_bio(3)

...
SSL_free(ssl); /* implicitly frees internal_bio */
BIO_free(network_bio);
...

As theBIO pair will only buffer the data and never directly access the connection, it behaves non-blocking
and will return as soon as the write buffer is full or the read buffer is drained. Then the application has to
flush the write buffer and/or fill the read buffer.

Use theBIO_ctrl_pending(), to find out whether data is buffered in theBIO and must be transfered to the
network. UseBIO_ctrl_get_read_request()to find out, how many bytes must be written into the buffer
before theSSL_operation()can successfully be continued.

WARNING
As the data is buffered,SSL_operation()may return with aERROR_SSL_WANT_READcondition, but there
is still data in the write buffer. An application must not rely on the error value ofSSL_operation()but must
assure that the write buffer is always flushed first. Otherwise a deadlock may occur as the peer might be
waiting for the data before being able to continue.

SEE ALSO
SSL_set_bio(3), ssl(3), openssl_bio(3), BIO_should_retry(3), BIO_read(3)

0.9.9-dev 2003-07-24 3

BIO_s_connect(3) OpenSSL BIO_s_connect(3)

NAME
BIO_s_connect, BIO_set_conn_hostname, BIO_set_conn_port, BIO_set_conn_ip, BIO_set_conn_int_port,
BIO_get_conn_hostname, BIO_get_conn_port, BIO_get_conn_ip, BIO_get_conn_int_port, BIO_set_nbio,
BIO_do_connect − connect BIO

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_s_connect(void);

BIO *BIO_new_connect(char *name);

long BIO_set_conn_hostname(BIO *b, char *name);
long BIO_set_conn_port(BIO *b, char *port);
long BIO_set_conn_ip(BIO *b, char *ip);
long BIO_set_conn_int_port(BIO *b, char *port);
char *BIO_get_conn_hostname(BIO *b);
char *BIO_get_conn_port(BIO *b);
char *BIO_get_conn_ip(BIO *b, dummy);
long BIO_get_conn_int_port(BIO *b, int port);

long BIO_set_nbio(BIO *b, long n);

int BIO_do_connect(BIO *b);

DESCRIPTION
BIO_s_connect()returns the connectBIO method. This is a wrapper round the platform’s TCP/IP socket
connection routines.

Using connect BIOs,TCP/IPconnections can be made and data transferred using onlyBIO routines. In this
way any platform specific operations are hidden by theBIO abstraction.

Read and write operations on a connectBIO will perform I/O on the underlying connection. If no connec-
tion is established and the port and hostname (see below) is set up properly then a connection is established
first.

Connect BIOs supportBIO_puts()but not BIO_gets().

If the close flag is set on a connectBIO then any active connection is shutdown and the socket closed when
theBIO is freed.

Calling BIO_reset()on a connectBIO will close any active connection and reset theBIO into a state where
it can connect to the same host again.

BIO_get_fd()places the underlying socket inc if it is not NULL , it also returns the socket . Ifc is notNULL
it should be of type (int *).

BIO_set_conn_hostname()uses the stringname to set the hostname. The hostname can be anIP address.
The hostname can also include the port in the form hostname:port . It is also acceptable to use the form
‘‘ hostname/any/other/path’’ or ‘ ‘hostname:port/any/other/path’’.

BIO_set_conn_port()sets the port toport . port can be the numerical form or a string such as ‘‘http’’. A
string will be looked up first usinggetservbyname()on the host platform but if that fails a standard table of
port names will be used. Currently the list is http, telnet, socks, https, ssl, ftp, gopher and wais.

BIO_set_conn_ip()sets theIP address toip using binary form, that is four bytes specifying theIP address in
big-endian form.

BIO_set_conn_int_port()sets the port usingport . port should be of type (int *).

BIO_get_conn_hostname()returns the hostname of the connectBIO or NULL if the BIO is initialized but no
hostname is set. This return value is an internal pointer which should not be modified.

0.9.9-dev 2003-07-24 1

BIO_s_connect(3) OpenSSL BIO_s_connect(3)

BIO_get_conn_port()returns the port as a string.

BIO_get_conn_ip()returns theIP address in binary form.

BIO_get_conn_int_port()returns the port as an int.

BIO_set_nbio()sets the non blocking I/O flag ton. If n is zero then blocking I/O is set. Ifn is 1 then non
blocking I/O is set. Blocking I/O is the default. The call toBIO_set_nbio()should be made before the con-
nection is established because non blocking I/O is set during the connect process.

BIO_new_connect()combinesBIO_new()andBIO_set_conn_hostname()into a single call: that is it creates
a new connectBIO with name.

BIO_do_connect()attempts to connect the suppliedBIO. It returns 1 if the connection was established suc-
cessfully. A zero or negative value is returned if the connection could not be established, the call
BIO_should_retry()should be used for non blocking connect BIOs to determine if the call should be
retried.

NOTES
If blocking I/O is set then a non positive return value from any I/O call is caused by an error condition,
although a zero return will normally mean that the connection was closed.

If the port name is supplied as part of the host name then this will override any value set with
BIO_set_conn_port(). This may be undesirable if the application does not wish to allow connection to arbi-
trary ports. This can be avoided by checking for the presence of the ’:’ character in the passed hostname
and either indicating an error or truncating the string at that point.

The values returned byBIO_get_conn_hostname(), BIO_get_conn_port(), BIO_get_conn_ip() and
BIO_get_conn_int_port()are updated when a connection attempt is made. Before any connection attempt
the values returned are those set by the application itself.

Applications do not have to call BIO_do_connect()but may wish to do so to separate the connection
process from other I/O processing.

If non blocking I/O is set then retries will be requested as appropriate.

It addition toBIO_should_read()andBIO_should_write()it is also possible forBIO_should_io_special()to
be true during the initial connection process with the reasonBIO_RR_CONNECT. If this is returned then this
is an indication that a connection attempt would block, the application should then take appropriate action
to wait until the underlying socket has connected and retry the call.

BIO_set_conn_hostname(), BIO_set_conn_port(), BIO_set_conn_ip(), BIO_set_conn_int_port(),
BIO_get_conn_hostname(), BIO_get_conn_port(), BIO_get_conn_ip(), BIO_get_conn_int_port(),
BIO_set_nbio()andBIO_do_connect()are macros.

RETURN VALUES
BIO_s_connect()returns the connectBIO method.

BIO_get_fd()returns the socket or −1 if theBIO has not been initialized.

BIO_set_conn_hostname(), BIO_set_conn_port(), BIO_set_conn_ip()andBIO_set_conn_int_port()always
return 1.

BIO_get_conn_hostname()returns the connected hostname orNULL is none was set.

BIO_get_conn_port()returns a string representing the connected port orNULL if not set.

BIO_get_conn_ip()returns a pointer to the connectedIP address in binary form or all zeros if not set.

BIO_get_conn_int_port()returns the connected port or 0 if none was set.

BIO_set_nbio()always returns 1.

BIO_do_connect()returns 1 if the connection was successfully established and 0 or −1 if the connection
failed.

0.9.9-dev 2003-07-24 2

BIO_s_connect(3) OpenSSL BIO_s_connect(3)

EXAMPLE
This is example connects to a webserver on the local host and attempts to retrieve a page and copy the
result to standard output.

BIO *cbio, *out;
int len;
char tmpbuf[1024];
ERR_load_crypto_strings();
cbio = BIO_new_connect("localhost:http");
out = BIO_new_fp(stdout, BIO_NOCLOSE);
if(BIO_do_connect(cbio) <= 0) {

fprintf(stderr, "Error connecting to server\n");
ERR_print_errors_fp(stderr);
/* whatever ... */
}

BIO_puts(cbio, "GET / HTTP/1.0\n\n");
for(;;) {

len = BIO_read(cbio, tmpbuf, 1024);
if(len <= 0) break;
BIO_write(out, tmpbuf, len);

}
BIO_free(cbio);
BIO_free(out);

SEE ALSO
TBA

0.9.9-dev 2003-07-24 3

BIO_s_fd(3) OpenSSL BIO_s_fd(3)

NAME
BIO_s_fd, BIO_set_fd, BIO_get_fd, BIO_new_fd − file descriptor BIO

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_s_fd(void);

#define BIO_set_fd(b,fd,c) BIO_int_ctrl(b,BIO_C_SET_FD,c,fd)
#define BIO_get_fd(b,c) BIO_ctrl(b,BIO_C_GET_FD,0,(char *)c)

BIO *BIO_new_fd(int fd, int close_flag);

DESCRIPTION
BIO_s_fd()returns the file descriptorBIO method. This is a wrapper round the platforms file descriptor rou-
tines such asread()andwrite().

BIO_read() and BIO_write() read or write the underlying descriptor. BIO_puts() is supported but
BIO_gets()is not.

If the close flag is set then thenclose()is called on the underlying file descriptor when theBIO is freed.

BIO_reset()attempts to change the file pointer to the start of file using lseek(fd, 0, 0).

BIO_seek()sets the file pointer to positionofs from start of file using lseek(fd, ofs, 0).

BIO_tell() returns the current file position by calling lseek(fd, 0, 1).

BIO_set_fd()sets the file descriptor ofBIO b to fd and the close flag toc.

BIO_get_fd()places the file descriptor inc if it is not NULL , it also returns the file descriptor. If c is not
NULL it should be of type (int *).

BIO_new_fd()returns a file descriptorBIO usingfd andclose_flag.

NOTES
The behaviour ofBIO_read()andBIO_write()depends on the behavior of the platformsread() andwrite()
calls on the descriptor. If the underlying file descriptor is in a non blocking mode then theBIO will behave
in the manner described in theBIO_read(3) andBIO_should_retry(3) manual pages.

File descriptor BIOs should not be used for socket I/O. Use socket BIOs instead.

RETURN VALUES
BIO_s_fd()returns the file descriptorBIO method.

BIO_reset()returns zero for success and −1 if an error occurred.BIO_seek()andBIO_tell() return the cur-
rent file position or −1 is an error occurred. These values reflect the underlyinglseek()behaviour.

BIO_set_fd()always returns 1.

BIO_get_fd()returns the file descriptor or −1 if theBIO has not been initialized.

BIO_new_fd()returns the newly allocatedBIO or NULL is an error occurred.

EXAMPLE
This is a file descriptorBIO version of ‘‘Hello World’’:

BIO *out;
out = BIO_new_fd(fileno(stdout), BIO_NOCLOSE);
BIO_printf(out, "Hello World\n");
BIO_free(out);

SEE ALSO
BIO_seek(3), BIO_tell(3), BIO_reset(3), BIO_read(3), BIO_write(3), BIO_puts(3), BIO_gets(3),
BIO_printf(3), BIO_set_close(3), BIO_get_close(3)

0.9.9-dev 2001-04-11 1

BIO_s_file(3) OpenSSL BIO_s_file(3)

NAME
BIO_s_file, BIO_new_file, BIO_new_fp, BIO_set_fp, BIO_get_fp, BIO_read_filename, BIO_write_file-
name, BIO_append_filename, BIO_rw_filename − FILE bio

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_s_file(void);
BIO *BIO_new_file(const char *filename, const char *mode);
BIO *BIO_new_fp(FILE *stream, int flags);

BIO_set_fp(BIO *b,FILE *fp, int flags);
BIO_get_fp(BIO *b,FILE **fpp);

int BIO_read_filename(BIO *b, char *name)
int BIO_write_filename(BIO *b, char *name)
int BIO_append_filename(BIO *b, char *name)
int BIO_rw_filename(BIO *b, char *name)

DESCRIPTION
BIO_s_file()returns theBIO file method. As its name implies it is a wrapper round the stdioFILE structure
and it is a source/sinkBIO.

Calls to BIO_read() and BIO_write() read and write data to the underlying stream.BIO_gets()and
BIO_puts()are supported on file BIOs.

BIO_flush()on a fileBIO calls thefflush()function on the wrapped stream.

BIO_reset()attempts to change the file pointer to the start of file using fseek(stream, 0, 0).

BIO_seek()sets the file pointer to positionofs from start of file using fseek(stream, ofs, 0).

BIO_eof()callsfeof().

Setting theBIO_CLOSEflag callsfclose()on the stream when theBIO is freed.

BIO_new_file()creates a new file BIO with modemode the meaning ofmode is the same as the stdio func-
tion fopen(). TheBIO_CLOSEflag is set on the returnedBIO.

BIO_new_fp()creates a fileBIO wrappingstream. Flags can be:BIO_CLOSE, BIO_NOCLOSE(the close
flag) BIO_FP_TEXT (sets the underlying stream to text mode, default is binary: this only has any effect
under Win32).

BIO_set_fp()set the fp of a fileBIO to fp. flagshas the same meaning as inBIO_new_fp(), it is a macro.

BIO_get_fp()retrieves the fp of a fileBIO, it is a macro.

BIO_seek()is a macro that sets the position pointer tooffsetbytes from the start of file.

BIO_tell() returns the value of the position pointer.

BIO_read_filename(), BIO_write_filename(), BIO_append_filename()and BIO_rw_filename()set the file
BIO b to use filenamefor reading, writing, append or read write respectively.

NOTES
When wrapping stdout, stdin or stderr the underlying stream should not normally be closed so the
BIO_NOCLOSEflag should be set.

Because the fileBIO calls the underlying stdio functions any quirks in stdio behaviour will be mirrored by
the correspondingBIO.

EXAMPLES
File BIO ‘‘ hello world’’:

0.9.9-dev 2001-04-11 1

BIO_s_file(3) OpenSSL BIO_s_file(3)

BIO *bio_out;
bio_out = BIO_new_fp(stdout, BIO_NOCLOSE);
BIO_printf(bio_out, "Hello World\n");

Alternative technique:

BIO *bio_out;
bio_out = BIO_new(BIO_s_file());
if(bio_out == NULL) /* Error ... */
if(!BIO_set_fp(bio_out, stdout, BIO_NOCLOSE)) /* Error ... */
BIO_printf(bio_out, "Hello World\n");

Write to a file:

BIO *out;
out = BIO_new_file("filename.txt", "w");
if(!out) /* Error occurred */
BIO_printf(out, "Hello World\n");
BIO_free(out);

Alternative technique:

BIO *out;
out = BIO_new(BIO_s_file());
if(out == NULL) /* Error ... */
if(!BIO_write_filename(out, "filename.txt")) /* Error ... */
BIO_printf(out, "Hello World\n");
BIO_free(out);

RETURN VALUES
BIO_s_file()returns the fileBIO method.

BIO_new_file()andBIO_new_fp()return a fileBIO or NULL if an error occurred.

BIO_set_fp()andBIO_get_fp()return 1 for success or 0 for failure (although the current implementation
never return 0).

BIO_seek()returns the same value as the underlyingfseek()function: 0 for success or −1 for failure.

BIO_tell() returns the current file position.

BIO_read_filename(), BIO_write_filename(), BIO_append_filename()andBIO_rw_filename()return 1 for
success or 0 for failure.

BUGS
BIO_reset()andBIO_seek()are implemented usingfseek()on the underlying stream. The return value for
fseek()is 0 for success or −1 if an error occurred this differs from other types ofBIO which will typically
return 1 for success and a non positive value if an error occurred.

SEE ALSO
BIO_seek(3), BIO_tell(3), BIO_reset(3), BIO_flush(3), BIO_read(3), BIO_write(3), BIO_puts(3),
BIO_gets(3), BIO_printf(3), BIO_set_close(3), BIO_get_close(3)

0.9.9-dev 2001-04-11 2

BIO_s_mem(3) OpenSSL BIO_s_mem(3)

NAME
BIO_s_mem, BIO_set_mem_eof_return, BIO_get_mem_data, BIO_set_mem_buf, BIO_get_mem_ptr,
BIO_new_mem_buf − memory BIO

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_s_mem(void);

BIO_set_mem_eof_return(BIO *b,int v)
long BIO_get_mem_data(BIO *b, char **pp)
BIO_set_mem_buf(BIO *b,BUF_MEM *bm,int c)
BIO_get_mem_ptr(BIO *b,BUF_MEM **pp)

BIO *BIO_new_mem_buf(void *buf, int len);

DESCRIPTION
BIO_s_mem()return the memoryBIO method function.

A memoryBIO is a source/sinkBIO which uses memory for its I/O. Data written to a memoryBIO is stored
in aBUF_MEM structure which is extended as appropriate to accommodate the stored data.

Any data written to a memoryBIO can be recalled by reading from it. Unless the memoryBIO is read only
any data read from it is deleted from theBIO.

Memory BIOs supportBIO_gets()andBIO_puts().

If the BIO_CLOSEflag is set when a memoryBIO is freed then the underlyingBUF_MEM structure is also
freed.

Calling BIO_reset()on a read write memoryBIO clears any data in it. On a read onlyBIO it restores the
BIO to its original state and the read only data can be read again.

BIO_eof()is true if no data is in theBIO.

BIO_ctrl_pending()returns the number of bytes currently stored.

BIO_set_mem_eof_return()sets the behaviour of memoryBIO b when it is empty. If the v is zero then an
empty memoryBIO will return EOF (that is it will return zero and BIO_should_retry(b) will be false. Ifv is
non zero then it will returnv when it is empty and it will set the read retry flag (that is BIO_read_retry(b) is
true). To avoid ambiguity with a normal positive return valuev should be set to a negative value, typically
−1.

BIO_get_mem_data()setspp to a pointer to the start of the memory BIOs data and returns the total amount
of data available. It is implemented as a macro.

BIO_set_mem_buf()sets the internalBUF_MEM structure tobm and sets the close flag toc, that isc should
be eitherBIO_CLOSEor BIO_NOCLOSE. It is a macro.

BIO_get_mem_ptr()places the underlyingBUF_MEM structure inpp. It is a macro.

BIO_new_mem_buf()creates a memoryBIO using len bytes of data atbuf, if len is −1 then thebuf is
assumed to be null terminated and its length is determined bystrlen. TheBIO is set to a read only state and
as a result cannot be written to. This is useful when some data needs to be made available from a static area
of memory in the form of aBIO. The supplied data is read directly from the supplied buffer: it is not copied
first, so the supplied area of memory must be unchanged until theBIO is freed.

NOTES
Writes to memory BIOs will always succeed if memory is available: that is their size can grow indefinitely.

Every read from a read write memoryBIO will remove the data just read with an internal copy operation, if
a BIO contains a lots of data and it is read in small chunks the operation can be very slow. The use of a read
only memoryBIO avoids this problem. If theBIO must be read write then adding a buffering BIO to the

0.9.9-dev 2001-04-11 1

BIO_s_mem(3) OpenSSL BIO_s_mem(3)

chain will speed up the process.

BUGS
There should be an option to set the maximum size of a memoryBIO.

There should be a way to ‘‘rewind’’ a read writeBIO without destroying its contents.

The copying operation should not occur after every small read of a largeBIO to improve efficiency.

EXAMPLE
Create a memoryBIO and write some data to it:

BIO *mem = BIO_new(BIO_s_mem());
BIO_puts(mem, "Hello World\n");

Create a read only memoryBIO:

char data[] = "Hello World";
BIO *mem;
mem = BIO_new_mem_buf(data, -1);

Extract theBUF_MEM structure from a memoryBIO and then free up theBIO:

BUF_MEM *bptr;
BIO_get_mem_ptr(mem, &bptr);
BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */
BIO_free(mem);

SEE ALSO
TBA

0.9.9-dev 2001-04-11 2

BIO_s_null(3) OpenSSL BIO_s_null(3)

NAME
BIO_s_null − null data sink

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_s_null(void);

DESCRIPTION
BIO_s_null()returns the null sinkBIO method. Data written to the null sink is discarded, reads returnEOF.

NOTES
A null sink BIO behaves in a similar manner to the Unix /dev/null device.

A null bio can be placed on the end of a chain to discard any data passed through it.

A null sink is useful if, for example, an application wishes to digest some data by writing through a digest
bio but not send the digested data anywhere. Sincea BIO chain must normally include a source/sinkBIO
this can be achieved by adding a null sinkBIO to the end of the chain

RETURN VALUES
BIO_s_null()returns the null sinkBIO method.

SEE ALSO
TBA

0.9.9-dev 2001-04-11 1

BIO_s_socket(3) OpenSSL BIO_s_socket(3)

NAME
BIO_s_socket, BIO_new_socket − socket BIO

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD *BIO_s_socket(void);

long BIO_set_fd(BIO *b, int fd, long close_flag);
long BIO_get_fd(BIO *b, int *c);

BIO *BIO_new_socket(int sock, int close_flag);

DESCRIPTION
BIO_s_socket() returns the socketBIO method. This is a wrapper round the platform’s socket routines.

BIO_read()andBIO_write()read or write the underlying socket. BIO_puts()is supported but BIO_gets()is
not.

If the close flag is set then the socket is shut down and closed when theBIO is freed.

BIO_set_fd()sets the socket ofBIO b to fd and the close flag toclose_flag.

BIO_get_fd()places the socket inc if it is not NULL , it also returns the socket. Ifc is notNULL it should be
of type (int *).

BIO_new_socket() returns a socketBIO usingsockandclose_flag.

NOTES
Socket BIOs also support any relevant functionality of file descriptor BIOs.

The reason for having separate file descriptor and socket BIOs is that on some platforms sockets are not file
descriptors and use distinct I/O routines, Windows is one such platform. Any code mixing the two will not
work on all platforms.

BIO_set_fd()andBIO_get_fd()are macros.

RETURN VALUES
BIO_s_socket() returns the socketBIO method.

BIO_set_fd()always returns 1.

BIO_get_fd()returns the socket or −1 if theBIO has not been initialized.

BIO_new_socket() returns the newly allocatedBIO or NULL is an error occurred.

SEE ALSO
TBA

0.9.9-dev 2003-07-24 1

BIO_set_callback(3) OpenSSL BIO_set_callback(3)

NAME
BIO_set_callback, BIO_get_callback, BIO_set_callback_arg, BIO_get_callback_arg, BIO_debug_callback
− BIO callback functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

#define BIO_set_callback(b,cb) ((b)->callback=(cb))
#define BIO_get_callback(b) ((b)->callback)
#define BIO_set_callback_arg(b,arg) ((b)->cb_arg=(char *)(arg))
#define BIO_get_callback_arg(b) ((b)->cb_arg)

long BIO_debug_callback(BIO *bio,int cmd,const char *argp,int argi,
long argl,long ret);

typedef long (*callback)(BIO *b, int oper, const char *argp,
int argi, long argl, long retvalue);

DESCRIPTION
BIO_set_callback()andBIO_get_callback()set and retrieve the BIO callback, they are both macros. The
callback is called during most high level BIO operations. It can be used for debugging purposes to trace
operations on aBIO or to modify its operation.

BIO_set_callback_arg()andBIO_get_callback_arg()are macros which can be used to set and retrieve an
argument for use in the callback.

BIO_debug_callback()is a standard debugging callback which prints out information relating to eachBIO
operation. If the callback argument is set if is interpreted as aBIO to send the information to, otherwise
stderr is used.

callback()is the callback function itself. The meaning of each argument is described below.

TheBIO the callback is attached to is passed inb.

oper is set to the operation being performed. For some operations the callback is called twice, once before
and once after the actual operation, the latter case hasoper or’ed withBIO_CB_RETURN.

The meaning of the argumentsargp, argi andargl depends on the value ofoper, that is the operation being
performed.

retvalue is the return value that would be returned to the application if no callback were present. The actual
value returned is the return value of the callback itself. In the case of callbacks called before the actualBIO
operation 1 is placed in retvalue, if the return value is not positive it will be immediately returned to the
application and theBIO operation will not be performed.

The callback should normally simply returnretvalue when it has finished processing, unless if specifically
wishes to modify the value returned to the application.

CALLB ACK OPERATIONS
BIO_free(b)

callback(b,BIO_CB_FREE, NULL , 0L, 0L, 1L) is called before the free operation.

BIO_read(b, out, outl)
callback(b, BIO_CB_READ, out, outl, 0L, 1L) is called before the read and callback(b,
BIO_CB_READBIO_CB_RETURN, out, outl, 0L, retvalue) after.

BIO_write(b, in, inl)
callback(b, BIO_CB_WRITE, in, inl, 0L, 1L) is called before the write and callback(b,
BIO_CB_WRITEBIO_CB_RETURN, in, inl, 0L, retvalue) after.

0.9.9-dev 2007-03-06 1

BIO_set_callback(3) OpenSSL BIO_set_callback(3)

BIO_gets(b, out, outl)
callback(b, BIO_CB_GETS, out, outl, 0L, 1L) is called before the operation and callback(b,
BIO_CB_GETSBIO_CB_RETURN, out, outl, 0L, retvalue) after.

BIO_puts(b, in)
callback(b, BIO_CB_WRITE, in, 0, 0L, 1L) is called before the operation and callback(b,
BIO_CB_WRITEBIO_CB_RETURN, in, 0, 0L, retvalue) after.

BIO_ctrl(BIO *b, int cmd, long larg, void *parg)
callback(b,BIO_CB_CTRL,parg,cmd,larg,1L) is called before the call and call-
back(b,BIO_CB_CTRLBIO_CB_RETURN,parg,cmd, larg,ret) after.

EXAMPLE
TheBIO_debug_callback()function is a good example, its source is in crypto/bio/bio_cb.c

SEE ALSO
TBA

0.9.9-dev 2007-03-06 2

BIO_should_retry(3) OpenSSL BIO_should_retry(3)

NAME
BIO_should_retry, BIO_should_read, BIO_should_write, BIO_should_io_special, BIO_retry_type,
BIO_should_retry, BIO_get_retry_BIO, BIO_get_retry_reason − BIO retry functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

#define BIO_should_read(a) ((a)->flags & BIO_FLAGS_READ)
#define BIO_should_write(a) ((a)->flags & BIO_FLAGS_WRITE)
#define BIO_should_io_special(a) ((a)->flags & BIO_FLAGS_IO_SPECIAL)
#define BIO_retry_type(a) ((a)->flags & BIO_FLAGS_RWS)
#define BIO_should_retry(a) ((a)->flags & BIO_FLAGS_SHOULD_RETRY)

#define BIO_FLAGS_READ 0x01
#define BIO_FLAGS_WRITE 0x02
#define BIO_FLAGS_IO_SPECIAL 0x04
#define BIO_FLAGS_RWS (BIO_FLAGS_READ BIO_FLAGS_WRITEBIO_FLAGS_IO_SPECIAL)
#define BIO_FLAGS_SHOULD_RETRY 0x08

BIO * BIO_get_retry_BIO(BIO *bio, int *reason);
int BIO_get_retry_reason(BIO *bio);

DESCRIPTION
These functions determine why a BIO is not able to read or write data.They will typically be called after a
failed BIO_read()or BIO_write()call.

BIO_should_retry()is true if the call that produced this condition should then be retried at a later time.

If BIO_should_retry()is false then the cause is an error condition.

BIO_should_read()is true if the cause of the condition is that aBIO needs to read data.

BIO_should_write()is true if the cause of the condition is that aBIO needs to read data.

BIO_should_io_special()is true if some ‘‘special’’ condition, that is a reason other than reading or writing
is the cause of the condition.

BIO_get_retry_reason()returns a mask of the cause of a retry condition consisting of the values
BIO_FLAGS_READ , BIO_FLAGS_WRITE , BIO_FLAGS_IO_SPECIAL though currentBIO types will only
set one of these.

BIO_get_retry_BIO()determines the precise reason for the special condition, it returns theBIO that caused
this condition and ifreason is notNULL it contains the reason code. The meaning of the reason code and
the action that should be taken depends on the type ofBIO that resulted in this condition.

BIO_get_retry_reason()returns the reason for a special condition if passed the relevant BIO, for example as
returned byBIO_get_retry_BIO().

NOTES
If BIO_should_retry()returns false then the precise ‘‘error condition’’ depends on theBIO type that caused
it and the return code of theBIO operation. For example if a call toBIO_read()on a socket BIO returns 0
andBIO_should_retry()is false then the cause will be that the connection closed. A similar condition on a
file BIO will mean that it has reachedEOF. SomeBIO types may place additional information on the error
queue. For more details see the individualBIO type manual pages.

If the underlying I/O structure is in a blocking mode almost all currentBIO types will not request a retry,
because the underlying I/O calls will not. If the application knows that theBIO type will never signal a retry
then it need not callBIO_should_retry()after a failedBIO I/O call. This is typically done with file BIOs.

SSL BIOs are the only current exception to this rule: they can request a retry even if the underlying I/O
structure is blocking, if a handshake occurs during a call toBIO_read(). An application can retry the failed
call immediately or avoid this situation by settingSSL_MODE_AUTO_RETRYon the underlyingSSL

0.9.9-dev 2001-04-11 1

BIO_should_retry(3) OpenSSL BIO_should_retry(3)

structure.

While an application may retry a failed non blocking call immediately this is likely to be very inefficient
because the call will fail repeatedly until data can be processed or is available. An application will normally
wait until the necessary condition is satisfied. How this is done depends on the underlying I/O structure.

For example if the cause is ultimately a socket andBIO_should_read()is true then a call toselect()may be
made to wait until data is available and then retry theBIO operation. By combining the retry conditions of
several non blocking BIOs in a singleselect()call it is possible to service several BIOs in a single thread,
though the performance may be poor ifSSLBIOs are present because long delays can occur during the ini-
tial handshake process.

It is possible for aBIO to block indefinitely if the underlying I/O structure cannot process or return any
data. This depends on the behaviour of the platforms I/O functions. This is often not desirable: one solution
is to use non blocking I/O and use a timeout on theselect()(or equivalent) call.

BUGS
The OpenSSLASN1 functions cannot gracefully deal with non blocking I/O: that is they cannot retry after a
partial read or write. This is usually worked around by only passing the relevant data toASN1 functions
when the entire structure can be read or written.

SEE ALSO
TBA

0.9.9-dev 2001-04-11 2

BN_BLINDING_new(3) OpenSSL BN_BLINDING_new(3)

NAME
BN_BLINDING_new, BN_BLINDING_free, BN_BLINDING_update, BN_BLINDING_convert,
BN_BLINDING_invert, BN_BLINDING_convert_ex, BN_BLINDING_invert_ex, BN_BLIND-
ING_set_thread, BN_BLINDING_cmp_thread, BN_BLINDING_get_flags, BN_BLINDING_set_flags,
BN_BLINDING_create_param − blinding related BIGNUM functions.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai,
BIGNUM *mod);

void BN_BLINDING_free(BN_BLINDING *b);
int BN_BLINDING_update(BN_BLINDING *b,BN_CTX *ctx);
int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b,

BN_CTX *ctx);
int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b,

BN_CTX *ctx);

void BN_BLINDING_set_thread(BN_BLINDING *);
int BN_BLINDING_cmp_thread(const BN_BLINDING *,

const CRYPTO_THREADID *);
unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,

const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,

const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx),
BN_MONT_CTX *m_ctx);

DESCRIPTION
BN_BLINDING_new()allocates a new BN_BLINDING structure and copies theA andAi values into the
newly createdBN_BLINDING object.

BN_BLINDING_free()frees theBN_BLINDING structure.

BN_BLINDING_update()updates theBN_BLINDING parameters by squaring theA andAi or, after spe-
cific number of uses and if the necessary parameters are set, by re-creating the blinding parameters.

BN_BLINDING_convert_ex()multiplies n with the blinding factorA. If r is notNULL a copy the inverse
blinding factorAi will be returned inr (this is useful if aRSA object is shared amoung several threads).
BN_BLINDING_invert_ex()multipliesn with the inverse blinding factorAi . If r is notNULL it will be used
as the inverse blinding.

BN_BLINDING_convert()and BN_BLINDING_invert()are wrapper functions forBN_BLINDING_con-
vert_ex()andBN_BLINDING_invert_ex()with r set toNULL .

BN_BLINDING_set_thread()and BN_BLINDING_cmp_thread()set and compare the ‘‘thread id’’ of the
BN_BLINDING structure, allowing users of theBN_BLINDING structure to provide proper locking if
needed for multi-threaded use.

BN_BLINDING_get_flags()returns theBN_BLINDING flags. Currently there are two supported flags:
BN_BLINDING_NO_UPDATE and BN_BLINDING_NO_RECREATE . BN_BLINDING_NO_UPDATE
inhibits the automatic update of theBN_BLINDING parameters after each use andBN_BLIND-
ING_NO_RECREATE inhibits the automatic re-creation of theBN_BLINDING parameters after a fixed
number of uses (currently 32). In newly allocatedBN_BLINDING objects no flags are set.BN_BLIND-
ING_set_flags()sets theBN_BLINDING parameters flags.

0.9.9-dev 2008-05-09 1

BN_BLINDING_new(3) OpenSSL BN_BLINDING_new(3)

BN_BLINDING_create_param()creates new BN_BLINDING parameters using the exponente and the mod-
ulus m. bn_mod_exp and m_ctx can be used to pass special functions for exponentiation (normally
BN_mod_exp_mont()andBN_MONT_CTX).

RETURN VALUES
BN_BLINDING_new()returns the newly allocatedBN_BLINDING structure orNULL in case of an error.

BN_BLINDING_update(), BN_BLINDING_convert(), BN_BLINDING_invert(), BN_BLINDING_con-
vert_ex()andBN_BLINDING_invert_ex()return 1 on success and 0 if an error occured.

BN_BLINDING_get_thread_id()returns the thread id (aunsigned longvalue) or 0 if not set.BN_BLIND-
ING_cmp_thread()returns 0 if the thread id associated with theBN_BLINDING structure equals the pro-
vided thread id (which can be obtained byCRYPTO_THREADID_set()), otherwise it returns −1 or +1 to
indicate the thread ids are different (if the target architecture supports ordering of thread ids, this follows
the traditional ‘‘cmp’’ semantics ofmemcmp()or strcmp()).

BN_BLINDING_get_flags()returns the currently setBN_BLINDING flags (aunsigned longvalue).

BN_BLINDING_create_param()returns the newly createdBN_BLINDING parameters orNULL on error.

SEE ALSO
openssl_bn(3)

HISTORY
BN_BLINDING_convert_ex, BN_BLINDIND_invert_ex, BN_BLINDING_get_thread_id, BN_BLIND-
ING_set_thread_id, BN_BLINDING_set_flags, BN_BLINDING_get_flags and BN_BLINDING_cre-
ate_param were first introduced in OpenSSL 0.9.8

BN_BLINDING_get_thread_idptr, BN_BLINDING_set_thread_idptr were first introduced in OpenSSL
0.9.9

BN_BLINDING_get_thread_id, BN_BLINDING_set_thread_id, BN_BLINDING_get_thread_idptr,
BN_BLINDING_set_thread_idptr were all deprecated in favour of BN_BLINDING_set_thread,
BN_BLINDING_cmp_thread which were introduced in OpenSSL 0.9.9

AUTHOR
Nils Larsch for the OpenSSL project (http://www.openssl.org).

0.9.9-dev 2008-05-09 2

BN_CTX_new(3) OpenSSL BN_CTX_new(3)

NAME
BN_CTX_new, BN_CTX_init, BN_CTX_free − allocate and free BN_CTX structures

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

BN_CTX *BN_CTX_new(void);

void BN_CTX_init(BN_CTX *c);

void BN_CTX_free(BN_CTX *c);

DESCRIPTION
A BN_CTX is a structure that holdsBIGNUM temporary variables used by library functions. Since dynamic
memory allocation to createBIGNUM s is rather expensive when used in conjunction with repeated subrou-
tine calls, theBN_CTX structure is used.

BN_CTX_new()allocates and initializes aBN_CTX structure.BN_CTX_init()initializes an existing unini-
tializedBN_CTX.

BN_CTX_free()frees the components of theBN_CTX, and if it was created byBN_CTX_new(), also the
structure itself. If BN_CTX_start(3) has been used on theBN_CTX, BN_CTX_end(3) must be called
before theBN_CTX may be freed byBN_CTX_free().

RETURN VALUES
BN_CTX_new()returns a pointer to theBN_CTX. If the allocation fails, it returnsNULL and sets an error
code that can be obtained byERR_get_error(3).

BN_CTX_init()andBN_CTX_free()have no return values.

SEE ALSO
openssl_bn(3), ERR_get_error(3), BN_add(3), BN_CTX_start(3)

HISTORY
BN_CTX_new()andBN_CTX_free()are available in all versions on SSLeay and OpenSSL.BN_CTX_init()
was added in SSLeay 0.9.1b.

0.9.9-dev 2003-07-24 1

BN_CTX_start(3) OpenSSL BN_CTX_start(3)

NAME
BN_CTX_start, BN_CTX_get, BN_CTX_end − use temporary BIGNUM variables

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

void BN_CTX_start(BN_CTX *ctx);

BIGNUM *BN_CTX_get(BN_CTX *ctx);

void BN_CTX_end(BN_CTX *ctx);

DESCRIPTION
These functions are used to obtain temporaryBIGNUM variables from aBN_CTX (which can been created
by usingBN_CTX_new(3)) in order to save the overhead of repeatedly creating and freeingBIGNUM s in
functions that are called from inside a loop.

A function must callBN_CTX_start()first. Then,BN_CTX_get()may be called repeatedly to obtain tempo-
rary BIGNUM s. All BN_CTX_get()calls must be made before calling any other functions that use thectx as
an argument.

Finally, BN_CTX_end()must be called before returning from the function.WhenBN_CTX_end()is called,
theBIGNUM pointers obtained fromBN_CTX_get()become invalid.

RETURN VALUES
BN_CTX_start()andBN_CTX_end()return no values.

BN_CTX_get()returns a pointer to theBIGNUM , or NULL on error. OnceBN_CTX_get()has failed, the
subsequent calls will returnNULL as well, so it is sufficient to check the return value of the last
BN_CTX_get()call. In case of an error, an error code is set, which can be obtained byERR_get_error(3).

SEE ALSO
BN_CTX_new(3)

HISTORY
BN_CTX_start(), BN_CTX_get()andBN_CTX_end()were added in OpenSSL 0.9.5.

0.9.9-dev 2001-04-12 1

BN_add(3) OpenSSL BN_add(3)

NAME
BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add, BN_mod_sub,
BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd − arithmetic operations on BIGNUMs

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);

int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);

int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);

int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
BN_CTX *ctx);

int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);

int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);

int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

DESCRIPTION
BN_add()addsa andb and places the result inr (r=a+b). r may be the sameBIGNUM asa or b.

BN_sub()subtractsb from a and places the result inr (r=a−b).

BN_mul()multiplies a andb and places the result inr (r=a*b). r may be the sameBIGNUM asa or b.
For multiplication by powers of 2, useBN_lshift(3).

BN_sqr()takes the square ofa and places the result inr (r=aˆ2). r anda may be the sameBIGNUM . This
function is faster than BN_mul(r,a,a).

BN_div() divides a by d and places the result indv and the remainder inrem (dv=a/d, rem=a%d).
Either of dv and rem may beNULL , in which case the respective value is not returned. The result is
rounded towards zero; thus ifa is negative, the remainder will be zero or negative. For division by powers
of 2, useBN_rshift(3).

BN_mod()corresponds toBN_div()with dvset toNULL .

BN_nnmod()reducesa modulom and places the non-negative remainder inr.

BN_mod_add()addsa to b modulom and places the non-negative result inr.

BN_mod_sub()subtractsb from a modulom and places the non-negative result inr.

BN_mod_mul()multipliesa by b and finds the non-negative remainder respective to modulusm (r=(a*b)
mod m). r may be the sameBIGNUM asa or b. For more efficient algorithms for repeated computations
using the same modulus, seeBN_mod_mul_montgomery(3) andBN_mod_mul_reciprocal(3).

0.9.9-dev 2003-07-24 1

BN_add(3) OpenSSL BN_add(3)

BN_mod_sqr()takes the square ofa modulom and places the result inr.

BN_exp()raisesa to the p−th power and places the result inr (r=aˆp). This function is faster than
repeated applications ofBN_mul().

BN_mod_exp()computesa to thep−th power modulom (r=aˆp % m). This function uses less time and
space thanBN_exp().

BN_gcd()computes the greatest common divisor ofa andb and places the result inr. r may be the same
BIGNUM asa or b.

For all functions,ctx is a previously allocatedBN_CTX used for temporary variables; seeBN_CTX_new(3).

Unless noted otherwise, the resultBIGNUM must be different from the arguments.

RETURN VALUES
For all functions, 1 is returned for success, 0 on error. The return value should always be checked (e.g.,if
(!BN_add(r,a,b)) goto err;). Theerror codes can be obtained byERR_get_error(3).

SEE ALSO
openssl_bn(3), ERR_get_error(3), BN_CTX_new(3), BN_add_word(3), BN_set_bit(3)

HISTORY
BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(), BN_mod_exp()and BN_gcd()are
available in all versions of SSLeay and OpenSSL. Thectx argument toBN_mul()was added in SSLeay
0.9.1b. BN_exp() appeared in SSLeay 0.9.0.BN_nnmod(), BN_mod_add(), BN_mod_sub(), and
BN_mod_sqr()were added in OpenSSL 0.9.7.

0.9.9-dev 2003-07-24 2

BN_add_word(3) OpenSSL BN_add_word(3)

NAME
BN_add_word, BN_sub_word, BN_mul_word, BN_div_word, BN_mod_word − arithmetic functions on
BIGNUMs with integers

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

int BN_add_word(BIGNUM *a, BN_ULONG w);

int BN_sub_word(BIGNUM *a, BN_ULONG w);

int BN_mul_word(BIGNUM *a, BN_ULONG w);

BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);

BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);

DESCRIPTION
These functions perform arithmetic operations on BIGNUMs with unsigned integers. They are much more
efficient than the normalBIGNUM arithmetic operations.

BN_add_word()addsw to a (a+=w).

BN_sub_word()subtractsw from a (a−=w).

BN_mul_word()multipliesa andw (a*=w).

BN_div_word()dividesa by w (a/=w) and returns the remainder.

BN_mod_word()returns the remainder ofa divided byw (a%w).

For BN_div_word()andBN_mod_word(), w must not be 0.

RETURN VALUES
BN_add_word(), BN_sub_word()andBN_mul_word()return 1 for success, 0 on error. The error codes can
be obtained byERR_get_error(3).

BN_mod_word()andBN_div_word()returna%w on success and(BN_ULONG)−1 if an error occurred.

SEE ALSO
openssl_bn(3), ERR_get_error(3), BN_add(3)

HISTORY
BN_add_word()andBN_mod_word()are available in all versions of SSLeay and OpenSSL.BN_div_word()
was added in SSLeay 0.8, andBN_sub_word()andBN_mul_word()in SSLeay 0.9.0.

Before 0.9.8a the return value forBN_div_word()andBN_mod_word()in case of an error was 0.

0.9.9-dev 2005-11-24 1

BN_bn2bin(3) OpenSSL BN_bn2bin(3)

NAME
BN_bn2bin, BN_bin2bn, BN_bn2hex, BN_bn2dec, BN_hex2bn, BN_dec2bn, BN_print, BN_print_fp,
BN_bn2mpi, BN_mpi2bn − format conversions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

int BN_bn2bin(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);

char *BN_bn2hex(const BIGNUM *a);
char *BN_bn2dec(const BIGNUM *a);
int BN_hex2bn(BIGNUM **a, const char *str);
int BN_dec2bn(BIGNUM **a, const char *str);

int BN_print(BIO *fp, const BIGNUM *a);
int BN_print_fp(FILE *fp, const BIGNUM *a);

int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_mpi2bn(unsigned char *s, int len, BIGNUM *ret);

DESCRIPTION
BN_bn2bin()converts the absolute value ofa into big-endian form and stores it atto. to must point to
BN_num_bytes(a) bytes of memory.

BN_bin2bn()converts the positive integer in big-endian form of lengthlen ats into aBIGNUM and places it
in ret. If ret is NULL , a new BIGNUM is created.

BN_bn2hex()andBN_bn2dec()return printable strings containing the hexadecimal and decimal encoding
of a respectively. For negative numbers, the string is prefaced with a leading ’−’. The string must be freed
later usingOPENSSL_free().

BN_hex2bn()converts the stringstr containing a hexadecimal number to aBIGNUM and stores it in **bn.
If * bn is NULL , a new BIGNUM is created. Ifbn is NULL , it only computes the number’s length in hexa-
decimal digits. If the string starts with ’−’, the number is negative. BN_dec2bn()is the same using the deci-
mal system.

BN_print() andBN_print_fp()write the hexadecimal encoding ofa, with a leading ’−’ for negative num-
bers, to theBIO or FILE fp.

BN_bn2mpi()and BN_mpi2bn()convert BIGNUM s from and to a format that consists of the number’s
length in bytes represented as a 4−byte big-endian number, and the number itself in big-endian format,
where the most significant bit signals a negative number (the representation of numbers with theMSB set is
prefixed with null byte).

BN_bn2mpi()stores the representation ofa at to, whereto must be large enough to hold the result. The size
can be determined by calling BN_bn2mpi(a, NULL).

BN_mpi2bn()converts thelen bytes long representation ats to aBIGNUM and stores it atret, or in a newly
allocatedBIGNUM if ret is NULL .

RETURN VALUES
BN_bn2bin()returns the length of the big-endian number placed atto. BN_bin2bn()returns theBIGNUM ,
NULL on error.

BN_bn2hex()and BN_bn2dec()return a null-terminated string, orNULL on error. BN_hex2bn()and
BN_dec2bn()return the number’s length in hexadecimal or decimal digits, and 0 on error.

BN_print_fp()andBN_print()return 1 on success, 0 on write errors.

BN_bn2mpi()returns the length of the representation.BN_mpi2bn()returns theBIGNUM , and NULL on
error.

0.9.9-dev 2003-07-24 1

BN_bn2bin(3) OpenSSL BN_bn2bin(3)

The error codes can be obtained byERR_get_error(3).

SEE ALSO
openssl_bn(3), ERR_get_error(3), BN_zero(3), ASN1_INTEGER_to_BN(3), BN_num_bytes(3)

HISTORY
BN_bn2bin(), BN_bin2bn(), BN_print_fp() and BN_print() are available in all versions of SSLeay and
OpenSSL.

BN_bn2hex(), BN_bn2dec(), BN_hex2bn(), BN_dec2bn(), BN_bn2mpi()and BN_mpi2bn()were added in
SSLeay 0.9.0.

0.9.9-dev 2003-07-24 2

BN_cmp(3) OpenSSL BN_cmp(3)

NAME
BN_cmp, BN_ucmp, BN_is_zero, BN_is_one, BN_is_word, BN_is_odd − BIGNUM comparison and test
functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

int BN_cmp(BIGNUM *a, BIGNUM *b);
int BN_ucmp(BIGNUM *a, BIGNUM *b);

int BN_is_zero(BIGNUM *a);
int BN_is_one(BIGNUM *a);
int BN_is_word(BIGNUM *a, BN_ULONG w);
int BN_is_odd(BIGNUM *a);

DESCRIPTION
BN_cmp()compares the numbersa andb. BN_ucmp()compares their absolute values.

BN_is_zero(), BN_is_one()andBN_is_word()test if a equals 0, 1, orw respectively. BN_is_odd()tests if a
is odd.

BN_is_zero(), BN_is_one(), BN_is_word()andBN_is_odd()are macros.

RETURN VALUES
BN_cmp()returns −1 ifa < b, 0 if a == b and 1 ifa > b. BN_ucmp()is the same using the absolute values
of a andb.

BN_is_zero(), BN_is_one() BN_is_word()andBN_is_odd()return 1 if the condition is true, 0 otherwise.

SEE ALSO
openssl_bn(3)

HISTORY
BN_cmp(), BN_ucmp(), BN_is_zero(), BN_is_one()and BN_is_word()are available in all versions of
SSLeay and OpenSSL.BN_is_odd()was added in SSLeay 0.8.

0.9.9-dev 2000-07-16 1

BN_copy(3) OpenSSL BN_copy(3)

NAME
BN_copy, BN_dup − copy BIGNUMs

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_copy(BIGNUM *to, const BIGNUM *from);

BIGNUM *BN_dup(const BIGNUM *from);

DESCRIPTION
BN_copy()copiesfrom to to. BN_dup()creates a newBIGNUM containing the valuefrom .

RETURN VALUES
BN_copy()returnsto on success,NULL on error. BN_dup()returns the new BIGNUM , and NULL on error.
The error codes can be obtained byERR_get_error(3).

SEE ALSO
openssl_bn(3), ERR_get_error(3)

HISTORY
BN_copy()andBN_dup()are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2003-07-24 1

BN_generate_prime(3) OpenSSL BN_generate_prime(3)

NAME
BN_generate_prime, BN_is_prime, BN_is_prime_fasttest − generate primes and test for primality

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add,
BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);

int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int, int,
void *), BN_CTX *ctx, void *cb_arg);

int BN_is_prime_fasttest(const BIGNUM *a, int checks,
void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg,
int do_trial_division);

DESCRIPTION
BN_generate_prime()generates a pseudo-random prime number ofnum bits. If ret is notNULL , it will be
used to store the number.

If callback is notNULL , it is called as follows:

• callback(0, i, cb_arg)is called after generating the i−th potential prime number.

• While the number is being tested for primality,callback(1, j, cb_arg)is called as described below.

• When a prime has been found,callback(2, i, cb_arg)is called.

The prime may have to fulfill additional requirements for use in Diffie-Hellman key exchange:

If add is notNULL , the prime will fulfill the condition p %add == rem (p % add == 1 if rem == NULL)
in order to suit a given generator.

If safeis true, it will be a safe prime (i.e. a prime p so that (p−1)/2 is also prime).

ThePRNGmust be seeded prior to callingBN_generate_prime(). The prime number generation has a neg-
ligible error probability.

BN_is_prime()andBN_is_prime_fasttest()test if the numbera is prime. The following tests are performed
until one of them shows thata is composite; ifa passes all these tests, it is considered prime.

BN_is_prime_fasttest(), when called withdo_trial_division == 1, first attempts trial division by a number
of small primes; if no divisors are found by this test andcallback is notNULL , callback(1, −1, cb_arg) is
called. Ifdo_trial_division == 0, this test is skipped.

Both BN_is_prime()and BN_is_prime_fasttest()perform a Miller-Rabin probabilistic primality test with
checksiterations. Ifchecks == BN_prime_checks, a number of iterations is used that yields a false posi-
tive rate of at most 2ˆ−80 for random input.

If callback is notNULL , callback(1, j, cb_arg) is called after the j−th iteration (j = 0, 1, ...).ctx is a pre-
allocatedBN_CTX (to save the overhead of allocating and freeing the structure in a loop), orNULL .

RETURN VALUES
BN_generate_prime()returns the prime number on success,NULL otherwise.

BN_is_prime()returns 0 if the number is composite, 1 if it is prime with an error probability of less than
0.25 ĉhecks, and −1 on error.

The error codes can be obtained byERR_get_error(3).

SEE ALSO
openssl_bn(3), ERR_get_error(3), openssl_rand(3)

0.9.9-dev 2003-07-24 1

BN_generate_prime(3) OpenSSL BN_generate_prime(3)

HISTORY
Thecb_arg arguments toBN_generate_prime()and toBN_is_prime()were added in SSLeay 0.9.0. Theret
argument toBN_generate_prime()was added in SSLeay 0.9.1.BN_is_prime_fasttest()was added in
OpenSSL 0.9.5.

0.9.9-dev 2003-07-24 2

BN_mod_inverse(3) OpenSSL BN_mod_inverse(3)

NAME
BN_mod_inverse − compute inverse modulo n

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_mod_inverse(BIGNUM *r, BIGNUM *a, const BIGNUM *n,
BN_CTX *ctx);

DESCRIPTION
BN_mod_inverse()computes the inverse ofa modulon places the result inr ((a*r)%n==1). If r is NULL ,
a new BIGNUM is created.

ctx is a previously allocatedBN_CTX used for temporary variables.r may be the sameBIGNUM asa or n.

RETURN VALUES
BN_mod_inverse()returns theBIGNUM containing the inverse, andNULL on error. The error codes can be
obtained byERR_get_error(3).

SEE ALSO
openssl_bn(3), ERR_get_error(3), BN_add(3)

HISTORY
BN_mod_inverse()is available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2003-07-24 1

BN_mod_mul_montgomery(3) OpenSSL BN_mod_mul_montgomery(3)

NAME
BN_mod_mul_montgomery, BN_MONT_CTX_new, BN_MONT_CTX_init, BN_MONT_CTX_free,
BN_MONT_CTX_set, BN_MONT_CTX_copy, BN_from_montgomery, BN_to_montgomery − Mont-
gomery multiplication

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

BN_MONT_CTX *BN_MONT_CTX_new(void);
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
void BN_MONT_CTX_free(BN_MONT_CTX *mont);

int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *m, BN_CTX *ctx);
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);

int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,
BN_MONT_CTX *mont, BN_CTX *ctx);

int BN_from_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
BN_CTX *ctx);

int BN_to_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
BN_CTX *ctx);

DESCRIPTION
These functions implement Montgomery multiplication. They are used automatically when
BN_mod_exp(3) is called with suitable input, but they may be useful when several operations are to be per-
formed using the same modulus.

BN_MONT_CTX_new()allocates and initializes aBN_MONT_CTX structure. BN_MONT_CTX_init()ini-
tializes an existing uninitializedBN_MONT_CTX .

BN_MONT_CTX_set()sets up themontstructure from the modulusm by precomputing its inverse and a
value R.

BN_MONT_CTX_copy()copies theBN_MONT_CTX from to to.

BN_MONT_CTX_free()frees the components of theBN_MONT_CTX , and, if it was created by
BN_MONT_CTX_new(), also the structure itself.

BN_mod_mul_montgomery()computes Mont(a,b):=a*b*Rˆ−1 and places the result inr.

BN_from_montgomery()performs the Montgomery reductionr = a*Rˆ−1.

BN_to_montgomery()computes Mont(a,Rˆ2), i.e.a*R. Note thata must be non-negative and smaller than
the modulus.

For all functions,ctx is a previously allocatedBN_CTX used for temporary variables.

TheBN_MONT_CTX structure is defined as follows:

typedef struct bn_mont_ctx_st
{
int ri; /* number of bits in R */
BIGNUM RR; /* Rˆ2 (used to convert to Montgomery form) */
BIGNUM N; /* The modulus */
BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1

* (Ni is only stored for bignum algorithm) */
BN_ULONG n0; /* least significant word of Ni */
int flags;
} B N_MONT_CTX;

BN_to_montgomery()is a macro.

0.9.9-dev 2003-07-24 1

BN_mod_mul_montgomery(3) OpenSSL BN_mod_mul_montgomery(3)

RETURN VALUES
BN_MONT_CTX_new()returns the newly allocatedBN_MONT_CTX , and NULL on error.

BN_MONT_CTX_init()andBN_MONT_CTX_free()have no return values.

For the other functions, 1 is returned for success, 0 on error. The error codes can be obtained by
ERR_get_error(3).

WARNING
The inputs must be reduced modulom, otherwise the result will be outside the expected range.

SEE ALSO
openssl_bn(3), ERR_get_error(3), BN_add(3), BN_CTX_new(3)

HISTORY
BN_MONT_CTX_new(), BN_MONT_CTX_free(), BN_MONT_CTX_set(), BN_mod_mul_montgomery(),
BN_from_montgomery()andBN_to_montgomery()are available in all versions of SSLeay and OpenSSL.

BN_MONT_CTX_init()andBN_MONT_CTX_copy()were added in SSLeay 0.9.1b.

0.9.9-dev 2003-07-24 2

BN_mod_mul_reciprocal(3) OpenSSL BN_mod_mul_reciprocal(3)

NAME
BN_mod_mul_reciprocal, BN_div_recp, BN_RECP_CTX_new, BN_RECP_CTX_init,
BN_RECP_CTX_free, BN_RECP_CTX_set − modular multiplication using reciprocal

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

BN_RECP_CTX *BN_RECP_CTX_new(void);
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
void BN_RECP_CTX_free(BN_RECP_CTX *recp);

int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *m, BN_CTX *ctx);

int BN_div_recp(BIGNUM *dv, BIGNUM *rem, BIGNUM *a, BN_RECP_CTX *recp,
BN_CTX *ctx);

int BN_mod_mul_reciprocal(BIGNUM *r, BIGNUM *a, BIGNUM *b,
BN_RECP_CTX *recp, BN_CTX *ctx);

DESCRIPTION
BN_mod_mul_reciprocal()can be used to perform an efficient BN_mod_mul(3) operation when the opera-
tion will be performed repeatedly with the same modulus. It computesr=(a*b)%m usingrecp=1/m, which
is set as described below. ctx is a previously allocatedBN_CTX used for temporary variables.

BN_RECP_CTX_new()allocates and initializes aBN_RECP structure.BN_RECP_CTX_init()initializes an
existing uninitializedBN_RECP.

BN_RECP_CTX_free()frees the components of theBN_RECP, and, if it was created by
BN_RECP_CTX_new(), also the structure itself.

BN_RECP_CTX_set()stores m in recp and sets it up for computing 1/m and shifting it left by
BN_num_bits(m)+1 to make it an integer. The result and the number of bits it was shifted left will later be
stored inrecp.

BN_div_recp()dividesa by m usingrecp. It places the quotient indv and the remainder inrem.

TheBN_RECP_CTX structure is defined as follows:

typedef struct bn_recp_ctx_st
{
BIGNUM N; /* the divisor */
BIGNUM Nr; /* the reciprocal */
int num_bits;
int shift;
int flags;
} B N_RECP_CTX;

It cannot be shared between threads.

RETURN VALUES
BN_RECP_CTX_new()returns the newly allocatedBN_RECP_CTX, and NULL on error.

BN_RECP_CTX_init()andBN_RECP_CTX_free()have no return values.

For the other functions, 1 is returned for success, 0 on error. The error codes can be obtained by
ERR_get_error(3).

SEE ALSO
openssl_bn(3), ERR_get_error(3), BN_add(3), BN_CTX_new(3)

HISTORY
BN_RECP_CTX was added in SSLeay 0.9.0. Before that, the functionBN_reciprocal()was used instead,
and theBN_mod_mul_reciprocal()arguments were different.

0.9.9-dev 2003-07-24 1

BN_new(3) OpenSSL BN_new(3)

NAME
BN_new, BN_init, BN_clear, BN_free, BN_clear_free − allocate and free BIGNUMs

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_new(void);

void BN_init(BIGNUM *);

void BN_clear(BIGNUM *a);

void BN_free(BIGNUM *a);

void BN_clear_free(BIGNUM *a);

DESCRIPTION
BN_new()allocates and initializes aBIGNUM structure.BN_init() initializes an existing uninitialized
BIGNUM .

BN_clear() is used to destroy sensitive data such as keys when they are no longer needed. It erases the
memory used bya and sets it to the value 0.

BN_free()frees the components of theBIGNUM , and if it was created byBN_new(), also the structure
itself. BN_clear_free()additionally overwrites the data before the memory is returned to the system.

RETURN VALUES
BN_new()returns a pointer to theBIGNUM . If the allocation fails, it returnsNULL and sets an error code
that can be obtained byERR_get_error(3).

BN_init(), BN_clear(), BN_free()andBN_clear_free()have no return values.

SEE ALSO
openssl_bn(3), ERR_get_error(3)

HISTORY
BN_new(), BN_clear(), BN_free() and BN_clear_free()are available in all versions on SSLeay and
OpenSSL.BN_init()was added in SSLeay 0.9.1b.

0.9.9-dev 2005-11-24 1

BN_num_bytes(3) OpenSSL BN_num_bytes(3)

NAME
BN_num_bits, BN_num_bytes, BN_num_bits_word − get BIGNUM size

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

int BN_num_bytes(const BIGNUM *a);

int BN_num_bits(const BIGNUM *a);

int BN_num_bits_word(BN_ULONG w);

DESCRIPTION
BN_num_bytes()returns the size of aBIGNUM in bytes.

BN_num_bits_word()returns the number of significant bits in a word. If we take 0x00000432 as an exam-
ple, it returns 11, not 16, not 32. Basically, except for a zero, it returnsfloor(log2(w))+1.

BN_num_bits()returns the number of significant bits in aBIGNUM , following the same principle as
BN_num_bits_word().

BN_num_bytes()is a macro.

RETURN VALUES
The size.

NOTES
Some have tried usingBN_num_bits()on individual numbers inRSA keys, DH keys andDSA keys, and
found that they don’t always come up with the number of bits they expected (something like 512, 1024,
2048, ...). This is because generating a number with some specific number of bits doesn’t always set the
highest bits, thereby making the number ofsignificantbits a little lower. If you want to know the ‘‘key
size’’ of such a key, either use functions like RSA_size(), DH_size() and DSA_size(), or use
BN_num_bytes()and multiply with 8 (although there’s no real guarantee that will match the ‘‘key size’’,
just a lot more probability).

SEE ALSO
openssl_bn(3), DH_size(3), DSA_size(3), RSA_size(3)

HISTORY
BN_num_bytes(), BN_num_bits()and BN_num_bits_word()are available in all versions of SSLeay and
OpenSSL.

0.9.9-dev 2005-03-25 1

BN_rand(3) OpenSSL BN_rand(3)

NAME
BN_rand, BN_pseudo_rand − generate pseudo−random number

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);

int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);

int BN_rand_range(BIGNUM *rnd, BIGNUM *range);

int BN_pseudo_rand_range(BIGNUM *rnd, BIGNUM *range);

DESCRIPTION
BN_rand()generates a cryptographically strong pseudo-random number ofbits bits in length and stores it
in rnd. If top is −1, the most significant bit of the random number can be zero. Iftop is 0, it is set to 1, and
if top is 1, the two most significant bits of the number will be set to 1, so that the product of two such ran-
dom numbers will always have 2*bits length. Ifbottom is true, the number will be odd.

BN_pseudo_rand()does the same, but pseudo-random numbers generated by this function are not necessar-
ily unpredictable. They can be used for non-cryptographic purposes and for certain purposes in crypto-
graphic protocols, but usually not for key generation etc.

BN_rand_range()generates a cryptographically strong pseudo-random numberrnd in the range 0 <lt>=
rnd < range. BN_pseudo_rand_range()does the same, but is based onBN_pseudo_rand(), and hence
numbers generated by it are not necessarily unpredictable.

ThePRNGmust be seeded prior to callingBN_rand()or BN_rand_range().

RETURN VALUES
The functions return 1 on success, 0 on error. The error codes can be obtained byERR_get_error(3).

SEE ALSO
openssl_bn(3), ERR_get_error(3), openssl_rand(3), RAND_add(3), RAND_bytes(3)

HISTORY
BN_rand()is available in all versions of SSLeay and OpenSSL.BN_pseudo_rand()was added in OpenSSL
0.9.5. The top == −1 case and the functionBN_rand_range()were added in OpenSSL 0.9.6a.
BN_pseudo_rand_range()was added in OpenSSL 0.9.6c.

0.9.9-dev 2003-07-24 1

BN_set_bit(3) OpenSSL BN_set_bit(3)

NAME
BN_set_bit, BN_clear_bit, BN_is_bit_set, BN_mask_bits, BN_lshift, BN_lshift1, BN_rshift, BN_rshift1 −
bit operations on BIGNUMs

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

int BN_set_bit(BIGNUM *a, int n);
int BN_clear_bit(BIGNUM *a, int n);

int BN_is_bit_set(const BIGNUM *a, int n);

int BN_mask_bits(BIGNUM *a, int n);

int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
int BN_lshift1(BIGNUM *r, BIGNUM *a);

int BN_rshift(BIGNUM *r, BIGNUM *a, int n);
int BN_rshift1(BIGNUM *r, BIGNUM *a);

DESCRIPTION
BN_set_bit()sets bitn in a to 1 (a=(1<<n)). The number is expanded if necessary.

BN_clear_bit()sets bitn in a to 0 (a&=˜(1<<n)). An error occurs ifa is shorter thann bits.

BN_is_bit_set()tests if bitn in a is set.

BN_mask_bits()truncatesa to ann bit number (a&=˜((˜0)>>n)). An error occurs ifa already is shorter
thann bits.

BN_lshift()shiftsa left by n bits and places the result inr (r=a*2ˆn). BN_lshift1()shiftsa left by one and
places the result inr (r=2*a).

BN_rshift()shiftsa right by n bits and places the result inr (r=a/2ˆn). BN_rshift1()shiftsa right by one
and places the result inr (r=a/2).

For the shift functions,r anda may be the same variable.

RETURN VALUES
BN_is_bit_set()returns 1 if the bit is set, 0 otherwise.

All other functions return 1 for success, 0 on error. The error codes can be obtained byERR_get_error(3).

SEE ALSO
openssl_bn(3), BN_num_bytes(3), BN_add(3)

HISTORY
BN_set_bit(), BN_clear_bit(), BN_is_bit_set(), BN_mask_bits(), BN_lshift(), BN_lshift1(), BN_rshift(), and
BN_rshift1()are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2000-07-16 1

BN_swap(3) OpenSSL BN_swap(3)

NAME
BN_swap − exchange BIGNUMs

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

void BN_swap(BIGNUM *a, BIGNUM *b);

DESCRIPTION
BN_swap()exchanges the values ofa andb.

openssl_bn(3)

HISTORY
BN_swap was added in OpenSSL 0.9.7.

0.9.9-dev 2003-07-24 1

BN_zero(3) OpenSSL BN_zero(3)

NAME
BN_zero, BN_one, BN_value_one, BN_set_word, BN_get_word − BIGNUM assignment operations

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

int BN_zero(BIGNUM *a);
int BN_one(BIGNUM *a);

const BIGNUM *BN_value_one(void);

int BN_set_word(BIGNUM *a, unsigned long w);
unsigned long BN_get_word(BIGNUM *a);

DESCRIPTION
BN_zero(), BN_one()and BN_set_word()set a to the values 0, 1 andw respectively. BN_zero()and
BN_one()are macros.

BN_value_one()returns aBIGNUM constant of value 1. This constant is useful for use in comparisons and
assignment.

BN_get_word()returnsa, if it can be represented as an unsigned long.

RETURN VALUES
BN_get_word()returns the valuea, and 0xffffffff L i f a cannot be represented as an unsigned long.

BN_zero(), BN_one()and BN_set_word()return 1 on success, 0 otherwise.BN_value_one()returns the
constant.

BUGS
Someone might change the constant.

If a BIGNUM is equal to 0xffffffff L it can be represented as an unsigned long but this value is also returned
on error.

SEE ALSO
openssl_bn(3), BN_bn2bin(3)

HISTORY
BN_zero(), BN_one() and BN_set_word()are available in all versions of SSLeay and OpenSSL.
BN_value_one()andBN_get_word()were added in SSLeay 0.8.

BN_value_one()was changed to return a true constBIGNUM * in OpenSSL 0.9.7.

0.9.9-dev 2003-07-24 1

CONF_modules_free(3) OpenSSL CONF_modules_free(3)

NAME
CONF_modules_free, CONF_modules_finish, CONF_modules_unload -
OpenSSL configuration cleanup functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/conf.h>

void CONF_modules_free(void);
void CONF_modules_finish(void);
void CONF_modules_unload(int all);

DESCRIPTION
CONF_modules_free()closes down and frees up all memory allocated by all configuration modules.

CONF_modules_finish()calls each configuration modulesfinish handler to free up any configuration that
module may have performed.

CONF_modules_unload()finishes and unloads configuration modules. Ifall is set to0 only modules loaded
from DSOs will be unloads. Ifall is 1 all modules, including builtin modules will be unloaded.

NOTES
Normally applications will only callCONF_modules_free()at application to tidy up any configuration per-
formed.

RETURN VALUE
None of the functions return a value.

SEE ALSO
conf(5), OPENSSL_config(3), ‘‘CONF_modules_load_file(3), CONF_modules_load_file(3)’’

HISTORY
CONF_modules_free(), CONF_modules_unload(), and CONF_modules_finish()first appeared in OpenSSL
0.9.7.

0.9.9-dev 2007-03-06 1

CONF_modules_load_file(3) OpenSSL CONF_modules_load_file(3)

NAME
CONF_modules_load_file, CONF_modules_load - OpenSSL configuration functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/conf.h>

int CONF_modules_load_file(const char *filename, const char *appname,
unsigned long flags);

int CONF_modules_load(const CONF *cnf, const char *appname,
unsigned long flags);

DESCRIPTION
The functionCONF_modules_load_file()configures OpenSSL using filefilename and application name
appname. If filename is NULL the standard OpenSSL configuration file is used. Ifappname is NULL the
standard OpenSSL application nameopenssl_confis used. The behaviour can be cutomized usingflags.

CONF_modules_load()is idential toCONF_modules_load_file()except it read configuration information
from cnf.

NOTES
The followingflagsare currently recognized:

CONF_MFLAGS_IGNORE_ERRORS if set errors returned by individual configuration modules are
ignored. If not set the first module error is considered fatal and no further modules are loads.

Normally any modules errors will add error information to the error queue. IfCONF_MFLAGS_SILENT is
set no error information is added.

If CONF_MFLAGS_NO_DSO is set configuration module loading from DSOs is disabled.

CONF_MFLAGS_IGNORE_MISSING_FILE if set will make CONF_load_modules_file()ignore missing
configuration files. Normally a missing configuration file return an error.

RETURN VALUE
These functions return 1 for success and a zero or negative value for failure. If module errors are not
ignored the return code will reflect the return value of the failing module (this will always be zero or neg-
ative).

SEE ALSO
conf(5), OPENSSL_config(3), ‘‘CONF_free(3), CONF_free(3)’’, openssl_err(3),openssl_err(3)

HISTORY
CONF_modules_load_file and CONF_modules_load first appeared in OpenSSL 0.9.7.

0.9.9-dev 2004-03-19 1

CRYPTO_set_ex_data(3) OpenSSL CRYPTO_set_ex_data(3)

NAME
CRYPTO_set_ex_data, CRYPTO_get_ex_data − internal application specific data functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/crypto.h>

int CRYPTO_set_ex_data(CRYPTO_EX_DATA *r, int idx, void *arg);

void *CRYPTO_get_ex_data(CRYPTO_EX_DATA *r, int idx);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. These functions are used
internally by OpenSSL to manipulate application specific data attached to a specific structure.

These functions should only be used by applications to manipulateCRYPTO_EX_DAT A structures passed
to the new_func(), free_func() and dup_func() callbacks: as passed toRSA_get_ex_new_index()for
example.

CRYPTO_set_ex_data()is used to set application specific data, the data is supplied in thearg parameter
and its precise meaning is up to the application.

CRYPTO_get_ex_data()is used to retrieve application specific data. The data is returned to the application,
this will be the same value as supplied to a previousCRYPTO_set_ex_data()call.

RETURN VALUES
CRYPTO_set_ex_data()returns 1 on success or 0 on failure.

CRYPTO_get_ex_data()returns the application data or 0 on failure. 0 may also be valid application data
but currently it can only fail if given an inv alid idx parameter.

On failure an error code can be obtained fromERR_get_error(3).

SEE ALSO
RSA_get_ex_new_index(3), DSA_get_ex_new_index(3), DH_get_ex_new_index(3)

HISTORY
CRYPTO_set_ex_data()andCRYPTO_get_ex_data()have been available since SSLeay 0.9.0.

0.9.9-dev 2008-05-09 1

DH_generate_key(3) OpenSSL DH_generate_key(3)

NAME
DH_generate_key, DH_compute_key − perform Diffie−Hellman key exchange

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dh.h>

int DH_generate_key(DH *dh);

int DH_compute_key(unsigned char *key, BIGNUM *pub_key, DH *dh);

DESCRIPTION
DH_generate_key() performs the first step of a Diffie-Hellman key exchange by generating private and pub-
lic DH values. By callingDH_compute_key(), these are combined with the other party’s public value to
compute the shared key.

DH_generate_key() expectsdh to contain the shared parametersdh−>p anddh−>g. It generates a random
private DH value unlessdh−>priv_key is already set, and computes the corresponding public value
dh−>pub_key, which can then be published.

DH_compute_key() computes the shared secret from the private DH value indh and the other party’s public
value inpub_keyand stores it inkey. key must point toDH_size(dh)bytes of memory.

RETURN VALUES
DH_generate_key() returns 1 on success, 0 otherwise.

DH_compute_key() returns the size of the shared secret on success, −1 on error.

The error codes can be obtained byERR_get_error(3).

SEE ALSO
openssl_dh(3), ERR_get_error(3), openssl_rand(3), DH_size(3)

HISTORY
DH_generate_key() andDH_compute_key() are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2003-07-24 1

DH_generate_parameters(3) OpenSSL DH_generate_parameters(3)

NAME
DH_generate_parameters, DH_check − generate and check Diffie−Hellman parameters

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dh.h>

DH *DH_generate_parameters(int prime_len, int generator,
void (*callback)(int, int, void *), void *cb_arg);

int DH_check(DH *dh, int *codes);

DESCRIPTION
DH_generate_parameters()generates Diffie-Hellman parameters that can be shared among a group of
users, and returns them in a newly allocatedDH structure. The pseudo-random number generator must be
seeded prior to callingDH_generate_parameters().

prime_len is the length in bits of the safe prime to be generated.generator is a small number > 1, typi-
cally 2 or 5.

A callback function may be used to provide feedback about the progress of the key generation. Ifcallback
is notNULL , it will be called as described inBN_generate_prime(3) while a random prime number is gen-
erated, and when a prime has been found,callback(3, 0, cb_arg)is called.

DH_check()validates Diffie-Hellman parameters. It checks thatp is a safe prime, and thatg is a suitable
generator. In the case of an error, the bit flagsDH_CHECK_P_NOT_SAFE_PRIMEor DH_NOT_SUIT-
ABLE_GENERATOR are set in*codes. DH_UNABLE_TO_CHECK_GENERATOR is set if the generator can-
not be checked, i.e. it does not equal 2 or 5.

RETURN VALUES
DH_generate_parameters()returns a pointer to theDH structure, orNULL if the parameter generation fails.
The error codes can be obtained byERR_get_error(3).

DH_check()returns 1 if the check could be performed, 0 otherwise.

NOTES
DH_generate_parameters()may run for several hours before finding a suitable prime.

The parameters generated byDH_generate_parameters()are not to be used in signature schemes.

BUGS
If generator is not 2 or 5,dh−>g=generator is not a usable generator.

SEE ALSO
openssl_dh(3), ERR_get_error(3), openssl_rand(3), DH_free(3)

HISTORY
DH_check()is available in all versions of SSLeay and OpenSSL.The cb_arg argument toDH_gener-
ate_parameters()was added in SSLeay 0.9.0.

In versions before OpenSSL 0.9.5,DH_CHECK_P_NOT_STRONG_PRIME is used instead of
DH_CHECK_P_NOT_SAFE_PRIME.

0.9.9-dev 2003-07-24 1

DH_get_ex_new_index(3) OpenSSL DH_get_ex_new_index(3)

NAME
DH_get_ex_new_index, DH_set_ex_data, DH_get_ex_data − add application specific data to DH structures

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dh.h>

int DH_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int DH_set_ex_data(DH *d, int idx, void *arg);

char *DH_get_ex_data(DH *d, int idx);

DESCRIPTION
These functions handle application specific data inDH structures. Their usage is identical to that of
RSA_get_ex_new_index(), RSA_set_ex_data() and RSA_get_ex_data() as described in
RSA_get_ex_new_index(3).

SEE ALSO
RSA_get_ex_new_index(3), openssl_dh(3)

HISTORY
DH_get_ex_new_index(), DH_set_ex_data()andDH_get_ex_data()are available since OpenSSL 0.9.5.

0.9.9-dev 2002-07-30 1

DH_new(3) OpenSSL DH_new(3)

NAME
DH_new, DH_free − allocate and free DH objects

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dh.h>

DH* DH_new(void);

void DH_free(DH *dh);

DESCRIPTION
DH_new()allocates and initializes aDH structure.

DH_free()frees theDH structure and its components. The values are erased before the memory is returned
to the system.

RETURN VALUES
If the allocation fails, DH_new() returns NULL and sets an error code that can be obtained by
ERR_get_error(3). Otherwise it returns a pointer to the newly allocated structure.

DH_free()returns no value.

SEE ALSO
openssl_dh(3), ERR_get_error(3), DH_generate_parameters(3), DH_generate_key(3)

HISTORY
DH_new()andDH_free()are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2003-07-24 1

DH_set_method(3) OpenSSL DH_set_method(3)

NAME
DH_set_default_method, DH_get_default_method, DH_set_method, DH_new_method, DH_OpenSSL −
select DH method

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dh.h>
#include <openssl/engine.h>

void DH_set_default_method(const DH_METHOD *meth);

const DH_METHOD *DH_get_default_method(void);

int DH_set_method(DH *dh, const DH_METHOD *meth);

DH *DH_new_method(ENGINE *engine);

const DH_METHOD *DH_OpenSSL(void);

DESCRIPTION
A DH_METHOD specifies the functions that OpenSSL uses for Diffie-Hellman operations. By modifying
the method, alternative implementations such as hardware accelerators may be used.IMPORTANT: See the
NOTES section for important information about how theseDH API functions are affected by the use of
ENGINE API calls.

Initially, the default DH_METHOD is the OpenSSL internal implementation, as returned byDH_OpenSSL().

DH_set_default_method()makesmeth the default method for allDH structures created later. NB: This is
true only whilst noENGINE has been set as a default forDH, so this function is no longer recommended.

DH_get_default_method()returns a pointer to the current default DH_METHOD. Howev er, the meaningful-
ness of this result is dependent on whether theENGINE API is being used, so this function is no longer rec-
ommended.

DH_set_method()selectsmeth to perform all operations using the key dh. This will replace the
DH_METHOD used by theDH key and if the previous method was supplied by anENGINE, the handle to
thatENGINE will be released during the change. It is possible to have DH keys that only work with certain
DH_METHOD implementations (eg. from anENGINE module that supports embedded hardware-protected
keys), and in such cases attempting to change theDH_METHOD for the key can have unexpected results.

DH_new_method()allocates and initializes aDH structure so thatenginewill be used for theDH opera-
tions. If engineis NULL , the default ENGINE for DH operations is used, and if no default ENGINE is set, the
DH_METHOD controlled byDH_set_default_method()is used.

THE DH_METHOD STRUCTURE
typedef struct dh_meth_st
{

/* name of the implementation */
const char *name;

/* generate private and public DH values for key agreement */
int (*generate_key)(DH *dh);

/* compute shared secret */
int (*compute_key)(unsigned char *key, BIGNUM *pub_key, DH *dh);

/* compute r = a ˆ p mod m (May be NULL for some implementations) */
int (*bn_mod_exp)(DH *dh, BIGNUM *r, BIGNUM *a, const BIGNUM *p,

const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx);

0.9.9-dev 2008-05-09 1

DH_set_method(3) OpenSSL DH_set_method(3)

/* called at DH_new */
int (*init)(DH *dh);

/* called at DH_free */
int (*finish)(DH *dh);

int flags;

char *app_data; /* ?? */

} D H_METHOD;

RETURN VALUES
DH_OpenSSL()andDH_get_default_method()return pointers to the respective DH_METHOD s.

DH_set_default_method()returns no value.

DH_set_method()returns non-zero if the providedmeth was successfully set as the method fordh (includ-
ing unloading theENGINE handle if the previous method was supplied by anENGINE).

DH_new_method()returnsNULL and sets an error code that can be obtained byERR_get_error(3) if the
allocation fails. Otherwise it returns a pointer to the newly allocated structure.

NOTES
As of version 0.9.7,DH_METHOD implementations are grouped together with other algorithmic APIs (eg.
RSA_METHOD, EVP_CIPHER, etc) in ENGINE modules. If a default ENGINE is specified forDH functional-
ity using an ENGINE API function, that will override any DH defaults set using theDH API (ie.
DH_set_default_method()). For this reason, theENGINE API is the recommended way to control default
implementations for use inDH and other cryptographic algorithms.

SEE ALSO
openssl_dh(3), DH_new(3)

HISTORY
DH_set_default_method(), DH_get_default_method(), DH_set_method(), DH_new_method() and
DH_OpenSSL()were added in OpenSSL 0.9.4.

DH_set_default_openssl_method() and DH_get_default_openssl_method() replaced
DH_set_default_method()and DH_get_default_method()respectively, and DH_set_method() and
DH_new_method()were altered to useENGINEs rather thanDH_METHOD s during development of the
engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults in theENGINE APIwas restructured so
that this change was reversed, and behaviour of the other functions resembled more closely the previous be-
haviour. The behaviour of defaults in theENGINE APInow transparently overrides the behaviour of defaults
in theDH API without requiring changing these function prototypes.

0.9.9-dev 2008-05-09 2

DH_size(3) OpenSSL DH_size(3)

NAME
DH_size − get Diffie−Hellman prime size

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dh.h>

int DH_size(DH *dh);

DESCRIPTION
This function returns the Diffie-Hellman size in bytes. It can be used to determine how much memory must
be allocated for the shared secret computed byDH_compute_key().

dh−>p must not beNULL .

RETURN VALUE
The size in bytes.

SEE ALSO
openssl_dh(3), DH_generate_key(3)

HISTORY
DH_size()is available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2000-07-16 1

DSA_SIG_new(3) OpenSSL DSA_SIG_new(3)

NAME
DSA_SIG_new, DSA_SIG_free − allocate and free DSA signature objects

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dsa.h>

DSA_SIG *DSA_SIG_new(void);

void DSA_SIG_free(DSA_SIG *a);

DESCRIPTION
DSA_SIG_new()allocates and initializes aDSA_SIG structure.

DSA_SIG_free()frees theDSA_SIG structure and its components. The values are erased before the memory
is returned to the system.

RETURN VALUES
If the allocation fails, DSA_SIG_new()returns NULL and sets an error code that can be obtained by
ERR_get_error(3). Otherwise it returns a pointer to the newly allocated structure.

DSA_SIG_free()returns no value.

SEE ALSO
openssl_dsa(3), ERR_get_error(3), DSA_do_sign(3)

HISTORY
DSA_SIG_new()andDSA_SIG_free()were added in OpenSSL 0.9.3.

0.9.9-dev 2003-07-24 1

DSA_do_sign(3) OpenSSL DSA_do_sign(3)

NAME
DSA_do_sign, DSA_do_verify − raw DSA signature operations

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dsa.h>

DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);

int DSA_do_verify(const unsigned char *dgst, int dgst_len,
DSA_SIG *sig, DSA *dsa);

DESCRIPTION
DSA_do_sign()computes a digital signature on thelen byte message digestdgst using the private key dsa
and returns it in a newly allocatedDSA_SIG structure.

DSA_sign_setup(3) may be used to precompute part of the signing operation in case signature generation is
time−critical.

DSA_do_verify()verifies that the signaturesig matches a given message digestdgst of sizelen. dsa is the
signer’s public key.

RETURN VALUES
DSA_do_sign()returns the signature,NULL on error. DSA_do_verify()returns 1 for a valid signature, 0 for
an incorrect signature and −1 on error. The error codes can be obtained byERR_get_error(3).

SEE ALSO
openssl_dsa(3), ERR_get_error(3), openssl_rand(3), DSA_SIG_new(3), DSA_sign(3)

HISTORY
DSA_do_sign()andDSA_do_verify()were added in OpenSSL 0.9.3.

0.9.9-dev 2003-07-24 1

DSA_dup_DH(3) OpenSSL DSA_dup_DH(3)

NAME
DSA_dup_DH − create a DH structure out of DSA structure

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dsa.h>

DH * DSA_dup_DH(const DSA *r);

DESCRIPTION
DSA_dup_DH()duplicatesDSA parameters/keys as DH parameters/keys. q is lost during that conversion,
but the resultingDH parameters contain its length.

RETURN VALUE
DSA_dup_DH()returns the new DH structure, andNULL on error. The error codes can be obtained by
ERR_get_error(3).

NOTE
Be careful to avoid small subgroup attacks when using this.

SEE ALSO
openssl_dh(3), openssl_dsa(3), ERR_get_error(3)

HISTORY
DSA_dup_DH()was added in OpenSSL 0.9.4.

0.9.9-dev 2003-07-24 1

DSA_generate_key(3) OpenSSL DSA_generate_key(3)

NAME
DSA_generate_key − generate DSA key pair

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dsa.h>

int DSA_generate_key(DSA *a);

DESCRIPTION
DSA_generate_key() expectsa to containDSA parameters. It generates a new key pair and stores it in
a−>pub_keyanda−>priv_key.

ThePRNGmust be seeded prior to callingDSA_generate_key().

RETURN VALUE
DSA_generate_key() returns 1 on success, 0 otherwise. The error codes can be obtained by
ERR_get_error(3).

SEE ALSO
openssl_dsa(3), ERR_get_error(3), openssl_rand(3), DSA_generate_parameters(3)

HISTORY
DSA_generate_key() is available since SSLeay 0.8.

0.9.9-dev 2003-07-24 1

DSA_generate_parameters(3) OpenSSL DSA_generate_parameters(3)

NAME
DSA_generate_parameters − generate DSA parameters

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dsa.h>

DSA *DSA_generate_parameters(int bits, unsigned char *seed,
int seed_len, int *counter_ret, unsigned long *h_ret,
void (*callback)(int, int, void *), void *cb_arg);

DESCRIPTION
DSA_generate_parameters()generates primes p and q and a generator g for use in theDSA.

bits is the length of the prime to be generated; theDSSallows a maximum of 1024 bits.

If seedis NULL or seed_len< 20, the primes will be generated at random. Otherwise, the seed is used to
generate them. If the given seed does not yield a prime q, a new random seed is chosen and placed atseed.

DSA_generate_parameters()places the iteration count in *counter_ret and a counter used for finding a
generator in *h_ret, unless these areNULL .

A callback function may be used to provide feedback about the progress of the key generation. Ifcallback
is notNULL , it will be called as follows:

• When a candidate for q is generated,callback(0, m++, cb_arg) is called (m is 0 for the first candi-
date).

• When a candidate for q has passed a test by trial division, callback(1, −1, cb_arg) is called. While a
candidate for q is tested by Miller-Rabin primality tests,callback(1, i, cb_arg) is called in the outer
loop (once for each witness that confirms that the candidate may be prime); i is the loop counter (start-
ing at 0).

• When a prime q has been found,callback(2, 0, cb_arg)andcallback(3, 0, cb_arg)are called.

• Before a candidate for p (other than the first) is generated and tested,callback(0, counter, cb_arg) is
called.

• When a candidate for p has passed the test by trial division, callback(1, −1, cb_arg) is called. While
it is tested by the Miller-Rabin primality test,callback(1, i, cb_arg) is called in the outer loop (once
for each witness that confirms that the candidate may be prime).i is the loop counter (starting at 0).

• When p has been found,callback(2, 1, cb_arg)is called.

• When the generator has been found,callback(3, 1, cb_arg)is called.

RETURN VALUE
DSA_generate_parameters()returns a pointer to theDSA structure, orNULL if the parameter generation
fails. The error codes can be obtained byERR_get_error(3).

BUGS
Seed lengths > 20 are not supported.

SEE ALSO
openssl_dsa(3), ERR_get_error(3), openssl_rand(3), DSA_free(3)

HISTORY
DSA_generate_parameters()appeared in SSLeay 0.8. Thecb_arg argument was added in SSLeay 0.9.0.In
versions up to OpenSSL 0.9.4,callback(1, ...)was called in the inner loop of the Miller-Rabin test when-
ev er it reached the squaring step (the parameters tocallback did not reveal how many witnesses had been
tested); since OpenSSL 0.9.5,callback(1, ...) is called as inBN_is_prime(3), i.e. once for each witness.
=cut

0.9.9-dev 2003-07-24 1

DSA_get_ex_new_index(3) OpenSSL DSA_get_ex_new_index(3)

NAME
DSA_get_ex_new_index, DSA_set_ex_data, DSA_get_ex_data − add application specific data to DSA
structures

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/DSA.h>

int DSA_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int DSA_set_ex_data(DSA *d, int idx, void *arg);

char *DSA_get_ex_data(DSA *d, int idx);

DESCRIPTION
These functions handle application specific data inDSA structures. Their usage is identical to that of
RSA_get_ex_new_index(), RSA_set_ex_data() and RSA_get_ex_data() as described in
RSA_get_ex_new_index(3).

SEE ALSO
RSA_get_ex_new_index(3), openssl_dsa(3)

HISTORY
DSA_get_ex_new_index(), DSA_set_ex_data()andDSA_get_ex_data()are available since OpenSSL 0.9.5.

0.9.9-dev 2000-07-16 1

DSA_new(3) OpenSSL DSA_new(3)

NAME
DSA_new, DSA_free − allocate and free DSA objects

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dsa.h>

DSA* DSA_new(void);

void DSA_free(DSA *dsa);

DESCRIPTION
DSA_new()allocates and initializes aDSA structure. It is equivalent to calling DSA_new_method(NULL).

DSA_free()frees theDSA structure and its components. The values are erased before the memory is
returned to the system.

RETURN VALUES
If the allocation fails, DSA_new()returns NULL and sets an error code that can be obtained by
ERR_get_error(3). Otherwise it returns a pointer to the newly allocated structure.

DSA_free()returns no value.

SEE ALSO
openssl_dsa(3), ERR_get_error(3), DSA_generate_parameters(3), DSA_generate_key(3)

HISTORY
DSA_new()andDSA_free()are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2003-07-24 1

DSA_set_method(3) OpenSSL DSA_set_method(3)

NAME
DSA_set_default_method, DSA_get_default_method, DSA_set_method, DSA_new_method,
DSA_OpenSSL − select DSA method

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dsa.h>
#include <openssl/engine.h>

void DSA_set_default_method(const DSA_METHOD *meth);

const DSA_METHOD *DSA_get_default_method(void);

int DSA_set_method(DSA *dsa, const DSA_METHOD *meth);

DSA *DSA_new_method(ENGINE *engine);

DSA_METHOD *DSA_OpenSSL(void);

DESCRIPTION
A DSA_METHOD specifies the functions that OpenSSL uses forDSA operations. By modifying the
method, alternative implementations such as hardware accelerators may be used.IMPORTANT: See the
NOTES section for important information about how theseDSA API functions are affected by the use of
ENGINE API calls.

Initially, the default DSA_METHOD is the OpenSSL internal implementation, as returned by
DSA_OpenSSL().

DSA_set_default_method()makesmeth the default method for allDSA structures created later. NB: This is
true only whilst noENGINE has been set as a default forDSA, so this function is no longer recommended.

DSA_get_default_method()returns a pointer to the current default DSA_METHOD. Howev er, the meaning-
fulness of this result is dependent on whether theENGINE API is being used, so this function is no longer
recommended.

DSA_set_method()selectsmeth to perform all operations using the key rsa. This will replace the
DSA_METHODused by theDSA key and if the previous method was supplied by anENGINE, the handle to
thatENGINE will be released during the change. It is possible to have DSA keys that only work with certain
DSA_METHOD implementations (eg. from anENGINE module that supports embedded hardware-protected
keys), and in such cases attempting to change theDSA_METHOD for the key can have unexpected results.

DSA_new_method()allocates and initializes aDSA structure so thatenginewill be used for theDSA opera-
tions. If engineis NULL , the default engine forDSA operations is used, and if no default ENGINE is set, the
DSA_METHODcontrolled byDSA_set_default_method()is used.

THE DSA_METHOD STRUCTURE
struct
{

/* name of the implementation */
const char *name;

/* sign */
DSA_SIG *(*dsa_do_sign)(const unsigned char *dgst, int dlen,

DSA *dsa);

/* pre-compute kˆ-1 and r */
int (*dsa_sign_setup)(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,

BIGNUM **rp);

/* verify */
int (*dsa_do_verify)(const unsigned char *dgst, int dgst_len,

DSA_SIG *sig, DSA *dsa);

0.9.9-dev 2008-05-09 1

DSA_set_method(3) OpenSSL DSA_set_method(3)

/* compute rr = a1ˆp1 * a2ˆp2 mod m (May be NULL for some
implementations) */

int (*dsa_mod_exp)(DSA *dsa, BIGNUM *rr, BIGNUM *a1, BIGNUM *p1,
BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
BN_CTX *ctx, BN_MONT_CTX *in_mont);

/* compute r = a ˆ p mod m (May be NULL for some implementations) */
int (*bn_mod_exp)(DSA *dsa, BIGNUM *r, BIGNUM *a,

const BIGNUM *p, const BIGNUM *m,
BN_CTX *ctx, BN_MONT_CTX *m_ctx);

/* called at DSA_new */
int (*init)(DSA *DSA);

/* called at DSA_free */
int (*finish)(DSA *DSA);

int flags;

char *app_data; /* ?? */

} D SA_METHOD;

RETURN VALUES
DSA_OpenSSL()andDSA_get_default_method()return pointers to the respective DSA_METHODs.

DSA_set_default_method()returns no value.

DSA_set_method()returns non-zero if the provided meth was successfully set as the method fordsa
(including unloading theENGINE handle if the previous method was supplied by anENGINE).

DSA_new_method()returnsNULL and sets an error code that can be obtained byERR_get_error(3) if the
allocation fails. Otherwise it returns a pointer to the newly allocated structure.

NOTES
As of version 0.9.7,DSA_METHOD implementations are grouped together with other algorithmic APIs (eg.
RSA_METHOD, EVP_CIPHER, etc) in ENGINE modules. If a default ENGINE is specified forDSA function-
ality using anENGINE API function, that will override any DSA defaults set using theDSA API (ie.
DSA_set_default_method()). For this reason, theENGINE API is the recommended way to control default
implementations for use inDSA and other cryptographic algorithms.

SEE ALSO
openssl_dsa(3), DSA_new(3)

HISTORY
DSA_set_default_method(), DSA_get_default_method(), DSA_set_method(), DSA_new_method()and
DSA_OpenSSL()were added in OpenSSL 0.9.4.

DSA_set_default_openssl_method() and DSA_get_default_openssl_method() replaced
DSA_set_default_method()and DSA_get_default_method()respectively, and DSA_set_method()and
DSA_new_method()were altered to useENGINEs rather thanDSA_METHODs during development of the
engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults in theENGINE APIwas restructured so
that this change was reversed, and behaviour of the other functions resembled more closely the previous be-
haviour. The behaviour of defaults in theENGINE APInow transparently overrides the behaviour of defaults
in theDSA API without requiring changing these function prototypes.

0.9.9-dev 2008-05-09 2

DSA_sign(3) OpenSSL DSA_sign(3)

NAME
DSA_sign, DSA_sign_setup, DSA_verify − DSA signatures

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dsa.h>

int DSA_sign(int type, const unsigned char *dgst, int len,
unsigned char *sigret, unsigned int *siglen, DSA *dsa);

int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp,
BIGNUM **rp);

int DSA_verify(int type, const unsigned char *dgst, int len,
unsigned char *sigbuf, int siglen, DSA *dsa);

DESCRIPTION
DSA_sign()computes a digital signature on thelen byte message digestdgst using the private key dsaand
places itsASN.1 DER encoding atsigret. The length of the signature is places in *siglen. sigret must point
to DSA_size(dsa) bytes of memory.

DSA_sign_setup()may be used to precompute part of the signing operation in case signature generation is
time−critical. It expectsdsa to containDSA parameters. It places the precomputed values in newly allo-
catedBIGNUM s at *kinvp and *rp , after freeing the old ones unless *kinvp and *rp areNULL . These val-
ues may be passed toDSA_sign()in dsa−>kinv anddsa−>r. ctx is a pre-allocatedBN_CTX or NULL .

DSA_verify()verifies that the signaturesigbuf of sizesiglen matches a given message digestdgst of size
len. dsa is the signer’s public key.

Thetype parameter is ignored.

ThePRNGmust be seeded beforeDSA_sign()(or DSA_sign_setup()) is called.

RETURN VALUES
DSA_sign()andDSA_sign_setup()return 1 on success, 0 on error. DSA_verify()returns 1 for a valid signa-
ture, 0 for an incorrect signature and −1 on error. The error codes can be obtained byERR_get_error(3).

CONFORMING TO
US Federal Information Processing StandardFIPS186 (Digital Signature Standard,DSS), ANSI X9.30

SEE ALSO
openssl_dsa(3), ERR_get_error(3), openssl_rand(3), DSA_do_sign(3)

HISTORY
DSA_sign()and DSA_verify()are available in all versions of SSLeay. DSA_sign_setup()was added in
SSLeay 0.8.

0.9.9-dev 2003-07-24 1

DSA_size(3) OpenSSL DSA_size(3)

NAME
DSA_size − get DSA signature size

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dsa.h>

int DSA_size(const DSA *dsa);

DESCRIPTION
This function returns the size of anASN.1 encodedDSA signature in bytes. It can be used to determine how
much memory must be allocated for aDSA signature.

dsa−>qmust not beNULL .

RETURN VALUE
The size in bytes.

SEE ALSO
openssl_dsa(3), DSA_sign(3)

HISTORY
DSA_size()is available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2003-07-24 1

ERR_GET_LIB(3) OpenSSL ERR_GET_LIB(3)

NAME
ERR_GET_LIB, ERR_GET_FUNC, ERR_GET_REASON − get library, function and reason code

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/err.h>

int ERR_GET_LIB(unsigned long e);

int ERR_GET_FUNC(unsigned long e);

int ERR_GET_REASON(unsigned long e);

DESCRIPTION
The error code returned byERR_get_error()consists of a library number, function code and reason code.
ERR_GET_LIB(), ERR_GET_FUNC() andERR_GET_REASON() can be used to extract these.

The library number and function code describe where the error occurred, the reason code is the information
about what went wrong.

Each sub-library of OpenSSL has a unique library number; function and reason codes are unique within
each sub−library. Note that different libraries may use the same value to signal different functions and rea-
sons.

ERR_R_... reason codes such asERR_R_MALLOC_FAILURE are globally unique. However, when check-
ing for sub-library specific reason codes, be sure to also compare the library number.

ERR_GET_LIB(), ERR_GET_FUNC() andERR_GET_REASON() are macros.

RETURN VALUES
The library number, function code and reason code respectively.

SEE ALSO
openssl_err(3), ERR_get_error(3)

HISTORY
ERR_GET_LIB(), ERR_GET_FUNC() and ERR_GET_REASON() are available in all versions of SSLeay and
OpenSSL.

0.9.9-dev 2000-07-16 1

ERR_clear_error(3) OpenSSL ERR_clear_error(3)

NAME
ERR_clear_error − clear the error queue

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/err.h>

void ERR_clear_error(void);

DESCRIPTION
ERR_clear_error()empties the current thread’s error queue.

RETURN VALUES
ERR_clear_error()has no return value.

SEE ALSO
openssl_err(3), ERR_get_error(3)

HISTORY
ERR_clear_error()is available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2000-07-16 1

ERR_error_string(3) OpenSSL ERR_error_string(3)

NAME
ERR_error_string, ERR_error_string_n, ERR_lib_error_string, ERR_func_error_string, ERR_rea-
son_error_string − obtain human−readable error message

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/err.h>

char *ERR_error_string(unsigned long e, char *buf);
void ERR_error_string_n(unsigned long e, char *buf, size_t len);

const char *ERR_lib_error_string(unsigned long e);
const char *ERR_func_error_string(unsigned long e);
const char *ERR_reason_error_string(unsigned long e);

DESCRIPTION
ERR_error_string()generates a human-readable string representing the error codee, and places it atbuf.
buf must be at least 120 bytes long. Ifbuf is NULL , the error string is placed in a static buffer.
ERR_error_string_n()is a variant ofERR_error_string()that writes at mostlen characters (including the
terminating 0) and truncates the string if necessary. For ERR_error_string_n(), buf may not beNULL .

The string will have the following format:

error:[error code]:[library name]:[function name]:[reason string]

error codeis an 8 digit hexadecimal number, library name, function nameandreason stringareASCII text.

ERR_lib_error_string(), ERR_func_error_string()andERR_reason_error_string()return the library name,
function name and reason string respectively.

The OpenSSL error strings should be loaded by callingERR_load_crypto_strings(3) or, for SSL applica-
tions,SSL_load_error_strings(3) first. If there is no text string registered for the given error code, the error
string will contain the numeric code.

ERR_print_errors(3) can be used to print all error codes currently in the queue.

RETURN VALUES
ERR_error_string()returns a pointer to a static buffer containing the string ifbuf == NULL , buf otherwise.

ERR_lib_error_string(), ERR_func_error_string()and ERR_reason_error_string()return the strings, and
NULL if none is registered for the error code.

SEE ALSO
openssl_err(3), ERR_get_error(3), ERR_load_crypto_strings(3), SSL_load_error_strings(3)
ERR_print_errors(3)

HISTORY
ERR_error_string()is available in all versions of SSLeay and OpenSSL.ERR_error_string_n()was added
in OpenSSL 0.9.6.

0.9.9-dev 2005-03-25 1

ERR_get_error(3) OpenSSL ERR_get_error(3)

NAME
ERR_get_error, ERR_peek_error, ERR_peek_last_error, ERR_get_error_line, ERR_peek_error_line,
ERR_peek_last_error_line, ERR_get_error_line_data, ERR_peek_error_line_data,
ERR_peek_last_error_line_data − obtain error code and data

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/err.h>

unsigned long ERR_get_error(void);
unsigned long ERR_peek_error(void);
unsigned long ERR_peek_last_error(void);

unsigned long ERR_get_error_line(const char **file, int *line);
unsigned long ERR_peek_error_line(const char **file, int *line);
unsigned long ERR_peek_last_error_line(const char **file, int *line);

unsigned long ERR_get_error_line_data(const char **file, int *line,
const char **data, int *flags);

unsigned long ERR_peek_error_line_data(const char **file, int *line,
const char **data, int *flags);

unsigned long ERR_peek_last_error_line_data(const char **file, int *line,
const char **data, int *flags);

DESCRIPTION
ERR_get_error()returns the earliest error code from the thread’s error queue and removes the entry. This
function can be called repeatedly until there are no more error codes to return.

ERR_peek_error()returns the earliest error code from the thread’s error queue without modifying it.

ERR_peek_last_error()returns the latest error code from the thread’s error queue without modifying it.

See ERR_GET_LIB(3) for obtaining information about location and reason of the error, and
ERR_error_string(3) for human-readable error messages.

ERR_get_error_line(), ERR_peek_error_line()andERR_peek_last_error_line()are the same as the above,
but they additionally store the file name and line number where the error occurred in *file and *line, unless
these areNULL .

ERR_get_error_line_data(), ERR_peek_error_line_data()andERR_get_last_error_line_data()store addi-
tional data and flags associated with the error code in *data and *flags, unless these areNULL . *data con-
tains a string if *flags&ERR_TXT_STRING . If it has been allocated byOPENSSL_malloc(),
*flags&ERR_TXT_MALLOCED is true.

RETURN VALUES
The error code, or 0 if there is no error in the queue.

SEE ALSO
openssl_err(3), ERR_error_string(3), ERR_GET_LIB(3)

HISTORY
ERR_get_error(), ERR_peek_error(), ERR_get_error_line()andERR_peek_error_line()are available in all
versions of SSLeay and OpenSSL.ERR_get_error_line_data()and ERR_peek_error_line_data()were
added in SSLeay 0.9.0. ERR_peek_last_error(), ERR_peek_last_error_line() and
ERR_peek_last_error_line_data()were added in OpenSSL 0.9.7.

0.9.9-dev 2003-07-24 1

ERR_load_crypto_strings(3) OpenSSL ERR_load_crypto_strings(3)

NAME
ERR_load_crypto_strings, SSL_load_error_strings, ERR_free_strings − load and free error strings

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/err.h>

void ERR_load_crypto_strings(void);
void ERR_free_strings(void);

#include <openssl/ssl.h>

void SSL_load_error_strings(void);

DESCRIPTION
ERR_load_crypto_strings()registers the error strings for alllibcrypto functions.SSL_load_error_strings()
does the same, but also registers thelibssl error strings.

One of these functions should be called before generating textual error messages. However, this is not
required when memory usage is an issue.

ERR_free_strings()frees all previously loaded error strings.

RETURN VALUES
ERR_load_crypto_strings(), SSL_load_error_strings()andERR_free_strings()return no values.

SEE ALSO
openssl_err(3), ERR_error_string(3)

HISTORY
ERR_load_error_strings(), SSL_load_error_strings()and ERR_free_strings()are available in all versions
of SSLeay and OpenSSL.

0.9.9-dev 2000-07-16 1

ERR_load_strings(3) OpenSSL ERR_load_strings(3)

NAME
ERR_load_strings, ERR_PACK, ERR_get_next_error_library − load arbitrary error strings

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/err.h>

void ERR_load_strings(int lib, ERR_STRING_DATA str[]);

int ERR_get_next_error_library(void);

unsigned long ERR_PACK(int lib, int func, int reason);

DESCRIPTION
ERR_load_strings()registers error strings for library numberlib .

str is an array of error string data:

typedef struct ERR_string_data_st
{

unsigned long error;
char *string;

} E RR_STRING_DATA;

The error code is generated from the library number and a function and reason code:error =
ERR_PACK(lib , func, reason). ERR_PACK() is a macro.

The last entry in the array is {0,0}.

ERR_get_next_error_library()can be used to assign library numbers to user libraries at runtime.

RETURN VALUE
ERR_load_strings()returns no value. ERR_PACK() return the error code.ERR_get_next_error_library()
returns a new library number.

SEE ALSO
openssl_err(3), ERR_load_strings(3)

HISTORY
ERR_load_error_strings()and ERR_PACK() are available in all versions of SSLeay and OpenSSL.
ERR_get_next_error_library()was added in SSLeay 0.9.0.

0.9.9-dev 2000-07-16 1

ERR_print_errors(3) OpenSSL ERR_print_errors(3)

NAME
ERR_print_errors, ERR_print_errors_fp − print error messages

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/err.h>

void ERR_print_errors(BIO *bp);
void ERR_print_errors_fp(FILE *fp);

DESCRIPTION
ERR_print_errors()is a convenience function that prints the error strings for all errors that OpenSSL has
recorded tobp, thus emptying the error queue.

ERR_print_errors_fp()is the same, except that the output goes to aFILE .

The error strings will have the following format:

[pid]:error:[error code]:[library name]:[function name]:[reason string]:[file name]:[line]:[optional text message]

error codeis an 8 digit hexadecimal number. library name, function nameandreason stringareASCII text,
as isoptional text message if one was set for the respective error code.

If there is no text string registered for the given error code, the error string will contain the numeric code.

RETURN VALUES
ERR_print_errors()andERR_print_errors_fp()return no values.

SEE ALSO
openssl_err(3), ERR_error_string(3), ERR_get_error(3), ERR_load_crypto_strings(3),
SSL_load_error_strings(3)

HISTORY
ERR_print_errors()andERR_print_errors_fp()are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2000-07-16 1

ERR_put_error(3) OpenSSL ERR_put_error(3)

NAME
ERR_put_error, ERR_add_error_data − record an error

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/err.h>

void ERR_put_error(int lib, int func, int reason, const char *file,
int line);

void ERR_add_error_data(int num, ...);

DESCRIPTION
ERR_put_error()adds an error code to the thread’s error queue. It signals that the error of reason coderea-
sonoccurred in functionfunc of library lib , in line numberline of file. This function is usually called by a
macro.

ERR_add_error_data()associates the concatenation of itsnum string arguments with the error code added
last.

ERR_load_strings(3) can be used to register error strings so that the application can a generate human-
readable error messages for the error code.

RETURN VALUES
ERR_put_error()andERR_add_error_data()return no values.

SEE ALSO
openssl_err(3), ERR_load_strings(3)

HISTORY
ERR_put_error()is available in all versions of SSLeay and OpenSSL.ERR_add_error_data()was added
in SSLeay 0.9.0.

0.9.9-dev 2000-07-16 1

ERR_remove_state(3) OpenSSL ERR_remove_state(3)

NAME
ERR_remove_state − free a thread’s error queue

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/err.h>

void ERR_remove_state(unsigned long pid);

DESCRIPTION
ERR_remove_state()frees the error queue associated with threadpid. If pid == 0, the current thread will
have its error queue removed.

Since error queue data structures are allocated automatically for new threads, they must be freed when
threads are terminated in order to avoid memory leaks.

RETURN VALUE
ERR_remove_state()returns no value.

SEE ALSO
openssl_err(3)

HISTORY
ERR_remove_state()is available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2001-04-12 1

ERR_set_mark(3) OpenSSL ERR_set_mark(3)

NAME
ERR_set_mark, ERR_pop_to_mark − set marks and pop errors until mark

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/err.h>

int ERR_set_mark(void);

int ERR_pop_to_mark(void);

DESCRIPTION
ERR_set_mark()sets a mark on the current topmost error record if there is one.

ERR_pop_to_mark()will pop the top of the error stack until a mark is found. The mark is then removed. If
there is no mark, the whole stack is removed.

RETURN VALUES
ERR_set_mark()returns 0 if the error stack is empty, otherwise 1.

ERR_pop_to_mark()returns 0 if there was no mark in the error stack, which implies that the stack became
empty, otherwise 1.

SEE ALSO
openssl_err(3)

HISTORY
ERR_set_mark()andERR_pop_to_mark()were added in OpenSSL 0.9.8.

0.9.9-dev 2005-11-24 1

EVP_BytesToKey(3) OpenSSL EVP_BytesToKey(3)

NAME
EVP_BytesToKey − password based encryption routine

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

int EVP_BytesToKey(const EVP_CIPHER *type,const EVP_MD *md,
const unsigned char *salt,
const unsigned char *data, int datal, int count,
unsigned char *key,unsigned char *iv);

DESCRIPTION
EVP_BytesToKey() derives a key and IV from various parameters.type is the cipher to derive the key and
IV for. md is the message digest to use.Thesalt paramter is used as a salt in the derivation: it should point
to an 8 byte buffer orNULL if no salt is used.data is a buffer containingdatal bytes which is used to derive
the keying data.count is the iteration count to use. The derived key and IV will be written tokey and iv
respectively.

NOTES
A typical application of this function is to derive keying material for an encryption algorithm from a pass-
word in thedata parameter.

Increasing thecount parameter slows down the algorithm which makes it harder for an attacker to peform a
brute force attack using a large number of candidate passwords.

If the total key and IV length is less than the digest length andMD5 is used then the derivation algorithm is
compatible with PKCS#5 v1.5 otherwise a non standard extension is used to derive the extra data.

Newer applications should use more standard algorithms such as PKCS#5 v2.0 for key derivation.

KEY DERIV ATION ALGORITHM
The key and IV is derived by concatenating D_1, D_2, etc until enough data is available for the key and IV .
D_i is defined as:

D_i = HASHˆcount(D_(i-1) data salt)

where denotes concatentaion, D_0 is empty, HASH is the digest algorithm in use, HASHˆ1(data) is sim-
ply HASH(data), HASHˆ2(data) isHASH(HASH(data)) and so on.

The initial bytes are used for the key and the subsequent bytes for theIV .

RETURN VALUES
EVP_BytesToKey() returns the size of the derived key in bytes.

SEE ALSO
openssl_evp(3), openssl_rand(3), EVP_EncryptInit(3)

HISTORY

0.9.9-dev 2005-11-24 1

EVP_DigestInit(3) OpenSSL EVP_DigestInit(3)

NAME
EVP_MD_CTX_init, EVP_MD_CTX_create, EVP_DigestInit_ex, EVP_DigestUpdate, EVP_DigestFi-
nal_ex, EVP_MD_CTX_cleanup, EVP_MD_CTX_destroy, EVP_MAX_MD_SIZE,
EVP_MD_CTX_copy_ex, EVP_MD_CTX_copy, EVP_MD_type, EVP_MD_pkey_type, EVP_MD_size,
EVP_MD_block_size, EVP_MD_CTX_md, EVP_MD_CTX_size, EVP_MD_CTX_block_size,
EVP_MD_CTX_type, EVP_md_null, EVP_md2, EVP_md5, EVP_sha, EVP_sha1, EVP_dss, EVP_dss1,
EVP_mdc2, EVP_ripemd160, EVP_get_digestbyname, EVP_get_digestbynid, EVP_get_digestbyobj −
EVP digest routines

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

void EVP_MD_CTX_init(EVP_MD_CTX *ctx);
EVP_MD_CTX *EVP_MD_CTX_create(void);

int EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *d, size_t cnt);
int EVP_DigestFinal_ex(EVP_MD_CTX *ctx, unsigned char *md,

unsigned int *s);

int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx);
void EVP_MD_CTX_destroy(EVP_MD_CTX *ctx);

int EVP_MD_CTX_copy_ex(EVP_MD_CTX *out,const EVP_MD_CTX *in);

int EVP_DigestInit(EVP_MD_CTX *ctx, const EVP_MD *type);
int EVP_DigestFinal(EVP_MD_CTX *ctx, unsigned char *md,

unsigned int *s);

int EVP_MD_CTX_copy(EVP_MD_CTX *out,EVP_MD_CTX *in);

#define EVP_MAX_MD_SIZE (16+20) /* The SSLv3 md5+sha1 type */

#define EVP_MD_type(e) ((e)->type)
#define EVP_MD_pkey_type(e) ((e)->pkey_type)
#define EVP_MD_size(e) ((e)->md_size)
#define EVP_MD_block_size(e) ((e)->block_size)

#define EVP_MD_CTX_md(e) (e)->digest)
#define EVP_MD_CTX_size(e) EVP_MD_size((e)->digest)
#define EVP_MD_CTX_block_size(e) EVP_MD_block_size((e)->digest)
#define EVP_MD_CTX_type(e) EVP_MD_type((e)->digest)

const EVP_MD *EVP_md_null(void);
const EVP_MD *EVP_md2(void);
const EVP_MD *EVP_md5(void);
const EVP_MD *EVP_sha(void);
const EVP_MD *EVP_sha1(void);
const EVP_MD *EVP_dss(void);
const EVP_MD *EVP_dss1(void);
const EVP_MD *EVP_mdc2(void);
const EVP_MD *EVP_ripemd160(void);

const EVP_MD *EVP_get_digestbyname(const char *name);
#define EVP_get_digestbynid(a) EVP_get_digestbyname(OBJ_nid2sn(a))
#define EVP_get_digestbyobj(a) EVP_get_digestbynid(OBJ_obj2nid(a))

DESCRIPTION
TheEVP digest routines are a high level interface to message digests.

0.9.9-dev 2005-11-25 1

EVP_DigestInit(3) OpenSSL EVP_DigestInit(3)

EVP_MD_CTX_init()initializes digest contetctx.

EVP_MD_CTX_create()allocates, initializes and returns a digest contet.

EVP_DigestInit_ex()sets up digest context ctx to use a digesttype from ENGINE impl . ctx must be initial-
ized before calling this function.type will typically be supplied by a functionsuch asEVP_sha1(). If impl
is NULL then the default implementation of digesttype is used.

EVP_DigestUpdate()hashescnt bytes of data atd into the digest context ctx. This function can be called
several times on the samectx to hash additional data.

EVP_DigestFinal_ex()retrieves the digest value fromctx and places it inmd. If the s parameter is not
NULL then the number of bytes of data written (i.e. the length of the digest) will be written to the integer at
s, at most EVP_MAX_MD_SIZE bytes will be written. After callingEVP_DigestFinal_ex()no additional
calls toEVP_DigestUpdate()can be made, but EVP_DigestInit_ex()can be called to initialize a new digest
operation.

EVP_MD_CTX_cleanup()cleans up digest context ctx, it should be called after a digest context is no
longer needed.

EVP_MD_CTX_destroy()cleans up digest context ctx and frees up the space allocated to it, it should be
called only on a context created usingEVP_MD_CTX_create().

EVP_MD_CTX_copy_ex()can be used to copy the message digest state fromin to out. This is useful if
large amounts of data are to be hashed which only differ in the last few bytes.out must be initialized before
calling this function.

EVP_DigestInit()behaves in the same way asEVP_DigestInit_ex()except the passed context ctx does not
have to be initialized, and it always uses the default digest implementation.

EVP_DigestFinal()is similar toEVP_DigestFinal_ex()except the digest contetctx is automatically cleaned
up.

EVP_MD_CTX_copy()is similar toEVP_MD_CTX_copy_ex()except the destinationout does not have to
be initialized.

EVP_MD_size()andEVP_MD_CTX_size()return the size of the message digest when passed anEVP_MD
or anEVP_MD_CTX structure, i.e. the size of the hash.

EVP_MD_block_size()andEVP_MD_CTX_block_size()return the block size of the message digest when
passed anEVP_MD or anEVP_MD_CTX structure.

EVP_MD_type()and EVP_MD_CTX_type()return theNID of the OBJECT IDENTIFIERrepresenting the
given message digest when passed anEVP_MD structure. For example EVP_MD_type(EVP_sha1())
returnsNID_sha1. This function is normally used when settingASN1 OIDs.

EVP_MD_CTX_md()returns theEVP_MD structure corresponding to the passedEVP_MD_CTX .

EVP_MD_pkey_type()returns theNID of the public key signing algorithm associated with this digest. For
example EVP_sha1()is associated withRSA so this will returnNID_sha1WithRSAEncryption. This
‘‘ link’ ’ between digests and signature algorithms may not be retained in future versions of OpenSSL.

EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(), EVP_mdc2()and EVP_ripemd160()return EVP_MD
structures for theMD2, MD5, SHA, SHA1, MDC2 andRIPEMD160digest algorithms respectively. The asso-
ciated signature algorithm isRSA in each case.

EVP_dss()andEVP_dss1()returnEVP_MD structures forSHA andSHA1 digest algorithms but usingDSS
(DSA) for the signature algorithm.

EVP_md_null()is a ‘‘null’’ message digest that does nothing: i.e. the hash it returns is of zero length.

EVP_get_digestbyname(), EVP_get_digestbynid()andEVP_get_digestbyobj()return anEVP_MD structure
when passed a digest name, a digestNID or anASN1_OBJECTstructure respectively. The digest table must
be initialized using, for example,OpenSSL_add_all_digests()for these functions to work.

0.9.9-dev 2005-11-25 2

EVP_DigestInit(3) OpenSSL EVP_DigestInit(3)

RETURN VALUES
EVP_DigestInit_ex(), EVP_DigestUpdate()andEVP_DigestFinal_ex()return 1 for success and 0 for fail-
ure.

EVP_MD_CTX_copy_ex()returns 1 if successful or 0 for failure.

EVP_MD_type(), EVP_MD_pkey_type()andEVP_MD_type()return theNID of the correspondingOBJECT
IDENTIFIER or NID_undef if none exists.

EVP_MD_size(), EVP_MD_block_size(), EVP_MD_CTX_size(e), EVP_MD_size(),
EVP_MD_CTX_block_size() andEVP_MD_block_size()return the digest or block size in bytes.

EVP_md_null(), EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(), EVP_dss(), EVP_dss1(), EVP_mdc2()
andEVP_ripemd160()return pointers to the correspondingEVP_MD structures.

EVP_get_digestbyname(), EVP_get_digestbynid()and EVP_get_digestbyobj()return either anEVP_MD
structure orNULL if an error occurs.

NOTES
The EVP interface to message digests should almost always be used in preference to the low lev el inter-
faces. This is because the code then becomes transparent to the digest used and much more flexible.

SHA1 is the digest of choice for new applications. The other digest algorithms are still in common use.

For most applications theimpl parameter toEVP_DigestInit_ex()will be set toNULL to use the default
digest implementation.

The functionsEVP_DigestInit(), EVP_DigestFinal()and EVP_MD_CTX_copy()are obsolete but are
retained to maintain compatibility with existing code. New applications should useEVP_DigestInit_ex(),
EVP_DigestFinal_ex()and EVP_MD_CTX_copy_ex()because they can efficiently reuse a digest context
instead of initializing and cleaning it up on each call and allow non default implementations of digests to be
specified.

In OpenSSL 0.9.7 and later if digest contexts are not cleaned up after use memory leaks will occur.

EXAMPLE
This example digests the data ‘‘Test Message\n’’ and ‘‘Hello World\n’’, using the digest name passed on the
command line.

#include <stdio.h>
#include <openssl/evp.h>

main(int argc, char *argv[])
{
EVP_MD_CTX mdctx;
const EVP_MD *md;
char mess1[] = "Test Message\n";
char mess2[] = "Hello World\n";
unsigned char md_value[EVP_MAX_MD_SIZE];
int md_len, i;

OpenSSL_add_all_digests();

if(!argv[1]) {
printf("Usage: mdtest digestname\n");
exit(1);

}

md = EVP_get_digestbyname(argv[1]);

if(!md) {
printf("Unknown message digest %s\n", argv[1]);
exit(1);

}

0.9.9-dev 2005-11-25 3

EVP_DigestInit(3) OpenSSL EVP_DigestInit(3)

EVP_MD_CTX_init(&mdctx);
EVP_DigestInit_ex(&mdctx, md, NULL);
EVP_DigestUpdate(&mdctx, mess1, strlen(mess1));
EVP_DigestUpdate(&mdctx, mess2, strlen(mess2));
EVP_DigestFinal_ex(&mdctx, md_value, &md_len);
EVP_MD_CTX_cleanup(&mdctx);

printf("Digest is: ");
for(i = 0; i < md_len; i++) printf("%02x", md_value[i]);
printf("\n");
}

BUGS
The link between digests and signing algorithms results in a situation whereEVP_sha1()must be used with
RSA andEVP_dss1()must be used withDSSev en though they are identical digests.

SEE ALSO
openssl_evp(3), openssl_hmac(3), md2(3), openssl_md5(3), openssl_mdc2(3), openssl_ripemd(3),
openssl_sha(3), openssl_dgst(1)

HISTORY
EVP_DigestInit(), EVP_DigestUpdate()andEVP_DigestFinal()are available in all versions of SSLeay and
OpenSSL.

EVP_MD_CTX_init(), EVP_MD_CTX_create(), EVP_MD_CTX_copy_ex(), EVP_MD_CTX_cleanup(),
EVP_MD_CTX_destroy(), EVP_DigestInit_ex()andEVP_DigestFinal_ex()were added in OpenSSL 0.9.7.

EVP_md_null(), EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(), EVP_dss(), EVP_dss1(), EVP_mdc2()
andEVP_ripemd160()were changed to return truely constEVP_MD * in OpenSSL 0.9.7.

0.9.9-dev 2005-11-25 4

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

NAME
EVP_CIPHER_CTX_init, EVP_EncryptInit_ex, EVP_EncryptUpdate, EVP_EncryptFinal_ex,
EVP_DecryptInit_ex, EVP_DecryptUpdate, EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUp-
date, EVP_CipherFinal_ex, EVP_CIPHER_CTX_set_key_length, EVP_CIPHER_CTX_ctrl,
EVP_CIPHER_CTX_cleanup, EVP_EncryptInit, EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFi-
nal, EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname, EVP_get_cipherbynid, EVP_get_cipher-
byobj, EVP_CIPHER_nid, EVP_CIPHER_block_size, EVP_CIPHER_key_length,
EVP_CIPHER_iv_length, EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type,
EVP_CIPHER_CTX_cipher, EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size,
EVP_CIPHER_CTX_key_length, EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags,
EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param,
EVP_CIPHER_CTX_set_padding − EVP cipher routines

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a);

int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, unsigned char *key, unsigned char *iv);

int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, unsigned char *key, unsigned char *iv);

int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, unsigned char *key, unsigned char *iv, int enc);

int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
unsigned char *key, unsigned char *iv);

int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
unsigned char *key, unsigned char *iv);

int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
unsigned char *key, unsigned char *iv, int enc);

int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

0.9.9-dev 2005-11-25 1

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a);

const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
#define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
#define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))

#define EVP_CIPHER_nid(e) ((e)->nid)
#define EVP_CIPHER_block_size(e) ((e)->block_size)
#define EVP_CIPHER_key_length(e) ((e)->key_len)
#define EVP_CIPHER_iv_length(e) ((e)->iv_len)
#define EVP_CIPHER_flags(e) ((e)->flags)
#define EVP_CIPHER_mode(e) ((e)->flags) & EVP_CIPH_MODE)
int EVP_CIPHER_type(const EVP_CIPHER *ctx);

#define EVP_CIPHER_CTX_cipher(e) ((e)->cipher)
#define EVP_CIPHER_CTX_nid(e) ((e)->cipher->nid)
#define EVP_CIPHER_CTX_block_size(e) ((e)->cipher->block_size)
#define EVP_CIPHER_CTX_key_length(e) ((e)->key_len)
#define EVP_CIPHER_CTX_iv_length(e) ((e)->cipher->iv_len)
#define EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data)
#define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d))
#define EVP_CIPHER_CTX_type(c) EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c))
#define EVP_CIPHER_CTX_flags(e) ((e)->cipher->flags)
#define EVP_CIPHER_CTX_mode(e) ((e)->cipher->flags & EVP_CIPH_MODE)

int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);

DESCRIPTION
TheEVP cipher routines are a high level interface to certain symmetric ciphers.

EVP_CIPHER_CTX_init()initializes cipher contexctx.

EVP_EncryptInit_ex()sets up cipher context ctx for encryption with ciphertype from ENGINE impl . ctx
must be initialized before calling this function.type is normally supplied by a function such as
EVP_des_cbc(). If impl is NULL then the default implementation is used.key is the symmetric key to use
and iv is the IV to use (if necessary), the actual number of bytes used for the key and IV depends on the
cipher. It is possible to set all parameters toNULL except type in an initial call and supply the remaining
parameters in subsequent calls, all of which have type set toNULL . This is done when the default cipher
parameters are not appropriate.

EVP_EncryptUpdate()encryptsinl bytes from the buffer in and writes the encrypted version toout. This
function can be called multiple times to encrypt successive blocks of data. The amount of data written
depends on the block alignment of the encrypted data: as a result the amount of data written may be any-
thing from zero bytes to (inl + cipher_block_size − 1) sooutl should contain sufficient room. The actual
number of bytes written is placed inoutl.

If padding is enabled (the default) thenEVP_EncryptFinal_ex()encrypts the ‘‘final’ ’ data, that is any data
that remains in a partial block. It uses standard block padding (akaPKCS padding). The encrypted final
data is written toout which should have sufficient space for one cipher block. The number of bytes written
is placed inoutl. After this function is called the encryption operation is finished and no further calls to
EVP_EncryptUpdate()should be made.

If padding is disabled thenEVP_EncryptFinal_ex()will not encrypt any more data and it will return an
error if any data remains in a partial block: that is if the total data length is not a multiple of the block size.

EVP_DecryptInit_ex(), EVP_DecryptUpdate()andEVP_DecryptFinal_ex()are the corresponding decryp-
tion operations.EVP_DecryptFinal()will return an error code if padding is enabled and the final block is

0.9.9-dev 2005-11-25 2

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

not correctly formatted. The parameters and restrictions are identical to the encryption operations except
that if padding is enabled the decrypted data buffer out passed toEVP_DecryptUpdate()should have suffi-
cient room for (inl + cipher_block_size) bytes unless the cipher block size is 1 in which caseinl bytes is
sufficient.

EVP_CipherInit_ex(), EVP_CipherUpdate()andEVP_CipherFinal_ex()are functions that can be used for
decryption or encryption. The operation performed depends on the value of theencparameter. It should be
set to 1 for encryption, 0 for decryption and −1 to leave the value unchanged (the actual value of ’enc’
being supplied in a previous call).

EVP_CIPHER_CTX_cleanup()clears all information from a cipher context and free up any allocated mem-
ory associate with it. It should be called after all operations using a cipher are complete so sensitive infor-
mation does not remain in memory.

EVP_EncryptInit(), EVP_DecryptInit()and EVP_CipherInit()behave in a similar way to EVP_Encryp-
tInit_ex(), EVP_DecryptInit_ex and EVP_CipherInit_ex()except thectx paramter does not need to be ini-
tialized and they always use the default cipher implementation.

EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() behave in a similar way to
EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex()and EVP_CipherFinal_ex()except ctx is automatically
cleaned up after the call.

EVP_get_cipherbyname(), EVP_get_cipherbynid()and EVP_get_cipherbyobj()return an EVP_CIPHER
structure when passed a cipher name, aNID or anASN1_OBJECTstructure.

EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid()return the NID of a cipher when passed an
EVP_CIPHER or EVP_CIPHER_CTX structure. TheactualNID value is an internal value which may not
have a correspondingOBJECT IDENTIFIER.

EVP_CIPHER_CTX_set_padding()enables or disables padding. By default encryption operations are
padded using standard block padding and the padding is checked and removed when decrypting. If thepad
parameter is zero then no padding is performed, the total amount of data encrypted or decrypted must then
be a multiple of the block size or an error will occur.

EVP_CIPHER_key_length()andEVP_CIPHER_CTX_key_length()return the key length of a cipher when
passed anEVP_CIPHER or EVP_CIPHER_CTX structure. The constantEVP_MAX_KEY_LENGTH is the
maximum key length for all ciphers. Note: althoughEVP_CIPHER_key_length()is fixed for a given cipher,
the value ofEVP_CIPHER_CTX_key_length()may be different for variable key length ciphers.

EVP_CIPHER_CTX_set_key_length()sets the key length of the cipher ctx.If the cipher is a fixed length
cipher then attempting to set the key length to any value other than the fixed value is an error.

EVP_CIPHER_iv_length()and EVP_CIPHER_CTX_iv_length()return theIV length of a cipher when
passed anEVP_CIPHER or EVP_CIPHER_CTX . It will return zero if the cipher does not use anIV . The
constantEVP_MAX_IV_LENGTH is the maximumIV length for all ciphers.

EVP_CIPHER_block_size()and EVP_CIPHER_CTX_block_size()return the block size of a cipher when
passed anEVP_CIPHER or EVP_CIPHER_CTX structure. The constantEVP_MAX_IV_LENGTH is also
the maximum block length for all ciphers.

EVP_CIPHER_type()andEVP_CIPHER_CTX_type()return the type of the passed cipher or context. This
‘‘ type’’ is the actualNID of the cipherOBJECT IDENTIFIERas such it ignores the cipher parameters and 40
bit RC2and 128 bitRC2have the sameNID. If the cipher does not have an object identifier or does not have
ASN1 support this function will returnNID_undef.

EVP_CIPHER_CTX_cipher()returns theEVP_CIPHER structure when passed anEVP_CIPHER_CTX
structure.

EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode:
EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODEor EVP_CIPH_OFB_MODE. If the
cipher is a stream cipher thenEVP_CIPH_STREAM_CIPHERis returned.

EVP_CIPHER_param_to_asn1()sets the AlgorithmIdentifier ‘‘parameter’’ based on the passed cipher. This

0.9.9-dev 2005-11-25 3

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

will typically include any parameters and anIV . The cipherIV (if any) must be set when this call is made.
This call should be made before the cipher is actually ‘‘used’’ (before any EVP_EncryptUpdate(),
EVP_DecryptUpdate()calls for example). This function may fail if the cipher does not have any ASN1 sup-
port.

EVP_CIPHER_asn1_to_param()sets the cipher parameters based on anASN1 AlgorithmIdentifier ‘‘param-
eter’’. The precise effect depends on the cipher In the case ofRC2, for example, it will set theIV and effec-
tive key length. Thisfunction should be called after the base cipher type is set but before the key is set. For
example EVP_CipherInit() will be called with the IV and key set to NULL ,
EVP_CIPHER_asn1_to_param()will be called and finallyEVP_CipherInit()again with all parameters
except the key set toNULL . It is possible for this function to fail if the cipher does not have any ASN1 sup-
port or the parameters cannot be set (for example theRC2effective key length is not supported.

EVP_CIPHER_CTX_ctrl()allows various cipher specific parameters to be determined and set. Currently
only theRC2effective key length and the number of rounds ofRC5can be set.

RETURN VALUES
EVP_EncryptInit_ex(), EVP_EncryptUpdate()and EVP_EncryptFinal_ex()return 1 for success and 0 for
failure.

EVP_DecryptInit_ex()andEVP_DecryptUpdate()return 1 for success and 0 for failure. EVP_DecryptFi-
nal_ex()returns 0 if the decrypt failed or 1 for success.

EVP_CipherInit_ex()and EVP_CipherUpdate()return 1 for success and 0 for failure. EVP_CipherFi-
nal_ex()returns 0 for a decryption failure or 1 for success.

EVP_CIPHER_CTX_cleanup()returns 1 for success and 0 for failure.

EVP_get_cipherbyname(), EVP_get_cipherbynid()and EVP_get_cipherbyobj()return anEVP_CIPHER
structure orNULL on error.

EVP_CIPHER_nid()andEVP_CIPHER_CTX_nid()return aNID.

EVP_CIPHER_block_size()andEVP_CIPHER_CTX_block_size()return the block size.

EVP_CIPHER_key_length()andEVP_CIPHER_CTX_key_length()return the key length.

EVP_CIPHER_CTX_set_padding()always returns 1.

EVP_CIPHER_iv_length()andEVP_CIPHER_CTX_iv_length()return theIV length or zero if the cipher
does not use anIV .

EVP_CIPHER_type()andEVP_CIPHER_CTX_type()return theNID of the cipher’s OBJECT IDENTIFIER
or NID_undef if it has no definedOBJECT IDENTIFIER.

EVP_CIPHER_CTX_cipher()returns anEVP_CIPHER structure.

EVP_CIPHER_param_to_asn1()andEVP_CIPHER_asn1_to_param()return 1 for success or zero for fail-
ure.

CIPHER LISTING
All algorithms have a fixed key length unless otherwise stated.

EVP_enc_null()
Null cipher: does nothing.

EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void), EVP_des_ofb(void)
DES in CBC, ECB, CFB andOFB modes respectively.

EVP_des_ede_cbc(void),EVP_des_ede(), EVP_des_ede_ofb(void), EVP_des_ede_cfb(void)
Tw o key triple DES in CBC, ECB, CFB andOFB modes respectively.

EVP_des_ede3_cbc(void),EVP_des_ede3(), EVP_des_ede3_ofb(void), EVP_des_ede3_cfb(void)
Three key triple DES in CBC, ECB, CFB andOFB modes respectively.

0.9.9-dev 2005-11-25 4

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

EVP_desx_cbc(void)
DESX algorithm inCBC mode.

EVP_rc4(void)
RC4stream cipher. This is a variable key length cipher with default key length 128 bits.

EVP_rc4_40(void)
RC4stream cipher with 40 bit key length. This is obsolete and new code should useEVP_rc4()and the
EVP_CIPHER_CTX_set_key_length()function.

EVP_idea_cbc()EVP_idea_ecb(void), EVP_idea_cfb(void), EVP_idea_ofb(void), EVP_idea_cbc(void)
IDEA encryption algorithm inCBC, ECB, CFB andOFB modes respectively.

EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void), EVP_rc2_ofb(void)
RC2encryption algorithm inCBC, ECB, CFB andOFB modes respectively. This is a variable key length
cipher with an additional parameter called ‘‘effective key bits’’ or ‘ ‘effective key length’’. By default
both are set to 128 bits.

EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void)
RC2 algorithm in CBC mode with a default key length and effective key length of 40 and 64 bits.
These are obsolete and new code should useEVP_rc2_cbc(), EVP_CIPHER_CTX_set_key_length()
andEVP_CIPHER_CTX_ctrl()to set the key length and effective key length.

EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void), EVP_bf_ofb(void);
Blowfish encryption algorithm inCBC, ECB, CFB andOFB modes respectively. This is a variable key
length cipher.

EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void), EVP_cast5_ofb(void)
CAST encryption algorithm inCBC, ECB, CFB and OFB modes respectively. This is a variable key
length cipher.

EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void), EVP_rc5_32_12_16_cfb(void),
EVP_rc5_32_12_16_ofb(void)

RC5encryption algorithm inCBC, ECB, CFB andOFB modes respectively. This is a variable key length
cipher with an additional ‘‘number of rounds’’ parameter. By default the key length is set to 128 bits
and 12 rounds.

NOTES
Where possible theEVP interface to symmetric ciphers should be used in preference to the low lev el inter-
faces. This is because the code then becomes transparent to the cipher used and much more flexible.

PKCSpadding works by addingn padding bytes of valuen to make the total length of the encrypted data a
multiple of the block size. Padding is always added so if the data is already a multiple of the block sizen
will equal the block size. For example if the block size is 8 and 11 bytes are to be encrypted then 5 padding
bytes of value 5 will be added.

When decrypting the final block is checked to see if it has the correct form.

Although the decryption operation can produce an error if padding is enabled, it is not a strong test that the
input data or key is correct. A random block has better than 1 in 256 chance of being of the correct format
and problems with the input data earlier on will not produce a final decrypt error.

If padding is disabled then the decryption operation will always succeed if the total amount of data
decrypted is a multiple of the block size.

The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(), EVP_CipherInit() and
EVP_CipherFinal()are obsolete but are retained for compatibility with existing code. New code should use
EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(),
EVP_CipherInit_ex()andEVP_CipherFinal_ex()because they can reuse an existing context without allo-
cating and freeing it up on each call.

0.9.9-dev 2005-11-25 5

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

BUGS
For RC5 the number of rounds can currently only be set to 8, 12 or 16. This is a limitation of the current
RC5code rather than theEVP interface.

EVP_MAX_KEY_LENGTH andEVP_MAX_IV_LENGTH only refer to the internal ciphers with default key
lengths. If custom ciphers exceed these values the results are unpredictable. This is because it has become
standard practice to define a generic key as a fixed unsigned char array containing
EVP_MAX_KEY_LENGTH bytes.

The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested for certain common
S/MIME ciphers (RC2, DES, triple DES) in CBC mode.

EXAMPLES
Get the number of rounds used inRC5:

int nrounds;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &nrounds);

Get theRC2effective key length:

int key_bits;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC2_KEY_BITS, 0, &key_bits);

Set the number of rounds used inRC5:

int nrounds;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC5_ROUNDS, nrounds, NULL);

Set the effective key length used inRC2:

int key_bits;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL);

Encrypt a string using blowfish:

int do_crypt(char *outfile)
{
unsigned char outbuf[1024];
int outlen, tmplen;
/* Bogus key and IV: we’d normally set these from

* a nother source.
*/

unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
unsigned char iv[] = {1,2,3,4,5,6,7,8};
char intext[] = "Some Crypto Text";
EVP_CIPHER_CTX ctx;
FILE *out;
EVP_CIPHER_CTX_init(&ctx);
EVP_EncryptInit_ex(&ctx, EVP_bf_cbc(), NULL, key, iv);

0.9.9-dev 2005-11-25 6

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

if(!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext)))
{
/* Error */
return 0;
}

/* Buffer passed to EVP_EncryptFinal() must be after data just
* e ncrypted to avoid overwriting it.
*/

if(!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen))
{
/* Error */
return 0;
}

outlen += tmplen;
EVP_CIPHER_CTX_cleanup(&ctx);
/* Need binary mode for fopen because encrypted data is

* b inary data. Also cannot use strlen() on it because
* it w ont be null terminated and may contain embedded
* n ulls.
*/

out = fopen(outfile, "wb");
fwrite(outbuf, 1, outlen, out);
fclose(out);
return 1;
}

The ciphertext from the above example can be decrypted using theopensslutility with the command line:

S<openssl bf -in cipher.bin -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708 -d>

General encryption, decryption function example usingFILE I/O andRC2with an 80 bit key:

int do_crypt(FILE *in, FILE *out, int do_encrypt)
{
/* Allow enough space in output buffer for additional block */
inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
int inlen, outlen;
/* Bogus key and IV: we’d normally set these from

* a nother source.
*/

unsigned char key[] = "0123456789";
unsigned char iv[] = "12345678";
/* Don’t set key or IV because we will modify the parameters */
EVP_CIPHER_CTX_init(&ctx);
EVP_CipherInit_ex(&ctx, EVP_rc2(), NULL, NULL, NULL, do_encrypt);
EVP_CIPHER_CTX_set_key_length(&ctx, 10);
/* We finished modifying parameters so now we can set key and IV */
EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt);

0.9.9-dev 2005-11-25 7

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

for(;;)
{
inlen = fread(inbuf, 1, 1024, in);
if(inlen <= 0) break;
if(!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen))

{
/* Error */
EVP_CIPHER_CTX_cleanup(&ctx);
return 0;
}

fwrite(outbuf, 1, outlen, out);
}

if(!EVP_CipherFinal_ex(&ctx, outbuf, &outlen))
{
/* Error */
EVP_CIPHER_CTX_cleanup(&ctx);
return 0;
}

fwrite(outbuf, 1, outlen, out);

EVP_CIPHER_CTX_cleanup(&ctx);
return 1;
}

SEE ALSO
openssl_evp(3)

HISTORY
EVP_CIPHER_CTX_init(), EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(),
EVP_DecryptFinal_ex(), EVP_CipherInit_ex(), EVP_CipherFinal_ex()and EVP_CIPHER_CTX_set_pad-
ding()appeared in OpenSSL 0.9.7.

0.9.9-dev 2005-11-25 8

EVP_OpenInit(3) OpenSSL EVP_OpenInit(3)

NAME
EVP_OpenInit, EVP_OpenUpdate, EVP_OpenFinal − EVP envelope decryption

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

int EVP_OpenInit(EVP_CIPHER_CTX *ctx,EVP_CIPHER *type,unsigned char *ek,
int ekl,unsigned char *iv,EVP_PKEY *priv);

int EVP_OpenUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_OpenFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

DESCRIPTION
The EVP envelope routines are a high level interface to envelope decryption. They decrypt a public key
encrypted symmetric key and then decrypt data using it.

EVP_OpenInit()initializes a cipher context ctx for decryption with ciphertype. It decrypts the encrypted
symmetric key of lengthekl bytes passed in theek parameter using the private key priv . The IV is supplied
in theiv parameter.

EVP_OpenUpdate()andEVP_OpenFinal()have exactly the same properties as theEVP_DecryptUpdate()
andEVP_DecryptFinal()routines, as documented on theEVP_EncryptInit(3) manual page.

NOTES
It is possible to callEVP_OpenInit()twice in the same way asEVP_DecryptInit(). The first call should
have priv set toNULL and (after setting any cipher parameters) it should be called again withtype set to
NULL .

If the cipher passed in thetype parameter is a variable length cipher then the key length will be set to the
value of the recovered key length. If the cipher is a fixed length cipher then the recovered key length must
match the fixed cipher length.

RETURN VALUES
EVP_OpenInit()returns 0 on error or a non zero integer (actually the recovered secret key size) if success-
ful.

EVP_OpenUpdate()returns 1 for success or 0 for failure.

EVP_OpenFinal()returns 0 if the decrypt failed or 1 for success.

SEE ALSO
openssl_evp(3), openssl_rand(3), EVP_EncryptInit(3), EVP_SealInit(3)

HISTORY

0.9.9-dev 2001-04-12 1

EVP_PKEY_new(3) OpenSSL EVP_PKEY_new(3)

NAME
EVP_PKEY_new, EVP_PKEY_free − private key allocation functions.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

EVP_PKEY *EVP_PKEY_new(void);
void EVP_PKEY_free(EVP_PKEY *key);

DESCRIPTION
The EVP_PKEY_new()function allocates an emptyEVP_PKEY structure which is used by OpenSSL to
store private keys.

EVP_PKEY_free()frees up the private keykey.

NOTES
TheEVP_PKEY structure is used by various OpenSSL functions which require a general private key with-
out reference to any particular algorithm.

The structure returned byEVP_PKEY_new()is empty. To add a private key to this empty structure the func-
tions described inEVP_PKEY_set1_RSA(3) should be used.

RETURN VALUES
EVP_PKEY_new()returns either the newly allocatedEVP_PKEY structure ofNULL if an error occurred.

EVP_PKEY_free()does not return a value.

SEE ALSO
EVP_PKEY_set1_RSA(3)

HISTORY
TBA

0.9.9-dev 2003-07-24 1

EVP_PKEY_set1_RSA(3) OpenSSL EVP_PKEY_set1_RSA(3)

NAME
EVP_PKEY_set1_RSA, EVP_PKEY_set1_DSA, EVP_PKEY_set1_DH, EVP_PKEY_set1_EC_KEY,
EVP_PKEY_get1_RSA, EVP_PKEY_get1_DSA, EVP_PKEY_get1_DH, EVP_PKEY_get1_EC_KEY,
EVP_PKEY_assign_RSA, EVP_PKEY_assign_DSA, EVP_PKEY_assign_DH,
EVP_PKEY_assign_EC_KEY, EVP_PKEY_type − EVP_PKEY assignment functions.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

int EVP_PKEY_set1_RSA(EVP_PKEY *pkey,RSA *key);
int EVP_PKEY_set1_DSA(EVP_PKEY *pkey,DSA *key);
int EVP_PKEY_set1_DH(EVP_PKEY *pkey,DH *key);
int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey,EC_KEY *key);

RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey);
DSA *EVP_PKEY_get1_DSA(EVP_PKEY *pkey);
DH *EVP_PKEY_get1_DH(EVP_PKEY *pkey);
EC_KEY *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey);

int EVP_PKEY_assign_RSA(EVP_PKEY *pkey,RSA *key);
int EVP_PKEY_assign_DSA(EVP_PKEY *pkey,DSA *key);
int EVP_PKEY_assign_DH(EVP_PKEY *pkey,DH *key);
int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey,EC_KEY *key);

int EVP_PKEY_type(int type);

DESCRIPTION
EVP_PKEY_set1_RSA(), EVP_PKEY_set1_DSA(), EVP_PKEY_set1_DH() and
EVP_PKEY_set1_EC_KEY()set the key referenced bypkey to key.

EVP_PKEY_get1_RSA(), EVP_PKEY_get1_DSA(), EVP_PKEY_get1_DH() and
EVP_PKEY_get1_EC_KEY()return the referenced key in pkey or NULL if the key is not of the correct
type.

EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH() and
EVP_PKEY_assign_EC_KEY()also set the referenced key to key however these use the suppliedkey inter-
nally and sokey will be freed when the parentpkey is freed.

EVP_PKEY_type()returns the type of key corresponding to the value type. The type of a key can be
obtained with EVP_PKEY_type(pkey−>type). The return value will beEVP_PKEY_RSA, EVP_PKEY_DSA,
EVP_PKEY_DHor EVP_PKEY_ECfor the corresponding key types or NID_undef if the key type is unas-
signed.

NOTES
In accordance with the OpenSSL naming convention the key obtained from or assigned to thepkey using
the1 functions must be freed as well aspkey.

EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH()
EVP_PKEY_assign_EC_KEY()are implemented as macros.

RETURN VALUES
EVP_PKEY_set1_RSA(), EVP_PKEY_set1_DSA(), EVP_PKEY_set1_DH() and
EVP_PKEY_set1_EC_KEY()return 1 for success or 0 for failure.

EVP_PKEY_get1_RSA(), EVP_PKEY_get1_DSA(), EVP_PKEY_get1_DH() and
EVP_PKEY_get1_EC_KEY()return the referenced key or NULL if an error occurred.

EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH() and
EVP_PKEY_assign_EC_KEY()return 1 for success and 0 for failure.

0.9.9-dev 2003-07-24 1

EVP_PKEY_set1_RSA(3) OpenSSL EVP_PKEY_set1_RSA(3)

SEE ALSO
EVP_PKEY_new(3)

HISTORY
TBA

0.9.9-dev 2003-07-24 2

EVP_SealInit(3) OpenSSL EVP_SealInit(3)

NAME
EVP_SealInit, EVP_SealUpdate, EVP_SealFinal − EVP envelope encryption

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

int EVP_SealInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
unsigned char **ek, int *ekl, unsigned char *iv,
EVP_PKEY **pubk, int npubk);

int EVP_SealUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_SealFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

DESCRIPTION
The EVP envelope routines are a high level interface to envelope encryption. They generate a random key
and IV (if required) then ‘‘envelope’’ it by using public key encryption. Data can then be encrypted using
this key.

EVP_SealInit()initializes a cipher context ctx for encryption with ciphertype using a random secret key
andIV . type is normally supplied by a function such asEVP_des_cbc(). The secret key is encrypted using
one or more public keys, this allows the same encrypted data to be decrypted using any of the correspond-
ing private keys. ek is an array of buffers where the public key encrypted secret key will be written, each
buffer must contain enough room for the corresponding encrypted key: that isek[i] must have room for
EVP_PKEY_size(pubk[i]) bytes. The actual size of each encrypted secret key is written to the arrayekl.
pubk is an array ofnpubk public keys.

The iv parameter is a buffer where the generatedIV is written to. It must contain enough room for the corre-
sponding cipher’sIV , as determined by (for example) EVP_CIPHER_iv_length(type).

If the cipher does not require anIV then theiv parameter is ignored and can beNULL .

EVP_SealUpdate()and EVP_SealFinal()have exactly the same properties as theEVP_EncryptUpdate()
andEVP_EncryptFinal()routines, as documented on theEVP_EncryptInit(3) manual page.

RETURN VALUES
EVP_SealInit()returns 0 on error ornpubk if successful.

EVP_SealUpdate()andEVP_SealFinal()return 1 for success and 0 for failure.

NOTES
Because a random secret key is generated the random number generator must be seeded before calling
EVP_SealInit().

The public key must beRSA because it is the only OpenSSL public key algorithm that supports key trans-
port.

Envelope encryption is the usual method of using public key encryption on large amounts of data, this is
because public key encryption is slow but symmetric encryption is fast. So symmetric encryption is used
for bulk encryption and the small random symmetric key used is transferred using public key encryption.

It is possible to callEVP_SealInit()twice in the same way asEVP_EncryptInit(). The first call should have
npubk set to 0 and (after setting any cipher parameters) it should be called again withtype set toNULL .

SEE ALSO
openssl_evp(3), openssl_rand(3), EVP_EncryptInit(3), EVP_OpenInit(3)

HISTORY
EVP_SealFinal()did not return a value before OpenSSL 0.9.7.

0.9.9-dev 2005-11-25 1

EVP_SignInit(3) OpenSSL EVP_SignInit(3)

NAME
EVP_SignInit, EVP_SignUpdate, EVP_SignFinal − EVP signing functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_SignFinal(EVP_MD_CTX *ctx,unsigned char *sig,unsigned int *s, EVP_PKEY *pkey);

void EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type);

int EVP_PKEY_size(EVP_PKEY *pkey);

DESCRIPTION
TheEVP signature routines are a high level interface to digital signatures.

EVP_SignInit_ex()sets up signing context ctx to use digesttype from ENGINE impl . ctx must be initialized
with EVP_MD_CTX_init()before calling this function.

EVP_SignUpdate()hashescnt bytes of data atd into the signature context ctx. This function can be called
several times on the samectx to include additional data.

EVP_SignFinal()signs the data inctx using the private key pkey and places the signature insig. The num-
ber of bytes of data written (i.e. the length of the signature) will be written to the integer ats, at most
EVP_PKEY_size(pkey) bytes will be written.

EVP_SignInit()initializes a signing contextctx to use the default implementation of digesttype.

EVP_PKEY_size()returns the maximum size of a signature in bytes. The actual signature returned by
EVP_SignFinal()may be smaller.

RETURN VALUES
EVP_SignInit_ex(), EVP_SignUpdate()andEVP_SignFinal()return 1 for success and 0 for failure.

EVP_PKEY_size()returns the maximum size of a signature in bytes.

The error codes can be obtained byERR_get_error(3).

NOTES
The EVP interface to digital signatures should almost always be used in preference to the low lev el inter-
faces. This is because the code then becomes transparent to the algorithm used and much more flexible.

Due to the link between message digests and public key algorithms the correct digest algorithm must be
used with the correct public key type. A list of algorithms and associated public key algorithms appears in
EVP_DigestInit(3).

When signing withDSA private keys the random number generator must be seeded or the operation will
fail. The random number generator does not need to be seeded forRSA signatures.

The call toEVP_SignFinal()internally finalizes a copy of the digest context. This means that calls to
EVP_SignUpdate()andEVP_SignFinal()can be called later to digest and sign additional data.

Since only a copy of the digest context is ever finalized the context must be cleaned up after use by calling
EVP_MD_CTX_cleanup()or a memory leak will occur.

BUGS
Older versions of this documentation wrongly stated that calls toEVP_SignUpdate()could not be made
after callingEVP_SignFinal().

Since the private key is passed in the call toEVP_SignFinal()any error relating to the private key (for
example an unsuitable key and digest combination) will not be indicated until after potentially large
amounts of data have been passed throughEVP_SignUpdate().

It is not possible to change the signing parameters using these function.

0.9.9-dev 2008-05-09 1

EVP_SignInit(3) OpenSSL EVP_SignInit(3)

The previous two bugs are fixed in the newer EVP_SignDigest*() function.

SEE ALSO
EVP_VerifyInit(3), EVP_DigestInit(3), openssl_err(3), openssl_evp(3), openssl_hmac(3), md2(3),
openssl_md5(3), openssl_mdc2(3), openssl_ripemd(3), openssl_sha(3), openssl_dgst(1)

HISTORY
EVP_SignInit(), EVP_SignUpdate()and EVP_SignFinal()are available in all versions of SSLeay and
OpenSSL.

EVP_SignInit_ex()was added in OpenSSL 0.9.7.

0.9.9-dev 2008-05-09 2

EVP_VerifyInit(3) OpenSSL EVP_VerifyInit(3)

NAME
EVP_VerifyInit, EVP_VerifyUpdate, EVP_VerifyFinal − EVP signature verification functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_VerifyFinal(EVP_MD_CTX *ctx,unsigned char *sigbuf, unsigned int siglen,EVP_PKEY *pkey);

int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type);

DESCRIPTION
TheEVP signature verification routines are a high level interface to digital signatures.

EVP_VerifyInit_ex()sets up verification context ctx to use digesttype from ENGINE impl . ctx must be ini-
tialized by callingEVP_MD_CTX_init()before calling this function.

EVP_VerifyUpdate()hashescnt bytes of data atd into the verification context ctx. This function can be
called several times on the samectx to include additional data.

EVP_VerifyFinal()verifies the data inctx using the public keypkey and against thesiglenbytes atsigbuf.

EVP_VerifyInit()initializes verification contextctx to use the default implementation of digesttype.

RETURN VALUES
EVP_VerifyInit_ex()andEVP_VerifyUpdate()return 1 for success and 0 for failure.

EVP_VerifyFinal()returns 1 for a correct signature, 0 for failure and −1 if some other error occurred.

The error codes can be obtained byERR_get_error(3).

NOTES
The EVP interface to digital signatures should almost always be used in preference to the low lev el inter-
faces. This is because the code then becomes transparent to the algorithm used and much more flexible.

Due to the link between message digests and public key algorithms the correct digest algorithm must be
used with the correct public key type. A list of algorithms and associated public key algorithms appears in
EVP_DigestInit(3).

The call toEVP_VerifyFinal()internally finalizes a copy of the digest context. This means that calls to
EVP_VerifyUpdate()andEVP_VerifyFinal()can be called later to digest and verify additional data.

Since only a copy of the digest context is ever finalized the context must be cleaned up after use by calling
EVP_MD_CTX_cleanup()or a memory leak will occur.

BUGS
Older versions of this documentation wrongly stated that calls toEVP_VerifyUpdate()could not be made
after callingEVP_VerifyFinal().

Since the public key is passed in the call toEVP_SignFinal()any error relating to the private key (for exam-
ple an unsuitable key and digest combination) will not be indicated until after potentially large amounts of
data have been passed throughEVP_SignUpdate().

It is not possible to change the signing parameters using these function.

The previous two bugs are fixed in the newer EVP_VerifyDigest*() function.

SEE ALSO
openssl_evp(3), EVP_SignInit(3), EVP_DigestInit(3), openssl_err(3), openssl_evp(3), openssl_hmac(3),
md2(3), openssl_md5(3), openssl_mdc2(3), openssl_ripemd(3), openssl_sha(3), openssl_dgst(1)

HISTORY
EVP_VerifyInit(), EVP_VerifyUpdate()andEVP_VerifyFinal()are available in all versions of SSLeay and
OpenSSL.

0.9.9-dev 2008-05-09 1

EVP_VerifyInit(3) OpenSSL EVP_VerifyInit(3)

EVP_VerifyInit_ex()was added in OpenSSL 0.9.7

0.9.9-dev 2008-05-09 2

C++Intro(3) StandardC++ Library C++Intro(3)

NAME
C++Intro − Introduction to the GNU libstdc++-v3 man pages

DESCRIPTION
This man page serves as a brief introduction to the GNU implementation of the Standard C++ Library. For
a better introduction and more complete documentation, see thelibstdc++-v3 homepage listed at the end.

All standard library entities are declared withinnamespace stdand have manual entries beginning with
"std::". For example, to see documentation of the template classstd::vectorone would use "man std::vec-
tor". Someentities do not have a separate man page; for those see the main listing in "man Names-
pace_std".

All the man pages are automatically generated by Doxygen.For more information on this tool, see the
HTML counterpart to these man pages.

Some man pages do not correspond to individual classes or functions. Rather they describe categories of
the Standard Library. (For a more thorough introduction to the various categories, consult a text such as
Josuttis’ or Austern’s.) Thesecategory pages are:

C++Intro This page.
Namespace_std A l isting of the contents of std::.
Namespace___gnu_cxx A l isting of the contents of __gnu_cxx::.
Containers An introduction to container classes.
Sequences Linear containers.
Assoc_containers Ke y-based containers.
Iterator_types Programatically distinguishing iterators/pointers.
Intro_functors An introduction to function objects, or functors.
Arithmetic_functors Functors for basic math.
Binder_functors Functors which "remember" an argument.
Comparison_functors Functors wrapping built-in comparisons.
Func_ptr_functors Functors for use with pointers to functions.
Logical_functors Functors wrapping the Boolean operations.
Member_ptr_functor Functors for use with pointers to members.
Negation_functors Functors which negate their contents.
SGIextensions A l ist of the extensions from the SGI STL subset.

The HTML documentation typically goes into much more depth.

FILES
Lots!

Standard Headers
These headers will be found automatically, unless you instruct the compiler otherwise.

<algorithm> <csignal> <iomanip> <ostream>
<bitset> <cstdarg> <ios> <queue>
<cassert> <cstddef> <iosfwd> <set>
<cctype> <cstdio> <iostream> <sstream>
<cerrno> <cstdlib> <istream> <stack>
<cfloat> <cstring> <iterator> <stdexcept>
<ciso>646 <ctime> <limits> <streambuf>
<climits> <cwchar> <list> <string>
<clocale> <cwctype> <locale> <utility>
<cmath> <deque> <map> <valarray>
<complex> <fstream> <memory> <vector>
<csetjmp> <functional> <numeric>

GNU libstdc++-v3 20 May 2004 1

C++Intro(3) StandardC++ Library C++Intro(3)

Backwards-Compatibility Headers
For GCC 3.0 these headers will be found automatically, unless you instruct the compiler otherwise.You
should not depend on this, instead you should read FAQ 5.4 and use abackward/ prefix.

<algo.h> <hash_map.h> <map.h> <slist.h>
<algobase.h> <hash_set.h> <multimap.h> <stack.h>
<alloc.h> <hashtable.h><multiset.h> <stream.h>
<bvector.h> <heap.h> <new.h> <streambuf.h>
<complex.h> <iomanip.h> <ostream.h> <strstream>
<defalloc.h> <iostream.h> <pair.h> <strstream.h>
<deque.h> <istream.h> <queue.h> <tempbuf.h>
<fstream.h> <iterator.h> <rope.h> <tree.h>
<function.h> <list.h> <set.h> <vector.h>

Extension Headers
These headers will only be found automatically if you include the leadingext/ in the name.Otherwise you
need to read FAQ 5.4.

<ext/algorithm> <ext/numeric>
<ext/functional> <ext/iterator>
<ext/slist> <ext/rb_tree>
<ext/hash_map> <ext/hash_set>
<ext/rope> <ext/memory>
<ext/bitmap_allocator.h> <ext/debug_allocator.h>
<ext/malloc_allocator.h> <ext/mt_allocator.h>
<ext/pool_allocator.h> <ext/pod_char_traits.h>
<ext/stdio_filebuf.h> <ext/stdio_sync_filebuf.h>

Libraries
libstdc++.a

The library implementation in static archive form. If you did not configure libstdc++-v3 to use
shared libraries, this will always be used. Otherwise it will only be used if the user requests it.

libsupc++.a
This library contains C++ language support routines. Usually you will never need to know about
it, but it can be useful. See FAQ 2.5.

libstdc++.so[.N]
The library implementation in shared object form.This will be used in preference to the static ar-
chive form by default. Nwill be a number equal to or greater than 3.If N is in the 2.x series, then
you are looking at the old libstdc++-v2 library, which we do not maintain.

libstdc++.la

libsupc++.la
These are Libtool library files, and should only be used when working with that tool.

CONFORMING TO
Almost conforming toInter national Standard ISO/IEC 14882:1998(E),Programming Languages ---
C++ (aka the C++ standard), in addition to corrections proposed by the Library Working Group,
JTC1/SC22/WG21.

SEE ALSO
http://gcc.gnu.org/libstdc++/ for the Frequently Asked Questions, online documentation, and much, much
more!

GNU libstdc++-v3 20 May 2004 2

OBJ_nid2obj(3) OpenSSL OBJ_nid2obj(3)

NAME
OBJ_nid2obj, OBJ_nid2ln, OBJ_nid2sn, OBJ_obj2nid, OBJ_txt2nid, OBJ_ln2nid, OBJ_sn2nid, OBJ_cmp,
OBJ_dup, OBJ_txt2obj, OBJ_obj2txt, OBJ_create, OBJ_cleanup − ASN1 object utility functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/objects.h>

ASN1_OBJECT * OBJ_nid2obj(int n);
const char * OBJ_nid2ln(int n);
const char * OBJ_nid2sn(int n);

int OBJ_obj2nid(const ASN1_OBJECT *o);
int OBJ_ln2nid(const char *ln);
int OBJ_sn2nid(const char *sn);

int OBJ_txt2nid(const char *s);

ASN1_OBJECT * OBJ_txt2obj(const char *s, int no_name);
int OBJ_obj2txt(char *buf, int buf_len, const ASN1_OBJECT *a, int no_name);

int OBJ_cmp(const ASN1_OBJECT *a,const ASN1_OBJECT *b);
ASN1_OBJECT * OBJ_dup(const ASN1_OBJECT *o);

int OBJ_create(const char *oid,const char *sn,const char *ln);
void OBJ_cleanup(void);

DESCRIPTION
TheASN1 object utility functions processASN1_OBJECTstructures which are a representation of theASN1
OBJECT IDENTIFIER(OID) type.

OBJ_nid2obj(), OBJ_nid2ln()andOBJ_nid2sn()convert theNID n to anASN1_OBJECTstructure, its long
name and its short name respectively, or NULL is an error occurred.

OBJ_obj2nid(), OBJ_ln2nid(), OBJ_sn2nid()return the correspondingNID for the objecto, the long name
<ln> or the short name <sn> respectively or NID_undef if an error occurred.

OBJ_txt2nid()returnsNID corresponding to text string <s>.s can be a long name, a short name or the
numerical respresentation of an object.

OBJ_txt2obj()converts the text strings into anASN1_OBJECTstructure. Ifno_nameis 0 then long names
and short names will be interpreted as well as numerical forms. Ifno_nameis 1 only the numerical form is
acceptable.

OBJ_obj2txt()converts theASN1_OBJECT a into a textual representation. The representation is written as
a null terminated string tobuf at mostbuf_len bytes are written, truncating the result if necessary. The
total amount of space required is returned. Ifno_nameis 0 then if the object has a long or short name then
that will be used, otherwise the numerical form will be used. Ifno_nameis 1 then the numerical form will
always be used.

OBJ_cmp()comparesa to b. If the two are identical 0 is returned.

OBJ_dup()returns a copy of o.

OBJ_create()adds a new object to the internal table.oid is the numerical form of the object,sn the short
name andln the long name. A newNID is returned for the created object.

OBJ_cleanup()cleans up OpenSSLs internal object table: this should be called before an application exits
if any new objects were added usingOBJ_create().

NOTES
Objects in OpenSSL can have a short name, a long name and a numerical identifier (NID) associated with
them. A standard set of objects is represented in an internal table. The appropriate values are defined in the
header fileobjects.h.

0.9.9-dev 2008-05-09 1

OBJ_nid2obj(3) OpenSSL OBJ_nid2obj(3)

For example theOID for commonName has the following definitions:

#define SN_commonName "CN"
#define LN_commonName "commonName"
#define NID_commonName 13

New objects can be added by callingOBJ_create().

Table objects have certain advantages over other objects: for example their NIDs can be used in a C lan-
guage switch statement. They are also static constant structures which are shared: that is there is only a sin-
gle constant structure for each table object.

Objects which are not in the table have theNID value NID_undef.

Objects do not need to be in the internal tables to be processed, the functionsOBJ_txt2obj() and
OBJ_obj2txt()can process the numerical form of anOID.

EXAMPLES
Create an object forcommonName:

ASN1_OBJECT *o;
o = OBJ_nid2obj(NID_commonName);

Check if an object iscommonName

if (OBJ_obj2nid(obj) == NID_commonName)
/* Do something */

Create a newNID and initialize an object from it:

int new_nid;
ASN1_OBJECT *obj;
new_nid = OBJ_create("1.2.3.4", "NewOID", "New Object Identifier");

obj = OBJ_nid2obj(new_nid);

Create a new object directly:

obj = OBJ_txt2obj("1.2.3.4", 1);

BUGS
OBJ_obj2txt()is awkward and messy to use: it doesn’t follow the convention of other OpenSSL functions
where the buffer can be set toNULL to determine the amount of data that should be written.Insteadbuf
must point to a valid buffer andbuf_len should be set to a positive value. A buffer length of 80 should be
more than enough to handle anyOID encountered in practice.

RETURN VALUES
OBJ_nid2obj()returns anASN1_OBJECT structure orNULL is an error occurred.

OBJ_nid2ln()andOBJ_nid2sn()returns a valid string orNULL on error.

OBJ_obj2nid(), OBJ_ln2nid(), OBJ_sn2nid()andOBJ_txt2nid()return aNID or NID_undef on error.

SEE ALSO
ERR_get_error(3)

HISTORY
TBA

0.9.9-dev 2008-05-09 2

OPENSSL_Applink(3) OpenSSL OPENSSL_Applink(3)

NAME
OPENSSL_Applink − glue between OpenSSL BIO and Win32 compiler run−time

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
__declspec(dllexport) void **OPENSSL_Applink();

DESCRIPTION
OPENSSL_Applink is application-side interface which provides a glue between OpenSSLBIO layer and
Win32 compiler run-time environment. Even though it appears at application side, it’s essentially
OpenSSL private interface. For this reason application developers are not expected to implement it, but to
compile provided module with compiler of their choice and link it into the target application.The referred
module is available as <openssl>/ms/applink.c.

0.9.9-dev 2005-11-24 1

OPENSSL_VERSION_NUMBER(3) OpenSSL OPENSSL_VERSION_NUMBER(3)

NAME
OPENSSL_VERSION_NUMBER, SSLeay, SSLeay_version − get OpenSSL version number

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/opensslv.h>
#define OPENSSL_VERSION_NUMBER 0xnnnnnnnnnL

#include <openssl/crypto.h>
long SSLeay(void);
const char *SSLeay_version(int t);

DESCRIPTION
OPENSSL_VERSION_NUMBERis a numeric release version identifier:

MMNNFFPPS: major minor fix patch status

The status nibble has one of the values 0 for development, 1 to e for betas 1 to 14, and f for release.

for example

0x000906000 == 0.9.6 dev
0x000906023 == 0.9.6b beta 3
0x00090605f == 0.9.6e release

Versions prior to 0.9.3 have identifiers < 0x0930.Versions between 0.9.3 and 0.9.5 had a version identifier
with this interpretation:

MMNNFFRBB major minor fix final beta/patch

for example

0x000904100 == 0.9.4 release
0x000905000 == 0.9.5 dev

Version 0.9.5a had an interim interpretation that is like the current one, except the patch level got the high-
est bit set, to keep continuity. The number was therefore 0x0090581f.

For backward compatibility,SSLEAY_VERSION_NUMBERis also defined.

SSLeay()returns this number. The return value can be compared to the macro to make sure that the correct
version of the library has been loaded, especially when using DLLs on Windows systems.

SSLeay_version()returns different strings depending ont:

SSLEAY_VERSION
The text variant of the version number and the release date.For example, ‘‘OpenSSL 0.9.5a 1 Apr
2000’’.

SSLEAY_CFLAGS
The compiler flags set for the compilation process in the form ‘‘compiler: ...’’ i f available or ‘‘com-
piler: information not available’’ otherwise.

SSLEAY_BUILT_ON
The date of the build process in the form ‘‘built on: ...’’ i f available or ‘‘built on: date not available’’
otherwise.

SSLEAY_PLATFORM
The ‘‘Configure’’ target of the library build in the form ‘‘platform: ...’’ i f available or ‘‘platform: infor-
mation not available’’ otherwise.

SSLEAY_DIR
The ‘‘OPENSSLDIR’’ setting of the library build in the form ‘‘OPENSSLDIR: ’’ ..."‘‘ if available or
’’ OPENSSLDIR:N/A" otherwise.

For an unknownt, the text ‘‘not available’’ is returned.

0.9.9-dev 2003-07-24 1

OPENSSL_VERSION_NUMBER(3) OpenSSL OPENSSL_VERSION_NUMBER(3)

RETURN VALUE
The version number.

SEE ALSO
crypto(3)

HISTORY
SSLeay()and SSLEAY_VERSION_NUMBER are available in all versions of SSLeay and OpenSSL.
OPENSSL_VERSION_NUMBERis available in all versions of OpenSSL.SSLEAY_DIR was added in
OpenSSL 0.9.7.

0.9.9-dev 2003-07-24 2

OPENSSL_config(3) OpenSSL OPENSSL_config(3)

NAME
OPENSSL_config, OPENSSL_no_config − simple OpenSSL configuration functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/conf.h>

void OPENSSL_config(const char *config_name);
void OPENSSL_no_config(void);

DESCRIPTION
OPENSSL_config()configures OpenSSL using the standardopenssl.cnfconfiguration file name usingcon-
fig_name. If config_name is NULL then the default nameopenssl_confwill be used. Any errors are
ignored. Further calls toOPENSSL_config()will have no effect. The configuration file format is docu-
mented in theconf(5) manual page.

OPENSSL_no_config()disables configuration. If called beforeOPENSSL_config()no configuration takes
place.

NOTES
It is strongly recommended thatall new applications callOPENSSL_config()or the more sophisticated
functions such asCONF_modules_load()during initialization (that is before starting any threads). By doing
this an application does not need to keep track of all configuration options and some new functionality can
be supported automatically.

It is also possible to automatically callOPENSSL_config() when an application calls
OPENSSL_add_all_algorithms()by compiling an application with the preprocessor symbol
OPENSSL_LOAD_CONF #define’d. In this way configuration can be added without source changes.

The environment variableOPENSSL_CONFcan be set to specify the location of the configuration file.

CurrentlyASN1 OBJECTs andENGINE configuration can be performed future versions of OpenSSL will
add new configuration options.

There are several reasons why calling the OpenSSL configuration routines is advisable. For example new
ENGINE functionality was added to OpenSSL 0.9.7.In OpenSSL 0.9.7 control functions can be supported
by ENGINEs, this can be used (among other things) to load dynamic ENGINEs from shared libraries
(DSOs). However very few applications currently support the control interface and so very few can load
and use dynamic ENGINEs. Equally in future more sophisticated ENGINEs will require certain control
operations to customize them. If an application callsOPENSSL_config()it doesn’t need to know or care
aboutENGINE control operations because they can be performed by editing a configuration file.

Applications should free up configuration at application closedown by callingCONF_modules_free().

RESTRICTIONS
TheOPENSSL_config()function is designed to be a very simple ‘‘call it and forget it’’ f unction. As a result
its behaviour is somewhat limited. It ignores all errors silently and it can only load from the standard con-
figuration file location for example.

It is however much better than nothing. Applications which need finer control over their configuration
functionality should use the configuration functions such asCONF_load_modules()directly.

RETURN VALUES
NeitherOPENSSL_config()norOPENSSL_no_config()return a value.

SEE ALSO
conf(5), CONF_load_modules_file(3), CONF_modules_free(3),CONF_modules_free(3)

HISTORY
OPENSSL_config()andOPENSSL_no_config()first appeared in OpenSSL 0.9.7

0.9.9-dev 2005-11-24 1

OPENSSL_ia32cap(3) OpenSSL OPENSSL_ia32cap(3)

NAME
OPENSSL_ia32cap − finding the IA−32 processor capabilities

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
unsigned long *OPENSSL_ia32cap_loc(void);
#define OPENSSL_ia32cap (*(OPENSSL_ia32cap_loc()))

DESCRIPTION
Value returned byOPENSSL_ia32cap_loc()is address of a variable containingIA−32 processor capabilities
bit vector as it appears inEDX register after executingCPUID instruction with EAX=1 input value (see Intel
Application Note #241618). Naturally it’s meaningful on IA−32[E] platforms only. The variable is nor-
mally set up automatically upon toolkit initialization, but can be manipulated afterwards to modify crypto
library behaviour. For the moment of this writing six bits are significant, namely:

1. bit #28 denoting Hyperthreading, which is used to distiguish
cores with shared cache; 2. bit #26 denotingSSE2support; 3. bit #25 denotingSSEsupport; 4. bit #23

denotingMMX support; 5. bit #20, reserved by Intel, is used to choose betweenRC4code
pathes; 6. bit #4 denoting presence of Time-Stamp Counter.

For example, clearing bit #26 at run-time disables high-performanceSSE2 code present in the crypto
library. You might have to do this if target OpenSSL application is executed onSSE2capableCPU, but
under control ofOS which does not supportSSE2extentions. Even though you can manipulate the value
programmatically, you most likely will find it more appropriate to set up an environment variable with the
same name prior starting target application, e.g. on Intel P4 processor ’env
OPENSSL_ia32cap=0x12900010 apps/openssl’, to achieve same effect without modifying the application
source code. Alternatively you can reconfigure the toolkit with no−sse2 option and recompile.

0.9.9-dev 2008-05-09 1

OPENSSL_load_builtin_modules(3) OpenSSL OPENSSL_load_builtin_modules(3)

NAME
OPENSSL_load_builtin_modules − add standard configuration modules

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/conf.h>

void OPENSSL_load_builtin_modules(void);
void ASN1_add_oid_module(void);
ENGINE_add_conf_module();

DESCRIPTION
The functionOPENSSL_load_builtin_modules()adds all the standard OpenSSL configuration modules to
the internal list. They can then be used by the OpenSSL configuration code.

ASN1_add_oid_module()adds just theASN1 OBJECTmodule.

ENGINE_add_conf_module()adds just theENGINE configuration module.

NOTES
If the simple configuration functionOPENSSL_config()is called thenOPENSSL_load_builtin_modules()is
called automatically.

Applications which use the configuration functions directly will need to callOPENSSL_load_builtin_mod-
ules()themselvesbeforeany other configuration code.

Applications should callOPENSSL_load_builtin_modules()to load all configuration modules instead of
adding modules selectively: otherwise functionality may be missing from the application if an when new
modules are added.

RETURN VALUE
None of the functions return a value.

SEE ALSO
conf(3), OPENSSL_config(3)

HISTORY
These functions first appeared in OpenSSL 0.9.7.

0.9.9-dev 2004-03-19 1

OpenSSL_add_all_algorithms(3) OpenSSL OpenSSL_add_all_algorithms(3)

NAME
OpenSSL_add_all_algorithms, OpenSSL_add_all_ciphers, OpenSSL_add_all_digests − add algorithms to
internal table

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

void OpenSSL_add_all_algorithms(void);
void OpenSSL_add_all_ciphers(void);
void OpenSSL_add_all_digests(void);

void EVP_cleanup(void);

DESCRIPTION
OpenSSL keeps an internal table of digest algorithms and ciphers. It uses this table to lookup ciphers via
functions such asEVP_get_cipher_byname().

OpenSSL_add_all_digests()adds all digest algorithms to the table.

OpenSSL_add_all_algorithms()adds all algorithms to the table (digests and ciphers).

OpenSSL_add_all_ciphers()adds all encryption algorithms to the table including password based encryp-
tion algorithms.

EVP_cleanup()removes all ciphers and digests from the table.

RETURN VALUES
None of the functions return a value.

NOTES
A typical application will callOpenSSL_add_all_algorithms()initially andEVP_cleanup()before exiting.

An application does not need to add algorithms to use them explicitly, for example byEVP_sha1(). It just
needs to add them if it (or any of the functions it calls) needs to lookup algorithms.

The cipher and digest lookup functions are used in many parts of the library. If the table is not initialized
several functions will misbehave and complain they cannot find algorithms. This includes thePEM,
PKCS#12,SSLand S/MIME libraries. This is a common query in the OpenSSL mailing lists.

Calling OpenSSL_add_all_algorithms()links in all algorithms: as a result a statically linked executable can
be quite large. If this is important it is possible to just add the required ciphers and digests.

BUGS
Although the functions do not return error codes it is possible for them to fail. Thiswill only happen as a
result of a memory allocation failure so this is not too much of a problem in practice.

SEE ALSO
openssl_evp(3), EVP_DigestInit(3), EVP_EncryptInit(3)

0.9.9-dev 2004-03-19 1

PKCS12_create(3) OpenSSL PKCS12_create(3)

NAME
PKCS12_create − create a PKCS#12 structure

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/pkcs12.h>

PKCS12 *PKCS12_create(char *pass, char *name, EVP_PKEY *pkey, X509 *cert, STACK_OF(X509) *ca,
int nid_key, int nid_cert, int iter, int mac_iter, int keytype);

DESCRIPTION
PKCS12_create()creates a PKCS#12 structure.

passis the passphrase to use.name is thefriendlyName to use for the supplied certifictate and key. pkey is
the private key to include in the structure andcert its corresponding certificates.ca, if not NULL is an
optional set of certificates to also include in the structure.

nid_key andnid_cert are the encryption algorithms that should be used for the key and certificate respec-
tively. iter is the encryption algorithm iteration count to use andmac_iter is theMAC iteration count to use.
keytype is the type of key.

NOTES
The parametersnid_key, nid_cert, iter , mac_iter andkeytype can all be set to zero and sensible defaults
will be used.

These defaults are: 40 bitRC2encryption for certificates, tripleDESencryption for private keys, a key itera-
tion count ofPKCS12_DEFAULT_ITER (currently 2048) and aMAC iteration count of 1.

The default MAC iteration count is 1 in order to retain compatibility with old software which did not inter-
pret MAC iteration counts. If such compatibility is not required thenmac_iter should be set to
PKCS12_DEFAULT_ITER.

keytype adds a flag to the store private key. This is a non standard extension that is only currently inter-
preted byMSIE. If set to zero the flag is omitted, if set toKEY_SIG the key can be used for signing only, if
set toKEY_EX it can be used for signing and encryption. This option was useful for old export grade soft-
ware which could use signing only keys of arbitrary size but had restrictions on the permissible sizes of
keys which could be used for encryption.

NEW FUNCTIONALITY IN OPENSSL 0.9.8
Some additional functionality was added toPKCS12_create()in OpenSSL 0.9.8. These extensions are
detailed below.

If a certificate contains analias or keyid then this will be used for the correspondingfriendlyName or
localKeyID in thePKCS12structure.

Eitherpkey, cert or both can beNULL to indicate that no key or certficate is required. In previous versions
both had to be present or a fatal error is returned.

nid_key or nid_cert can be set to −1 indicating that no encryption should be used.

mac_iter can be set to −1 and theMAC will then be omitted entirely.

SEE ALSO
d2i_PKCS12(3)

HISTORY
PKCS12_create was added in OpenSSL 0.9.3

0.9.9-dev 2005-11-24 1

PKCS12_parse(3) OpenSSL PKCS12_parse(3)

NAME
PKCS12_parse − parse a PKCS#12 structure

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/pkcs12.h>

int PKCS12_parse(PKCS12*p12, const char *pass,EVP_PKEY **pk ey, X509 **cert, STACK_OF(X509)
**ca);

DESCRIPTION
PKCS12_parse()parses aPKCS12structure.

p12 is thePKCS12 structure to parse.passis the passphrase to use. If successful the private key will be
written to*pkey, the corresponding certificate to*cert and any additional certificates to*ca.

NOTES
The parameterspkey andcert cannot beNULL . ca can be <NULL> in which case additional certificates
will be discarded.*ca can also be a valid STACK in which case additional certificates are appended to*ca.
If *ca is NULL a new STACK will be allocated.

The friendlyName andlocalKeyID attributes (if present) on each certificate will be stored in thealias and
keyid attributes of theX509structure.

BUGS
Only a single private key and corresponding certificate is returned by this function.More complex
PKCS#12 files with multiple private keys will only return the first match.

Only friendlyName andlocalKeyID attributes are currently stored in certificates. Other attributes are dis-
carded.

Attributes currently cannot be store in the private key EVP_PKEY structure.

SEE ALSO
d2i_PKCS12(3)

HISTORY
PKCS12_parse was added in OpenSSL 0.9.3

0.9.9-dev 2003-07-24 1

PKCS7_decrypt(3) OpenSSL PKCS7_decrypt(3)

NAME
PKCS7_decrypt − decrypt content from a PKCS#7 envelopedData structure

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/pkcs7.h>

int PKCS7_decrypt(PKCS7 *p7, EVP_PKEY *pkey, X509 *cert, BIO *data, int flags);

DESCRIPTION
PKCS7_decrypt()extracts and decrypts the content from a PKCS#7 envelopedData structure.pkey is the
private key of the recipient,cert is the recipients certificate,data is aBIO to write the content to andflags
is an optional set of flags.

NOTES
OpenSSL_add_all_algorithms()(or equivalent) should be called before using this function or errors about
unknown algorithms will occur.

Although the recipients certificate is not needed to decrypt the data it is needed to locate the appropriate (of
possible several) recipients in the PKCS#7 structure.

The following flags can be passed in theflagsparameter.

If the PKCS7_TEXT flag is setMIME headers for typetext/plain are deleted from the content. If the content
is not of typetext/plain then an error is returned.

RETURN VALUES
PKCS7_decrypt()returns either 1 for success or 0 for failure. The error can be obtained from
ERR_get_error(3)

BUGS
PKCS7_decrypt()must be passed the correct recipient key and certificate. It would be better if it could look
up the correct key and certificate from a database.

The lack of single pass processing and need to hold all data in memory as mentioned inPKCS7_sign()also
applies toPKCS7_verify().

SEE ALSO
ERR_get_error(3), PKCS7_encrypt(3)

HISTORY
PKCS7_decrypt()was added to OpenSSL 0.9.5

0.9.9-dev 2008-05-09 1

PKCS7_encrypt(3) OpenSSL PKCS7_encrypt(3)

NAME
PKCS7_encrypt − create a PKCS#7 envelopedData structure

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/pkcs7.h>

PKCS7 *PKCS7_encrypt(STACK_OF(X509) *certs, BIO *in, const EVP_CIPHER *cipher, int flags);

DESCRIPTION
PKCS7_encrypt()creates and returns a PKCS#7 envelopedData structure.certs is a list of recipient certifi-
cates.in is the content to be encrypted.cipher is the symmetric cipher to use.flags is an optional set of
flags.

NOTES
Only RSA keys are supported in PKCS#7 and envelopedData so the recipient certificates supplied to this
function must all containRSA public keys, though they do not have to be signed using theRSA algorithm.

EVP_des_ede3_cbc()(triple DES) is the algorithm of choice for S/MIME use because most clients will sup-
port it.

Some old ‘‘export grade’’ clients may only support weak encryption using 40 or 64 bitRC2. These can be
used by passingEVP_rc2_40_cbc()andEVP_rc2_64_cbc()respectively.

The algorithm passed in thecipher parameter must supportASN1 encoding of its parameters.

Many browsers implement a ‘‘sign and encrypt’’ option which is simply an S/MIME envelopedData con-
taining an S/MIME signed message. This can be readily produced by storing the S/MIME signed message
in a memoryBIO and passing it toPKCS7_encrypt().

The following flags can be passed in theflagsparameter.

If the PKCS7_TEXT flag is setMIME headers for typetext/plain are prepended to the data.

Normally the supplied content is translated intoMIME canonical format (as required by the S/MIME speci-
fications) ifPKCS7_BINARY is set no translation occurs. This option should be used if the supplied data is
in binary format otherwise the translation will corrupt it. IfPKCS7_BINARY is set thenPKCS7_TEXT is
ignored.

If the PKCS7_STREAM flag is set a partialPKCS7 structure is output suitable for streaming I/O: no data is
read from theBIO in.

NOTES
If the flagPKCS7_STREAM is set the returnedPKCS7 structure isnot complete and outputting its contents
via a function that does not properly finalize thePKCS7 structure will give unpredictable results.

Several functions including SMIME_write_PKCS7(), i2d_PKCS7_bio_stream(),
PEM_write_bio_PKCS7_stream()finalize the structure. Alternatively finalization can be performed by
obtaining the streamingASN1 BIO directly usingBIO_new_PKCS7().

RETURN VALUES
PKCS7_encrypt()returns either aPKCS7structure orNULL if an error occurred. The error can be obtained
from ERR_get_error(3).

SEE ALSO
ERR_get_error(3), PKCS7_decrypt(3)

HISTORY
PKCS7_decrypt()was added to OpenSSL 0.9.5 ThePKCS7_STREAM flag was first supported in OpenSSL
0.9.9.

0.9.9-dev 2008-05-09 1

PKCS7_sign(3) OpenSSL PKCS7_sign(3)

NAME
PKCS7_sign − create a PKCS#7 signedData structure

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/pkcs7.h>

PKCS7 *PKCS7_sign(X509 *signcert, EVP_PKEY *pkey, STACK_OF(X509) *certs, BIO *data, int flags);

DESCRIPTION
PKCS7_sign()creates and returns a PKCS#7 signedData structure.signcert is the certificate to sign with,
pkey is the corresponsding private key. certs is an optional additional set of certificates to include in the
PKCS#7 structure (for example any intermediate CAs in the chain).

The data to be signed is read fromBIO data.

flags is an optional set of flags.

NOTES
Any of the following flags (ored together) can be passed in theflagsparameter.

Many S/MIME clients expect the signed content to include valid MIME headers. If thePKCS7_TEXT flag is
setMIME headers for typetext/plain are prepended to the data.

If PKCS7_NOCERTS is set the signer’s certificate will not be included in thePKCS7structure, the signer’s
certificate must still be supplied in thesigncert parameter though. This can reduce the size of the signature
if the signers certificate can be obtained by other means: for example a previously signed message.

The data being signed is included in thePKCS7structure, unlessPKCS7_DETACHED is set in which case it
is omitted. This is used forPKCS7detached signatures which are used in S/MIME plaintext signed mes-
sages for example.

Normally the supplied content is translated intoMIME canonical format (as required by the S/MIME speci-
fications) ifPKCS7_BINARY is set no translation occurs. This option should be used if the supplied data is
in binary format otherwise the translation will corrupt it.

The signedData structure includes several PKCS#7 autenticatedAttributes including the signing time, the
PKCS#7 content type and the supported list of ciphers in an SMIMECapabilities attribute. If
PKCS7_NOATTR is set then no authenticatedAttributes will be used. IfPKCS7_NOSMIMECAP is set then
just the SMIMECapabilities are omitted.

If present the SMIMECapabilities attribute indicates support for the following algorithms: tripleDES, 128
bit RC2, 64 bit RC2, DESand 40 bitRC2. If any of these algorithms is disabled then it will not be included.

If the flagsPKCS7_STREAM is set then the returnedPKCS7 structure is just initialized ready to perform the
signing operation. The signing is however not performed and the data to be signed is not read from the
data parameter. Signing is deferred until after the data has been written. In this way data can be signed in a
single pass.

If the PKCS7_PARTIAL flag is set a partialPKCS7 structure is output to which additional signers and capa-
bilities can be added before finalization.

NOTES
If the flagPKCS7_STREAM is set the returnedPKCS7 structure isnot complete and outputting its contents
via a function that does not properly finalize thePKCS7 structure will give unpredictable results.

Several functions including SMIME_write_PKCS7(), i2d_PKCS7_bio_stream(),
PEM_write_bio_PKCS7_stream()finalize the structure. Alternatively finalization can be performed by
obtaining the streamingASN1 BIO directly usingBIO_new_PKCS7().

If a signer is specified it will use the default digest for the signing algorithm. This isSHA1 for both RSA
andDSA keys.

In OpenSSL 0.9.9 thecerts, signcert andpkey parameters can all beNULL if the PKCS7_PARTIAL flag is

0.9.9-dev 2008-05-09 1

PKCS7_sign(3) OpenSSL PKCS7_sign(3)

set. One or more signers can be added using the functionPKCS7_sign_add_signer(). PKCS7_final()must
also be called to finalize the structure if streaming is not enabled. Alternative signing digests can also be
specified using this method.

In OpenSSL 0.9.9 ifsigncertandpkey areNULL then a certificates only PKCS#7 structure is output.

In versions of OpenSSL before 0.9.9 thesigncertandpkey parameters mustNOT beNULL .

BUGS
Some advanced attributes such as counter signatures are not supported.

RETURN VALUES
PKCS7_sign()returns either a valid PKCS7 structure orNULL if an error occurred. The error can be
obtained fromERR_get_error(3).

SEE ALSO
ERR_get_error(3), PKCS7_verify(3)

HISTORY
PKCS7_sign()was added to OpenSSL 0.9.5

ThePKCS7_PARTIAL flag was added in OpenSSL 0.9.9

ThePKCS7_STREAM flag was added in OpenSSL 0.9.9

0.9.9-dev 2008-05-09 2

PKCS7_verify(3) OpenSSL PKCS7_verify(3)

NAME
PKCS7_verify − verify a PKCS#7 signedData structure

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/pkcs7.h>

int PKCS7_verify(PKCS7 *p7, STACK_OF(X509) *certs, X509_STORE *store, BIO *indata, BIO *out, int flags);

STACK_OF(X509) *PKCS7_get0_signers(PKCS7 *p7, STACK_OF(X509) *certs, int flags);

DESCRIPTION
PKCS7_verify()verifies a PKCS#7 signedData structure.p7 is thePKCS7structure to verify. certs is a set
of certificates in which to search for the signer’s certificate.store is a trusted certficate store (used for chain
verification). indata is the signed data if the content is not present inp7 (that is it is detached). The content
is written toout if it is not NULL .

flags is an optional set of flags, which can be used to modify the verify operation.

PKCS7_get0_signers()retrieves the signer’s certificates fromp7, it doesnot check their validity or whether
any signatures are valid. Thecertsandflagsparameters have the same meanings as inPKCS7_verify().

VERIFY PROCESS
Normally the verify process proceeds as follows.

Initially some sanity checks are performed onp7. The type ofp7 must be signedData. There must be at
least one signature on the data and if the content is detachedindata cannot beNULL .

An attempt is made to locate all the signer’s certificates, first looking in thecerts parameter (if it is not
NULL) and then looking in any certificates contained in thep7 structure itself. If any signer’s certificates
cannot be located the operation fails.

Each signer’s certificate is chain verified using thesmimesignpurpose and the supplied trusted certificate
store. Any internal certificates in the message are used as untrusted CAs. If any chain verify fails an error
code is returned.

Finally the signed content is read (and written toout is it is notNULL) and the signature’s checked.

If all signature’s verify correctly then the function is successful.

Any of the following flags (ored together) can be passed in theflagsparameter to change the default verify
behaviour. Only the flagPKCS7_NOINTERN is meaningful toPKCS7_get0_signers().

If PKCS7_NOINTERN is set the certificates in the message itself are not searched when locating the
signer’s certificate. This means that all the signers certificates must be in thecertsparameter.

If the PKCS7_TEXT flag is setMIME headers for typetext/plain are deleted from the content. If the content
is not of typetext/plain then an error is returned.

If PKCS7_NOVERIFY is set the signer’s certificates are not chain verified.

If PKCS7_NOCHAIN is set then the certificates contained in the message are not used as untrusted CAs.
This means that the whole verify chain (apart from the signer’s certificate) must be contained in the trusted
store.

If PKCS7_NOSIGSis set then the signatures on the data are not checked.

NOTES
One application ofPKCS7_NOINTERN is to only accept messages signed by a small number of certificates.
The acceptable certificates would be passed in thecertsparameter. In this case if the signer is not one of the
certificates supplied incerts then the verify will fail because the signer cannot be found.

Care should be taken when modifying the default verify behaviour, for example settingPKCS7_NOVER-
IFY PKCS7_NOSIGS will totally disable all verification and any signed message will be considered
valid. This combination is however useful if one merely wishes to write the content toout and its validity is

0.9.9-dev 2008-05-09 1

PKCS7_verify(3) OpenSSL PKCS7_verify(3)

not considered important.

Chain verification should arguably be performedusing the signing time rather than the current time. How-
ev er since the signing time is supplied by the signer it cannot be trusted without additional evidence (such
as a trusted timestamp).

RETURN VALUES
PKCS7_verify()returns 1 for a successful verification and zero or a negative value if an error occurs.

PKCS7_get0_signers()returns all signers orNULL if an error occurred.

The error can be obtained fromERR_get_error(3)

BUGS
The trusted certificate store is not searched for the signers certificate, this is primarily due to the inadequa-
cies of the currentX509_STOREfunctionality.

The lack of single pass processing and need to hold all data in memory as mentioned inPKCS7_sign()also
applies toPKCS7_verify().

SEE ALSO
ERR_get_error(3), PKCS7_sign(3)

HISTORY
PKCS7_verify()was added to OpenSSL 0.9.5

0.9.9-dev 2008-05-09 2

RAND_add(3) OpenSSL RAND_add(3)

NAME
RAND_add, RAND_seed, RAND_status, RAND_event, RAND_screen − add entropy to the PRNG

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rand.h>

void RAND_seed(const void *buf, int num);

void RAND_add(const void *buf, int num, double entropy);

int RAND_status(void);

int RAND_event(UINT iMsg, WPARAM wParam, LPARAM lParam);
void RAND_screen(void);

DESCRIPTION
RAND_add()mixes thenum bytes atbuf into thePRNGstate. Thus, if the data atbuf are unpredictable to
an adversary, this increases the uncertainty about the state and makes thePRNG output less predictable.
Suitable input comes from user interaction (random key presses, mouse movements) and certain hardware
ev ents. Theentropy argument is (the lower bound of) an estimate of how much randomness is contained in
buf, measured in bytes. Details about sources of randomness and how to estimate their entropy can be
found in the literature, e.g.RFC1750.

RAND_add()may be called with sensitive data such as user entered passwords. The seed values cannot be
recovered from thePRNGoutput.

OpenSSL makes sure that thePRNGstate is unique for each thread. On systems that provide /dev/uran-
dom, the randomness device is used to seed thePRNG transparently. Howev er, on all other systems, the
application is responsible for seeding thePRNG by calling RAND_add(), RAND_egd(3) or
RAND_load_file(3).

RAND_seed()is equivalent toRAND_add()whennum == entropy.

RAND_event()collects the entropy from Windows events such as mouse movements and other user interac-
tion. It should be called with theiMsg, wParam andlParam arguments ofall messages sent to the window
procedure. It will estimate the entropy contained in the event message (if any), and add it to thePRNG. The
program can then process the messages as usual.

TheRAND_screen()function is available for the convenience of Windows programmers. It adds the current
contents of the screen to thePRNG. For applications that can catch Windows events, seeding thePRNGby
calling RAND_event()is a significantly better source of randomness. It should be noted that both methods
cannot be used on servers that run without user interaction.

RETURN VALUES
RAND_status()andRAND_event()return 1 if thePRNGhas been seeded with enough data, 0 otherwise.

The other functions do not return values.

SEE ALSO
openssl_rand(3), RAND_egd(3), RAND_load_file(3), RAND_cleanup(3)

HISTORY
RAND_seed()andRAND_screen()are available in all versions of SSLeay and OpenSSL.RAND_add()and
RAND_status()have been added in OpenSSL 0.9.5,RAND_event()in OpenSSL 0.9.5a.

0.9.9-dev 2000-07-16 1

RAND_bytes(3) OpenSSL RAND_bytes(3)

NAME
RAND_bytes, RAND_pseudo_bytes − generate random data

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rand.h>

int RAND_bytes(unsigned char *buf, int num);

int RAND_pseudo_bytes(unsigned char *buf, int num);

DESCRIPTION
RAND_bytes()puts num cryptographically strong pseudo-random bytes intobuf. An error occurs if the
PRNGhas not been seeded with enough randomness to ensure an unpredictable byte sequence.

RAND_pseudo_bytes()putsnum pseudo-random bytes intobuf. Pseudo-random byte sequences generated
by RAND_pseudo_bytes()will be unique if they are of sufficient length, but are not necessarily unpre-
dictable. They can be used for non-cryptographic purposes and for certain purposes in cryptographic proto-
cols, but usually not for key generation etc.

The contents ofbuf is mixed into the entropy pool before retrieving the new pseudo-random bytes unless
disabled at compile time (seeFA Q).

RETURN VALUES
RAND_bytes()returns 1 on success, 0 otherwise. The error code can be obtained byERR_get_error(3).
RAND_pseudo_bytes()returns 1 if the bytes generated are cryptographically strong, 0 otherwise. Both
functions return −1 if they are not supported by the currentRAND method.

SEE ALSO
openssl_rand(3), ERR_get_error(3), RAND_add(3)

HISTORY
RAND_bytes()is available in all versions of SSLeay and OpenSSL. It has a return value since OpenSSL
0.9.5.RAND_pseudo_bytes()was added in OpenSSL 0.9.5.

0.9.9-dev 2008-05-09 1

RAND_cleanup(3) OpenSSL RAND_cleanup(3)

NAME
RAND_cleanup − erase the PRNG state

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rand.h>

void RAND_cleanup(void);

DESCRIPTION
RAND_cleanup()erases the memory used by thePRNG.

RETURN VALUE
RAND_cleanup()returns no value.

SEE ALSO
openssl_rand(3)

HISTORY
RAND_cleanup()is available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2000-07-16 1

RAND_egd(3) OpenSSL RAND_egd(3)

NAME
RAND_egd − query entropy gathering daemon

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rand.h>

int RAND_egd(const char *path);
int RAND_egd_bytes(const char *path, int bytes);

int RAND_query_egd_bytes(const char *path, unsigned char *buf, int bytes);

DESCRIPTION
RAND_egd()queries the entropy gathering daemonEGD on socket path. It queries 255 bytes and uses
RAND_add(3) to seed the OpenSSL built-in PRNG. RAND_egd(path) is a wrapper for
RAND_egd_bytes(path, 255);

RAND_egd_bytes()queries the entropy gathering daemonEGD on socket path. It queriesbytesbytes and
usesRAND_add(3) to seed the OpenSSL built-in PRNG. This function is more flexible thanRAND_egd().
When only one secret key must be generated, it is not necessary to request the full amount 255 bytes from
theEGD socket. This can be advantageous, since the amount of entropy that can be retrieved from EGD over
time is limited.

RAND_query_egd_bytes()performs the actual query of theEGD daemon on socket path. If buf is given,
bytesbytes are queried and written intobuf. If buf is NULL , bytesbytes are queried and used to seed the
OpenSSL built-inPRNGusingRAND_add(3).

NOTES
On systems without /dev/*random devices providing entropy from the kernel, theEGD entropy gathering
daemon can be used to collect entropy. It provides a socket interface through which entropy can be gathered
in chunks up to 255 bytes. Several chunks can be queried during one connection.

EGD is available from http://www.lothar.com/tech/crypto/ (perl Makefile.PL; make; make
install to install). It is run asegd path, wherepath is an absolute path designating a socket. When
RAND_egd()is called with that path as an argument, it tries to read random bytes thatEGD has collected.
The read is performed in non-blocking mode.

Alternatively, the EGD-interface compatible daemonPRNGD can be used. It is available from
http://prngd.sourceforge.net/ .PRNGDdoes employ an internalPRNG itself and can therefore never run out
of entropy.

OpenSSL automatically queriesEGD when entropy is requested viaRAND_bytes()or the status is checked
via RAND_status()for the first time, if the socket is located at /var/run/egd−pool, /dev/egd−pool or
/etc/egd−pool.

RETURN VALUE
RAND_egd()andRAND_egd_bytes()return the number of bytes read from the daemon on success, and −1
if the connection failed or the daemon did not return enough data to fully seed thePRNG.

RAND_query_egd_bytes()returns the number of bytes read from the daemon on success, and −1 if the con-
nection failed. ThePRNGstate is not considered.

SEE ALSO
openssl_rand(3), RAND_add(3), RAND_cleanup(3)

HISTORY
RAND_egd()is available since OpenSSL 0.9.5.

RAND_egd_bytes()is available since OpenSSL 0.9.6.

RAND_query_egd_bytes()is available since OpenSSL 0.9.7.

The automatic query of /var/run/egd−pool et al was added in OpenSSL 0.9.7.

0.9.9-dev 2007-03-06 1

RAND_load_file(3) OpenSSL RAND_load_file(3)

NAME
RAND_load_file, RAND_write_file, RAND_file_name − PRNG seed file

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rand.h>

const char *RAND_file_name(char *buf, size_t num);

int RAND_load_file(const char *filename, long max_bytes);

int RAND_write_file(const char *filename);

DESCRIPTION
RAND_file_name()generates a default path for the random seed file.buf points to a buffer of sizenum in
which to store the filename. The seed file is$RANDFILE if that environment variable is set,$HOME/.rnd
otherwise. If$HOMEis not set either, or num is too small for the path name, an error occurs.

RAND_load_file()reads a number of bytes from filefilenameand adds them to thePRNG. If max_bytesis
non−negative, up to to max_bytesare read; starting with OpenSSL 0.9.5, ifmax_bytesis −1, the complete
file is read.

RAND_write_file()writes a number of random bytes (currently 1024) to filefilenamewhich can be used to
initialize thePRNGby callingRAND_load_file()in a later session.

RETURN VALUES
RAND_load_file()returns the number of bytes read.

RAND_write_file()returns the number of bytes written, and −1 if the bytes written were generated without
appropriate seed.

RAND_file_name()returns a pointer tobuf on success, andNULL on error.

SEE ALSO
openssl_rand(3), RAND_add(3), RAND_cleanup(3)

HISTORY
RAND_load_file(), RAND_write_file()andRAND_file_name()are available in all versions of SSLeay and
OpenSSL.

0.9.9-dev 2001-04-12 1

RAND_set_rand_method(3) OpenSSL RAND_set_rand_method(3)

NAME
RAND_set_rand_method, RAND_get_rand_method, RAND_SSLeay − select RAND method

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rand.h>

void RAND_set_rand_method(const RAND_METHOD *meth);

const RAND_METHOD *RAND_get_rand_method(void);

RAND_METHOD *RAND_SSLeay(void);

DESCRIPTION
A RAND_METHOD specifies the functions that OpenSSL uses for random number generation. By modify-
ing the method, alternative implementations such as hardware RNGs may be used.IMPORTANT: See the
NOTESsection for important information about how theseRAND API functions are affected by the use of
ENGINE API calls.

Initially, the default RAND_METHOD is the OpenSSL internal implementation, as returned by
RAND_SSLeay().

RAND_set_default_method()makesmeth the method forPRNG use. NB: This is true only whilst no
ENGINE has been set as a default forRAND, so this function is no longer recommended.

RAND_get_default_method()returns a pointer to the currentRAND_METHOD. Howev er, the meaningful-
ness of this result is dependent on whether theENGINE API is being used, so this function is no longer rec-
ommended.

THE RAND_METHOD STRUCTURE
typedef struct rand_meth_st
{

void (*seed)(const void *buf, int num);
int (*bytes)(unsigned char *buf, int num);
void (*cleanup)(void);
void (*add)(const void *buf, int num, int entropy);
int (*pseudorand)(unsigned char *buf, int num);
int (*status)(void);

} R AND_METHOD;

The components point to the implementation ofRAND_seed(), RAND_bytes(), RAND_cleanup(),
RAND_add(), RAND_pseudo_rand()andRAND_status(). Each component may beNULL if the function is
not implemented.

RETURN VALUES
RAND_set_rand_method()returns no value.RAND_get_rand_method()andRAND_SSLeay()return point-
ers to the respective methods.

NOTES
As of version 0.9.7,RAND_METHOD implementations are grouped together with other algorithmic APIs
(eg. RSA_METHOD, EVP_CIPHER, etc) in ENGINE modules. If a default ENGINE is specified forRAND
functionality using anENGINE API function, that will override any RAND defaults set using theRAND API
(ie. RAND_set_rand_method()). For this reason, theENGINE API is the recommended way to control
default implementations for use inRAND and other cryptographic algorithms.

SEE ALSO
openssl_rand(3), engine(3)

HISTORY
RAND_set_rand_method(), RAND_get_rand_method()andRAND_SSLeay()are available in all versions of
OpenSSL.

0.9.9-dev 2008-05-09 1

RAND_set_rand_method(3) OpenSSL RAND_set_rand_method(3)

In the engine version of version 0.9.6,RAND_set_rand_method()was altered to take an ENGINE pointer as
its argument. As of version 0.9.7, that has been reverted as theENGINE API transparently overridesRAND
defaults if used, otherwiseRAND API functions work as before.RAND_set_rand_engine()was also intro-
duced in version 0.9.7.

0.9.9-dev 2008-05-09 2

RSA_blinding_on(3) OpenSSL RSA_blinding_on(3)

NAME
RSA_blinding_on, RSA_blinding_off − protect the RSA operation from timing attacks

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

int RSA_blinding_on(RSA *rsa, BN_CTX *ctx);

void RSA_blinding_off(RSA *rsa);

DESCRIPTION
RSA is vulnerable to timing attacks. In a setup where attackers can measure the time ofRSA decryption or
signature operations, blinding must be used to protect theRSA operation from that attack.

RSA_blinding_on()turns blinding on for key rsa and generates a random blinding factor.ctx is NULL or a
pre-allocated and initializedBN_CTX. The random number generator must be seeded prior to calling
RSA_blinding_on().

RSA_blinding_off()turns blinding off and frees the memory used for the blinding factor.

RETURN VALUES
RSA_blinding_on()returns 1 on success, and 0 if an error occurred.

RSA_blinding_off()returns no value.

SEE ALSO
openssl_rsa(3), openssl_rand(3)

HISTORY
RSA_blinding_on()andRSA_blinding_off()appeared in SSLeay 0.9.0.

0.9.9-dev 2000-07-16 1

RSA_check_key(3) OpenSSL RSA_check_key(3)

NAME
RSA_check_key − validate private RSA keys

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

int RSA_check_key(RSA *rsa);

DESCRIPTION
This function validatesRSA keys. It checks thatp andq are in fact prime, and thatn = p*q .

It also checks thatd*e = 1 mod (p−1*q−1), and thatdmp1, dmq1 andiqmp are set correctly or areNULL .

As such, this function can not be used with any arbitrary RSA key object, even if it is otherwise fit for regu-
lar RSA operation. SeeNOTES for more information.

RETURN VALUE
RSA_check_key() returns 1 ifrsa is a valid RSA key, and 0 otherwise. −1 is returned if an error occurs
while checking the key.

If the key is inv alid or an error occurred, the reason code can be obtained usingERR_get_error(3).

NOTES
This function does not work onRSA public keys that have only the modulus and public exponent elements
populated. It performs integrity checks on all theRSA key material, so theRSA key structure must contain
all the private key data too.

Unlike most otherRSA functions, this function doesnot work transparently with any underlyingENGINE
implementation because it uses the key data in theRSA structure directly. An ENGINE implementation can
override the way key data is stored and handled, and can even provide support forHSM keys − in which
case theRSA structure may containno key data at all! If theENGINE in question is only being used for
acceleration or analysis purposes, then in all likelihood theRSA key data is complete and untouched, but
this can’t be assumed in the general case.

BUGS
A method of verifying theRSA key using opaqueRSA API functions might need to be considered. Right
now RSA_check_key() simply uses theRSA structure elements directly, bypassing theRSA_METHOD table
altogether (and completely violating encapsulation and object-orientation in the process). The best fix will
probably be to introduce a ‘‘check_key()’’ handler to theRSA_METHOD function table so that alternative
implementations can also provide their own verifiers.

SEE ALSO
openssl_rsa(3), ERR_get_error(3)

HISTORY
RSA_check_key() appeared in OpenSSL 0.9.4.

0.9.9-dev 2003-07-24 1

RSA_generate_key(3) OpenSSL RSA_generate_key(3)

NAME
RSA_generate_key − generate RSA key pair

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

RSA *RSA_generate_key(int num, unsigned long e,
void (*callback)(int,int,void *), void *cb_arg);

DESCRIPTION
RSA_generate_key() generates a key pair and returns it in a newly allocatedRSA structure. The pseudo-ran-
dom number generator must be seeded prior to callingRSA_generate_key().

The modulus size will benum bits, and the public exponent will bee. Key sizes withnum < 1024 should
be considered insecure. The exponent is an odd number, typically 3, 17 or 65537.

A callback function may be used to provide feedback about the progress of the key generation. Ifcallback
is notNULL , it will be called as follows:

• While a random prime number is generated, it is called as described inBN_generate_prime(3).

• When the n−th randomly generated prime is rejected as not suitable for the key, callback(2, n,
cb_arg) is called.

• When a random p has been found with p−1 relatively prime toe, it is called ascallback(3, 0, cb_arg).

The process is then repeated for prime q withcallback(3, 1, cb_arg).

RETURN VALUE
If key generation fails, RSA_generate_key() returns NULL ; the error codes can be obtained by
ERR_get_error(3).

BUGS
callback(2, x, cb_arg)is used with two different meanings.

RSA_generate_key() goes into an infinite loop for illegal input values.

SEE ALSO
ERR_get_error(3), openssl_rand(3), openssl_rsa(3), RSA_free(3)

HISTORY
Thecb_argargument was added in SSLeay 0.9.0.

0.9.9-dev 2003-07-24 1

RSA_get_ex_new_index(3) OpenSSL RSA_get_ex_new_index(3)

NAME
RSA_get_ex_new_index, RSA_set_ex_data, RSA_get_ex_data − add application specific data to RSA
structures

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

int RSA_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int RSA_set_ex_data(RSA *r, int idx, void *arg);

void *RSA_get_ex_data(RSA *r, int idx);

typedef int CRYPTO_EX_new(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef void CRYPTO_EX_free(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef int CRYPTO_EX_dup(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them.This has several potential
uses, it can be used to cache data associated with a structure (for example the hash of some part of the
structure) or some additional data (for example a handle to the data in an external library).

Since the application data can be anything at all it is passed and retrieved as avoid * type.

TheRSA_get_ex_new_index()function is initially called to ‘‘register’’ some new application specific data.
It takes three optional function pointers which are called when the parent structure (in this case anRSA
structure) is initially created, when it is copied and when it is freed up. If any or all of these function pointer
arguments are not used they should be set toNULL . The precise manner in which these function pointers
are called is described in more detail below. RSA_get_ex_new_index()also takes additional long and
pointer parameters which will be passed to the supplied functions but which otherwise have no special
meaning. It returns anindex which should be stored (typically in a static variable) and passed used in the
idx parameter in the remaining functions. Each successful call toRSA_get_ex_new_index()will return an
index greater than any previously returned, this is important because the optional functions are called in
order of increasing index value.

RSA_set_ex_data()is used to set application specific data, the data is supplied in thearg parameter and its
precise meaning is up to the application.

RSA_get_ex_data()is used to retrieve application specific data. The data is returned to the application, this
will be the same value as supplied to a previousRSA_set_ex_data()call.

new_func()is called when a structure is initially allocated (for example withRSA_new(). The parent struc-
ture members will not have any meaningful values at this point. This function will typically be used to allo-
cate any application specific structure.

free_func() is called when a structure is being freed up. The dynamic parent structure members should not
be accessed because they will be freed up when this function is called.

new_func()andfree_func() take the same parameters.parent is a pointer to the parentRSA structure.ptr
is a the application specific data (this wont be of much use innew_func(). ad is a pointer to the
CRYPTO_EX_DAT A structure from the parentRSA structure: the functionsCRYPTO_get_ex_data()and
CRYPTO_set_ex_data()can be called to manipulate it. Theidx parameter is the index: this will be the
same value returned byRSA_get_ex_new_index()when the functions were initially registered. Finally the
argl and argp parameters are the values originally passed to the same corresponding parameters when

0.9.9-dev 2007-03-06 1

RSA_get_ex_new_index(3) OpenSSL RSA_get_ex_new_index(3)

RSA_get_ex_new_index()was called.

dup_func() is called when a structure is being copied. Pointers to the destination and source
CRYPTO_EX_DAT A structures are passed in theto andfrom parameters respectively. The from_d parame-
ter is passed a pointer to the source application data when the function is called, when the function returns
the value is copied to the destination: the application can thus modify the data pointed to byfrom_d and
have different values in the source and destination.The idx, argl and argp parameters are the same as
those innew_func()andfree_func().

RETURN VALUES
RSA_get_ex_new_index()returns a new index or −1 on failure (note 0 is a valid index value).

RSA_set_ex_data()returns 1 on success or 0 on failure.

RSA_get_ex_data()returns the application data or 0 on failure. 0 may also be valid application data but
currently it can only fail if given an inv alid idx parameter.

new_func()anddup_func()should return 0 for failure and 1 for success.

On failure an error code can be obtained fromERR_get_error(3).

BUGS
dup_func() is currently never called.

The return value ofnew_func()is ignored.

The new_func() function isn’t very useful because no meaningful values are present in the parentRSA
structure when it is called.

SEE ALSO
openssl_rsa(3), CRYPTO_set_ex_data(3)

HISTORY
RSA_get_ex_new_index(), RSA_set_ex_data()andRSA_get_ex_data()are available since SSLeay 0.9.0.

0.9.9-dev 2007-03-06 2

RSA_new(3) OpenSSL RSA_new(3)

NAME
RSA_new, RSA_free − allocate and free RSA objects

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

RSA * RSA_new(void);

void RSA_free(RSA *rsa);

DESCRIPTION
RSA_new()allocates and initializes anRSA structure. It is equivalent to calling RSA_new_method(NULL).

RSA_free()frees theRSA structure and its components. The key is erased before the memory is returned to
the system.

RETURN VALUES
If the allocation fails, RSA_new()returns NULL and sets an error code that can be obtained by
ERR_get_error(3). Otherwise it returns a pointer to the newly allocated structure.

RSA_free()returns no value.

SEE ALSO
ERR_get_error(3), openssl_rsa(3), RSA_generate_key(3), RSA_new_method(3)

HISTORY
RSA_new()andRSA_free()are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2003-07-24 1

RSA_padding_add_PKCS1_type_1(3) OpenSSL RSA_padding_add_PKCS1_type_1(3)

NAME
RSA_padding_add_PKCS1_type_1, RSA_padding_check_PKCS1_type_1, RSA_pad-
ding_add_PKCS1_type_2, RSA_padding_check_PKCS1_type_2, RSA_padding_add_PKCS1_OAEP,
RSA_padding_check_PKCS1_OAEP, RSA_padding_add_SSLv23, RSA_padding_check_SSLv23,
RSA_padding_add_none, RSA_padding_check_none − asymmetric encryption padding

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
unsigned char *f, int fl, unsigned char *p, int pl);

int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len, unsigned char *p, int pl);

int RSA_padding_add_SSLv23(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check_SSLv23(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

int RSA_padding_add_none(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check_none(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

DESCRIPTION
TheRSA_padding_xxx_xxx()functions are called from theRSA encrypt, decrypt, sign and verify functions.
Normally they should not be called from application programs.

However, they can also be called directly to implement padding for other asymmetric ciphers.RSA_pad-
ding_add_PKCS1_OAEP()andRSA_padding_check_PKCS1_OAEP()may be used in an application com-
bined withRSA_NO_PADDING in order to implementOAEPwith an encoding parameter.

RSA_padding_add_xxx()encodesfl bytes fromf so as to fit intotlen bytes and stores the result atto. An
error occurs iffl does not meet the size requirements of the encoding method.

The following encoding methods are implemented:

PKCS1_type_1
PKCS#1 v2.0 EMSA−PKCS1−v1_5 (PKCS#1 v1.5 block type 1); used for signatures

PKCS1_type_2
PKCS#1 v2.0 EME−PKCS1−v1_5 (PKCS#1 v1.5 block type 2)

PKCS1_OAEP
PKCS#1 v2.0 EME-OAEP

0.9.9-dev 2000-07-16 1

RSA_padding_add_PKCS1_type_1(3) OpenSSL RSA_padding_add_PKCS1_type_1(3)

SSLv23
PKCS#1 EME−PKCS1−v1_5 with SSL-specific modification

none
simply copy the data

The random number generator must be seeded prior to callingRSA_padding_add_xxx().

RSA_padding_check_xxx()verifies that thefl bytes atf contain a valid encoding for arsa_lenbyteRSA key
in the respective encoding method and stores the recovered data of at mosttlen bytes (forRSA_NO_PAD-
DING : of size tlen) at to.

For RSA_padding_xxx_OAEP(), p points to the encoding parameter of lengthpl. p may beNULL if pl is 0.

RETURN VALUES
The RSA_padding_add_xxx()functions return 1 on success, 0 on error. The RSA_padding_check_xxx()
functions return the length of the recovered data, −1 on error. Error codes can be obtained by calling
ERR_get_error(3).

SEE ALSO
RSA_public_encrypt(3), RSA_private_decrypt(3), RSA_sign(3), RSA_verify(3)

HISTORY
RSA_padding_add_PKCS1_type_1(), RSA_padding_check_PKCS1_type_1(), RSA_pad-
ding_add_PKCS1_type_2(), RSA_padding_check_PKCS1_type_2(), RSA_padding_add_SSLv23(),
RSA_padding_check_SSLv23(), RSA_padding_add_none()and RSA_padding_check_none()appeared in
SSLeay 0.9.0.

RSA_padding_add_PKCS1_OAEP()and RSA_padding_check_PKCS1_OAEP()were added in OpenSSL
0.9.2b.

0.9.9-dev 2000-07-16 2

RSA_print(3) OpenSSL RSA_print(3)

NAME
RSA_print, RSA_print_fp, DSAparams_print, DSAparams_print_fp, DSA_print, DSA_print_fp,
DHparams_print, DHparams_print_fp − print cryptographic parameters

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

int RSA_print(BIO *bp, RSA *x, int offset);
int RSA_print_fp(FILE *fp, RSA *x, int offset);

#include <openssl/dsa.h>

int DSAparams_print(BIO *bp, DSA *x);
int DSAparams_print_fp(FILE *fp, DSA *x);
int DSA_print(BIO *bp, DSA *x, int offset);
int DSA_print_fp(FILE *fp, DSA *x, int offset);

#include <openssl/dh.h>

int DHparams_print(BIO *bp, DH *x);
int DHparams_print_fp(FILE *fp, DH *x);

DESCRIPTION
A human-readable hexadecimal output of the components of theRSA key, DSA parameters or key or DH
parameters is printed tobp or fp.

The output lines are indented byoffsetspaces.

RETURN VALUES
These functions return 1 on success, 0 on error.

SEE ALSO
openssl_dh(3), openssl_dsa(3), openssl_rsa(3), BN_bn2bin(3)

HISTORY
RSA_print(), RSA_print_fp(), DSA_print(), DSA_print_fp(), DH_print(), DH_print_fp() are available in all
versions of SSLeay and OpenSSL.DSAparams_print()andDSAparams_print_fp()were added in SSLeay
0.8.

0.9.9-dev 2004-03-19 1

RSA_private_encrypt(3) OpenSSL RSA_private_encrypt(3)

NAME
RSA_private_encrypt, RSA_public_decrypt − low lev el signature operations

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

int RSA_private_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_public_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

DESCRIPTION
These functions handleRSA signatures at a low lev el.

RSA_private_encrypt()signs theflen bytes atfrom (usually a message digest with an algorithm identifier)
using the private key rsa and stores the signature into. to must point toRSA_size(rsa)bytes of memory.

padding denotes one of the following modes:

RSA_PKCS1_PADDING
PKCS#1 v1.5 padding. This function does not handle thealgorithmIdentifier specified inPKCS#1.
When generating or verifyingPKCS#1 signatures,RSA_sign(3) andRSA_verify(3) should be used.

RSA_NO_PADDING
Raw RSA signature. This mode shouldonly be used to implement cryptographically sound padding
modes in the application code. Signing user data directly withRSA is insecure.

RSA_public_decrypt()recovers the message digest from theflen bytes long signature atfrom using the
signer’s public key rsa. to must point to a memory section large enough to hold the message digest (which
is smaller thanRSA_size(rsa) − 11). padding is the padding mode that was used to sign the data.

RETURN VALUES
RSA_private_encrypt()returns the size of the signature (i.e., RSA_size(rsa)).RSA_public_decrypt()returns
the size of the recovered message digest.

On error, −1 is returned; the error codes can be obtained byERR_get_error(3).

SEE ALSO
ERR_get_error(3), openssl_rsa(3), RSA_sign(3), RSA_verify(3)

HISTORY
Thepadding argument was added in SSLeay 0.8.RSA_NO_PADDINGis available since SSLeay 0.9.0.

0.9.9-dev 2003-07-24 1

RSA_public_encrypt(3) OpenSSL RSA_public_encrypt(3)

NAME
RSA_public_encrypt, RSA_private_decrypt − RSA public key cryptography

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

int RSA_public_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_private_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

DESCRIPTION
RSA_public_encrypt()encrypts theflen bytes atfrom (usually a session key) using the public key rsa and
stores the ciphertext into. to must point to RSA_size(rsa) bytes of memory.

padding denotes one of the following modes:

RSA_PKCS1_PADDING
PKCS#1 v1.5 padding. This currently is the most widely used mode.

RSA_PKCS1_OAEP_PADDING
EME-OAEP as defined inPKCS#1 v2.0 withSHA−1, MGF1 and an empty encoding parameter. This
mode is recommended for all new applications.

RSA_SSLV23_PADDING
PKCS#1 v1.5 padding with an SSL-specific modification that denotes that the server isSSL3capable.

RSA_NO_PADDING
Raw RSA encryption. This mode shouldonly be used to implement cryptographically sound padding
modes in the application code. Encrypting user data directly withRSA is insecure.

flen must be less than RSA_size(rsa) − 11 for the PKCS #1 v1.5 based padding modes, less than
RSA_size(rsa) − 41 for RSA_PKCS1_OAEP_PADDINGand exactly RSA_size(rsa) for RSA_NO_PADDING.
The random number generator must be seeded prior to callingRSA_public_encrypt().

RSA_private_decrypt()decrypts theflen bytes atfrom using the private key rsa and stores the plaintext in
to. to must point to a memory section large enough to hold the decrypted data (which is smaller than
RSA_size(rsa)). padding is the padding mode that was used to encrypt the data.

RETURN VALUES
RSA_public_encrypt()returns the size of the encrypted data (i.e., RSA_size(rsa)). RSA_private_decrypt()
returns the size of the recovered plaintext.

On error, −1 is returned; the error codes can be obtained byERR_get_error(3).

CONFORMING TO
SSL, PKCS#1 v2.0

SEE ALSO
ERR_get_error(3), openssl_rand(3), openssl_rsa(3), RSA_size(3)

HISTORY
The padding argument was added in SSLeay 0.8.RSA_NO_PADDING is available since SSLeay 0.9.0,
OAEPwas added in OpenSSL 0.9.2b.

0.9.9-dev 2005-03-25 1

RSA_set_method(3) OpenSSL RSA_set_method(3)

NAME
RSA_set_default_method, RSA_get_default_method, RSA_set_method, RSA_get_method,
RSA_PKCS1_SSLeay, RSA_null_method, RSA_flags, RSA_new_method − select RSA method

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

void RSA_set_default_method(const RSA_METHOD *meth);

RSA_METHOD *RSA_get_default_method(void);

int RSA_set_method(RSA *rsa, const RSA_METHOD *meth);

RSA_METHOD *RSA_get_method(const RSA *rsa);

RSA_METHOD *RSA_PKCS1_SSLeay(void);

RSA_METHOD *RSA_null_method(void);

int RSA_flags(const RSA *rsa);

RSA *RSA_new_method(RSA_METHOD *method);

DESCRIPTION
An RSA_METHOD specifies the functions that OpenSSL uses forRSA operations. By modifying the
method, alternative implementations such as hardware accelerators may be used.IMPORTANT: See the
NOTES section for important information about how theseRSA API functions are affected by the use of
ENGINE API calls.

Initially, the default RSA_METHOD is the OpenSSL internal implementation, as returned by
RSA_PKCS1_SSLeay().

RSA_set_default_method()makesmeth the default method for allRSA structures created later. NB: This is
true only whilst noENGINE has been set as a default forRSA, so this function is no longer recommended.

RSA_get_default_method()returns a pointer to the current default RSA_METHOD. Howev er, the meaning-
fulness of this result is dependent on whether theENGINE API is being used, so this function is no longer
recommended.

RSA_set_method()selectsmeth to perform all operations using the key rsa. This will replace the
RSA_METHODused by theRSA key and if the previous method was supplied by anENGINE, the handle to
thatENGINE will be released during the change. It is possible to have RSA keys that only work with certain
RSA_METHOD implementations (eg. from anENGINE module that supports embedded hardware-protected
keys), and in such cases attempting to change theRSA_METHODfor the key can have unexpected results.

RSA_get_method()returns a pointer to theRSA_METHODbeing used byrsa. This method may or may not
be supplied by anENGINE implementation, but if it is, the return value can only be guaranteed to be valid
as long as theRSA key itself is valid and does not have its implementation changed byRSA_set_method().

RSA_flags()returns theflagsthat are set forrsa’s currentRSA_METHOD. See theBUGSsection.

RSA_new_method()allocates and initializes anRSA structure so thatenginewill be used for theRSA opera-
tions. If engine is NULL , the default ENGINE for RSA operations is used, and if no default ENGINE is set,
theRSA_METHODcontrolled byRSA_set_default_method()is used.

RSA_flags()returns theflagsthat are set forrsa’s current method.

RSA_new_method()allocates and initializes anRSA structure so thatmethodwill be used for theRSA oper-
ations. Ifmethod is NULL , the default method is used.

THE RSA_METHOD STRUCTURE

0.9.9-dev 2008-05-09 1

RSA_set_method(3) OpenSSL RSA_set_method(3)

typedef struct rsa_meth_st
{

/* name of the implementation */
const char *name;

/* encrypt */
int (*rsa_pub_enc)(int flen, unsigned char *from,

unsigned char *to, RSA *rsa, int padding);

/* verify arbitrary data */
int (*rsa_pub_dec)(int flen, unsigned char *from,

unsigned char *to, RSA *rsa, int padding);

/* sign arbitrary data */
int (*rsa_priv_enc)(int flen, unsigned char *from,

unsigned char *to, RSA *rsa, int padding);

/* decrypt */
int (*rsa_priv_dec)(int flen, unsigned char *from,

unsigned char *to, RSA *rsa, int padding);

/* compute r0 = r0 ˆ I mod rsa->n (May be NULL for some
implementations) */

int (*rsa_mod_exp)(BIGNUM *r0, BIGNUM *I, RSA *rsa);

/* compute r = a ˆ p mod m (May be NULL for some implementations) */
int (*bn_mod_exp)(BIGNUM *r, BIGNUM *a, const BIGNUM *p,

const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);

/* called at RSA_new */
int (*init)(RSA *rsa);

/* called at RSA_free */
int (*finish)(RSA *rsa);

/* RSA_FLAG_EXT_PKEY - r sa_mod_exp is called for private key
* o perations, even if p,q,dmp1,dmq1,iqmp
* a re NULL
* RSA_FLAG_SIGN_VER - enable rsa_sign and rsa_verify
* RSA_METHOD_FLAG_NO_CHECK - don’t check pub/private match
*/

int flags;

char *app_data; /* ?? */

/* sign. For backward compatibility, this is used only
* if (flags & RSA_FLAG_SIGN_VER)
*/

int (*rsa_sign)(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen, RSA *rsa);

/* verify. For backward compatibility, this is used only
* if (flags & RSA_FLAG_SIGN_VER)
*/

int (*rsa_verify)(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

} R SA_METHOD;

RETURN VALUES
RSA_PKCS1_SSLeay(), RSA_PKCS1_null_method(), RSA_get_default_method()and RSA_get_method()
return pointers to the respective RSA_METHODs.

0.9.9-dev 2008-05-09 2

RSA_set_method(3) OpenSSL RSA_set_method(3)

RSA_set_default_method()returns no value.

RSA_set_method()returns a pointer to the oldRSA_METHOD implementation that was replaced. However,
this return value should probably be ignored because if it was supplied by anENGINE, the pointer could be
invalidated at any time if the ENGINE is unloaded (in fact it could be unloaded as a result of the
RSA_set_method()function releasing its handle to theENGINE). For this reason, the return type may be
replaced with avoid declaration in a future release.

RSA_new_method()returnsNULL and sets an error code that can be obtained byERR_get_error(3) if the
allocation fails. Otherwise it returns a pointer to the newly allocated structure.

NOTES
As of version 0.9.7,RSA_METHOD implementations are grouped together with other algorithmic APIs (eg.
DSA_METHOD, EVP_CIPHER, etc) into ENGINE modules. If a default ENGINE is specified forRSA func-
tionality using anENGINE API function, that will override any RSA defaults set using theRSA API (ie.
RSA_set_default_method()). For this reason, theENGINE API is the recommended way to control default
implementations for use inRSA and other cryptographic algorithms.

BUGS
The behaviour ofRSA_flags()is a mis-feature that is left as-is for now to avoid creating compatibility prob-
lems.RSA functionality, such as the encryption functions, are controlled by theflagsvalue in theRSA key
itself, not by theflags value in theRSA_METHOD attached to theRSA key (which is what this function
returns). If the flags element of anRSA key is changed, the changes will be honoured byRSA functionality
but will not be reflected in the return value of theRSA_flags()function − in effect RSA_flags()behaves
more like an RSA_default_flags()function (which does not currently exist).

SEE ALSO
openssl_rsa(3), RSA_new(3)

HISTORY
RSA_new_method()and RSA_set_default_method()appeared in SSLeay 0.8.RSA_get_default_method(),
RSA_set_method()and RSA_get_method()as well as the rsa_sign and rsa_verify components of
RSA_METHODwere added in OpenSSL 0.9.4.

RSA_set_default_openssl_method() and RSA_get_default_openssl_method() replaced
RSA_set_default_method()and RSA_get_default_method()respectively, and RSA_set_method()and
RSA_new_method()were altered to useENGINEs rather thanRSA_METHODs during development of the
engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults in theENGINE APIwas restructured so
that this change was reversed, and behaviour of the other functions resembled more closely the previous be-
haviour. The behaviour of defaults in theENGINE APInow transparently overrides the behaviour of defaults
in theRSA APIwithout requiring changing these function prototypes.

0.9.9-dev 2008-05-09 3

RSA_sign(3) OpenSSL RSA_sign(3)

NAME
RSA_sign, RSA_verify − RSA signatures

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

int RSA_sign(int type, const unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen, RSA *rsa);

int RSA_verify(int type, const unsigned char *m, unsigned int m_len,
unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

DESCRIPTION
RSA_sign()signs the message digestm of sizem_len using the private key rsa as specified inPKCS #1
v2.0. It stores the signature insigret and the signature size insiglen. sigret must point to RSA_size(rsa)
bytes of memory.

type denotes the message digest algorithm that was used to generatem. It usually is one ofNID_sha1,
NID_ripemd160 andNID_md5; seeobjects(3) for details. Iftype is NID_md5_sha1, an SSL signature
(MD5 andSHA1 message digests withPKCS#1 padding and no algorithm identifier) is created.

RSA_verify()verifies that the signaturesigbuf of size siglen matches a given message digestm of size
m_len. type denotes the message digest algorithm that was used to generate the signature.rsa is the
signer’s public key.

RETURN VALUES
RSA_sign()returns 1 on success, 0 otherwise.RSA_verify()returns 1 on successful verification, 0 other-
wise.

The error codes can be obtained byERR_get_error(3).

BUGS
Certain signatures with an improper algorithm identifier are accepted for compatibility with SSLeay 0.4.5
:−)

CONFORMING TO
SSL, PKCS#1 v2.0

SEE ALSO
ERR_get_error(3), objects(3), openssl_rsa(3), RSA_private_encrypt(3), RSA_public_decrypt(3)

HISTORY
RSA_sign()andRSA_verify()are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2005-11-24 1

RSA_sign_ASN1_OCTET_STRING(3) OpenSSL RSA_sign_ASN1_OCTET_STRING(3)

NAME
RSA_sign_ASN1_OCTET_STRING, RSA_verify_ASN1_OCTET_STRING − RSA signatures

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

int RSA_sign_ASN1_OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigret, unsigned int *siglen,
RSA *rsa);

int RSA_verify_ASN1_OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigbuf, unsigned int siglen,
RSA *rsa);

DESCRIPTION
RSA_sign_ASN1_OCTET_STRING()signs the octet stringm of sizem_len using the private key rsa repre-
sented inDER using PKCS #1 padding. It stores the signature insigret and the signature size insiglen.
sigret must point toRSA_size(rsa)bytes of memory.

dummy is ignored.

The random number generator must be seeded prior to callingRSA_sign_ASN1_OCTET_STRING().

RSA_verify_ASN1_OCTET_STRING()verifies that the signaturesigbuf of sizesiglen is theDER represen-
tation of a given octet stringm of sizem_len. dummy is ignored.rsa is the signer’s public key.

RETURN VALUES
RSA_sign_ASN1_OCTET_STRING()returns 1 on success, 0 otherwise. RSA_ver-
ify_ASN1_OCTET_STRING()returns 1 on successful verification, 0 otherwise.

The error codes can be obtained byERR_get_error(3).

BUGS
These functions serve no recognizable purpose.

SEE ALSO
ERR_get_error(3), objects(3), openssl_rand(3), openssl_rsa(3), RSA_sign(3), RSA_verify(3)

HISTORY
RSA_sign_ASN1_OCTET_STRING()andRSA_verify_ASN1_OCTET_STRING()were added in SSLeay 0.8.

0.9.9-dev 2003-07-24 1

RSA_size(3) OpenSSL RSA_size(3)

NAME
RSA_size − get RSA modulus size

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>

int RSA_size(const RSA *rsa);

DESCRIPTION
This function returns theRSA modulus size in bytes. It can be used to determine how much memory must
be allocated for anRSA encrypted value.

rsa−>n must not beNULL .

RETURN VALUE
The size in bytes.

SEE ALSO
openssl_rsa(3)

HISTORY
RSA_size()is available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2003-07-24 1

SMIME_read_PKCS7(3) OpenSSL SMIME_read_PKCS7(3)

NAME
SMIME_read_PKCS7 − parse S/MIME message.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/pkcs7.h>

PKCS7 *SMIME_read_PKCS7(BIO *in, BIO **bcont);

DESCRIPTION
SMIME_read_PKCS7()parses a message in S/MIME format.

in is aBIO to read the message from.

If cleartext signing is used then the content is saved in a memory bio which is written to*bcont, otherwise
*bcont is set toNULL .

The parsed PKCS#7 structure is returned orNULL if an error occurred.

NOTES
If *bcont is notNULL then the message is clear text signed.*bcont can then be passed toPKCS7_verify()
with thePKCS7_DETACHED flag set.

Otherwise the type of the returned structure can be determined usingPKCS7_type().

To support future functionality ifbcont is notNULL *bcont should be initialized toNULL . For example:

BIO *cont = NULL;
PKCS7 *p7;

p7 = SMIME_read_PKCS7(in, &cont);

BUGS
The MIME parser used bySMIME_read_PKCS7()is somewhat primitive. While it will handle most
S/MIME messages more complex compound formats may not work.

The parser assumes that thePKCS7structure is always base64 encoded and will not handle the case where it
is in binary format or uses quoted printable format.

The use of a memoryBIO to hold the signed content limits the size of message which can be processed due
to memory restraints: a streaming single pass option should be available.

RETURN VALUES
SMIME_read_PKCS7()returns a valid PKCS7 structure orNULL is an error occurred. The error can be
obtained fromERR_get_error(3).

SEE ALSO
ERR_get_error(3), PKCS7_type(3) SMIME_read_PKCS7(3), PKCS7_sign(3), PKCS7_verify(3),
PKCS7_encrypt(3) PKCS7_decrypt(3)

HISTORY
SMIME_read_PKCS7()was added to OpenSSL 0.9.5

0.9.9-dev 2008-05-09 1

SMIME_write_PKCS7(3) OpenSSL SMIME_write_PKCS7(3)

NAME
SMIME_write_PKCS7 − convert PKCS#7 structure to S/MIME format.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/pkcs7.h>

int SMIME_write_PKCS7(BIO *out, PKCS7 *p7, BIO *data, int flags);

DESCRIPTION
SMIME_write_PKCS7()adds the appropriateMIME headers to a PKCS#7 structure to produce an S/MIME
message.

out is theBIO to write the data to.p7 is the appropriatePKCS7 structure. If streaming is enabled then the
content must be supplied in thedata argument.flags is an optional set of flags.

NOTES
The following flags can be passed in theflagsparameter.

If PKCS7_DETACHED is set then cleartext signing will be used, this option only makes sense for signed-
Data wherePKCS7_DETACHED is also set whenPKCS7_sign()is also called.

If the PKCS7_TEXT flag is setMIME headers for typetext/plain are added to the content, this only makes
sense ifPKCS7_DETACHED is also set.

If the PKCS7_STREAM flag is set streaming is performed. This flag should only be set ifPKCS7_STREAM
was also set in the previous call toPKCS7_sign()or PKCS7_encrypt().

If cleartext signing is being used andPKCS7_STREAM not set then the data must be read twice: once to
compute the signature inPKCS7_sign()and once to output the S/MIME message.

If streaming is performed the content is output inBER format using indefinite length constructuted encod-
ing except in the case of signed data with detached content where the content is absent andDER format is
used.

BUGS
SMIME_write_PKCS7()always base64 encodes PKCS#7 structures, there should be an option to disable
this.

RETURN VALUES
SMIME_write_PKCS7()returns 1 for success or 0 for failure.

SEE ALSO
ERR_get_error(3), PKCS7_sign(3), PKCS7_verify(3), PKCS7_encrypt(3) PKCS7_decrypt(3)

HISTORY
SMIME_write_PKCS7()was added to OpenSSL 0.9.5

0.9.9-dev 2008-05-09 1

SSL_CIPHER_get_name(3) OpenSSL SSL_CIPHER_get_name(3)

NAME
SSL_CIPHER_get_name, SSL_CIPHER_get_bits, SSL_CIPHER_get_version, SSL_CIPHER_description
− get SSL_CIPHER properties

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher);
int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *alg_bits);
char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher);
char *SSL_CIPHER_description(SSL_CIPHER *cipher, char *buf, int size);

DESCRIPTION
SSL_CIPHER_get_name()returns a pointer to the name ofcipher. If the argument is theNULL pointer, a
pointer to the constant value ‘‘NONE’’ i s returned.

SSL_CIPHER_get_bits()returns the number of secret bits used forcipher. If alg_bits is notNULL , it con-
tains the number of bits processed by the chosen algorithm. Ifcipher is NULL , 0 is returned.

SSL_CIPHER_get_version()returns the protocol version forcipher, currently ‘‘SSLv2’’, ‘ ‘SSLv3’’, or
‘‘ TLSv1’’. If cipher is NULL , ‘‘(NONE)’’ is returned.

SSL_CIPHER_description()returns a textual description of the cipher used into the buffer buf of lengthlen
provided. len must be at least 128 bytes, otherwise a pointer to the the string ‘‘Buffer too small’’ i s
returned. Ifbuf is NULL , a buffer of 128 bytes is allocated usingOPENSSL_malloc(). If the allocation fails,
a pointer to the string ‘‘OPENSSL_malloc Error’’ is returned.

NOTES
The number of bits processed can be different from the secret bits. An export cipher like e.g.
EXP−RC4−MD5has only 40 secret bits. The algorithm does use the full 128 bits (which would be returned
for alg_bits), of which however 88bits are fixed. The search space is hence only 40 bits.

The string returned bySSL_CIPHER_description()in case of success consists of cleartext information sep-
arated by one or more blanks in the following sequence:

<ciphername>
Te xtual representation of the cipher name.

<protocol version>
Protocol version:SSLv2, SSLv3. The TLSv1 ciphers are flagged with SSLv3.

Kx=<key exchange>
Ke y exchange method:RSA (for export ciphers asRSA(512)or RSA(1024)), DH (for export ciphers as
DH(512)or DH(1024)), DH/RSA, DH/DSS, Fortezza.

Au=<authentication>
Authentication method:RSA, DSS, DH, None. None is the representation of anonymous ciphers.

Enc=<symmetric encryption method>
Encryption method with number of secret bits:DES(40), DES(56), 3DES(168), RC4(40), RC4(56),
RC4(64), RC4(128), RC2(40), RC2(56), RC2(128), IDEA (128), Fortezza, None.

Mac=<message authentication code>
Message digest:MD5, SHA1.

<export flag>
If the cipher is flagged exportable with respect to oldUS crypto regulations, the word "export" is
printed.

EXAMPLES
Some examples for the output ofSSL_CIPHER_description():

0.9.9-dev 2005-04-23 1

SSL_CIPHER_get_name(3) OpenSSL SSL_CIPHER_get_name(3)

EDH-RSA-DES-CBC3-SHA SSLv3 Kx=DH Au=RSA Enc=3DES(168) Mac=SHA1
EDH-DSS-DES-CBC3-SHA SSLv3 Kx=DH Au=DSS Enc=3DES(168) Mac=SHA1
RC4-MD5 SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5
EXP-RC4-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export

BUGS
If SSL_CIPHER_description()is called withcipher beingNULL , the library crashes.

If SSL_CIPHER_description()cannot handle a built-in cipher, the according description of the cipher prop-
erty isunknown. This case should not occur.

RETURN VALUES
SeeDESCRIPTION

SEE ALSO
ssl(3), SSL_get_current_cipher(3), SSL_get_ciphers(3), openssl_ciphers(1)

0.9.9-dev 2005-04-23 2

SSL_COMP_add_compression_method(3) OpenSSL SSL_COMP_add_compression_method(3)

NAME
SSL_COMP_add_compression_method − handle SSL/TLS integrated compression methods

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm);

DESCRIPTION
SSL_COMP_add_compression_method()adds the compression methodcm with the identifierid to the list
of available compression methods. This list is globally maintained for allSSL operations within this appli-
cation. Itcannot be set for specificSSL_CTXor SSLobjects.

NOTES
The TLS standard (or SSLv3) allows the integration of compression methods into the communication. The
TLS RFCdoes however not specify compression methods or their corresponding identifiers, so there is cur-
rently no compatible way to integrate compression with unknown peers. It is therefore currently not recom-
mended to integrate compression into applications. Applications for non-public use may agree on certain
compression methods. Using different compression methods with the same identifier will lead to connec-
tion failure.

An OpenSSL client speaking a protocol that allows compression (SSLv3, TLSv1) will unconditionally send
the list of all compression methods enabled withSSL_COMP_add_compression_method()to the server
during the handshake. Unlike the mechanisms to set a cipher list, there is no method available to restrict
the list of compression method on a per connection basis.

An OpenSSL server will match the identifiers listed by a client against its own compression methods and
will unconditionally activate compression when a matching identifier is found. There is no way to restrict
the list of compression methods supported on a per connection basis.

The OpenSSL library has the compression methodsCOMP_rle() and (when especially enabled during
compilation)COMP_zlib()available.

WARNINGS
Once the identities of the compression methods for theTLS protocol have been standardized, the compres-
sionAPI will most likely be changed. Using it in the current state is not recommended.

RETURN VALUES
SSL_COMP_add_compression_method()may return the following values:

0 The operation succeeded.

1 The operation failed. Check the error queue to find out the reason.

SEE ALSO
ssl(3)

0.9.9-dev 2004-03-19 1

SSL_CTX_add_extra_chain_cert(3) OpenSSL SSL_CTX_add_extra_chain_cert(3)

NAME
SSL_CTX_add_extra_chain_cert − add certificate to chain

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_add_extra_chain_cert(SSL_CTX ctx, X509 *x509)

DESCRIPTION
SSL_CTX_add_extra_chain_cert()adds the certificatex509 to the certificate chain presented together with
the certificate. Several certificates can be added one after the other.

NOTES
When constructing the certificate chain, the chain will be formed from these certificates explicitly specified.
If no chain is specified, the library will try to complete the chain from the available CA certificates in the
trustedCA storage, seeSSL_CTX_load_verify_locations(3).

RETURN VALUES
SSL_CTX_add_extra_chain_cert()returns 1 on success. Check out the error stack to find out the reason for
failure otherwise.

SEE ALSO
ssl(3), SSL_CTX_use_certificate(3), SSL_CTX_set_client_cert_cb(3), SSL_CTX_load_verify_locations(3)

0.9.9-dev 2002-06-09 1

SSL_CTX_add_session(3) OpenSSL SSL_CTX_add_session(3)

NAME
SSL_CTX_add_session, SSL_add_session, SSL_CTX_remove_session, SSL_remove_session − manipu-
late session cache

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_add_session(SSL_CTX *ctx, SSL_SESSION *c);
int SSL_add_session(SSL_CTX *ctx, SSL_SESSION *c);

int SSL_CTX_remove_session(SSL_CTX *ctx, SSL_SESSION *c);
int SSL_remove_session(SSL_CTX *ctx, SSL_SESSION *c);

DESCRIPTION
SSL_CTX_add_session()adds the sessionc to the context ctx. The reference count for sessionc is incre-
mented by 1. If a session with the same session id already exists, the old session is removed by calling
SSL_SESSION_free(3).

SSL_CTX_remove_session()removes the sessionc from the context ctx. SSL_SESSION_free(3) is called
once forc.

SSL_add_session()andSSL_remove_session()are synonyms for their SSL_CTX_*() counterparts.

NOTES
When adding a new session to the internal session cache, it is examined whether a session with the same
session id already exists. In this case it is assumed that both sessions are identical. If the same session is
stored in a differentSSL_SESSIONobject, The old session is removed and replaced by the new session. If
the session is actually identical (theSSL_SESSIONobject is identical),SSL_CTX_add_session()is a no−op,
and the return value is 0.

If a server SSL_CTX is configured with theSSL_SESS_CACHE_NO_INTERNAL_STOREflag then the inter-
nal cache will not be populated automatically by new sessions negotiated by theSSL/TLS implementation,
ev en though the internal cache will be searched automatically for session-resume requests (the latter can be
surpressed by SSL_SESS_CACHE_NO_INTERNAL_LOOKUP). So the application can use
SSL_CTX_add_session()directly to have full control over the sessions that can be resumed if desired.

RETURN VALUES
The following values are returned by all functions:

0
The operation failed. In case of the add operation, it was tried to add
the same (identical) session twice. In case of the remove operation, the
session was not found in the cache.

1
The operation succeeded.

SEE ALSO
ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_SESSION_free(3)

0.9.9-dev 2003-07-24 1

SSL_CTX_ctrl(3) OpenSSL SSL_CTX_ctrl(3)

NAME
SSL_CTX_ctrl, SSL_CTX_callback_ctrl, SSL_ctrl, SSL_callback_ctrl − internal handling functions for
SSL_CTX and SSL objects

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg);
long SSL_CTX_callback_ctrl(SSL_CTX *, int cmd, void (*fp)());

long SSL_ctrl(SSL *ssl, int cmd, long larg, void *parg);
long SSL_callback_ctrl(SSL *, int cmd, void (*fp)());

DESCRIPTION
The SSL_*_ctrl() family of functions is used to manipulate settings of theSSL_CTX and SSL objects.
Depending on the commandcmd the argumentslarg, parg, or fp are evaluated. These functions should
never be called directly. All functionalities needed are made available via other functions or macros.

RETURN VALUES
The return values of the SSL*_ctrl() functions depend on the command supplied via thecmd parameter.

SEE ALSO
ssl(3)

0.9.9-dev 2003-07-24 1

SSL_CTX_flush_sessions(3) OpenSSL SSL_CTX_flush_sessions(3)

NAME
SSL_CTX_flush_sessions, SSL_flush_sessions − remove expired sessions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_flush_sessions(SSL_CTX *ctx, long tm);
void SSL_flush_sessions(SSL_CTX *ctx, long tm);

DESCRIPTION
SSL_CTX_flush_sessions()causes a run through the session cache ofctx to remove sessions expired at time
tm.

SSL_flush_sessions()is a synonym forSSL_CTX_flush_sessions().

NOTES
If enabled, the internal session cache will collect all sessions established up to the specified maximum num-
ber (seeSSL_CTX_sess_set_cache_size()). As sessions will not be reused ones they are expired, they
should be removed from the cache to save resources. This can either be done
automatically whenever 255 new sessions were established (seeSSL_CTX_set_session_cache_mode(3)) or
manually by callingSSL_CTX_flush_sessions().

The parametertm specifies the time which should be used for the expiration test, in most cases the actual
time given by time(0) will be used.

SSL_CTX_flush_sessions()will only check sessions stored in the internal cache. When a session is found
and removed, the remove_session_cb is however called to synchronize with the external cache (see
SSL_CTX_sess_set_get_cb(3)).

RETURN VALUES
SEE ALSO

ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_set_timeout(3), SSL_CTX_sess_set_get_cb(3)

0.9.9-dev 2001-04-11 1

SSL_CTX_free(3) OpenSSL SSL_CTX_free(3)

NAME
SSL_CTX_free − free an allocated SSL_CTX object

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_free(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_free()decrements the reference count ofctx, and removes theSSL_CTXobject pointed to byctx
and frees up the allocated memory if the the reference count has reached 0.

It also calls thefree()ing procedures for indirectly affected items, if applicable: the session cache, the list of
ciphers, the list of Client CAs, the certificates and keys.

WARNINGS
If a session-remove callback is set (SSL_CTX_sess_set_remove_cb()), this callback will be called for each
session being freed fromctx’s session cache. This implies, that all corresponding sessions from an external
session cache are removed as well. If this is not desired, the user should explicitly unset the callback by
calling SSL_CTX_sess_set_remove_cb(ctx, NULL) prior to callingSSL_CTX_free().

RETURN VALUES
SSL_CTX_free()does not provide diagnostic information.

SEE ALSO
SSL_CTX_new(3), ssl(3), SSL_CTX_sess_set_get_cb(3)

0.9.9-dev 2003-07-24 1

SSL_CTX_get_ex_new_index(3) OpenSSL SSL_CTX_get_ex_new_index(3)

NAME
SSL_CTX_get_ex_new_index, SSL_CTX_set_ex_data, SSL_CTX_get_ex_data − internal application spe-
cific data functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *arg);

void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef int dup_func(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. These functions are used
internally by OpenSSL to manipulate application specific data attached to a specific structure.

SSL_CTX_get_ex_new_index()is used to register a new index for application specific data.

SSL_CTX_set_ex_data()is used to store application data atarg for idx into thectx object.

SSL_CTX_get_ex_data()is used to retrieve the information foridx from ctx.

A detailed description for the *_get_ex_new_index() functionality can be found in
RSA_get_ex_new_index(3). The *_get_ex_data()and *_set_ex_data()functionality is described in
CRYPTO_set_ex_data(3).

SEE ALSO
ssl(3), RSA_get_ex_new_index(3), CRYPTO_set_ex_data(3)

0.9.9-dev 2005-04-23 1

SSL_CTX_get_verify_mode(3) OpenSSL SSL_CTX_get_verify_mode(3)

NAME
SSL_CTX_get_verify_mode, SSL_get_verify_mode, SSL_CTX_get_verify_depth, SSL_get_verify_depth,
SSL_get_verify_callback, SSL_CTX_get_verify_callback − get currently set verification parameters

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_get_verify_mode(const SSL_CTX *ctx);
int SSL_get_verify_mode(const SSL *ssl);
int SSL_CTX_get_verify_depth(const SSL_CTX *ctx);
int SSL_get_verify_depth(const SSL *ssl);
int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))(int, X509_STORE_CTX *);
int (*SSL_get_verify_callback(const SSL *ssl))(int, X509_STORE_CTX *);

DESCRIPTION
SSL_CTX_get_verify_mode()returns the verification mode currently set inctx.

SSL_get_verify_mode()returns the verification mode currently set inssl.

SSL_CTX_get_verify_depth()returns the verification depth limit currently set inctx. If no limit has been
explicitly set, −1 is returned and the default value will be used.

SSL_get_verify_depth()returns the verification depth limit currently set inssl. If no limit has been explicitly
set, −1 is returned and the default value will be used.

SSL_CTX_get_verify_callback()returns a function pointer to the verification callback currently set inctx. If
no callback was explicitly set, theNULL pointer is returned and the default callback will be used.

SSL_get_verify_callback()returns a function pointer to the verification callback currently set inssl. If no
callback was explicitly set, theNULL pointer is returned and the default callback will be used.

RETURN VALUES
SeeDESCRIPTION

SEE ALSO
ssl(3), SSL_CTX_set_verify(3)

0.9.9-dev 2005-04-23 1

SSL_CTX_load_verify_locations(3) OpenSSL SSL_CTX_load_verify_locations(3)

NAME
SSL_CTX_load_verify_locations − set default locations for trusted CA certificates

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
const char *CApath);

DESCRIPTION
SSL_CTX_load_verify_locations()specifies the locations forctx, at which CA certificates for verification
purposes are located. The certificates available viaCAfile andCApath are trusted.

NOTES
If CAfile is notNULL , it points to a file ofCA certificates inPEM format. The file can contain several CA
certificates identified by

-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions
of the certificates.

TheCAfile is processed on execution of theSSL_CTX_load_verify_locations()function.

If CApath is not NULL , it points to a directory containingCA certificates inPEM format. The files each
contain oneCA certificate. The files are looked up by theCA subject name hash value, which must hence be
available. Ifmore than oneCA certificate with the same name hash value exist, the extension must be dif-
ferent (e.g. 9d66eef0.0, 9d66eef0.1 etc). The search is performed in the ordering of the extension number,
regardless of other properties of the certificates. Use thec_rehashutility to create the necessary links.

The certificates inCApath are only looked up when required, e.g. when building the certificate chain or
when actually performing the verification of a peer certificate.

When looking upCA certificates, the OpenSSL library will first search the certificates inCAfile, then those
in CApath. Certificate matching is done based on the subject name, the key identifier (if present), and the
serial number as taken from the certificate to be verified. If these data do not match, the next certificate will
be tried. If a first certificate matching the parameters is found, the verification process will be performed; no
other certificates for the same parameters will be searched in case of failure.

In server mode, when requesting a client certificate, the server must send the list of CAs of which it will
accept client certificates. This list is not influenced by the contents ofCAfile or CApath and must explicitly
be set using theSSL_CTX_set_client_CA_list(3) family of functions.

When building its own certificate chain, an OpenSSL client/server will try to fill in missing certificates from
CAfile/CApath, if the certificate chain was not explicitly specified (see
SSL_CTX_add_extra_chain_cert(3), SSL_CTX_use_certificate(3).

WARNINGS
If several CA certificates matching the name, key identifier, and serial number condition are available, only
the first one will be examined. This may lead to unexpected results if the sameCA certificate is available
with different expiration dates. If a ‘‘certificate expired’’ verification error occurs, no other certificate will
be searched. Make sure to not have expired certificates mixed with valid ones.

EXAMPLES
Generate aCA certificate file with descriptive text from theCA certificates ca1.pem ca2.pem ca3.pem:

0.9.9-dev 2002-06-09 1

SSL_CTX_load_verify_locations(3) OpenSSL SSL_CTX_load_verify_locations(3)

#!/bin/sh
rm CAfile.pem
for i in ca1.pem ca2.pem ca3.pem ; do

openssl x509 -in $i -text >> CAfile.pem
done

Prepare the directory /some/where/certs containing several CA certificates for use asCApath:

cd /some/where/certs
c_rehash .

RETURN VALUES
The following return values can occur:

0 The operation failed becauseCAfile andCApath areNULL or the processing at one of the locations
specified failed. Check the error stack to find out the reason.

1 The operation succeeded.

SEE ALSO
ssl(3), SSL_CTX_set_client_CA_list(3), SSL_get_client_CA_list(3), SSL_CTX_use_certificate(3),
SSL_CTX_add_extra_chain_cert(3), SSL_CTX_set_cert_store(3)

0.9.9-dev 2002-06-09 2

SSL_CTX_new(3) OpenSSL SSL_CTX_new(3)

NAME
SSL_CTX_new − create a new SSL_CTX object as framework for TLS/SSL enabled functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

SSL_CTX *SSL_CTX_new(const SSL_METHOD *method);

DESCRIPTION
SSL_CTX_new()creates a newSSL_CTX object as framework to establishTLS/SSLenabled connections.

NOTES
The SSL_CTX object usesmethod as connection method. The methods exist in a generic type (for client
and server use), a server only type, and a client only type.methodcan be of the following types:

SSLv2_method(void), SSLv2_server_method(void), SSLv2_client_method(void)
A TLS/SSL connection established with these methods will only understand the SSLv2 protocol. A
client will send out SSLv2 client hello messages and will also indicate that it only understand SSLv2.
A server will only understand SSLv2 client hello messages.

SSLv3_method(void), SSLv3_server_method(void), SSLv3_client_method(void)
A TLS/SSL connection established with these methods will only understand the SSLv3 protocol. A
client will send out SSLv3 client hello messages and will indicate that it only understands SSLv3. A
server will only understand SSLv3 client hello messages. This especially means, that it will not under-
stand SSLv2 client hello messages which are widely used for compatibility reasons, see
SSLv23_*_method().

TLSv1_method(void), TLSv1_server_method(void), TLSv1_client_method(void)
A TLS/SSL connection established with these methods will only understand the TLSv1 protocol. A
client will send out TLSv1 client hello messages and will indicate that it only understands TLSv1. A
server will only understand TLSv1 client hello messages. This especially means, that it will not under-
stand SSLv2 client hello messages which are widely used for compatibility reasons, see
SSLv23_*_method(). It will also not understand SSLv3 client hello messages.

SSLv23_method(void), SSLv23_server_method(void), SSLv23_client_method(void)
A TLS/SSLconnection established with these methods will understand the SSLv2, SSLv3, and TLSv1
protocol. A client will send out SSLv2 client hello messages and will indicate that it also understands
SSLv3 and TLSv1. A server will understand SSLv2, SSLv3, and TLSv1 client hello messages. This is
the best choice when compatibility is a concern.

The list of protocols available can later be limited using the SSL_OP_NO_SSLv2, SSL_OP_NO_SSLv3,
SSL_OP_NO_TLSv1 options of theSSL_CTX_set_options()or SSL_set_options()functions. Using these
options it is possible to choose e.g.SSLv23_server_method()and be able to negotiate with all possible
clients, but to only allow newer protocols like SSLv3 or TLSv1.

SSL_CTX_new()initializes the list of ciphers, the session cache setting, the callbacks, the keys and certifi-
cates, and the options to its default values.

RETURN VALUES
The following return values can occur:

NULL
The creation of a newSSL_CTXobject failed. Check the error stack to find out the reason.

Pointer to anSSL_CTXobject
The return value points to an allocatedSSL_CTXobject.

SEE ALSO
SSL_CTX_free(3), SSL_accept(3), ssl(3), SSL_set_connect_state(3)

0.9.9-dev 2008-05-09 1

SSL_CTX_sess_number(3) OpenSSL SSL_CTX_sess_number(3)

NAME
SSL_CTX_sess_number, SSL_CTX_sess_connect, SSL_CTX_sess_connect_good, SSL_CTX_sess_con-
nect_renegotiate, SSL_CTX_sess_accept, SSL_CTX_sess_accept_good, SSL_CTX_sess_accept_renegoti-
ate, SSL_CTX_sess_hits, SSL_CTX_sess_cb_hits, SSL_CTX_sess_misses, SSL_CTX_sess_timeouts,
SSL_CTX_sess_cache_full − obtain session cache statistics

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_sess_number(SSL_CTX *ctx);
long SSL_CTX_sess_connect(SSL_CTX *ctx);
long SSL_CTX_sess_connect_good(SSL_CTX *ctx);
long SSL_CTX_sess_connect_renegotiate(SSL_CTX *ctx);
long SSL_CTX_sess_accept(SSL_CTX *ctx);
long SSL_CTX_sess_accept_good(SSL_CTX *ctx);
long SSL_CTX_sess_accept_renegotiate(SSL_CTX *ctx);
long SSL_CTX_sess_hits(SSL_CTX *ctx);
long SSL_CTX_sess_cb_hits(SSL_CTX *ctx);
long SSL_CTX_sess_misses(SSL_CTX *ctx);
long SSL_CTX_sess_timeouts(SSL_CTX *ctx);
long SSL_CTX_sess_cache_full(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_sess_number()returns the current number of sessions in the internal session cache.

SSL_CTX_sess_connect()returns the number of startedSSL/TLShandshakes in client mode.

SSL_CTX_sess_connect_good()returns the number of successfully establishedSSL/TLS sessions in client
mode.

SSL_CTX_sess_connect_renegotiate()returns the number of start renegotiations in client mode.

SSL_CTX_sess_accept()returns the number of startedSSL/TLShandshakes in server mode.

SSL_CTX_sess_accept_good()returns the number of successfully establishedSSL/TLS sessions in server
mode.

SSL_CTX_sess_accept_renegotiate()returns the number of start renegotiations in server mode.

SSL_CTX_sess_hits()returns the number of successfully reused sessions.In client mode a session set with
SSL_set_session(3) successfully reused is counted as a hit. In server mode a session successfully retrieved
from internal or external cache is counted as a hit.

SSL_CTX_sess_cb_hits()returns the number of successfully retrieved sessions from the external session
cache in server mode.

SSL_CTX_sess_misses()returns the number of sessions proposed by clients that were not found in the inter-
nal session cache in server mode.

SSL_CTX_sess_timeouts()returns the number of sessions proposed by clients and either found in the inter-
nal or external session cache in server mode,
but that were invalid due to timeout. These sessions are not included in theSSL_CTX_sess_hits()count.

SSL_CTX_sess_cache_full()returns the number of sessions that were removed because the maximum ses-
sion cache size was exceeded.

RETURN VALUES
The functions return the values indicated in theDESCRIPTIONsection.

SEE ALSO
ssl(3), SSL_set_session(3), SSL_CTX_set_session_cache_mode(3) SSL_CTX_sess_set_cache_size(3)

0.9.9-dev 2001-04-11 1

SSL_CTX_sess_set_cache_size(3) OpenSSL SSL_CTX_sess_set_cache_size(3)

NAME
SSL_CTX_sess_set_cache_size, SSL_CTX_sess_get_cache_size − manipulate session cache size

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, long t);
long SSL_CTX_sess_get_cache_size(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_sess_set_cache_size()sets the size of the internal session cache of contextctx to t.

SSL_CTX_sess_get_cache_size()returns the currently valid session cache size.

NOTES
The internal session cache size isSSL_SESSION_CACHE_MAX_SIZE_DEFAULT, currently 1024*20, so that
up to 20000 sessions can be held. This size can be modified using theSSL_CTX_sess_set_cache_size()call.
A special case is the size 0, which is used for unlimited size.

When the maximum number of sessions is reached, no more new sessions are added to the cache. New
space may be added by callingSSL_CTX_flush_sessions(3) to remove expired sessions.

If the size of the session cache is reduced and more sessions are already in the session cache, old session
will be removed at the next time a session shall be added. This removal is not synchronized with the expira-
tion of sessions.

RETURN VALUES
SSL_CTX_sess_set_cache_size()returns the previously valid size.

SSL_CTX_sess_get_cache_size()returns the currently valid size.

SEE ALSO
ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_sess_number(3), SSL_CTX_flush_sessions(3)

0.9.9-dev 2002-07-30 1

SSL_CTX_sess_set_get_cb(3) OpenSSL SSL_CTX_sess_set_get_cb(3)

NAME
SSL_CTX_sess_set_new_cb, SSL_CTX_sess_set_remove_cb, SSL_CTX_sess_set_get_cb,
SSL_CTX_sess_get_new_cb, SSL_CTX_sess_get_remove_cb, SSL_CTX_sess_get_get_cb − provide call-
back functions for server side external session caching

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_sess_set_new_cb(SSL_CTX *ctx,
int (*new_session_cb)(SSL *, SSL_SESSION *));

void SSL_CTX_sess_set_remove_cb(SSL_CTX *ctx,
void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *));

void SSL_CTX_sess_set_get_cb(SSL_CTX *ctx,
SSL_SESSION (*get_session_cb)(SSL *, unsigned char *, int, int *));

int (*SSL_CTX_sess_get_new_cb(SSL_CTX *ctx))(struct ssl_st *ssl, SSL_SESSION *sess);
void (*SSL_CTX_sess_get_remove_cb(SSL_CTX *ctx))(struct ssl_ctx_st *ctx, SSL_SESSION *sess);
SSL_SESSION *(*SSL_CTX_sess_get_get_cb(SSL_CTX *ctx))(struct ssl_st *ssl, unsigned char *data, int len, int *copy);

int (*new_session_cb)(struct ssl_st *ssl, SSL_SESSION *sess);
void (*remove_session_cb)(struct ssl_ctx_st *ctx, SSL_SESSION *sess);
SSL_SESSION *(*get_session_cb)(struct ssl_st *ssl, unsigned char *data,

int len, int *copy);

DESCRIPTION
SSL_CTX_sess_set_new_cb()sets the callback function, which is automatically called whenever a new ses-
sion was negotiated.

SSL_CTX_sess_set_remove_cb()sets the callback function, which is automatically called whenever a ses-
sion is removed by the SSL engine, because it is considered faulty or the session has become obsolete
because of exceeding the timeout value.

SSL_CTX_sess_set_get_cb()sets the callback function which is called, whenever a SSL/TLSclient proposed
to resume a session but the session could not be found in the internal session cache (seeSSL_CTX_set_ses-
sion_cache_mode(3)). (SSL/TLSserver only.)

SSL_CTX_sess_get_new_cb(), SSL_CTX_sess_get_remove_cb(), and SSL_CTX_sess_get_get_cb()allow to
retrieve the function pointers of the provided callback functions. If a callback function has not been set, the
NULL pointer is returned.

NOTES
In order to allow external session caching, synchronization with the internal session cache is realized via
callback functions. Inside these callback functions, session can be saved to disk or put into a database using
thed2i_SSL_SESSION(3) interface.

Thenew_session_cb()is called, whenever a new session has been negotiated and session caching is enabled
(seeSSL_CTX_set_session_cache_mode(3)). Thenew_session_cb()is passed thessl connection and the
ssl sessionsess. If the callback returns0, the session will be immediately removed again.

The remove_session_cb()is called, whenever the SSL engine removes a session from the internal cache.
This happens when the session is removed because it is expired or when a connection was not shutdown
cleanly. It also happens for all sessions in the internal session cache whenSSL_CTX_free(3) is called. The
remove_session_cb()is passed thectx and the ssl sessionsess. It does not provide any feedback.

The get_session_cb()is only called onSSL/TLS servers with the session id proposed by the client. The
get_session_cb()is always called, also when session caching was disabled. Theget_session_cb()is passed
the ssl connection, the session id of lengthlength at the memory locationdata. With the parametercopy
the callback can require theSSL engine to increment the reference count of theSSL_SESSIONobject, Nor-
mally the reference count is not incremented and therefore the session must not be explicitly freed with

0.9.9-dev 2003-07-24 1

SSL_CTX_sess_set_get_cb(3) OpenSSL SSL_CTX_sess_set_get_cb(3)

SSL_SESSION_free(3).

SEE ALSO
ssl(3), d2i_SSL_SESSION(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_flush_sessions(3),
SSL_SESSION_free(3), SSL_CTX_free(3)

0.9.9-dev 2003-07-24 2

SSL_CTX_sessions(3) OpenSSL SSL_CTX_sessions(3)

NAME
SSL_CTX_sessions − access internal session cache

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

struct lhash_st *SSL_CTX_sessions(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_sessions()returns a pointer to the lhash databases containing the internal session cache forctx.

NOTES
The sessions in the internal session cache are kept in anopenssl_lhash(3) type database. It is possible to
directly access this database e.g. for searching. In parallel, the sessions form a linked list which is main-
tained separately from theopenssl_lhash(3) operations, so that the database must not be modified directly
but by using theSSL_CTX_add_session(3) family of functions.

SEE ALSO
ssl(3), openssl_lhash(3), SSL_CTX_add_session(3), SSL_CTX_set_session_cache_mode(3)

0.9.9-dev 2001-04-11 1

SSL_CTX_set_cert_store(3) OpenSSL SSL_CTX_set_cert_store(3)

NAME
SSL_CTX_set_cert_store, SSL_CTX_get_cert_store − manipulate X509 certificate verification storage

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store);
X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_set_cert_store()sets/replaces the certificate verification storage ofctx to/with store. If another
X509_STORE object is currently set inctx, it will be X509_STORE_free()ed.

SSL_CTX_get_cert_store()returns a pointer to the current certificate verification storage.

NOTES
In order to verify the certificates presented by the peer, trustedCA certificates must be accessed. TheseCA
certificates are made available via lookup methods, handled inside the X509_STORE. From the
X509_STORE the X509_STORE_CTX used when verifying certificates is created.

Typically the trusted certificate store is handled indirectly via usingSSL_CTX_load_verify_locations(3).
Using theSSL_CTX_set_cert_store()andSSL_CTX_get_cert_store()functions it is possible to manipulate
the X509_STORE object beyond theSSL_CTX_load_verify_locations(3) call.

Currently no detailed documentation on how to use the X509_STORE object is available. Not all members
of the X509_STORE are used when the verification takes place. So will e.g. theverify_callback()be over-
ridden with theverify_callback()set via theSSL_CTX_set_verify(3) family of functions. This document
must therefore be updated when documentation about the X509_STORE object and its handling becomes
available.

RETURN VALUES
SSL_CTX_set_cert_store()does not return diagnostic output.

SSL_CTX_get_cert_store()returns the current setting.

SEE ALSO
ssl(3), SSL_CTX_load_verify_locations(3), SSL_CTX_set_verify(3)

0.9.9-dev 2005-04-23 1

SSL_CTX_set_cert_verify_callback(3) OpenSSL SSL_CTX_set_cert_verify_callback(3)

NAME
SSL_CTX_set_cert_verify_callback − set peer certificate verification procedure

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*callback)(X509_STORE_CTX *,void *), void *arg);

DESCRIPTION
SSL_CTX_set_cert_verify_callback()sets the verification callback function forctx. SSLobjects that are cre-
ated fromctx inherit the setting valid at the time whenSSL_new(3) is called.

NOTES
Whenever a certificate is verified during aSSL/TLShandshake, a verification function is called. If the appli-
cation does not explicitly specify a verification callback function, the built-in verification function is used.
If a verification callbackcallback is specified viaSSL_CTX_set_cert_verify_callback(), the supplied call-
back function is called instead. By settingcallbackto NULL , the default behaviour is restored.

When the verification must be performed,callback will be called with the arguments call-
back(X509_STORE_CTX *x509_store_ctx, void *arg). The argumentarg is specified by the application
when settingcallback.

callbackshould return 1 to indicate verification success and 0 to indicate verification failure. IfSSL_VER-
IFY_PEERis set andcallbackreturns 0, the handshake will fail. As the verification procedure may allow to
continue the connection in case of failure (by always returning 1) the verification result must be set in any
case using theerror member ofx509_store_ctxso that the calling application will be informed about the
detailed result of the verification procedure!

Within x509_store_ctx, callback has access to theverify_callbackfunction set usingSSL_CTX_set_ver-
ify (3).

WARNINGS
Do not mix the verification callback described in this function with theverify_callback function called dur-
ing the verification process. The latter is set using theSSL_CTX_set_verify(3) family of functions.

Providing a complete verification procedure including certificate purpose settings etc is a complex task. The
built-in procedure is quite powerful and in most cases it should be sufficient to modify its behaviour using
theverify_callback function.

BUGS
RETURN VALUES

SSL_CTX_set_cert_verify_callback()does not provide diagnostic information.

SEE ALSO
ssl(3), SSL_CTX_set_verify(3), SSL_get_verify_result(3), SSL_CTX_load_verify_locations(3)

HISTORY
Previous to OpenSSL 0.9.7, thearg argument toSSL_CTX_set_cert_verify_callbackwas ignored, and
callbackwas called simply as
int (*callback)(X509_STORE_CTX *) To compile software written for previous versions of OpenSSL, a
dummy argument will have to be added tocallback.

0.9.9-dev 2003-07-24 1

SSL_CTX_set_cipher_list(3) OpenSSL SSL_CTX_set_cipher_list(3)

NAME
SSL_CTX_set_cipher_list, SSL_set_cipher_list − choose list of available SSL_CIPHERs

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str);
int SSL_set_cipher_list(SSL *ssl, const char *str);

DESCRIPTION
SSL_CTX_set_cipher_list()sets the list of available ciphers forctx using the control stringstr. The format
of the string is described inopenssl_ciphers(1). The list of ciphers is inherited by allssl objects created
from ctx.

SSL_set_cipher_list()sets the list of ciphers only forssl.

NOTES
The control stringstr should be universally usable and not depend on details of the library configuration
(ciphers compiled in). Thus no syntax checking takes place. Items that are not recognized, because the cor-
responding ciphers are not compiled in or because they are mistyped, are simply ignored. Failure is only
flagged if no ciphers could be collected at all.

It should be noted, that inclusion of a cipher to be used into the list is a necessary condition. On the client
side, the inclusion into the list is also sufficient. On the server side, additional restrictions apply. All ciphers
have additional requirements.ADH ciphers don’t need a certificate, but DH-parameters must have been set.
All other ciphers need a corresponding certificate and key.

A RSA cipher can only be chosen, when aRSA certificate is available. RSA export ciphers with a keylength
of 512 bits for theRSA key require a temporary 512 bitRSA key, as typically the supplied key has a length
of 1024 bit (seeSSL_CTX_set_tmp_rsa_callback(3)). RSA ciphers usingEDH need a certificate and key
and additional DH-parameters (seeSSL_CTX_set_tmp_dh_callback(3)).

A DSA cipher can only be chosen, when aDSA certificate is available. DSA ciphers always useDH key
exchange and therefore need DH-parameters (seeSSL_CTX_set_tmp_dh_callback(3)).

When these conditions are not met for any cipher in the list (e.g. a client only supports export RSA ciphers
with a asymmetric key length of 512 bits and the server is not configured to use temporaryRSA keys), the
‘‘ no shared cipher’’ (SSL_R_NO_SHARED_CIPHER) error is generated and the handshake will fail.

RETURN VALUES
SSL_CTX_set_cipher_list()and SSL_set_cipher_list()return 1 if any cipher could be selected and 0 on
complete failure.

SEE ALSO
ssl(3), SSL_get_ciphers(3), SSL_CTX_use_certificate(3), SSL_CTX_set_tmp_rsa_callback(3),
SSL_CTX_set_tmp_dh_callback(3), openssl_ciphers(1)

0.9.9-dev 2002-06-09 1

SSL_CTX_set_client_CA_list(3) OpenSSL SSL_CTX_set_client_CA_list(3)

NAME
SSL_CTX_set_client_CA_list, SSL_set_client_CA_list, SSL_CTX_add_client_CA, SSL_add_client_CA
− set list of CAs sent to the client when requesting a client certificate

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *list);
void SSL_set_client_CA_list(SSL *s, STACK_OF(X509_NAME) *list);
int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *cacert);
int SSL_add_client_CA(SSL *ssl, X509 *cacert);

DESCRIPTION
SSL_CTX_set_client_CA_list()sets thelist of CAs sent to the client when requesting a client certificate for
ctx.

SSL_set_client_CA_list()sets thelist of CAs sent to the client when requesting a client certificate for the
chosenssl, overriding the setting valid forssl’s SSL_CTXobject.

SSL_CTX_add_client_CA()adds theCA name extracted fromcacert to the list of CAs sent to the client
when requesting a client certificate forctx.

SSL_add_client_CA()adds theCA name extracted fromcacert to the list of CAs sent to the client when
requesting a client certificate for the chosenssl, overriding the setting valid forssl’s SSL_CTXobject.

NOTES
When aTLS/SSLserver requests a client certificate (seeSSL_CTX_set_verify_options()), it sends a list of
CAs, for which it will accept certificates, to the client.

This list must explicitly be set usingSSL_CTX_set_client_CA_list()for ctx andSSL_set_client_CA_list()
for the specificssl. The list specified overrides the previous setting. The CAs listed do not become trusted
(list only contains the names, not the complete certificates); useSSL_CTX_load_verify_locations(3) to
additionally load them for verification.

If the list of acceptable CAs is compiled in a file, theSSL_load_client_CA_file(3) function can be used to
help importing the necessary data.

SSL_CTX_add_client_CA()andSSL_add_client_CA()can be used to add additional items the list of client
CAs. If no list was specified before usingSSL_CTX_set_client_CA_list()or SSL_set_client_CA_list(), a
new client CA list for ctx or ssl(as appropriate) is opened.

These functions are only useful forTLS/SSLservers.

RETURN VALUES
SSL_CTX_set_client_CA_list()andSSL_set_client_CA_list()do not return diagnostic information.

SSL_CTX_add_client_CA()andSSL_add_client_CA()have the following return values:

1 The operation succeeded.

0 A failure while manipulating theSTACK_OF(X509_NAME) object occurred or the X509_NAME
could not be extracted fromcacert. Check the error stack to find out the reason.

EXAMPLES
Scan all certificates inCAfile and list them as acceptable CAs:

SSL_CTX_set_client_CA_list(ctx,SSL_load_client_CA_file(CAfile));

SEE ALSO
ssl(3), SSL_get_client_CA_list(3), SSL_load_client_CA_file(3), SSL_CTX_load_verify_locations(3)

0.9.9-dev 2001-07-10 1

SSL_CTX_set_client_cert_cb(3) OpenSSL SSL_CTX_set_client_cert_cb(3)

NAME
SSL_CTX_set_client_cert_cb, SSL_CTX_get_client_cert_cb − handle client certificate callback function

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_client_cert_cb(SSL_CTX *ctx, int (*client_cert_cb)(SSL *ssl, X509 **x509, EVP_PKEY **pkey));
int (*SSL_CTX_get_client_cert_cb(SSL_CTX *ctx))(SSL *ssl, X509 **x509, EVP_PKEY **pkey);
int (*client_cert_cb)(SSL *ssl, X509 **x509, EVP_PKEY **pkey);

DESCRIPTION
SSL_CTX_set_client_cert_cb()sets theclient_cert_cb()callback, that is called when a client certificate is
requested by a server and no certificate was yet set for theSSLobject.

Whenclient_cert_cb()is NULL , no callback function is used.

SSL_CTX_get_client_cert_cb()returns a pointer to the currently set callback function.

client_cert_cb()is the application defined callback. If it wants to set a certificate, a certificate/private key
combination must be set using thex509andpkey arguments and ‘‘1’ ’ must be returned. The certificate will
be installed intossl, see theNOTES and BUGS sections. Ifno certificate should be set, ‘‘0’ ’ has to be
returned and no certificate will be sent. A negative return value will suspend the handshake and the hand-
shake function will return immediatly. SSL_get_error(3) will returnSSL_ERROR_WANT_X509_LOOKUPto
indicate, that the handshake was suspended. The next call to the handshake function will again lead to the
call of client_cert_cb(). It is the job of theclient_cert_cb()to store information about the state of the last
call, if required to continue.

NOTES
During a handshake (or renegotiation) a server may request a certificate from the client. A client certificate
must only be sent, when the server did send the request.

When a certificate was set using theSSL_CTX_use_certificate(3) family of functions, it will be sent to the
server. TheTLS standard requires that only a certificate is sent, if it matches the list of acceptable CAs sent
by the server. This constraint is violated by the default behavior of the OpenSSL library. Using the callback
function it is possible to implement a proper selection routine or to allow a user interaction to choose the
certificate to be sent.

If a callback function is defined and no certificate was yet defined for theSSL object, the callback function
will be called. If the callback function returns a certificate, the OpenSSL library will try to load the private
key and certificate data into theSSLobject using theSSL_use_certificate()andSSL_use_private_key() func-
tions. Thusit will permanently install the certificate and key for thisSSLobject. It will not be reset by call-
ing SSL_clear(3). If the callback returns no certificate, the OpenSSL library will not send a certificate.

BUGS
The client_cert_cb()cannot return a complete certificate chain, it can only return one client certificate. If
the chain only has a length of 2, the rootCA certificate may be omitted according to theTLS standard and
thus a standard conforming answer can be sent to the server. For a longer chain, the client must send the
complete chain (with the option to leave out the rootCA certificate). This can only be accomplished by
either adding the intermediateCA certificates into the trusted certificate store for theSSL_CTX object
(resulting in having to addCA certificates that otherwise maybe would not be trusted), or by adding the
chain certificates using theSSL_CTX_add_extra_chain_cert(3) function, which is only available for the
SSL_CTXobject as a whole and that therefore probably can only apply for one client certificate, making the
concept of the callback function (to allow the choice from several certificates) questionable.

Once theSSL object has been used in conjunction with the callback function, the certificate will be set for
theSSLobject and will not be cleared even whenSSL_clear(3) is being called. It is therefore mandatory to
destroy theSSLobject usingSSL_free(3) and create a new one to return to the previous state.

0.9.9-dev 2002-07-30 1

SSL_CTX_set_client_cert_cb(3) OpenSSL SSL_CTX_set_client_cert_cb(3)

SEE ALSO
ssl(3), SSL_CTX_use_certificate(3), SSL_CTX_add_extra_chain_cert(3), SSL_get_client_CA_list(3),
SSL_clear(3), SSL_free(3)

0.9.9-dev 2002-07-30 2

SSL_CTX_set_default_passwd_cb(3) OpenSSL SSL_CTX_set_default_passwd_cb(3)

NAME
SSL_CTX_set_default_passwd_cb, SSL_CTX_set_default_passwd_cb_userdata − set passwd callback for
encrypted PEM file handling

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb);
void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u);

int pem_passwd_cb(char *buf, int size, int rwflag, void *userdata);

DESCRIPTION
SSL_CTX_set_default_passwd_cb()sets the default password callback called when loading/storing aPEM
certificate with encryption.

SSL_CTX_set_default_passwd_cb_userdata()sets a pointer touserdatawhich will be provided to the pass-
word callback on invocation.

The pem_passwd_cb(), which must be provided by the application, hands back the password to be used
during decryption. On invocation a pointer touserdata is provided. The pem_passwd_cb must write the
password into the provided buffer buf which is of sizesize. The actual length of the password must be
returned to the calling function.rwflag indicates whether the callback is used for reading/decryption
(rwflag=0) or writing/encryption (rwflag=1).

NOTES
When loading or storing private keys, a password might be supplied to protect the private key. The way this
password can be supplied may depend on the application. If only one private key is handled, it can be prac-
tical to have pem_passwd_cb()handle the password dialog interactively. If sev eral keys hav eto be handled,
it can be practical to ask for the password once, then keep it in memory and use it several times. In the last
case, the password could be stored into theuserdata storage and thepem_passwd_cb()only returns the
password already stored.

When asking for the password interactively, pem_passwd_cb()can userwflag to check, whether an item
shall be encrypted (rwflag=1). In this case the password dialog may ask for the same password twice for
comparison in order to catch typos, that would make decryption impossible.

Other items inPEM formatting (certificates) can also be encrypted, it is however not usual, as certificate
information is considered public.

RETURN VALUES
SSL_CTX_set_default_passwd_cb()andSSL_CTX_set_default_passwd_cb_userdata()do not provide diag-
nostic information.

EXAMPLES
The following example returns the password provided asuserdata to the calling function. The password is
considered to be a ’\0’ terminated string. If the password does not fit into the buffer, the password is trun-
cated.

int pem_passwd_cb(char *buf, int size, int rwflag, void *password)
{

strncpy(buf, (char *)(password), size);
buf[size - 1] = ’\0’;
return(strlen(buf));

}

SEE ALSO
ssl(3), SSL_CTX_use_certificate(3)

0.9.9-dev 2002-06-09 1

SSL_CTX_set_generate_session_id(3) OpenSSL SSL_CTX_set_generate_session_id(3)

NAME
SSL_CTX_set_generate_session_id, SSL_set_generate_session_id, SSL_has_matching_session_id −
manipulate generation of SSL session IDs (server only)

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

typedef int (*GEN_SESSION_CB)(const SSL *ssl, unsigned char *id,
unsigned int *id_len);

int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb);
int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB, cb);
int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,

unsigned int id_len);

DESCRIPTION
SSL_CTX_set_generate_session_id()sets the callback function for generating new session ids forSSL/TLS
sessions forctx to becb.

SSL_set_generate_session_id()sets the callback function for generating new session ids forSSL/TLS ses-
sions forssl to becb.

SSL_has_matching_session_id()checks, whether a session with idid (of length id_len) is already con-
tained in the internal session cache of the parent context ofssl.

NOTES
When a new session is established between client and server, the server generates a session id. The session
id is an arbitrary sequence of bytes.The length of the session id is 16 bytes for SSLv2 sessions and
between 1 and 32 bytes for SSLv3/TLSv1. The session id is not security critical but must be unique for the
server. Additionally, the session id is transmitted in the clear when reusing the session so it must not contain
sensitive information.

Without a callback being set, an OpenSSL server will generate a unique session id from pseudo random
numbers of the maximum possible length.Using the callback function, the session id can be changed to
contain additional information like e.g. a host id in order to improve load balancing or external caching
techniques.

The callback function receives a pointer to the memory location to putid into and a pointer to the maxi-
mum allowed lengthid_len. The buffer at locationid is only guaranteed to have the sizeid_len. The call-
back is only allowed to generate a shorter id and reduceid_len; the callbackmust never increaseid_len or
write to the locationid exceeding the given limit.

If a SSLv2 session id is generated andid_len is reduced, it will be restored after the callback has finished
and the session id will be padded with 0x00. It is not recommended to change theid_len for SSLv2 ses-
sions. Thecallback can use theSSL_get_version(3) function to check, whether the session is of type
SSLv2.

The locationid is filled with 0x00 before the callback is called, so the callback may only fill part of the pos-
sible length and leave id_len untouched while maintaining reproducibility.

Since the sessions must be distinguished, session ids must be unique.Without the callback a random num-
ber is used, so that the probability of generating the same session id is extremely small (2ˆ128 possible ids
for an SSLv2 session, 2ˆ256 for SSLv3/TLSv1). In order to assure the uniqueness of the generated session
id, the callback must callSSL_has_matching_session_id()and generate another id if a conflict occurs. If an
id conflict is not resolved, the handshake will f ail. If the application codes e.g. a unique host id, a unique
process number, and a unique sequence number into the session id, uniqueness could easily be achieved
without randomness added (it should however be taken care that no confidential information is leaked this
way). If the application can not guarantee uniqueness, it is recommended to use the maximumid_len and
fill in the bytes not used to code special information with random data to avoid collisions.

0.9.9-dev 2003-07-24 1

SSL_CTX_set_generate_session_id(3) OpenSSL SSL_CTX_set_generate_session_id(3)

SSL_has_matching_session_id()will only query the internal session cache, not the external one. Since the
session id is generated before the handshake is completed, it is not immediately added to the cache. If
another thread is using the same internal session cache, a race condition can occur in that another thread
generates the same session id. Collisions can also occur when using an external session cache, since the
external cache is not tested withSSL_has_matching_session_id()and the same race condition applies.

When callingSSL_has_matching_session_id()for an SSLv2 session with reducedid_len, the match opera-
tion will be performed using the fixed length required and with a 0x00 padded id.

The callback must return 0 if it cannot generate a session id for whatever reason and return 1 on success.

EXAMPLES
The callback function listed will generate a session id with the server id given, and will fill the rest with
pseudo random bytes:

const char session_id_prefix = "www-18";

#define MAX_SESSION_ID_ATTEMPTS 10
static int generate_session_id(const SSL *ssl, unsigned char *id,

unsigned int *id_len)
{
unsigned int count = 0;
const char *version;

version = SSL_get_version(ssl);
if (!strcmp(version, "SSLv2"))

/* we must not change id_len */;

do {
RAND_pseudo_bytes(id, *id_len);
/* Prefix the session_id with the required prefix. NB: If our

* p refix is too long, clip it - but there will be worse effects
* a nyway, eg. the server could only possibly create 1 session
* ID (ie. the prefix!) so all future session negotiations will
* f ail due to conflicts. */

memcpy(id, session_id_prefix,
(strlen(session_id_prefix) < *id_len) ?
strlen(session_id_prefix) : *id_len);

}
while(SSL_has_matching_session_id(ssl, id, *id_len) &&

(++count < MAX_SESSION_ID_ATTEMPTS));
if(count >= MAX_SESSION_ID_ATTEMPTS)

return 0;
return 1;
}

RETURN VALUES
SSL_CTX_set_generate_session_id()andSSL_set_generate_session_id()always return 1.

SSL_has_matching_session_id()returns 1 if another session with the same id is already in the cache.

SEE ALSO
ssl(3), SSL_get_version(3)

HISTORY
SSL_CTX_set_generate_session_id(), SSL_set_generate_session_id()and SSL_has_matching_session_id()
have been introduced in OpenSSL 0.9.7.

0.9.9-dev 2003-07-24 2

SSL_CTX_set_info_callback(3) OpenSSL SSL_CTX_set_info_callback(3)

NAME
SSL_CTX_set_info_callback, SSL_CTX_get_info_callback, SSL_set_info_callback, SSL_get_info_call-
back − handle information callback for SSL connections

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_info_callback(SSL_CTX *ctx, void (*callback)());
void (*SSL_CTX_get_info_callback(const SSL_CTX *ctx))();

void SSL_set_info_callback(SSL *ssl, void (*callback)());
void (*SSL_get_info_callback(const SSL *ssl))();

DESCRIPTION
SSL_CTX_set_info_callback()sets thecallback function, that can be used to obtain state information for
SSL objects created fromctx during connection setup and use. The setting forctx is overridden from the
setting for a specificSSLobject, if specified. Whencallback is NULL , not callback function is used.

SSL_set_info_callback()sets thecallback function, that can be used to obtain state information forssldur-
ing connection setup and use. Whencallback is NULL , the callback setting currently valid forctx is used.

SSL_CTX_get_info_callback()returns a pointer to the currently set information callback function forctx.

SSL_get_info_callback()returns a pointer to the currently set information callback function forssl.

NOTES
When setting up a connection and during use, it is possible to obtain state information from theSSL/TLS
engine. When set, an information callback function is called whenever the state changes, an alert appears,
or an error occurs.

The callback function is called ascallback(SSL *ssl, int where, int ret). The where argument specifies
information about where (in which context) the callback function was called. Ifret is 0, an error condition
occurred. Ifan alert is handled,SSL_CB_ALERTis set andret specifies the alert information.

where is a bitmask made up of the following bits:

SSL_CB_LOOP
Callback has been called to indicate state change inside a loop.

SSL_CB_EXIT
Callback has been called to indicate error exit of a handshake function. (Maybe soft error with retry
option for non-blocking setups.)

SSL_CB_READ
Callback has been called during read operation.

SSL_CB_WRITE
Callback has been called during write operation.

SSL_CB_ALERT
Callback has been called due to an alert being sent or received.

SSL_CB_READ_ALERT (SSL_CB_ALERTSSL_CB_READ)
SSL_CB_WRITE_ALERT (SSL_CB_ALERTSSL_CB_WRITE)
SSL_CB_ACCEPT_LOOP (SSL_ST_ACCEPTSSL_CB_LOOP)
SSL_CB_ACCEPT_EXIT (SSL_ST_ACCEPTSSL_CB_EXIT)
SSL_CB_CONNECT_LOOP (SSL_ST_CONNECTSSL_CB_LOOP)
SSL_CB_CONNECT_EXIT (SSL_ST_CONNECTSSL_CB_EXIT)
SSL_CB_HANDSHAKE_START

Callback has been called because a new handshake is started.

0.9.9-dev 2005-04-23 1

SSL_CTX_set_info_callback(3) OpenSSL SSL_CTX_set_info_callback(3)

SSL_CB_HANDSHAKE_DONE 0x20
Callback has been called because a handshake is finished.

The current state information can be obtained using theSSL_state_string(3) family of functions.

Theret information can be evaluated using theSSL_alert_type_string(3) family of functions.

RETURN VALUES
SSL_set_info_callback()does not provide diagnostic information.

SSL_get_info_callback()returns the current setting.

EXAMPLES
The following example callback function prints state strings, information about alerts being handled and
error messages to thebio_err BIO.

void apps_ssl_info_callback(SSL *s, int where, int ret)
{
const char *str;
int w;

w=where& ˜SSL_ST_MASK;

if (w & SSL_ST_CONNECT) str="SSL_connect";
else if (w & SSL_ST_ACCEPT) str="SSL_accept";
else str="undefined";

if (where & SSL_CB_LOOP)
{
BIO_printf(bio_err,"%s:%s\n",str,SSL_state_string_long(s));
}

else if (where & SSL_CB_ALERT)
{
str=(where & SSL_CB_READ)?"read":"write";
BIO_printf(bio_err,"SSL3 alert %s:%s:%s\n",

str,
SSL_alert_type_string_long(ret),
SSL_alert_desc_string_long(ret));

}
else if (where & SSL_CB_EXIT)

{
if (ret == 0)

BIO_printf(bio_err,"%s:failed in %s\n",
str,SSL_state_string_long(s));

else if (ret < 0)
{
BIO_printf(bio_err,"%s:error in %s\n",

str,SSL_state_string_long(s));
}

}
}

SEE ALSO
ssl(3), SSL_state_string(3), SSL_alert_type_string(3)

0.9.9-dev 2005-04-23 2

SSL_CTX_set_max_cert_list(3) OpenSSL SSL_CTX_set_max_cert_list(3)

NAME
SSL_CTX_set_max_cert_list, SSL_CTX_get_max_cert_list, SSL_set_max_cert_list,
SSL_get_max_cert_list, − manipulate allowed for the peer’s certificate chain

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_max_cert_list(SSL_CTX *ctx, long size);
long SSL_CTX_get_max_cert_list(SSL_CTX *ctx);

long SSL_set_max_cert_list(SSL *ssl, long size);
long SSL_get_max_cert_list(SSL *ctx);

DESCRIPTION
SSL_CTX_set_max_cert_list()sets the maximum size allowed for the peer’s certificate chain for allSSL
objects created fromctx to be <size> bytes.The SSL objects inherit the setting valid forctx at the time
SSL_new(3) is being called.

SSL_CTX_get_max_cert_list()returns the currently set maximum size forctx.

SSL_set_max_cert_list()sets the maximum size allowed for the peer’s certificate chain forssl to be <size>
bytes. This setting stays valid until a new value is set.

SSL_get_max_cert_list()returns the currently set maximum size forssl.

NOTES
During the handshake process, the peer may send a certificate chain.The TLS/SSLstandard does not give
any maximum size of the certificate chain.The OpenSSL library handles incoming data by a dynamically
allocated buffer. In order to prevent this buffer from growing without bounds due to data received from a
faulty or malicious peer, a maximum size for the certificate chain is set.

The default value for the maximum certificate chain size is 100kB (30kB on the 16bitDOS platform). This
should be sufficient for usual certificate chains (OpenSSL’s default maximum chain length is 10, see
SSL_CTX_set_verify(3), and certificates without special extensions have a typical size of 1−2kB).

For special applications it can be necessary to extend the maximum certificate chain size allowed to be sent
by the peer, see e.g. the work on ‘‘Internet X.509 Public Key Infrastructure Proxy Certificate Profile’’ and
‘‘ TLS Delegation Protocol’’ at http://www.ietf.org/ and http://www.globus.org/ .

Under normal conditions it should never be necessary to set a value smaller than the default, as the buffer is
handled dynamically and only uses the memory actually required by the data sent by the peer.

If the maximum certificate chain size allowed is exceeded, the handshake will fail with a SSL_R_EXCES-
SIVE_MESSAGE_SIZEerror.

RETURN VALUES
SSL_CTX_set_max_cert_list()andSSL_set_max_cert_list()return the previously set value.

SSL_CTX_get_max_cert_list()andSSL_get_max_cert_list()return the currently set value.

SEE ALSO
ssl(3), SSL_new(3), SSL_CTX_set_verify(3)

HISTORY
SSL*_set/get_max_cert_list()have been introduced in OpenSSL 0.9.7.

0.9.9-dev 2003-07-24 1

SSL_CTX_set_mode(3) OpenSSL SSL_CTX_set_mode(3)

NAME
SSL_CTX_set_mode, SSL_set_mode, SSL_CTX_get_mode, SSL_get_mode − manipulate SSL engine
mode

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_mode(SSL_CTX *ctx, long mode);
long SSL_set_mode(SSL *ssl, long mode);

long SSL_CTX_get_mode(SSL_CTX *ctx);
long SSL_get_mode(SSL *ssl);

DESCRIPTION
SSL_CTX_set_mode()adds the mode set via bitmask inmode to ctx. Options already set before are not
cleared.

SSL_set_mode()adds the mode set via bitmask inmodeto ssl. Options already set before are not cleared.

SSL_CTX_get_mode()returns the mode set forctx.

SSL_get_mode()returns the mode set forssl.

NOTES
The following mode changes are available:

SSL_MODE_ENABLE_PARTIAL_WRITE
Allow SSL_write(..., n) to return r with 0 < r < n (i.e. report success when just a single record has been
written). When not set (the default),SSL_write()will only report success once the complete chunk was
written. OnceSSL_write()returns with r, r bytes have been successfully written and the next call to
SSL_write()must only send the n−r bytes left, imitating the behaviour ofwrite().

SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER
Make it possible to retrySSL_write()with changed buffer location (the buffer contents must stay the
same). This is not the default to avoid the misconception that non-blockingSSL_write()behaves like
non-blockingwrite().

SSL_MODE_AUTO_RETRY
Never bother the application with retries if the transport is blocking.If a renegotiation take place dur-
ing normal operation, aSSL_read(3) or SSL_write(3) would return with −1 and indicate the need to
retry with SSL_ERROR_WANT_READ. In a non-blocking environment applications must be prepared
to handle incomplete read/write operations.In a blocking environment, applications are not always
prepared to deal with read/write operations returning without success report. The flag
SSL_MODE_AUTO_RETRYwill cause read/write operations to only return after the handshake and suc-
cessful completion.

RETURN VALUES
SSL_CTX_set_mode()andSSL_set_mode()return the new mode bitmask after addingmode.

SSL_CTX_get_mode()andSSL_get_mode()return the current bitmask.

SEE ALSO
ssl(3), SSL_read(3), SSL_write(3)

HISTORY
SSL_MODE_AUTO_RETRYas been added in OpenSSL 0.9.6.

0.9.9-dev 2002-06-09 1

SSL_CTX_set_msg_callback(3) OpenSSL SSL_CTX_set_msg_callback(3)

NAME
SSL_CTX_set_msg_callback, SSL_CTX_set_msg_callback_arg, SSL_set_msg_callback,
SSL_get_msg_callback_arg − install callback for observing protocol messages

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg));
void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg);

void SSL_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg));
void SSL_set_msg_callback_arg(SSL_CTX *ctx, void *arg);

DESCRIPTION
SSL_CTX_set_msg_callback()or SSL_set_msg_callback()can be used to define a message callback func-
tion cb for observing allSSL/TLS protocol messages (such as handshake messages) that are received or
sent. SSL_CTX_set_msg_callback_arg()andSSL_set_msg_callback_arg()can be used to set argumentarg
to the callback function, which is available for arbitrary application use.

SSL_CTX_set_msg_callback()andSSL_CTX_set_msg_callback_arg()specify default settings that will be
copied to new SSL objects bySSL_new(3). SSL_set_msg_callback()and SSL_set_msg_callback_arg()
modify the actual settings of anSSL object. Using a0 pointer forcbdisables the message callback.

Whencb is called by theSSL/TLSlibrary for a protocol message, the function arguments have the following
meaning:

write_p
This flag is0 when a protocol message has been received and 1 when a protocol message has been
sent.

version
The protocol version according to which the protocol message is interpreted by the library. Currently,
this is one ofSSL2_VERSION, SSL3_VERSION andTLS1_VERSION (for SSL 2.0, SSL 3.0 andTLS
1.0, respectively).

content_type
In the case ofSSL 2.0, this is always 0. In the case ofSSL 3.0 orTLS 1.0, this is one of theContent-
Type values defined in the protocol specification (change_cipher_spec(20), alert(21), hand-
shake(22); but never application_data(23)because the callback will only be called for protocol mes-
sages).

buf, len
buf points to a buffer containing the protocol message, which consists oflen bytes. The buffer is no
longer valid after the callback function has returned.

ssl TheSSL object that received or sent the message.

arg The user-defined argument optionally defined bySSL_CTX_set_msg_callback_arg()or
SSL_set_msg_callback_arg().

NOTES
Protocol messages are passed to the callback function after decryption and fragment collection where appli-
cable. (Thus record boundaries are not visible.)

If processing a received protocol message results in an error, the callback function may not be called.For
example, the callback function will never see messages that are considered too large to be processed.

Due to automatic protocol version negotiation,versionis not necessarily the protocol version used by the
sender of the message: If aTLS 1.0 ClientHello message is received by an SSL3.0−only server,versionwill
beSSL3_VERSION.

0.9.9-dev 2003-07-24 1

SSL_CTX_set_msg_callback(3) OpenSSL SSL_CTX_set_msg_callback(3)

SEE ALSO
ssl(3), SSL_new(3)

HISTORY
SSL_CTX_set_msg_callback(), SSL_CTX_set_msg_callback_arg(), SSL_set_msg_callback() and
SSL_get_msg_callback_arg()were added in OpenSSL 0.9.7.

0.9.9-dev 2003-07-24 2

SSL_CTX_set_options(3) OpenSSL SSL_CTX_set_options(3)

NAME
SSL_CTX_set_options, SSL_set_options, SSL_CTX_get_options, SSL_get_options − manipulate SSL
engine options

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_options(SSL_CTX *ctx, long options);
long SSL_set_options(SSL *ssl, long options);

long SSL_CTX_get_options(SSL_CTX *ctx);
long SSL_get_options(SSL *ssl);

DESCRIPTION
SSL_CTX_set_options()adds the options set via bitmask inoptions to ctx. Options already set before are
not cleared!

SSL_set_options()adds the options set via bitmask inoptions to ssl. Options already set before are not
cleared!

SSL_CTX_get_options()returns the options set forctx.

SSL_get_options()returns the options set forssl.

NOTES
The behaviour of theSSL library can be changed by setting several options. The options are coded as bit-
masks and can be combined by a logicalor operation (). Options can only be added but can never be reset.

SSL_CTX_set_options()andSSL_set_options()affect the (external) protocol behaviour of theSSL library.
The (internal) behaviour of the API can be changed by using the similarSSL_CTX_set_mode(3) and
SSL_set_mode()functions.

During a handshake, the option settings of theSSLobject are used. When a new SSLobject is created from
a context usingSSL_new(), the current option setting is copied. Changes toctx do not affect already created
SSLobjects.SSL_clear()does not affect the settings.

The followingbug workaround options are available:

SSL_OP_MICROSOFT_SESS_ID_BUG
www.microsoft.com − when talking SSLv2, if session-id reuse is performed, the session-id passed
back in the server-finished message is different from the one decided upon.

SSL_OP_NETSCAPE_CHALLENGE_BUG
Netscape−Commerce/1.12, when talking SSLv2, accepts a 32 byte challenge but then appears to only
use 16 bytes when generating the encryption keys. Using16 bytes is ok but it should be ok to use 32.
According to the SSLv3 spec, one should use 32 bytes for the challenge when operating in SSLv2/v3
compatibility mode, but as mentioned above, this breaks this server so 16 bytes is the way to go.

SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG
ssl3.netscape.com:443, first a connection is established withRC4−MD5. If it is then resumed, we end
up usingDES−CBC3−SHA. It should beRC4−MD5according to 7.6.1.3, ’cipher_suite’.

Netscape−Enterprise/2.01 (https://merchant.netscape.com) has this bug. It only really shows up when
connecting via SSLv2/v3 then reconnecting via SSLv3. The cipher list changes....

NEW INFORMATION. Try connecting with a cipher list of justDES−CBC−SHA:RC4−MD5. For some
weird reason, each new connection usesRC4−MD5, but a re-connect tries to useDES−CBC−SHA. So
netscape, when doing a re−connect, always takes the first cipher in the cipher list.

SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG
...

0.9.9-dev 2008-05-09 1

SSL_CTX_set_options(3) OpenSSL SSL_CTX_set_options(3)

SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER
...

SSL_OP_MSIE_SSLV2_RSA_PADDING
As of OpenSSL 0.9.7h and 0.9.8a, this option has no effect.

SSL_OP_SSLEAY_080_CLIENT_DH_BUG
...

SSL_OP_TLS_D5_BUG
...

SSL_OP_TLS_BLOCK_PADDING_BUG
...

SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS
Disables a countermeasure against aSSL 3.0/TLS 1.0 protocol vulnerability affecting CBC ciphers,
which cannot be handled by some brokenSSL implementations. Thisoption has no effect for connec-
tions using other ciphers.

SSL_OP_ALL
All of the above bug workarounds.

It is usually safe to useSSL_OP_ALL to enable the bug workaround options if compatibility with somewhat
broken implementations is desired.

The followingmodifying options are available:

SSL_OP_TLS_ROLLBACK_BUG
Disable version rollback attack detection.

During the client key exchange, the client must send the same information about acceptableSSL/TLS
protocol levels as during the first hello. Some clients violate this rule by adapting to the server’s
answer. (Example: the client sends a SSLv2 hello and accepts up to SSLv3.1=TLSv1, the server only
understands up to SSLv3. In this case the client must still use the same SSLv3.1=TLSv1 announce-
ment. Some clients step down to SSLv3 with respect to the server’s answer and violate the version
rollback protection.)

SSL_OP_SINGLE_DH_USE
Always create a new key when using temporary/ephemeralDH parameters (see
SSL_CTX_set_tmp_dh_callback(3)). This option must be used to prevent small subgroup attacks,
when theDH parameters were not generated using ‘‘strong’’ primes (e.g. when using DSA−parame-
ters, seeopenssl_dhparam(1)). If ‘‘ strong’’ primes were used, it is not strictly necessary to generate a
new DH key during each handshake but it is also recommended.SSL_OP_SINGLE_DH_USEshould
therefore be enabled whenever temporary/ephemeralDH parameters are used.

SSL_OP_EPHEMERAL_RSA
Always use ephemeral (temporary)RSA key when doing RSA operations (see
SSL_CTX_set_tmp_rsa_callback(3)). Accordingto the specifications this is only done, when aRSA
key can only be used for signature operations (namely under export ciphers with restrictedRSA
keylength). By setting this option, ephemeralRSA keys are always used. This option breaks compati-
bility with the SSL/TLS specifications and may lead to interoperability problems with clients and
should therefore never be used. Ciphers withEDH (ephemeral Diffie−Hellman) key exchange should
be used instead.

SSL_OP_CIPHER_SERVER_PREFERENCE
When choosing a cipher, use the server’s preferences instead of the client preferences. When not set,
the SSL server will always follow the clients preferences. When set, the SSLv3/TLSv1 server will
choose following its own preferences. Because of the different protocol, for SSLv2 the server will
send its list of preferences to the client and the client chooses.

0.9.9-dev 2008-05-09 2

SSL_CTX_set_options(3) OpenSSL SSL_CTX_set_options(3)

SSL_OP_PKCS1_CHECK_1
...

SSL_OP_PKCS1_CHECK_2
...

SSL_OP_NETSCAPE_CA_DN_BUG
If we accept a netscape connection, demand a client cert, have a non-self-signedCA which does not
have its CA in netscape, and the browser has a cert, it will crash/hang.Works for 3.x and 4.xbeta

SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG
...

SSL_OP_NO_SSLv2
Do not use the SSLv2 protocol.

SSL_OP_NO_SSLv3
Do not use the SSLv3 protocol.

SSL_OP_NO_TLSv1
Do not use the TLSv1 protocol.

SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
When performing renegotiation as a server, always start a new session (i.e., session resumption
requests are only accepted in the initial handshake). Thisoption is not needed for clients.

SSL_OP_NO_TICKET
Normally clients and servers will, where possible, transparently make use of RFC4507bis tickets for
stateless session resumption.

If this option is set this functionality is disabled and tickets will not be used by clients or servers.

RETURN VALUES
SSL_CTX_set_options()andSSL_set_options()return the new options bitmask after addingoptions.

SSL_CTX_get_options()andSSL_get_options()return the current bitmask.

SEE ALSO
ssl(3), SSL_new(3), SSL_clear(3), SSL_CTX_set_tmp_dh_callback(3), SSL_CTX_set_tmp_rsa_call-
back(3), openssl_dhparam(1)

HISTORY
SSL_OP_CIPHER_SERVER_PREFERENCEandSSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTI-
ATION have been added in OpenSSL 0.9.7.

SSL_OP_TLS_ROLLBACK_BUG has been added in OpenSSL 0.9.6 and was automatically enabled with
SSL_OP_ALL. As of 0.9.7, it is no longer included inSSL_OP_ALL and must be explicitly set.

SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS has been added in OpenSSL 0.9.6e.Versions up to
OpenSSL 0.9.6c do not include the countermeasure that can be disabled with this option (in OpenSSL
0.9.6d, it was always enabled).

0.9.9-dev 2008-05-09 3

SSL_CTX_set_quiet_shutdown(3) OpenSSL SSL_CTX_set_quiet_shutdown(3)

NAME
SSL_CTX_set_quiet_shutdown, SSL_CTX_get_quiet_shutdown, SSL_set_quiet_shutdown,
SSL_get_quiet_shutdown − manipulate shutdown behaviour

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode);
int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx);

void SSL_set_quiet_shutdown(SSL *ssl, int mode);
int SSL_get_quiet_shutdown(const SSL *ssl);

DESCRIPTION
SSL_CTX_set_quiet_shutdown()sets the ‘‘quiet shutdown’’ fl ag for ctx to bemode. SSL objects created
from ctx inherit themodevalid at the timeSSL_new(3) is called.modemay be 0 or 1.

SSL_CTX_get_quiet_shutdown()returns the ‘‘quiet shutdown’’ setting ofctx.

SSL_set_quiet_shutdown()sets the ‘‘quiet shutdown’’ fl ag forssl to bemode. The setting stays valid until
ssl is removed with SSL_free(3) or SSL_set_quiet_shutdown()is called again. It is not changed when
SSL_clear(3) is called.modemay be 0 or 1.

SSL_get_quiet_shutdown()returns the ‘‘quiet shutdown’’ setting ofssl.

NOTES
Normally when aSSLconnection is finished, the parties must send out ‘‘close notify’’ alert messages using
SSL_shutdown(3) for a clean shutdown.

When setting the ‘‘quiet shutdown’’ fl ag to 1, SSL_shutdown(3) will set the internal flags to
SSL_SENT_SHUTDOWNSSL_RECEIVED_SHUTDOWN. (SSL_shutdown(3) then behaves like
SSL_set_shutdown(3) called with SSL_SENT_SHUTDOWNSSL_RECEIVED_SHUTDOWN.) Theses-
sion is thus considered to be shutdown, but no ‘‘close notify’’ alert is sent to the peer. This behaviour vio-
lates theTLS standard.

The default is normal shutdown behaviour as described by theTLS standard.

RETURN VALUES
SSL_CTX_set_quiet_shutdown()andSSL_set_quiet_shutdown()do not return diagnostic information.

SSL_CTX_get_quiet_shutdown()and SSL_get_quiet_shutdown return the current setting.

SEE ALSO
ssl(3), SSL_shutdown(3), SSL_set_shutdown(3), SSL_new(3), SSL_clear(3), SSL_free(3)

0.9.9-dev 2005-04-23 1

SSL_CTX_set_session_cache_mode(3) OpenSSL SSL_CTX_set_session_cache_mode(3)

NAME
SSL_CTX_set_session_cache_mode, SSL_CTX_get_session_cache_mode − enable/disable session
caching

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_session_cache_mode(SSL_CTX ctx, long mode);
long SSL_CTX_get_session_cache_mode(SSL_CTX ctx);

DESCRIPTION
SSL_CTX_set_session_cache_mode()enables/disables session caching by setting the operational mode for
ctx to <mode>.

SSL_CTX_get_session_cache_mode()returns the currently used cache mode.

NOTES
The OpenSSL library can store/retrieve SSL/TLSsessions for later reuse. The sessions can be held in mem-
ory for eachctx, if more than oneSSL_CTX object is being maintained, the sessions are unique for each
SSL_CTXobject.

In order to reuse a session, a client must send the session’s id to the server. It can only send exactly one id.
The server then either agrees to reuse the session or it starts a full handshake (to create a new session).

A server will lookup up the session in its internal session storage. If the session is not found in internal stor-
age or lookups for the internal storage have been deactivated (SSL_SESS_CACHE_NO_INTER-
NAL_LOOKUP), the server will try the external storage if available.

Since a client may try to reuse a session intended for use in a different context, the session id context must
be set by the server (seeSSL_CTX_set_session_id_context(3)).

The following session cache modes and modifiers are available:

SSL_SESS_CACHE_OFF
No session caching for client or server takes place.

SSL_SESS_CACHE_CLIENT
Client sessions are added to the session cache. As there is no reliable way for the OpenSSL library to
know whether a session should be reused or which session to choose (due to the abstractBIO layer the
SSL engine does not have details about the connection), the application must select the session to be
reused by using theSSL_set_session(3) function. This option is not activated by default.

SSL_SESS_CACHE_SERVER
Server sessions are added to the session cache. When a client proposes a session to be reused, the
server looks for the corresponding session in (first) the internal session cache (unless
SSL_SESS_CACHE_NO_INTERNAL_LOOKUPis set), then (second) in the external cache if available. If
the session is found, the server will try to reuse the session. This is the default.

SSL_SESS_CACHE_BOTH
Enable bothSSL_SESS_CACHE_CLIENTandSSL_SESS_CACHE_SERVERat the same time.

SSL_SESS_CACHE_NO_AUTO_CLEAR
Normally the session cache is checked for expired sessions every 255 connections using the
SSL_CTX_flush_sessions(3) function. Since this may lead to a delay which cannot be controlled, the
automatic flushing may be disabled andSSL_CTX_flush_sessions(3) can be called explicitly by the
application.

SSL_SESS_CACHE_NO_INTERNAL_LOOKUP
By setting this flag, session-resume operations in anSSL/TLS server will not automatically look up
sessions in the internal cache, even if sessions are automatically stored there. If external session
caching callbacks are in use, this flag guarantees that all lookups are directed to the external cache.As

0.9.9-dev 2003-07-24 1

SSL_CTX_set_session_cache_mode(3) OpenSSL SSL_CTX_set_session_cache_mode(3)

automatic lookup only applies forSSL/TLSservers, the flag has no effect on clients.

SSL_SESS_CACHE_NO_INTERNAL_STORE
Depending on the presence ofSSL_SESS_CACHE_CLIENTand/or SSL_SESS_CACHE_SERVER, ses-
sions negotiated in anSSL/TLShandshake may be cached for possible reuse. Normally a new session
is added to the internal cache as well as any external session caching (callback) that is configured for
theSSL_CTX. This flag will prevent sessions being stored in the internal cache (though the application
can add them manually usingSSL_CTX_add_session(3)). Note: in any SSL/TLSservers where exter-
nal caching is configured, any successful session lookups in the external cache (ie. for session-resume
requests) would normally be copied into the local cache before processing continues − this flag pre-
vents these additions to the internal cache as well.

SSL_SESS_CACHE_NO_INTERNAL
Enable both SSL_SESS_CACHE_NO_INTERNAL_LOOKUPand SSL_SESS_CACHE_NO_INTER-
NAL_STOREat the same time.

The default mode isSSL_SESS_CACHE_SERVER.

RETURN VALUES
SSL_CTX_set_session_cache_mode()returns the previously set cache mode.

SSL_CTX_get_session_cache_mode()returns the currently set cache mode.

SEE ALSO
ssl(3), SSL_set_session(3), SSL_session_reused(3), SSL_CTX_add_session(3), SSL_CTX_sess_num-
ber(3), SSL_CTX_sess_set_cache_size(3), SSL_CTX_sess_set_get_cb(3), SSL_CTX_set_session_id_con-
text(3), SSL_CTX_set_timeout(3), SSL_CTX_flush_sessions(3)

HISTORY
SSL_SESS_CACHE_NO_INTERNAL_STOREand SSL_SESS_CACHE_NO_INTERNALwere introduced in
OpenSSL 0.9.6h.

0.9.9-dev 2003-07-24 2

SSL_CTX_set_session_id_context(3) OpenSSL SSL_CTX_set_session_id_context(3)

NAME
SSL_CTX_set_session_id_context, SSL_set_session_id_context − set context within which session can be
reused (server side only)

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
unsigned int sid_ctx_len);

int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
unsigned int sid_ctx_len);

DESCRIPTION
SSL_CTX_set_session_id_context()sets the context sid_ctx of lengthsid_ctx_lenwithin which a session
can be reused for thectx object.

SSL_set_session_id_context()sets the context sid_ctx of lengthsid_ctx_lenwithin which a session can be
reused for thesslobject.

NOTES
Sessions are generated within a certain context. When exporting/importing sessions withi2d_SSL_SES-
SION/d2i_SSL_SESSIONit would be possible, to re-import a session generated from another context
(e.g. another application), which might lead to malfunctions. Therefore each application must set its own
session id context sid_ctx which is used to distinguish the contexts and is stored in exported sessions. The
sid_ctx can be any kind of binary data with a given length, it is therefore possible to use e.g. the name of
the application and/or the hostname and/or service name ...

The session id context becomes part of the session. The session id context is set by theSSL/TLSserver. The
SSL_CTX_set_session_id_context()and SSL_set_session_id_context()functions are therefore only useful
on the server side.

OpenSSL clients will check the session id context returned by the server when reusing a session.

The maximum length of thesid_ctx is limited toSSL_MAX_SSL_SESSION_ID_LENGTH.

WARNINGS
If the session id context is not set on anSSL/TLSserver and client certificates are used, stored sessions will
not be reused but a fatal error will be flagged and the handshake will fail.

If a server returns a different session id context to an OpenSSL client when reusing a session, an error will
be flagged and the handshake will f ail. OpenSSL servers will always return the correct session id context,
as an OpenSSL server checks the session id context itself before reusing a session as described above.

RETURN VALUES
SSL_CTX_set_session_id_context()andSSL_set_session_id_context()return the following values:

0 The lengthsid_ctx_len of the session id context sid_ctx exceeded the maximum allowed length of
SSL_MAX_SSL_SESSION_ID_LENGTH. The error is logged to the error stack.

1 The operation succeeded.

SEE ALSO
ssl(3)

0.9.9-dev 2005-03-25 1

SSL_CTX_set_ssl_version(3) OpenSSL SSL_CTX_set_ssl_version(3)

NAME
SSL_CTX_set_ssl_version, SSL_set_ssl_method, SSL_get_ssl_method − choose a new TLS/SSL method

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *method);
int SSL_set_ssl_method(SSL *s, const SSL_METHOD *method);
const SSL_METHOD *SSL_get_ssl_method(SSL *ssl);

DESCRIPTION
SSL_CTX_set_ssl_version()sets a new default TLS/SSL method for SSL objects newly created from this
ctx. SSL objects already created withSSL_new(3) are not affected, except whenSSL_clear(3) is being
called.

SSL_set_ssl_method()sets a new TLS/SSL method for a particularssl object. It may be reset, when
SSL_clear()is called.

SSL_get_ssl_method()returns a function pointer to theTLS/SSLmethod set inssl.

NOTES
The availablemethodchoices are described inSSL_CTX_new(3).

WhenSSL_clear(3) is called and no session is connected to anSSLobject, the method of theSSLobject is
reset to the method currently set in the correspondingSSL_CTXobject.

RETURN VALUES
The following return values can occur forSSL_CTX_set_ssl_version()andSSL_set_ssl_method():

0 The new choice failed, check the error stack to find out the reason.

1 The operation succeeded.

SEE ALSO
SSL_CTX_new(3), SSL_new(3), SSL_clear(3), ssl(3), SSL_set_connect_state(3)

0.9.9-dev 2008-05-09 1

SSL_CTX_set_timeout(3) OpenSSL SSL_CTX_set_timeout(3)

NAME
SSL_CTX_set_timeout, SSL_CTX_get_timeout − manipulate timeout values for session caching

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_timeout(SSL_CTX *ctx, long t);
long SSL_CTX_get_timeout(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_set_timeout()sets the timeout for newly created sessions forctx to t. The timeout value t must
be given in seconds.

SSL_CTX_get_timeout()returns the currently set timeout value forctx.

NOTES
Whenever a new session is created, it is assigned a maximum lifetime. This lifetime is specified by storing
the creation time of the session and the timeout value valid at this time. If the actual time is later than cre-
ation time plus timeout, the session is not reused.

Due to this realization, all sessions behave according to the timeout value valid at the time of the session
negotiation. Changes of the timeout value do not affect already established sessions.

The expiration time of a single session can be modified using theSSL_SESSION_get_time(3) family of
functions.

Expired sessions are removed from the internal session cache, whenever SSL_CTX_flush_sessions(3) is
called, either directly by the application or automatically (seeSSL_CTX_set_session_cache_mode(3))

The default value for session timeout is decided on a per protocol basis, seeSSL_get_default_timeout(3).
All currently supported protocols have the same default timeout value of 300 seconds.

RETURN VALUES
SSL_CTX_set_timeout()returns the previously set timeout value.

SSL_CTX_get_timeout()returns the currently set timeout value.

SEE ALSO
ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_SESSION_get_time(3), SSL_CTX_flush_sessions(3),
SSL_get_default_timeout(3)

0.9.9-dev 2002-06-09 1

SSL_CTX_set_tmp_dh_callback(3) OpenSSL SSL_CTX_set_tmp_dh_callback(3)

NAME
SSL_CTX_set_tmp_dh_callback, SSL_CTX_set_tmp_dh, SSL_set_tmp_dh_callback, SSL_set_tmp_dh −
handle DH keys for ephemeral key exchange

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));

long SSL_CTX_set_tmp_dh(SSL_CTX *ctx, DH *dh);

void SSL_set_tmp_dh_callback(SSL_CTX *ctx,
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));

long SSL_set_tmp_dh(SSL *ssl, DH *dh)

DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));

DESCRIPTION
SSL_CTX_set_tmp_dh_callback()sets the callback function forctx to be used when aDH parameters are
required totmp_dh_callback. The callback is inherited by allsslobjects created fromctx.

SSL_CTX_set_tmp_dh()setsDH parameters to be used to bedh. The key is inherited by allsslobjects cre-
ated fromctx.

SSL_set_tmp_dh_callback()sets the callback only forssl.

SSL_set_tmp_dh()sets the parameters only forssl.

These functions apply toSSL/TLSservers only.

NOTES
When using a cipher withRSA authentication, an ephemeralDH key exchange can take place. Ciphers with
DSA keys always use ephemeralDH keys as well. In these cases, the session data are negotiated using the
ephemeral/temporaryDH key and the key supplied and certified by the certificate chain is only used for
signing. Anonymous ciphers (without a permanent server key) also use ephemeralDH keys.

Using ephemeralDH key exchange yields forward secrecy, as the connection can only be decrypted, when
theDH key is known. By generating a temporaryDH key inside the server application that is lost when the
application is left, it becomes impossible for an attacker to decrypt past sessions, even if he gets hold of the
normal (certified) key, as this key was only used for signing.

In order to perform aDH key exchange the server must use aDH group (DH parameters) and generate aDH
key. The server will always generate a new DH key during the negotiation, when theDH parameters are sup-
plied via callback and/or when theSSL_OP_SINGLE_DH_USEoption ofSSL_CTX_set_options(3) is set. It
will immediately create aDH key, when DH parameters are supplied viaSSL_CTX_set_tmp_dh()and
SSL_OP_SINGLE_DH_USEis not set. In this case, it may happen that a key is generated on initialization
without later being needed, while on the other hand the computer time during the negotiation is being
saved.

If ‘ ‘strong’’ primes were used to generate theDH parameters, it is not strictly necessary to generate a new
key for each handshake but it does improve forward secrecy. If it i s not assured, that ‘‘strong’’ primes were
used (see especially the section aboutDSA parameters below), SSL_OP_SINGLE_DH_USEmust be used in
order to prevent small subgroup attacks. Always usingSSL_OP_SINGLE_DH_USEhas an impact on the
computer time needed during negotiation, but it is not very large, so application authors/users should con-
sider to always enable this option.

As generatingDH parameters is extremely time consuming, an application should not generate the parame-
ters on the fly but supply the parameters.DH parameters can be reused, as the actual key is newly gener-
ated during the negotiation. The risk in reusingDH parameters is that an attacker may specialize on a very
often usedDH group. Applications should therefore generate their own DH parameters during the

0.9.9-dev 2002-06-09 1

SSL_CTX_set_tmp_dh_callback(3) OpenSSL SSL_CTX_set_tmp_dh_callback(3)

installation process using the opensslopenssl_dhparam(1) application. In order to reduce the computer
time needed for this generation, it is possible to useDSA parameters instead (seeopenssl_dhparam(1)), but
in this caseSSL_OP_SINGLE_DH_USEis mandatory.

Application authors may compile inDH parameters. Files dh512.pem, dh1024.pem, dh2048.pem, and
dh4096 in the ’apps’ directory of current version of the OpenSSL distribution contain the ’SKIP’ DH param-
eters, which use safe primes and were generated verifiably pseudo−randomly. These files can be converted
into C code using the−C option of theopenssl_dhparam(1) application. Authors may also generate their
own set of parameters usingopenssl_dhparam(1), but a user may not be sure how the parameters were gen-
erated. The generation ofDH parameters during installation is therefore recommended.

An application may either directly specify theDH parameters or can supply theDH parameters via a call-
back function. The callback approach has the advantage, that the callback may supplyDH parameters for
different key lengths.

The tmp_dh_callback is called with thekeylength needed and theis_export information. Theis_export
flag is set, when the ephemeralDH key exchange is performed with an export cipher.

EXAMPLES
HandleDH parameters for key lengths of 512 and 1024 bits. (Error handling partly left out.)

...
/* Set up ephemeral DH stuff */
DH *dh_512 = NULL;
DH *dh_1024 = NULL;
FILE *paramfile;

...
/* "openssl dhparam -out dh_param_512.pem -2 512" */
paramfile = fopen("dh_param_512.pem", "r");
if (paramfile) {

dh_512 = PEM_read_DHparams(paramfile, NULL, NULL, NULL);
fclose(paramfile);

}
/* "openssl dhparam -out dh_param_1024.pem -2 1024" */
paramfile = fopen("dh_param_1024.pem", "r");
if (paramfile) {

dh_1024 = PEM_read_DHparams(paramfile, NULL, NULL, NULL);
fclose(paramfile);

}
...

/* "openssl dhparam -C -2 512" etc... */
DH *get_dh512() { ... }
DH *get_dh1024() { ... }

DH *tmp_dh_callback(SSL *s, int is_export, int keylength)
{

DH *dh_tmp=NULL;

0.9.9-dev 2002-06-09 2

SSL_CTX_set_tmp_dh_callback(3) OpenSSL SSL_CTX_set_tmp_dh_callback(3)

switch (keylength) {
case 512:

if (!dh_512)
dh_512 = get_dh512();

dh_tmp = dh_512;
break;

case 1024:
if (!dh_1024)

dh_1024 = get_dh1024();
dh_tmp = dh_1024;
break;

default:
/* Generating a key on the fly is very costly, so use what is there */
setup_dh_parameters_like_above();

}
return(dh_tmp);

}

RETURN VALUES
SSL_CTX_set_tmp_dh_callback()andSSL_set_tmp_dh_callback()do not return diagnostic output.

SSL_CTX_set_tmp_dh()and SSL_set_tmp_dh()do return 1 on success and 0 on failure. Check the error
queue to find out the reason of failure.

SEE ALSO
ssl(3), SSL_CTX_set_cipher_list(3), SSL_CTX_set_tmp_rsa_callback(3), SSL_CTX_set_options(3),
openssl_ciphers(1), openssl_dhparam(1)

0.9.9-dev 2002-06-09 3

SSL_CTX_set_tmp_rsa_callback(3) OpenSSL SSL_CTX_set_tmp_rsa_callback(3)

NAME
SSL_CTX_set_tmp_rsa_callback, SSL_CTX_set_tmp_rsa, SSL_CTX_need_tmp_rsa,
SSL_set_tmp_rsa_callback, SSL_set_tmp_rsa, SSL_need_tmp_rsa − handle RSA keys for ephemeral key
exchange

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,
RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));

long SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, RSA *rsa);
long SSL_CTX_need_tmp_rsa(SSL_CTX *ctx);

void SSL_set_tmp_rsa_callback(SSL_CTX *ctx,
RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));

long SSL_set_tmp_rsa(SSL *ssl, RSA *rsa)
long SSL_need_tmp_rsa(SSL *ssl)

RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength);

DESCRIPTION
SSL_CTX_set_tmp_rsa_callback()sets the callback function forctx to be used when a tempo-
rary/ephemeralRSA key is required totmp_rsa_callback. The callback is inherited by allSSL objects
newly created fromctx with <SSL_new(3)SSL_new(3)>. Already createdSSLobjects are not affected.

SSL_CTX_set_tmp_rsa()sets the temporary/ephemeralRSA key to be used to bersa. The key is inherited
by all SSL objects newly created fromctx with <SSL_new(3)SSL_new(3)>. Already createdSSL objects
are not affected.

SSL_CTX_need_tmp_rsa()returns 1, if a temporary/ephemeralRSA key is needed for RSA-based strength-
limited ’exportable’ ciphersuites because aRSA key with a keysize larger than 512 bits is installed.

SSL_set_tmp_rsa_callback()sets the callback only forssl.

SSL_set_tmp_rsa()sets the key only for ssl.

SSL_need_tmp_rsa()returns 1, if a temporary/ephemeralRSA key is needed, for RSA-based strength-lim-
ited ’exportable’ ciphersuites because aRSA key with a keysize larger than 512 bits is installed.

These functions apply toSSL/TLSservers only.

NOTES
When using a cipher withRSA authentication, an ephemeralRSA key exchange can take place. In this case
the session data are negotiated using the ephemeral/temporaryRSA key and theRSA key supplied and certi-
fied by the certificate chain is only used for signing.

Under previous export restrictions, ciphers withRSA keys shorter (512 bits) than the usual key length of
1024 bits were created. To use these ciphers withRSA keys of usual length, an ephemeral key exchange
must be performed, as the normal (certified) key cannot be directly used.

Using ephemeralRSA key exchange yields forward secrecy, as the connection can only be decrypted, when
the RSA key is known. By generating a temporaryRSA key inside the server application that is lost when
the application is left, it becomes impossible for an attacker to decrypt past sessions, even if he gets hold of
the normal (certified)RSA key, as this key was used for signing only. The downside is that creating aRSA
key is computationally expensive.

Additionally, the use of ephemeralRSA key exchange is only allowed in theTLS standard, when theRSA
key can be used for signing only, that is for export ciphers. Using ephemeralRSA key exchange for other
purposes violates the standard and can break interoperability with clients. It is therefore strongly recom-
mended to not use ephemeralRSA key exchange and useEDH (Ephemeral Diffie−Hellman) key exchange
instead in order to achieve forward secrecy (seeSSL_CTX_set_tmp_dh_callback(3)).

0.9.9-dev 2007-03-06 1

SSL_CTX_set_tmp_rsa_callback(3) OpenSSL SSL_CTX_set_tmp_rsa_callback(3)

On OpenSSL servers ephemeralRSA key exchange is therefore disabled by default and must be explicitly
enabled usingthe SSL_OP_EPHEMERAL_RSAoption of SSL_CTX_set_options(3), violating theTLS/SSL
standard. When ephemeralRSA key exchange is required for export ciphers, it will automatically be used
without this option!

An application may either directly specify the key or can supply the key via a callback function. The call-
back approach has the advantage, that the callback may generate the key only in case it is actually needed.
As the generation of aRSA key is howev er costly, it will lead to a significant delay in the handshake proce-
dure. Anotheradvantage of the callback function is that it can supply keys of different size (e.g. for
SSL_OP_EPHEMERAL_RSAusage) while the explicit setting of the key is only useful for key size of 512
bits to satisfy the export restricted ciphers and does give away key length if a longer key would be allowed.

The tmp_rsa_callback is called with thekeylength needed and theis_export information. Theis_export
flag is set, when the ephemeralRSA key exchange is performed with an export cipher.

EXAMPLES
Generate temporaryRSA keys to prepare ephemeralRSA key exchange. As the generation of aRSA key
costs a lot of computer time, they sav ed for later reuse. For demonstration purposes, two keys for 512 bits
and 1024 bits respectively are generated.

...
/* Set up ephemeral RSA stuff */
RSA *rsa_512 = NULL;
RSA *rsa_1024 = NULL;

rsa_512 = RSA_generate_key(512,RSA_F4,NULL,NULL);
if (rsa_512 == NULL)

evaluate_error_queue();

rsa_1024 = RSA_generate_key(1024,RSA_F4,NULL,NULL);
if (rsa_1024 == NULL)

evaluate_error_queue();

...

RSA *tmp_rsa_callback(SSL *s, int is_export, int keylength)
{

RSA *rsa_tmp=NULL;

0.9.9-dev 2007-03-06 2

SSL_CTX_set_tmp_rsa_callback(3) OpenSSL SSL_CTX_set_tmp_rsa_callback(3)

switch (keylength) {
case 512:

if (rsa_512)
rsa_tmp = rsa_512;

else { /* generate on the fly, should not happen in this example */
rsa_tmp = RSA_generate_key(keylength,RSA_F4,NULL,NULL);
rsa_512 = rsa_tmp; /* Remember for later reuse */

}
break;

case 1024:
if (rsa_1024)

rsa_tmp=rsa_1024;
else

should_not_happen_in_this_example();
break;

default:
/* Generating a key on the fly is very costly, so use what is there */
if (rsa_1024)

rsa_tmp=rsa_1024;
else

rsa_tmp=rsa_512; /* Use at least a shorter key */
}
return(rsa_tmp);

}

RETURN VALUES
SSL_CTX_set_tmp_rsa_callback()andSSL_set_tmp_rsa_callback()do not return diagnostic output.

SSL_CTX_set_tmp_rsa()andSSL_set_tmp_rsa()do return 1 on success and 0 on failure. Check the error
queue to find out the reason of failure.

SSL_CTX_need_tmp_rsa()andSSL_need_tmp_rsa()return 1 if a temporaryRSA key is needed and 0 other-
wise.

SEE ALSO
ssl(3), SSL_CTX_set_cipher_list(3), SSL_CTX_set_options(3), SSL_CTX_set_tmp_dh_callback(3),
SSL_new(3), openssl_ciphers(1)

0.9.9-dev 2007-03-06 3

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

NAME
SSL_CTX_set_verify, SSL_set_verify, SSL_CTX_set_verify_depth, SSL_set_verify_depth − set peer cer-
tificate verification parameters

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
int (*verify_callback)(int, X509_STORE_CTX *));

void SSL_set_verify(SSL *s, int mode,
int (*verify_callback)(int, X509_STORE_CTX *));

void SSL_CTX_set_verify_depth(SSL_CTX *ctx,int depth);
void SSL_set_verify_depth(SSL *s, int depth);

int verify_callback(int preverify_ok, X509_STORE_CTX *x509_ctx);

DESCRIPTION
SSL_CTX_set_verify()sets the verification flags forctx to bemodeand specifies theverify_callback func-
tion to be used. If no callback function shall be specified, theNULL pointer can be used forverify_call-
back.

SSL_set_verify()sets the verification flags forssl to bemodeand specifies theverify_callback function to
be used. If no callback function shall be specified, theNULL pointer can be used forverify_callback . In
this case lastverify_callback set specifically for thisssl remains. If no specialcallback was set before, the
default callback for the underlyingctx is used, that was valid at the the timessl was created with
SSL_new(3).

SSL_CTX_set_verify_depth()sets the maximumdepth for the certificate chain verification that shall be
allowed forctx. (See theBUGSsection.)

SSL_set_verify_depth()sets the maximumdepth for the certificate chain verification that shall be allowed
for ssl. (See theBUGSsection.)

NOTES
The verification of certificates can be controlled by a set of logically or’edmodeflags:

SSL_VERIFY_NONE
Server mode: the server will not send a client certificate request to the client, so the client will not
send a certificate.

Client mode: if not using an anonymous cipher (by default disabled), the server will send a certificate
which will be checked. The result of the certificate verification process can be checked after the
TLS/SSL handshake using theSSL_get_verify_result(3) function. The handshake will be continued
regardless of the verification result.

SSL_VERIFY_PEER
Server mode: the server sends a client certificate request to the client.The certificate returned (if any)
is checked. If the verification process fails, theTLS/SSLhandshake is immediately terminated with an
alert message containing the reason for the verification failure. Thebehaviour can be controlled by the
additionalSSL_VERIFY_FAIL_IF_NO_PEER_CERTandSSL_VERIFY_CLIENT_ONCEflags.

Client mode: the server certificate is verified. If the verification process fails, theTLS/SSLhandshake
is immediately terminated with an alert message containing the reason for the verification failure. If no
server certificate is sent, because an anonymous cipher is used,SSL_VERIFY_PEERis ignored.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT
Server mode: if the client did not return a certificate, theTLS/SSL handshake is immediately termi-
nated with a ‘‘handshake failure’’ alert. Thisflag must be used together withSSL_VERIFY_PEER.

Client mode: ignored

0.9.9-dev 2003-11-04 1

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

SSL_VERIFY_CLIENT_ONCE
Server mode: only request a client certificate on the initialTLS/SSLhandshake. Do not ask for a client
certificate again in case of a renegotiation. This flag must be used together withSSL_VERIFY_PEER.

Client mode: ignored

Exactly one of themodeflagsSSL_VERIFY_NONEandSSL_VERIFY_PEERmust be set at any time.

The actual verification procedure is performed either using the built-in verification procedure or using
another application provided verification function set withSSL_CTX_set_cert_verify_callback(3). Thefol-
lowing descriptions apply in the case of the built-in procedure. An application provided procedure also has
access to the verify depth information and theverify_callback()function, but the way this information is
used may be different.

SSL_CTX_set_verify_depth()and SSL_set_verify_depth()set the limit up to which depth certificates in a
chain are used during the verification procedure. If the certificate chain is longer than allowed, the certifi-
cates above the limit are ignored. Error messages are generated as if these certificates would not be present,
most likely a X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY will be issued. The depth
count is ‘‘level 0:peer certificate’’, ‘‘level 1: CA certificate’’, ‘ ‘level 2: higher level CA certificate’’, and so
on. Setting the maximum depth to 2 allows the levels 0, 1, and 2. The default depth limit is 9, allowing for
the peer certificate and additional 9CA certificates.

The verify_callback function is used to control the behaviour when theSSL_VERIFY_PEERflag is set. It
must be supplied by the application and receives two arguments:prev erify_ok indicates, whether the verifi-
cation of the certificate in question was passed (preverify_ok=1) or not (preverify_ok=0). x509_ctx is a
pointer to the complete context used for the certificate chain verification.

The certificate chain is checked starting with the deepest nesting level (the rootCA certificate) and worked
upward to the peer’s certificate. Ateach level signatures and issuer attributes are checked. Whenever a ver-
ification error is found, the error number is stored inx509_ctxandverify_callback is called withprev er-
ify_ok=0. By applying X509_CTX_store_* functionsverify_callback can locate the certificate in question
and perform additional steps (seeEXAMPLES). If no error is found for a certificate,verify_callback is
called withprev erify_ok =1 before advancing to the next level.

The return value ofverify_callback controls the strategy of the further verification process. Ifverify_call-
back returns 0, the verification process is immediately stopped with ‘‘verification failed’’ state. If
SSL_VERIFY_PEERis set, a verification failure alert is sent to the peer and theTLS/SSLhandshake is termi-
nated. Ifverify_callback returns 1, the verification process is continued. Ifverify_callback always returns
1, theTLS/SSLhandshake will not be terminated with respect to verification failures and the connection will
be established. The calling process can however retrieve the error code of the last verification error using
SSL_get_verify_result(3) or by maintaining its own error storage managed byverify_callback .

If no verify_callback is specified, the default callback will be used. Its return value is identical toprev er-
ify_ok, so that any verification failure will lead to a termination of theTLS/SSL handshake with an alert
message, ifSSL_VERIFY_PEERis set.

BUGS
In client mode, it is not checked whether theSSL_VERIFY_PEERflag is set, but whetherSSL_VER-
IFY_NONE is not set. This can lead to unexpected behaviour, if the SSL_VERIFY_PEERand SSL_VER-
IFY_NONE are not used as required (exactly one must be set at any time).

The certificate verification depth set with SSL[_CTX]_verify_depth()stops the verification at a certain
depth. The error message produced will be that of an incomplete certificate chain and not
X509_V_ERR_CERT_CHAIN_TOO_LONG as may be expected.

RETURN VALUES
The SSL*_set_verify*() functions do not provide diagnostic information.

EXAMPLES
The following code sequence realizes an exampleverify_callback function that will always continue the
TLS/SSL handshake reg ardless of verification failure, if wished. The callback realizes a verification depth
limit with more informational output.

0.9.9-dev 2003-11-04 2

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

All verification errors are printed, informations about the certificate chain are printed on request.The
example is realized for a server that does allow but not require client certificates.

The example makes use of the ex_data technique to store application data into/retrieve application data
from theSSLstructure (seeSSL_get_ex_new_index(3), SSL_get_ex_data_X509_STORE_CTX_idx(3)).

...
typedef struct {

int verbose_mode;
int verify_depth;
int always_continue;

} mydata_t;
int mydata_index;
...
static int verify_callback(int preverify_ok, X509_STORE_CTX *ctx)
{

char buf[256];
X509 *err_cert;
int err, depth;
SSL *ssl;
mydata_t *mydata;

err_cert = X509_STORE_CTX_get_current_cert(ctx);
err = X509_STORE_CTX_get_error(ctx);
depth = X509_STORE_CTX_get_error_depth(ctx);

/*
* Retrieve the pointer to the SSL of the connection currently treated
* a nd the application specific data stored into the SSL object.
*/

ssl = X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx());
mydata = SSL_get_ex_data(ssl, mydata_index);

X509_NAME_oneline(X509_get_subject_name(err_cert), buf, 256);

/*
* Catch a too long certificate chain. The depth limit set using
* S SL_CTX_set_verify_depth() is by purpose set to "limit+1" so
* t hat whenever the "depth>verify_depth" condition is met, we
* h ave violated the limit and want to log this error condition.
* We must do it here, because the CHAIN_TOO_LONG error would not
* be f ound explicitly; only errors introduced by cutting off the
* a dditional certificates would be logged.
*/

if (depth > mydata->verify_depth) {
preverify_ok = 0;
err = X509_V_ERR_CERT_CHAIN_TOO_LONG;
X509_STORE_CTX_set_error(ctx, err);

}
if (!preverify_ok) {

printf("verify error:num=%d:%s:depth=%d:%s\n", err,
X509_verify_cert_error_string(err), depth, buf);

}
else if (mydata->verbose_mode)
{

printf("depth=%d:%s\n", depth, buf);
}

0.9.9-dev 2003-11-04 3

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

/*
* At t his point, err contains the last verification error. We can use
* it f or something special
*/

if (!preverify_ok && (err == X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT))
{

X509_NAME_oneline(X509_get_issuer_name(ctx->current_cert), buf, 256);
printf("issuer= %s\n", buf);

}

if (mydata->always_continue)
return 1;

else
return preverify_ok;

}
...

mydata_t mydata;

...
mydata_index = SSL_get_ex_new_index(0, "mydata index", NULL, NULL, NULL);

...
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER SSL_VERIFY_CLIENT_ONCE,

verify_callback);

/*
* L et the verify_callback catch the verify_depth error so that we get
* an a ppropriate error in the logfile.
*/

SSL_CTX_set_verify_depth(verify_depth + 1);

/*
* S et up the SSL specific data into "mydata" and store it into th SSL
* s tructure.
*/

mydata.verify_depth = verify_depth; ...
SSL_set_ex_data(ssl, mydata_index, &mydata);

...
SSL_accept(ssl); /* check of success left out for clarity */
if (peer = SSL_get_peer_certificate(ssl))
{

if (SSL_get_verify_result(ssl) == X509_V_OK)
{

/* The client sent a certificate which verified OK */
}

}

SEE ALSO
ssl(3), SSL_new(3), SSL_CTX_get_verify_mode(3), SSL_get_verify_result(3), SSL_CTX_load_ver-
ify_locations(3), SSL_get_peer_certificate(3), SSL_CTX_set_cert_verify_callback(3),
SSL_get_ex_data_X509_STORE_CTX_idx(3), SSL_get_ex_new_index(3)

0.9.9-dev 2003-11-04 4

SSL_CTX_use_certificate(3) OpenSSL SSL_CTX_use_certificate(3)

NAME
SSL_CTX_use_certificate, SSL_CTX_use_certificate_ASN1, SSL_CTX_use_certificate_file,
SSL_use_certificate, SSL_use_certificate_ASN1, SSL_use_certificate_file, SSL_CTX_use_certifi-
cate_chain_file, SSL_CTX_use_PrivateKey, SSL_CTX_use_PrivateKey_ASN1, SSL_CTX_use_Pri-
vateKey_file, SSL_CTX_use_RSAPrivateKey, SSL_CTX_use_RSAPrivateKey_ASN1,
SSL_CTX_use_RSAPrivateKey_file, SSL_use_PrivateKey_file, SSL_use_PrivateKey_ASN1,
SSL_use_PrivateKey, SSL_use_RSAPrivateKey, SSL_use_RSAPrivateKey_ASN1, SSL_use_RSAPri-
vateKey_file, SSL_CTX_check_private_key, SSL_check_private_key − load certificate and key data

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x);
int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, int len, unsigned char *d);
int SSL_CTX_use_certificate_file(SSL_CTX *ctx, const char *file, int type);
int SSL_use_certificate(SSL *ssl, X509 *x);
int SSL_use_certificate_ASN1(SSL *ssl, unsigned char *d, int len);
int SSL_use_certificate_file(SSL *ssl, const char *file, int type);

int SSL_CTX_use_certificate_chain_file(SSL_CTX *ctx, const char *file);

int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey);
int SSL_CTX_use_PrivateKey_ASN1(int pk, SSL_CTX *ctx, unsigned char *d,

long len);
int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const char *file, int type);
int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa);
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, unsigned char *d, long len);
int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX *ctx, const char *file, int type);
int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey);
int SSL_use_PrivateKey_ASN1(int pk,SSL *ssl, unsigned char *d, long len);
int SSL_use_PrivateKey_file(SSL *ssl, const char *file, int type);
int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa);
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, unsigned char *d, long len);
int SSL_use_RSAPrivateKey_file(SSL *ssl, const char *file, int type);

int SSL_CTX_check_private_key(const SSL_CTX *ctx);
int SSL_check_private_key(const SSL *ssl);

DESCRIPTION
These functions load the certificates and private keys into theSSL_CTXor SSLobject, respectively.

The SSL_CTX_* class of functions loads the certificates and keys into theSSL_CTXobjectctx. The infor-
mation is passed toSSL objectssslcreated fromctx with SSL_new(3) by copying, so that changes applied
to ctx do not propagate to already existingSSLobjects.

The SSL_* class of functions only loads certificates and keys into a specificSSLobject. The specific infor-
mation is kept, whenSSL_clear(3) is called for thisSSLobject.

SSL_CTX_use_certificate()loads the certificatex into ctx, SSL_use_certificate()loadsx into ssl. The rest of
the certificates needed to form the complete certificate chain can be specified using the
SSL_CTX_add_extra_chain_cert(3) function.

SSL_CTX_use_certificate_ASN1()loads theASN1 encoded certificate from the memory locationd (with
lengthlen) intoctx, SSL_use_certificate_ASN1()loads theASN1 encoded certificate intossl.

SSL_CTX_use_certificate_file()loads the first certificate stored infile into ctx. The formattingtype of the
certificate must be specified from the known types SSL_FILETYPE_PEM, SSL_FILETYPE_ASN1.
SSL_use_certificate_file()loads the certificate fromfile into ssl. See the NOTES section on why
SSL_CTX_use_certificate_chain_file()should be preferred.

0.9.9-dev 2005-11-24 1

SSL_CTX_use_certificate(3) OpenSSL SSL_CTX_use_certificate(3)

SSL_CTX_use_certificate_chain_file()loads a certificate chain fromfile into ctx. The certificates must be in
PEM format and must be sorted starting with the subject’s certificate (actual client or server certificate), fol-
lowed by intermediateCA certificates if applicable, and ending at the highest level (root) CA. There is no
corresponding function working on a singleSSLobject.

SSL_CTX_use_PrivateKey() addspkey as private key to ctx. SSL_CTX_use_RSAPrivateKey() adds the pri-
vate key rsa of typeRSA to ctx. SSL_use_PrivateKey() addspkey as private key to ssl; SSL_use_RSAPri-
vateKey() addsrsa as private key of type RSA to ssl. If a certificate has already been set and the private
does not belong to the certificate an error is returned. To change a certificate, private key pair the new cer-
tificate needs to be set withSSL_use_certificate()or SSL_CTX_use_certificate()before setting the private
key with SSL_CTX_use_PrivateKey() or SSL_use_PrivateKey().

SSL_CTX_use_PrivateKey_ASN1()adds the private key of typepk stored at memory locationd (lengthlen)
to ctx. SSL_CTX_use_RSAPrivateKey_ASN1()adds the private key of typeRSA stored at memory location
d (length len) to ctx. SSL_use_PrivateKey_ASN1()andSSL_use_RSAPrivateKey_ASN1()add the private
key to ssl.

SSL_CTX_use_PrivateKey_file() adds the first private key found infile to ctx. The formattingtype of the
certificate must be specified from the known types SSL_FILETYPE_PEM, SSL_FILETYPE_ASN1.
SSL_CTX_use_RSAPrivateKey_file() adds the first private RSA key found in file to ctx. SSL_use_Pri-
vateKey_file() adds the first private key found infile to ssl; SSL_use_RSAPrivateKey_file() adds the first pri-
vate RSA key found tossl.

SSL_CTX_check_private_key() checks the consistency of a private key with the corresponding certificate
loaded intoctx. If more than one key/certificate pair (RSA/DSA) is installed, the last item installed will be
checked. If e.g. the last item was aRSA certificate or key, the RSA key/certificate pair will be checked.
SSL_check_private_key() performs the same check forssl. If no key/certificate was explicitly added for this
ssl, the last item added intoctx will be checked.

NOTES
The internal certificate store of OpenSSL can hold two private key/certificate pairs at a time: one key/cer-
tificate of typeRSA and one key/certificate of typeDSA. The certificate used depends on the cipher select,
see alsoSSL_CTX_set_cipher_list(3).

When reading certificates and private keys from file, files of typeSSL_FILETYPE_ASN1(also known as
DER, binary encoding) can only contain one certificate or private key, consequentlySSL_CTX_use_certifi-
cate_chain_file()is only applicable toPEM formatting. Filesof type SSL_FILETYPE_PEMcan contain
more than one item.

SSL_CTX_use_certificate_chain_file()adds the first certificate found in the file to the certificate store. The
other certificates are added to the store of chain certificates usingSSL_CTX_add_extra_chain_cert(3).
There exists only one extra chain store, so that the same chain is appended to both types of certificates,RSA
andDSA! If it is not intended to use both type of certificate at the same time, it is recommended to use the
SSL_CTX_use_certificate_chain_file()instead of theSSL_CTX_use_certificate_file()function in order to
allow the use of complete certificate chains even when no trustedCA storage is used or when theCA issuing
the certificate shall not be added to the trustedCA storage.

If additional certificates are needed to complete the chain during theTLS negotiation,CA certificates are
additionally looked up in the locations of trustedCA certificates, seeSSL_CTX_load_verify_locations(3).

The private keys loaded from file can be encrypted. In order to successfully load encrypted keys, a function
returning the passphrase must have been supplied, seeSSL_CTX_set_default_passwd_cb(3). (Certificate
files might be encrypted as well from the technical point of view, it howev er does not make sense as the
data in the certificate is considered public anyway.)

RETURN VALUES
On success, the functions return 1. Otherwise check out the error stack to find out the reason.

SEE ALSO
ssl(3), SSL_new(3), SSL_clear(3), SSL_CTX_load_verify_locations(3),
SSL_CTX_set_default_passwd_cb(3), SSL_CTX_set_cipher_list(3), SSL_CTX_set_client_cert_cb(3),

0.9.9-dev 2005-11-24 2

SSL_CTX_use_certificate(3) OpenSSL SSL_CTX_use_certificate(3)

SSL_CTX_add_extra_chain_cert(3)

HISTORY
Support forDER encoded private keys (SSL_FILETYPE_ASN1) in SSL_CTX_use_PrivateKey_file() and
SSL_use_PrivateKey_file()was added in 0.9.8 .

0.9.9-dev 2005-11-24 3

SSL_SESSION_free(3) OpenSSL SSL_SESSION_free(3)

NAME
SSL_SESSION_free − free an allocated SSL_SESSION structure

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_SESSION_free(SSL_SESSION *session);

DESCRIPTION
SSL_SESSION_free()decrements the reference count ofsessionand removes the SSL_SESSIONstructure
pointed to bysessionand frees up the allocated memory, if the the reference count has reached 0.

NOTES
SSL_SESSIONobjects are allocated, when aTLS/SSL handshake operation is successfully completed.
Depending on the settings, seeSSL_CTX_set_session_cache_mode(3), theSSL_SESSIONobjects are inter-
nally referenced by theSSL_CTXand linked into its session cache.SSL objects may be using theSSL_SES-
SION object; as a session may be reused, several SSL objects may be using oneSSL_SESSIONobject at the
same time. It is therefore crucial to keep the reference count (usage information) correct and not delete a
SSL_SESSIONobject that is still used, as this may lead to program failures due to dangling pointers. These
failures may also appear delayed, e.g. when anSSL_SESSIONobject was completely freed as the reference
count incorrectly became 0, but it is still referenced in the internal session cache and the cache list is pro-
cessed during aSSL_CTX_flush_sessions(3) operation.

SSL_SESSION_free()must only be called forSSL_SESSIONobjects, for which the reference count was
explicitly incremented (e.g. by callingSSL_get1_session(), seeSSL_get_session(3)) or when theSSL_SES-
SION object was generated outside aTLS handshake operation, e.g. by usingd2i_SSL_SESSION(3). It
must not be called on otherSSL_SESSIONobjects, as this would cause incorrect reference counts and there-
fore program failures.

RETURN VALUES
SSL_SESSION_free()does not provide diagnostic information.

SEE ALSO
ssl(3), SSL_get_session(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_flush_sessions(3),
d2i_SSL_SESSION(3)

0.9.9-dev 2002-06-09 1

SSL_SESSION_get_ex_new_index(3) OpenSSL SSL_SESSION_get_ex_new_index(3)

NAME
SSL_SESSION_get_ex_new_index, SSL_SESSION_set_ex_data, SSL_SESSION_get_ex_data − internal
application specific data functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_SESSION_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int SSL_SESSION_set_ex_data(SSL_SESSION *session, int idx, void *arg);

void *SSL_SESSION_get_ex_data(const SSL_SESSION *session, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef int dup_func(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. These functions are used
internally by OpenSSL to manipulate application specific data attached to a specific structure.

SSL_SESSION_get_ex_new_index()is used to register a new index for application specific data.

SSL_SESSION_set_ex_data()is used to store application data atarg for idx into thesessionobject.

SSL_SESSION_get_ex_data()is used to retrieve the information foridx from session.

A detailed description for the *_get_ex_new_index() functionality can be found in
RSA_get_ex_new_index(3). The *_get_ex_data()and *_set_ex_data()functionality is described in
CRYPTO_set_ex_data(3).

WARNINGS
The application data is only maintained for sessions held in memory. The application data is not included
when dumping the session withi2d_SSL_SESSION()(and all functions indirectly calling the dump func-
tions like PEM_write_SSL_SESSION()and PEM_write_bio_SSL_SESSION()) and can therefore not be
restored.

SEE ALSO
ssl(3), RSA_get_ex_new_index(3), CRYPTO_set_ex_data(3)

0.9.9-dev 2005-04-23 1

SSL_SESSION_get_time(3) OpenSSL SSL_SESSION_get_time(3)

NAME
SSL_SESSION_get_time, SSL_SESSION_set_time, SSL_SESSION_get_timeout, SSL_SES-
SION_set_timeout − retrieve and manipulate session time and timeout settings

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_SESSION_get_time(const SSL_SESSION *s);
long SSL_SESSION_set_time(SSL_SESSION *s, long tm);
long SSL_SESSION_get_timeout(const SSL_SESSION *s);
long SSL_SESSION_set_timeout(SSL_SESSION *s, long tm);

long SSL_get_time(const SSL_SESSION *s);
long SSL_set_time(SSL_SESSION *s, long tm);
long SSL_get_timeout(const SSL_SESSION *s);
long SSL_set_timeout(SSL_SESSION *s, long tm);

DESCRIPTION
SSL_SESSION_get_time()returns the time at which the sessions was established. The time is given in sec-
onds since the Epoch and therefore compatible to the time delivered by thetime()call.

SSL_SESSION_set_time()replaces the creation time of the sessions with the chosen valuetm.

SSL_SESSION_get_timeout()returns the timeout value set for sessions in seconds.

SSL_SESSION_set_timeout()sets the timeout value for sessions in seconds totm.

TheSSL_get_time(), SSL_set_time(), SSL_get_timeout(), and SSL_set_timeout()functions are synonyms for
the SSL_SESSION_*() counterparts.

NOTES
Sessions are expired by examining the creation time and the timeout value. Bothare set at creation time of
the session to the actual time and the default timeout value at creation, respectively, as set by
SSL_CTX_set_timeout(3). Usingthese functions it is possible to extend or shorten the lifetime of the ses-
sion.

RETURN VALUES
SSL_SESSION_get_time()andSSL_SESSION_get_timeout()return the currently valid values.

SSL_SESSION_set_time()andSSL_SESSION_set_timeout()return 1 on success.

If any of the function is passed theNULL pointer for the sessions, 0 is returned.

SEE ALSO
ssl(3), SSL_CTX_set_timeout(3), SSL_get_default_timeout(3)

0.9.9-dev 2007-03-06 1

SSL_accept(3) OpenSSL SSL_accept(3)

NAME
SSL_accept − wait for a TLS/SSL client to initiate a TLS/SSL handshake

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_accept(SSL *ssl);

DESCRIPTION
SSL_accept()waits for a TLS/SSL client to initiate theTLS/SSL handshake. Thecommunication channel
must already have been set and assigned to thesslby setting an underlyingBIO .

NOTES
The behaviour ofSSL_accept()depends on the underlyingBIO.

If the underlyingBIO is blocking, SSL_accept()will only return once the handshake has been finished or an
error occurred, except forSGC (Server Gated Cryptography). For SGC, SSL_accept()may return with −1,
but SSL_get_error()will yield SSL_ERROR_WANT_READ/WRITE and SSL_accept()should be called
again.

If the underlyingBIO is non-blocking, SSL_accept()will also return when the underlyingBIO could not
satisfy the needs ofSSL_accept()to continue the handshake, indicating the problem by the return value −1.
In this case a call toSSL_get_error() with the return value of SSL_accept() will yield
SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE . The calling process then must repeat the call
after taking appropriate action to satisfy the needs ofSSL_accept(). The action depends on the underlying
BIO. When using a non-blocking socket, nothing is to be done, but select()can be used to check for the
required condition. When using a buffering BIO, like aBIO pair, data must be written into or retrieved out
of theBIO before being able to continue.

RETURN VALUES
The following return values can occur:

1 TheTLS/SSLhandshake was successfully completed, aTLS/SSLconnection has been established.

0 TheTLS/SSLhandshake was not successful but was shut down controlled and by the specifications of
theTLS/SSLprotocol. CallSSL_get_error()with the return valueret to find out the reason.

<0 TheTLS/SSLhandshake was not successful because a fatal error occurred either at the protocol level
or a connection failure occurred. The shutdown was not clean. It can also occur of action is need to
continue the operation for non-blocking BIOs. CallSSL_get_error()with the return value ret to find
out the reason.

SEE ALSO
SSL_get_error(3), SSL_connect(3), SSL_shutdown(3), ssl(3), openssl_bio(3), SSL_set_connect_state(3),
SSL_do_handshake(3), SSL_CTX_new(3)

0.9.9-dev 2003-11-04 1

SSL_alert_type_string(3) OpenSSL SSL_alert_type_string(3)

NAME
SSL_alert_type_string, SSL_alert_type_string_long, SSL_alert_desc_string, SSL_alert_desc_string_long −
get textual description of alert information

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_alert_type_string(int value);
const char *SSL_alert_type_string_long(int value);

const char *SSL_alert_desc_string(int value);
const char *SSL_alert_desc_string_long(int value);

DESCRIPTION
SSL_alert_type_string()returns a one letter string indicating the type of the alert specified byvalue.

SSL_alert_type_string_long()returns a string indicating the type of the alert specified byvalue.

SSL_alert_desc_string()returns a two letter string as a short form describing the reason of the alert speci-
fied byvalue.

SSL_alert_desc_string_long()returns a string describing the reason of the alert specified byvalue.

NOTES
When one side of anSSL/TLScommunication wants to inform the peer about a special situation, it sends an
alert. The alert is sent as a special message and does not influence the normal data stream (unless its con-
tents results in the communication being canceled).

A warning alert is sent, when a non-fatal error condition occurs. The ‘‘close notify’’ alert is sent as a warn-
ing alert. Other examples for non-fatal errors are certificate errors (‘‘certificate expired’’, ‘‘unsupported cer-
tificate’’), for which a warning alert may be sent.(The sending party may however decide to send a fatal
error.) The receiving side may cancel the connection on reception of a warning alert on it discretion.

Several alert messages must be sent as fatal alert messages as specified by theTLS RFC. A fatal alert always
leads to a connection abort.

RETURN VALUES
The following strings can occur forSSL_alert_type_string()or SSL_alert_type_string_long():

‘‘ W’’/‘‘warning’’
‘‘ F’’/‘‘fatal’’
‘‘ U’’/‘‘unknown’’

This indicates that no support is available for this alert type.Probablyvalue does not contain a correct
alert message.

The following strings can occur forSSL_alert_desc_string()or SSL_alert_desc_string_long():

‘‘ CN’’ /‘‘close notify’’
The connection shall be closed. This is a warning alert.

‘‘ UM’’ /‘‘unexpected message’’
An inappropriate message was received. This alert is always fatal and should never be observed in
communication between proper implementations.

‘‘ BM’’ /‘‘bad record mac’’
This alert is returned if a record is received with an incorrectMAC. This message is always fatal.

‘‘ DF’’ /‘‘decompression failure’’
The decompression function received improper input (e.g. data that would expand to excessive length).
This message is always fatal.

0.9.9-dev 2003-07-24 1

SSL_alert_type_string(3) OpenSSL SSL_alert_type_string(3)

‘‘ HF’’ /‘‘handshake failure’’
Reception of a handshake_failure alert message indicates that the sender was unable to negotiate an
acceptable set of security parameters given the options available. This is a fatal error.

‘‘ NC’’ /‘‘no certificate’’
A client, that was asked to send a certificate, does not send a certificate (SSLv3 only).

‘‘ BC’’ /‘‘bad certificate’’
A certificate was corrupt, contained signatures that did not verify correctly, etc

‘‘ UC’’ /‘‘unsupported certificate’’
A certificate was of an unsupported type.

‘‘ CR’’ /‘‘certificate revoked’’
A certificate was revoked by its signer.

‘‘ CE’’ /‘‘certificate expired’’
A certificate has expired or is not currently valid.

‘‘ CU’’ /‘‘certificate unknown’’
Some other (unspecified) issue arose in processing the certificate, rendering it unacceptable.

‘‘ IP’’ /‘‘ille gal parameter’’
A field in the handshake was out of range or inconsistent with other fields. This is always fatal.

‘‘ DC’’ /‘‘decryption failed’’
A TLSCiphertext decrypted in an invalid way: either it wasn’t an even multiple of the block length or
its padding values, when checked, weren’t correct. This message is always fatal.

‘‘ RO’’ /‘‘record overflow’’
A TLSCiphertext record was received which had a length more than 2ˆ14+2048 bytes, or a record
decrypted to a TLSCompressed record with more than 2ˆ14+1024 bytes. This message is always fatal.

‘‘ CA’’ /‘‘unknown CA’’
A valid certificate chain or partial chain was received, but the certificate was not accepted because the
CA certificate could not be located or couldn’t be matched with a known, trustedCA. This message is
always fatal.

‘‘ AD’’ /‘‘access denied’’
A valid certificate was received, but when access control was applied, the sender decided not to pro-
ceed with negotiation. Thismessage is always fatal.

‘‘ DE’’ /‘‘decode error’’
A message could not be decoded because some field was out of the specified range or the length of the
message was incorrect. This message is always fatal.

‘‘ CY’’ /‘‘decrypt error’’
A handshake cryptographic operation failed, including being unable to correctly verify a signature,
decrypt a key exchange, or validate a finished message.

‘‘ ER’’ /‘‘export restriction’’
A negotiation not in compliance with export restrictions was detected; for example, attempting to
transfer a 1024 bit ephemeralRSA key for the RSA_EXPORThandshake method. This message is
always fatal.

‘‘ PV’’ /‘‘protocol version’’
The protocol version the client has attempted to negotiate is recognized, but not supported. (For exam-
ple, old protocol versions might be avoided for security reasons). This message is always fatal.

‘‘ IS’’ /‘‘insufficient security’’
Returned instead of handshake_failure when a negotiation has failed specifically because the server
requires ciphers more secure than those supported by the client. This message is always fatal.

0.9.9-dev 2003-07-24 2

SSL_alert_type_string(3) OpenSSL SSL_alert_type_string(3)

‘‘ IE’’ /‘‘internal error’’
An internal error unrelated to the peer or the correctness of the protocol makes it impossible to con-
tinue (such as a memory allocation failure). This message is always fatal.

‘‘ US’’ /‘‘user canceled’’
This handshake is being canceled for some reason unrelated to a protocol failure. If the user cancels an
operation after the handshake is complete, just closing the connection by sending a close_notify is
more appropriate. This alert should be followed by a close_notify. This message is generally a warn-
ing.

‘‘ NR’’ /‘‘no renegotiation’’
Sent by the client in response to a hello request or by the server in response to a client hello after ini-
tial handshaking. Either of these would normally lead to renegotiation; when that is not appropriate,
the recipient should respond with this alert; at that point, the original requester can decide whether to
proceed with the connection. One case where this would be appropriate would be where a server has
spawned a process to satisfy a request; the process might receive security parameters (key length,
authentication, etc.) at startup and it might be difficult to communicate changes to these parameters
after that point. This message is always a warning.

‘‘ UK’’ /‘‘unknown’’
This indicates that no description is available for this alert type.Probablyvalue does not contain a
correct alert message.

SEE ALSO
ssl(3), SSL_CTX_set_info_callback(3)

0.9.9-dev 2003-07-24 3

SSL_clear(3) OpenSSL SSL_clear(3)

NAME
SSL_clear − reset SSL object to allow another connection

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_clear(SSL *ssl);

DESCRIPTION
Resetssl to allow another connection. All settings (method, ciphers, BIOs) are kept.

NOTES
SSL_clear is used to prepare anSSLobject for a new connection. While all settings are kept, a side effect is
the handling of the currentSSL session. Ifa session is stillopen, it is considered bad and will be removed
from the session cache, as required byRFC2246. A session is considered open, ifSSL_shutdown(3) was not
called for the connection or at leastSSL_set_shutdown(3) was used to set theSSL_SENT_SHUTDOWN
state.

If a session was closed cleanly, the session object will be kept and all settings corresponding. This explic-
itly means, that e.g. the special method used during the session will be kept for the next handshake. So if
the session was a TLSv1 session, aSSLclient object will use a TLSv1 client method for the next handshake
and aSSL server object will use a TLSv1 server method, even if SSLv23_*_methods were chosen on
startup. This will might lead to connection failures (seeSSL_new(3)) for a description of the method’s
properties.

WARNINGS
SSL_clear()resets theSSL object to allow for another connection. The reset operation however keeps sev-
eral settings of the last sessions (some of these settings were made automatically during the last hand-
shake). It only makes sense when opening a new session (or reusing an old one) with the same peer that
shares these settings.SSL_clear()is not a short form for the sequenceSSL_free(3); SSL_new(3); .

RETURN VALUES
The following return values can occur:

0 TheSSL_clear()operation could not be performed. Check the error stack to find out the reason.

1 TheSSL_clear()operation was successful.

SSL_new(3), SSL_free(3), SSL_shutdown(3), SSL_set_shutdown(3), SSL_CTX_set_options(3), ssl(3),
SSL_CTX_set_client_cert_cb(3)

0.9.9-dev 2002-06-09 1

SSL_connect(3) OpenSSL SSL_connect(3)

NAME
SSL_connect − initiate the TLS/SSL handshake with an TLS/SSL server

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_connect(SSL *ssl);

DESCRIPTION
SSL_connect()initiates theTLS/SSL handshake with a server. The communication channel must already
have been set and assigned to thesslby setting an underlyingBIO .

NOTES
The behaviour ofSSL_connect()depends on the underlyingBIO.

If the underlyingBIO is blocking, SSL_connect()will only return once the handshake has been finished or
an error occurred.

If the underlyingBIO is non-blocking, SSL_connect()will also return when the underlyingBIO could not
satisfy the needs ofSSL_connect()to continue the handshake, indicating the problem by the return value
−1. In this case a call toSSL_get_error()with the return value ofSSL_connect()will yield
SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE . The calling process then must repeat the call
after taking appropriate action to satisfy the needs ofSSL_connect(). The action depends on the underlying
BIO. When using a non-blocking socket, nothing is to be done, but select()can be used to check for the
required condition. When using a buffering BIO, like aBIO pair, data must be written into or retrieved out
of theBIO before being able to continue.

RETURN VALUES
The following return values can occur:

1 TheTLS/SSLhandshake was successfully completed, aTLS/SSLconnection has been established.

0 TheTLS/SSLhandshake was not successful but was shut down controlled and by the specifications of
theTLS/SSLprotocol. CallSSL_get_error()with the return valueret to find out the reason.

<0 TheTLS/SSLhandshake was not successful, because a fatal error occurred either at the protocol level
or a connection failure occurred. The shutdown was not clean. It can also occur of action is need to
continue the operation for non-blocking BIOs. CallSSL_get_error()with the return value ret to find
out the reason.

SEE ALSO
SSL_get_error(3), SSL_accept(3), SSL_shutdown(3), ssl(3), openssl_bio(3), SSL_set_connect_state(3),
SSL_do_handshake(3), SSL_CTX_new(3)

0.9.9-dev 2003-11-04 1

SSL_do_handshake(3) OpenSSL SSL_do_handshake(3)

NAME
SSL_do_handshake − perform a TLS/SSL handshake

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_do_handshake(SSL *ssl);

DESCRIPTION
SSL_do_handshake()will wait for a SSL/TLShandshake to take place. If the connection is in client mode,
the handshake will be started. The handshake routines may have to be explicitly set in advance using either
SSL_set_connect_state(3) orSSL_set_accept_state(3).

NOTES
The behaviour ofSSL_do_handshake()depends on the underlyingBIO.

If the underlyingBIO is blocking, SSL_do_handshake()will only return once the handshake has been fin-
ished or an error occurred, except forSGC (Server Gated Cryptography). For SGC, SSL_do_handshake()
may return with −1, but SSL_get_error()will yield SSL_ERROR_WANT_READ/WRITE andSSL_do_hand-
shake()should be called again.

If the underlyingBIO is non-blocking, SSL_do_handshake()will also return when the underlyingBIO
could not satisfy the needs ofSSL_do_handshake()to continue the handshake. In this case a call to
SSL_get_error()with the return value ofSSL_do_handshake()will yield SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE . The calling process then must repeat the call after taking appropriate action
to satisfy the needs ofSSL_do_handshake(). The action depends on the underlyingBIO. When using a non-
blocking socket, nothing is to be done, but select()can be used to check for the required condition. When
using a buffering BIO, like aBIO pair, data must be written into or retrieved out of theBIO before being
able to continue.

RETURN VALUES
The following return values can occur:

1 TheTLS/SSLhandshake was successfully completed, aTLS/SSLconnection has been established.

0 TheTLS/SSLhandshake was not successful but was shut down controlled and by the specifications of
theTLS/SSLprotocol. CallSSL_get_error()with the return valueret to find out the reason.

<0 TheTLS/SSLhandshake was not successful because a fatal error occurred either at the protocol level
or a connection failure occurred. The shutdown was not clean. It can also occur of action is need to
continue the operation for non-blocking BIOs. CallSSL_get_error()with the return value ret to find
out the reason.

SEE ALSO
SSL_get_error(3), SSL_connect(3), SSL_accept(3), ssl(3), openssl_bio(3), SSL_set_connect_state(3)

0.9.9-dev 2002-07-30 1

SSL_free(3) OpenSSL SSL_free(3)

NAME
SSL_free − free an allocated SSL structure

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_free(SSL *ssl);

DESCRIPTION
SSL_free()decrements the reference count ofssl, and removes theSSL structure pointed to byssland frees
up the allocated memory if the the reference count has reached 0.

NOTES
SSL_free()also calls thefree()ing procedures for indirectly affected items, if applicable: the buffering BIO,
the read and write BIOs, cipher lists specially created for thisssl, theSSL_SESSION. Do not explicitly free
these indirectly freed up items before or after callingSSL_free(), as trying to free things twice may lead to
program failure.

The ssl session has reference counts from two users: theSSL object, for which the reference count is
removed by SSL_free()and the internal session cache. If the session is considered bad, becauseSSL_shut-
down(3) was not called for the connection andSSL_set_shutdown(3) was not used to set the
SSL_SENT_SHUTDOWNstate, the session will also be removed from the session cache as required by
RFC2246.

RETURN VALUES
SSL_free()does not provide diagnostic information.

SSL_new(3), SSL_clear(3), SSL_shutdown(3), SSL_set_shutdown(3), ssl(3)

0.9.9-dev 2001-04-11 1

SSL_get_SSL_CTX(3) OpenSSL SSL_get_SSL_CTX(3)

NAME
SSL_get_SSL_CTX − get the SSL_CTX from which an SSL is created

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl);

DESCRIPTION
SSL_get_SSL_CTX()returns a pointer to theSSL_CTX object, from which ssl was created with
SSL_new(3).

RETURN VALUES
The pointer to theSSL_CTXobject is returned.

SEE ALSO
ssl(3), SSL_new(3)

0.9.9-dev 2005-04-23 1

SSL_get_ciphers(3) OpenSSL SSL_get_ciphers(3)

NAME
SSL_get_ciphers, SSL_get_cipher_list − get list of available SSL_CIPHERs

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *ssl);
const char *SSL_get_cipher_list(const SSL *ssl, int priority);

DESCRIPTION
SSL_get_ciphers()returns the stack of available SSL_CIPHERs forssl, sorted by preference. Ifssl is NULL
or no ciphers are available,NULL is returned.

SSL_get_cipher_list()returns a pointer to the name of theSSL_CIPHERlisted forsslwith priority . If ssl is
NULL , no ciphers are available, or there are less ciphers thanpriority available,NULL is returned.

NOTES
The details of the ciphers obtained bySSL_get_ciphers() can be obtained using the
SSL_CIPHER_get_name(3) family of functions.

Call SSL_get_cipher_list()with priority starting from 0 to obtain the sorted list of available ciphers, until
NULL is returned.

RETURN VALUES
SeeDESCRIPTION

SEE ALSO
ssl(3), SSL_CTX_set_cipher_list(3), SSL_CIPHER_get_name(3)

0.9.9-dev 2005-04-23 1

SSL_get_client_CA_list(3) OpenSSL SSL_get_client_CA_list(3)

NAME
SSL_get_client_CA_list, SSL_CTX_get_client_CA_list − get list of client CAs

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *s);
STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(const SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_get_client_CA_list()returns the list of client CAs explicitly set for ctx using
SSL_CTX_set_client_CA_list(3).

SSL_get_client_CA_list()returns the list of client CAs explicitly set forssl usingSSL_set_client_CA_list()
or ssl’s SSL_CTX object with SSL_CTX_set_client_CA_list(3), when in server mode. In client mode,
SSL_get_client_CA_list returns the list of client CAs sent from the server, if any.

RETURN VALUES
SSL_CTX_set_client_CA_list()andSSL_set_client_CA_list()do not return diagnostic information.

SSL_CTX_add_client_CA()andSSL_add_client_CA()have the following return values:

STACK_OF(X509_NAMES)
List of CA names explicitly set (forctx or in server mode) or send by the server (client mode).

NULL
No clientCA list was explicitly set (forctx or in server mode) or the server did not send a list of CAs
(client mode).

SEE ALSO
ssl(3), SSL_CTX_set_client_CA_list(3), SSL_CTX_set_client_cert_cb(3)

0.9.9-dev 2005-04-23 1

SSL_get_current_cipher(3) OpenSSL SSL_get_current_cipher(3)

NAME
SSL_get_current_cipher, SSL_get_cipher, SSL_get_cipher_name, SSL_get_cipher_bits,
SSL_get_cipher_version − get SSL_CIPHER of a connection

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl);
#define SSL_get_cipher(s) \

SSL_CIPHER_get_name(SSL_get_current_cipher(s))
#define SSL_get_cipher_name(s) \

SSL_CIPHER_get_name(SSL_get_current_cipher(s))
#define SSL_get_cipher_bits(s,np) \

SSL_CIPHER_get_bits(SSL_get_current_cipher(s),np)
#define SSL_get_cipher_version(s) \

SSL_CIPHER_get_version(SSL_get_current_cipher(s))

DESCRIPTION
SSL_get_current_cipher()returns a pointer to anSSL_CIPHERobject containing the description of the actu-
ally used cipher of a connection established with thesslobject.

SSL_get_cipher()andSSL_get_cipher_name()are identical macros to obtain the name of the currently used
cipher. SSL_get_cipher_bits()is a macro to obtain the number of secret/algorithm bits used and
SSL_get_cipher_version()returns the protocol name. SeeSSL_CIPHER_get_name(3) for more details.

RETURN VALUES
SSL_get_current_cipher()returns the cipher actually used orNULL , when no session has been established.

SEE ALSO
ssl(3), SSL_CIPHER_get_name(3)

0.9.9-dev 2005-04-23 1

SSL_get_default_timeout(3) OpenSSL SSL_get_default_timeout(3)

NAME
SSL_get_default_timeout − get default session timeout value

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_get_default_timeout(const SSL *ssl);

DESCRIPTION
SSL_get_default_timeout()returns the default timeout value assigned toSSL_SESSIONobjects negotiated
for the protocol valid forssl.

NOTES
Whenever a new session is negotiated, it is assigned a timeout value, after which it will not be accepted for
session reuse. If the timeout value was not explicitly set usingSSL_CTX_set_timeout(3), the hardcoded
default timeout for the protocol will be used.

SSL_get_default_timeout()return this hardcoded value, which is 300 seconds for all currently supported
protocols (SSLv2, SSLv3, and TLSv1).

RETURN VALUES
See description.

SEE ALSO
ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_SESSION_get_time(3), SSL_CTX_flush_sessions(3),
SSL_get_default_timeout(3)

0.9.9-dev 2005-04-23 1

SSL_get_error(3) OpenSSL SSL_get_error(3)

NAME
SSL_get_error − obtain result code for TLS/SSL I/O operation

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_error(const SSL *ssl, int ret);

DESCRIPTION
SSL_get_error()returns a result code (suitable for the C ‘‘switch’’ statement) for a preceding call to
SSL_connect(), SSL_accept(), SSL_do_handshake(), SSL_read(), SSL_peek(), or SSL_write()on ssl. The
value returned by thatTLS/SSLI/O function must be passed toSSL_get_error()in parameterret.

In addition tossl and ret, SSL_get_error()inspects the current thread’s OpenSSL error queue.Thus,
SSL_get_error()must be used in the same thread that performed theTLS/SSL I/O operation, and no other
OpenSSL function calls should appear in between.The current thread’s error queue must be empty before
theTLS/SSLI/O operation is attempted, orSSL_get_error()will not work reliably.

RETURN VALUES
The following return values can currently occur:

SSL_ERROR_NONE
TheTLS/SSLI/O operation completed. This result code is returned if and only ifret > 0.

SSL_ERROR_ZERO_RETURN
The TLS/SSL connection has been closed. If the protocol version isSSL 3.0 or TLS 1.0, this result
code is returned only if a closure alert has occurred in the protocol, i.e. if the connection has been
closed cleanly. Note that in this caseSSL_ERROR_ZERO_RETURN does not necessarily indicate that
the underlying transport has been closed.

SSL_ERROR_WANT_READ, SSL_ERROR_WANT_WRITE
The operation did not complete; the sameTLS/SSL I/O function should be called again later. If, by
then, the underlying BIO has data available for reading (if the result code is
SSL_ERROR_WANT_READ) or allows writing data (SSL_ERROR_WANT_WRITE), then some
TLS/SSLprotocol progress will take place, i.e. at least part of anTLS/SSL record will be read or writ-
ten. Note that the retry may again lead to a SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE condition. Thereis no fixed upper limit for the number of iterations that
may be necessary until progress becomes visible at application protocol level.

For socketBIOs (e.g. whenSSL_set_fd()was used),select()or poll() on the underlying socket can be
used to find out when theTLS/SSLI/O function should be retried.

Caveat: Any TLS/SSL I/O function can lead to either ofSSL_ERROR_WANT_READ and
SSL_ERROR_WANT_WRITE . In particular, SSL_read()or SSL_peek()may want to write data and
SSL_write()may want to read data. This is mainly becauseTLS/SSL handshakes may occur at any
time during the protocol (initiated by either the client or the server); SSL_read(), SSL_peek(), and
SSL_write()will handle any pending handshakes.

SSL_ERROR_WANT_CONNECT, SSL_ERROR_WANT_ACCEPT
The operation did not complete; the sameTLS/SSL I/O function should be called again later. The
underlyingBIO was not connected yet to the peer and the call would block inconnect()/accept(). The
SSL function should be called again when the connection is established. These messages can only
appear with aBIO_s_connect()or BIO_s_accept()BIO, respectively. In order to find out, when the
connection has been successfully established, on many platformsselect()or poll() for writing on the
socket file descriptor can be used.

SSL_ERROR_WANT_X509_LOOKUP
The operation did not complete because an application callback set bySSL_CTX_set_client_cert_cb()
has asked to be called again. TheTLS/SSL I/O function should be called again later. Details depend

0.9.9-dev 2005-04-23 1

SSL_get_error(3) OpenSSL SSL_get_error(3)

on the application.

SSL_ERROR_SYSCALL
Some I/O error occurred. The OpenSSL error queue may contain more information on the error. If
the error queue is empty (i.e.ERR_get_error()returns 0),ret can be used to find out more about the
error: If ret == 0, an EOF was observed that violates the protocol.If ret == −1, the underlyingBIO
reported an I/O error (for socket I/O on Unix systems, consulterrno for details).

SSL_ERROR_SSL
A failure in theSSL library occurred, usually a protocol error. The OpenSSL error queue contains
more information on the error.

SEE ALSO
ssl(3), openssl_err(3)

HISTORY
SSL_get_error()was added in SSLeay 0.8.

0.9.9-dev 2005-04-23 2

SSL_get_ex_data_X509_STORE_CTX_idx(3) OpenSSL SSL_get_ex_data_X509_STORE_CTX_idx(3)

NAME
SSL_get_ex_data_X509_STORE_CTX_idx − get ex_data index to access SSL structure from
X509_STORE_CTX

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_ex_data_X509_STORE_CTX_idx(void);

DESCRIPTION
SSL_get_ex_data_X509_STORE_CTX_idx()returns the index number under which the pointer to theSSL
object is stored into the X509_STORE_CTX object.

NOTES
Whenever a X509_STORE_CTX object is created for the verification of the peers certificate during a hand-
shake, a pointer to theSSL object is stored into the X509_STORE_CTX object to identify the connection
affected. To retrieve this pointer theX509_STORE_CTX_get_ex_data()function can be used with the cor-
rect index. This index is globally the same for all X509_STORE_CTX objects and can be retrieved using
SSL_get_ex_data_X509_STORE_CTX_idx(). The index value is set when
SSL_get_ex_data_X509_STORE_CTX_idx()is first called either by the application program directly or indi-
rectly during otherSSLsetup functions or during the handshake.

The value depends on other index values defined for X509_STORE_CTX objects before theSSL index is
created.

RETURN VALUES
>=0

The index value to access the pointer.

<0 An error occurred, check the error stack for a detailed error message.

EXAMPLES
The index returned fromSSL_get_ex_data_X509_STORE_CTX_idx()allows to access theSSL object for
the connection to be accessed during theverify_callback()when checking the peers certificate. Please check
the example inSSL_CTX_set_verify(3),

SEE ALSO
ssl(3), SSL_CTX_set_verify(3), CRYPTO_set_ex_data(3)

0.9.9-dev 2001-04-11 1

SSL_get_ex_new_index(3) OpenSSL SSL_get_ex_new_index(3)

NAME
SSL_get_ex_new_index, SSL_set_ex_data, SSL_get_ex_data − internal application specific data functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int SSL_set_ex_data(SSL *ssl, int idx, void *arg);

void *SSL_get_ex_data(const SSL *ssl, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef int dup_func(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. These functions are used
internally by OpenSSL to manipulate application specific data attached to a specific structure.

SSL_get_ex_new_index()is used to register a new index for application specific data.

SSL_set_ex_data()is used to store application data atarg for idx into thesslobject.

SSL_get_ex_data()is used to retrieve the information foridx from ssl.

A detailed description for the *_get_ex_new_index() functionality can be found in
RSA_get_ex_new_index(3). The *_get_ex_data()and *_set_ex_data()functionality is described in
CRYPTO_set_ex_data(3).

EXAMPLES
An example on how to use the functionality is included in the example verify_callback() in
SSL_CTX_set_verify(3).

SEE ALSO
ssl(3), RSA_get_ex_new_index(3), CRYPTO_set_ex_data(3), SSL_CTX_set_verify(3)

0.9.9-dev 2005-04-23 1

SSL_get_fd(3) OpenSSL SSL_get_fd(3)

NAME
SSL_get_fd − get file descriptor linked to an SSL object

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_fd(const SSL *ssl);
int SSL_get_rfd(const SSL *ssl);
int SSL_get_wfd(const SSL *ssl);

DESCRIPTION
SSL_get_fd()returns the file descriptor which is linked tossl. SSL_get_rfd()andSSL_get_wfd()return the
file descriptors for the read or the write channel, which can be different. If the read and the write channel
are different,SSL_get_fd()will return the file descriptor of the read channel.

RETURN VALUES
The following return values can occur:

−1 Theoperation failed, because the underlyingBIO is not of the correct type (suitable for file descrip-
tors).

>=0
The file descriptor linked tossl.

SEE ALSO
SSL_set_fd(3), ssl(3) ,openssl_bio(3)

0.9.9-dev 2005-04-23 1

SSL_get_peer_cert_chain(3) OpenSSL SSL_get_peer_cert_chain(3)

NAME
SSL_get_peer_cert_chain − get the X509 certificate chain of the peer

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

STACKOF(X509) *SSL_get_peer_cert_chain(const SSL *ssl);

DESCRIPTION
SSL_get_peer_cert_chain()returns a pointer toSTACKOF(X509) certificates forming the certificate chain of
the peer. If called on the client side, the stack also contains the peer’s certificate; if called on the server side,
the peer’s certificate must be obtained separately usingSSL_get_peer_certificate(3). If the peer did not
present a certificate,NULL is returned.

NOTES
The peer certificate chain is not necessarily available after reusing a session, in which case aNULL pointer
is returned.

The reference count of theSTACKOF(X509) object is not incremented. If the corresponding session is
freed, the pointer must not be used any longer.

RETURN VALUES
The following return values can occur:

NULL
No certificate was presented by the peer or no connection was established or the certificate chain is no
longer available when a session is reused.

Pointer to aSTACKOF(X509)
The return value points to the certificate chain presented by the peer.

SEE ALSO
ssl(3), SSL_get_peer_certificate(3)

0.9.9-dev 2005-04-23 1

SSL_get_peer_certificate(3) OpenSSL SSL_get_peer_certificate(3)

NAME
SSL_get_peer_certificate − get the X509 certificate of the peer

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

X509 *SSL_get_peer_certificate(const SSL *ssl);

DESCRIPTION
SSL_get_peer_certificate()returns a pointer to the X509 certificate the peer presented. If the peer did not
present a certificate,NULL is returned.

NOTES
Due to the protocol definition, aTLS/SSLserver will always send a certificate, if present. A client will only
send a certificate when explicitly requested to do so by the server (seeSSL_CTX_set_verify(3)). If an
anonymous cipher is used, no certificates are sent.

That a certificate is returned does not indicate information about the verification state, useSSL_get_ver-
ify_result(3) to check the verification state.

The reference count of the X509 object is incremented by one, so that it will not be destroyed when the ses-
sion containing the peer certificate is freed. The X509 object must be explicitly freed usingX509_free().

RETURN VALUES
The following return values can occur:

NULL
No certificate was presented by the peer or no connection was established.

Pointer to an X509 certificate
The return value points to the certificate presented by the peer.

SEE ALSO
ssl(3), SSL_get_verify_result(3), SSL_CTX_set_verify(3)

0.9.9-dev 2005-04-23 1

SSL_get_rbio(3) OpenSSL SSL_get_rbio(3)

NAME
SSL_get_rbio − get BIO linked to an SSL object

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

BIO *SSL_get_rbio(SSL *ssl);
BIO *SSL_get_wbio(SSL *ssl);

DESCRIPTION
SSL_get_rbio()andSSL_get_wbio()return pointers to the BIOs for the read or the write channel, which can
be different. The reference count of theBIO is not incremented.

RETURN VALUES
The following return values can occur:

NULL
No BIO was connected to theSSLobject

Any other pointer
TheBIO linked tossl.

SEE ALSO
SSL_set_bio(3), ssl(3) ,openssl_bio(3)

0.9.9-dev 2001-04-11 1

SSL_get_session(3) OpenSSL SSL_get_session(3)

NAME
SSL_get_session − retrieve TLS/SSL session data

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

SSL_SESSION *SSL_get_session(const SSL *ssl);
SSL_SESSION *SSL_get0_session(const SSL *ssl);
SSL_SESSION *SSL_get1_session(SSL *ssl);

DESCRIPTION
SSL_get_session()returns a pointer to theSSL_SESSIONactually used inssl. The reference count of the
SSL_SESSIONis not incremented, so that the pointer can become invalid by other operations.

SSL_get0_session()is the same asSSL_get_session().

SSL_get1_session()is the same asSSL_get_session(), but the reference count of theSSL_SESSIONis incre-
mented by one.

NOTES
The ssl session contains all information required to re-establish the connection without a new handshake.

SSL_get0_session()returns a pointer to the actual session. As the reference counter is not incremented, the
pointer is only valid while the connection is in use. IfSSL_clear(3) or SSL_free(3) is called, the session
may be removed completely (if considered bad), and the pointer obtained will become invalid. Even if the
session is valid, it can be removed at any time due to timeout duringSSL_CTX_flush_sessions(3).

If the data is to be kept,SSL_get1_session()will increment the reference count, so that the session will not
be implicitly removed by other operations but stays in memory. In order to remove the sessionSSL_SES-
SION_free(3) must be explicitly called once to decrement the reference count again.

SSL_SESSIONobjects keep internal link information about the session cache list, when being inserted into
one SSL_CTX object’s session cache.One SSL_SESSIONobject, regardless of its reference count, must
therefore only be used with oneSSL_CTXobject (and theSSLobjects created from thisSSL_CTXobject).

RETURN VALUES
The following return values can occur:

NULL
There is no session available inssl.

Pointer to anSSL
The return value points to the data of anSSLsession.

SEE ALSO
ssl(3), SSL_free(3), SSL_clear(3), SSL_SESSION_free(3)

0.9.9-dev 2005-04-23 1

SSL_get_verify_result(3) OpenSSL SSL_get_verify_result(3)

NAME
SSL_get_verify_result − get result of peer certificate verification

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

long SSL_get_verify_result(const SSL *ssl);

DESCRIPTION
SSL_get_verify_result()returns the result of the verification of the X509 certificate presented by the peer, if
any.

NOTES
SSL_get_verify_result()can only return one error code while the verification of a certificate can fail because
of many reasons at the same time. Only the last verification error that occurred during the processing is
available fromSSL_get_verify_result().

The verification result is part of the established session and is restored when a session is reused.

BUGS
If no peer certificate was presented, the returned result code is X509_V_OK. This is because no verification
error occurred, it does however not indicate success.SSL_get_verify_result()is only useful in connection
with SSL_get_peer_certificate(3).

RETURN VALUES
The following return values can currently occur:

X509_V_OK
The verification succeeded or no peer certificate was presented.

Any other value
Documented inopenssl_verify(1).

SEE ALSO
ssl(3), SSL_set_verify_result(3), SSL_get_peer_certificate(3), openssl_verify(1)

0.9.9-dev 2005-04-23 1

SSL_get_version(3) OpenSSL SSL_get_version(3)

NAME
SSL_get_version − get the protocol version of a connection.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_get_version(const SSL *ssl);

DESCRIPTION
SSL_get_cipher_version()returns the name of the protocol used for the connectionssl.

RETURN VALUES
The following strings can occur:

SSLv2
The connection uses the SSLv2 protocol.

SSLv3
The connection uses the SSLv3 protocol.

TLSv1
The connection uses the TLSv1 protocol.

unknown
This indicates that no version has been set (no connection established).

SEE ALSO
ssl(3)

0.9.9-dev 2005-04-23 1

SSL_library_init(3) OpenSSL SSL_library_init(3)

NAME
SSL_library_init, OpenSSL_add_ssl_algorithms, SSLeay_add_ssl_algorithms − initialize SSL library by
registering algorithms

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_library_init(void);
#define OpenSSL_add_ssl_algorithms() SSL_library_init()
#define SSLeay_add_ssl_algorithms() SSL_library_init()

DESCRIPTION
SSL_library_init()registers the available ciphers and digests.

OpenSSL_add_ssl_algorithms()andSSLeay_add_ssl_algorithms()are synonyms forSSL_library_init().

NOTES
SSL_library_init()must be called before any other action takes place.SSL_library_init()is not reentrant.

WARNING
SSL_library_init() only registers ciphers. Another important initialization is the seeding of thePRNG
(Pseudo Random Number Generator), which has to be performed separately.

EXAMPLES
A typical TLS/SSLapplication will start with the library initialization, will provide readable error messages
and will seed thePRNG.

SSL_load_error_strings(); /* readable error messages */
SSL_library_init(); /* initialize library */
actions_to_seed_PRNG();

RETURN VALUES
SSL_library_init()always returns ‘‘1’’, so it is safe to discard the return value.

SEE ALSO
ssl(3), SSL_load_error_strings(3), RAND_add(3)

0.9.9-dev 2008-05-09 1

SSL_load_client_CA_file(3) OpenSSL SSL_load_client_CA_file(3)

NAME
SSL_load_client_CA_file − load certificate names from file

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file);

DESCRIPTION
SSL_load_client_CA_file()reads certificates fromfile and returns aSTACK_OF(X509_NAME) with the
subject names found.

NOTES
SSL_load_client_CA_file()reads a file ofPEM formatted certificates and extracts the X509_NAMES of the
certificates found. While the name suggests the specific usage as support function for
SSL_CTX_set_client_CA_list(3), it is not limited toCA certificates.

EXAMPLES
Load names of CAs from file and use it as a clientCA list:

SSL_CTX *ctx;
STACK_OF(X509_NAME) *cert_names;

...
cert_names = SSL_load_client_CA_file("/path/to/CAfile.pem");
if (cert_names != NULL)

SSL_CTX_set_client_CA_list(ctx, cert_names);
else

error_handling();
...

RETURN VALUES
The following return values can occur:

NULL
The operation failed, check out the error stack for the reason.

Pointer toSTACK_OF(X509_NAME)
Pointer to the subject names of the successfully read certificates.

SEE ALSO
ssl(3), SSL_CTX_set_client_CA_list(3)

0.9.9-dev 2001-04-11 1

SSL_new(3) OpenSSL SSL_new(3)

NAME
SSL_new − create a new SSL structure for a connection

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

SSL *SSL_new(SSL_CTX *ctx);

DESCRIPTION
SSL_new()creates a new SSL structure which is needed to hold the data for aTLS/SSLconnection. The new
structure inherits the settings of the underlying context ctx: connection method (SSLv2/v3/TLSv1),
options, verification settings, timeout settings.

RETURN VALUES
The following return values can occur:

NULL
The creation of a newSSLstructure failed. Check the error stack to find out the reason.

Pointer to anSSLstructure
The return value points to an allocatedSSLstructure.

SEE ALSO
SSL_free(3), SSL_clear(3), SSL_CTX_set_options(3), SSL_get_SSL_CTX(3), ssl(3)

0.9.9-dev 2002-06-09 1

SSL_pending(3) OpenSSL SSL_pending(3)

NAME
SSL_pending − obtain number of readable bytes buffered in an SSL object

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_pending(const SSL *ssl);

DESCRIPTION
SSL_pending()returns the number of bytes which are available insidessl for immediate read.

NOTES
Data are received in blocks from the peer. Therefore data can be buffered insidessland are ready for imme-
diate retrieval with SSL_read(3).

RETURN VALUES
The number of bytes pending is returned.

BUGS
SSL_pending()takes into account only bytes from theTLS/SSL record that is currently being processed (if
any). If the SSL object’s read_aheadflag is set, additional protocol bytes may have been read containing
moreTLS/SSLrecords; these are ignored bySSL_pending().

Up to OpenSSL 0.9.6,SSL_pending()does not check if the record type of pending data is application data.

SEE ALSO
SSL_read(3), ssl(3)

0.9.9-dev 2005-04-23 1

SSL_read(3) OpenSSL SSL_read(3)

NAME
SSL_read − read bytes from a TLS/SSL connection.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_read(SSL *ssl, void *buf, int num);

DESCRIPTION
SSL_read()tries to readnum bytes from the specifiedssl into the bufferbuf.

NOTES
If necessary, SSL_read()will negotiate aTLS/SSLsession, if not already explicitly performed bySSL_con-
nect(3) or SSL_accept(3). If the peer requests a re−negotiation, it will be performed transparently during
theSSL_read()operation. The behaviour ofSSL_read()depends on the underlyingBIO.

For the transparent negotiation to succeed, thesslmust have been initialized to client or server mode. This
is being done by callingSSL_set_connect_state(3) or SSL_set_accept_state()before the first call to an
SSL_read()or SSL_write(3) function.

SSL_read()works based on theSSL/TLSrecords. The data are received in records (with a maximum record
size of 16kB for SSLv3/TLSv1). Only when a record has been completely received, it can be processed
(decryption and check of integrity). Therefore data that was not retrieved at the last call ofSSL_read()can
still be buffered inside theSSL layer and will be retrieved on the next call toSSL_read(). If num is higher
than the number of bytes buffered,SSL_read()will return with the bytes buffered. If no more bytes are in
the buffer, SSL_read()will trigger the processing of the next record. Only when the record has been
received and processed completely, SSL_read()will return reporting success. At most the contents of the
record will be returned. As the size of anSSL/TLS record may exceed the maximum packet size of the
underlying transport (e.g.TCP), it may be necessary to read several packets from the transport layer before
the record is complete andSSL_read()can succeed.

If the underlyingBIO is blocking, SSL_read()will only return, once the read operation has been finished or
an error occurred, except when a renegotiation take place, in which case aSSL_ERROR_WANT_READmay
occur. This behaviour can be controlled with theSSL_MODE_AUTO_RETRY flag of the
SSL_CTX_set_mode(3) call.

If the underlyingBIO is non-blocking, SSL_read()will also return when the underlyingBIO could not sat-
isfy the needs ofSSL_read()to continue the operation. In this case a call toSSL_get_error(3) with the
return value ofSSL_read()will yield SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE . As at
any time a re-negotiation is possible, a call toSSL_read()can also cause write operations! The calling
process then must repeat the call after taking appropriate action to satisfy the needs ofSSL_read(). The
action depends on the underlyingBIO. When using a non-blocking socket, nothing is to be done, but
select()can be used to check for the required condition. When using a buffering BIO, like aBIO pair, data
must be written into or retrieved out of theBIO before being able to continue.

WARNING
When an SSL_read() operation has to be repeated because ofSSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE , it must be repeated with the same arguments.

RETURN VALUES
The following return values can occur:

>0 The read operation was successful; the return value is the number of bytes actually read from the
TLS/SSLconnection.

0 The read operation was not successful. The reason may either be a clean shutdown due to a ‘‘close
notify’’ alert sent by the peer (in which case theSSL_RECEIVED_SHUTDOWNflag in the ssl shutdown
state is set (seeSSL_shutdown(3), SSL_set_shutdown(3)). It is also possible, that the peer simply shut
down the underlying transport and the shutdown is incomplete. CallSSL_get_error()with the return

0.9.9-dev 2002-06-09 1

SSL_read(3) OpenSSL SSL_read(3)

value ret to find out, whether an error occurred or the connection was shut down cleanly
(SSL_ERROR_ZERO_RETURN).

SSLv2 (deprecated) does not support a shutdown alert protocol, so it can only be detected, whether the
underlying connection was closed. It cannot be checked, whether the closure was initiated by the peer
or by something else.

<0 Theread operation was not successful, because either an error occurred or action must be taken by the
calling process. CallSSL_get_error()with the return valueret to find out the reason.

SEE ALSO
SSL_get_error(3), SSL_write(3), SSL_CTX_set_mode(3), SSL_CTX_new(3), SSL_connect(3),
SSL_accept(3) SSL_set_connect_state(3), SSL_shutdown(3), SSL_set_shutdown(3), ssl(3),
openssl_bio(3)

0.9.9-dev 2002-06-09 2

SSL_rstate_string(3) OpenSSL SSL_rstate_string(3)

NAME
SSL_rstate_string, SSL_rstate_string_long − get textual description of state of an SSL object during read
operation

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_rstate_string(SSL *ssl);
const char *SSL_rstate_string_long(SSL *ssl);

DESCRIPTION
SSL_rstate_string()returns a 2 letter string indicating the current read state of theSSLobjectssl.

SSL_rstate_string_long()returns a string indicating the current read state of theSSLobjectssl.

NOTES
When performing a read operation, theSSL/TLS engine must parse the record, consisting of header and
body. When working in a blocking environment, SSL_rstate_string[_long]() should always return
‘‘ RD’’ /‘‘read done’’.

This function should only seldom be needed in applications.

RETURN VALUES
SSL_rstate_string()andSSL_rstate_string_long()can return the following values:

‘‘ RH’’ /‘‘read header’’
The header of the record is being evaluated.

‘‘ RB’’ /‘‘read body’’
The body of the record is being evaluated.

‘‘ RD’’ /‘‘read done’’
The record has been completely processed.

‘‘ unknown’’/‘‘unknown’’
The read state is unknown. This should never happen.

SEE ALSO
ssl(3)

0.9.9-dev 2003-07-24 1

SSL_session_reused(3) OpenSSL SSL_session_reused(3)

NAME
SSL_session_reused − query whether a reused session was negotiated during handshake

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_session_reused(SSL *ssl);

DESCRIPTION
Query, whether a reused session was negotiated during the handshake.

NOTES
During the negotiation, a client can propose to reuse a session. The server then looks up the session in its
cache. If both client and server agree on the session, it will be reused and a flag is being set that can be
queried by the application.

RETURN VALUES
The following return values can occur:

0 A new session was negotiated.

1 A session was reused.

SEE ALSO
ssl(3), SSL_set_session(3), SSL_CTX_set_session_cache_mode(3)

0.9.9-dev 2002-06-09 1

SSL_set_bio(3) OpenSSL SSL_set_bio(3)

NAME
SSL_set_bio − connect the SSL object with a BIO

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio);

DESCRIPTION
SSL_set_bio()connects the BIOsrbio and wbio for the read and write operations of theTLS/SSL
(encrypted) side ofssl.

TheSSLengine inherits the behaviour ofrbio andwbio, respectively. If a BIO is non−blocking, thesslwill
also have non-blocking behaviour.

If there was already aBIO connected tossl, BIO_free()will be called (for both the reading and writing side,
if different).

RETURN VALUES
SSL_set_bio()cannot fail.

SEE ALSO
SSL_get_rbio(3), SSL_connect(3), SSL_accept(3), SSL_shutdown(3), ssl(3), openssl_bio(3)

0.9.9-dev 2001-04-11 1

SSL_set_connect_state(3) OpenSSL SSL_set_connect_state(3)

NAME
SSL_set_connect_state, SSL_get_accept_state − prepare SSL object to work in client or server mode

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_connect_state(SSL *ssl);

void SSL_set_accept_state(SSL *ssl);

DESCRIPTION
SSL_set_connect_state()setsssl to work in client mode.

SSL_set_accept_state()setsssl to work in server mode.

NOTES
When theSSL_CTX object was created withSSL_CTX_new(3), it was either assigned a dedicated client
method, a dedicated server method, or a generic method, that can be used for both client and server connec-
tions. (The method might have been changed withSSL_CTX_set_ssl_version(3) or SSL_set_ssl_method().)

When beginning a new handshake, theSSL engine must know whether it must call the connect (client) or
accept (server) routines. Even though it may be clear from the method chosen, whether client or server
mode was requested, the handshake routines must be explicitly set.

When using theSSL_connect(3) or SSL_accept(3) routines, the correct handshake routines are automati-
cally set. When performing a transparent negotiation usingSSL_write(3) or SSL_read(3), the handshake
routines must be explicitly set in advance using eitherSSL_set_connect_state()or SSL_set_accept_state().

RETURN VALUES
SSL_set_connect_state()andSSL_set_accept_state()do not return diagnostic information.

SEE ALSO
ssl(3), SSL_new(3), SSL_CTX_new(3), SSL_connect(3), SSL_accept(3), SSL_write(3), SSL_read(3),
SSL_do_handshake(3), SSL_CTX_set_ssl_version(3)

0.9.9-dev 2002-07-30 1

SSL_set_fd(3) OpenSSL SSL_set_fd(3)

NAME
SSL_set_fd − connect the SSL object with a file descriptor

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_set_fd(SSL *ssl, int fd);
int SSL_set_rfd(SSL *ssl, int fd);
int SSL_set_wfd(SSL *ssl, int fd);

DESCRIPTION
SSL_set_fd()sets the file descriptorfd as the input/output facility for theTLS/SSL(encrypted) side ofssl. fd
will typically be the socket file descriptor of a network connection.

When performing the operation, asocketBIO is automatically created to interface between thesslandfd.
TheBIO and hence theSSL engine inherit the behaviour offd. If fd is non−blocking, thesslwill also have
non-blocking behaviour.

If there was already aBIO connected tossl, BIO_free()will be called (for both the reading and writing side,
if different).

SSL_set_rfd()andSSL_set_wfd()perform the respective action, but only for the read channel or the write
channel, which can be set independently.

RETURN VALUES
The following return values can occur:

0 The operation failed. Check the error stack to find out why.

1 The operation succeeded.

SEE ALSO
SSL_get_fd(3), SSL_set_bio(3), SSL_connect(3), SSL_accept(3), SSL_shutdown(3), ssl(3) ,
openssl_bio(3)

0.9.9-dev 2001-04-11 1

SSL_set_session(3) OpenSSL SSL_set_session(3)

NAME
SSL_set_session − set a TLS/SSL session to be used during TLS/SSL connect

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_set_session(SSL *ssl, SSL_SESSION *session);

DESCRIPTION
SSL_set_session()setssessionto be used when theTLS/SSLconnection is to be established.SSL_set_ses-
sion() is only useful forTLS/SSLclients. Whenthe session is set, the reference count ofsessionis incre-
mented by 1. If the session is not reused, the reference count is decremented again duringSSL_connect().
Whether the session was reused can be queried with theSSL_session_reused(3) call.

If there is already a session set insidessl (because it was set withSSL_set_session()before or because the
samesslwas already used for a connection),SSL_SESSION_free()will be called for that session.

NOTES
SSL_SESSIONobjects keep internal link information about the session cache list, when being inserted into
one SSL_CTX object’s session cache.One SSL_SESSIONobject, regardless of its reference count, must
therefore only be used with oneSSL_CTXobject (and theSSLobjects created from thisSSL_CTXobject).

RETURN VALUES
The following return values can occur:

0 The operation failed; check the error stack to find out the reason.

1 The operation succeeded.

SEE ALSO
ssl(3), SSL_SESSION_free(3), SSL_get_session(3), SSL_session_reused(3), SSL_CTX_set_ses-
sion_cache_mode(3)

0.9.9-dev 2002-06-09 1

SSL_set_shutdown(3) OpenSSL SSL_set_shutdown(3)

NAME
SSL_set_shutdown, SSL_get_shutdown − manipulate shutdown state of an SSL connection

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_shutdown(SSL *ssl, int mode);

int SSL_get_shutdown(const SSL *ssl);

DESCRIPTION
SSL_set_shutdown()sets the shutdown state ofssl to mode.

SSL_get_shutdown()returns the shutdown mode ofssl.

NOTES
The shutdown state of an ssl connection is a bitmask of:

0 No shutdown setting, yet.

SSL_SENT_SHUTDOWN
A ‘‘close notify’’ shutdown alert was sent to the peer, the connection is being considered closed and
the session is closed and correct.

SSL_RECEIVED_SHUTDOWN
A shutdown alert was received form the peer, either a normal ‘‘close notify’’ or a fatal error.

SSL_SENT_SHUTDOWNandSSL_RECEIVED_SHUTDOWNcan be set at the same time.

The shutdown state of the connection is used to determine the state of the ssl session. If the session is still
open, whenSSL_clear(3) orSSL_free(3) is called, it is considered bad and removed according toRFC2246.
The actual condition for a correctly closed session isSSL_SENT_SHUTDOWN(according to theTLS RFC, it
is acceptable to only send the ‘‘close notify’’ alert but to not wait for the peer’s answer, when the underly-
ing connection is closed).SSL_set_shutdown()can be used to set this state without sending a close alert to
the peer (seeSSL_shutdown(3)).

If a ‘‘close notify’’ was received, SSL_RECEIVED_SHUTDOWNwill be set, for settingSSL_SENT_SHUT-
DOWN the application must however still call SSL_shutdown(3) orSSL_set_shutdown()itself.

RETURN VALUES
SSL_set_shutdown()does not return diagnostic information.

SSL_get_shutdown()returns the current setting.

SEE ALSO
ssl(3), SSL_shutdown(3), SSL_CTX_set_quiet_shutdown(3), SSL_clear(3), SSL_free(3)

0.9.9-dev 2005-04-23 1

SSL_set_verify_result(3) OpenSSL SSL_set_verify_result(3)

NAME
SSL_set_verify_result − override result of peer certificate verification

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_verify_result(SSL *ssl, long verify_result);

DESCRIPTION
SSL_set_verify_result()setsverify_result of the objectssl to be the result of the verification of the X509
certificate presented by the peer, if any.

NOTES
SSL_set_verify_result()overrides the verification result. It only changes the verification result of thessl
object. It does not become part of the established session, so if the session is to be reused later, the original
value will reappear.

The valid codes forverify_result are documented inopenssl_verify(1).

RETURN VALUES
SSL_set_verify_result()does not provide a return value.

SEE ALSO
ssl(3), SSL_get_verify_result(3), SSL_get_peer_certificate(3), openssl_verify(1)

0.9.9-dev 2001-04-11 1

SSL_shutdown(3) OpenSSL SSL_shutdown(3)

NAME
SSL_shutdown − shut down a TLS/SSL connection

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_shutdown(SSL *ssl);

DESCRIPTION
SSL_shutdown()shuts down an active TLS/SSL connection. It sends the ‘‘close notify’’ shutdown alert to
the peer.

NOTES
SSL_shutdown()tries to send the ‘‘close notify’’ shutdown alert to the peer. Whether the operation suc-
ceeds or not, theSSL_SENT_SHUTDOWNflag is set and a currently open session is considered closed and
good and will be kept in the session cache for further reuse.

The shutdown procedure consists of 2 steps: the sending of the ‘‘close notify’’ shutdown alert and the
reception of the peer’s ‘‘close notify’’ shutdown alert. According to theTLS standard, it is acceptable for an
application to only send its shutdown alert and then close the underlying connection without waiting for the
peer’s response (this way resources can be saved, as the process can already terminate or serve another con-
nection). Whenthe underlying connection shall be used for more communications, the complete shutdown
procedure (bidirectional ‘‘close notify’’ alerts) must be performed, so that the peers stay synchronized.

SSL_shutdown()supports both uni− and bidirectional shutdown by its 2 step behaviour.

When the application is the first party to send the ‘‘close notify’’ alert, SSL_shutdown()will only send the
alert and then set theSSL_SENT_SHUTDOWNflag (so that the session is considered good and will be kept
in cache).SSL_shutdown()will then return with 0. If a unidirectional shutdown is enough (the underlying
connection shall be closed anyway), this first call toSSL_shutdown()is sufficient. In order to complete the
bidirectional shutdown handshake, SSL_shutdown()must be called again. The second call will make
SSL_shutdown()wait for the peer’s ‘‘close notify’’ shutdown alert. On success, the second call toSSL_shut-
down()will return with 1.
If the peer already sent the ‘‘close notify’’ alert and it was already processed implicitly inside another func-
tion (SSL_read(3)), the SSL_RECEIVED_SHUTDOWNflag is set.SSL_shutdown()will send the ‘‘close
notify’’ alert, set the SSL_SENT_SHUTDOWNflag and will immediately return with 1. Whether
SSL_RECEIVED_SHUTDOWNis already set can be checked using theSSL_get_shutdown()(see also
SSL_set_shutdown(3) call.

It is therefore recommended, to check the return value ofSSL_shutdown()and callSSL_shutdown()again,
if the bidirectional shutdown is not yet complete (return value of the first call is 0). As the shutdown is not
specially handled in the SSLv2 protocol,SSL_shutdown()will succeed on the first call.

The behaviour ofSSL_shutdown()additionally depends on the underlyingBIO.

If the underlyingBIO is blocking, SSL_shutdown()will only return once the handshake step has been fin-
ished or an error occurred.

If the underlyingBIO is non-blocking, SSL_shutdown()will also return when the underlyingBIO could not
satisfy the needs ofSSL_shutdown()to continue the handshake. In this case a call toSSL_get_error()with
the return value of SSL_shutdown() will yield SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE . The calling process then must repeat the call after taking appropriate action
to satisfy the needs ofSSL_shutdown(). The action depends on the underlyingBIO. When using a non-
blocking socket, nothing is to be done, but select()can be used to check for the required condition. When
using a buffering BIO, like aBIO pair, data must be written into or retrieved out of theBIO before being
able to continue.

SSL_shutdown()can be modified to only set the connection to ‘‘shutdown’’ state but not actually send the
‘‘ close notify’’ alert messages, seeSSL_CTX_set_quiet_shutdown(3). When‘‘ quiet shutdown’’ is enabled,

0.9.9-dev 2005-03-25 1

SSL_shutdown(3) OpenSSL SSL_shutdown(3)

SSL_shutdown()will always succeed and return 1.

RETURN VALUES
The following return values can occur:

1 The shutdown was successfully completed. The ‘‘close notify’’ alert was sent and the peer’s ‘‘close
notify’’ alert was received.

0 The shutdown is not yet finished. CallSSL_shutdown()for a second time, if a bidirectional shutdown
shall be performed. The output ofSSL_get_error(3) may be misleading, as an erroneous
SSL_ERROR_SYSCALLmay be flagged even though no error occurred.

−1 Theshutdown was not successful because a fatal error occurred either at the protocol level or a con-
nection failure occurred. It can also occur if action is need to continue the operation for non-blocking
BIOs. CallSSL_get_error(3) with the return valueret to find out the reason.

SEE ALSO
SSL_get_error(3), SSL_connect(3), SSL_accept(3), SSL_set_shutdown(3), SSL_CTX_set_quiet_shut-
down(3), SSL_clear(3), SSL_free(3), ssl(3), openssl_bio(3)

0.9.9-dev 2005-03-25 2

SSL_state_string(3) OpenSSL SSL_state_string(3)

NAME
SSL_state_string, SSL_state_string_long − get textual description of state of an SSL object

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_state_string(const SSL *ssl);
const char *SSL_state_string_long(const SSL *ssl);

DESCRIPTION
SSL_state_string()returns a 6 letter string indicating the current state of theSSLobjectssl.

SSL_state_string_long()returns a string indicating the current state of theSSLobjectssl.

NOTES
During its use, anSSL objects passes several states. The state is internally maintained. Querying the state
information is not very informative before or when a connection has been established. It however can be of
significant interest during the handshake.

When using non-blocking sockets, the function call performing the handshake may return with
SSL_ERROR_WANT_READor SSL_ERROR_WANT_WRITEcondition, so that SSL_state_string[_long]()
may be called.

For both blocking or non-blocking sockets, the details state information can be used within the info_call-
back function set with theSSL_set_info_callback()call.

RETURN VALUES
Detailed description of possible states to be included later.

SEE ALSO
ssl(3), SSL_CTX_set_info_callback(3)

0.9.9-dev 2005-04-23 1

SSL_want(3) OpenSSL SSL_want(3)

NAME
SSL_want, SSL_want_nothing, SSL_want_read, SSL_want_write, SSL_want_x509_lookup − obtain state
information TLS/SSL I/O operation

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_want(const SSL *ssl);
int SSL_want_nothing(const SSL *ssl);
int SSL_want_read(const SSL *ssl);
int SSL_want_write(const SSL *ssl);
int SSL_want_x509_lookup(const SSL *ssl);

DESCRIPTION
SSL_want()returns state information for theSSLobjectssl.

The other SSL_want_*() calls are shortcuts for the possible states returned bySSL_want().

NOTES
SSL_want()examines the internal state information of theSSLobject. Its return values are similar to that of
SSL_get_error(3). Unlike SSL_get_error(3), which also evaluates the error queue, the results are obtained
by examining an internal state flag only. The information must therefore only be used for normal operation
under non-blocking I/O. Error conditions are not handled and must be treated usingSSL_get_error(3).

The result returned bySSL_want()should always be consistent with the result ofSSL_get_error(3).

RETURN VALUES
The following return values can currently occur forSSL_want():

SSL_NOTHING
There is no data to be written or to be read.

SSL_WRITING
There are data in theSSL buffer that must be written to the underlyingBIO layer in order to complete
the actual SSL_*() operation.A call to SSL_get_error(3) should returnSSL_ERROR_WANT_WRITE.

SSL_READING
More data must be read from the underlyingBIO layer in order to complete the actual SSL_*() opera-
tion. A call toSSL_get_error(3) should returnSSL_ERROR_WANT_READ.

SSL_X509_LOOKUP
The operation did not complete because an application callback set bySSL_CTX_set_client_cert_cb()
has asked to be called again. A call to SSL_get_error(3) should return
SSL_ERROR_WANT_X509_LOOKUP.

SSL_want_nothing(), SSL_want_read(), SSL_want_write(), SSL_want_x509_lookup()return 1, when the
corresponding condition is true or 0 otherwise.

SEE ALSO
ssl(3), openssl_err(3), SSL_get_error(3)

0.9.9-dev 2005-04-23 1

SSL_write(3) OpenSSL SSL_write(3)

NAME
SSL_write − write bytes to a TLS/SSL connection.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

int SSL_write(SSL *ssl, const void *buf, int num);

DESCRIPTION
SSL_write()writesnum bytes from the bufferbuf into the specifiedsslconnection.

NOTES
If necessary, SSL_write()will negotiate aTLS/SSLsession, if not already explicitly performed bySSL_con-
nect(3) or SSL_accept(3). If the peer requests a re−negotiation, it will be performed transparently during
theSSL_write()operation. The behaviour ofSSL_write()depends on the underlyingBIO.

For the transparent negotiation to succeed, thesslmust have been initialized to client or server mode. This
is being done by callingSSL_set_connect_state(3) or SSL_set_accept_state()before the first call to an
SSL_read(3) orSSL_write()function.

If the underlyingBIO is blocking, SSL_write()will only return, once the write operation has been finished
or an error occurred, except when a renegotiation take place, in which case aSSL_ERROR_WANT_READ
may occur. This behaviour can be controlled with theSSL_MODE_AUTO_RETRY flag of the
SSL_CTX_set_mode(3) call.

If the underlyingBIO is non-blocking, SSL_write()will also return, when the underlyingBIO could not sat-
isfy the needs ofSSL_write()to continue the operation. In this case a call toSSL_get_error(3) with the
return value ofSSL_write()will yield SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE . As at
any time a re-negotiation is possible, a call toSSL_write()can also cause read operations! The calling
process then must repeat the call after taking appropriate action to satisfy the needs ofSSL_write(). The
action depends on the underlyingBIO. When using a non-blocking socket, nothing is to be done, but
select()can be used to check for the required condition. When using a buffering BIO, like aBIO pair, data
must be written into or retrieved out of theBIO before being able to continue.

SSL_write()will only return with success, when the complete contents ofbuf of lengthnum has been writ-
ten. This default behaviour can be changed with theSSL_MODE_ENABLE_PARTIAL_WRITEoption of
SSL_CTX_set_mode(3). When this flag is set,SSL_write()will also return with success, when a partial
write has been successfully completed. In this case theSSL_write()operation is considered completed. The
bytes are sent and a new SSL_write()operation with a new buffer (with the already sent bytes removed)
must be started.A partial write is performed with the size of a message block, which is 16kB for
SSLv3/TLSv1.

WARNING
When an SSL_write() operation has to be repeated because ofSSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE , it must be repeated with the same arguments.

When callingSSL_write()with num=0 bytes to be sent the behaviour is undefined.

RETURN VALUES
The following return values can occur:

>0 Thewrite operation was successful, the return value is the number of bytes actually written to the
TLS/SSLconnection.

0 The write operation was not successful. Probably the underlying connection was closed. Call
SSL_get_error()with the return valueret to find out, whether an error occurred or the connection was
shut down cleanly (SSL_ERROR_ZERO_RETURN).

SSLv2 (deprecated) does not support a shutdown alert protocol, so it can only be detected, whether the
underlying connection was closed. It cannot be checked, why the closure happened.

0.9.9-dev 2002-07-30 1

SSL_write(3) OpenSSL SSL_write(3)

<0 Thewrite operation was not successful, because either an error occurred or action must be taken by the
calling process. CallSSL_get_error()with the return valueret to find out the reason.

SEE ALSO
SSL_get_error(3), SSL_read(3), SSL_CTX_set_mode(3), SSL_CTX_new(3), SSL_connect(3),
SSL_accept(3) SSL_set_connect_state(3), ssl(3), openssl_bio(3)

0.9.9-dev 2002-07-30 2

X509_NAME_ENTRY_get_object(3) OpenSSL X509_NAME_ENTRY_get_object(3)

NAME
X509_NAME_ENTRY_get_object, X509_NAME_ENTRY_get_data, X509_NAME_ENTRY_set_object,
X509_NAME_ENTRY_set_data, X509_NAME_ENTRY_create_by_txt, X509_NAME_ENTRY_cre-
ate_by_NID, X509_NAME_ENTRY_create_by_OBJ − X509_NAME_ENTRY utility functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

ASN1_OBJECT * X509_NAME_ENTRY_get_object(X509_NAME_ENTRY *ne);
ASN1_STRING * X509_NAME_ENTRY_get_data(X509_NAME_ENTRY *ne);

int X509_NAME_ENTRY_set_object(X509_NAME_ENTRY *ne, ASN1_OBJECT *obj);
int X509_NAME_ENTRY_set_data(X509_NAME_ENTRY *ne, int type, const unsigned char *bytes, int len);

X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_txt(X509_NAME_ENTRY **ne, const char *field, int type, const unsigned char *bytes, int len);
X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_NID(X509_NAME_ENTRY **ne, int nid, int type,unsigned char *bytes, int len);
X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_OBJ(X509_NAME_ENTRY **ne, ASN1_OBJECT *obj, int type, const unsigned char *bytes, int len);

DESCRIPTION
X509_NAME_ENTRY_get_object()retrieves the field name ofne in andASN1_OBJECT structure.

X509_NAME_ENTRY_get_data()retrieves the field value ofne in andASN1_STRING structure.

X509_NAME_ENTRY_set_object()sets the field name ofne to obj.

X509_NAME_ENTRY_set_data()sets the field value ofne to string typetype and value determined by
bytesandlen.

X509_NAME_ENTRY_create_by_txt(), X509_NAME_ENTRY_create_by_NID() and
X509_NAME_ENTRY_create_by_OBJ()create and return anX509_NAME_ENTRY structure.

NOTES
X509_NAME_ENTRY_get_object()and X509_NAME_ENTRY_get_data()can be used to examine an
X509_NAME_ENTRY function as returned byX509_NAME_get_entry()for example.

X509_NAME_ENTRY_create_by_txt(), X509_NAME_ENTRY_create_by_NID(), and
X509_NAME_ENTRY_create_by_OBJ()create and return an

X509_NAME_ENTRY_create_by_txt(), X509_NAME_ENTRY_create_by_OBJ(),
X509_NAME_ENTRY_create_by_NID()andX509_NAME_ENTRY_set_data()are seldom used in practice
becauseX509_NAME_ENTRY structures are almost always part ofX509_NAME structures and the cor-
respondingX509_NAME functions are typically used to create and add new entries in a single operation.

The arguments of these functions support similar options to the similarly named ones of the corresponding
X509_NAME functions such asX509_NAME_add_entry_by_txt(). So for example type can be set to
MBSTRING_ASC but in the case ofX509_set_data()the field name must be set first so the relevant field
information can be looked up internally.

RETURN VALUES
SEE ALSO

ERR_get_error(3), d2i_X509_NAME(3), OBJ_nid2obj(3),OBJ_nid2obj(3)

HISTORY
TBA

0.9.9-dev 2008-05-09 1

X509_NAME_add_entry_by_txt(3) OpenSSL X509_NAME_add_entry_by_txt(3)

NAME
X509_NAME_add_entry_by_txt, X509_NAME_add_entry_by_OBJ, X509_NAME_add_entry_by_NID,
X509_NAME_add_entry, X509_NAME_delete_entry − X509_NAME modification functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

int X509_NAME_add_entry_by_txt(X509_NAME *name, const char *field, int type, const unsigned char *bytes, int len, int loc, int set);

int X509_NAME_add_entry_by_OBJ(X509_NAME *name, ASN1_OBJECT *obj, int type, unsigned char *bytes, int len, int loc, int set);

int X509_NAME_add_entry_by_NID(X509_NAME *name, int nid, int type, unsigned char *bytes, int len, int loc, int set);

int X509_NAME_add_entry(X509_NAME *name,X509_NAME_ENTRY *ne, int loc, int set);

X509_NAME_ENTRY *X509_NAME_delete_entry(X509_NAME *name, int loc);

DESCRIPTION
X509_NAME_add_entry_by_txt(), X509_NAME_add_entry_by_OBJ() and
X509_NAME_add_entry_by_NID()add a field whose name is defined by a stringfield, an object obj or a
NID nid respectively. The field value to be added is inbytesof lengthlen. If len is −1 then the field length
is calculated internally using strlen(bytes).

The type of field is determined bytype which can either be a definition of the type ofbytes (such as
MBSTRING_ASC) or a standardASN1 type (such asV_ASN1_IA5STRING). The new entry is added to a
position determined byloc andset.

X509_NAME_add_entry()adds a copy of X509_NAME_ENTRY structurene to name. The new entry is
added to a position determined byloc andset. Since a copy of ne is addedne must be freed up after the
call.

X509_NAME_delete_entry()deletes an entry fromname at positionloc. The deleted entry is returned and
must be freed up.

NOTES
The use of string types such asMBSTRING_ASC or MBSTRING_UTF8 is strongly recommened for the
type parameter. This allows the internal code to correctly determine the type of the field and to apply length
checks according to the relevant standards. This is done usingASN1_STRING_set_by_NID().

If instead anASN1 type is used no checks are performed and the supplied data inbytes is used directly.

In X509_NAME_add_entry_by_txt()thefield string represents the field name using OBJ_txt2obj(field, 0).

The loc andset parameters determine where a new entry should be added. For almost all applicationsloc
can be set to −1 andset to 0. This adds a new entry to the end ofnameas a single valued RelativeDistin-
guishedName (RDN).

loc actually determines the index where the new entry is inserted: if it is −1 it is appended.

setdetermines how the new type is added. If it is zero a newRDN is created.

If set is −1 or 1 it is added to the previous or next RDN structure respectively. This will then be a multival-
uedRDN: since multivalues RDNs are very seldom usedset is almost always set to zero.

EXAMPLES
Create anX509_NAME structure:

‘‘ C=UK, O=Disorganized Organization, CN=Joe Bloggs’’

0.9.9-dev 2008-05-09 1

X509_NAME_add_entry_by_txt(3) OpenSSL X509_NAME_add_entry_by_txt(3)

X509_NAME *nm;
nm = X509_NAME_new();
if (nm == NULL)

/* Some error */
if (!X509_NAME_add_entry_by_txt(nm, MBSTRING_ASC,

"C", "UK", -1, -1, 0))
/* Error */

if (!X509_NAME_add_entry_by_txt(nm, MBSTRING_ASC,
"O", "Disorganized Organization", -1, -1, 0))

/* Error */
if (!X509_NAME_add_entry_by_txt(nm, MBSTRING_ASC,

"CN", "Joe Bloggs", -1, -1, 0))
/* Error */

RETURN VALUES
X509_NAME_add_entry_by_txt(), X509_NAME_add_entry_by_OBJ(), X509_NAME_add_entry_by_NID()
andX509_NAME_add_entry()return 1 for success of 0 if an error occurred.

X509_NAME_delete_entry()returns either the deletedX509_NAME_ENTRY structure ofNULL if an
error occurred.

BUGS
type can still be set toV_ASN1_APP_CHOOSEto use a different algorithm to determine field types.
Since this form does not understand multicharacter types, performs no length checks and can result in
invalid field types its use is strongly discouraged.

SEE ALSO
ERR_get_error(3), d2i_X509_NAME(3)

HISTORY

0.9.9-dev 2008-05-09 2

X509_NAME_get_index_by_NID(3) OpenSSL X509_NAME_get_index_by_NID(3)

NAME
X509_NAME_get_index_by_NID, X509_NAME_get_index_by_OBJ, X509_NAME_get_entry,
X509_NAME_entry_count, X509_NAME_get_text_by_NID, X509_NAME_get_text_by_OBJ −
X509_NAME lookup and enumeration functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

int X509_NAME_get_index_by_NID(X509_NAME *name,int nid,int lastpos);
int X509_NAME_get_index_by_OBJ(X509_NAME *name,ASN1_OBJECT *obj, int lastpos);

int X509_NAME_entry_count(X509_NAME *name);
X509_NAME_ENTRY *X509_NAME_get_entry(X509_NAME *name, int loc);

int X509_NAME_get_text_by_NID(X509_NAME *name, int nid, char *buf,int len);
int X509_NAME_get_text_by_OBJ(X509_NAME *name, ASN1_OBJECT *obj, char *buf,int len);

DESCRIPTION
These functions allow an X509_NAME structure to be examined. TheX509_NAME structure is the same
as theName type defined inRFC2459(and elsewhere) and used for example in certificate subject and issuer
names.

X509_NAME_get_index_by_NID()andX509_NAME_get_index_by_OBJ()retrieve the next index matching
nid or obj after lastpos. lastposshould initially be set to −1. If there are no more entries −1 is returned.

X509_NAME_entry_count()returns the total number of entries inname.

X509_NAME_get_entry()retrieves the X509_NAME_ENTRY from name corresponding to index loc.
Acceptable values forloc run from 0 to (X509_NAME_entry_count(name) − 1). The value returned is an
internal pointer which must not be freed.

X509_NAME_get_text_by_NID(), X509_NAME_get_text_by_OBJ()retrieve the ‘‘text’’ f rom the first entry
in namewhich matchesnid or obj, if no such entry exists −1 is returned. At mostlen bytes will be written
and the text written tobuf will be null terminated. The length of the output string written is returned
excluding the terminating null. Ifbuf is <NULL> then the amount of space needed inbuf (excluding the
final null) is returned.

NOTES
X509_NAME_get_text_by_NID()and X509_NAME_get_text_by_OBJ()are legacy functions which have
various limitations which make them of minimal use in practice. They can only find the first matching entry
and will copy the contents of the field verbatim: this can be highly confusing if the target is a muticharacter
string type like a BMPString or a UTF8String.

For a more general solutionX509_NAME_get_index_by_NID()or X509_NAME_get_index_by_OBJ()
should be used followed by X509_NAME_get_entry()on any matching indices and then the various
X509_NAME_ENTRY utility functions on the result.

EXAMPLES
Process all entries:

int i;
X509_NAME_ENTRY *e;

for (i = 0; i < X509_NAME_entry_count(nm); i++)
{
e = X509_NAME_get_entry(nm, i);
/* Do something with e */
}

Process all commonName entries:

0.9.9-dev 2008-05-09 1

X509_NAME_get_index_by_NID(3) OpenSSL X509_NAME_get_index_by_NID(3)

int loc;
X509_NAME_ENTRY *e;

loc = -1;
for (;;)

{
lastpos = X509_NAME_get_index_by_NID(nm, NID_commonName, lastpos);
if (lastpos == -1)

break;
e = X509_NAME_get_entry(nm, lastpos);
/* Do something with e */
}

RETURN VALUES
X509_NAME_get_index_by_NID()and X509_NAME_get_index_by_OBJ()return the index of the next
matching entry or −1 if not found.

X509_NAME_entry_count()returns the total number of entries.

X509_NAME_get_entry()returns anX509_NAME pointer to the requested entry orNULL if the index is
invalid.

SEE ALSO
ERR_get_error(3), d2i_X509_NAME(3)

HISTORY
TBA

0.9.9-dev 2008-05-09 2

X509_NAME_print_ex(3) OpenSSL X509_NAME_print_ex(3)

NAME
X509_NAME_print_ex, X509_NAME_print_ex_fp, X509_NAME_print, X509_NAME_oneline −
X509_NAME printing routines.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

int X509_NAME_print_ex(BIO *out, X509_NAME *nm, int indent, unsigned long flags);
int X509_NAME_print_ex_fp(FILE *fp, X509_NAME *nm, int indent, unsigned long flags);
char * X509_NAME_oneline(X509_NAME *a,char *buf,int size);
int X509_NAME_print(BIO *bp, X509_NAME *name, int obase);

DESCRIPTION
X509_NAME_print_ex()prints a human readable version ofnm to BIO out. Each line (for multiline for-
mats) is indented byindent spaces. The output format can be extensively customised by use of theflags
parameter.

X509_NAME_print_ex_fp()is identical toX509_NAME_print_ex()except the output is written toFILE
pointerfp.

X509_NAME_oneline()prints anASCII version of a to buf. At most size bytes will be written. Ifbuf is
NULL then a buffer is dynamically allocated and returned, otherwisebuf is returned.

X509_NAME_print()prints outname to bp indenting each line byobasecharacters. Multiple lines are used
if the output (including indent) exceeds 80 characters.

NOTES
The functionsX509_NAME_oneline()andX509_NAME_print()are legacy functions which produce a non
standard output form, they don’t handle multi character fields and have various quirks and inconsistencies.
Their use is strongly discouraged in new applications.

Although there are a large number of possible flags for most purposesXN_FLAG_ONELINE ,
XN_FLAG_MULTILINE or XN_FLAG_RFC2253 will suffice. Asnoted on theASN1_STRING_print_ex(3)
manual page forUTF8 terminals theASN1_STRFLGS_ESC_MSB should be unset: so for example
XN_FLAG_ONELINE & ˜ ASN1_STRFLGS_ESC_MSBwould be used.

The complete set of the flags supported byX509_NAME_print_ex()is listed below.

Several options can be ored together.

The optionsXN_FLAG_SEP_COMMA_PLUS, XN_FLAG_SEP_CPLUS_SPC, XN_FLAG_SEP_SPLUS_SPC
and XN_FLAG_SEP_MULTILINE determine the field separators to use. Two distinct separators are used
between distinct RelativeDistinguishedName components and separate values in the sameRDN for a multi-
valuedRDN. Multi-valued RDNs are currently very rare so the second separator will hardly ever be used.

XN_FLAG_SEP_COMMA_PLUS uses comma and plus as separators.XN_FLAG_SEP_CPLUS_SPCuses
comma and plus with spaces: this is more readable that plain comma and plus.
XN_FLAG_SEP_SPLUS_SPCuses spaced semicolon and plus.XN_FLAG_SEP_MULTILINE uses spaced
newline and plus respectively.

If XN_FLAG_DN_REV is set the wholeDN is printed in reversed order.

The fieldsXN_FLAG_FN_SN, XN_FLAG_FN_LN , XN_FLAG_FN_OID , XN_FLAG_FN_NONE determine
how a field name is displayed. It will use the short name (e.g.CN) the long name (e.g. commonName)
always useOID numerical form (normally OIDs are only used if the field name is not recognised) and no
field name respectively.

If XN_FLAG_SPC_EQ is set then spaces will be placed around the ’=’ character separating field names and
values.

If XN_FLAG_DUMP_UNKNOWN_FIELDS is set then the encoding of unknown fields is printed instead of
the values.

0.9.9-dev 2008-05-09 1

X509_NAME_print_ex(3) OpenSSL X509_NAME_print_ex(3)

If XN_FLAG_FN_ALIGN is set then field names are padded to 20 characters: this is only of use for multi-
line format.

Additionally all the options supported byASN1_STRING_print_ex()can be used to control how each field
value is displayed.

In addition a number options can be set for commonly used formats.

XN_FLAG_RFC2253 sets options which produce an output compatible withRFC2253it is equivalent to:
ASN1_STRFLGS_RFC2253 XN_FLAG_SEP_COMMA_PLUS XN_FLAG_DN_REV XN_FLAG_FN_SN
 XN_FLAG_DUMP_UNKNOWN_FIELDS

XN_FLAG_ONELINE is a more readable one line format which is the same as:
ASN1_STRFLGS_RFC2253 ASN1_STRFLGS_ESC_QUOTE XN_FLAG_SEP_CPLUS_SPC
XN_FLAG_SPC_EQ XN_FLAG_FN_SN

XN_FLAG_MULTILINE is a multiline format which is the same as:
ASN1_STRFLGS_ESC_CTRL ASN1_STRFLGS_ESC_MSB XN_FLAG_SEP_MULTILINE
XN_FLAG_SPC_EQ XN_FLAG_FN_LN XN_FLAG_FN_ALIGN

XN_FLAG_COMPAT uses a format identical toX509_NAME_print(): in fact it callsX509_NAME_print()
internally.

SEE ALSO
ASN1_STRING_print_ex(3)

HISTORY
TBA

0.9.9-dev 2008-05-09 2

X509_new(3) OpenSSL X509_new(3)

NAME
X509_new, X509_free − X509 certificate ASN1 allocation functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

X509 *X509_new(void);
void X509_free(X509 *a);

DESCRIPTION
The X509ASN1 allocation routines, allocate and free an X509 structure, which represents an X509 certifi-
cate.

X509_new()allocates and initializes a X509 structure.

X509_free()frees up theX509structurea.

RETURN VALUES
If the allocation fails, X509_new()returns NULL and sets an error code that can be obtained by
ERR_get_error(3). Otherwiseit returns a pointer to the newly allocated structure.

X509_free()returns no value.

SEE ALSO
ERR_get_error(3), d2i_X509(3)

HISTORY
X509_new()andX509_free()are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2008-05-09 1

_DIAGASSERT (3) NetBSDLibrary Functions Manual _DIAGASSERT (3)

NAME
_DIAGASSERT— expression verification macro

SYNOPSIS
#include <assert.h>

_DIAGASSERT(expression);

DESCRIPTION
The _DIAGASSERT() macro tests the given expression and if it is false, one or more of the following
may occur:

• a diagnostic message may be logged to the system logger withsyslog (3). This is default be-
haviour.

• a diagnostic message may be printed to thestderr stream.

• the calling process will be terminated by callingabort (3).

This behaviour may be changed by setting theLIBC_DIAGASSERTenvironment variable (see below).

The diagnostic message consists of the text of the expression, the name of the source file, the line number
and the enclosing function.

If expression is true, the_DIAGASSERT() macro does nothing.

The _DIAGASSERT() macro is not compiled in by default, and will only be compiled in with thecc (1)
option −D_DIAGNOSTIC.

This macro is used in the various system libraries such as the Standard C Library (libc, −lc) to ensure that
various library calls are invoked with valid arguments.

ENVIRONMENT
TheLIBC_DIAGASSERTenvironment variable can be used to modify the default behaviour of logging the
assertion to the system logger.

LIBC_DIAGASSERTmay be set to one or more of the following characters:

a abort (3) once any assertion messages have been logged and/or printed.

A Opposite of “a”.

e Print the assertion message to thestderr stream.

E Opposite of “e”.

l Log the assertion message withsyslog (3) to the facilityuser.debug .

L Opposite of “l”.

DIAGNOSTICS
The diagnostic message has the following format:

"assertion \"%s\" failed: file \"%s\", line %d, function \"%s\"\n",
"expression", __FILE__, __LINE__, __func__

SEE ALSO
cc (1), abort (3), assert (3), syslog (3)

NetBSD 3.0 January 22, 2007 1

_DIAGASSERT (3) NetBSDLibrary Functions Manual _DIAGASSERT (3)

HISTORY
The_DIAGASSERTmacro appeared inNetBSD 1.5.

NetBSD 3.0 January 22, 2007 2

__BUILTIN_OBJECT_SIZE (3) NetBSD Library Functions Manual __BUILTIN_OBJECT_SIZE (3)

NAME
__builtin_object_size — return the size of the given object

LIBRARY
size_t __builtin_object_size (void ∗ptr , int type)

DESCRIPTION
The __builtin_object_size () function is agcc (1) built-in function that returns the size of theptr
object if known at compile time and the object does not have any side effects.

RETURN VALUES
If the size of the object is not known or it has side effects the__builtin_object_size () function
returns:

(size_t)-1 for type 0 and1.

(size_t)0 for type 2 and3.

If the size of the object is known, then the__builtin_object_size () function returns the maximum
size of all the objects that the compiler knows that they can be pointed to byptr whentype & 2 == 0,
and the minimum size whentype & 2 != 0 .

SEE ALSO
gcc (1), ssp (3)

HISTORY
The__builtin_object_size () appeared in gcc 4.1.

NetBSD 3.0 May 23, 2007 1

_LWP_MAKECONTEXT (3) NetBSD Library Functions Manual _LWP_MAKECONTEXT (3)

NAME
_lwp_makecontext — create a new initial light-weight process execution context

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <lwp.h>

void
_lwp_makecontext (ucontext_t ∗context , void (∗start_routine)(void ∗) ,

void ∗arg , void ∗private , caddr_t stack_base , size_t stack_size);

DESCRIPTION
_lwp_makecontext () initializes the context structure pointed to bycontext in a manner suitable for
using with _lwp_create (2). The LWP will begin execution at the function specified by
start_routine which will be passed a single argumentarg . The LWP private data pointer will be set to
private . The stack region for the new LWP is specified by thestack_base andstack_size argu-
ments.

The signal mask in the context structure is not initialized by_lwp_makecontext ().

SEE ALSO
_lwp_create (2), _lwp_getprivate (2)

HISTORY
The_lwp_create () system call first appeared inNetBSD 2.0.

BUGS
The LWP private data pointer is not initialized by the current implementation of_lwp_makecontext ().

NetBSD 3.0 January 16, 2003 1

A64L (3) NetBSD Library Functions Manual A64L (3)

NAME
a64l , l64a , l64a_r — convert between a long integer and a base-64 ASCII string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

long
a64l (const char ∗s);

char ∗
l64a (long int l);

int
l64a_r (long int l , char ∗buffer , int buflen);

DESCRIPTION
The a64l () and l64a () functions convert between a long integer and its base-64 ASCII string representa-
tion.

The characters used to represent ‘‘digits’’ are ‘.’ f or 0, ‘/’ for 1, ‘0’ - ‘9’ for 2 - 11, ‘A’ - ‘ Z’ for 12 - 37, and
‘a’ - ‘z’ for 38 - 63.

a64l () takes a pointer to a NUL-terminated base-64 ASCII string representation,s , and returns the corre-
sponding long integer value.

l64a () takes a long integer value, l , and returns a pointer to the corresponding NUL-terminated base-64
ASCII string representation.

l64a_r () performs a conversion identical to that ofl64a () and stores the resulting representation in the
memory area pointed to bybuffer , consuming at mostbuflen characters including the terminating NUL
character.

RETURN VALUES
On successful completion,a64l () returns the long integer value corresponding to the input string. If the
string pointed to bys is an empty string,a64l () returns a value of 0L.

l64a () returns a pointer to the base-64 ASCII string representation corresponding to the input value. If l is
0L, l64a () returns a pointer to an empty string.

On successful completion,l64a_r () returns 0; ifbuffer is of insufficient length, -1 is returned.

SEE ALSO
strtol (3)

STANDARDS
Thea64l () andl64a () functions conform toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”). The
l64a_r () function conforms to System V Interface Definition, Fourth Edition (“SVID4”), Multithreading
Extension.

BUGS
The l64a () function is not reentrant. The value returned by it points into a static buffer area; subsequent
calls to la64a () may overwrite this buffer. In multi-threaded applications,l64a_r () should be used
instead.

NetBSD 3.0 February 6, 1999 1

ABORT (3) NetBSDLibrary Functions Manual ABORT (3)

NAME
abort — cause abnormal program termination

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

void
abort (void);

DESCRIPTION
The abort () function causes abnormal program termination to occur, unless the signalSIGABRT is being
caught and the signal handler does not return.

Calling theabort () function results in temporary files being removed. Any open streams are flushed and
closed.

RETURN VALUES
Theabort function never returns.

SEE ALSO
sigaction (2), exit (3)

STANDARDS
Theabort () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 August 11, 2002 1

ABS (3) NetBSD Library Functions Manual ABS (3)

NAME
abs — integer absolute value function

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
abs (int j);

DESCRIPTION
Theabs () function computes the absolute value of the integerj .

RETURN VALUES
Theabs () function returns the absolute value.

SEE ALSO
cabs (3), fabs (3), floor (3), hypot (3), labs (3), llabs (3), math (3)

STANDARDS
Theabs () function conforms toANSI X3.159-1989 (“ANSI C89”).

BUGS
The absolute value of the most negative integer remains negative.

NetBSD 3.0 June 4, 1993 1

ACOS (3) NetBSD Library Functions Manual ACOS (3)

NAME
acos , acosf — arc cosine function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
acos (double x);

float
acosf (float x);

DESCRIPTION
Theacos () andacosf () functions compute the principal value of the arc cosine ofx in the range[0, π].

RETURN VALUES
If |x|>1,acos (x) andacosf (x) set the global variableerrno to EDOM.

SEE ALSO
asin (3), atan (3), atan2 (3), cos (3), cosh (3), math (3), sin (3), sinh (3), tan (3), tanh (3)

STANDARDS
Theacos () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 May 2, 1991 1

ACOSH (3) NetBSD Library Functions Manual ACOSH (3)

NAME
acosh , acoshf — inv erse hyperbolic cosine function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
acosh (double x);

float
acoshf (float x);

DESCRIPTION
Theacosh () andacoshf () functions compute the inverse hyperbolic cosine of the real argumentx .

RETURN VALUES
If x is less than one,acosh (x) andacoshf (x) return NaN and set the global variableerrno to EDOM.

SEE ALSO
asinh (3), atanh (3), exp (3), math (3)

HISTORY
Theacosh () function appeared in 4.3BSD.

NetBSD 3.0 May 6, 1991 1

AIO_CANCEL (3) NetBSD Library Functions Manual AIO_CANCEL (3)

NAME
aio_cancel — cancel an outstanding asynchronous I/O operation (REALTIME)

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <aio.h>

int
aio_cancel (int fildes , struct aiocb ∗ aiocbp);

DESCRIPTION
The aio_cancel () system call cancels the outstanding asynchronous I/O request for the file descriptor
specified infildes . If aiocbp is specified, only that specific asynchronous I/O request is cancelled.

Normal asynchronous notification occurs for cancelled requests. Requests complete with an error result of
ECANCELED.

RESTRICTIONS
The aio_cancel () system call does not cancel asynchronous I/O requests for raw disk devices. The
aio_cancel () system call will always returnAIO_NOTCANCELEDfor file descriptors associated with raw
disk devices.

RETURN VALUES
Theaio_cancel () system call returns −1 to indicate an error, or one of the following:

[AIO_CANCELED]
All outstanding requests meeting the criteria specified were cancelled.

[AIO_NOTCANCELED]
Some requests were not cancelled, status for the requests should be checked with
aio_error (3).

[AIO_ALLDONE]
All of the requests meeting the criteria have finished.

ERRORS
An error return fromaio_cancel () indicates:

[EBADF] The fildes argument is an invalid file descriptor.

SEE ALSO
aio_error (3), aio_read (3), aio_return (3), aio_suspend (3), aio_write (3)

STANDARDS
Theaio_cancel () system call is expected to conform to theIEEE Std 1003.1-2001 (“POSIX.1”) standard.

HISTORY
Theaio_cancel () system call first appeared inNetBSD 5.0.

NetBSD 3.0 May 4, 2007 1

AIO_ERROR (3) NetBSD Library Functions Manual AIO_ERROR (3)

NAME
aio_error — retrieve error status of asynchronous I/O operation (REALTIME)

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <aio.h>

int
aio_error (const struct aiocb ∗aiocbp);

DESCRIPTION
The aio_error () system call returns the error status of the asynchronous I/O request associated with the
structure pointed to byaiocbp .

RETURN VALUES
If the asynchronous I/O request has completed successfully, aio_error () returns 0. If the request has not
yet completed,EINPROGRESSis returned.If the request has completed unsuccessfully the error status is
returned as described inread (2), write (2), or fsync (2). Onfailure, aio_error () returns −1 and sets
errno to indicate the error condition.

ERRORS
Theaio_error () system call will fail if:

[EINVAL] Theaiocb argument does not reference an outstanding asynchronous I/O request.

SEE ALSO
fsync (2), read (2), write (2), aio_cancel (3), aio_read (3), aio_return (3), aio_suspend (3),
aio_write (3)

STANDARDS
Theaio_error () system call is expected to conform to theIEEE Std 1003.1-2001 (“POSIX.1”) standard.

HISTORY
Theaio_error () system call first appeared inNetBSD 5.0.

NetBSD 3.0 May 4, 2007 1

AIO_FSYNC (3) NetBSD Library Functions Manual AIO_FSYNC (3)

NAME
aio_fsync — asynchronous data synchronization of file (REALTIME)

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <aio.h>

int
aio_fsync (int op , struct aiocb ∗aiocbp);

DESCRIPTION
The aio_fsync () system call allows the calling process to force all modified data associated with the file
descriptoraiocbp->aio_fildes to be flushed to the stable storage device. Thecall returns immediately
after the synchronization request has been enqueued to the descriptor; the synchronization may or may not
have completed at the time the call returns. If the request could not be enqueued, generally due to invalid
arguments, the call returns without having enqueued the request.

Theop argument could be set only toO_DSYNCor O_SYNC. If op is O_DSYNC, thenaio_fsync () does
the same as afdatasync () call, if O_SYNC, then the same asfsync ().

If _POSIX_PRIORITIZED_IO is defined, and the descriptor supports it, then the enqueued operation is
submitted at a priority equal to that of the calling process minusaiocbp->aio_reqprio .

The aiocbp pointer may be subsequently used as an argument toaio_return () andaio_error () in
order to determine return or error status for the enqueued operation while it is in progress.

RESTRICTIONS
The asynchronous I/O control buffer aiocbp should be zeroed before theaio_fsync () system call to
avoid passing bogus context information to the kernel.

Modifications of the Asynchronous I/O Control Block structure after the request has been enqueued, but
before the request has completed, are not allowed.

RETURN VALUES
The aio_fsync () function returns the value 0 if successful; otherwise the value −1 is returned and the
global variableerrno is set to indicate the error.

ERRORS
Theaio_fsync () system call will fail if:

[EAGAIN] The request was not queued because of system resource limitations.

The following conditions may be synchronously detected when theaio_fsync () system call is made, or
asynchronously, at any time thereafter. If they are detected at call time,aio_fsync () returns −1 and sets
errno appropriately; otherwise theaio_return () system call must be called, and will return −1, and
aio_error () must be called to determine the actual value that would have been returned inerrno.

[EBADF] Theaiocbp->aio_fildes is invalid for writing.

[EINVAL] This implementation does not support synchronized I/O for this file.

[EINVAL] Theop argument is neither set toO_DSYNCnorO_SYNC.

NetBSD 3.0 June 17, 2007 1

AIO_FSYNC (3) NetBSD Library Functions Manual AIO_FSYNC (3)

SEE ALSO
fcntl (2), fdatasync (2), fsync (2), aio_error (3), aio_read (3), aio_write (3)

STANDARDS
Theaio_fsync () system call is expected to conform to theIEEE Std 1003.1-2001 (“POSIX.1”) standard.

HISTORY
Theaio_fsync () system call first appeared inNetBSD 5.0.

NetBSD 3.0 June 17, 2007 2

AIO_READ (3) NetBSD Library Functions Manual AIO_READ (3)

NAME
aio_read — asynchronous read from a file (REALTIME)

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <aio.h>

int
aio_read (struct aiocb ∗aiocbp);

DESCRIPTION
Theaio_read () system call allows the calling process to readaiocbp->aio_nbytes from the descrip-
tor aiocbp->aio_fildes beginning at the offset aiocbp->aio_offset into the buffer pointed to
by aiocbp->aio_buf . The call returns immediately after the read request has been enqueued to the
descriptor; the read may or may not have completed at the time the call returns.

If _POSIX_PRIORITIZED_IO is defined, and the descriptor supports it, then the enqueued operation is
submitted at a priority equal to that of the calling process minusaiocbp->aio_reqprio .

Theaiocbp->aio_lio_opcode argument is ignored by theaio_read () system call.

The aiocbp pointer may be subsequently used as an argument toaio_return () andaio_error () in
order to determine return or error status for the enqueued operation while it is in progress.

If the request could not be enqueued (generally due to invalid arguments), then the call returns without hav-
ing enqueued the request.

If the request is successfully enqueued, the value ofaiocbp->aio_offset can be modified during the
request as context, so this value must not be referenced after the request is enqueued.

RESTRICTIONS
The Asynchronous I/O Control Block structure pointed to byaiocbp and the buffer that the
aiocbp->aio_buf member of that structure references must remain valid until the operation has com-
pleted. For this reason, use of auto (stack) variables for these objects is discouraged.

The asynchronous I/O control buffer aiocbp should be zeroed before theaio_read () call to avoid pass-
ing bogus context information to the kernel.

Modifications of the Asynchronous I/O Control Block structure or the buffer contents after the request has
been enqueued, but before the request has completed, are not allowed.

If the file offset inaiocbp->aio_offset is past the offset maximum foraiocbp->aio_fildes , no
I/O will occur.

RETURN VALUES
Theaio_read () function returns the value 0 if successful; otherwise the value −1 is returned and the global
variableerrno is set to indicate the error.

DIAGNOSTICS
None.

ERRORS
Theaio_read () system call will fail if:

NetBSD 3.0 May 4, 2007 1

AIO_READ (3) NetBSD Library Functions Manual AIO_READ (3)

[EAGAIN] The request was not queued because of system resource limitations.

The following conditions may be synchronously detected when theaio_read () system call is made, or
asynchronously, at any time thereafter. If they are detected at call time,aio_read () returns −1 and sets
errno appropriately; otherwise theaio_return () system call must be called, and will return −1, and
aio_error () must be called to determine the actual value that would have been returned inerrno.

[EBADF] Theaiocbp->aio_fildes argument is invalid.

[EINVAL] The offset aiocbp->aio_offset is not valid, the priority specified by
aiocbp->aio_reqprio is not a valid priority, or the number of bytes specified by
aiocbp->aio_nbytes is not valid.

[EOVERFLOW] The file is a regular file,aiocbp->aio_nbytes is greater than zero, the starting
offset inaiocbp->aio_offset is before the end of the file, but is at or beyond the
aiocbp->aio_fildes offset maximum.

If the request is successfully enqueued, but subsequently cancelled or an error occurs, the value returned by
theaio_return () system call is per theread (2) system call, and the value returned by theaio_error ()
system call is either one of the error returns from theread (2) system call, or one of:

[EBADF] Theaiocbp->aio_fildes argument is invalid for reading.

[ECANCELED] The request was explicitly cancelled via a call toaio_cancel ().

[EINVAL] The offsetaiocbp->aio_offset would be invalid.

SEE ALSO
siginfo (2), aio_cancel (3), aio_error (3), aio_return (3), aio_suspend (3), aio_write (3)

STANDARDS
Theaio_read () system call is expected to conform to theIEEE Std 1003.1-2001 (“POSIX.1”) standard.

HISTORY
Theaio_read () system call first appeared inNetBSD 5.0.

NetBSD 3.0 May 4, 2007 2

AIO_RETURN (3) NetBSD Library Functions Manual AIO_RETURN (3)

NAME
aio_return — retrieve return status of asynchronous I/O operation (REALTIME)

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <aio.h>

int
aio_return (struct aiocb ∗aiocbp);

DESCRIPTION
Theaio_return () system call returns the final status of the asynchronous I/O request associated with the
structure pointed to byaiocbp .

Theaio_return () system call should only be called once, to obtain the final status of an asynchronous I/O
operation once it has completed (aio_error (3) returns something other thanEINPROGRESS) .

RETURN VALUES
If the asynchronous I/O request has completed, the status is returned as described inread (2), write (2), or
fsync (2). Otherwise,aio_return () returns −1 and setserrno to indicate the error condition.

ERRORS
Theaio_return () system call will fail if:

[EINVAL] Theaiocbp argument does not reference a completed asynchronous I/O request.

SEE ALSO
fsync (2), read (2), write (2), aio_cancel (3), aio_error (3), aio_suspend (3), aio_write (3)

STANDARDS
Theaio_return () system call is expected to conform to theIEEE Std 1003.1-2001 (“POSIX.1”) standard.

HISTORY
Theaio_return () system call first appeared inNetBSD 5.0.

NetBSD 3.0 May 4, 2007 1

AIO_SUSPEND (3) NetBSD Library Functions Manual AIO_SUSPEND (3)

NAME
aio_suspend — suspend until asynchronous I/O operations or timeout complete (REALTIME)

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <aio.h>

int
aio_suspend (const struct aiocb ∗ const list[] , int nent ,

const struct timespec ∗ timeout);

DESCRIPTION
The aio_suspend () system call suspends the calling process until at least one of the specified asynchro-
nous I/O requests have completed, a signal is delivered, or thetimeout has passed.

The list argument is an array ofnent pointers to asynchronous I/O requests. Array members containing
null pointers will be silently ignored.

If timeout is not a null pointer, it specifies a maximum interval to suspend.If timeout is a null pointer,
the suspend blocks indefinitely. To effect a poll, thetimeout should point to a zero-value timespec struc-
ture.

RETURN VALUES
If one or more of the specified asynchronous I/O requests have completed,aio_suspend () returns 0.Oth-
erwise it returns −1 and setserrno to indicate the error, as enumerated below.

ERRORS
Theaio_suspend () system call will fail if:

[EAGAIN] The timeout expired before any I/O requests completed.

[EINTR] The suspend was interrupted by a signal.

[EINVAL] The list argument contains more thanAIO_LISTIO_MAX asynchronous I/O
requests, or at least one of the requests is not valid.

SEE ALSO
aio_cancel (3), aio_error (3), aio_return (3), aio_write (3)

STANDARDS
The aio_suspend () system call is expected to conform to theIEEE Std 1003.1-2001 (“POSIX.1”) stan-
dard.

HISTORY
Theaio_suspend () system call first appeared inNetBSD 5.0.

NetBSD 3.0 May 4, 2007 1

AIO_WRITE (3) NetBSD Library Functions Manual AIO_WRITE (3)

NAME
aio_write — asynchronous write to a file (REALTIME)

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <aio.h>

int
aio_write (struct aiocb ∗aiocbp);

DESCRIPTION
The aio_write () system call allows the calling process to writeaiocbp->aio_nbytes from the
buffer pointed to byaiocbp->aio_buf to the descriptoraiocbp->aio_fildes . The call returns
immediately after the write request has been enqueued to the descriptor; the write may or may not have com-
pleted at the time the call returns. If the request could not be enqueued, generally due to invalid arguments,
the call returns without having enqueued the request.

If O_APPENDis set foraiocbp->aio_fildes , aio_write () operations append to the file in the same
order as the calls were made.If O_APPENDis not set for the file descriptor, the write operation will occur at
the absolute position from the beginning of the file plusaiocbp->aio_offset .

If _POSIX_PRIORITIZED_IO is defined, and the descriptor supports it, then the enqueued operation is
submitted at a priority equal to that of the calling process minusaiocbp->aio_reqprio .

The aiocbp pointer may be subsequently used as an argument toaio_return () andaio_error () in
order to determine return or error status for the enqueued operation while it is in progress.

If the request is successfully enqueued, the value ofaiocbp->aio_offset can be modified during the
request as context, so this value must not be referenced after the request is enqueued.

RESTRICTIONS
The Asynchronous I/O Control Block structure pointed to byaiocbp and the buffer that the
aiocbp->aio_buf member of that structure references must remain valid until the operation has com-
pleted. For this reason, use of auto (stack) variables for these objects is discouraged.

The asynchronous I/O control buffer aiocbp should be zeroed before theaio_write () system call to
avoid passing bogus context information to the kernel.

Modifications of the Asynchronous I/O Control Block structure or the buffer contents after the request has
been enqueued, but before the request has completed, are not allowed.

If the file offset inaiocbp->aio_offset is past the offset maximum foraiocbp->aio_fildes , no
I/O will occur.

RETURN VALUES
The aio_write () function returns the value 0 if successful; otherwise the value −1 is returned and the
global variableerrno is set to indicate the error.

ERRORS
Theaio_write () system call will fail if:

[EAGAIN] The request was not queued because of system resource limitations.

NetBSD 3.0 May 4, 2007 1

AIO_WRITE (3) NetBSD Library Functions Manual AIO_WRITE (3)

The following conditions may be synchronously detected when theaio_write () system call is made, or
asynchronously, at any time thereafter. If they are detected at call time,aio_write () returns −1 and sets
errno appropriately; otherwise theaio_return () system call must be called, and will return −1, and
aio_error () must be called to determine the actual value that would have been returned inerrno.

[EBADF] Theaiocbp->aio_fildes argument is invalid, or is not opened for writing.

[EINVAL] The offset aiocbp->aio_offset is not valid, the priority specified by
aiocbp->aio_reqprio is not a valid priority, or the number of bytes specified by
aiocbp->aio_nbytes is not valid.

If the request is successfully enqueued, but subsequently canceled or an error occurs, the value returned by
the aio_return () system call is per thewrite (2) system call, and the value returned by the
aio_error () system call is either one of the error returns from thewrite (2) system call, or one of:

[EBADF] Theaiocbp->aio_fildes argument is invalid for writing.

[ECANCELED] The request was explicitly canceled via a call toaio_cancel ().

[EINVAL] The offsetaiocbp->aio_offset would be invalid.

SEE ALSO
siginfo (2), aio_cancel (3), aio_error (3), aio_return (3), aio_suspend (3)

STANDARDS
Theaio_write () system call is expected to conform to theIEEE Std 1003.1-2001 (“POSIX.1”) standard.

HISTORY
Theaio_write () system call first appeared inNetBSD 5.0.

NetBSD 3.0 May 4, 2007 2

ALARM (3) NetBSD Library Functions Manual ALARM (3)

NAME
alarm — set signal timer alarm

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

unsigned int
alarm (unsigned int seconds);

DESCRIPTION
This interface is made obsolete bysetitimer (2).

Thealarm () function sets a timer to deliver the signalSIGALRMto the calling processseconds after the
call to alarm (). If an alarm has already been set withalarm () but has not been delivered, another call to
alarm () will supersede the prior call.The requestalarm (0) voids the current alarm and the signal
SIGALRM will not be delivered. Themaximum number ofseconds allowed is 2147483647.

The return value ofalarm () is the amount of time left on the timer from a previous call toalarm (). If no
alarm is currently set, the return value is 0. If there is an error setting the timer, alarm () returns ((unsigned
int) -1).

SEE ALSO
setitimer (2), sigaction (2), sigsuspend (2), signal (3), sigvec (3), sleep (3), ualarm (3),
usleep (3)

STANDARDS
Thealarm () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
An alarm () function appeared in Version 7AT&T UNIX .

NetBSD 3.0 April 19, 1994 1

ALLOCA (3) NetBSD Library Functions Manual ALLOCA (3)

NAME
alloca — memory allocator

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

void ∗
alloca (size_t size);

DESCRIPTION
Thealloca () function allocatessize bytes of space in the stack frame of the caller. This temporary space
is automatically freed on return.

RETURN VALUES
The alloca () function returns a pointer to the beginning of the allocated space. If the allocation failed, a
NULLpointer is returned.

SEE ALSO
brk (2), calloc (3), getpagesize (3), malloc (3), realloc (3)

BUGS
Thealloca () function is machine dependent; its use is discouraged.

Thealloca () function is slightly unsafe because it cannot ensure that the pointer returned points to a valid
and usable block of memory. The allocation made may exceed the bounds of the stack, or even go further
into other objects in memory, and alloca () cannot determine such an error. Avoid alloca () with large
unbounded allocations.

NetBSD 3.0 August 11, 2002 1

ARC4RANDOM (3) NetBSD Library Functions Manual ARC4RANDOM (3)

NAME
arc4random , arc4random_stir , arc4random_addrandom — arc4 random number generator

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

uint32_t
arc4random (void);

void
arc4random_stir (void);

void
arc4random_addrandom (u_char ∗dat , int datlen);

DESCRIPTION
The arc4random () function provides a high quality 32-bit pseudo-random number very quickly.
arc4random () seeds itself on a regular basis from the kernel strong random number subsystem described
in rnd (4). Oneach call, an ARC4 generator is used to generate a new result. Thearc4random () function
uses the ARC4 cipher key stream generator, which uses 8∗8 8 bit S-Boxes. TheS-Boxes can be in about
(2∗∗1700) states.

arc4random () fits into a middle ground not covered by other subsystems such as the strong, slow, and
resource expensive random devices described inrnd (4) versus the fast but poor quality interfaces described
in rand (3), random (3), anddrand48 (3).

Thearc4random_stir () function reads data from/dev/urandom and uses it to permute the S-Boxes
via arc4random_addrandom ().

There is no need to callarc4random_stir () before usingarc4random (), sincearc4random () auto-
matically initializes itself.

SEE ALSO
rand (3), rand48 (3), random (3)

HISTORY
An algorithm calledRC4was designed by RSA Data Security, Inc. It was considered a trade secret, but not
trademarked. Becauseit was a trade secret, it obviously could not be patented.A clone of this was posted
anonymously to USENET and confirmed to be equivalent by several sources who had access to the original
cipher. Because of the trade secret situation, RSA Data Security, Inc. can do nothing about the release of the
ARC4 algorithm. SinceRC4used to be a trade secret, the cipher is now referred to asARC4.

These functions first appeared inOpenBSD2.1.

NetBSD 3.0 April 15, 1997 1

archive_entry (3) NetBSD Library Functions Manual archive_entry (3)

NAME
archive_entry_acl_add_entry , archive_entry_acl_add_entry_w ,
archive_entry_acl_clear , archive_entry_acl_count , archive_entry_acl_next ,
archive_entry_acl_next_w , archive_entry_acl_reset ,
archive_entry_acl_text_w , archive_entry_atime , archive_entry_atime_nsec ,
archive_entry_clear , archive_entry_clone , archive_entry_copy_fflags_text ,
archive_entry_copy_fflags_text_w , archive_entry_copy_gname ,
archive_entry_copy_gname_w , archive_entry_copy_hardlink ,
archive_entry_copy_hardlink_w , archive_entry_copy_link ,
archive_entry_copy_link_w , archive_entry_copy_pathname_w ,
archive_entry_copy_sourcepath , archive_entry_copy_stat ,
archive_entry_copy_symlink , archive_entry_copy_symlink_w ,
archive_entry_copy_uname , archive_entry_copy_uname_w , archive_entry_dev ,
archive_entry_devmajor , archive_entry_devminor , archive_entry_filetype ,
archive_entry_fflags , archive_entry_fflags_text , archive_entry_free ,
archive_entry_gid , archive_entry_gname , archive_entry_hardlink ,
archive_entry_ino , archive_entry_mode , archive_entry_mtime ,
archive_entry_mtime_nsec , archive_entry_nlink , archive_entry_new ,
archive_entry_pathname , archive_entry_pathname_w , archive_entry_rdev ,
archive_entry_rdevmajor , archive_entry_rdevminor , archive_entry_set_atime ,
archive_entry_set_ctime , archive_entry_set_dev , archive_entry_set_devmajor ,
archive_entry_set_devminor , archive_entry_set_filetype ,
archive_entry_set_fflags , archive_entry_set_gid , archive_entry_set_gname ,
archive_entry_set_hardlink , archive_entry_set_link , archive_entry_set_mode ,
archive_entry_set_mtime , archive_entry_set_pathname ,
archive_entry_set_rdevmajor , archive_entry_set_rdevminor ,
archive_entry_set_size , archive_entry_set_symlink , archive_entry_set_uid ,
archive_entry_set_uname , archive_entry_size , archive_entry_sourcepath ,
archive_entry_stat , archive_entry_symlink , archive_entry_uid ,
archive_entry_uname — functions for manipulating archive entry descriptions

SYNOPSIS
#include <archive_entry.h>

void
archive_entry_acl_add_entry (struct archive_entry ∗ , int type , int permset ,

int tag , int qual , const char ∗name);

void
archive_entry_acl_add_entry_w (struct archive_entry ∗ , int type ,

int permset , int tag , int qual , const wchar_t ∗name);

void
archive_entry_acl_clear (struct archive_entry ∗);

int
archive_entry_acl_count (struct archive_entry ∗ , int type);

int
archive_entry_acl_next (struct archive_entry ∗ , int want_type , int ∗type ,

int ∗permset , int ∗tag , int ∗qual , const char ∗∗name);

int
archive_entry_acl_next_w (struct archive_entry ∗ , int want_type , int ∗type ,

int ∗permset , int ∗tag , int ∗qual , const wchar_t ∗∗name);

NetBSD 3.0 May 12, 2008 1

archive_entry (3) NetBSD Library Functions Manual archive_entry (3)

int
archive_entry_acl_reset (struct archive_entry ∗ , int want_type);

const wchar_t ∗
archive_entry_acl_text_w (struct archive_entry ∗ , int flags);

time_t
archive_entry_atime (struct archive_entry ∗);

long
archive_entry_atime_nsec (struct archive_entry ∗);

struct archive_entry ∗
archive_entry_clear (struct archive_entry ∗);

struct archive_entry ∗
archive_entry_clone (struct archive_entry ∗);

const char ∗ ∗
archive_entry_copy_fflags_text_w (struct archive_entry ∗ , const char ∗);

const wchar_t ∗
archive_entry_copy_fflags_text_w (struct archive_entry ∗ , const wchar_t ∗);

void
archive_entry_copy_gname (struct archive_entry ∗ , const char ∗);

void
archive_entry_copy_gname_w (struct archive_entry ∗ , const wchar_t ∗);

void
archive_entry_copy_hardlink (struct archive_entry ∗ , const char ∗);

void
archive_entry_copy_hardlink_w (struct archive_entry ∗ , const wchar_t ∗);

void
archive_entry_copy_sourcepath (struct archive_entry ∗ , const char ∗);

void
archive_entry_copy_pathname_w (struct archive_entry ∗ , const wchar_t ∗);

void
archive_entry_copy_stat (struct archive_entry ∗ , const struct stat ∗);

void
archive_entry_copy_symlink (struct archive_entry ∗ , const char ∗);

void
archive_entry_copy_symlink_w (struct archive_entry ∗ , const wchar_t ∗);

void
archive_entry_copy_uname (struct archive_entry ∗ , const char ∗);

void
archive_entry_copy_uname_w (struct archive_entry ∗ , const wchar_t ∗);

dev_t
archive_entry_dev (struct archive_entry ∗);

NetBSD 3.0 May 12, 2008 2

archive_entry (3) NetBSD Library Functions Manual archive_entry (3)

dev_t
archive_entry_devmajor (struct archive_entry ∗);

dev_t
archive_entry_devminor (struct archive_entry ∗);

mode_t
archive_entry_filetype (struct archive_entry ∗);

void
archive_entry_fflags (struct archive_entry ∗ , unsigned long ∗set ,

unsigned long ∗clear);

const char ∗
archive_entry_fflags_text (struct archive_entry ∗);

void
archive_entry_free (struct archive_entry ∗);

const char ∗
archive_entry_gname (struct archive_entry ∗);

const char ∗
archive_entry_hardlink (struct archive_entry ∗);

ino_t
archive_entry_ino (struct archive_entry ∗);

mode_t
archive_entry_mode (struct archive_entry ∗);

time_t
archive_entry_mtime (struct archive_entry ∗);

long
archive_entry_mtime_nsec (struct archive_entry ∗);

unsigned int
archive_entry_nlink (struct archive_entry ∗);

struct archive_entry ∗
archive_entry_new (void);

const char ∗
archive_entry_pathname (struct archive_entry ∗);

const wchar_t ∗
archive_entry_pathname_w (struct archive_entry ∗);

dev_t
archive_entry_rdev (struct archive_entry ∗);

dev_t
archive_entry_rdevmajor (struct archive_entry ∗);

dev_t
archive_entry_rdevminor (struct archive_entry ∗);

void
archive_entry_set_dev (struct archive_entry ∗ , dev_t);

NetBSD 3.0 May 12, 2008 3

archive_entry (3) NetBSD Library Functions Manual archive_entry (3)

void
archive_entry_set_devmajor (struct archive_entry ∗ , dev_t);

void
archive_entry_set_devminor (struct archive_entry ∗ , dev_t);

void
archive_entry_set_filetype (struct archive_entry ∗ , unsigned int);

void
archive_entry_set_fflags (struct archive_entry ∗ , unsigned long set ,

unsigned long clear);

void
archive_entry_set_gid (struct archive_entry ∗ , gid_t);

void
archive_entry_set_gname (struct archive_entry ∗ , const char ∗);

void
archive_entry_set_hardlink (struct archive_entry ∗ , const char ∗);

void
archive_entry_set_ino (struct archive_entry ∗ , unsigned long);

void
archive_entry_set_link (struct archive_entry ∗ , const char ∗);

void
archive_entry_set_mode (struct archive_entry ∗ , mode_t);

void
archive_entry_set_mtime (struct archive_entry ∗ , time_t , long nanos);

void
archive_entry_set_nlink (struct archive_entry ∗ , unsigned int);

void
archive_entry_set_pathname (struct archive_entry ∗ , const char ∗);

void
archive_entry_set_rdev (struct archive_entry ∗ , dev_t);

void
archive_entry_set_rdevmajor (struct archive_entry ∗ , dev_t);

void
archive_entry_set_rdevminor (struct archive_entry ∗ , dev_t);

void
archive_entry_set_size (struct archive_entry ∗ , int64_t);

void
archive_entry_set_symlink (struct archive_entry ∗ , const char ∗);

void
archive_entry_set_uid (struct archive_entry ∗ , uid_t);

void
archive_entry_set_uname (struct archive_entry ∗ , const char ∗);

NetBSD 3.0 May 12, 2008 4

archive_entry (3) NetBSD Library Functions Manual archive_entry (3)

int64_t
archive_entry_size (struct archive_entry ∗);

const char ∗
archive_entry_sourcepath (struct archive_entry ∗);

const struct stat ∗
archive_entry_stat (struct archive_entry ∗);

const char ∗
archive_entry_symlink (struct archive_entry ∗);

const char ∗
archive_entry_uname (struct archive_entry ∗);

DESCRIPTION
These functions create and manipulate data objects that represent entries within an archive. You can think of
a struct archive_entryas a heavy-duty version ofstruct stat: it includes everything fromstruct statplus associated
pathname, textual group and user names, etc. These objects are used bylibarchive (3) to represent the
metadata associated with a particular entry in an archive.

Create and Destroy
There are functions to allocate, destroy, clear, and copyarchive_entryobjects:
archive_entry_clear ()

Erases the object, resetting all internal fields to the same state as a newly-created object. This is
provided to allow you to quickly recycle objects without thrashing the heap.

archive_entry_clone ()
A deep copy operation; all text fields are duplicated.

archive_entry_free ()
Releases thestruct archive_entryobject.

archive_entry_new ()
Allocate and return a blankstruct archive_entryobject.

Set and Get Functions
Most of the functions here set or read entries in an object. Such functions have one of the following forms:
archive_entry_set_XXXX ()

Stores the provided data in the object. In particular, for strings, the pointer is stored, not the refer-
enced string.

archive_entry_copy_XXXX ()
As above, except that the referenced data is copied into the object.

archive_entry_XXXX ()
Returns the specified data.In the case of strings, a const-qualified pointer to the string is returned.

String data can be set or accessed as wide character strings or normalchar strings. Thefunctions that use
wide character strings are suffixed with _w. Note that these are different representations of the same data:
For example, if you store a narrow string and read the corresponding wide string, the object will transpar-
ently convert formats using the current locale.Similarly, if you store a wide string and then store a narrow
string for the same data, the previously-set wide string will be discarded in favor of the new data.

There are a few set/get functions that merit additional description:
archive_entry_set_link ()

This function sets the symlink field if it is already set. Otherwise, it sets the hardlink field.

NetBSD 3.0 May 12, 2008 5

archive_entry (3) NetBSD Library Functions Manual archive_entry (3)

File Flags
File flags are transparently converted between a bitmap representation and a textual format.For example, if
you set the bitmap and ask for text, the library will build a canonical text format.However, if you set a text
format and request a text format, you will get back the same text, even if it is i ll-formed. If you need to
canonicalize a textual flags string, you should first set the text form, then request the bitmap form, then use
that to set the bitmap form.Setting the bitmap format will clear the internal text representation and force it
to be reconstructed when you next request the text form.

The bitmap format consists of two integers, one containing bits that should be set, the other specifying bits
that should be cleared. Bits not mentioned in either bitmap will be ignored.Usually, the bitmap of bits to be
cleared will be set to zero.In unusual circumstances, you can force a fully-specified set of file flags by set-
ting the bitmap of flags to clear to the complement of the bitmap of flags to set.(This differs from
fflagstostr (3), which only includes names for set bits.)Converting a bitmap to a textual string is a plat-
form-specific operation; bits that are not meaningful on the current platform will be ignored.

The canonical text format is a comma-separated list of flag names.The
archive_entry_copy_fflags_text () and archive_entry_copy_fflags_text_w () func-
tions parse the provided text and sets the internal bitmap values. Thisis a platform-specific operation; names
that are not meaningful on the current platform will be ignored.The function returns a pointer to the start of
the first name that was not recognized, or NULL if every name was recognized. Note that every
name--including names that follow an unrecognized name--will be evaluated, and the bitmaps will be set to
reflect every name that is recognized. (In particular, this differs fromstrtofflags (3), which stops pars-
ing at the first unrecognized name.)

ACL H andling
XXX This needs serious help. XXX

An “Access Control List” (ACL) is a list of permissions that grant access to particular users or groups
beyond what would normally be provided by standard POSIX mode bits.The ACL handling here addresses
some deficiencies in the POSIX.1e draft 17 ACL specification. In particular, POSIX.1e draft 17 specifies
several different formats, but none of those formats include both textual user/group names and numeric
UIDs/GIDs.

XXX explain ACL stuff XXX

SEE ALSO
archive (3)

HISTORY
The libarchive library first appeared inFreeBSD5.3.

AUTHORS
The libarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

NetBSD 3.0 May 12, 2008 6

archive_read (3) NetBSD Library Functions Manual archive_read (3)

NAME
archive_read_new , archive_read_support_compression_all ,
archive_read_support_compression_bzip2 ,
archive_read_support_compression_compress ,
archive_read_support_compression_gzip ,
archive_read_support_compression_none ,
archive_read_support_compression_program , archive_read_support_format_all ,
archive_read_support_format_cpio , archive_read_support_format_empty ,
archive_read_support_format_iso9660 , archive_read_support_format_tar ,
archive_read_support_format_zip , archive_read_open , archive_read_open2 ,
archive_read_open_fd , archive_read_open_FILE , archive_read_open_filename ,
archive_read_open_memory , archive_read_next_header , archive_read_data ,
archive_read_data_block , archive_read_data_skip ,
archive_read_data_into_buffer , archive_read_data_into_fd ,
archive_read_extract , archive_read_extract2 ,
archive_read_extract_set_progress_callback , archive_read_close ,
archive_read_finish — functions for reading streaming archives

SYNOPSIS
#include <archive.h>

struct archive ∗
archive_read_new (void);

int
archive_read_support_compression_all (struct archive ∗);

int
archive_read_support_compression_bzip2 (struct archive ∗);

int
archive_read_support_compression_compress (struct archive ∗);

int
archive_read_support_compression_gzip (struct archive ∗);

int
archive_read_support_compression_none (struct archive ∗);

int
archive_read_support_compression_program (struct archive ∗ ,

const char ∗cmd);

int
archive_read_support_format_all (struct archive ∗);

int
archive_read_support_format_cpio (struct archive ∗);

int
archive_read_support_format_empty (struct archive ∗);

int
archive_read_support_format_iso9660 (struct archive ∗);

int
archive_read_support_format_tar (struct archive ∗);

NetBSD 3.0 August 19, 2006 1

archive_read (3) NetBSD Library Functions Manual archive_read (3)

int
archive_read_support_format_zip (struct archive ∗);

int
archive_read_open (struct archive ∗ , void ∗client_data ,

archive_open_callback ∗ , archive_read_callback ∗ ,
archive_close_callback ∗);

int
archive_read_open2 (struct archive ∗ , void ∗client_data ,

archive_open_callback ∗ , archive_read_callback ∗ ,
archive_skip_callback ∗ , archive_close_callback ∗);

int
archive_read_open_FILE (struct archive ∗ , FILE ∗file);

int
archive_read_open_fd (struct archive ∗ , int fd , size_t block_size);

int
archive_read_open_filename (struct archive ∗ , const char ∗filename ,

size_t block_size);

int
archive_read_open_memory (struct archive ∗ , void ∗buff , size_t size);

int
archive_read_next_header (struct archive ∗ , struct archive_entry ∗∗);

ssize_t
archive_read_data (struct archive ∗ , void ∗buff , size_t len);

int
archive_read_data_block (struct archive ∗ , const void ∗∗buff , size_t ∗len ,

off_t ∗offset);

int
archive_read_data_skip (struct archive ∗);

int
archive_read_data_into_buffer (struct archive ∗ , void ∗ , ssize_t len);

int
archive_read_data_into_fd (struct archive ∗ , int fd);

int
archive_read_extract (struct archive ∗ , struct archive_entry ∗ , int flags);

int
archive_read_extract2 (struct archive ∗src , struct archive_entry ∗ ,

struct archive ∗dest);

void
archive_read_extract_set_progress_callback (struct archive ∗ ,

void (∗func)(void ∗) , void ∗user_data);

int
archive_read_close (struct archive ∗);

NetBSD 3.0 August 19, 2006 2

archive_read (3) NetBSD Library Functions Manual archive_read (3)

int
archive_read_finish (struct archive ∗);

DESCRIPTION
These functions provide a complete API for reading streaming archives. Thegeneral process is to first create
thestruct archive object, set options, initialize the reader, iterate over the archive headers and associated data,
then close the archive and release all resources. The following summary describes the functions in approxi-
mately the order they would be used:
archive_read_new ()

Allocates and initializes astruct archive object suitable for reading from an archive.
archive_read_support_compression_all (),

archive_read_support_compression_bzip2 (),
archive_read_support_compression_compress (),
archive_read_support_compression_gzip (),
archive_read_support_compression_none ()
Enables auto-detection code and decompression support for the specified compression.Note that
“none” is always enabled by default. For convenience,
archive_read_support_compression_all () enables all available decompression code.

archive_read_support_compression_program ()
Data is fed through the specified external program before being dearchived. Notethat this disables
automatic detection of the compression format, so it makes no sense to specify this in conjunction
with any other decompression option.

archive_read_support_format_all (), archive_read_support_format_cpio (),
archive_read_support_format_empty (),
archive_read_support_format_iso9660 (),
archive_read_support_format_tar (), archive_read_support_format_zip ()
Enables support---including auto-detection code---for the specified archive format. For example,
archive_read_support_format_tar () enables support for a variety of standard tar for-
mats, old-style tar, ustar, pax interchange format, and many common variants. For convenience,
archive_read_support_format_all () enables support for all available formats. Only
empty archives are supported by default.

archive_read_open ()
The same asarchive_read_open2 (), except that the skip callback is assumed to beNULL.

archive_read_open2 ()
Freeze the settings, open the archive, and prepare for reading entries. This is the most generic ver-
sion of this call, which accepts four callback functions.Most clients will want to use
archive_read_open_filename (), archive_read_open_FILE (),
archive_read_open_fd (), or archive_read_open_memory () instead. The library
invokes the client-provided functions to obtain raw bytes from the archive.

archive_read_open_FILE ()
Like archive_read_open (), except that it accepts aFILE ∗ pointer. This function should
not be used with tape drives or other devices that require strict I/O blocking.

archive_read_open_fd ()
Like archive_read_open (), except that it accepts a file descriptor and block size rather than a
set of function pointers. Note that the file descriptor will not be automatically closed at end-of-ar-
chive. This function is safe for use with tape drives or other blocked devices.

archive_read_open_file ()
This is a deprecated synonym forarchive_read_open_filename ().

archive_read_open_filename ()
Like archive_read_open (), except that it accepts a simple filename and a block size.A
NULL filename represents standard input.This function is safe for use with tape drives or other
blocked devices.

NetBSD 3.0 August 19, 2006 3

archive_read (3) NetBSD Library Functions Manual archive_read (3)

archive_read_open_memory ()
Like archive_read_open (), except that it accepts a pointer and size of a block of memory
containing the archive data.

archive_read_next_header ()
Read the header for the next entry and return a pointer to astruct archive_entry.

archive_read_data ()
Read data associated with the header just read.Internally, this is a convenience function that calls
archive_read_data_block () and fills any gaps with nulls so that callers see a single contin-
uous stream of data.

archive_read_data_block ()
Return the next available block of data for this entry. Unlike archive_read_data (), the
archive_read_data_block () function avoids copying data and allows you to correctly han-
dle sparse files, as supported by some archive formats. Thelibrary guarantees that offsets will
increase and that blocks will not overlap. Notethat the blocks returned from this function can be
much larger than the block size read from disk, due to compression and internal buffer optimiza-
tions.

archive_read_data_skip ()
A convenience function that repeatedly callsarchive_read_data_block () to skip all of the
data for this archive entry.

archive_read_data_into_buffer ()
This function is deprecated and will be removed. Usearchive_read_data () instead.

archive_read_data_into_fd ()
A convenience function that repeatedly callsarchive_read_data_block () to copy the entire
entry to the provided file descriptor.

archive_read_extract (), archive_read_extract_set_skip_file ()
A convenience function that wraps the correspondingarchive_write_disk (3) interfaces.
The first call to archive_read_extract () creates a restore object using
archive_write_disk_new (3) and
archive_write_disk_set_standard_lookup (3), then transparently invokes
archive_write_disk_set_options (3), archive_write_header (3),
archive_write_data (3), andarchive_write_finish_entry (3) to create the entry on
disk and copy data into it. The flags argument is passed unmodified to
archive_write_disk_set_options (3).

archive_read_extract2 ()
This is another version ofarchive_read_extract () that allows you to provide your own
restore object. In particular, this allows you to override the standard lookup functions using
archive_write_disk_set_group_lookup (3), and
archive_write_disk_set_user_lookup (3). Notethat archive_read_extract2 ()
does not accept aflagsargument; you should usearchive_write_disk_set_options () to
set the restore options yourself.

archive_read_extract_set_progress_callback ()
Sets a pointer to a user-defined callback that can be used for updating progress displays during
extraction. Theprogress function will be invoked during the extraction of large regular files.The
progress function will be invoked with the pointer provided to this call.Generally, the data pointed
to should include a reference to the archive object and the archive_entry object so that various sta-
tistics can be retrieved for the progress display.

archive_read_close ()
Complete the archive and invoke the close callback.

archive_read_finish ()
Invokes archive_read_close () if it was not invoked manually, then release all resources.
Note: In libarchive 1.x, this function was declared to returnvoid , which made it impossible to
detect certain errors whenarchive_read_close () was invoked implicitly from this function.

NetBSD 3.0 August 19, 2006 4

archive_read (3) NetBSD Library Functions Manual archive_read (3)

The declaration is corrected beginning with libarchive 2.0.

Note that the library determines most of the relevant information about the archive by inspection. Inparticu-
lar, it automatically detectsgzip (1) or bzip2 (1) compression and transparently performs the appropriate
decompression. Italso automatically detects the archive format.

A complete description of thestruct archive andstruct archive_entryobjects can be found in the overview man-
ual page forlibarchive (3).

CLIENT CALLB ACKS
The callback functions must match the following prototypes:

typedef ssize_t archive_read_callback (struct archive ∗ ,
void ∗client_data , const void ∗∗buffer)

typedef int archive_skip_callback (struct archive ∗ , void ∗client_data ,
size_t request)

typedef int archive_open_callback (struct archive ∗ , void ∗client_data)

typedef int archive_close_callback (struct archive ∗ , void
∗client_data)

The open callback is invoked by archive_open (). It should returnARCHIVE_OKif the underlying file or
data source is successfully opened. If the open fails, it should callarchive_set_error () to register an
error code and message and returnARCHIVE_FATAL.

The read callback is invoked whenever the library requires raw bytes from the archive. The read callback
should read data into a buffer, set theconst void ∗∗buffer argument to point to the available data, and
return a count of the number of bytes available. Thelibrary will invoke the read callback again only after it
has consumed this data. The library imposes no constraints on the size of the data blocks returned.On end-
of-file, the read callback should return zero.On error, the read callback should invoke
archive_set_error () to register an error code and message and return -1.

The skip callback is invoked when the library wants to ignore a block of data. The return value is the number
of bytes actually skipped, which may differ from the request.If the callback cannot skip data, it should
return zero. If the skip callback is not provided (the function pointer isNULL), the library will invoke the
read function instead and simply discard the result.A skip callback can provide significant performance
gains when reading uncompressed archives from slow disk drives or other media that can skip quickly.

The close callback is invoked by archive_close when the archive processing is complete. The callback
should returnARCHIVE_OKon success. On failure, the callback should invoke archive_set_error ()
to register an error code and message and returnARCHIVE_FATAL.

EXAMPLE
The following illustrates basic usage of the library. In this example, the callback functions are simply wrap-
pers around the standardopen (2), read (2), andclose (2) system calls.

void
list_archive(const char ∗name)
{

struct mydata ∗mydata;
struct archive ∗a;
struct archive_entry ∗entry;

mydata = malloc(sizeof(struct mydata));
a = archive_read_new();

NetBSD 3.0 August 19, 2006 5

archive_read (3) NetBSD Library Functions Manual archive_read (3)

mydata->name = name;
archive_read_support_compression_all(a);
archive_read_support_format_all(a);
archive_read_open(a, mydata, myopen, myread, myclose);
while (archive_read_next_header(a, &entry) == ARCHIVE_OK) {

printf("%s\n",archive_entry_pathname(entry));
archive_read_data_skip(a);

}
archive_read_finish(a);
free(mydata);

}

ssize_t
myread(struct archive ∗a, void ∗client_data, const void ∗∗buff)
{

struct mydata ∗mydata = client_data;

∗buff = mydata->buff;
return (read(mydata->fd, mydata->buff, 10240));

}

int
myopen(struct archive ∗a, void ∗client_data)
{

struct mydata ∗mydata = client_data;

mydata->fd = open(mydata->name, O_RDONLY);
return (mydata->fd >= 0 ? ARCHIVE_OK : ARCHIVE_FATAL);

}

int
myclose(struct archive ∗a, void ∗client_data)
{

struct mydata ∗mydata = client_data;

if (mydata->fd > 0)
close(mydata->fd);

return (ARCHIVE_OK);
}

RETURN VALUES
Most functions return zero on success, non-zero on error. The possible return codes include:ARCHIVE_OK
(the operation succeeded),ARCHIVE_WARN(the operation succeeded but a non-critical error was encoun-
tered),ARCHIVE_EOF(end-of-archive was encountered),ARCHIVE_RETRY(the operation failed but can
be retried), andARCHIVE_FATAL (there was a fatal error; the archive should be closed immediately).
Detailed error codes and textual descriptions are available from the archive_errno () and
archive_error_string () functions.

archive_read_new () returns a pointer to a freshly allocatedstruct archive object. It returnsNULL on
error.

NetBSD 3.0 August 19, 2006 6

archive_read (3) NetBSD Library Functions Manual archive_read (3)

archive_read_data () returns a count of bytes actually read or zero at the end of the entry. On error, a
value ofARCHIVE_FATAL, ARCHIVE_WARN, or ARCHIVE_RETRYis returned and an error code and tex-
tual description can be retrieved from thearchive_errno () and archive_error_string () func-
tions.

The library expects the client callbacks to behave similarly. If there is an error, you can use
archive_set_error () to set an appropriate error code and description, then return one of the non-zero
values above. (Note that the value eventually returned to the client may not be the same; many errors that are
not critical at the level of basic I/O can prevent the archive from being properly read, thus most I/O errors
ev entually causeARCHIVE_FATALto be returned.)

SEE ALSO
tar (1), archive (3), archive_util (3), tar (5)

HISTORY
The libarchive library first appeared inFreeBSD5.3.

AUTHORS
The libarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

BUGS
Many traditional archiver programs treat empty files as valid empty archives. For example, many implemen-
tations oftar (1) allow you to append entries to an empty file.Of course, it is impossible to determine the
format of an empty file by inspecting the contents, so this library treats empty files as having a special
“empty” format.

NetBSD 3.0 August 19, 2006 7

archive_util (3) NetBSD Library Functions Manual archive_util (3)

NAME
archive_clear_error , archive_compression , archive_compression_name ,
archive_copy_error , archive_errno , archive_error_string , archive_format ,
archive_format_name , archive_set_error — libarchive utility functions

SYNOPSIS
#include <archive.h>

void
archive_clear_error (struct archive ∗);

int
archive_compression (struct archive ∗);

const char ∗
archive_compression_name (struct archive ∗);

void
archive_copy_error (struct archive ∗ , struct archive ∗);

int
archive_errno (struct archive ∗);

const char ∗
archive_error_string (struct archive ∗);

int
archive_format (struct archive ∗);

const char ∗
archive_format_name (struct archive ∗);

void
archive_set_error (struct archive ∗ , int error_code , const char ∗fmt , . . .);

DESCRIPTION
These functions provide access to various information about thestruct archive object used in the
libarchive (3) library.
archive_clear_error ()

Clears any error information left over from a previous call. Not generally used in client code.
archive_compression ()

Returns a numeric code indicating the current compression. This value is set by
archive_read_open ().

archive_compression_name ()
Returns a text description of the current compression suitable for display.

archive_copy_error ()
Copies error information from one archive to another.

archive_errno ()
Returns a numeric error code (seeerrno (2)) indicating the reason for the most recent error
return.

archive_error_string ()
Returns a textual error message suitable for display. The error message here is usually more spe-
cific than that obtained from passing the result ofarchive_errno () to strerror (3).

archive_format ()
Returns a numeric code indicating the format of the current archive entry. This value is set by a
successful call toarchive_read_next_header (). Note that it is common for this value to

NetBSD 3.0 January 8, 2005 1

archive_util (3) NetBSD Library Functions Manual archive_util (3)

change from entry to entry. For example, a tar archive might have sev eral entries that utilize GNU
tar extensions and several entries that do not. These entries will have different format codes.

archive_format_name ()
A textual description of the format of the current entry.

archive_set_error ()
Sets the numeric error code and error description that will be returned byarchive_errno () and
archive_error_string (). This function should be used within I/O callbacks to set system-
specific error codes and error descriptions. This function accepts a printf-like format string and
arguments. However, you should be careful to use only the following printf format specifiers:
“%c”, “%d”, “%jd”, “%jo”, “%ju”, “%jx”, “%ld”, “%lo”, “%lu”, “%lx”, “%o”, “%u”, “%s”,
“%x”, “%%”. Field-width specifiers and other printf features are not uniformly supported and
should not be used.

SEE ALSO
archive_read (3), archive_write (3), libarchive (3), printf (3)

HISTORY
The libarchive library first appeared inFreeBSD5.3.

AUTHORS
The libarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

NetBSD 3.0 January 8, 2005 2

archive_write (3) NetBSD Library Functions Manual archive_write (3)

NAME
archive_write_new , archive_write_set_format_cpio ,
archive_write_set_format_pax , archive_write_set_format_pax_restricted ,
archive_write_set_format_shar , archive_write_set_format_shar_binary ,
archive_write_set_format_ustar , archive_write_get_bytes_per_block ,
archive_write_set_bytes_per_block , archive_write_set_bytes_in_last_block ,
archive_write_set_compression_bzip2 ,
archive_write_set_compression_compress ,
archive_write_set_compression_gzip , archive_write_set_compression_none ,
archive_write_set_compression_program , archive_write_open ,
archive_write_open_fd , archive_write_open_FILE ,
archive_write_open_filename , archive_write_open_memory ,
archive_write_header , archive_write_data , archive_write_finish_entry ,
archive_write_close , archive_write_finish — functions for creating archives

SYNOPSIS
#include <archive.h>

struct archive ∗
archive_write_new (void);

int
archive_write_get_bytes_per_block (struct archive ∗);

int
archive_write_set_bytes_per_block (struct archive ∗ , int bytes_per_block);

int
archive_write_set_bytes_in_last_block (struct archive ∗ , int);

int
archive_write_set_compression_bzip2 (struct archive ∗);

int
archive_write_set_compression_compress (struct archive ∗);

int
archive_write_set_compression_gzip (struct archive ∗);

int
archive_write_set_compression_none (struct archive ∗);

int
archive_write_set_compression_program (struct archive ∗ , const char ∗ cmd);

int
archive_write_set_format_cpio (struct archive ∗);

int
archive_write_set_format_pax (struct archive ∗);

int
archive_write_set_format_pax_restricted (struct archive ∗);

int
archive_write_set_format_shar (struct archive ∗);

NetBSD 3.0 May 11, 2008 1

archive_write (3) NetBSD Library Functions Manual archive_write (3)

int
archive_write_set_format_shar_binary (struct archive ∗);

int
archive_write_set_format_ustar (struct archive ∗);

int
archive_write_open (struct archive ∗ , void ∗client_data ,

archive_open_callback ∗ , archive_write_callback ∗ ,
archive_close_callback ∗);

int
archive_write_open_fd (struct archive ∗ , int fd);

int
archive_write_open_FILE (struct archive ∗ , FILE ∗file);

int
archive_write_open_filename (struct archive ∗ , const char ∗filename);

int
archive_write_open_memory (struct archive ∗ , void ∗buffer ,

size_t bufferSize , size_t ∗outUsed);

int
archive_write_header (struct archive ∗ , struct archive_entry ∗);

ssize_t
archive_write_data (struct archive ∗ , const void ∗ , size_t);

int
archive_write_finish_entry (struct archive ∗);

int
archive_write_close (struct archive ∗);

int
archive_write_finish (struct archive ∗);

DESCRIPTION
These functions provide a complete API for creating streaming archive files. Thegeneral process is to first
create thestruct archive object, set any desired options, initialize the archive, append entries, then close the ar-
chive and release all resources. The following summary describes the functions in approximately the order
they are ordinarily used:

archive_write_new ()
Allocates and initializes astruct archive object suitable for writing a tar archive.

archive_write_set_bytes_per_block ()
Sets the block size used for writing the archive data. Every call to the write callback function,
except possibly the last one, will use this value for the length.The third parameter is a boolean
that specifies whether or not the final block written will be padded to the full block size. If it is
zero, the last block will not be padded. If it is non-zero, padding will be added both before and
after compression. The default is to use a block size of 10240 bytes and to pad the last block.
Note that a block size of zero will suppress internal blocking and cause writes to be sent directly to
the write callback as they occur.

NetBSD 3.0 May 11, 2008 2

archive_write (3) NetBSD Library Functions Manual archive_write (3)

archive_write_get_bytes_per_block ()
Retrieve the block size to be used for writing.A value of -1 here indicates that the library should
use default values. Avalue of zero indicates that internal blocking is suppressed.

archive_write_set_bytes_in_last_block ()
Sets the block size used for writing the last block.If this value is zero, the last block will be
padded to the same size as the other blocks. Otherwise, the final block will be padded to a multi-
ple of this size. In particular, setting it to 1 will cause the final block to not be padded.For com-
pressed output, any padding generated by this option is applied only after the compression.The
uncompressed data is always unpadded. The default is to pad the last block to the full block size
(note thatarchive_write_open_filename () will set this based on the file type).Unlike
the other “set” functions, this function can be called after the archive is opened.

archive_write_get_bytes_in_last_block ()
Retrieve the currently-set value for last block size.A value of -1 here indicates that the library
should use default values.

archive_write_set_format_cpio (), archive_write_set_format_pax (),
archive_write_set_format_pax_restricted (),
archive_write_set_format_shar (),
archive_write_set_format_shar_binary (),
archive_write_set_format_ustar ()
Sets the format that will be used for the archive. The library can write POSIX octet-oriented cpio
format archives, POSIX-standard “pax interchange” format archives, traditional “shar” archives,
enhanced “binary” shar archives that store a variety of file attributes and handle binary files, and
POSIX-standard “ustar” archives. Thepax interchange format is a backwards-compatible tar for-
mat that adds key/value attributes to each entry and supports arbitrary filenames, linknames, uids,
sizes, etc. “Restricted pax interchange format” is the library default; this is the same as pax for-
mat, but suppresses the pax extended header for most normal files.In most cases, this will result
in ordinary ustar archives.

archive_write_set_compression_bzip2 (),
archive_write_set_compression_compress (),
archive_write_set_compression_gzip (),
archive_write_set_compression_none ()
The resulting archive will be compressed as specified. Note that the compressed output is always
properly blocked.

archive_write_set_compression_program ()
The archive will be fed into the specified compression program. The output of that program is
blocked and written to the client write callbacks.

archive_write_open ()
Freeze the settings, open the archive, and prepare for writing entries.This is the most generic form
of this function, which accepts pointers to three callback functions which will be invoked by the
compression layer to write the constructed archive.

archive_write_open_fd ()
A convenience form of archive_write_open () that accepts a file descriptor. The
archive_write_open_fd () function is safe for use with tape drives or other block-oriented
devices.

archive_write_open_FILE ()
A convenience form ofarchive_write_open () that accepts aFILE ∗ pointer. Note that
archive_write_open_FILE () is not safe for writing to tape drives or other devices that
require correct blocking.

NetBSD 3.0 May 11, 2008 3

archive_write (3) NetBSD Library Functions Manual archive_write (3)

archive_write_open_file ()
A deprecated synonym forarchive_write_open_filename ().

archive_write_open_filename ()
A convenience form ofarchive_write_open () that accepts a filename.A NULL argument
indicates that the output should be written to standard output; an argument of “-” will open a file
with that name.If you have not invoked archive_write_set_bytes_in_last_block (),
thenarchive_write_open_filename () will adjust the last-block padding depending on the
file: it will enable padding when writing to standard output or to a character or block device node,
it will disable padding otherwise. You can override this by manually invoking
archive_write_set_bytes_in_last_block () before calling
archive_write_open (). The archive_write_open_filename () function is safe for
use with tape drives or other block-oriented devices.

archive_write_open_memory ()
A convenience form ofarchive_write_open () that accepts a pointer to a block of memory
that will receive the archive. The final size_t ∗ argument points to a variable that will be
updated after each write to reflect how much of the buffer is currently in use.You should be care-
ful to ensure that this variable remains allocated until after the archive is closed.

archive_write_header ()
Build and write a header using the data in the provided struct archive_entry structure. See
archive_entry (3) for information on creating and populatingstruct archive_entryobjects.

archive_write_data ()
Write data corresponding to the header just written.Returns number of bytes written or -1 on
error.

archive_write_finish_entry ()
Close out the entry just written. In particular, this writes out the final padding required by some
formats. Ordinarily, clients never need to call this, as it is called automatically by
archive_write_next_header () andarchive_write_close () as needed.

archive_write_close ()
Complete the archive and invoke the close callback.

archive_write_finish ()
Invokes archive_write_close () if it was not invoked manually, then releases all resources.
Note that this function was declared to returnvoid in libarchive 1.x, which made it impossible to
detect errors whenarchive_write_close () was invoked implicitly from this function. This
is corrected beginning with libarchive 2.0.

More information about thestruct archive object and the overall design of the library can be found in the
libarchive (3) overview.

IMPLEMENT ATION
Compression support is built-in to libarchive, which uses zlib and bzlib to handle gzip and bzip2 compres-
sion, respectively.

CLIENT CALLB ACKS
To use this library, you will need to define and register callback functions that will be invoked to write data to
the resulting archive. These functions are registered by callingarchive_write_open ():

typedef int archive_open_callback (struct archive ∗ , void ∗client_data)

The open callback is invoked by archive_write_open (). It should returnARCHIVE_OKif the underly-
ing file or data source is successfully opened. If the open fails, it should callarchive_set_error () to

NetBSD 3.0 May 11, 2008 4

archive_write (3) NetBSD Library Functions Manual archive_write (3)

register an error code and message and returnARCHIVE_FATAL.

typedef ssize_t archive_write_callback (struct archive ∗ ,
void ∗client_data , void ∗buffer , size_t length)

The write callback is invoked whenever the library needs to write raw bytes to the archive. For correct
blocking, each call to the write callback function should translate into a singlewrite (2) system call.This is
especially critical when writing archives to tape drives. Onsuccess, the write callback should return the
number of bytes actually written.On error, the callback should invoke archive_set_error () to register
an error code and message and return -1.

typedef int archive_close_callback (struct archive ∗ , void
∗client_data)

The close callback is invoked by archive_close when the archive processing is complete. The callback
should returnARCHIVE_OKon success. On failure, the callback should invoke archive_set_error ()
to register an error code and message and returnARCHIVE_FATAL.

EXAMPLE
The following sketch illustrates basic usage of the library. In this example, the callback functions are simply
wrappers around the standardopen (2), write (2), andclose (2) system calls.

#include <sys/stat.h>
#include <archive.h>
#include <archive_entry.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

struct mydata {
const char ∗name;
int fd;

};

int
myopen(struct archive ∗a, void ∗client_data)
{

struct mydata ∗mydata = client_data;

mydata->fd = open(mydata->name, O_WRONLY | O_CREAT, 0644);
if (mydata->fd >= 0)

return (ARCHIVE_OK);
else

return (ARCHIVE_FATAL);
}

ssize_t
mywrite(struct archive ∗a, void ∗client_data, void ∗buff, size_t n)
{

struct mydata ∗mydata = client_data;

return (write(mydata->fd, buff, n));
}

NetBSD 3.0 May 11, 2008 5

archive_write (3) NetBSD Library Functions Manual archive_write (3)

int
myclose(struct archive ∗a, void ∗client_data)
{

struct mydata ∗mydata = client_data;

if (mydata->fd > 0)
close(mydata->fd);

return (0);
}

void
write_archive(const char ∗outname, const char ∗∗filename)
{

struct mydata ∗mydata = malloc(sizeof(struct mydata));
struct archive ∗a;
struct archive_entry ∗entry;
struct stat st;
char buff[8192];
int len;
int fd;

a = archive_write_new();
mydata->name = outname;
archive_write_set_compression_gzip(a);
archive_write_set_format_ustar(a);
archive_write_open(a, mydata, myopen, mywrite, myclose);
while (∗filename) {

stat(∗filename, &st);
entry = archive_entry_new();
archive_entry_copy_stat(entry, &st);
archive_entry_set_pathname(entry, ∗filename);
archive_write_header(a, entry);
fd = open(∗filename, O_RDONLY);
len = read(fd, buff, sizeof(buff));
while (len > 0) {

archive_write_data(a, buff, len);
len = read(fd, buff, sizeof(buff));

}
archive_entry_free(entry);
filename++;

}
archive_write_finish(a);

}

int main(int argc, const char ∗∗argv)
{

const char ∗outname;
argv++;
outname = argv++;
write_archive(outname, argv);
return 0;

}

NetBSD 3.0 May 11, 2008 6

archive_write (3) NetBSD Library Functions Manual archive_write (3)

RETURN VALUES
Most functions returnARCHIVE_OK(zero) on success, or one of several non-zero error codes for errors.
Specific error codes include:ARCHIVE_RETRY for operations that might succeed if retried,
ARCHIVE_WARNfor unusual conditions that do not prevent further operations, andARCHIVE_FATALfor
serious errors that make remaining operations impossible.The archive_errno () and
archive_error_string () functions can be used to retrieve an appropriate error code and a textual error
message.

archive_write_new () returns a pointer to a newly-allocatedstruct archive object.

archive_write_data () returns a count of the number of bytes actually written. On error, -1 is returned
and thearchive_errno () and archive_error_string () functions will return appropriate values.
Note that if the client-provided write callback function returns a non-zero value, that error will be propagated
back to the caller through whatever API function resulted in that call, which may include
archive_write_header (), archive_write_data (), archive_write_close (), or
archive_write_finish (). The client callback can callarchive_set_error () to provide values
that can then be retrieved by archive_errno () andarchive_error_string ().

SEE ALSO
tar (1), libarchive (3), tar (5)

HISTORY
The libarchive library first appeared inFreeBSD5.3.

AUTHORS
The libarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

BUGS
There are many peculiar bugs in historic tar implementations that may cause certain programs to reject ar-
chives written by this library. For example, several historic implementations calculated header checksums
incorrectly and will thus reject valid archives; GNU tar does not fully support pax interchange format; some
old tar implementations required specific field terminations.

The default pax interchange format eliminates most of the historic tar limitations and provides a generic
key/value attribute facility for vendor-defined extensions. Oneoversight in POSIX is the failure to provide a
standard attribute for large device numbers. This library uses “SCHILY.devminor” and “SCHILY.devmajor”
for device numbers that exceed the range supported by the backwards-compatible ustar header. These keys
are compatible with Joerg Schilling’s star archiver. Other implementations may not recognize these keys
and will thus be unable to correctly restore device nodes with large device numbers from archives created by
this library.

NetBSD 3.0 May 11, 2008 7

archive_write_disk (3) NetBSD Library Functions Manual archive_write_disk (3)

NAME
archive_write_disk_new , archive_write_disk_set_options ,
archive_write_disk_set_skip_file , archive_write_disk_set_group_lookup ,
archive_write_disk_set_standard_lookup ,
archive_write_disk_set_user_lookup , archive_write_header ,
archive_write_data , archive_write_finish_entry , archive_write_close ,
archive_write_finish — functions for creating objects on disk

SYNOPSIS
#include <archive.h>

struct archive ∗
archive_write_disk_new (void);

int
archive_write_disk_set_options (struct archive ∗ , int flags);

int
archive_write_disk_set_skip_file (struct archive ∗ , dev_t , ino_t);

int
archive_write_disk_set_group_lookup (struct archive ∗ , void ∗ ,

gid_t (∗)(void ∗, c onst char ∗gname, gid_t gid) ,
void (∗cleanup)(void ∗));

int
archive_write_disk_set_standard_lookup (struct archive ∗);

int
archive_write_disk_set_user_lookup (struct archive ∗ , void ∗ ,

uid_t (∗)(void ∗, c onst char ∗uname, uid_t uid) ,
void (∗cleanup)(void ∗));

int
archive_write_header (struct archive ∗ , struct archive_entry ∗);

ssize_t
archive_write_data (struct archive ∗ , const void ∗ , size_t);

int
archive_write_finish_entry (struct archive ∗);

int
archive_write_close (struct archive ∗);

int
archive_write_finish (struct archive ∗);

DESCRIPTION
These functions provide a complete API for creating objects on disk fromstruct archive_entry descriptions.
They are most naturally used when extracting objects from an archive using thearchive_read () inter-
face. Thegeneral process is to readstruct archive_entryobjects from an archive, then write those objects to a
struct archive object created using thearchive_write_disk () family functions. This interface is deliber-
ately very similar to thearchive_write () interface used to write objects to a streaming archive.

archive_write_disk_new ()
Allocates and initializes astruct archive object suitable for writing objects to disk.

NetBSD 3.0 March 2, 2007 1

archive_write_disk (3) NetBSD Library Functions Manual archive_write_disk (3)

archive_write_disk_set_skip_file ()
Records the device and inode numbers of a file that should not be overwritten. Thisis typically
used to ensure that an extraction process does not overwrite the archive from which objects are
being read. This capability is technically unnecessary but can be a significant performance opti-
mization in practice.

archive_write_disk_set_options ()
The options field consists of a bitwise OR of one or more of the following values:
ARCHIVE_EXTRACT_OWNER

The user and group IDs should be set on the restored file. By default, the user and group
IDs are not restored.

ARCHIVE_EXTRACT_PERM
Full permissions (including SGID, SUID, and sticky bits) should be restored exactly as
specified, without obeying the current umask.Note that SUID and SGID bits can only
be restored if the user and group ID of the object on disk are correct.If
ARCHIVE_EXTRACT_OWNERis not specified, then SUID and SGID bits will only be
restored if the default user and group IDs of newly-created objects on disk happen to
match those specified in the archive entry. By default, only basic permissions are
restored, and umask is obeyed.

ARCHIVE_EXTRACT_TIME
The timestamps (mtime, ctime, and atime) should be restored. By default, they are
ignored. Notethat restoring of atime is not currently supported.

ARCHIVE_EXTRACT_NO_OVERWRITE
Existing files on disk will not be overwritten. Bydefault, existing regular files are trun-
cated and overwritten; existing directories will have their permissions updated; other
pre-existing objects are unlinked and recreated from scratch.

ARCHIVE_EXTRACT_UNLINK
Existing files on disk will be unlinked before any attempt to create them. In some cases,
this can prove to be a significant performance improvement. Bydefault, existing files
are truncated and rewritten, but the file is not recreated. In particular, the default behav-
ior does not break existing hard links.

ARCHIVE_EXTRACT_ACL
Attempt to restore ACLs. Bydefault, extended ACLs are ignored.

ARCHIVE_EXTRACT_FFLAGS
Attempt to restore extended file flags. By default, file flags are ignored.

ARCHIVE_EXTRACT_XATTR
Attempt to restore POSIX.1e extended attributes. Bydefault, they are ignored.

ARCHIVE_EXTRACT_SECURE_SYMLINKS
Refuse to extract any object whose final location would be altered by a symlink on disk.
This is intended to help guard against a variety of mischief caused by archives that
(deliberately or otherwise) extract files outside of the current directory. The default is
not to perform this check.If ARCHIVE_EXTRACT_UNLINKis specified together with
this option, the library will remove any intermediate symlinks it finds and return an error
only if such symlink could not be removed.

ARCHIVE_EXTRACT_SECURE_NODOTDOT
Refuse to extract a path that contains a.. element anywhere within it. The default is to
not refuse such paths. Note that paths ending in.. always cause an error, reg ardless of
this flag.

ARCHIVE_EXTRACT_SPARSE
Scan data for blocks of NUL bytes and try to recreate them with holes.This results in sparse files,
independent of whether the archive format supports or uses them.

NetBSD 3.0 March 2, 2007 2

archive_write_disk (3) NetBSD Library Functions Manual archive_write_disk (3)

archive_write_disk_set_group_lookup (), archive_write_disk_set_user_lookup ()
The struct archive_entry objects contain both names and ids that can be used to identify users and
groups. Thesenames and ids describe the ownership of the file itself and also appear in ACL lists.
By default, the library uses the ids and ignores the names, but this can be overridden by registering
user and group lookup functions.To register, you must provide a lookup function which accepts
both a name and id and returns a suitable id.You may also provide avoid ∗ pointer to a private
data structure and a cleanup function for that data. The cleanup function will be invoked when the
struct archive object is destroyed.

archive_write_disk_set_standard_lookup ()
This convenience function installs a standard set of user and group lookup functions. These func-
tions usegetpwnam (3) andgetgrnam (3) to convert names to ids, defaulting to the ids if the
names cannot be looked up. These functions also implement a simple memory cache to reduce the
number of calls togetpwnam (3) andgetgrnam (3).

archive_write_header ()
Build and write a header using the data in the provided struct archive_entry structure. See
archive_entry (3) for information on creating and populatingstruct archive_entryobjects.

archive_write_data ()
Write data corresponding to the header just written.Returns number of bytes written or -1 on
error.

archive_write_finish_entry ()
Close out the entry just written.Ordinarily, clients never need to call this, as it is called automati-
cally byarchive_write_next_header () andarchive_write_close () as needed.

archive_write_close ()
Set any attributes that could not be set during the initial restore.For example, directory time-
stamps are not restored initially because restoring a subsequent file would alter that timestamp.
Similarly, non-writable directories are initially created with write permissions (so that their con-
tents can be restored).The archive_write_disk_new library maintains a list of all such
deferred attributes and sets them when this function is invoked.

archive_write_finish ()
Invokes archive_write_close () if it was not invoked manually, then releases all resources.

More information about thestruct archive object and the overall design of the library can be found in the
libarchive (3) overview. Many of these functions are also documented underarchive_write (3).

RETURN VALUES
Most functions returnARCHIVE_OK(zero) on success, or one of several non-zero error codes for errors.
Specific error codes include:ARCHIVE_RETRY for operations that might succeed if retried,
ARCHIVE_WARNfor unusual conditions that do not prevent further operations, andARCHIVE_FATALfor
serious errors that make remaining operations impossible.The archive_errno () and
archive_error_string () functions can be used to retrieve an appropriate error code and a textual error
message.

archive_write_disk_new () returns a pointer to a newly-allocatedstruct archive object.

archive_write_data () returns a count of the number of bytes actually written. On error, -1 is returned
and thearchive_errno () andarchive_error_string () functions will return appropriate values.

SEE ALSO
archive_read (3), archive_write (3), tar (1), libarchive (3)

NetBSD 3.0 March 2, 2007 3

archive_write_disk (3) NetBSD Library Functions Manual archive_write_disk (3)

HISTORY
The libarchive library first appeared inFreeBSD5.3. Thearchive_write_disk interface was
added tolibarchive 2.0 and first appeared inFreeBSD6.3.

AUTHORS
The libarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

BUGS
Directories are actually extracted in two distinct phases. Directories are created during
archive_write_header (), but final permissions are not set untilarchive_write_close (). This
separation is necessary to correctly handle borderline cases such as a non-writable directory containing files,
but can cause unexpected results. In particular, directory permissions are not fully restored until the archive
is closed. If you use chdir (2) to change the current directory between calls to
archive_read_extract () or before callingarchive_read_close (), you may confuse the permis-
sion-setting logic with the result that directory permissions are restored incorrectly.

The library attempts to create objects with filenames longer thanPATH_MAXby creating prefixes of the full
path and changing the current directory. Currently, this logic is limited in scope; the fixup pass does not
work correctly for such objects and the symlink security check option disables the support for very long
pathnames.

Restoring the pathaa/../bb does create each intermediate directory. In particular, the directoryaa is cre-
ated as well as the final objectbb . In theory, this can be exploited to create an entire directory heirarchy with
a single request. Of course, this does not work if theARCHIVE_EXTRACT_NODOTDOToption is specified.

Implicit directories are always created obeying the current umask. Explicit objects are created obeying the
current umask unlessARCHIVE_EXTRACT_PERMis specified, in which case they current umask is ignored.

SGID and SUID bits are restored only if the correct user and group could be set.If
ARCHIVE_EXTRACT_OWNERis not specified, then no attempt is made to set the ownership. Inthis case,
SGID and SUID bits are restored only if the user and group of the final object happen to match those speci-
fied in the entry.

The “standard” user-id and group-id lookup functions are not the defaults becausegetgrnam (3) and
getpwnam (3) are sometimes too large for particular applications.The current design allows the application
author to use a more compact implementation when appropriate.

There should be a correspondingarchive_read_disk interface that walks a directory heirarchy and
returns archive entry objects.

NetBSD 3.0 March 2, 2007 4

arlib(3) arlib(3)

NAME
ar_answer, ar_close, ar_delete, ar_gethostbyname, ar_gethostbyaddr, ar_init, ar_open, ar_timeout - Asyn-
chronous DNS library routines

SYNOPSIS
#include arlib.h

struct hostent *ar_answer(dataptr, size)
char *dataptr;
int size;

void ar_close();

int ar_delete(dataptr, size)
char *dataptr;
int size;

int ar_gethostbyname(name, dataptr, size)
char *name;
char *dataptr;
int size;

int ar_gethostbyaddr(name, dataptr, size)
char *name;
char *dataptr;
int size;

int ar_init(flags)
int flags;

int ar_open();

long ar_timeout(time, dataptr, size)
long time;
char *dataptr;
int size;

DESCRIPTION
This small library of DNS routines is intended to provide an asynchronous interface to performing host-

name and IP number lookups. Only lookups of Internet domain are handled as yet.To use this set of rou-
tines properly, the presence of theBIND 4.8 resolve libraries is required (or any library derived from it).

This library should be used in conjunction withselect(2)to wait for the name server’s reply to arrive or
the lookup to timeout.

To open a fd for talking to the name server, eitherar_open()or ar_init() must be used.ar_open()
will open either a datagram socket or a virtual circuit with the name server, depending on the flags set in
the _res structure (seeresolv(5)). In both cases, if the socket

> i ar_init() is used to both open the socket (as inar_open()) and initialize the queues used by this library.
The values recognized as parameters toar_init() are:

#define ARES_INITLIST 1
#define ARES_CALLINIT 2
#define ARES_INITSOCK 4
#define ARES_INITDEBG 8

1

arlib(3) arlib(3)

ARES_INITLIST initializes the list of queries waiting for replies. ARES_CALLINIT is a flag which
when set causesres_init() to be called.ARES_INITSOCK will close the current socket if it is open and
call ar_open() to open a new one, returning the fd for that socket. ARES_INITDEBG sets the
RES_DEBUG flag of the_res structure. ARES_INITCACH is as yet, unused and is for future use where
the library keeps its own cache of replies.

To send a query about either a hostname or an IP number, ar_gethostbyname()andar_gethostbyaddr()
must be used. Each takes either a pointer to the hostname or the IP number respectively for use when mak-
ing the query. In addition to this, both (optionally) can be passed a pointer to data, dataptr, with the size
also passed which can be used for identifying individual queries.A copy of the area pointed to is made if
dataptr is non NULL and size is non zero. These functions will always return NULL unless the answer to
the query is found in internal caches.A new flag, RES_CHECKPTR is checked during the processing of
answers forar_gethostbyname()which will automatically cause a reverse lookup to be queued, causing a
failure if that reply differs from the original.

To check for a query, ar_answer() is called with a pointer to an area of memory which is sufficient to
hold what was originally passed viaar_gethostbyname()or ar_gethostbyaddr() through dataptr. If an
answer is found, a pointer to the host information is returned and the data segment copied if dataptr is non
NULL and it was originally passed.The size of the copied data is the smaller of the passed size and that of
original data stored.

To expire old queries,ar_timeout() is called with the ’current’ time (or the time for which you want to do
timeouts for). If a queue entry is too old, it will be expired when it has exhausted all available avenues for
lookups and the data segment for the expired query copied into dataptr. The size of the copied data is the
smaller of the passed size and that of the original stored data.Only 1 entry is thus expired with each call,
requiring that it be called immediately after an expiration to check for others.In addition to expiring
lookups,ar_timeout() also triggers resends of queries and the searching of the domain tree for the host, the
latter works from the_resstructure ofresolv(5).

To delete entries from the queue,ar_delete()can be used and by passing the pointer and size of the data
segment, all queries have their data segments checked (if present) for an exact match, being deleted if and
only if there is a match.A NULL pointer passed to ar_deleted() matches all queries which were called with
a NULL dataptr parameter. The amount of data compared is the smaller of the size passed and that of the
data stored for the queue entry being compared.

To close a socket opened byar_open() , ar_close()should beused so that it is closed and also marked
closed within this library.

DIAGNOSIS
ar_open() returns -1 if a socket isn’t open and could not be opened; otherwise returns the current fd open
or the fd it opened.

ar_init() returns -1 for any errors, the value returned byres_init() if res_init() was called, the return value
for ar_open() if that was called or the current socket open if 0 is passed and a socket is open. If neither
res_init() or ar_open()are called and the flags are non-zero, -2 is returned.

ar_gethostbyaddr() andar_gethostbyname()will always return NULL in this version but may return a
pointer to a hostent structure if a cache is being used and the answer is found in the cache.

ar_answer() returns NULL if the answer is either not found or the query returned an error and another
attempt at a lookup is attempted. If an answer was found, it returned a pointer to this structure and the con-
tents of the data segment copied over.

2

arlib(3) arlib(3)

ar_timeout() returns the time when it should be called next or 0 if there are no queries in the queue to be
checked later. If any queries are expired, the data segment is copied over if dataptr is non NULL.

ar_delete()returns the number of entries that were found to match and consequently deleted.

SEE ALSO
gethostbyaddr(3), gethostbyname(3), resolv(5)

FILES
arlib.h
/usr/include/resolv.h
/usr/include/arpa/nameser.h
/etc/resolv.conf

BUGS
The results of a successful call to ar_answer() destroy the structure for any previous calls.

AUTHOR
Darren Reed. Email address: avalon@coombs.anu.edu.au

3

ASIN (3) NetBSD Library Functions Manual ASIN (3)

NAME
asin , asinf — arc sine function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
asin (double x);

float
asinf (float x);

DESCRIPTION
The asin () and asinf () functions compute the principal value of the arc sine ofx in the range
[-π/2, +π/2].

RETURN VALUES
If |x|>1,asin (x) andasinf (x) return NaN and set the global variableerrno to EDOM.

SEE ALSO
acos (3), atan (3), atan2 (3), cos (3), cosh (3), math (3), sin (3), sinh (3), tan (3), tanh (3)

STANDARDS
Theasin () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 May 2, 1991 1

ASINH (3) NetBSD Library Functions Manual ASINH (3)

NAME
asinh , asinhf — inv erse hyperbolic sine function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
asinh (double x);

float
asinhf (float x);

DESCRIPTION
Theasinh () andasinhf () functions compute the inverse hyperbolic sine of the real argument

RETURN VALUES
Theasinh () andasinhf () functions return the inverse hyperbolic sine ofx .

SEE ALSO
acosh (3), atanh (3), exp (3), math (3)

HISTORY
Theasinh () function appeared in 4.3BSD.

NetBSD 3.0 May 6, 1991 1

ASSERT (3) NetBSDLibrary Functions Manual ASSERT (3)

NAME
assert — expression verification macro

SYNOPSIS
#include <assert.h>

assert (expression);

DESCRIPTION
The assert () macro tests the given expression and if it is false, the calling process is terminated.A
diagnostic message, consisting of the text of the expression, the name of the source file, the line number and
the enclosing function, is written tostderr and theabort (3) function is called, effectively terminating the
program.

If expression is true, theassert () macro does nothing.

Theassert () macro may be removed at compile time with thecc (1) option −DNDEBUG.

DIAGNOSTICS
The following diagnostic message is written tostderr if expression is false:

"assertion \"%s\" failed: file \"%s\", line %d, function \"%s\"\n", \
"expression", __FILE__, __LINE__, __func__);

SEE ALSO
cc (1), _DIAGASSERT(3), abort (3)

STANDARDS
Theassert () macro conforms toISO/IEC9899:1999 (“ISO C99”).

HISTORY
A assert macro appeared in Version 6AT&T UNIX .

Information on the name of the enclosing function appeared inISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 January 22, 2007 1

AT AN (3) NetBSDLibrary Functions Manual AT AN (3)

NAME
atan , atanf — arc tangent function of one variable

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
atan (double x);

float
atanf (float x);

DESCRIPTION
The atan () and atanf () functions compute the principal value of the arc tangent ofx in the range
[-π/2, +π/2].

SEE ALSO
acos (3), asin (3), atan2 (3), cos (3), cosh (3), math (3), sin (3), sinh (3), tan (3), tanh (3)

STANDARDS
Theatan () functions conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 May 2, 1991 1

AT AN2 (3) NetBSD Library Functions Manual AT AN2 (3)

NAME
atan2 , atan2f — arc tangent function of two variables

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
atan2 (double y , double x);

float
atan2f (float y , float x);

DESCRIPTION
The atan2 () and atan2f () functions compute the principal value of the arc tangent ofy/x , using the
signs of both arguments to determine the quadrant of the return value.

RETURN VALUES
Theatan2 () function, if successful, returns the arc tangent ofy/x in the range[-π, +π] radians. Ifbothx
andy are zero, the global variableerrno is set toEDOM. On theVAX:

atan2 (y , x) := atan (y/x) if x > 0,
sign(y)∗(π - atan (|y/x |)) if x < 0,
0 if x = y = 0, or
sign(y)∗π/2 if x = 0 y .

NOTES
The functionatan2 () defines "if x > 0,"atan2 (0 , 0) = 0 on aVAX despite that previously atan2 (0 , 0)
may have generated an error message. The reasons for assigning a value toatan2 (0 , 0) are these:

1. Programsthat test arguments to avoid computingatan2 (0 , 0) must be indifferent to its value.
Programs that require it to be invalid are vulnerable to diverse reactions to that invalidity on
diverse computer systems.

2. Theatan2 () function is used mostly to convert from rectangular (x,y) to polar (r,θ) coordinates
that must satisfy x = r∗cosθ and y = r∗sinθ. These equations are satisfied when (x=0,y=0) is
mapped to (r=0,θ=0) on a VAX. In general, conversions to polar coordinates should be com-
puted thus:

r := hypot(x,y); ...:= √(x2+y2)
θ := atan2(y,x).

3. Theforegoing formulas need not be altered to cope in a reasonable way with signed zeros and
infinities on a machine that conforms toIEEE 754; the versions ofhypot (3) andatan2 () pro-
vided for such a machine are designed to handle all cases. That is why atan2 (±0 , −0) = ±π
for instance. In general the formulas above are equivalent to these:

r := √(x∗x+y∗y); if r = 0 then x := copysign(1,x);

SEE ALSO
acos (3), asin (3), atan (3), cos (3), cosh (3), math (3), sin (3), sinh (3), tan (3), tanh (3)

NetBSD 3.0 May 2, 1991 1

AT AN2 (3) NetBSD Library Functions Manual AT AN2 (3)

STANDARDS
Theatan2 () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 May 2, 1991 2

AT ANH (3) NetBSD Library Functions Manual AT ANH (3)

NAME
atanh , atanhf — inv erse hyperbolic tangent function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
atanh (double x);

float
atanhf (float x);

DESCRIPTION
Theatanh () andatanhf () functions compute the inverse hyperbolic tangent of the real argumentx .

RETURN VALUES
If |x|≥1, atanh (x) andatanhf (x) return +inf, -inf or NaN, and sets the global variableerrno to EDOM.

SEE ALSO
acosh (3), asinh (3), exp (3), math (3)

HISTORY
Theatanh () function appeared in 4.3BSD.

NetBSD 3.0 May 6, 1991 1

ATEXIT (3) NetBSD Library Functions Manual ATEXIT (3)

NAME
atexit — register a function to be called on exit

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
atexit (void (∗function)(void));

DESCRIPTION
Theatexit () function registers the given function to be called at program exit, whether viaexit (3) or
via return from the program’s main. Functions so registered are called in reverse order; no arguments are
passed. Atleast 32 functions can always be registered, and more are allowed as long as sufficient memory
can be allocated.

RETURN VALUES
The atexit () function returns the value 0 if successful; otherwise the value −1 is returned and the global
variableerrno is set to indicate the error.

ERRORS
[ENOMEM] No memory was available to add the function to the list.The existing list of functions

is unmodified.

SEE ALSO
exit (3)

STANDARDS
Theatexit () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

ATF-C++-API (3) NetBSD Library Functions Manual ATF-C++-API (3)

NAME
ATF_ADD_TEST_CASE, ATF_CHECK, ATF_CHECK_EQUAL, ATF_CHECK_THROW, ATF_FAIL ,
ATF_INIT_TEST_CASES, ATF_PASS, ATF_SKIP, ATF_TEST_CASE, ATF_TEST_CASE_BODY,
ATF_TEST_CASE_CLEANUP, ATF_TEST_CASE_HEAD, ATF_TEST_CASE_WITH_CLEANUP— C++
API to write ATF-based test programs

SYNOPSIS
#include <atf-c++.hpp>

ATF_ADD_TEST_CASE(tcs , name);

ATF_CHECK(expression);

ATF_CHECK_EQUAL(expression_1 , expression_2);

ATF_CHECK_THROW(statement_1 , expected_exception);

ATF_FAIL (reason);

ATF_INIT_TEST_CASES(tcs);

ATF_PASS();

ATF_SKIP(reason);

ATF_TEST_CASE(name);

ATF_TEST_CASE_BODY(name);

ATF_TEST_CASE_CLEANUP(name);

ATF_TEST_CASE_HEAD(name);

ATF_TEST_CASE_WITH_CLEANUP(name);

DESCRIPTION
ATF provides a mostly-macro-based programming interface to implement test programs in C or C++.This
interface is backed by a C++ implementation, but this fact is hidden from the developer as much as possible
through the use of macros to simplify programming.However, the use of C++ is not hidden everywhere and
while you can implement test cases without knowing anything at all about the object model underneath the
provided calls, you might need some minimum notions of the language in very specific circumstances.

C++-based test programs always follow this template:

extern "C" {
. . . C -specific includes go here . . .
}

. . . C++-specific includes go here. . .

#include <atf-c++.hpp>

ATF_TEST_CASE(tc1);
ATF_TEST_CASE_HEAD(tc1)
{

... first test case’s header ...
}
ATF_TEST_CASE_BODY(tc1)
{

NetBSD 3.0 April 26, 2008 1

ATF-C++-API (3) NetBSD Library Functions Manual ATF-C++-API (3)

... first test case’s body ...
}

ATF_TEST_CASE_WITH_CLEANUP(tc2);
ATF_TEST_CASE_HEAD(tc2)
{

... second test case’s header ...
}
ATF_TEST_CASE_BODY(tc2)
{

... second test case’s body ...
}
ATF_TEST_CASE_CLEANUP(tc2)
{

... second test case’s cleanup ...
}

. . . additional test cases. . .

ATF_INIT_TEST_CASES(tcs)
{

ATF_ADD_TEST_CASE(tcs, tc1)
ATF_ADD_TEST_CASE(tcs, tc2)
... add additional test cases ...

}

Definition of test cases
Test cases have an identifier and are composed of three different parts: the header, the body and an optional
cleanup routine, all of which are described inatf-test-case (8). To define test cases, one can use the
ATF_TEST_CASE() or theATF_TEST_CASE_WITH_CLEANUP() macros, which take a single parameter
specifiying the test case’s name. Theformer does not allow the specification of a cleanup routine for the test
case while the latter does. It is important to note that thesedo notset the test case up for execution when the
program is run. In order to do so, a later registration is needed through theATF_ADD_TEST_CASE() macro
detailed inProgram initialization .

Later on, one must define the three parts of the body by means of three functions.Their headers are given by
the ATF_TEST_CASE_HEAD(), ATF_TEST_CASE_BODY() andATF_TEST_CASE_CLEANUP() macros,
all of which take the test case’s name. Following each of these, a block of code is expected, surrounded by
the opening and closing brackets.

Program initialization
The library provides a way to easily define the test program’s main () function. You should never define one
on your own, but rely on the library to do it for you.This is done by using theATF_INIT_TEST_CASES()
macro, which is passed the name of the list that will hold the test cases. This name can be whatever you
want as long as it is a valid variable value.

After the macro, you are supposed to provide the body of a function, which should only use the
ATF_ADD_TEST_CASE() macro to register the test cases the test program will execute. Thefirst parameter
of this macro matches the name you provided in the former call.

NetBSD 3.0 April 26, 2008 2

ATF-C++-API (3) NetBSD Library Functions Manual ATF-C++-API (3)

Header definitions
The test case’s header can define the meta-data by using theset () method, which takes two parameters: the
first one specifies the meta-data variable to be set and the second one specifies its value. Bothof them are
strings.

Configuration variables
The test case has read-only access to the current configuration variables by means of thebool
has_config_var () and thestd::string get_config_var () methods, which can be called in any
of the three parts of a test case.

Access to the source directory
It is possible to get the path to the test case’s source directory from any of its three components by querying
the ‘srcdir’ configuration variable.

Requiring programs
Aside from therequire.progs meta-data variable available in the header only, one can also check for addi-
tional programs in the test case’s body by using therequire_prog () function, which takes the base name
or full path of a single binary. Relative paths are forbidden.If it is not found, the test case will be automati-
cally skipped.

Test case finalization
The test case finalizes either when the body reaches its end, at which point the test is assumed to have
passed, or at any explicit call to ATF_PASS(), ATF_FAIL () or ATF_SKIP(). Thesethree macros terminate
the execution of the test case immediately. The cleanup routine will be processed afterwards in a completely
automated way, reg ardless of the test case’s termination reason.

ATF_PASS() does not take any parameters.ATF_FAIL () and ATF_SKIP() take a single string that
describes why the test case failed or was skipped, respectively. It is very important to provide a clear error
message in both cases so that the user can quickly know why the test did not pass.

Helper macros for common checks
The library provides several macros that are very handy in multiple situations.These basically check some
condition after executing a given statement or processing a given expression and, if the condition is not met,
they automatically callATF_FAIL () with an appropriate error message.

ATF_CHECK() takes an expression and raises a failure if it evaluates to false.

ATF_CHECK_EQUAL() takes two expressions and raises a failure if the two do not evaluate to the same
exact value.

ATF_CHECK_THROW() takes a statement and the name of an exception and raises a failure if the statement
did not throw the specified exception.

EXAMPLES
The following shows a complete test program with a single test case that validates the addition operator:

#include <atf-c++.hpp>

ATF_TEST_CASE(addition);
ATF_TEST_CASE_HEAD(addition)
{

set("descr", "Sample tests for the addition operator");
}
ATF_TEST_CASE_BODY(addition)

NetBSD 3.0 April 26, 2008 3

ATF-C++-API (3) NetBSD Library Functions Manual ATF-C++-API (3)

{
ATF_CHECK_EQUAL(0 + 0, 0);
ATF_CHECK_EQUAL(0 + 1, 1);
ATF_CHECK_EQUAL(1 + 0, 1);

ATF_CHECK_EQUAL(1 + 1, 2);

ATF_CHECK_EQUAL(100 + 200, 300);
}

ATF_INIT_TEST_CASES(tcs)
{

ATF_ADD_TEST_CASE(tcs, addition);
}

SEE ALSO
atf-test-program (1), atf (7), atf-test-case (8)

NetBSD 3.0 April 26, 2008 4

ATF-C-API (3) NetBSD Library Functions Manual ATF-C-API (3)

NAME
ATF_CHECK, ATF_CHECK_EQUAL, ATF_TC, ATF_TC_BODY, ATF_TC_BODY_NAME,
ATF_TC_CLEANUP, ATF_TC_CLEANUP_NAME, ATF_TC_HEAD, ATF_TC_HEAD_NAME,
ATF_TC_NAME, ATF_TC_WITH_CLEANUP, ATF_TP_ADD_TC, ATF_TP_ADD_TCS, atf_no_error ,
atf_tc_fail , atf_tc_pass , atf_tc_skip — C API to write ATF-based test programs

SYNOPSIS
#include <atf-c.h>

ATF_CHECK(expression);

ATF_CHECK_EQUAL(expression_1 , expression_2);

ATF_TC(name);

ATF_TC_BODY(name);

ATF_TC_BODY_NAME(name);

ATF_TC_CLEANUP(name);

ATF_TC_CLEANUP_NAME(name);

ATF_TC_HEAD(name);

ATF_TC_HEAD_NAME(name);

ATF_TC_NAME(name);

ATF_TC_WITH_CLEANUP(name);

ATF_TP_ADD_TC(tp_name);

ATF_TP_ADD_TCS(tp_name , tc_name);

atf_no_error ();

atf_tc_fail (reason);

atf_tc_pass ();

atf_tc_skip (reason);

DESCRIPTION
The ATF

C-based test programs always follow this template:

. . . C -specific includes go here . . .

#include <atf-c.h>

ATF_TC(tc1);
ATF_TC_HEAD(tc1)
{

... first test case’s header ...
}
ATF_TC_BODY(tc1)
{

... first test case’s body ...
}

NetBSD 3.0 April 26, 2008 1

ATF-C-API (3) NetBSD Library Functions Manual ATF-C-API (3)

ATF_TC_WITH_CLEANUP(tc2);
ATF_TC_HEAD(tc2)
{

... second test case’s header ...
}
ATF_TC_BODY(tc2)
{

... second test case’s body ...
}
ATF_TC_CLEANUP(tc2)
{

... second test case’s cleanup ...
}

. . . additional test cases. . .

ATF_TP_ADD_TCS(tp, tcs)
{

ATF_TP_ADD_TC(tcs, tc1)
ATF_TP_ADD_TC(tcs, tc2)
... add additional test cases ...

return atf_no_error();
}

Definition of test cases
Test cases have an identifier and are composed of three different parts: the header, the body and an optional
cleanup routine, all of which are described inatf-test-case (8). To define test cases, one can use the
ATF_TC() or theATF_TC_WITH_CLEANUP() macros, which take a single parameter specifiying the test
case’s name. Theformer does not allow the specification of a cleanup routine for the test case while the lat-
ter does. It is important to note that thesedo notset the test case up for execution when the program is run.
In order to do so, a later registration is needed with theATF_TP_ADD_TC() macro detailed inProgram
initialization .

Later on, one must define the three parts of the body by means of three functions.Their headers are given by
the ATF_TC_HEAD(), ATF_TC_BODY() andATF_TC_CLEANUP() macros, all of which take the test case
name provided to theATF_TC() or ATF_TC_WITH_CLEANUP() macros.Following each of these, a block
of code is expected, surrounded by the opening and closing brackets.

Program initialization
The library provides a way to easily define the test program’s main () function. You should never define one
on your own, but rely on the library to do it for you. This is done by using theATF_TP_ADD_TCS() macro,
which is passed the name of the object that will hold the test cases; i.e. the test program instance.This name
can be whatever you want as long as it is a valid variable identifier.

After the macro, you are supposed to provide the body of a function, which should only use the
ATF_TP_ADD_TC() macro to register the test cases the test program will execute and return a success error
code. Thefirst parameter of this macro matches the name you provided in the former call. The success sta-
tus can be returned using theatf_no_error () function.

NetBSD 3.0 April 26, 2008 2

ATF-C-API (3) NetBSD Library Functions Manual ATF-C-API (3)

Header definitions
The test case’s header can define the meta-data by using theatf_tc_set_md_var () method, which takes
two parameters: the first one specifies the meta-data variable to be set and the second one specifies its value.
Both of them are strings.

Configuration variables
The test case has read-only access to the current configuration variables by means of thebool
atf_tc_has_config_var () and the const char ∗ atf_tc_get_config_var () methods,
which can be called in any of the three parts of a test case.

Access to the source directory
It is possible to get the path to the test case’s source directory from any of its three components by querying
the ‘srcdir’ configuration variable.

Requiring programs
Aside from therequire.progs meta-data variable available in the header only, one can also check for addi-
tional programs in the test case’s body by using theatf_tc_require_prog () function, which takes the
base name or full path of a single binary. Relative paths are forbidden. If it is not found, the test case will be
automatically skipped.

Test case finalization
The test case finalizes either when the body reaches its end, at which point the test is assumed to have
passed, or at any explicit call to atf_tc_pass (), atf_tc_fail () or atf_tc_skip (). Thesethree
functions terminate the execution of the test case immediately. The cleanup routine will be processed after-
wards in a completely automated way, reg ardless of the test case’s termination reason.

atf_tc_pass () does not take any parameters.atf_tc_fail () and atf_tc_skip () take a single
string that describes why the test case failed or was skipped, respectively. It is very important to provide a
clear error message in both cases so that the user can quickly know why the test did not pass.

Helper macros for common checks
The library provides several macros that are very handy in multiple situations. These basically check some
condition after executing a given statement or processing a given expression and, if the condition is not met,
they automatically callatf_tc_fail () with an appropriate error message.

ATF_CHECK() takes an expression and raises a failure if it evaluates to false.

ATF_CHECK_EQUAL() takes two expressions and raises a failure if the two do not evaluate to the same
exact value.

EXAMPLES
The following shows a complete test program with a single test case that validates the addition operator:

#include <atf-c.h>

ATF_TC(addition);
ATF_TC_HEAD(addition)
{

atf_tc_set_md_var("descr", "Sample tests for the addition operator");
}
ATF_TC_BODY(addition)
{

ATF_CHECK_EQUAL(0 + 0, 0);
ATF_CHECK_EQUAL(0 + 1, 1);

NetBSD 3.0 April 26, 2008 3

ATF-C-API (3) NetBSD Library Functions Manual ATF-C-API (3)

ATF_CHECK_EQUAL(1 + 0, 1);

ATF_CHECK_EQUAL(1 + 1, 2);

ATF_CHECK_EQUAL(100 + 200, 300);
}

ATF_TP_ADD_TCS(tp)
{

ATF_TP_ADD_TC(tp, addition);

return atf_no_error();
}

SEE ALSO
atf-test-program (1), atf (7), atf-test-case (8)

NetBSD 3.0 April 26, 2008 4

ATF-SH-API (3) NetBSD Library Functions Manual ATF-SH-API (3)

NAME
atf_add_test_case , atf_check , atf_check_equal , atf_config_get , atf_config_has ,
atf_fail , atf_get , atf_get_srcdir , atf_pass , atf_require_prog , atf_set , atf_skip
— POSIX shell API to write ATF-based test programs

SYNOPSIS
atf_add_test_case (name);

atf_check (command);

atf_check_equal (expr1 , expr2);

atf_config_get (var_name);

atf_config_has (var_name);

atf_fail (reason);

atf_get (var_name);

atf_get_srcdir ();

atf_pass ();

atf_require_prog (prog_name);

atf_set (var_name , value);

atf_skip (reason);

DESCRIPTION
ATF provides a simple but powerful interface to easily write test programs in the POSIX shell language.
These are extremely helpful given that they are trivial to write due to the language simplicity and the great
deal of available external tools, so they are often ideal to test other applications at the user level.

Test programs written using this library must be preprocessed by theatf-compile (1) tool, which includes
some boilerplate code and generates the final (installable) test program.

Shell-based test programs always follow this template:

atf_test_case tc1
tc1_head() {

... first test case’s header ...
}
tc1_body() {

... first test case’s body ...
}

atf_test_case tc2
tc2_head() {

... second test case’s header ...
}
tc2_body() {

... second test case’s body ...
}
tc2_cleanup() {

... second test case’s cleanup ...
}

NetBSD 3.0 February 29, 2008 1

ATF-SH-API (3) NetBSD Library Functions Manual ATF-SH-API (3)

. . . a dditional test cases . . .

atf_init_test_cases() {
atf_add_test_case tc1
atf_add_test_case tc2
... add additional test cases ...

}

Definition of test cases
Test cases have an identifier and are composed of three different parts: the header, the body and an optional
cleanup routine, all of which are described inatf-test-case (8). To define test cases, one can use the
atf_test_case () function, which takes a single parameter specifiying the test case’s name and instructs
the library to set things up to accept it as a valid test case. It is important to note that itdoes notset the test
case up for execution when the program is run. In order to do so, a later registration is needed through the
atf_add_test_case () function detailed inProgram initialization .

Later on, one must define the three parts of the body by providing two or three functions (remember that the
cleanup routine is optional). These functions are named after the test case’s identifier, and are
<id>_head (), <id>_body () and<id>_cleanup. () None of these take parameters when executed.

Program initialization
The test program must define anatf_init_test_cases () function, which is in charge of registering the
test cases that will be executed at run time by using theatf_add_test_case () function, which takes the
name of a test case as its single parameter. This main function should not do anything else, except maybe
sourcing auxiliary source files that define extra variables and functions.

Configuration variables
The test case has read-only access to the current configuration variables through theatf_config_has ()
and atf_config_get () methods. The former takes a single parameter specifying a variable name and
returns a boolean indicating whether the variable is defined or not. The latter can take one or two parame-
ters. If it takes only one, it specifies the variable from which to get the value, and this variable must be
defined. Ifit takes two, the second one specifies a default value to be returned if the variable is not available.

Access to the source directory
It is possible to get the path to the test case’s source directory from anywhere in the test program by using the
atf_get_srcdir () function. It is interesting to note that this can be used inside
atf_init_test_cases () to silently include additional helper files from the source directory.

Requiring programs
Aside from therequire.progs meta-data variable available in the header only, one can also check for addi-
tional programs in the test case’s body by using theatf_require_prog () function, which takes the base
name or full path of a single binary. Relative paths are forbidden. If it is not found, the test case will be
automatically skipped.

Test case finalization
The test case finalizes either when the body reaches its end, at which point the test is assumed to have
passed, or at any explicit call to atf_pass (), atf_fail () or atf_skip (). Thesethree functions termi-
nate the execution of the test case immediately. The cleanup routine will be processed afterwards in a com-
pletely automated way, reg ardless of the test case’s termination reason.

atf_pass () does not take any parameters.atf_fail () andatf_skip () take a single string parameter
that describes why the test case failed or was skipped, respectively. It is very important to provide a clear
error message in both cases so that the user can quickly know why the test did not pass.

NetBSD 3.0 February 29, 2008 2

ATF-SH-API (3) NetBSD Library Functions Manual ATF-SH-API (3)

Helper functions for common checks
atf_check (cmd, expcode , expout , experr)

This function takes four parameters: the command to execute, the expected numerical exit code, the expected
behavior ofstdout and the expected behavior ofstderr . expout can be one of the following:

expout What the command writes to thestdout channel must match exactly what is found in the
expout file.

ignore The test does not check what the command writes to thestdout channel.

null The command must not write anything to thestdout channel.

stdout What the command writes to thestdout channel is written to astdout file, available for
further inspection.

Similarly, experr can be one of ‘experr ’, ‘ ignore ’, ‘ null ’, or ‘stderr ’, all of which follow the
same semantics of their corresponding counterparts for theexpout case.

It is important to note that when a failure is detected, this function will print as much information as possible
to be able to identify the cause of the failure. For example, if thestdout does not match with the expected
contents, a diff will be printed.

atf_check_equal (expr1 , expr2)

This function takes two expressions, evaluates them and, if their results differ, aborts the test case with an
appropriate failure message.

EXAMPLES
The following shows a complete test program with a single test case that validates the addition operator:

atf_test_case addition
addition_head() {

atf_set "descr" "Sample tests for the addition operator"
}
addition_body() {

atf_check_equal $((0 + 0)) 0
atf_check_equal $((0 + 1)) 1
atf_check_equal $((1 + 0)) 0

atf_check_equal $((1 + 1)) 2

atf_check_equal $((100 + 200)) 300
}

atf_init_test_cases() {
atf_add_test_case addition

}

This other example shows how to include a file with extra helper functions in the test program:

. . . d efinition of test cases . . .

atf_init_test_cases() {
. $(atf_get_srcdir)/helper_functions.sh

atf_add_test_case foo1
atf_add_test_case foo2

NetBSD 3.0 February 29, 2008 3

ATF-SH-API (3) NetBSD Library Functions Manual ATF-SH-API (3)

}

This example demonstrates the use of the very usefulatf_check () function:

Check for silent output
atf_check ’true’ 0 null null

Check for silent output and failure
atf_check ’false’ 1 null null

Check for known stdout and silent stderr
echo foo >expout
atf_check ’echo foo’ 0 expout null

Generate a file for later inspection
atf_check ’ls’ 0 stdout null
grep foo ls || atf_fail "foo file not found in listing"

SEE ALSO
atf-compile (1), atf-test-program (1), atf (7), atf-test-case (8)

NetBSD 3.0 February 29, 2008 4

AT OF (3) NetBSDLibrary Functions Manual AT OF (3)

NAME
atof — convert ASCII string to double

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

double
atof (const char ∗nptr);

DESCRIPTION
Theatof () function converts the initial portion of the string pointed to bynptr to double representation.

It is equivalent to:

strtod(nptr, (char ∗∗)NULL);

SEE ALSO
atoi (3), atol (3), strtod (3), strtol (3), strtoul (3)

STANDARDS
Theatof () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

AT OI (3) NetBSDLibrary Functions Manual AT OI (3)

NAME
atoi — convert ASCII string to integer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
atoi (const char ∗nptr);

DESCRIPTION
Theatoi () function converts the initial portion of the string pointed to bynptr to integer representation.

It is equivalent to:

(int)strtol(nptr, (char ∗∗)NULL, 10);

SEE ALSO
atof (3), atol (3), strtod (3), strtol (3), strtoul (3)

STANDARDS
Theatoi () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
atoi does no overflow checking, handles unsigned numbers poorly, and handles strings containing trailing
extra characters (like “123abc”) poorly. Careful use ofstrtol (3) andstrtoul (3) can alleviate these
problems.

NetBSD 3.0 June 4, 1993 1

AT OL (3) NetBSDLibrary Functions Manual AT OL (3)

NAME
atol — convert ASCII string to long integer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

long
atol (const char ∗nptr);

DESCRIPTION
Theatol () function converts the initial portion of the string pointed to bynptr to long integer representa-
tion.

It is equivalent to:

strtol(nptr, (char ∗∗)NULL, 10);

SEE ALSO
atof (3), atoi (3), strtod (3), strtol (3), strtoul (3)

STANDARDS
Theatol () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

AT OLL (3) NetBSD Library Functions Manual AT OLL (3)

NAME
atoll — convert ASCII string to long long integer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

long long int
atoll (const char ∗nptr);

DESCRIPTION
Theatoll () function converts the initial portion of the string pointed to bynptr to long long integer rep-
resentation.

It is equivalent to:

strtoll(nptr, (char ∗∗)NULL, 10);

SEE ALSO
atof (3), atoi (3), atol (3), strtod (3), strtol (3), strtoll (3), strtoul (3), strtoull (3)

STANDARDS
Theatoll () function conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 March 6, 2000 1

AT OMIC_ADD (3) NetBSD Library Functions Manual AT OMIC_ADD (3)

NAME
atomic_add , atomic_add_32 , atomic_add_int , atomic_add_long , atomic_add_ptr ,
atomic_add_64 , atomic_add_32_nv , atomic_add_int_nv , atomic_add_long_nv ,
atomic_add_ptr_nv , atomic_add_64_nv — atomic add operations

SYNOPSIS
#include <sys/atomic.h>

void
atomic_add_32 (volatile uint32_t ∗ptr , int32_t delta);

void
atomic_add_int (volatile unsigned int ∗ptr , int delta);

void
atomic_add_long (volatile unsigned long ∗ptr , long delta);

void
atomic_add_ptr (volatile void ∗ptr , ssize_t delta);

void
atomic_add_64 (volatile uint64_t ∗ptr , int64_t delta);

uint32_t
atomic_add_32_nv (volatile uint32_t ∗ptr , int32_t delta);

unsigned int
atomic_add_int_nv (volatile unsigned int ∗ptr , int delta);

unsigned long
atomic_add_long_nv (volatile unsigned long ∗ptr , long delta);

void ∗
atomic_add_ptr_nv (volatile void ∗ptr , ssize_t delta);

uint64_t
atomic_add_64_nv (volatile uint64_t ∗ptr , int64_t delta);

DESCRIPTION
The atomic_add family of functions add a signed valuedelta to the variable referenced byptr in an
atomic fashion.

The∗_nv () variants of these functions return the new value.

The 64-bit variants of these functions are available only on platforms that can support atomic 64-bit memory
access. Applicationscan check for the availability of 64-bit atomic memory operations by testing if the pre-
processor macro__HAVE_ATOMIC64_OPSis defined.

SEE ALSO
atomic_ops (3)

HISTORY
Theatomic_add functions first appeared inNetBSD 5.0.

NetBSD 3.0 April 11, 2007 1

AT OMIC_AND (3) NetBSD Library Functions Manual AT OMIC_AND (3)

NAME
atomic_and , atomic_and_32 , atomic_and_uint , atomic_and_ulong , atomic_and_64 ,
atomic_and_32_nv , atomic_and_uint_nv , atomic_and_ulong_nv , atomic_and_64_nv
— atomic logical ‘and’ operations

SYNOPSIS
#include <sys/atomic.h>

void
atomic_and_32 (volatile uint32_t ∗ptr , uint32_t bits);

void
atomic_and_uint (volatile unsigned int ∗ptr , unsigned int bits);

void
atomic_and_ulong (volatile unsigned long ∗ptr , unsigned long bits);

void
atomic_and_64 (volatile uint64_t ∗ptr , uint64_t bits);

uint32_t
atomic_and_32_nv (volatile uint32_t ∗ptr , uint32_t bits);

unsigned int
atomic_and_uint_nv (volatile unsigned int ∗ptr , unsigned int bits);

unsigned long
atomic_and_ulong_nv (volatile unsigned long ∗ptr , unsigned long bits);

uint64_t
atomic_and_64_nv (volatile uint64_t ∗ptr , uint64_t bits);

DESCRIPTION
The atomic_and family of functions load the value of the variable referenced byptr , perform a logical
‘and’ with the valuebits , and store the result back to the variable referenced byptr in an atomic fashion.

The∗_nv () variants of these functions return the new value.

The 64-bit variants of these functions are available only on platforms that can support atomic 64-bit memory
access. Applicationscan check for the availability of 64-bit atomic memory operations by testing if the pre-
processor macro__HAVE_ATOMIC64_OPSis defined.

SEE ALSO
atomic_ops (3)

HISTORY
Theatomic_and functions first appeared inNetBSD 5.0.

NetBSD 3.0 April 11, 2007 1

AT OMIC_CAS (3) NetBSD Library Functions Manual AT OMIC_CAS (3)

NAME
atomic_cas , atomic_cas_32 , atomic_cas_uint , atomic_cas_ulong , atomic_cas_ptr ,
atomic_cas_64 — atomic compare-and-swap operations

SYNOPSIS
#include <sys/atomic.h>

uint32_t
atomic_cas_32 (volatile uint32_t ∗ptr , uint32_t old , uint32_t new);

unsigned int
atomic_cas_uint (volatile unsigned int ∗ptr , unsigned int old ,

unsigned int new);

unsigned long
atomic_cas_ulong (volatile unsigned long ∗ptr , unsigned long old ,

unsigned long new);

void ∗
atomic_cas_ptr (volatile void ∗ptr , void ∗old , void ∗new);

uint64_t
atomic_cas_64 (volatile uint64_t ∗ptr , uint64_t old , uint64_t new);

DESCRIPTION
The atomic_cas family of functions perform a compare-and-swap operation in an atomic fashion. The
value of the variable referenced byptr is compared againstold . If the values are equal,new is stored in
the variable referenced byptr .

The old value of the variable referenced byptr is always returned regardless of whether or not the new
value was stored. Applications can test for success of the operation by comparing the return value to the
value passed asold ; if they are equal then the new value was stored.

The 64-bit variants of these functions are available only on platforms that can support atomic 64-bit memory
access. Applicationscan check for the availability of 64-bit atomic memory operations by testing if the pre-
processor macro__HAVE_ATOMIC64_OPSis defined.

SEE ALSO
atomic_ops (3)

HISTORY
Theatomic_cas functions first appeared inNetBSD 5.0.

NetBSD 3.0 April 11, 2007 1

AT OMIC_DEC (3) NetBSD Library Functions Manual AT OMIC_DEC (3)

NAME
atomic_dec , atomic_dec_32 , atomic_dec_uint , atomic_dec_ulong , atomic_dec_ptr ,
atomic_dec_64 , atomic_dec_32_nv , atomic_dec_uint_nv , atomic_dec_ulong_nv ,
atomic_dec_ptr_nv , atomic_dec_64_nv — atomic decrement operations

SYNOPSIS
#include <sys/atomic.h>

void
atomic_dec_32 (volatile uint32_t ∗ptr);

void
atomic_dec_uint (volatile unsigned int ∗ptr);

void
atomic_dec_ulong (volatile unsigned long ∗ptr);

void
atomic_dec_ptr (volatile void ∗ptr);

void
atomic_dec_64 (volatile uint64_t ∗ptr);

uint32_t
atomic_dec_32_nv (volatile uint32_t ∗ptr);

unsigned int
atomic_dec_uint_nv (volatile unsigned int ∗ptr);

unsigned long
atomic_dec_ulong_nv (volatile unsigned long ∗ptr);

void ∗
atomic_dec_ptr_nv (volatile void ∗ptr);

uint64_t
atomic_dec_64_nv (volatile uint64_t ∗ptr);

DESCRIPTION
The atomic_dec family of functions decrement(by one) the variable referenced byptr in an atomic
fashion.

The∗_nv () variants of these functions return the new value.

The 64-bit variants of these functions are available only on platforms that can support atomic 64-bit memory
access. Applicationscan check for the availability of 64-bit atomic memory operations by testing if the pre-
processor macro__HAVE_ATOMIC64_OPSis defined.

SEE ALSO
atomic_ops (3)

HISTORY
Theatomic_dec functions first appeared inNetBSD 5.0.

NetBSD 3.0 April 11, 2007 1

AT OMIC_INC (3) NetBSD Library Functions Manual AT OMIC_INC (3)

NAME
atomic_inc , atomic_inc_32 , atomic_inc_uint , atomic_inc_ulong , atomic_inc_ptr ,
atomic_inc_64 , atomic_inc_32_nv , atomic_inc_uint_nv , atomic_inc_ulong_nv ,
atomic_inc_ptr_nv , atomic_inc_64_nv — atomic increment operations

SYNOPSIS
#include <sys/atomic.h>

void
atomic_inc_32 (volatile uint32_t ∗ptr);

void
atomic_inc_uint (volatile unsigned int ∗ptr);

void
atomic_inc_ulong (volatile unsigned long ∗ptr);

void
atomic_inc_ptr (volatile void ∗ptr);

void
atomic_inc_64 (volatile uint64_t ∗ptr);

uint32_t
atomic_inc_32_nv (volatile uint32_t ∗ptr);

unsigned int
atomic_inc_uint_nv (volatile unsigned int ∗ptr);

unsigned long
atomic_inc_ulong_nv (volatile unsigned long ∗ptr);

void ∗
atomic_inc_ptr_nv (volatile void ∗ptr);

uint64_t
atomic_inc_64_nv (volatile uint64_t ∗ptr);

DESCRIPTION
The atomic_inc family of functions increment(by one) the variable referenced byptr in an atomic
fashion.

The∗_nv () variants of these functions return the new value.

The 64-bit variants of these functions are available only on platforms that can support atomic 64-bit memory
access. Applicationscan check for the availability of 64-bit atomic memory operations by testing if the pre-
processor macro__HAVE_ATOMIC64_OPSis defined.

SEE ALSO
atomic_ops (3)

HISTORY
Theatomic_inc functions first appeared inNetBSD 5.0.

NetBSD 3.0 April 11, 2007 1

AT OMIC_OPS (3) NetBSD Library Functions Manual AT OMIC_OPS (3)

NAME
atomic_ops — atomic memory operations

SYNOPSIS
#include <sys/atomic.h>

DESCRIPTION
The atomic_ops family of functions provide atomic memory operations.There are 7 classes of atomic
memory operations available :

atomic_add (3) These functions perform atomic addition.

atomic_and (3) These functions perform atomic logical “and”.

atomic_cas (3) These functions perform atomic compare-and-swap.

atomic_dec (3) These functions perform atomic decrement.

atomic_inc (3) These functions perform atomic increment.

atomic_or (3) These functions perform atomic logical “or”.

atomic_swap (3) These functions perform atomic swap.

Synchronization mechanisms

Where the architecture does not provide hardware support for atomic compare and swap (CAS), atomic-
ity is provided by a restartable sequence or by a spinlock. The chosen method is not ordinarily distin-
guishable by or visible to users of the interface. Thefollowing architectures can be assumed to provide
CAS in hardware: alpha, amd64, i386, powerpc, powerpc64, sparc64.

Scope and restrictions

If hardware CAS is available, the atomic operations are globally atomic: operations within a memory
region shared between processes are guaranteed to be performed atomically. If hardware CAS is not
available, it may only be assumed that the operations are atomic with respect to threads in the same
process. Additionally, if hardware CAS is not available, the atomic operations must not be used within a
signal handler.

Users of atomic memory operations should not make assumptions about how the memory access is per-
formed (specifically, the width of the memory access) . For this reason, applications making use of
atomic memory operations should limit their use to regular memory. The results of using atomic mem-
ory operations on anything other than regular memory are undefined.

Users of atomic memory operations should take care to modify any giv en memory location either
entirely with atomic operations or entirely with some other synchronization mechanism.Intermixing of
atomic operations with other synchronization mechanisms for the same memory location results in unde-
fined behavior.

Visibility and ordering of memory accesses

If hardware CAS is available, stores to the target memory location by an atomic operation will reach
global visibility before the operation completes. If hardware CAS is not available, the store may not
reach global visibility until some time after the atomic operation has completed.However, in all cases a
subsequent atomic operation on the same memory cell will be delayed until the result of any preceeding
operation has reached global visibility.

Atomic operations are strongly ordered with respect to each other. The global visibility of other loads
and stores before and after an atomic operation is undefined. Applications that require synchronization
of loads and stores with respect to an atomic operation must use memory barriers.See

NetBSD 3.0 Febuary 11, 2007 1

AT OMIC_OPS (3) NetBSD Library Functions Manual AT OMIC_OPS (3)

membar_ops (3).

Performance

Because atomic memory operations require expensive synchronization at the hardware level, applica-
tions should take care to minimize their use. In certain cases, it may be more appropriate to use a mutex,
especially if more than one memory location will be modified.

SEE ALSO
atomic_add (3), atomic_and (3), atomic_cas (3), atomic_dec (3), atomic_inc (3),
atomic_or (3), atomic_swap (3), membar_ops (3)

HISTORY
Theatomic_ops functions first appeared inNetBSD 5.0.

NetBSD 3.0 Febuary 11, 2007 2

AT OMIC_OR (3) NetBSD Library Functions Manual AT OMIC_OR (3)

NAME
atomic_or , atomic_or_32 , atomic_or_uint , atomic_or_ulong , atomic_or_64 ,
atomic_or_32_nv , atomic_or_uint_nv , atomic_or_ulong_nv , atomic_or_64_nv —
atomic logical ‘or’ operations

SYNOPSIS
#include <sys/atomic.h>

void
atomic_or_32 (volatile uint32_t ∗ptr , uint32_t bits);

void
atomic_or_uint (volatile unsigned int ∗ptr , unsigned int bits);

void
atomic_or_ulong (volatile unsigned long ∗ptr , unsigned long bits);

void
atomic_or_64 (volatile uint64_t ∗ptr , uint64_t bits);

uint32_t
atomic_or_32_nv (volatile uint32_t ∗ptr , uint32_t bits);

unsigned int
atomic_or_uint_nv (volatile unsigned int ∗ptr , unsigned int bits);

unsigned long
atomic_or_ulong_nv (volatile unsigned long ∗ptr , unsigned long bits);

uint64_t
atomic_or_64_nv (volatile uint64_t ∗ptr , uint64_t bits);

DESCRIPTION
The atomic_or family of functions load the value of the variable referenced byptr , perform a logical
‘or’ with the valuebits , and store the result back to the variable referenced byptr in an atomic fashion.

The∗_nv () variants of these functions return the new value.

The 64-bit variants of these functions are available only on platforms that can support atomic 64-bit memory
access. Applicationscan check for the availability of 64-bit atomic memory operations by testing if the pre-
processor macro__HAVE_ATOMIC64_OPSis defined.

SEE ALSO
atomic_ops (3)

HISTORY
Theatomic_or functions first appeared inNetBSD 5.0.

NetBSD 3.0 April 11, 2007 1

AT OMIC_SWAP (3) NetBSD Library Functions Manual AT OMIC_SWAP (3)

NAME
atomic_swap , atomic_swap_32 , atomic_swap_uint , atomic_swap_ulong ,
atomic_swap_ptr , atomic_swap_64 — atomic swap operations

SYNOPSIS
#include <sys/atomic.h>

uint32_t
atomic_swap_32 (volatile uint32_t ∗ptr , uint32_t new);

unsigned int
atomic_swap_uint (volatile unsigned int ∗ptr , unsigned int new);

unsigned long
atomic_swap_ulong (volatile unsigned long ∗ptr , unsigned long new);

void ∗
atomic_swap_ptr (volatile void ∗ptr , void ∗new);

uint64_t
atomic_swap_64 (volatile uint64_t ∗ptr , uint64_t new);

DESCRIPTION
The atomic_swap family of functions perform a swap operation in an atomic fashion. Thevalue of the
variable referenced byptr is replaced bynew and the old value returned.

The 64-bit variants of these functions are available only on platforms that can support atomic 64-bit memory
access. Applicationscan check for the availability of 64-bit atomic memory operations by testing if the pre-
processor macro__HAVE_ATOMIC64_OPSis defined.

SEE ALSO
atomic_ops (3)

HISTORY
Theatomic_swap functions first appeared inNetBSD 5.0.

NetBSD 3.0 April 11, 2007 1

BASENAME (3) NetBSD Library Functions Manual BASENAME (3)

NAME
basename — return the last component of a pathname

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <libgen.h>

char ∗
basename (char ∗path);

DESCRIPTION
Thebasename () function takes the pathname pointed to bypath and returns a pointer to the final compo-
nent of the pathname, deleting any trailing ‘/’ characters.

If path consists entirely of ‘/’ characters,basename () returns a pointer to the string “/”.

If path is a null pointer or points to an empty string,basename () returns a pointer to the string “.”.

RETURN VALUES
Thebasename () function returns a pointer to the final component ofpath .

SEE ALSO
basename (1), dirname (3)

STANDARDS
• X/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”)
• IEEE Std 1003.1-2001 (“POSIX.1”)

BUGS
If the length of the result is longer thanPATH_MAXbytes (including the terminating nul) , the result will be
truncated.

Thebasename () function returns a pointer to static storage that may be overwritten by subsequent calls to
basename (). Thisis not strictly a bug; it is explicitly allowed byIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 May 10, 2008 1

BCMP (3) NetBSD Library Functions Manual BCMP (3)

NAME
bcmp — compare byte string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <strings.h>

int
bcmp(const void ∗b1 , const void ∗b2 , size_t len);

DESCRIPTION
The bcmp() function compares byte stringb1 against byte stringb2 , returning zero if they are identical,
non-zero otherwise. Both strings are assumed to belen bytes long. Zero-length strings are always identi-
cal.

The strings may overlap.

SEE ALSO
memcmp(3), strcasecmp (3), strcmp (3), strcoll (3), strxfrm (3)

HISTORY
A bcmp() function first appeared in 4.2BSD.

NetBSD 3.0 June 4, 1993 1

BCOPY (3) NetBSD Library Functions Manual BCOPY (3)

NAME
bcopy — copy byte string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <strings.h>

void
bcopy (const void ∗src , void ∗dst , size_t len);

DESCRIPTION
The bcopy () function copieslen bytes from stringsrc to stringdst . The two strings may overlap. If
len is zero, no bytes are copied.

SEE ALSO
memccpy(3), memcpy(3), memmove(3), strcpy (3), strncpy (3)

HISTORY
A bcopy () function appeared in 4.2BSD.

NetBSD 3.0 June 4, 1993 1

BIND_TEXTDOMAIN_CODESET(3) BIND_TEXTDOMAIN_CODESET(3)

NAME
bind_textdomain_codeset − set encoding of message translations

SYNOPSIS
#include <libintl.h>

char * bind_textdomain_codeset (const char *domainname,
const char * codeset);

DESCRIPTION
The bind_textdomain_codesetfunction sets the output codeset for message catalogs for domaindomain-
name.

A message domain is a set of translatablemsgidmessages. Usually, every software package has its own
message domain.

By default, thegettext family of functions returns translated messages in the locale’s character encoding,
which can be retrieved as nl_langinfo(CODESET). The need for callingbind_textdomain_codesetarises
for programs which store strings in a locale independent way (e.g. UTF-8) and want to avoid an extra char-
acter set conversion on the returned translated messages.

domainnamemust be a non-empty string.

If codesetis not NULL, it must be a valid encoding name which can be used for theiconv_openfunction.
Thebind_textdomain_codesetfunction sets the output codeset for message catalogs belonging to domain
domainnameto codeset. The function makes copies of the argument strings as needed.

If codesetis NULL, the function returns the previously set codeset for domaindomainname. The default is
NULL, denoting the locale’s character encoding.

RETURN VALUE
If successful, thebind_textdomain_codesetfunction returns the current codeset for domaindomainname,
after possibly changing it. The resulting string is valid until the next bind_textdomain_codesetcall for the
samedomainnameand must not be modified or freed. If a memory allocation failure occurs, it setserrno to
ENOMEM and returns NULL. If no codeset has been set for domaindomainname, it returns NULL.

ERRORS
The following error can occur, among others:

ENOMEM
Not enough memory available.

BUGS
The return type ought to beconst char *, but ischar * to avoid warnings in C code predating ANSI C.

SEE ALSO
gettext(3), dgettext(3), dcgettext(3), ngettext(3), dngettext(3), dcngettext(3), textdomain(3), nl_lang-
info(3), iconv_open(3)

GNU gettext 0.14.4 May 2001 1

BINDRESVPORT (3) NetBSDLibrary Functions Manual BINDRESVPORT (3)

NAME
bindresvport , bindresvport_sa — bind a socket to a reserved privileged IP port

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <rpc/rpc.h>

int
bindresvport (int sd , struct sockaddr_in ∗sin);

int
bindresvport_sa (int sd , struct sockaddr ∗sa);

DESCRIPTION
bindresvport () andbindresvport_sa () are used to bind a socket descriptor to a reserved privileged
IP port, that is, a port number in the range 0-1023.The routine returns 0 if it is successful, otherwise -1 is
returned anderrnoset to reflect the cause of the error.

If sin is a pointer to astruct sockaddr_in then the appropriate fields in the structure should be
defined. Notethat sin->sin_family must be initialized to the address family of the socket, passed by
sd . If sin->sin_port is ‘0’ then a port (in the range 600-1023) will be chosen, and ifbind (2) is suc-
cessful, thesin->sin_port will be updated to contain the allocated port.

If sin is the NULL pointer, a port will be allocated (as above). However, there is no way for
bindresvport () to return the allocated port in this case.getsockname (2) can be used to determine the
assigned port.

Only root can bind to a privileged port; this call will fail for any other users.

Function prototype ofbindresvport () is biased toAF_INET socket. bindresvport_sa () acts
exactly the same, with more neutral function prototype. Note that both functions behave exactly the same,
and both supportAF_INET6 sockets as well asAF_INET sockets.

RETURN VALUES
If the bind is successful, a 0 value is returned.A return value of -1 indicates an error, which is further speci-
fied in the globalerrno.

ERRORS
[EPFNOSUPPORT] If second argument was supplied, and address family did not match between argu-

ments.

bindresvport () may also fail and seterrno for any of the errors specified for the callsbind (2),
getsockopt (2), orsetsockopt (2).

SEE ALSO
bind (2), getsockname (2), getsockopt (2), setsockopt (2), ip (4)

NetBSD 3.0 January 27, 2007 1

BINDTEXTDOMAIN(3) BINDTEXTDOMAIN(3)

NAME
bindtextdomain − set directory containing message catalogs

SYNOPSIS
#include <libintl.h>

char * bindtextdomain (const char * domainname, const char * dirname);

DESCRIPTION
The bindtextdomain function sets the base directory of the hierarchy containing message catalogs for a
given message domain.

A message domain is a set of translatablemsgidmessages. Usually, every software package has its own
message domain. The need for callingbindtextdomain arises because packages are not always installed
with the same prefix as the <libintl.h> header and the libc/libintl libraries.

Message catalogs will be expected at the pathnamesdirname/locale/category/domainname.mo, where
locale is a locale name andcategoryis a locale facet such asLC_MESSAGES.

domainnamemust be a non-empty string.

If dirnameis not NULL, the base directory for message catalogs belonging to domaindomainnameis set to
dirname. The function makes copies of the argument strings as needed. If the program wishes to call the
chdir function, it is important thatdirnamebe an absolute pathname; otherwise it cannot be guaranteed that
the message catalogs will be found.

If dirnameis NULL, the function returns the previously set base directory for domaindomainname.

RETURN VALUE
If successful, thebindtextdomain function returns the current base directory for domaindomainname,
after possibly changing it. The resulting string is valid until the next bindtextdomain call for the same
domainnameand must not be modified or freed. If a memory allocation failure occurs, it setserrno to
ENOMEM and returns NULL.

ERRORS
The following error can occur, among others:

ENOMEM
Not enough memory available.

BUGS
The return type ought to beconst char *, but ischar * to avoid warnings in C code predating ANSI C.

SEE ALSO
gettext(3), dgettext(3), dcgettext(3), ngettext(3), dngettext(3), dcngettext(3), textdomain(3), real-
path(3)

GNU gettext 0.14.4 May 2001 1

BITS (3) NetBSD Library Functions Manual BITS (3)

NAME
__BIT , __BITS , __SHIFTIN , __SHIFTOUT, __SHIFTOUT_MASK— macros for preparing bitmasks
and operating on bit fields

SYNOPSIS
#include <sys/cdefs.h>

uint32_t
__BIT (n);

uint32_t
__BITS (m, n);

__SHIFTIN (v , mask);

__SHIFTOUT(v , mask);

__SHIFTOUT_MASK(mask);

DESCRIPTION
These macros prepare bitmasks, extract bitfields from words, and insert bitfields into words. A“bitfield” is a
span of consecutive bits defined by a bitmask, where 1s select the bits in the bitfield.

Use __BIT and __BITS to define bitmasks:

__BIT (n)
Return a bitmask with bit m set, where the least significant bit is bit 0.

__BITS (m, n)
Return a bitmask with bitsmthroughn, inclusive, set. It does not matter whetherm > n or
m <= n. The least significant bit is bit 0.

__SHIFTIN (), __SHIFTOUT(), and__SHIFTOUT_MASK() help read and write bitfields from words:

__SHIFTIN (v , mask)
Left-shift bitsv into the bitfield defined bymask, and return them.No side-
effects.

__SHIFTOUT(v , mask)
Extract and return the bitfield selected bymask from v , right-shifting the bits
so that the rightmost selected bit is at bit 0. No side-effects.

__SHIFTOUT_MASK(mask)
Right-shift the bits inmask so that the rightmost non-zero bit is at bit 0.This
is useful for finding the greatest unsigned value that a bitfield can hold.No
side-effects. Notethat__SHIFTOUT_MASK(m, =) __SHIFTOUT(m, m).

EXAMPLES
/ ∗

∗ Register definitions taken from the RFMD RF3000 manual.
∗/

#define RF3000_GAINCTL 0x11 / ∗ TX variable gain control ∗/
#define RF3000_GAINCTL_TXVGC_MASK __BITS(7, 2)
#define RF3000_GAINCTL_SCRAMBLER __BIT(1)

/ ∗
∗ Shift the transmit power into the transmit-power field of the
∗ gain-control register and write it to the baseband processor.

NetBSD 3.0 July 9, 2006 1

BITS (3) NetBSD Library Functions Manual BITS (3)

∗/
atw_rf3000_write(sc, RF3000_GAINCTL,

__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK));

/ ∗
∗ Register definitions taken from the ADMtek ADM8211 manual.
∗
∗/

#define ATW_RXSTAT_OWN __BIT(31) / ∗ 1: NIC may fill descriptor ∗/
/ ∗ ... ∗/
#define ATW_RXSTAT_DA1 __BIT(17) / ∗ DA bit 1, admin’d address ∗/
#define ATW_RXSTAT_DA0 __BIT(16) / ∗ DA bit 0, group address ∗/
#define ATW_RXSTAT_RXDR_MASK __BITS(15,12) / ∗ RX data rate ∗/
#define ATW_RXSTAT_FL_MASK __BITS(11,0) / ∗ RX frame length, last

∗ descriptor only
∗/

/ ∗ Extract the frame length from the Rx descriptor’s
∗ status field.
∗/

len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);

HISTORY
The bits macros first appeared inatw (4), with different names and implementation.bits macros
appeared with their current names and implementation inNetBSD 4.0.

AUTHORS
Thebits macros were written by David Young〈dyoung@NetBSD.org〉.
Matt Thomas〈matt@NetBSD.org〉 suggested important improvements to the implementation, and contrib-
uted the macro namesSHIFTIN () andSHIFTOUT().

BUGS
__BIT () and__BITS () can only express 32-bit bitmasks.

NetBSD 3.0 July 9, 2006 2

BITSTRING (3) NetBSD Library Functions Manual BITSTRING (3)

NAME
bit_alloc , bit_clear , bit_decl , bit_ffc , bit_ffs , bit_nclear , bit_nset , bit_set ,
bitstr_size , bit_test — bit-string manipulation macros

SYNOPSIS
#include <bitstring.h>

bitstr_t ∗
bit_alloc (int nbits);

bit_clear (bit_str name , int bit);

bit_decl (bit_str name , int nbits);

bit_ffc (bit_str name , int nbits , int ∗value);

bit_ffs (bit_str name , int nbits , int ∗value);

bit_nclear (bit_str name , int start , int stop);

bit_nset (bit_str name , int start , int stop);

bit_set (bit_str name , int bit);

bitstr_size (int nbits);

bit_test (bit_str name , int bit);

DESCRIPTION
These macros operate on strings of bits.

The macrobit_alloc () returns a pointer of type “bitstr_t ∗” to sufficient space to storenbits bits,
or NULL if no space is available.

The macrobit_decl () allocates sufficient space to storenbits bits on the stack.

The macrobitstr_size () returns the number of elements of typebitstr_t necessary to storenbits
bits. Thisis useful for copying bit strings.

The macrosbit_clear () andbit_set () clear or set the zero-based numbered bitbit , in the bit string
name.

The bit_nset () andbit_nclear () macros set or clear the zero-based numbered bits fromstart to
stop in the bit stringname.

Thebit_test () macro evaluates to non-zero if the zero-based numbered bitbit of bit stringname is set,
and zero otherwise.

Thebit_ffs () macro stores in the location referenced byvalue the zero-based number of the first bit set
in the array ofnbits bits referenced byname. If no bits are set, the location referenced byvalue is set to
−1.

The macrobit_ffc () stores in the location referenced byvalue the zero-based number of the first bit not
set in the array ofnbits bits referenced byname. If all bits are set, the location referenced byvalue is
set to −1.

The arguments to these macros are evaluated only once and may safely have side effects.

EXAMPLES
#include <limits.h>
#include <bitstring.h>

NetBSD 3.0 July 19, 1993 1

BITSTRING (3) NetBSD Library Functions Manual BITSTRING (3)

...
#define LPR_BUSY_BIT 0
#define LPR_FORMAT_BIT 1
#define LPR_DOWNLOAD_BIT 2
...
#define LPR_AVAILABLE_BIT 9
#define LPR_MAX_BITS 10

make_lpr_available()
{

bitstr_t bit_decl(bitlist, LPR_MAX_BITS);
...
bit_nclear(bitlist, 0, LPR_MAX_BITS - 1);
...
if (!bit_test(bitlist, LPR_BUSY_BIT)) {

bit_clear(bitlist, LPR_FORMAT_BIT);
bit_clear(bitlist, LPR_DOWNLOAD_BIT);
bit_set(bitlist, LPR_AVAILABLE_BIT);

}
}

SEE ALSO
malloc (3)

HISTORY
Thebitstring functions first appeared in 4.4BSD.

NetBSD 3.0 July 19, 1993 2

BLUETOOTH (3) NetBSD Library Functions Manual BLUETOOTH (3)

NAME
bt_gethostbyname , bt_gethostbyaddr , bt_gethostent , bt_sethostent ,
bt_endhostent , bt_getprotobyname , bt_getprotobynumber , bt_getprotoent ,
bt_setprotoent , bt_endprotoent , bt_aton , bt_ntoa , bt_devaddr , bt_devname , — Blue-
tooth routines

LIBRARY
library “libbluetooth”

SYNOPSIS
#include <bluetooth.h>

struct hostent ∗
bt_gethostbyname (const char ∗name);

struct hostent ∗
bt_gethostbyaddr (const char ∗addr , int len , int type);

struct hostent ∗
bt_gethostent (void);

void
bt_sethostent (int stayopen);

void
bt_endhostent (void);

struct protoent ∗
bt_getprotobyname (const char ∗name);

struct protoent ∗
bt_getprotobynumber (int proto);

struct protoent ∗
bt_getprotoent (void);

void
bt_setprotoent (int stayopen);

void
bt_endprotoent (void);

int
bt_aton (const char ∗str , bdaddr_t ∗ba);

const char ∗
bt_ntoa (const bdaddr_t ∗ba , char ∗str);

int
bt_devaddr (const char ∗name, bdaddr_t ∗addr);

int
bt_devname (char ∗name, const bdaddr_t ∗addr);

DESCRIPTION
The bt_gethostent (), bt_gethostbyname (), andbt_gethostbyaddr () functions each return a
pointer to an object with thehostent structure describing a Bluetooth host referenced by name or by
address, respectively.

NetBSD 3.0 July 26, 2006 1

BLUETOOTH (3) NetBSD Library Functions Manual BLUETOOTH (3)

The name argument passed tobt_gethostbyname () should point to aNUL-terminated hostname.The
addr argument passed tobt_gethostbyaddr () should point to an address which islen bytes long, in
binary form (i.e., not a Bluetooth BD_ADDR in human readableASCII form). Thetype argument specifies
the address family of this address and must be set toAF_BLUETOOTH.

The structure returned contains the information obtained from a line in/etc/bluetooth/hosts file.

Thebt_sethostent () function controls whether/etc/bluetooth/hosts file should stay open after
each call tobt_gethostbyname () or bt_gethostbyaddr (). If the stayopen flag is non-zero, the
file will not be closed.

Thebt_endhostent () function closes the/etc/bluetooth/hosts file.

The bt_getprotoent (), bt_getprotobyname (), and bt_getprotobynumber () functions each
return a pointer to an object with theprotoent structure describing a Bluetooth Protocol Service Multi-
plexor referenced by name or number, respectively.

The name argument passed tobt_getprotobyname () should point to aNUL-terminated Bluetooth Pro-
tocol Service Multiplexor name.Theproto argument passed tobt_getprotobynumber () should have
numeric value of the desired Bluetooth Protocol Service Multiplexor.

The structure returned contains the information obtained from a line in/etc/bluetooth/protocols
file.

The bt_setprotoent () function controls whether/etc/bluetooth/protocols file should stay
open after each call tobt_getprotobyname () or bt_getprotobynumber (). If the stayopen flag
is non-zero, the file will not be closed.

Thebt_endprotoent () function closes the/etc/bluetooth/protocols file.

The bt_aton () routine interprets the specified character string as a Bluetooth address, placing the address
into the structure provided. Itreturns 1 if the string was successfully interpreted, or 0 if the string is invalid.

The routinebt_ntoa () takes a Bluetooth address and places anASCII string representing the address into
the buffer provided. It is up to the caller to ensure that provided buffer has enough space. If no buffer was
provided then an internal static buffer will be used.

The bt_devaddr () function interprets the specified character string as the address or device name of a
Bluetooth device on the local system, and places the device address in the structure provided, if any. It
returns 1 if the string was successfully interpreted, or 0 if the string did not match any local device. The
bt_devname () function takes a Bluetooth device address and copies the local device name associated with
that address into the buffer provided, if any. It returns 1 when the device was found, otherwise 0.

FILES
/etc/bluetooth/hosts
/etc/bluetooth/protocols

EXAMPLES
Print out the hostname associated with a specific BD_ADDR:

const char ∗bdstr = "00:01:02:03:04:05";
bdaddr_t bd;
struct hostent ∗hp;

if (!bt_aton(bdstr, &bd))
errx(1, "can’t parse BD_ADDR %s", bdstr);

if ((hp = bt_gethostbyaddr((const char ∗)&bd,

NetBSD 3.0 July 26, 2006 2

BLUETOOTH (3) NetBSD Library Functions Manual BLUETOOTH (3)

sizeof(bd), AF_BLUETOOTH)) == NULL)
errx(1, "no name associated with %s", bdstr);

printf("name associated with %s is %s\n", bdstr, hp->h_name);

DIAGNOSTICS
Error return status frombt_gethostent (), bt_gethostbyname (), and bt_gethostbyaddr () is
indicated by return of aNULLpointer. The external integerh_errnomay then be checked to see whether this
is a temporary failure or an invalid or unknown host. The routineherror (3) can be used to print an error
message describing the failure. If its argumentstring is non-NULL, it is printed, followed by a colon and
a space. Theerror message is printed with a trailing newline.

The variableh_errnocan have the following values:

HOST_NOT_FOUNDNo such host is known.

NO_RECOVERY Some unexpected server failure was encountered. This is a non-recoverable error.

The bt_getprotoent (), bt_getprotobyname (), andbt_getprotobynumber () returnNULL on
EOF or error.

SEE ALSO
gethostbyaddr (3), gethostbyname (3), getprotobyname (3), getprotobynumber (3),
herror (3), inet_aton (3), inet_ntoa (3)

HISTORY
libbluetooth first appeared inFreeBSDwas ported toNetBSD 4.0 and extended by Iain Hibbert for
Itronix, Inc.

AUTHORS
Maksim Yevmenkin〈m_evmenkin@yahoo.com〉
Iain Hibbert

CAVEATS
The bt_gethostent () function reads the next line of/etc/bluetooth/hosts , opening the file if
necessary.

Thebt_sethostent () function opens and/or rewinds the/etc/bluetooth/hosts file.

The bt_getprotoent () function reads the next line of/etc/bluetooth/protocols , opening the
file if necessary.

Thebt_setprotoent () function opens and/or rewinds the/etc/bluetooth/protocols file.

BUGS
These functions use static data storage; if the data is needed for future use, it should be copied before any
subsequent calls overwrite it.

NetBSD 3.0 July 26, 2006 3

BM (3) NetBSD Library Functions Manual BM (3)

NAME
bm_comp, bm_exec , bm_free — Boyer-Moore string search

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <bm.h>

bm_pat ∗
bm_comp(u_char ∗pattern , size_t patlen , u_char freq[256]);

u_char ∗
bm_exec (bm_pat ∗pdesc , u_char ∗text , size_t len);

void
bm_free (bm_pat ∗pdesc);

DESCRIPTION
These routines implement an efficient mechanism to find an occurrence of a byte string within another byte
string.

bm_comp() evaluates thepatlen bytes starting atpattern , and returns a pointer to a structure describing
them. Thebytes referenced bypattern may be of any value.

The search takes advantage of the frequency distribution of the bytes in the text to be searched. If specified,
freq should be an array of 256 values, with higher values indicating that the corresponding character occurs
more frequently. (A less than optimal frequency distribution can only result in less than optimal perfor-
mance, not incorrect results.) Iffreq is NULL, a system default table is used.

bm_exec () returns a pointer to the leftmost occurrence of the string given to bm_comp() within text , or
NULL if none occurs. The number of bytes intext must be specified bylen .

Space allocated for the returned description is discarded by callingbm_free () with the returned description
as an argument.

The asymptotic speed ofbm_exec () is O(len/patlen).

SEE ALSO
regexp (3), strstr (3)

Hume and Sunday, "Fast String Searching",Software Practice and Experience, Vol. 21, 11, pp. 1221-48,
November 1991.

NetBSD 3.0 April 8, 2001 1

BSEARCH (3) NetBSD Library Functions Manual BSEARCH (3)

NAME
bsearch — binary search of a sorted table

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

void ∗
bsearch (const void ∗key , const void ∗base , size_t nmemb , size_t size ,

int (∗compar) (const void ∗, c onst void ∗));

DESCRIPTION
Thebsearch () function searches an array ofnmembobjects, the initial member of which is pointed to by
base , for a member that matches the object pointed to bykey . The size of each member of the array is
specified bysize .

The contents of the array should be in ascending sorted order according to the comparison function refer-
enced bycompar . Thecompar routine is expected to have two arguments which point to thekey object
and to an array member, in that order, and should return an integer less than, equal to, or greater than zero if
thekey object is found, respectively, to be less than, to match, or be greater than the array member.

RETURN VALUES
Thebsearch () function returns a pointer to a matching member of the array, or a null pointer if no match is
found. If two members compare as equal, which member is matched is unspecified.

SEE ALSO
db(3), lsearch (3), qsort (3), tsearch (3)

STANDARDS
Thebsearch () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 April 19, 1994 1

BSTRING (3) NetBSD Library Functions Manual BSTRING (3)

NAME
memccpy, memchr, memcmp, memcpy, memmem, memmove, memset — byte string operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

void ∗
memchr(const void ∗b , int c , size_t len);

int
memcmp(const void ∗b1 , const void ∗b2 , size_t len);

void ∗
memccpy(void ∗dst , const void ∗src , int c , size_t len);

void ∗
memcpy(void ∗dst , const void ∗src , size_t len);

void ∗
memmem(const void ∗block , size_t blen , const void ∗pat , size_t plen);

void ∗
memmove(void ∗dst , const void ∗src , size_t len);

void ∗
memset(void ∗b , int c , size_t len);

DESCRIPTION
These functions operate on variable length strings of bytes.They do not check for terminating nul bytes as
the routines listed instring (3) do.

See the specific manual pages for more information.

SEE ALSO
memccpy(3), memchr(3), memcmp(3), memcpy(3), memmem(3), memmove(3), memset(3)

STANDARDS
The functions memchr(), memcmp(), memcpy(), memmove(), and memset() conform to ANSI
X3.159-1989 (“ANSI C89”).

HISTORY
The functionmemccpy() appeared in 4.3BSD.

NetBSD 3.0 February 9, 2007 1

BSWAP (3) NetBSD Library Functions Manual BSWAP (3)

NAME
bswap16 , bswap32 , bswap64 — byte-order swapping functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <machine/bswap.h>

uint16_t
bswap16 (uint16_t);

uint32_t
bswap32 (uint32_t);

uint64_t
bswap64 (uint64_t);

DESCRIPTION
The bswap16 (), bswap32 (), andbswap64 () functions return the value of their argument with the bytes
inverted. They can be used to convert 16, 32 or 64 bits integers from little to big endian, or vice-versa.

SEE ALSO
byteorder (3)

NetBSD 3.0 March 17, 1998 1

BTOWC (3) NetBSDLibrary Functions Manual BTOWC (3)

NAME
btowc — convert a single byte character to a wide character

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

wint_t
btowc (int c);

DESCRIPTION
Thebtowc () function converts a single byte characterc in the initial shift state of the current locale to a cor-
responding wide character.

The behaviour ofbtowc () is affected by theLC_CTYPEcategory of the current locale.

RETURN VALUES
Thebtowc () function returns:

WEOF If c is EOFor if (unsigned char)c does not correspond to a valid single byte character
representation.

(otherwise) A wide character corresponding toc .

ERRORS
No errors are defined.

SEE ALSO
mbrtowc (3), setlocale (3), wctob (3)

STANDARDS
Thebtowc () function conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”).

NetBSD 3.0 March 3, 2003 1

BTREE (3) NetBSD Library Functions Manual BTREE (3)

NAME
btree — btree database access method

SYNOPSIS
#include <sys/types.h>
#include <db.h>

DESCRIPTION
The routinedbopen () is the library interface to database files. One of the supported file formats is btree
files. Thegeneral description of the database access methods is indbopen (3), this manual page describes
only the btree specific information.

The btree data structure is a sorted, balanced tree structure storing associated key/data pairs.

The btree access method specific data structure provided todbopen () is defined in the〈db.h 〉 include file
as follows:

typedef struct {
u_long flags;
u_int cachesize;
int maxkeypage;
int minkeypage;
u_int psize;
int (∗compare)(const DBT ∗key1, const DBT ∗key2);
size_t (∗prefix)(const DBT ∗key1, const DBT ∗key2);
int lorder;

} B TREEINFO;

The elements of this structure are as follows:

flags The flag value is specified by or’ing any of the following values:

R_DUPPermit duplicate keys in the tree, i.e. permit insertion if the key to be
inserted already exists in the tree. The default behavior, as described in
dbopen (3), is to overwrite a matching key when inserting a new key or to
fail if the R_NOOVERWRITEflag is specified.TheR_DUPflag is overrid-
den by theR_NOOVERWRITEflag, and if theR_NOOVERWRITEflag is
specified, attempts to insert duplicate keys into the tree will fail.

If the database contains duplicate keys, the order of retrieval of key/data
pairs is undefined if theget routine is used, however, seqroutine calls with
the R_CURSORflag set will always return the logical “first” of any group
of duplicate keys.

cachesize A suggested maximum size (in bytes) of the memory cache. This value isonly advisory,
and the access method will allocate more memory rather than fail. Sinceev ery search
examines the root page of the tree, caching the most recently used pages substantially
improves access time.In addition, physical writes are delayed as long as possible, so a
moderate cache can reduce the number of I/O operations significantly. Obviously, using a
cache increases (but only increases) the likelihood of corruption or lost data if the system
crashes while a tree is being modified.If cachesize is 0 (no size is specified) a default
cache is used.

maxkeypage The maximum number of keys which will be stored on any single page. Not currently
implemented.

NetBSD 3.0 April 17, 2003 1

BTREE (3) NetBSD Library Functions Manual BTREE (3)

minkeypage The minimum number of keys which will be stored on any single page.This value is used
to determine which keys will be stored on overflow pages, i.e., if a key or data item is
longer than the pagesize divided by theminkeypage value, it will be stored on overflow
pages instead of in the page itself.If minkeypage is 0 (no minimum number of keys is
specified) a value of 2 is used.

psize Page size is the size (in bytes) of the pages used for nodes in the tree.The minimum page
size is 512 bytes and the maximum page size is 64K.If psize is 0 (no page size is speci-
fied) a page size is chosen based on the underlying file system I/O block size.

compare Compare is the key comparison function. It must return an integer less than, equal to, or
greater than zero if the first key argument is considered to be respectively less than, equal
to, or greater than the second key argument. Thesame comparison function must be used
on a given tree every time it is opened.If compare is NULL (no comparison function is
specified), the keys are compared lexically, with shorter keys considered less than longer
keys.

prefix Prefix is the prefix comparison function.If specified, this routine must return the number
of bytes of the second key argument which are necessary to determine that it is greater than
the first key argument. Ifthe keys are equal, the key length should be returned. Note, the
usefulness of this routine is very data dependent, but, in some data sets can produce signifi-
cantly reduced tree sizes and search times.If prefix is NULL (no prefix function is spec-
ified), andno comparison function is specified, a default lexical comparison routine is used.
If prefix is NULLand a comparison routine is specified, no prefix comparison is done.

lorder The byte order for integers in the stored database metadata.The number should represent
the order as an integer; for example, big endian order would be the number 4,321.If
lorder is 0 (no order is specified) the current host order is used.

If the file already exists (and theO_TRUNCflag is not specified), the values specified for the parameters
flags, lorder and psize are ignored in favor of the values used when the tree was created.

Forward sequential scans of a tree are from the least key to the greatest.

Space freed up by deleting key/data pairs from the tree is never reclaimed, although it is normally made
available for reuse. This means that the btree storage structure is grow-only. The only solutions are to avoid
excessive deletions, or to create a fresh tree periodically from a scan of an existing one.

Searches, insertions, and deletions in a btree will all complete in O lg base N where base is the average fill
factor. Often, inserting ordered data into btrees results in a low fill f actor. This implementation has been
modified to make ordered insertion the best case, resulting in a much better than normal page fill factor.

ERRORS
Thebtree access method routines may fail and seterrno for any of the errors specified for the library rou-
tinedbopen (3).

SEE ALSO
dbopen (3), hash (3), mpool (3), recno (3)

Douglas Comer, "The Ubiquitous B-tree",ACM Comput. Surv., 11, 2, 121-138, June 1979.

Bayer and Unterauer, "Prefix B-trees",ACM Transactions on Database Systems, 1, Vol. 2, 11-26, March
1977.

D.E. Knuth,The Art of Computer Programming Vol. 3: Sorting and Searching, 471-480, 1968.

NetBSD 3.0 April 17, 2003 2

BTREE (3) NetBSD Library Functions Manual BTREE (3)

BUGS
Only big and little endian byte order is supported.

NetBSD 3.0 April 17, 2003 3

BYTEORDER (3) NetBSD Library Functions Manual BYTEORDER (3)

NAME
htonl , htons , ntohl , ntohs — convert values between host and network byte order

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <arpa/inet.h>

uint32_t
htonl (uint32_t host32);

uint16_t
htons (uint16_t host16);

uint32_t
ntohl (uint32_t net32);

uint16_t
ntohs (uint16_t net16);

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte order.

On machines which have a byte order which is the same as the network order, these routines are defined as
macros that expand to the value of their argument.

These routines are most often used in conjunction with Internet addresses and ports as returned by
gethostbyname (3) andgetservent (3).

SEE ALSO
gethostbyname (3), getservent (3)

STANDARDS
The htonl (), htons (), ntohl (), andntohs () functions conform toIEEE Std 1003.1-2001 (“POSIX.1”).
Their use of the fixed-width integer typesuint16_t anduint32_t first appeared inX/OpenNetworking
Services Issue 5 (“XNS5”).

HISTORY
Thebyteorder functions appeared in 4.2BSD.

BUGS
The ‘l’ and ‘s’ suffixes in the names are not meaningful in machines where long integers are not 32 bits.

NetBSD 3.0 June 10, 2004 1

BZERO (3) NetBSDLibrary Functions Manual BZERO (3)

NAME
bzero — write zeroes to a byte string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <strings.h>

void
bzero (void ∗b , size_t len);

DESCRIPTION
Thebzero () function writeslen zero bytes to the stringb. If len is zero,bzero () does nothing.

SEE ALSO
memset(3), swab(3)

HISTORY
A bzero () function appeared in 4.3BSD.

NetBSD 3.0 June 4, 1993 1

CABS(3P) POSIXProgrammer’s Manual CABS(3P)

NAME
cabs, cabsf − return a complex absolute value

SYNOPSIS
#include <complex.h>

double cabs(double complexz);
float cabsf(float complexz);

DESCRIPTION
These functions compute the complex absolute value (also called norm, modulus, or magnitude) ofz.

RETURN VALUE
These functions return the complex absolute value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CACOS(3P) POSIXProgrammer’s Manual CACOS(3P)

NAME
cacos, cacosf − complex arc cosine functions

SYNOPSIS
#include <complex.h>

double complex cacos(double complexz);
float complex cacosf(float complexz);

DESCRIPTION
These functions compute the complex arc cosine ofz, with branch cuts outside the interval [-1, +1] along
the real axis.

RETURN VALUE
These functions return the complex arc cosine value, in the range of a strip mathematically unbounded
along the imaginary axis and in the interval [0, pi] along the real axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccos(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CACOSH(3P) POSIXProgrammer’s Manual CACOSH(3P)

NAME
cacosh, cacoshf − complex arc hyperbolic cosine functions

SYNOPSIS
#include <complex.h>

double complex cacosh(double complexz);
float complex cacoshf(float complexz);

DESCRIPTION
These functions compute the complex arc hyperbolic cosine ofz, with a branch cut at values less than 1
along the real axis.

RETURN VALUE
These functions return the complex arc hyperbolic cosine value, in the range of a half-strip of non-negative
values along the real axis and in the interval [-ipi, +ipi] along the imaginary axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccosh(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CARG(3P) POSIXProgrammer’s Manual CARG(3P)

NAME
carg, cargf − complex argument functions

SYNOPSIS
#include <complex.h>

double carg(double complexz);
float cargf(float complexz);

DESCRIPTION
These functions compute the argument (also called phase angle) ofz, with a branch cut along the negative
real axis.

RETURN VALUE
These functions return the value of the argument in the interval [-pi, +pi].

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cimag(), conj(), cproj(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CASIN(3P) POSIXProgrammer’s Manual CASIN(3P)

NAME
casin, casinf − complex arc sine functions

SYNOPSIS
#include <complex.h>

double complex casin(double complexz);
float complex casinf(float complexz);

DESCRIPTION
These functions compute the complex arc sine ofz, with branch cuts outside the interval [-1, +1] along the
real axis.

RETURN VALUE
These functions return the complex arc sine value, in the range of a strip mathematically unbounded along
the imaginary axis and in the interval [-pi/2, +pi/2] along the real axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
csin(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CASINH(3P) POSIXProgrammer’s Manual CASINH(3P)

NAME
casinh, casinhf − complex arc hyperbolic sine functions

SYNOPSIS
#include <complex.h>

double complex casinh(double complexz);
float complex casinhf(float complexz);

DESCRIPTION
These functions compute the complex arc hyperbolic sine ofz, with branch cuts outside the interval [-i, +i]
along the imaginary axis.

RETURN VALUE
These functions return the complex arc hyperbolic sine value, in the range of a strip mathematically
unbounded along the real axis and in the interval [-ipi/2, +ipi/2] along the imaginary axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
csinh(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CATAN(3P) POSIXProgrammer’s Manual CATAN(3P)

NAME
catan, catanf − complex arc tangent functions

SYNOPSIS
#include <complex.h>

double complex catan(double complexz);
float complex catanf(float complexz);

DESCRIPTION
These functions compute the complex arc tangent ofz, with branch cuts outside the interval [-i, +i] along
the imaginary axis.

RETURN VALUE
These functions return the complex arc tangent value, in the range of a strip mathematically unbounded
along the imaginary axis and in the interval [-pi/2, +pi/2] along the real axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctan(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CATANH(3P) POSIXProgrammer’s Manual CATANH(3P)

NAME
catanh, catanhf − complex arc hyperbolic tangent functions

SYNOPSIS
#include <complex.h>

double complex catanh(double complexz);
float complex catanhf(float complexz);

DESCRIPTION
These functions compute the complex arc hyperbolic tangent ofz, with branch cuts outside the interval
[-1, +1] along the real axis.

RETURN VALUE
These functions return the complex arc hyperbolic tangent value, in the range of a strip mathematically
unbounded along the real axis and in the interval [-ipi/2, +ipi/2] along the imaginary axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctanh(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CATCLOSE (3) NetBSD Library Functions Manual CATCLOSE (3)

NAME
catclose — close message catalog

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <nl_types.h>

int
catclose (nl_catd catd);

DESCRIPTION
Thecatclose () function closes the message catalog specified by the argumentcatd .

SEE ALSO
gencat (1), catgets (3), catopen (3), nls (7)

STANDARDS
Thecatclose () function conforms toX/OpenPortability Guide Issue 3 (“XPG3”).

NetBSD 3.0 May 29, 1994 1

CATGETS (3) NetBSD Library Functions Manual CATGETS (3)

NAME
catgets — retrieve string from message catalog

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <nl_types.h>

char ∗
catgets (nl_catd catd , int set_id , int msg_id , const char ∗s);

DESCRIPTION
The catgets () function attempts to retrieve messagemsg_id of setset_id from the message catalog
referenced by the descriptorcatd . The arguments points to a default message which is returned if the
function is unable to retrieve the specified message.

RETURN VALUES
If the specified message was retrieved successfully,catgets () returns a pointer to an internal buffer con-
taining the message string; otherwise it returnss .

ERRORS
Thecatgets () function will fail if:

[EBADF] Thecatd argument is not a valid message catalog descriptor open for reading.

[EINTR] The operation was interrupted by a signal.

[ENOMSG] The message identified byset_id andmsg_id is not in the message catalog.

SEE ALSO
gencat (1), catclose (3), catopen (3), nls (7)

STANDARDS
Thecatgets () function conforms toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

Major Unix vendors are split over the adoption of the two most important message catalog specifications:
catgets orgettext (3). Theprimary concern with the catgets interface is that every translatable string has
to define a number (or a symbolic constant) which must correspond to the message in the catalog.Duplicate
message IDs are not allowed. Constructingmessage catalogs is difficult.

NetBSD 3.0 February 12, 2003 1

CATOPEN (3) NetBSD Library Functions Manual CATOPEN (3)

NAME
catopen — open message catalog

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <nl_types.h>

nl_catd
catopen (const char ∗name, int oflag);

DESCRIPTION
The catopen () function opens the message catalog specified byname and returns a message catalog
descriptor. If name contains a ‘/’ thenname specifies the full pathname for the message catalog, otherwise
the value of the environment variableNLSPATHis used withname substituted for %N.

Theoflag argument is reserved for future use and should be set to zero.

RETURN VALUES
Upon successful completion,catopen () returns a message catalog descriptor. Otherwise, (nl_catd) -1 is
returned anderrno is set to indicate the error.

ERRORS
[ENOMEM] Insufficient memory is available.

SEE ALSO
gencat (1), catclose (3), catgets (3), nls (7)

STANDARDS
Thecatopen () function conforms toX/OpenPortability Guide Issue 3 (“XPG3”).

NetBSD 3.0 May 29, 1994 1

CCOS(3P) POSIXProgrammer’s Manual CCOS(3P)

NAME
ccos, ccosf − complex cosine functions

SYNOPSIS
#include <complex.h>

double complex ccos(double complexz);
float complex ccosf(float complexz);

DESCRIPTION
These functions compute the complex cosine ofz.

RETURN VALUE
These functions return the complex cosine value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cacos(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CCOSH(3P) POSIXProgrammer’s Manual CCOSH(3P)

NAME
ccosh, ccoshf − complex hyperbolic cosine functions

SYNOPSIS
#include <complex.h>

double complex ccosh(double complexz);
float complex ccoshf(float complexz);

DESCRIPTION
These functions compute the complex hyperbolic cosine ofz.

RETURN VALUE
These functions return the complex hyperbolic cosine value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cacosh(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CEIL (3) NetBSD Library Functions Manual CEIL (3)

NAME
ceil , ceilf — round to smallest integral value greater than or equal to x

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
ceil (double x);

float
ceilf (float x);

DESCRIPTION
Theceil () andceilf () functions return the smallest integral value greater than or equal tox .

SEE ALSO
abs (3), fabs (3), floor (3), ieee (3), math (3), rint (3)

STANDARDS
Theceil () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 March 10, 1994 1

CEXP(3P) POSIXProgrammer’s Manual CEXP(3P)

NAME
cexp, cexpf − complex exponential functions

SYNOPSIS
#include <complex.h>

double complex cexp(double complexz);
float complex cexpf(float complexz);

DESCRIPTION
These functions compute the complex exponent ofz, defined ase**z.

RETURN VALUE
These functions return the complex exponential value ofz.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clog(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CGETCAP (3) NetBSD Library Functions Manual CGETCAP (3)

NAME
cgetent , cgetset , cgetmatch , cgetcap , cgetnum , cgetstr , cgetustr , cgetfirst ,
cgetnext , cgetclose , cexpandtc — capability database access routines

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
cgetent (char ∗∗buf , const char ∗ const ∗db_array , const char ∗name);

int
cgetset (const char ∗ent);

int
cgetmatch (const char ∗buf , const char ∗name);

char ∗
cgetcap (char ∗buf , const char ∗cap , int type);

int
cgetnum (char ∗buf , const char ∗cap , long ∗num);

int
cgetstr (char ∗buf , const char ∗cap , char ∗∗str);

int
cgetustr (char ∗buf , const char ∗cap , char ∗∗str);

int
cgetfirst (char ∗∗buf , const char ∗ const ∗db_array);

int
cgetnext (char ∗∗buf , const char ∗ const ∗db_array);

int
cgetclose (void);

void
csetexpandtc (int expandtc);

DESCRIPTION
cgetent () extracts the capabilityname from the database specified by theNULL terminated file array
db_array and returns a pointer to amalloc (3)’d copy of it in buf . cgetent () will first look for files
ending in.db (seecap_mkdb (1)) before accessing theASCII file.

buf must be retained through all subsequent calls tocgetmatch (), cgetcap (), cgetnum (), cgetstr (),
andcgetustr (), but may then befree (3)’d.

On success 0 is returned, 1 if the returned record contains an unresolved "tc" expansion, −1 if the requested
record couldn’t be found, −2 if a system error was encountered (couldn’t open/read a file, etc.) also setting
errno, and −3 if a potential reference loop is detected (see "tc=name" comments below).

cgetset () enables the addition of a character buffer containing a single capability record entry to the capa-
bility database.Conceptually, the entry is added as the first “file” in the database, and is therefore searched
first on the call tocgetent (). Theentry is passed inent . If ent is NULL, the current entry is removed
from the database.

NetBSD 3.0 February 1, 2008 1

CGETCAP (3) NetBSD Library Functions Manual CGETCAP (3)

cgetset () must precede the database traversal. Itmust be called before thecgetent () call. If a sequen-
tial access is being performed (see below), it must be called before the first sequential access call
(cgetfirst () or cgetnext ()) , or be directly preceded by acgetclose () call. On success 0 is
returned and −1 on failure.

cgetmatch () will return 0 ifname is one of the names of the capability recordbuf , −1 if not.

cgetcap () searches the capability recordbuf for the capabilitycap with typetype . A type is specified
using any single character. If a colon (‘:’) is used, an untyped capability will be searched for (see below for
explanation of types).A pointer to the value ofcap in buf is returned on success,NULL if the requested
capability couldn’t be found. Theend of the capability value is signaled by a ‘:’ orASCII NUL(see below for
capability database syntax).

cgetnum () retrieves the value of the numeric capabilitycap from the capability record pointed to bybuf .
The numeric value is returned in thelong pointed to bynum. 0 is returned on success, −1 if the requested
numeric capability couldn’t be found.

cgetstr () retrieves the value of the string capabilitycap from the capability record pointed to bybuf . A
pointer to a decoded,NULterminated,malloc (3)’d copy of the string is returned in thechar ∗ pointed to
by str . The number of characters in the decoded string not including the trailingNUL is returned on suc-
cess, −1 if the requested string capability couldn’t be found, −2 if a system error was encountered (storage
allocation failure).

cgetustr () is identical tocgetstr () except that it does not expand special characters, but rather returns
each character of the capability string literally.

cgetfirst (), cgetnext (), comprise a function group that provides for sequential access of theNULL
pointer terminated array of file names,db_array . cgetfirst () returns the first record in the database
and resets the access to the first record.cgetnext () returns the next record in the database with respect to
the record returned by the previous cgetfirst () or cgetnext () call. If there is no such previous call,
the first record in the database is returned. Each record is returned in amalloc (3)’d copy pointed to by
buf . "tc" expansion is done (see "tc=name" comments below).

Upon completion of the database 0 is returned,1 is returned upon successful return of record with possibly
more remaining (we haven’t reached the end of the database yet), 2 is returned if the record contains an unre-
solved "tc" expansion, −1 is returned if an system error occurred, and −2 is returned if a potential reference
loop is detected (see "tc=name" comments below). Uponcompletion of database (0 return) the database is
closed.

cgetclose () closes the sequential access and frees any memory and file descriptors being used. Note that
it does not erase the buffer pushed by a call tocgetset ().

CAPABILITY D AT ABASE SYNTAX
Capability databases are normallyASCII and may be edited with standard text editors.Blank lines and lines
beginning with a ‘#’ are comments and are ignored.Lines ending with a ‘ \’ indicate that the next line is a
continuation of the current line; the ‘ \’ and following newline are ignored. Long lines are usually continued
onto several physical lines by ending each line except the last with a ‘ \’.

Capability databases consist of a series of records, one per logical line.Each record contains a variable num-
ber of ‘:’-separated fields (capabilities). Empty fields consisting entirely of white space characters (spaces
and tabs) are ignored.

The first capability of each record specifies its names, separated by ‘|’ characters. These names are used to
reference records in the database.By convention, the last name is usually a comment and is not intended as a
lookup tag.For example, thevt100record from thetermcap database begins:

NetBSD 3.0 February 1, 2008 2

CGETCAP (3) NetBSD Library Functions Manual CGETCAP (3)

d0 | vt100 | vt100-am | vt100am | dec vt100:

giving four names that can be used to access the record.

The remaining non-empty capabilities describe a set of (name, value) bindings, consisting of a name option-
ally followed by a typed value:

name typeless[boolean] capabilitynameis present [true]
nameTvalue capability(name, T) has valuevalue
name@ nocapabilitynameexists
nameT@ capability (name, T) does not exist

Names consist of one or more characters. Names may contain any character except ‘:’, but it’s usually best
to restrict them to the printable characters and avoid use of graphics like ‘#’, ‘=’, ‘%’, ‘@’, etc.

Types are single characters used to separate capability names from their associated typed values. Types may
be any character except a ‘:’.Typically, graphics like ‘#’, ‘=’, ‘%’, etc. are used.Values may be any number
of characters and may contain any character except ‘:’.

CAPABILITY D AT ABASE SEMANTICS
Capability records describe a set of (name, value) bindings. Names may have multiple values bound to them.
Different values for a name are distinguished by theirtypes . cgetcap () will return a pointer to a value of
a name given the capability name and the type of the value.

The types ‘#’ and ‘=’ are conventionally used to denote numeric and string typed values, but no restriction on
those types is enforced. The functionscgetnum () andcgetstr () can be used to implement the traditional
syntax and semantics of ‘#’ and ‘=’.Typeless capabilities are typically used to denote boolean objects with
presence or absence indicating truth and false values respectively. This interpretation is conveniently repre-
sented by:

(getcap(buf, name, ’:’) != NULL)

A special capability, "tc=name", is used to indicate that the record specified byname should be substituted
for the "tc" capability. "tc" capabilities may interpolate records which also contain "tc" capabilities and more
than one "tc" capability may be used in a record.A " tc" expansion scope (i.e. where the argument is
searched for) contains the file in which the "tc" is declared and all subsequent files in the file array.

csetexpandtc () can be used to control if
" tc expansion is performed or not.

When a database is searched for a capability record, the first matching record in the search is returned.When
a record is scanned for a capability, the first matching capability is returned; the capability ":nameT@:" will
hide any following definition of a value of typeT for name; and the capability ":name@:" will prevent any
following values ofname from being seen.

These features combined with "tc" capabilities can be used to generate variations of other databases and
records by either adding new capabilities, overriding definitions with new definitions, or hiding following
definitions via ‘@’ capabilities.

EXAMPLES
example | anexample of binding multiple values to names:\

:foo%bar:fooˆblah:foo@:\
:abc%xyz:abcˆfrap:abc$@:\
:tc=more:

The capabilityfoo has two values bound to it(bar of type ‘%’ andblah of type ‘ˆ’) and any other value
bindings are hidden. The capabilityabcalso has two values bound but only a value of type ‘$’ is prevented
from being defined in the capability record more.

NetBSD 3.0 February 1, 2008 3

CGETCAP (3) NetBSD Library Functions Manual CGETCAP (3)

file1:
new | new_record | amodification of "old":\

:fript=bar:who-cares@:tc=old:blah:tc=extensions:
file2:

old | old_record | anold database record:\
:fript=foo:who-cares:glork#200:

The records are extracted by callingcgetent () with file1 precedingfile2 . In the capability record
new in file1 , "fript=bar" overrides the definition of "fript=foo" interpolated from the capability recordold
in file2 , "who-cares@" prevents the definition of any who-cares definitions inold from being seen,
"glork#200" is inherited fromold, and blah and anything defined by the record extensions is added to those
definitions inold. Note that the position of the "fript=bar" and "who-cares@" definitions before "tc=old" is
important here. If they were after, the definitions inold would take precedence.

CGETNUM AND CGETSTR SYNTAX AND SEMANTICS
Tw o types are predefined bycgetnum () andcgetstr ():

name#number numeric capabilitynamehas valuenumber
name=string string capabilitynamehas valuestring
name#@ thenumeric capabilitynamedoes not exist
name=@ thestring capabilitynamedoes not exist

Numeric capability values may be given in one of three numeric bases. If the number starts with either ‘0x ’
or ‘0X’ it is i nterpreted as a hexadecimal number (both upper and lower case a-f may be used to denote the
extended hexadecimal digits). Otherwise, if the number starts with a ‘0’ it is i nterpreted as an octal number.
Otherwise the number is interpreted as a decimal number.

String capability values may contain any character. Non-printableASCII codes, new lines, and colons may
be conveniently represented by the use of escape sequences:

ˆX (’X’ & 0 37) control-X
\ b, \B (ASCII 010) backspace
\ t, \ T (ASCII 011) tab
\ n, \N (ASCII 012) line feed (newline)
\ f, \ F (ASCII 014) form feed
\ r, \R (ASCII 015) carriage return
\ e, \E (ASCII 027) escape
\ c, \C (:) colon
\ \ (\) back slash
\ ˆ (ˆ) caret
\ nnn (ASCII octalnnn)

A ‘ \’ followed by up to three octal digits directly specifies the numeric code for a character. The use of
ASCII NULs, while easily encoded, causes all sorts of problems and must be used with care sinceNULs are
typically used to denote the end of strings; many applications use ‘\ 200’ to represent aNUL.

DIAGNOSTICS
cgetent (), cgetset (), cgetmatch (), cgetnum (), cgetstr (), cgetustr (), cgetfirst (), and
cgetnext () return a value greater than or equal to 0 on success and a value less than 0 on failure.
cgetcap () returns a character pointer on success and aNULLon failure.

cgetclose (), cgetent (), cgetfirst (), andcgetnext () may fail and seterrno for any of the errors
specified for the library functions:fopen (3), fclose (3), open (2), andclose (2).

NetBSD 3.0 February 1, 2008 4

CGETCAP (3) NetBSD Library Functions Manual CGETCAP (3)

cgetent (), cgetset (), cgetstr (), andcgetustr () may fail and seterrnoas follows:

[ENOMEM] No memory to allocate.

SEE ALSO
cap_mkdb (1), malloc (3)

BUGS
Colons (‘:’) can’t be used in names, types, or values.

There are no checks for "tc=name" loops incgetent ().

The buffer added to the database by a call tocgetset () is not unique to the database but is rather
prepended to any database used.

NetBSD 3.0 February 1, 2008 5

CIMAG(3P) POSIXProgrammer’s Manual CIMAG(3P)

NAME
cimag, cimagf − complex imaginary functions

SYNOPSIS
#include <complex.h>

double cimag(double complexz);
float cimagf(float complexz);

DESCRIPTION
These functions compute the imaginary part ofz.

RETURN VALUE
These functions return the imaginary part value (as a real).

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
For a variablez of complex type:

z == creal(z) + cimag(z)*I

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), conj(), cproj(), creal(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CLOCK (3) NetBSD Library Functions Manual CLOCK (3)

NAME
clock — determine processor time used

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>

clock_t
clock (void);

DESCRIPTION
The clock () function determines the amount of processor time used since the invocation of the calling
process, measured inCLOCKS_PER_SECs.

RETURN VALUES
Theclock () function returns the amount of time used unless an error occurs, in which case the return value
is −1.

SEE ALSO
getrusage (2)

STANDARDS
Theclock () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

CLOG(3P) POSIXProgrammer’s Manual CLOG(3P)

NAME
clog, clogf − complex natural logarithm functions

SYNOPSIS
#include <complex.h>

double complex clog(double complexz);
float complex clogf(float complexz);

DESCRIPTION
These functions compute the complex natural (basee) logarithm ofz, with a branch cut along the negative
real axis.

RETURN VALUE
These functions return the complex natural logarithm value, in the range of a strip mathematically
unbounded along the real axis and in the interval [-ipi, +ipi] along the imaginary axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cexp(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CLOSEFROM (3) NetBSD Library Functions Manual CLOSEFROM (3)

NAME
closefrom — delete many descriptors

SYNOPSIS
#include <unistd.h>

int
closefrom (int fd);

DESCRIPTION
The closefrom () call deletes all descriptors numberedfd and higher from the per-process file descriptor
table. Itis effectively the same as callingclose (2) on each descriptor.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
closefrom () will fail if:

[EBADF] fd is invalid.

[EINTR] An interrupt was received.

SEE ALSO
close (2)

NetBSD 3.0 June 1, 2004 1

COM_ERR (3) NetBSD Library Functions Manual COM_ERR (3)

NAME
com_err , com_err_va , error_message , error_table_name , init_error_table ,
set_com_err_hook , reset_com_err_hook — common error display library

LIBRARY
Common Error Library (libcom_err, -lcom_err)

SYNOPSIS
#include <stdio.h>
#include <stdarg.h>
#include <krb5/com_err.h>
#include "XXX_err.h"

typedef void (∗errf)(const char∗, long, const char∗, ...);

void
com_err (const char ∗whoami , long code , const char ∗format , . . .);

void
com_err_va (const char ∗whoami , long code , const char ∗format , . . .);

const char ∗
error_message (long code);

const char ∗
error_table_name (int num);

int
init_error_table (const char ∗∗msgs , long base , int count);

errf
set_com_err_hook (errf func);

errf
reset_com_err_hook ();

void
add_to_error_table (struct et_list ∗new_table);

DESCRIPTION
Thecom_err library provides a common error-reporting mechanism for defining and accessing error codes
and descriptions for application software packages. Error descriptions are defined in a table and error codes
are used to index the table. The error table, the descriptions and the error codes are generated using
compile_et (1).

The error table is registered with thecom_err library by calling its initialisation function defined in its
header file.The initialisation function is generally defined asinitialize_<name>_error_table (),
wherenameis the name of the error table.

Any variable which is to contain an error code should be declared<name>_error_numberwherenameis the
name of the error table.

FUNCTIONS
The following functions are available to the application developer:

com_err (whoami , code , format , . . .)
Displays an error message on standard error composed of thewhoami string, which should spec-
ify the program name, followed by an error message generated fromcode , and a string produced

NetBSD 3.0 November 21, 2001 1

COM_ERR (3) NetBSD Library Functions Manual COM_ERR (3)

using theprintf (3) format string and any following arguments. Ifformat is NULL, the
formatted message will not be printed. The argumentformat may not be omitted.

com_err_va (whoami , code , format , va_list args)
This routine provides an interface, equivalent tocom_err (), which may be used by higher-level
variadic functions (functions which accept variable numbers of arguments).

error_message (code)
Returns the character string error message associate withcode . If code is associated
with an unknown error table, or if code is associated with a known error table
but is not in the table, a string of the form ‘Unknown code XXXX NN’ is returned, where XXXX
is the error table name produced by reversing the compaction performed on the error table num-
ber implied by that error code, and NN is the offset from that base value.

Although this routine is available for use when needed, its use should be left to circumstances
which rendercom_err () unusable.

error_table_name (num)
Convert a machine-independent error table numbernum into an error table name.

init_error_table (msgs , base , count)
Initialise the internal error table with the array of character string error messages inmsgs of
lengthcount . The error codes are assigned incrementally frombase . This function is useful
for using the error-reporting mechanism with custom error tables that have not been generated
with compile_et (1). Althoughthis routine is available for use when needed, its use should be
restricted.

set_com_err_hook (func)
Provides a hook into thecom_err library to allow the routinefunc to be dynamically substi-
tuted forcom_err (). After set_com_err_hook ()
has been called, calls tocom_err () will turn into calls to the new hook routine. This function
is intended to be used in daemons to use a routine which callssyslog (3), or in a window sys-
tem application to pop up a dialogue box.

reset_com_err_hook ()
Turns off the hook set inset_com_err_hook ().

add_to_error_table (new_table)
Add the error table, its messages strings and error codes innew_table to the internal error ta-
ble.

EXAMPLES
The following is an example using the table defined incompile_et (1):

#include <stdio.h>
#include <stdarg.h>
#include <syslog.h>

#include "test_err.h"

void
hook(const char ∗whoami, long code,

const char ∗format, va_list args)
{

char buffer[BUFSIZ];
static int initialized = 0;

NetBSD 3.0 November 21, 2001 2

COM_ERR (3) NetBSD Library Functions Manual COM_ERR (3)

if (!initialized) {
openlog(whoami, LOG_NOWAIT, LOG_DAEMON);
initialized = 1;

}
vsprintf(buffer, format, args);
syslog(LOG_ERR, "%s %s", error_message(code), buffer);

}

int
main(int argc, char ∗argv[])
{

char ∗whoami = argv[0];

initialize_test_error_table();
com_err(whoami, TEST_INVAL, "before hook");
set_com_err_hook(hook);
com_err(whoami, TEST_IO, "after hook");
return (0);

}

SEE ALSO
compile_et (1)

NetBSD 3.0 November 21, 2001 3

CONFSTR (3) NetBSD Library Functions Manual CONFSTR (3)

NAME
confstr — get string-valued configurable variables

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

size_t
confstr (int name , char ∗buf , size_t len);

DESCRIPTION
This interface is obsoleted bysysctl (3).

Theconfstr () function provides a method for applications to get configuration defined string values.

Thename argument specifies the system variable to be queried. Symbolic constants for each name value are
found in the include file<unistd.h> . The len argument specifies the size of the buffer referenced by the
argumentbuf . If len is non-zero,buf is a non-null pointer, and name has a value, up tolen − 1 bytes of
the value are copied into the bufferbuf . The copied value is always null terminated.

The available values are as follows:

_CS_PATH
Return a value for thePATHenvironment variable that finds all the standard utilities.

RETURN VALUES
If the call toconfstr is not successful, 0 is returned anderrno is set appropriately. Otherwise, if the vari-
able does not have a configuration defined value, 0 is returned anderrno is not modified. Otherwise, the
buffer size needed to hold the entire configuration-defined value is returned. If this size is greater than the
argumentlen , the string inbuf was truncated.

ERRORS
The confstr function may fail and seterror for any of the errors specified for the library functions
malloc (3) andsysctl (3).

In addition, the following errors may be reported:

[EINVAL] The value of thename argument is invalid.

SEE ALSO
sysctl (3)

STANDARDS
Theconfstr function conforms toIEEE Std 1003.2-1992 (“POSIX.2”).

HISTORY
Theconfstr function first appeared in 4.4BSD.

BUGS
The standards require us to return 0 both on errors, and when the value is not set.

NetBSD 3.0 December 2, 2006 1

CONJ(3P) POSIXProgrammer’s Manual CONJ(3P)

NAME
conj, conjf − complex conjugate functions

SYNOPSIS
#include <complex.h>

double complex conj(double complexz);
float complex conjf(float complexz);

DESCRIPTION
These functions compute the complex conjugate ofz, by rev ersing the sign of its imaginary part.

RETURN VALUE
These functions return the complex conjugate value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), cproj(), creal(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

COS (3) NetBSD Library Functions Manual COS (3)

NAME
cos , cosf — cosine function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
cos (double x);

float
cosf (float x);

DESCRIPTION
The cos () andcosf () functions compute the cosine ofx (measured in radians).A large magnitude argu-
ment may yield a result with little or no significance.For a discussion of error due to roundoff, seemath (3).

RETURN VALUES
Thecos () function returns the cosine value.

SEE ALSO
acos (3), asin (3), atan (3), atan2 (3), cosh (3), math (3), sin (3), sinh (3), tan (3), tanh (3)

STANDARDS
Thecos () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 May 2, 1991 1

COSH (3) NetBSD Library Functions Manual COSH (3)

NAME
cosh , coshf — hyperbolic cosine function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
cosh (double x);

float
coshf (float x);

DESCRIPTION
Thecosh () andcoshf () functions compute the hyperbolic cosine ofx .

RETURN VALUES
If the magnitude of x is too large, cosh (x) and coshf (x) return Inf and sets the global variableerrno to
ERANGE.

SEE ALSO
acos (3), asin (3), atan (3), atan2 (3), cos (3), math (3), sin (3), sinh (3), tan (3), tanh (3)

STANDARDS
Thecosh () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 May 2, 1991 1

CPOW(3P) POSIXProgrammer’s Manual CPOW(3P)

NAME
cpow, cpowf − complex power functions

SYNOPSIS
#include <complex.h>

double complex cpow(double complexx, double complexy);
float complex cpowf(float complexx, float complexy);

DESCRIPTION
These functions compute the complex power functionx**y , with a branch cut for the first parameter along
the negative real axis.

RETURN VALUE
These functions return the complex power function value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cabs(), csqrt(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CREAL(3P) POSIXProgrammer’s Manual CREAL(3P)

NAME
creal, crealf − complex real functions

SYNOPSIS
#include <complex.h>

double creal(double complexz);
float crealf(float complexz);

DESCRIPTION
These functions compute the real part ofz.

RETURN VALUE
These functions return the real part value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
For a variablez of typecomplex:

z == creal(z) + cimag(z)*I

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), conj(), cproj(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CREAT (3) NetBSDLibrary Functions Manual CREAT (3)

NAME
creat — create a new file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <fcntl.h>

int
creat (const char ∗path , mode_t mode);

DESCRIPTION
This interface is made obsolete by:open (2).

creat () is the same as:

open(path, O_CREAT | O_TRUNC | O_WRONLY, mode);

SEE ALSO
open (2)

STANDARDS
Thecreat () function call conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
Thecreat () function call appeared in Version 6AT&T UNIX .

NetBSD 3.0 June 2, 1993 1

CRYPT (3) NetBSD Library Functions Manual CRYPT (3)

NAME
crypt , setkey , encrypt , des_setkey , des_cipher — password encryption

LIBRARY
Crypt Library (libcrypt, −lcrypt)

SYNOPSIS
#include <unistd.h>

char
∗crypt (const char ∗key , const char ∗setting);

int
encrypt (char ∗block , int flag);

int
des_setkey (const char ∗key);

int
des_cipher (const char ∗in , char ∗out , long salt , int count);

#include <stdlib.h>

int
setkey (const char ∗key);

DESCRIPTION
The crypt () function performs password encryption. The encryption scheme used bycrypt () is depen-
dent upon the contents of theNUL-terminated stringsetting . If it begins with a string character(‘$’)
and a number then a different algorithm is used depending on the number. At the moment a ‘$1 ’ chooses
MD5 hashing and a ‘$2 ’ chooses Blowfish hashing; see below for more information.If setting begins
with the ‘‘_’ ’ character, DES encryption with a user specified number of perturbations is selected.If
setting begins with any other character, DES encryption with a fixed number of perturbations is selected.

DES encryption
The DES encryption scheme is derived from theNBS Data Encryption Standard.Additional code has been
added to deter key search attempts and to use stronger hashing algorithms.In the DES case, the second argu-
ment tocrypt () is a character array, 9 bytes in length, consisting of an underscore (‘‘_’ ’) followed by 4
bytes of iteration count and 4 bytes of salt. Both the iterationcount and thesalt are encoded with 6 bits
per character, least significant bits first.The values 0 to 63 are encoded by the characters ‘‘./0-9A-Za-z’’,
respectively.

Thesalt is used to induce disorder in to theDESalgorithm in one of 16777216 possible ways (specifically,
if bit i of thesalt is set then bitsi andi+24 are swapped in theDES ‘‘ E’’ box output). Thekey is divided
into groups of 8 characters (a short final group is null-padded) and the low-order 7 bits of each character (56
bits per group) are used to form the DES key as follows: the first group of 56 bits becomes the initial DES
key. For each additional group, the XOR of the group bits and the encryption of the DES key with itself
becomes the next DES key. Then the final DES key is used to performcount cumulative encryptions of a
64-bit constant. The value returned is aNUL-terminated string, 20 bytes in length, consisting of the
setting followed by the encoded 64-bit encryption.

For compatibility with historical versions ofcrypt (3), the setting may consist of 2 bytes of salt,
encoded as above, in which case an iterationcount of 25 is used, fewer perturbations ofDES are available,
at most 8 characters ofkey are used, and the returned value is aNUL-terminated string 13 bytes in length.

NetBSD 3.0 September 4, 2005 1

CRYPT (3) NetBSD Library Functions Manual CRYPT (3)

The functionsencrypt (), setkey (), des_setkey () and des_cipher () allow limited access to the
DESalgorithm itself. Thekey argument tosetkey () is a 64 character array of binary values (numeric 0 or
1). A 56-bit key is derived from this array by dividing the array into groups of 8 and ignoring the last bit in
each group.

The encrypt () argumentblock is also a 64 character array of binary values. Ifthe value offlag is 0,
the argumentblock is encrypted, otherwise it is decrypted. The encryption or decryption is returned in the
original arrayblock after using the key specified bysetkey () to process it.

The des_setkey () and des_cipher () functions are faster but less portable thansetkey () and
encrypt (). Theargument todes_setkey () is a character array of length 8.The leastsignificant bit in
each character is ignored and the next 7 bits of each character are concatenated to yield a 56-bit key. The
functiondes_cipher () encrypts (or decrypts ifcount is negative) the 64-bits stored in the 8 characters at
in usingabs (3) of count iterations ofDES and stores the 64-bit result in the 8 characters atout . The
salt specifies perturbations toDESas described above.

MD5 encryption
For the MD5 encryption scheme, the version number (in this case ‘‘1’’), salt and the hashed password are
separated by the ‘‘$’’ character. A valid password looks like this:

‘‘ $1$2qGr5PPQ$eT08WBFev3RPLNChixg0H.’’ .

The entire password string is passed assetting for interpretation.

Blowfish crypt
The Blowfish version of crypt has 128 bits ofsalt in order to make building dictionaries of common pass-
words space consuming. The initial state of theBlowfish cipher is expanded using thesalt and the
password repeating the process a variable number of rounds, which is encoded in the password string. The
maximum password length is 72. The final Blowfish password entry is created by encrypting the string

“OrpheanBeholderScryDoubt”

with theBlowfish state 64 times.

The version number, the logarithm of the number of rounds and the concatenation of salt and hashed pass-
word are separated by the ‘$’ character. An encoded ‘8’ would specify 256 rounds.A valid Blowfish pass-
word looks like this:

“$2a$12$eIAq8PR8sIUnJ1HaohxX2O9x9Qlm2vK97LJ5dsXdmB.eXF42qjchC”.

The whole Blowfish password string is passed assetting for interpretation.

RETURN VALUES
The functioncrypt () returns a pointer to the encrypted value on success and NULL on failure. Thefunc-
tions setkey (), encrypt (), des_setkey (), anddes_cipher () return 0 on success and 1 on failure.
Historically, the functionssetkey () andencrypt () did not return any value. They hav ebeen provided
return values primarily to distinguish implementations where hardware support is provided but not available
or where the DES encryption is not available due to the usual political silliness.

SEE ALSO
login (1), passwd (1), pwhash (1), getpass (3), md5(3), passwd (5), passwd.conf (5)

Wayne Patterson,Mathematical Cryptology for Computer Scientists and Mathematicians, ISBN
0-8476-7438-X, 1987.

R. Morris and Ken Thompson, "Password Security: A Case History",Communications of the ACM, vol. 22,
pp. 594-597, Nov. 1979.

NetBSD 3.0 September 4, 2005 2

CRYPT (3) NetBSD Library Functions Manual CRYPT (3)

M.E. Hellman, "DES will be Totally Insecure within Ten Years",IEEE Spectrum, vol. 16, pp. 32-39, July
1979.

HISTORY
A rotor-basedcrypt () function appeared in Version 6AT&T UNIX . The current stylecrypt () first
appeared in Version 7AT&T UNIX .

BUGS
Dropping theleastsignificant bit in each character of the argument todes_setkey () is ridiculous.

Thecrypt () function leaves its result in an internal static object and returns a pointer to that object.Subse-
quent calls tocrypt () will modify the same object.

NetBSD 3.0 September 4, 2005 3

crypto(3) OpenSSL crypto(3)

NAME
crypto − OpenSSL cryptographic library

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
DESCRIPTION

The OpenSSLcrypto library implements a wide range of cryptographic algorithms used in various Internet
standards. The services provided by this library are used by the OpenSSL implementations ofSSL, TLS and
S/MIME, and they hav ealso been used to implementSSH, OpenPGP, and other cryptographic standards.

OVERVIEW
libcrypto consists of a number of sub-libraries that implement the individual algorithms.

The functionality includes symmetric encryption, public key cryptography and key agreement, certificate
handling, cryptographic hash functions and a cryptographic pseudo-random number generator.

SYMMETRIC CIPHERS
openssl_blowfish(3), cast(3), openssl_des(3), idea(3), rc2 (3), openssl_rc4(3), rc5 (3)

PUBLIC KEY CRYPTOGRAPHY AND KEY AGREEMENT
openssl_dsa(3), openssl_dh(3), openssl_rsa(3)

CERTIFICATES
openssl_x509(3), x509v3(3)

AUTHENTICATION CODES, HASH FUNCTIONS
openssl_hmac(3), md2(3), md4(3), openssl_md5(3), openssl_mdc2(3), openssl_ripemd(3),
openssl_sha(3)

AUXILIAR Y FUNCTIONS
openssl_err(3), openssl_threads(3), openssl_rand(3), OPENSSL_VERSION_NUMBER(3)

INPUT/OUTPUT, DATA ENCODING
asn1(3), openssl_bio(3), openssl_evp(3), openssl_pem(3), openssl_pkcs7(3), openssl_pkcs12(3)

INTERNAL FUNCTIONS
openssl_bn(3), openssl_buffer(3), openssl_lhash(3), objects(3), stack(3), txt_db(3)

NOTES
Some of the newer functions follow a naming convention using the numbers0 and1. For example the func-
tions:

int X509_CRL_add0_revoked(X509_CRL *crl, X509_REVOKED *rev);
int X509_add1_trust_object(X509 *x, ASN1_OBJECT *obj);

The0 version uses the supplied structure pointer directly in the parent and it will be freed up when the par-
ent is freed. In the above examplecrl would be freed butre v would not.

The1 function uses a copy of the supplied structure pointer (or in some cases increases its link count) in the
parent and so both (x andobj above) should be freed up.

SEE ALSO
openssl(1), ssl(3)

0.9.9-dev 2005-10-05 1

CSIN(3P) POSIXProgrammer’s Manual CSIN(3P)

NAME
csin, csinf − complex sine functions

SYNOPSIS
#include <complex.h>

double complex csin(double complexz);
float complex csinf(float complexz);

DESCRIPTION
These functions compute the complex sine ofz.

RETURN VALUE
These functions return the complex sine value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
casin(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CSINH(3P) POSIXProgrammer’s Manual CSINH(3P)

NAME
csinh, csinhf − complex hyperbolic sine functions

SYNOPSIS
#include <complex.h>

double complex csinh(double complexz);
float complex csinhf(float complexz);

DESCRIPTION
These functions compute the complex hyperbolic sine ofz.

RETURN VALUE
These functions return the complex hyperbolic sine value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
casinh(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CSQRT(3P) POSIXProgrammer’s Manual CSQRT(3P)

NAME
csqrt, csqrtf − complex square root functions

SYNOPSIS
#include <complex.h>

double complex csqrt(double complexz);
float complex csqrtf(float complexz);

DESCRIPTION
These functions compute the complex square root ofz, with a branch cut along the negative real axis.

RETURN VALUE
These functions return the complex square root value, in the range of the right half-plane (including the
imaginary axis).

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cabs(), cpow(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CTAN(3P) POSIXProgrammer’s Manual CTAN(3P)

NAME
ctan, ctanf − complex tangent functions

SYNOPSIS
#include <complex.h>

double complex ctan(double complexz);
float complex ctanf(float complexz);

DESCRIPTION
These functions compute the complex tangent ofz.

RETURN VALUE
These functions return the complex tangent value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catan(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CTANH(3P) POSIXProgrammer’s Manual CTANH(3P)

NAME
ctanh, ctanhf − complex hyperbolic tangent functions

SYNOPSIS
#include <complex.h>

double complex ctanh(double complexz);
float complex ctanhf(float complexz);

DESCRIPTION
These functions compute the complex hyperbolic tangent ofz.

RETURN VALUE
These functions return the complex hyperbolic tangent value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catanh(), the Base Definitions volume of IEEE Std 1003.1-2001,<complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document.
The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2003 1

CTERMID (3) NetBSD Library Functions Manual CTERMID (3)

NAME
ctermid — generate terminal pathname

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

char ∗
ctermid (char ∗buf);

DESCRIPTION
Thectermid () function generates a string, that, when used as a pathname, refers to the current controlling
terminal of the calling process.

If buf is theNULLpointer, a pointer to a static area is returned.Otherwise, the pathname is copied into the
memory referenced bybuf . The argumentbuf is assumed to point to an array at leastL_ctermid bytes
long (as defined in the include file〈stdio.h 〉).

The current implementation simply returns/dev/tty .

RETURN VALUES
Upon successful completion, a non-NULLpointer is returned. Otherwise, aNULLpointer is returned and the
global variableerrno is set to indicate the error.

ERRORS
The current implementation detects no error conditions.

SEE ALSO
ttyname (3)

STANDARDS
Thectermid () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

BUGS
By default thectermid () function writes all information to an internal static object. Subsequent calls to
ctermid () will modify the same object.

NetBSD 3.0 June 4, 1993 1

CTIME (3) NetBSD Library Functions Manual CTIME (3)

NAME
asctime , asctime_r , ctime , ctime_r , difftime , gmtime , gmtime_r , localtime ,
localtime_r , mktime — convert date and time to ASCII

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>
extern char ∗tzname[2];

char ∗
ctime (const time_t ∗clock);

char ∗
ctime_r (const time_t ∗clock , char ∗buf);

double
difftime (time_t time1 , time_t time0);

char ∗
asctime (const struct tm ∗tm);

char ∗
asctime_r (const struct tm restrict tm , char ∗ restrict buf);

struct tm ∗
localtime (const time_t ∗clock);

struct tm ∗
localtime_r (const time_t ∗ restrict clock , struct tm ∗ restrict result);

struct tm ∗
gmtime (const time_t ∗clock);

struct tm ∗
gmtime_r (const time_t ∗ restrict clock , struct tm ∗ restrict result);

time_t
mktime (struct tm ∗tm);

DESCRIPTION
ctime () converts a long integer, pointed to byclock , representing the time in seconds since 00:00:00
UTC, 1970-01-01, and returns a pointer to a 26-character string of the form

Thu Nov 24 18:22:48 1986\n\0
All the fields have constant width.

Thectime_r () function provides the same functionality asctime () differing in that the caller must supply
a buffer areabuf with a size of at least 26 bytes, in which the result is stored.

localtime () andgmtime () return pointers totm structures, described below. localtime () corrects for
the time zone and any time zone adjustments (such as Daylight Saving Time in the U.S.A.). After filling in
the tm structure,localtime () sets thetm_isdst ’th element oftzname to a pointer to an ASCII string
that’s the time zone abbreviation to be used withlocaltime ()’s return value.

gmtime () converts to Coordinated Universal Time.

NetBSD 3.0 March 31, 2001 1

CTIME (3) NetBSD Library Functions Manual CTIME (3)

The gmtime_r () and localtime_r () functions provide the same functionality asgmtime () and
localtime () differing in that the caller must supply a buffer arearesult in which the result is stored;
also,localtime_r () does not imply initialization of the local time conversion information; the application
may need to do so by callingtzset (3).

asctime () converts a time value contained in atm structure to a 26-character string, as shown in the above
example, and returns a pointer to the string.

Theasctime_r () function provides the same functionality asasctime () differing in that the caller must
supply a buffer areabuf with a size of at least 26 bytes, in which the result is stored.

mktime () converts the broken-down time, expressed as local time, in the structure pointed to bytm into a
calendar time value with the same encoding as that of the values returned by thetime (3) function. The
original values of thetm_wday andtm_yday components of the structure are ignored, and the original val-
ues of the other components are not restricted to their normal ranges. (A positive or zero value for
tm_isdst causesmktime () to presume initially that summer time (for example, Daylight Saving Time in
the U.S.A.) respectively, is or is not in effect for the specified time.A neg ative value fortm_isdst causes
themktime () function to attempt to divine whether summer time is in effect for the specified time.) On suc-
cessful completion, the values of thetm_wday andtm_yday components of the structure are set appropri-
ately, and the other components are set to represent the specified calendar time, but with their values forced
to their normal ranges; the final value oftm_mday is not set untiltm_mon andtm_year are determined.
mktime () returns the specified calendar time; if the calendar time cannot be represented, it returns -1.

difftime () returns the difference between two calendar times, (time1 - time0), expressed in seconds.

The structure (of type)struct tmincludes the following fields:

int tm_sec; / ∗ seconds after the minute [0,61] ∗/
int tm_min; / ∗ minutes after the hour [0,59] ∗/
int tm_hour; / ∗ hours since midnight [0,23] ∗/
int tm_mday; / ∗ day of the month [1,31] ∗/
int tm_mon; / ∗ months since January [0,11] ∗/
int tm_year; / ∗ years since 1900 ∗/
int tm_wday; / ∗ day of week [0,6] (Sunday = 0) ∗/
int tm_yday; / ∗ day of year [0,365] (Jan 1 = 0) ∗/
int tm_isdst; / ∗ daylight savings flag ∗/
long tm_gmtoff; / ∗ offset from UTC in seconds ∗/
char ∗tm_zone; / ∗ abbreviation of timezone name ∗/

The tm_zone and tm_gmtoff fields exist, and are filled in, only if arrangements to do so were made
when the library containing these functions was created. There is no guarantee that these fields will continue
to exist in this form in future releases of this code.

tm_isdst is non-zero if summer time is in effect.

tm_gmtoff is the offset (in seconds) of the time represented from UTC, with positive values indicating east
of the Prime Meridian.

FILES
/etc/localtime local time zone file
/usr/share/zoneinfo time zone information directory
/usr/share/zoneinfo/posixrules used with POSIX-style TZ’s
/usr/share/zoneinfo/GMT for UTC leap seconds

If /usr/share/zoneinfo/GMT is absent, UTC leap seconds are loaded from
/usr/share/zoneinfo/posixrules .

NetBSD 3.0 March 31, 2001 2

CTIME (3) NetBSD Library Functions Manual CTIME (3)

SEE ALSO
getenv (3), strftime (3), time (3), tzset (3), tzfile (5)

STANDARDS
The ctime (), difftime (), asctime (), localtime (), gmtime () andmktime () functions conform to
ANSI X3.159-1989 (“ANSI C89”) The ctime_r (), asctime_r (), localtime_r () and gmtime_r ()
functions conform toIEEE Std 1003.1c-1995 (“POSIX.1”).

NOTES
The return values point to static data; the data is overwritten by each call.The tm_zone field of a returned
struct tmpoints to a static array of characters, which will also be overwritten at the next call (and by calls to
tzset (3)).

Av oid using out-of-range values withmktime () when setting up lunch with promptness sticklers in Riyadh.

NetBSD 3.0 March 31, 2001 3

CTYPE (3) NetBSD Library Functions Manual CTYPE (3)

NAME
isalpha , isupper , islower , isdigit , isxdigit , isalnum , isspace , ispunct , isprint ,
isgraph , iscntrl , isblank , toupper , tolower , — character classification and mapping functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>
int c

isalpha (c);

isupper (c);

islower (c);

isdigit (c);

isxdigit (c);

isalnum (c);

isspace (c);

ispunct (c);

isprint (c);

isgraph (c);

iscntrl (c);

isblank (c);

toupper (c);

tolower (c);

DESCRIPTION
The above functions perform character tests and conversions on the integerc .

See the specific manual pages for information about the test or conversion performed by each function.

EXAMPLES
To print an upper-case version of a string on stdout, use the following code:

const char ∗s = . ..;
while (∗s != ’ \0’) {

putchar(toupper((int)(unsigned char) ∗s));
s++;

}

SEE ALSO
isalnum (3), isalpha (3), isblank (3), iscntrl (3), isdigit (3), isgraph (3), islower (3),
isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), tolower (3), toupper (3),
ascii (7)

NetBSD 3.0 April 17, 2008 1

CTYPE (3) NetBSD Library Functions Manual CTYPE (3)

STANDARDS
These functions, with the exception ofisblank (), conform toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The first argument of these functions is of typeint , but only a very restricted subset of values are actually
valid. The argument must either be the value of the macroEOF(which has a negative value), or must be a
non-negative value within the range representable asunsigned char . Passing invalid values leads to
undefined behavior.

Values of typeint that were returned bygetc (3), fgetc (3), and similar functions or macros are already
in the correct range, and may be safely passed to thesectype functions without any casts.

Values of typechar or signed char must first be cast tounsigned char , to ensure that the values
are within the correct range. The result should then be cast toint to avoid warnings from some compilers.
Casting a negative-valuedchar or signed char directly to int will produce a negative-valued int ,
which will be outside the range of allowed values (unless it happens to be equal toEOF, but even that would
not give the desired result).

NetBSD 3.0 April 17, 2008 2

CURSES (3) NetBSD Library Functions Manual CURSES (3)

NAME
curses — screen functions with “optimal” cursor motion

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
cc [flags] files −lcurses [libraries]

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization.They keep an
image of the current screen, and the user sets up an image of a new one. Thenthe refresh () tells the rou-
tines to make the current screen look like the new one. In order to initialize the routines, the routine
initscr () must be called before any of the other routines that deal with windows and screens are used.
The routineendwin () should be called before exiting. Theroutinestart_color () must be called before
any of the other routines that deal with color are used.

SEE ALSO
ioctl (2), getenv (3), tty (4), termcap (5)

Ken Arnold,Screen Updating and Cursor Movement Optimization: A Library Package.

AUTHORS
Ken Arnold

FUNCTIONS
Function Name Manual Page Name
addch curses_addch (3)
addchnstr curses_addchstr (3)
addchstr curses_addchstr (3)
addnstr curses_addstr (3)
addstr curses_addstr (3)
assume_default_colors curses_default_colors (3)
attr_get curses_attributes (3)
attr_off curses_attributes (3)
attr_on curses_attributes (3)
attr_set curses_attributes (3)
attroff curses_attributes (3)
attron curses_attributes (3)
attrset curses_attributes (3)
beep curses_tty (3)
bkgd curses_background (3)
bkgdset curses_background (3)
border curses_border (3)
box curses_border (3)
can_change_color curses_color (3)
cbreak curses_tty (3)
clear curses_clear (3)
clearok curses_clear (3)
clrtobot curses_clear (3)

NetBSD 3.0 March 14, 2008 1

CURSES (3) NetBSD Library Functions Manual CURSES (3)

clrtoeol curses_clear (3)
color_content curses_color (3)
color_set curses_attributes (3)
copywin curses_window (3)
curs_set curses_tty (3)
def_prog_mode curses_tty (3)
def_shell_mode curses_tty (3)
define_key curses_input (3)
delay_output curses_tty (3)
delch curses_delch (3)
deleteln curses_deleteln (3)
delscreen curses_screen (3)
delwin curses_window (3)
derwin curses_window (3)
doupdate curses_refresh (3)
dupwin curses_window (3)
echo curses_tty (3)
endwin curses_screen (3)
erase curses_clear (3)
erasechar curses_tty (3)
flash curses_tty (3)
flushinp curses_tty (3)
flushok curses_refresh (3)
fullname curses_termcap (3)
getattrs curses_attributes (3)
getbegx curses_cursor (3)
getbegy curses_cursor (3)
getbkgd curses_background (3)
getcap curses_termcap (3)
getch curses_input (3)
getcurx curses_cursor (3)
getcury curses_cursor (3)
getmaxx curses_cursor (3)
getmaxy curses_cursor (3)
getnstr curses_input (3)
getparx curses_cursor (3)
getpary curses_cursor (3)
getparyx curses_cursor (3)
getstr curses_input (3)
gettmode curses_tty (3)
getwin curses_fileo (3)
getyx curses_cursor (3)
has_colors curses_color (3)
has_ic curses_tty (3)
has_il curses_tty (3)
hline curses_line (3)
idcok curses_tty (3)
idlok curses_tty (3)
inch curses_inch (3)

NetBSD 3.0 March 14, 2008 2

CURSES (3) NetBSD Library Functions Manual CURSES (3)

inchnstr curses_inch (3)
inchstr curses_inch (3)
init_color curses_color (3)
init_pair curses_color (3)
initscr curses_screen (3)
innstr curses_inch (3)
insch curses_insertch (3)
insdelln curses_insdelln (3)
insertln curses_insertln (3)
instr curses_inch (3)
intrflush curses_tty (3)
is_linetouched curses_touch (3)
is_wintouched curses_touch (3)
isendwin curses_screen (3)
keyname curses_keyname (3)
keyok curses_input (3)
keypad curses_input (3)
killchar curses_tty (3)
leaveok curses_tty (3)
longname curses_termcap (3)
meta curses_tty (3)
move curses_cursor (3)
mvaddch curses_addch (3)
mvaddchnstr curses_addchstr (3)
mvaddchstr curses_addchstr (3)
mvaddnstr curses_addstr (3)
mvaddstr curses_addstr (3)
mvcur curses_cursor (3)
mvderwin curses_window (3)
mvgetnstr curses_input (3)
mvgetstr curses_input (3)
mvhline curses_line (3)
mvinchstr curses_inch (3)
mvinchnstr curses_inch (3)
mvprintw curses_print (3)
mvscanw curses_scanw (3)
mvvline curses_line (3)
mvwaddch curses_addch (3)
mvwaddchnstr curses_addchstr (3)
mvwaddchstr curses_addchstr (3)
mvwaddnstr curses_addstr (3)
mvwaddstr curses_addstr (3)
mvwgetnstr curses_input (3)
mvwgetstr curses_input (3)
mvwhline curses_line (3)
mvwinchstr curses_inch (3)
mvwinchnstr curses_inch (3)
mvwprintw curses_print (3)
mvwscanw curses_scanw (3)

NetBSD 3.0 March 14, 2008 3

CURSES (3) NetBSD Library Functions Manual CURSES (3)

mvwvline curses_line (3)
napms curses_tty (3)
newpad curses_pad (3)
newterm curses_screen (3)
newwin curses_window (3)
nl curses_tty (3)
nocbreak curses_tty (3)
nodelay curses_input (3)
noecho curses_tty (3)
nonl curses_tty (3)
noqiflush curses_tty (3)
noraw curses_tty (3)
notimeout curses_input (3)
overlay curses_window (3)
overwrite curses_window (3)
pair_content curses_color (3)
pnoutrefresh curses_pad (3)
prefresh curses_pad (3)
printw curses_print (3)
putwin curses_fileo (3)
qiflush curses_tty (3)
raw curses_tty (3)
redrawwin curses_touch (3)
refresh curses_refresh (3)
reset_prog_mode curses_tty (3)
reset_shell_mode curses_tty (3)
resetty curses_tty (3)
resizeterm curses_screen (3)
savetty curses_tty (3)
scanw curses_scanw (3)
scrl curses_scroll (3)
scroll curses_scroll (3)
scrollok curses_scroll (3)
set_term curses_screen (3)
setscrreg curses_scroll (3)
setterm curses_screen (3)
standend curses_standout (3)
standout curses_standout (3)
start_color curses_color (3)
subpad curses_pad (3)
subwin curses_window (3)
termattrs curses_attributes (3)
timeout curses_input (3)
touchline curses_touch (3)
touchoverlap curses_touch (3)
touchwin curses_touch (3)
unctrl curses_print (3)
underend curses_underscore (3)
underscore curses_underscore (3)

NetBSD 3.0 March 14, 2008 4

CURSES (3) NetBSD Library Functions Manual CURSES (3)

ungetch curses_input (3)
untouchwin curses_touch (3)
use_default_colors curses_default_colors (3)
vline curses_line (3)
waddch curses_addch (3)
waddchnstr curses_addchstr (3)
waddchstr curses_addchstr (3)
waddnstr curses_addstr (3)
waddstr curses_addstr (3)
wattr_get curses_attributes (3)
wattr_off curses_attributes (3)
wattr_on curses_attributes (3)
wattr_set curses_attributes (3)
wattroff curses_attributes (3)
wattron curses_attributes (3)
wattrset curses_attributes (3)
wbkgd curses_background (3)
wbkgdset curses_background (3)
wborder curses_border (3)
wclear curses_clear (3)
wclrtobot curses_clear (3)
wclrtoeol curses_clear (3)
wcolor_set curses_attributes (3)
wdelch curses_delch (3)
wdeleteln curses_deleteln (3)
werase curses_clear (3)
wgetch curses_input (3)
wgetnstr curses_input (3)
wgetstr curses_input (3)
whline curses_line (3)
winch curses_inch (3)
winchnstr curses_inch (3)
winchstr curses_inch (3)
winnstr curses_inch (3)
winsch curses_insertch (3)
winsdelln curses_insdelln (3)
winsertln curses_insertln (3)
winstr curses_inch (3)
wmove curses_cursor (3)
wnoutrefresh curses_refresh (3)
wprintw curses_print (3)
wredrawln curses_touch (3)
wrefresh curses_refresh (3)
wresize curses_window (3)
wscanw curses_scanw (3)
wscrl curses_scroll (3)
wsetscrreg curses_scroll (3)
wstandend curses_standout (3)
wstandout curses_standout (3)

NetBSD 3.0 March 14, 2008 5

CURSES (3) NetBSD Library Functions Manual CURSES (3)

wtimeout curses_input (3)
wtouchln curses_touch (3)
wunderend curses_underscore (3)
wunderscore curses_underscore (3)
wvline curses_line (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 March 14, 2008 6

CURSES_ADDCH (3) NetBSD Library Functions Manual CURSES_ADDCH (3)

NAME
curses_addch , addch , waddch , mvaddch , mvwaddch — curses add characters to windows routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
addch (chtype ch);

int
waddch (WINDOW∗win , chtype ch);

int
mvaddch (int y , int x , chtype ch);

int
mvwaddch(WINDOW∗win , int y , int x , chtype ch);

DESCRIPTION
These functions add characters tostdscr or to the specified window.

Theaddch () function adds the character given in ch to stdscr at the current cursor position and advances
the current cursor position by one.Any character attributes set inch will be merged with the background
attributes currently set onstdscr .

The waddch () function is the same as theaddch () function, excepting that the character is added to the
window specified bywin .

Themvaddch () andmvwaddch() functions are the same as theaddch () andwaddch () functions, respec-
tively, excepting thatwmove() is called to move the cursor to the position specified byy , x before the char-
acter is added to the window.

LINE DRAWING CHARA CTERS
Some terminals support the display of line drawing and graphics characters. These characters can be added
using their defined names, as shown in the table below. Where the terminal does not support a specific char-
acter, the default (non-graphics) character is displayed instead.

Name Default Description
ACS_RARROW > Arrow pointing right
ACS_LARROW < Arrow pointing left
ACS_UARROW ˆ Arrow pointing up
ACS_DARROW v Arrow pointing down
ACS_BLOCK # Solid square block
ACS_DIAMOND + Diamond
ACS_CKBOARD : Checker board (stipple)
ACS_DEGREE ’ Degree symbol
ACS_PLMINUS # Plus/minus
ACS_BOARD # Board of squares
ACS_LANTERN # Lantern symbol
ACS_LRCORNER + Lower right-hand corner

NetBSD 3.0 July 11, 2007 1

CURSES_ADDCH (3) NetBSD Library Functions Manual CURSES_ADDCH (3)

ACS_URCORNER +Upperright-hand corner
ACS_ULCORNER +Upperleft-hand corner
ACS_LLCORNER + Lower left-hand corner
ACS_PLUS + Plus
ACS_HLINE - Horizontal line
ACS_S1 - Scan line 1
ACS_S9 - Scan line 9
ACS_LTEE + Left tee
ACS_RTEE + Right tee
ACS_BTEE + Bottom tee
ACS_TTEE + Top tee
ACS_VLINE | Vertical line
ACS_BULLET o Bullet

The following additional,ncursescompatible, characters are also supported.

Name Default Description
ACS_S3 - Scan line 3
ACS_S7 - Scan line 7
ACS_LEQUAL < Less than or equal to
ACS_GEQUAL > Greater than or equal to
ACS_PI ∗ Pi symbol
ACS_NEQUAL ! Not equal to
ACS_STERLING f Sterling symbol

For compatibility with someSystem Vimplementations, the following definitions are also supported.

System V Name NetBSD Curses Name
ACS_SBBS ACS_LRCORNER
ACS_BBSS ACS_URCORNER
ACS_BSSB ACS_ULCORNER
ACS_SSBB ACS_LLCORNER
ACS_SSSS ACS_PLUS
ACS_BSBS ACS_HLINE
ACS_SSSB ACS_LTEE
ACS_SBSS ACS_RTEE
ACS_SSBS ACS_BTEE
ACS_BSSS ACS_TTEE
ACS_SBSB ACS_VLINE

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_addchstr (3), curses_addstr (3), curses_attributes (3), curses_cursor (3),
curses_delch (3), curses_inch (3), curses_insertch (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

NetBSD 3.0 July 11, 2007 2

CURSES_ADDCH (3) NetBSD Library Functions Manual CURSES_ADDCH (3)

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 July 11, 2007 3

CURSES_ADDCHSTR (3) NetBSD Library Functions Manual CURSES_ADDCHSTR (3)

NAME
curses_addchstr , addchstr , waddchstr , addchnstr , waddchnstr , mvaddchstr ,
mvwaddchstr , mvaddchnstr , mvwaddchnstr — curses add character strings to windows routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
addchstr (const chtype ∗chstr);

int
waddchstr (WINDOW∗win , const chtype ∗chstr);

int
mvaddchstr (int y , int x , const chtype ∗chstr);

int
mvwaddchstr (WINDOW∗win , int y , int x , const chtype ∗chstr);

int
addchnstr (const chtype ∗chstr , int n);

int
waddchnstr (WINDOW∗win , const chtype ∗chstr , int n);

int
mvaddchnstr (int y , int x , const chtype ∗chstr , int n);

int
mvwaddchnstr (WINDOW∗win , int y , int x , const chtype ∗chstr , int n);

DESCRIPTION
These functions add character strings and attributes tostdscr or to the specified window.

Theaddchstr () function will add the characters and their attributes passed inchstr to stdscr starting
at the current cursor position.Any character attributes set inchstr will be merged with the background
attributes currently set onstdscr . The waddstr () function does the same asaddchstr () but adds the
string to the window specified bywin ().

Theaddchnstr () function will add the contents ofstring to stdscr but will limit the number of char-
acters added to be, at most,n. If n is −1 thenaddchnstr will add the number of characters contained in
the null terminated stringchstr . Any character attributes set inchstr will be merged with the back-
ground attributes currently set onstdscr .

Thewaddchnstr () function does the same asaddchnstr but adds the string to the window specified by
win .

The functionsmvaddchstr (), mwaddchnstr (), mvwaddchstr () andmvwaddchnstr () are the same
as the functionsaddchstr (), waddchstr (), waddchstr () and waddchnstr (), respectively, except
that wmove() is called to move the cursor to the position specified byy , x before the string is added to the
window.

NetBSD 3.0 May 21, 2003 1

CURSES_ADDCHSTR (3) NetBSD Library Functions Manual CURSES_ADDCHSTR (3)

RETURN VALUES
The functions will return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_addch (3), curses_addstr (3), curses_attributes (3), curses_cursor (3),
curses_inch (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
These functions first appeared inNetBSD 2.0.

NetBSD 3.0 May 21, 2003 2

CURSES_ADDSTR (3) NetBSD Library Functions Manual CURSES_ADDSTR (3)

NAME
curses_addstr , addstr , waddstr , addnstr , waddnstr , mvaddstr , mvwaddstr ,
mvaddnstr , mvwaddnstr — curses add character strings to windows routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
addstr (const char ∗string);

int
waddstr (WINDOW∗win , const char ∗string);

int
mvaddstr (int y , int x , const char ∗string);

int
mvwaddstr (WINDOW∗win , int y , int x , const char ∗string);

int
addnstr (const char ∗string , int len);

int
waddnstr (WINDOW∗win , const char ∗string , int len);

int
mvaddnstr (int y , int x , const char ∗string , int len);

int
mvwaddnstr (WINDOW∗win , int y , int x , const char ∗string , int len);

DESCRIPTION
These functions add character strings tostdscr or to the specified window.

Theaddstr () function will add the characters passed instring to stdscr starting at the current cursor
position. Any background attributes currently set onstdscr will be applied to the added character. The
waddstr () function does the same asaddstr () but adds the string to the window specified bywin ().

Theaddnstr () function will add the contents ofstring to stdscr but will limit the number of charac-
ters added to be, at most,len . If len is −1 thenaddnstr will add the number of characters contained in
the null terminated stringstring . Any background attributes currently set onstdscr will be applied to
the added character. Thewaddnstr () function does the same asaddnstr but adds the string to the win-
dow specified bywin .

The functionsmvaddstr (), mwaddnstr (), mvwaddstr () andmvwaddnstr () are the same as the func-
tionsaddstr (), waddstr (), waddstr () andwaddnstr (), respectively, excepting thatwmove() is called
to move the cursor to the position specified byy , x before the string is added to the window.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

NetBSD 3.0 May 21, 2003 1

CURSES_ADDSTR (3) NetBSD Library Functions Manual CURSES_ADDSTR (3)

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_addch (3), curses_addchstr (3), curses_attributes (3), curses_cursor (3),
curses_inch (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 May 21, 2003 2

CURSES_ATTRIBUTES (3) NetBSD Library Functions Manual CURSES_ATTRIBUTES (3)

NAME
curses_attributes , attron , attroff , attrset , color_set , getattrs , termattrs ,
wattron , wattroff , wattrset , wcolor_set , attr_on , attr_off , attr_set , attr_get ,
term_attrs , wattr_on , wattr_off , wattr_set , wattr_get — curses general attribute manipu-
lation routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
attron (int attr);

int
attroff (int attr);

int
attrset (int attr);

int
color_set (short pair , void ∗opt);

chtype
getattrs (WINDOW∗win);

chtype
termattrs (void);

int
wcolor_set (WINDOW∗win , short pair , void ∗opt);

int
wattron (WINDOW∗ win , int attr);

int
wattroff (WINDOW∗ win , int attr);

int
wattrset (WINDOW∗ win , int attr);

int
attr_on (attr_t attr , void ∗opt);

int
attr_off (attr_t attr , void ∗opt);

int
attr_set (attr_t attr , short pair , void ∗opt);

int
attr_get (attr_t ∗attr , short ∗pair , void ∗opt);

attr_t
term_attrs (void);

int
wattr_on (WINDOW∗win , attr_t attr , void ∗opt);

NetBSD 3.0 March 14, 2008 1

CURSES_ATTRIBUTES (3) NetBSD Library Functions Manual CURSES_ATTRIBUTES (3)

int
wattr_off (WINDOW∗win , attr_t attr , void ∗opt);

int
wattr_set (WINDOW∗win , attr_t attr , short pair , void ∗opt);

int
wattr_get (WINDOW∗win , attr_t ∗attr , short ∗pair , void ∗opt);

DESCRIPTION
These functions manipulate attributes onstdscr or on the specified window. The attributes that can be
manipulated are:

A_NORMAL no special attributes are applied
A_STANDOUT characters are displayed in standout mode
A_UNDERLINE characters are displayed underlined
A_REVERSE characters are displayed in inverse video
A_BLINK characters blink
A_DIM characters are displayed at a lower intensity
A_BOLD characters are displayed at a higher intensity
A_INVIS characters are added invisibly
A_PROTECT characters are protected from modification
A_ALTCHARSET characters are displayed using the alternate character set (ACS)
COLOR_PAIR(n) characters are displayed using color pair n.

The attron () function turns on the attributes specified inattr on stdscr , while theattroff () func-
tion turns off the attributes specified inattr onstdscr .

The functionattrset () sets the attributes ofstdscr to those specified inattr , turning off any others.
To turn off all the attributes (including color and alternate character set), useattrset (A_NORMAL).

Multiple attributes can be manipulated by combining the attributes using a logicalOR. For example,
attron (A_REVERSE | A_BOLD) will turn on both inverse video and higher intensity.

The functioncolor_set () sets the color pair attribute to the pair specified inpair .

The functiongetattrs () returns the attributes that are currently applied to window specified bywin .

The functiontermattrs () returns the logicalORof attributes that can be applied to the screen.

The functionswattron (), wattroff (), wattrset (), andwcolor_set () are equivalent toattron (),
attroff () attrset (), andcolor_set () respectively, excepting that the attributes are applied to the
window specified bywin .

The following functions additionally manipulate wide attributes onstdscr or on the specified window.
The additional wide attributes that can be manipulated are:

WA_STANDOUT characters are displayed in standout mode
WA_UNDERLINE characters are displayed underlined
WA_REVERSE characters are displayed in inverse video
WA_BLINK characters blink
WA_DIM characters are displayed at a lower intensity
WA_BOLD characters are displayed at a higher intensity
WA_INVIS characters are added invisibly
WA_PROTECT characters are protected from modification

NetBSD 3.0 March 14, 2008 2

CURSES_ATTRIBUTES (3) NetBSD Library Functions Manual CURSES_ATTRIBUTES (3)

WA_ALTCHARSET
characters are displayed using the alternate character set (ACS)

WA_LOW characters are displayed with low highlight
WA_TOP characters are displayed with top highlight
WA_HORIZONTAL

characters are displayed with horizontal highlight
WA_VERTICAL characters are displayed with vertical highlight
WA_LEFT characters are displayed with left highlight
WA_RIGHT characters are displayed with right highlight

The attr_on () function turns on the wide attributes specified inattr on stdscr , while the
attr_off () function turns off the wide attributes specified inattr onstdscr .

The functionattr_set () sets the wide attributes ofstdscr to those specified inattr andpair , turning
off any others. Notethat a color pair specified inpair will override any color pair specified inattr .

The functionattr_get () setsattr to the wide attributes andpair to the color pair currently applied to
stdscr . Either ofattr andpair can beNULL, if the relevant value is of no interest.

The functionterm_attrs () returns the logicalORof wide attributes that can be applied to the screen.

The functionswattr_on (), wattr_off () andwattr_set () are equivalent toattr_on (), attr_off ()
andattr_set () respectively, excepting that the character is added to the window specified bywin .

The functionwattr_get () is equivalent toattr_get (), excepting that the wide attributes and color pair
currently applied towin are set.

The following constants can be used to extract the components of achtype :

A_ATTRIBUTES bit-mask containing attributes part
A_CHARTEXT bit-mask containing character part
A_COLOR bit-mask containing color-pair part

RETURN VALUES
These functions return OK on success and ERR on failure.

SEE ALSO
curses_addch (3), curses_addchstr (3), curses_addstr (3), curses_background (3),
curses_color (3), curses_insertch (3), curses_standout (3), curses_underscore (3)

NOTES
Theopt argument is not currently used but is reserved for a future version of the specification.

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

Thegetattrs () function is aNetBSD extension.

HISTORY
These functions first appeared inNetBSD 1.5.

BUGS
Some terminals do not support characters with both color and other attributes set.In this case, the other
attribute is displayed instead of the color attribute.

NetBSD 3.0 March 14, 2008 3

CURSES_BACKGROUND (3) NetBSD Library Functions Manual CURSES_BACKGROUND (3)

NAME
curses_background , bkgd , bkgdset , getbkgd , wbkgd , wbkgdset — curses attribute manipula-
tion routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
bkgd (chtype);

int
bkgdset (chtype);

chtype
getbkgd (WINDOW∗);

int
wbkgd (chtype);

int
wbkgdset (chtype);

DESCRIPTION
These functions manipulate the background attributes onstdscr or on the specified window.

The functionwbkgdset (win , ch) sets the background attributes of the specified windowwin to ch .

When the background attributes are set on a window, characters are added to the window with the logicalOR
of the background attributes and the character’s attributes. Ifboth the background attribute and the character
attribute contain color, the color of the character attribute is rendered. If the background attribute contains a
non-space character, then this character is added where the foreground character is a space character.

Note that subwindows created fromwin inherit the background attributes ofwin .

The functionwbkgd (win , ch) sets the background attributes of the specified window win to ch and also
sets the rendition of every character position on that window, as if the characters had been newly added to
win . The rendition of characters on subwindows ofwin is also set toch .

The functions bkgdset (ch) and bkgd (ch) are equivalent to wbkgdset (stdscr , ch) and
wbkgd (stdscr , ch), respectively.

The functiongetbkgd (win) returns the background attributes for the windowwin .

RETURN VALUES
The functionswbkgdset () andwbkgd () return OK on success and ERR on failure.

SEE ALSO
curses_attributes (3), curses_color (3), curses_window (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

NetBSD 3.0 January 15, 2006 1

CURSES_BACKGROUND (3) NetBSD Library Functions Manual CURSES_BACKGROUND (3)

HISTORY
These functions first appeared inNetBSD 1.6.

NetBSD 3.0 January 15, 2006 2

CURSES_BORDER (3) NetBSD Library Functions Manual CURSES_BORDER (3)

NAME
curses_border , border , box , wborder — curses border drawing routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
border (chtype ls , chtype rs , chtype ts , chtype bs , chtype tl , chtype tr ,

chtype bl , chtype br);

int
box (WINDOW∗win , chtype vertical , chtype horizontal);

int
wborder (WINDOW∗win , chtype ls , chtype rs , chtype ts , chtype bs , chtype tl ,

chtype tr , chtype bl , chtype br);

DESCRIPTION
These functions draw borders aroundstdscr or around the specified window.

Theborder () function draws a border aroundstdscr using the characters given as arguments to the func-
tion. Thels , rs , ts andbs are the characters used to draw the left, right, top and bottom sides, respec-
tively. The tl , tr , bl andbr are the characters used to draw the top-left, top-right, bottom-left and bot-
tom-right corners, respectively. If any of the characters have a text portion that is 0 then a default alternate
character set character is used for that character. Note that even though the text portion of the argument is 0,
the argument can still be used to specify the attributes for that portion of the border. The following table
shows the default characters for each argument:

ls ACS_VLINE
rs ACS_VLINE
ts ACS_HLINE
bs ACS_HLINE
tl ACS_ULCORNER
tr ACS_URCORNER
bl ACS_LLCORNER
br ACS_LRCORNER

wborder () is the same asborder () excepting that the border is drawn around the specified window.

The box () command draws a box around the window giv en in win using thevertical character for the
vertical lines and thehorizontal character for the horizontal lines. The corner characters of this box will
be the defaults as described forborder () above. Passing characters with text portion that is 0 tobox () will
result in the same defaults as those forborder () as described above.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

NetBSD 3.0 August 12, 2002 1

CURSES_BORDER (3) NetBSD Library Functions Manual CURSES_BORDER (3)

SEE ALSO
curses_attributes (3), curses_line (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 August 12, 2002 2

CURSES_CLEAR (3) NetBSD Library Functions Manual CURSES_CLEAR (3)

NAME
curses_clear , clear , wclear , clearok , clrtobot , clrtoeol , erase , werase ,
wclrtobot , wclrtoeol — curses clear window routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
clear (void);

int
clearok (WINDOW∗win , bool flag);

int
clrtobot (void);

int
clrtoeol (void);

int
erase (void);

int
wclear (WINDOW∗win);

int
werase (WINDOW∗win);

int
wclrtobot (WINDOW∗win);

int
wclrtoeol (WINDOW∗win);

DESCRIPTION
These functions clear all or part ofstdscr or of the specified window.

The clear () anderase () functions erase all characters onstdscr . wclear () andwerase () perform
the same function asclear () anderase (), respectively, excepting that the specified window is cleared.

By settingflag to TRUE, the clearok () function is used to force the next call towrefresh () to clear
and completely redraw the window giv en in win .

The function clrtobot () will clear stdscr from the current row to the bottom of the screen.
clrtoeol () will clearstdscr from the current column position to the end of the line.wclrtobot () and
wclrtoeol () are the same asclrtobot () andclrtoeol (), respectively, excepting the window speci-
fied is operated on instead ofstdscr .

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.

NetBSD 3.0 August 12, 2002 1

CURSES_CLEAR (3) NetBSD Library Functions Manual CURSES_CLEAR (3)

ERR An error occurred in the function.

SEE ALSO
curses_refresh (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 August 12, 2002 2

CURSES_COLOR (3) NetBSD Library Functions Manual CURSES_COLOR (3)

NAME
curses_color , has_colors , can_change_color , start_color , init_pair ,
pair_content , COLOR_PAIR, PAIR_NUMBER, init_color , color_content ,
no_color_video — curses color manipulation routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

bool
has_colors (void);

bool
can_change_color (void);

int
start_color (void);

int
init_pair (short pair , short fore , short back);

int
pair_content (short pair , short ∗fore , short ∗back);

int
COLOR_PAIR(int n);

int
PAIR_NUMBER(int val);

int
init_color (short color , short red , short green , short blue);

int
color_content (short color , short ∗red , short ∗green , short ∗blue);

attr_t
no_color_video (void);

extern int COLOR_PAIRS;

extern int COLORS;

DESCRIPTION
These functions manipulate color on terminals that support color attributes.

The functionhas_colors () indicates whether a terminal is capable of displaying color attributes. It
returnsTRUEif the terminal is capable of displaying color attributes andFALSEotherwise.

The functioncan_change_color () indicates whether a terminal is capable of redefining colors.It
returnsTRUEif colors can be redefined andFALSE if they can not.

The functionstart_color () initializes the curses color support on a terminal. It must be called before
any color manipulation functions are called on that terminal.The function initializes the eight basic colors
(black, red, green, yellow, blue, magenta, cyan and white) that are specified using the color macros (such as
COLOR_BLACK) defined in <curses.h>. start_color () also initializes the global external variables
COLORSand COLOR_PAIRS. COLORSdefines the number of colors that the terminal supports and

NetBSD 3.0 March 9, 2004 1

CURSES_COLOR (3) NetBSD Library Functions Manual CURSES_COLOR (3)

COLOR_PAIRSdefines the number of color-pairs that the terminal supports.These color-pairs are initialized
to white foreground on black background.start_color () sets the colors on the terminal to the curses
defaults of white foreground on black background unless the functionsassume_default_colors () or
use_default_colors () have been called previously.

The functioninit_pair (pair , fore , back) sets foreground colorfore and background colorback
for color-pair numberpair . The valid range for the color-pair pair is from 1 toCOLOR_PAIRS- 1 and
the valid range for the colors is any number less thanCOLORS. Specifying a negative number will set that
color to the default foreground or background color. The 8 initial colors are defined as:

COLOR_BLACK
COLOR_RED
COLOR_GREEN
COLOR_YELLOW
COLOR_BLUE
COLOR_MAGENTA
COLOR_CYAN
COLOR_WHITE

Color-pair 0 is used as the default color pair, so changing this will have no effect. Usethe function
assume_default_colors () to change the default colors.

The functionpair_content (pair , ∗fore , ∗back) stores the foreground and background color num-
bers of color-pairpair in the variablesfore andback , respectively.

The macroCOLOR_PAIR(n) giv es the attribute value of color-pair numbern. This is the value that is used
to set the attribute of a character to this color-pair. For example,

attrset(COLOR_PAIR(2))
will display characters using color-pair 2.

The macroPAIR_NUMBER(val) giv es the color-pair number associated with the attribute valueval .

The functioninit_color (color , red , green , blue) sets the red, green and blue intensity compo-
nents of colorcolor to the valuesred , green andblue , respectively. The minimum intensity value is 0
and the maximum intensity value is 1000.

The functioncolor_content (color , ∗red , ∗green , ∗blue) stores the red, green and blue intensity
components of colorcolor in the variablesred , green , andblue , respectively.

The functionno_color_video () returns those attributes that a terminal is unable to combine with color.

RETURN VALUES
The functions start_color (), init_pair (), pair_content (), init_color () and
color_content () return OK on success and ERR on failure.

SEE ALSO
curses_attributes (3), curses_background (3), curses_default_colors (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

The functionno_color_video () and the use of negative color numbers are extensions to the X/Open
Curses specification.

NetBSD 3.0 March 9, 2004 2

CURSES_COLOR (3) NetBSD Library Functions Manual CURSES_COLOR (3)

HISTORY
These functions first appeared inNetBSD 1.5.

NetBSD 3.0 March 9, 2004 3

CURSES (3) NetBSD Library Functions Manual CURSES (3)

NAME
curses_cursor , getcury , getcurx , getyx , getbegy , getbegx , getbegyx , getmaxy ,
getmaxx , getmaxyx , getpary , getparx , getparyx , move, wmove, mvcur — curses cursor and
window location and positioning routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
getcury (WINDOW∗win);

int
getcurx (WINDOW∗win);

void
getyx (WINDOW∗win , int y , int x);

int
getbegy (WINDOW∗win);

int
getbegx (WINDOW∗win);

void
getbegyx (WINDOW∗win , int y , int x);

int
getmaxy (WINDOW∗win);

int
getmaxx (WINDOW∗win);

void
getmaxyx (WINDOW∗win , int y , int x);

int
getpary (WINDOW∗win);

int
getparx (WINDOW∗win);

void
getparyx (WINDOW∗win , int y , int x);

int
move(int y , int x);

int
wmove(WINDOW∗win , int y , int x);

int
mvcur (int oldy , int oldx , int y , int x);

DESCRIPTION
These functions and macros locate and position cursors and windows.

NetBSD 3.0 July 23, 2004 1

CURSES (3) NetBSD Library Functions Manual CURSES (3)

The getcury () andgetcurx () functions get the current row and column positions, respectively, of the
cursor in the window win . The getyx () macro sets the values ofy andx to the current row and column
positions of the cursor in the windowwin .

The origin row and columns of a window win can be determined by calling thegetbegy () andgetbegx ()
functions, respectively, and the maximum row and column for the window can be found by calling the func-
tionsgetmaxy () andgetmaxx (), respectively. Thegetbegyx () andgetmaxyx () macros set the values
of y andx to the origin and maximum row and column positions, respectively, for the windowwin .

Thegetpary () andgetparx () functions return the row and column position of the given subwindow rela-
tive to the window’s parent. Themacrogetparyx () sets the values ofy andx to the origin of the subwin-
dow relative to the window’s parent.

The move() function positions the cursor on the current window at the position given by y , x . The cursor
position is not changed on the screen until the nextrefresh ().

Thewmove() function is the same as themove() function, excepting that the cursor is moved in the window
specified bywin .

The functionmvcur () moves the cursor toy , x on the screen. The argumentsoldy , oldx define the previ-
ous cursor position for terminals that do not support absolute cursor motions.The curses library may opti-
mise the cursor motion based on these values. Ifthemvcur () succeeds then the curses internal structures are
updated with the new position of the cursor. If the destination arguments formvcur () exceed the terminal
bounds an error will be returned and the cursor position will be unchanged.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_refresh (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion. Thegetbegx (), getbegy (), getcurx (), getcury (), getmaxx (), getmaxy (), getparx (), and
getpary () functions are extensions.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 July 23, 2004 2

CURSES_DEFAULT_COLORS (3) NetBSD Library Functions Manual CURSES_DEFAULT_COLORS (3)

NAME
curses_default_colors , assume_default_colors , use_default_colors — curses
default colors setting routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
assume_default_colors (short fore , short back);

int
use_default_colors ();

DESCRIPTION
These functions tell the curses library to set the default colors or to use the terminal’s default colors instead
of using the default colors for curses applications (which are white foreground on black background).

The function assume_default_colors (fore , back) sets the default colors to foreground color
fore and background colorback . If a value of −1 is used for a color, then the terminal default color is
used for that color.

The functionuse_default_colors () sets both the foreground and background colors to the terminal
default colors. This is equivalent toassume_default_colors (−1 , −1).

RETURN VALUES
These functions return OK on success and ERR on failure.

SEE ALSO
curses_color (3)

STANDARDS
These functions are based onncursesextensions to the curses standards.

HISTORY
These functions first appeared inNetBSD 2.0.

NetBSD 3.0 October 13, 2002 1

CURSES_DELCH (3) NetBSD Library Functions Manual CURSES_DELCH (3)

NAME
curses_delch , delch , wdelch — curses delete characters routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
delch (void);

int
wdelch (WINDOW∗win);

DESCRIPTION
These functions delete characters fromstdscr or from the specified window.

The delch () function deletes the character at the current cursor position onstdscr . Characters to the
right of the deleted character are moved one position to the left. The cursor position is unchanged.

Thewdelch () function is the same as thedelch () function, excepting that the character is deleted from the
specified window.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_addch (3), curses_insertch (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 August 12, 2002 1

CURSES_DELETELN (3) NetBSD Library Functions Manual CURSES_DELETELN (3)

NAME
curses_deleteln , deleteln , wdeleteln — curses delete single line routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
deleteln (void);

int
wdeleteln (WINDOW∗win);

DESCRIPTION
These functions delete a single line fromstdscr or from the specified window.

Thedeleteln () function deletes the screen line containing the cursor in thestdscr . Thewdeleteln ()
function is the same as thedeleteln () function, excepting that the line is deleted from the window speci-
fied bywin .

All lines following the deleted line are moved up one line toward the cursor. The last line of the window is
cleared. Thecursor position is unchanged.

If a scrolling region has been set with thesetscrreg () or wsetscrreg () functions and the current cursor
position is inside the scrolling region, then only the lines from the current line to the bottom of the scrolling
region are moved up and the bottom line of the scrolling region cleared.

The functionsdeleteln () and wdeleteln (win) are equivalent to winsdelln (stdscr , −1) and
winsdelln (win , −1) respectively.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_insdelln (3), curses_insertln (3), curses_scroll (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 August 12, 2002 1

CURSES_ECHOCHAR (3) NetBSD Library Functions Manual CURSES_ECHOCHAR (3)

NAME
curses_echochar , echochar , wechochar , pechochar — curses add characters and then refresh
routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
echochar (const chtype ch);

int
wechochar (WINDOW∗win , const chtype ch);

int
pechochar (WINDOW∗pad , const chtype ch);

DESCRIPTION
These functions add characters tostdscr or to the specified window or pad and then cause an immediate
refresh () of that window or pad.

The echochar () function adds the character given in ch to stdscr at the current cursor position and
advances the current cursor position by one.Any character attributes set inch will be merged with the back-
ground attributes currently set onstdscr . stdscr is then refreshed.Calling echochar () is equivalent
to callingaddch () followed byrefresh ().

Thewechochar () function is the same as theechochar () function, excepting that the character is added
to the window specified bywin andwin is refreshed.

Thepechochar () function is the similar to theechochar () function, excepting that the character is added
to the pad specified bypad and pad is refreshed at its previous location on the screen.Calling
pechochar () is equivalent to callingaddch () followed byprefresh ().

RETURN VALUES
These functions will return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_addch (3), curses_attributes (3), curses_pad (3), curses_refresh (3)

STANDARDS
Theechochar (), wechochar (), andpechochar () functions comply with the X/Open Curses specifica-
tion, part of the Single Unix Specification.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 March 27, 2004 1

CURSES_FILEIO (3) NetBSD Library Functions Manual CURSES_FILEIO (3)

NAME
curses_fileio , getwin , putwin — curses file input/output routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

WINDOW∗
getwin (FILE ∗fp);

int
putwin (WINDOW∗win , FILE ∗fp);

DESCRIPTION
These functions read and write data to and from files.

Thegetwin () function reads window data that has been stored in the file to whichfp points, and then cre-
ates a new window using that data.

Theputwin () function writes window data from the windowwin to the file pointed to byfp .

RETURN VALUES
Thegetwin () function returns one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

Theputwin () function returnsNULL if an error is detected.

SEE ALSO
curses_window (3), fread (3,) fwrite (3)

NOTES
Subwindows can not be created by thegetwin () function, nor written by theputwin () function.

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
These functions first appeared inNetBSD 5.0.

NetBSD 3.0 March 31, 2008 1

CURSES_INCH (3) NetBSD Library Functions Manual CURSES_INCH (3)

NAME
curses_inch , inch , winch , inchnstr , mvinchnstr , winchnstr , mvwinchnstr , inchstr ,
mvinchstr , winchstr , mvwinchstr , innstr , winnstr , mvinnstr , mvwinnstr , instr ,
winstr mvinstr , mvwinstr — curses read screen contents routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

chtype
inch (void);

chtype
winch (WINDOW∗win);

int
inchnstr (chtype ∗chars , int n);

int
mvinchnstr (int y , int x , chtype ∗chstr , int n);

int
winchnstr (WINDOW∗win , chtype ∗chars , int n);

int
mvwinchnstr (WINDOW∗win , int y , int x , chtype ∗chstr , int n);

int
inchstr (chtype ∗chars);

int
mvinchstr (int y , int x , chtype ∗chstr);

int
winchstr (WINDOW∗win , chtype ∗chars);

int

mvwinchstr WINDOW ∗win int y int x chtype ∗chstr

int
innstr (char ∗str , int n);

int
winnstr (WINDOW∗win , char ∗str , int n);

int
mvinnstr (int y , int x , char ∗str , int n);

int
mvwinnstr (WINDOW∗win , int y , int x , char ∗str , int n);

int
instr (char ∗str);

int
winstr (WINDOW∗win , char ∗str);

NetBSD 3.0 April 18, 2004 1

CURSES_INCH (3) NetBSD Library Functions Manual CURSES_INCH (3)

int
mvinstr (int y , int x , char ∗str);

int
mvwinstr (WINDOW∗win , int y , int x , char ∗str);

DESCRIPTION
These functions read the contents ofstdscr or of the specified window.

The inch () function returns the character that is displayed onstdscr at the current cursor position.

Thewinch () function is the same as theinch () function, excepting that the character is read from window
specified bywin .

The inchnstr () function fills an array ofchtype with characters read fromstdscr , the characters are
read starting from the current cursor position and continuing until either n − 1 characters are read or the right
hand side of the screen is reached. The resulting character array will beNULL terminated.

Thewinchnstr () function is the same asinchnstr () excepting that the characters are read from the win-
dow specified bywin .

The inchstr () and winchstr () functions are the same as theinchnstr () and winchnstr () func-
tions, respectively, excepting that they do not limit the number of characters read. The characters returned
are those from the current starting position to the right hand side of the screen.The use ofinchstr () and
winchstr () is not recommended as the character buffer can be overflowed.

The innstr () function is similar to theinchstr () function, excepting that the array of characters returned
is stripped of all the curses attributes making it a plain character string.

Themvinchstr (), mvinchnstr (), mvwinchstr (), andmvwinchnstr () functions are the same as the
inchstr (), inchnstr (), winchstr (), andwinchstr () functions, respectively, except thatwmove() is
called to move the cursor to the position specified byy , x before the output is printed on the window. Like-
wise, themvinstr (), mvinnstr (), mvwinstr (), and mvwinnstr () functions are the same as the
instr (), innstr (), winstr (), andwinstr () functions, respectively, except thatwmove() is called to
move the cursor to the position specified byy , x before the output is printed on the window.

Thewinnstr () function is the same as theinnstr () function, excepting that characters are read from the
window specified bywin .

The instr () andwinstr () functions are the same as theinnstr () andwinnstr () functions, respec-
tively, excepting that there are no limits placed on the size of the returned string, which may cause buffer
overflows. For this reason, the use ofinstr () andwinstr () is not recommended.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_addch (3), curses_addstr (3), curses_attributes (3), curses_insertch (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

NetBSD 3.0 April 18, 2004 2

CURSES_INCH (3) NetBSD Library Functions Manual CURSES_INCH (3)

NOTES
The inchnstr () andinnstr () function read at most n − 1 characters from the screen so as to leave room
for NULL termination. TheX/Open specification is unclear as to whether or not this is the correct behaviour.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 April 18, 2004 3

CURSES_INPUT (3) NetBSD Library Functions Manual CURSES_INPUT (3)

NAME
curses_input , getch , wgetch , mvgetch , mvwgetch , define_key , keyok , getnstr ,
wgetnstr , mvgetnstr , mvwgetnstr , getstr , wgetstr , mvgetstr , mvwgetstr , keypad ,
notimeout , timeout , wtimeout , nodelay , ungetch — curses input stream routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
getch (void);

int
wgetch (WINDOW∗win);

int
mvgetch (int y , int x);

int
mvwgetch (WINDOW∗win , int y , int x);

int
keyok (int key_symbol , bool flag);

int
define_key (char ∗sequence , int key_symbol);

int
getnstr (char ∗str , int limit);

int
wgetnstr (WINDOW∗win , char ∗str , int limit);

int
mvgetnstr (int y , int x , char ∗str , int limit);

int
mvwgetnstr (WINDOW∗win , int y , int x , char ∗str , int limit);

int
getstr (char ∗str);

int
wgetstr (WINDOW∗win , char ∗str);

int
mvgetstr (int y , int x , char ∗str);

int
mvwgetstr (WINDOW∗win , int y , int x , char ∗str);

int
keypad (WINDOW∗win , boolf flag);

int
notimeout (WINDOW∗win , boolf flag);

NetBSD 3.0 July 25, 2006 1

CURSES_INPUT (3) NetBSD Library Functions Manual CURSES_INPUT (3)

int
timeout (int delay);

int
wtimeout (WINDOW∗win , int delay);

int
nodelay (WINDOW∗win , boolf flag);

int
ungetch (int c);

extern int ESCDELAY;

DESCRIPTION
These functions read characters and strings from the window input file descriptor.

The getch () function reads a character from thestdscr input file descriptor and returns it. If the
keypad () flag has been set toTRUE, thengetch () will assemble multi-character key sequences into key
symbols, If the terminal is resized,getch () will return KEY_RESIZE, reg ardlesss of the setting of
keypad (). Callinggetch () will cause an implicitrefresh () onstdscr .

The wgetch () function is the same as thegetch () function, excepting that it reads from the input file
descriptor associated with the window specified bywin .

If the keypad () flag is TRUE then the assembly of specific key symbols can be disabled by using the
keyok () function. If theflag is set toFALSEon a key symbol thengetch () will behave as if the charac-
ter sequence associated with that key symbol was not recognised and will return the component characters
one at a time to the caller.

Custom associations between sequences of characters and a key symbol can be made by using the
define_key () function. Normally, these associations are made by the information in thetermcap (5)
database but thedefine_key () function gives the capability to remove or add more associations.If
define_key () is passed a non-NULL string insequence it will associate that sequence with the key
symbol passed inkey_symbol . The key symbol may be one of the ones listed below or a custom value
that is application defined.It is valid to have multiple character sequences map to the same key symbol and
there are no constraints on the length of the sequence allowed. Theassembly of custom sequences follow the
same rules for inter-character timing and so forth as thetermcap (5) derived ones. Ifdefine_key () is
passed a NULL insequence then all associations for the key symbol inkey_symbol will be deleted, this
includes any associations that were derived from termcap (5).

Themvgetch () andmvwgetch () functions are the same as thegetch () andwgetch () functions, respec-
tively, excepting thatwmove() is called to move the cursor to the position specified byy , x before the char-
acter is read.

Calling getnstr (), wgetnstr (), mvgetnstr () or mvwgetnstr () is effectively the same as calling
getch () repeatedly until a newline is received or the character limitlimit is reached. Once this happens
the string isNULL terminated and returned instr . During input, the normal curses input key processing is
performed and affects the input buffer. Themvgetnstr () function callswmove() to move the cursor to the
position given by y , x before getting the string,wgetnstr () reads the input from the designated window,
mvwgetnstr () moves the cursor to the position given by y , x before getting the input from the designated
window.

The functionsgetstr (), wgetstr (), mvgetstr (), and mvwgetstr () are similar togetnstr (),
wgetnstr (), mvgetnstr (), and mvwgetnstr (), respectively, excepting that there is no limit on the
number of characters that may be inserted intostr . This may cause the buffer to be overflowed, so their use
is not recommended.

NetBSD 3.0 July 25, 2006 2

CURSES_INPUT (3) NetBSD Library Functions Manual CURSES_INPUT (3)

Thekeypad () function is used to affect how getch () processes input characters.If flag is set toTRUE,
thengetch () will scan the input stream looking for multi-character key sequences that are emitted by some
terminal function keys. If a recognised sequence of characters is found, thengetch () will collapse that
sequence into an integer key symbol, as shown below. The default setting for the flag isFALSE.

Thenotimeout () function controls whether or notgetch () will wait indefinitely between characters in a
multi-character key sequence or not.If flag is TRUE, then there is no timeout applied between characters
comprising a multi-character key sequence. Ifflag is FALSE, then the component characters of a multi-
character sequence must not have an inter-character gap of more thanESCDELAY. If this timing is
exceeded, then the multi-character key assembly is deemed to have failed and the characters read thus far are
returned one at a time whengetch () is called. The default setting for the flag isFALSE. The default value
of ESCDELAYis 300ms. If ESCDELAYis negative, no timeout is applied between characters comprising a
multi-character key sequence.

The timeout () function affects the behaviour ofgetch () when reading a character fromstdscr . If
delay is negative, thengetch () will block indefinitely on a read.If delay is 0, thengetch () will return
immediately withERRif there are no characters immediately available. If delay is a positive number, then
getch () will wait for that many milliseconds before returning and, if no character was available, thenERR
will be returned. Note that for a positive number, the timeout is only accurate to the nearest tenth of a sec-
ond. Also,the maximum value ofdelay is 25500 milliseconds.Thewtimeout () function does the same
astimeout () but applies to the specified windowwin .

The nodelay () function turns on and off blocking reads forgetch (). If flag is TRUE, thengetch ()
will not block on reads, ifflag is FALSE, then reads will block. The default setting for the flag isFALSE.
nodelay (win , TRUE) is equivalent towtimeout (win , 0) and nodelay (win , FALSE) is equivalent
to wtimeout (win , −1).

ungetch () will convert c into an unsigned char and push that character back onto the input stream.Only
one character of push-back is guaranteed to work, more may be possible depending on system resources.

RETURN VALUES
The functionsgetch (), wgetch (), mvgetch (), andmvwgetch () will return the value of the key pressed
or ERRin the case of an error or a timeout.Additionally, if keypad (TRUE) has been called on a window,
then it may return one of the following values:

Termcap entry getch Return Value Key Function
!1 KEY_SSAVE Shift Save
!2 KEY_SSUSPEND Shift Suspend
!3 KEY_SUNDO Shift Undo
#1 KEY_SHELP Shift Help
#2 KEY_SHOME Shift Home
#3 KEY_SIC Shift Insert Character
#4 KEY_SLEFT Shift Left Arrow
%0 KEY_REDO Redo
%1 KEY_HELP Help
%2 KEY_MARK Mark
%3 KEY_MESSAGE Message
%4 KEY_MOVE Move
%5 KEY_NEXT Next Object
%6 KEY_OPEN Open
%7 KEY_OPTIONS Options
%8 KEY_PREVIOUS Previous Object

NetBSD 3.0 July 25, 2006 3

CURSES_INPUT (3) NetBSD Library Functions Manual CURSES_INPUT (3)

%9 KEY_PRINT Print
%a KEY_SMESSAGE ShiftMessage
%b KEY_SMOVE Shift Move
%c KEY_SNEXT Shift Next Object
%d KEY_SOPTIONS Shift Options
%e KEY_SPREVIOUSShift Previous Object
%f KEY_SPRINT Shift Print
%g KEY_SREDO Shift Redo
%h KEY_SREPLACE ShiftReplace
%i KEY_SRIGHT Shift Right Arrow
%j KEY_SRSUME Shift Resume
&0 KEY_SCANCEL Shift Cancel
&1 KEY_REFERENCEReference
&2 KEY_REFRESH Refresh
&3 KEY_REPLACE Replace
&4 KEY_RESTART Restart
&5 KEY_RESUME Resume
&6 KEY_SAVE Save
&7 KEY_SUSPEND Suspend
&8 KEY_UNDO Undo
&9 KEY_SBEG Shift Begin
∗0 KEY_SFIND ShiftFind
∗1 KEY_SCOMMAND ShiftCommand
∗2 KEY_SCOPY ShiftCopy
∗3 KEY_SCREATE ShiftCreate
∗4 KEY_SDC ShiftDelete Character
∗5 KEY_SDL ShiftDelete Line
∗6 KEY_SELECT Select
∗7 KEY_SEND ShiftEnd
∗8 KEY_SEOL ShiftClear to EOL
∗9 KEY_SEXIT ShiftExit
@0 KEY_FIND Find
@1 KEY_BEG Begin
@2 KEY_CANCEL Cancel
@3 KEY_CLOSE Close
@4 KEY_COMMAND Command
@5 KEY_COPY Copy
@6 KEY_CREATE Create
@7 KEY_END End
@8 KEY_ENTER Enter
@9 KEY_EXIT Exit
F1 KEY_F(11) Function Key 11
F2 KEY_F(12) Function Key 12
F3 KEY_F(13) Function Key 13
F4 KEY_F(14) Function Key 14
F5 KEY_F(15) Function Key 15
F6 KEY_F(16) Function Key 16
F7 KEY_F(17) Function Key 17
F8 KEY_F(18) Function Key 18

NetBSD 3.0 July 25, 2006 4

CURSES_INPUT (3) NetBSD Library Functions Manual CURSES_INPUT (3)

F9 KEY_F(19) Function Key 19
FA KEY_F(20) FunctionKe y 20
FB KEY_F(21) Function Key 21
FC KEY_F(22) Function Key 22
FD KEY_F(23) Function Key 23
FE KEY_F(24) Function Key 24
FF KEY_F(25) Function Key 25
FG KEY_F(26) Function Key 26
FH KEY_F(27) Function Key 27
FI KEY_F(28) Function Key 28
FJ KEY_F(29) Function Key 29
FK KEY_F(30) Function Key 30
FL KEY_F(31) Function Key 31
FM KEY_F(32) Function Key 32
FN KEY_F(33) Function Key 33
FO KEY_F(34) Function Key 34
FP KEY_F(35) Function Key 35
FQ KEY_F(36) Function Key 36
FR KEY_F(37) Function Key 37
FS KEY_F(38) Function Key 38
FT KEY_F(39) Function Key 39
FU KEY_F(40) Function Key 40
FV KEY_F(41) Function Key 41
FW KEY_F(42) Function Key 42
FX KEY_F(43) Function Key 43
FY KEY_F(44) Function Key 44
FZ KEY_F(45) Function Key 45
Fa KEY_F(46) FunctionKe y 46
Fb KEY_F(47) Function Key 47
Fc KEY_F(48) Function Key 48
Fd KEY_F(49) Function Key 49
Fe KEY_F(50) Function Key 50
Ff KEY_F(51) Function Key 51
Fg KEY_F(52) Function Key 52
Fh KEY_F(53) Function Key 53
Fi KEY_F(54) Function Key 54
Fj KEY_F(55) Function Key 55
Fk KEY_F(56) Function Key 56
Fl KEY_F(57) Function Key 57
Fm KEY_F(58) Function Key 58
Fn KEY_F(59) Function Key 59
Fo KEY_F(60) FunctionKe y 60
Fp KEY_F(61) Function Key 61
Fq KEY_F(62) Function Key 62
Fr KEY_F(63) Function Key 63
K1 KEY_A1 Upper left key in keypad
K2 KEY_B2 Centre key in keypad
K3 KEY_A3 Upper right key in keypad
K4 KEY_C1 Lower left key in keypad

NetBSD 3.0 July 25, 2006 5

CURSES_INPUT (3) NetBSD Library Functions Manual CURSES_INPUT (3)

K5 KEY_C3 Lower right key in keypad
Km KEY_MOUSE Mouse Event
k0 KEY_F0 Function Key 0
k1 KEY_F(1) Function Key 1
k2 KEY_F(2) Function Key 2
k3 KEY_F(3) Function Key 3
k4 KEY_F(4) Function Key 4
k5 KEY_F(5) Function Key 5
k6 KEY_F(6) Function Key 6
k7 KEY_F(7) Function Key 7
k8 KEY_F(8) Function Key 8
k9 KEY_F(9) Function Key 9
k; KEY_F(10) Function Key 10
kA KEY_IL Insert Line
ka KEY_CATAB Clear All Tabs
kB KEY_BTAB BackTab
kb KEY_BACKSPACE Backspace
kC KEY_CLEAR Clear
kD KEY_DC Delete Character
kd KEY_DOWN Down Arrow
kE KEY_EOL Clear to End Of Line
kF KEY_SF Scroll Forward one line
kH KEY_LL Home Down
kh KEY_HOME Home
kI KEY_IC Insert Character
kL KEY_DL Delete Line
kl KEY_LEFT Left Arrow
kM KEY_EIC Exit Insert Character Mode
kN KEY_NPAGE Next Page
kP KEY_PPAGE Previous Page
kR KEY_SR Scroll One Line Back
kr KEY_RIGHT Right Arrow
kS KEY_EOS Clear to End Of Screen
kT KEY_STAB SetTab
kt KEY_CTAB ClearTab
ku KEY_UP Up Arrow

Note that not all terminals are capable of generating all the keycodes listed above nor are termcap entries
normally configured with all the above capabilities defined.

Other functions that return an int will return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

Functions returning pointers will returnNULL if an error is detected.

SEE ALSO
curses_cursor (3), curses_keyname (3), curses_refresh (3), curses_tty (3), termcap (5)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

NetBSD 3.0 July 25, 2006 6

CURSES_INPUT (3) NetBSD Library Functions Manual CURSES_INPUT (3)

NOTES
Thekeyok () anddefine_key () functions are implementations of extensions made by the NCurses library
to the Curses standard. Portable implementations should avoid the use of these functions.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 July 25, 2006 7

CURSES_INSDEL (3) NetBSD Library Functions Manual CURSES_INSDEL (3)

NAME
curses_insdelln , insdelln , winsdelln — curses insert or delete lines routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
insdelln (int n);

int
winsdelln (WINDOW∗win , int n);

DESCRIPTION
These functions insert or delete lines onstdscr or on the specified window.

If insdelln () is called with a positive number inn, then the specified number of lines are inserted before
the current line onstdscr . The lastn lines of the screen are no longer displayed.If n is negative, thenn
lines are deleted fromstdscr , starting at the current line. The lastn lines ofstdscr are cleared.

The winsdelln () function is the same as theinsdelln () function, excepting that lines are inserted or
deleted from the window specified bywin .

If a scrolling region has been set with thesetscrreg () or wsetscrreg () functions and the current cursor
position is inside the scrolling region, then only the lines from the current line to the bottom of the scrolling
region are affected.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_deleteln (3), curses_insertln (3), curses_scroll (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 August 12, 2002 1

CURSES_INSERTCH (3) NetBSD Library Functions Manual CURSES_INSERTCH (3)

NAME
curses_insert , insch , winsch , mvinsch , mvwinsch — curses insert characters routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
insch (chtype ch);

int
winsch (WINDOW∗win , chtype ch);

int
mvinsch (int y , int x , chtype ch);

int
mvwinsch (WINDOW∗win , int y , int x , chtype ch);

DESCRIPTION
These functions insert characters onstdscr or on the specified window.

The insch () function inserts the character given in ch at the current cursor position onstdscr . The cur-
sor is not advanced and wrapping is not performed.

Thewinsch () function is the same as theinsch () function, excepting that the character is inserted on the
window specified bywin .

The mvinsch () andmvwinsch () functions are the same as theinsch () and insch () functions, respec-
tively, excepting thatwmove() is called to move the cursor to the position specified byy , x before the char-
acter is inserted on the window.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_addch (3), curses_cursor (3), curses_delch (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 February 5, 2006 1

CURSES_INSERTLN (3) NetBSD Library Functions Manual CURSES_INSERTLN (3)

NAME
curses_insertln , insertln , winsertln — curses insert single line routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
insertln (void);

int
winsertln (WINDOW∗win);

DESCRIPTION
These functions insert a single line onstdscr or on the specified window.

The insertln () function inserts a blank line before the current line onstdscr . The current line and all
lines below are moved down one line away from the cursor and the bottom line of the window is lost.

Thewinsertln () function is the same as theinsertln () function, excepting that the line is inserted on
the windowwin .

If a scrolling region has been set with thesetscrreg () or wsetscrreg () functions and the current cursor
position is inside the scrolling region, then only the lines from the current line to the bottom of the scrolling
region are moved down and the bottom line of the scrolling region lost.

The functions insertln () and winsertln (win) are equivalent to insdelln (1) and
winsdelln (win , 1), respectively.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_deleteln (3), curses_insdelln (3), curses_scroll (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 February 5, 2006 1

CURSES_KEYNAME (3) NetBSD Library Functions Manual CURSES_KEYNAME (3)

NAME
curses_keyname , keyname — curses report key name routine

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

char ∗
keyname (int key);

DESCRIPTION
The functionkeyname () generates a character string containing a description of the key specified inkey .

The string is formatted according to the following table:

Description Key range Stringformat
Control character 0 - 31 ˆX
Visible character 32 - 126 X
Delete character 127 ˆ?
Meta + control character 128 - 158 M-ˆX
Meta + visible character 159 - 254 M-X
Meta + delete character 255 M-ˆ?
Named key KEY_MIN - KEY_MAX KEY_EXIT
Unknown key -1

SEE ALSO
curses_input (3)

NOTE
The return value ofkeyname () is a static buffer, which will be overwritten on a subsequent call.

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
These functions first appeared inNetBSD 2.0.

NetBSD 3.0 October 17, 2007 1

CURSES_LINE (3) NetBSD Library Functions Manual CURSES_LINE (3)

NAME
curses_line , hline , whline , vline , wvline , mvhline , mvwhline , mvvline , mvwvline —
curses draw lines on windows routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
hline (chtype ch , int n);

int
whline (WINDOW∗win , chtype ch , int n);

int
mvhline (int y , int x , chtype ch , int n);

int
mvwvline (WINDOW∗win , int y , int x , chtype c , int n);

int
vline (chtype c , int n);

int
wvline (WINDOW∗win , chtype c , int n);

int
mvvline (int y , int x , chtype ch , int n);

int
mvwhline (WINDOW∗win , int y , int x , chtype c , int n);

DESCRIPTION
These functions draw lines onstdscr or on the specified window.

Thehline () function draws a horizontal line of the characterch on stdscr starting at the current cursor
position and extending forn characters, or until the right hand side ofstdscr is reached. If the text portion
of ch is 0 then the line will be drawn with theACS_HLINEcharacter.

Thewhline () function is the same as thehline () function, excepting that the line is drawn in the window
specified bywin .

The vline () function draws a vertical line of characterch on stdscr starting at the current cursor posi-
tion and moving down until eithern characters have been drawn or the bottom ofstdscr is reached. If the
text portion ofch is 0 then the line will be drawn with theACS_VLINE character.

The wvline () function is the same as thevline () function, excepting that the line is drawn on the given
window.

The mvhline (), mvwhline (), mvvline () and mvwvline () functions are the same as thehline (),
whline (), vline () andwvline () functions, respectively, excepting thatwmove() is called to move the
cursor to the position specified byy , x before the line is drawn on the window.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

NetBSD 3.0 August 12, 2002 1

CURSES_LINE (3) NetBSD Library Functions Manual CURSES_LINE (3)

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_border (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 August 12, 2002 2

CURSES_PAD (3) NetBSD Library Functions Manual CURSES_PAD (3)

NAME
curses_pad , newpad , subpad , prefresh , pnoutrefresh — curses pad routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

WINDOW∗
newpad(int lines , int cols);

WINDOW∗
subpad (WINDOW∗pad , int lines , int cols , int begin_y , int begin_x);

int
prefresh (WINDOW∗pad , int pbeg_y , int pbeg_x , int sbeg_y , int sbeg_x ,

int smax_y , int smax_x);

int
pnoutrefresh (WINDOW∗pad , int pbeg_y , int pbeg_x , int sbeg_y , int sbeg_x ,

int smax_y , int smax_x);

DESCRIPTION
These functions create and display pads on the current screen.

Thenewpad() function creates a new pad of sizelines , cols .

subpad () is similar tonewpad() excepting that the size of the subpad is bounded by the parent padpad .
The subpad shares internal data structures with the parent pad and will be refreshed when the parent pad is
refreshed. Thestarting column and rowbegin_y , begin_x are relative to the parent pad origin.

The pnoutrefresh () function performs the internal processing required by curses to determine what
changes need to be made to synchronise the internal screen buffer and the terminal but does not modify the
terminal display. A rectangular area of the pad starting at column and row pbeg_y , pbeg_x is copied to
the corresponding rectangular area of the screen buffer starting at column and row sbeg_y , sbeg_x and
extending tosmax_y , smax_x .

Theprefresh () function causes curses to propagate changes made to the pad specified bypad to the ter-
minal display. A rectangular area of the pad starting at column and row pbeg_y , pbeg_x is copied to the
corresponding rectangular area of the terminal starting at column and row sbeg_y , sbeg_x and extending
to smax_y , smax_x .

The pnoutrefresh () anddoupdate () functions can be used together to speed up terminal redraws by
deferring the actual terminal updates until after a batch of updates to multiple pads has been done.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_refresh (3), curses_window (3)

NetBSD 3.0 December 4, 2002 1

CURSES_PAD (3) NetBSD Library Functions Manual CURSES_PAD (3)

NOTES
Thesubpad () function is similar to thederwin (3) function, and not thesubwin (3) function.

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 December 4, 2002 2

CURSES_PRINT (3) NetBSD Library Functions Manual CURSES_PRINT (3)

NAME
curses_print , printw , wprintw , mvprintw , mvwprintw , unctrl — curses print formatted
strings on windows routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
printw (const char ∗fmt , . . .);

int
wprintw (WINDOW∗win , const char ∗fmt , . . .);

int
mvprintw (int y , int x , const char ∗fmt , . . .);

int
mvwprintw (WINDOW∗win , int y , int x , const char ∗fmt , . . .);

char ∗
unctrl (chtype ch);

DESCRIPTION
These functions print formatted strings onstdscr or on the specified window.

Theprintw () function formats and prints its arguments onstdscr . The behaviour is the same as that of
printf ().

Thewprintw () function is the same as theprintw () function, excepting that the resulting output is printed
on the window specified bywin .

The mvprintw () andmvwprintw () functions are the same as theprintw () andwprintw () functions,
respectively, excepting thatwmove() is called to move the cursor to the position specified byy , x before the
output is printed on the window.

Theunctrl () function returns a printable string representation of the characterch . If ch is a control char-
acter then it will be converted to the form ˆY.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_cursor (3), curses_scanw (3), printf (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

NetBSD 3.0 August 12, 2002 1

CURSES_PRINT (3) NetBSD Library Functions Manual CURSES_PRINT (3)

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 August 12, 2002 2

CURSES_REFRESH (3) NetBSD Library Functions Manual CURSES_REFRESH (3)

NAME
curses_refresh , refresh , wrefresh , wnoutrefresh , doupdate , leaveok , flushok —
curses terminal update routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
refresh (void);

int
wrefresh (WINDOW∗win);

int
wnoutrefresh (WINDOW∗win);

int
doupdate (void);

int
leaveok (WINDOW∗win , boolf flag);

int
flushok (WINDOW∗win , boolf flag);

DESCRIPTION
These functions update the terminal with the contents ofstdscr or of the specified window(s).

The refresh () function causes curses to propagate changes made tostdscr to the terminal display. Any
changes made to subwindows ofstdscr are also propagated.

Thewrefresh () function is the same as therefresh () function, excepting that changes are propagated to
the terminal from the window specified bywin .

The wnoutrefresh () function performs the internal processing required by curses to determine what
changes need to be made to synchronise the internal screen buffer and the terminal but does not modify the
terminal display.

The doupdate () function updates the terminal display to match the internal curses representation of the
display.

The wnoutrefresh () anddoupdate () functions can be used together to speed up terminal redraws by
deferring the actual terminal updates until after a batch of updates to multiple windows has been done.

Therefresh () function is equivalent townoutrefresh (stdscr) followed bydoupdate ().

The leaveok () function determines whether refresh operations may leave the screen cursor in an arbitrary
position on the screen.Settingflag to FALSE ensures that the screen cursor is positioned at the current
cursor position after a refresh operation has taken place.

The flushok () function is used to determine whether or not the screen’s output file descriptor will be
flushed on refresh. Settingflag to TRUEwill cause the output to be flushed.

NetBSD 3.0 March 26, 2003 1

CURSES_REFRESH (3) NetBSD Library Functions Manual CURSES_REFRESH (3)

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_pad (3), curses_touch (3), getch (3)

NOTES
Callingwrefresh () on a new, unchanged window has no effect.

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 March 26, 2003 2

CURSES_SCANW (3) NetBSD Library Functions Manual CURSES_SCANW (3)

NAME
curses_scanw , scanw , wscanw, mvscanw, mvwscanw — curses read formatted data from screen rou-
tines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
scanw (const char ∗fmt , . . .);

int
wscanw(WINDOW∗win , const char ∗fmt , . . .);

int
mvscanw(int y , int x , const char ∗fmt , . . .);

int
mvwscanw(WINDOW∗win , int y , int x , const char ∗fmt , . . .);

DESCRIPTION
These functions read formatted data fromstdscr or from the specified window.

Thescanw () function is the same as thescanf () function, excepting that the input data stream is read from
the current cursor position onstdscr ,

Thewscanw() function is the same as thescanw () function, excepting that the data stream is read from the
window specified bywin .

The mvscanw() and mvwscanw() functions are the same as thescanw () and mvscanw() functions,
respectively, excepting thatwmove() is called to move the cursor to the position specified byy , x before the
data is read from the window.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_cursor (3), curses_print (3), scanf (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 August 12, 2002 1

CURSES_SCREEN (3) NetBSD Library Functions Manual CURSES_SCREEN (3)

NAME
curses_screen , newterm , set_term , delscreen , endwin , initscr , isendwin ,
resizeterm , setterm — curses terminal and screen routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

SCREEN∗
newterm (char ∗type , FILE ∗outfd , FILE ∗infd);

SCREEN∗
set_term (SCREEN∗screen);

void
delscreen (SCREEN∗screen);

int
endwin (void);

WINDOW∗
initscr (void);

bool
isendwin (void);

int
resizeterm (int lines , int cols);

int
setterm (char ∗name);

extern int LINES;

extern int COLS;

DESCRIPTION
These functions initialize terminals and screens.

The newterm () function initialises the curses data structures and pointers ready for use by curses.The
type argument points to atermcap (5) capability name, or it may beNULL in which case the TERM envi-
ronment variable is used.The outfd and infd are the output and input file descriptors for the terminal.
Thenewterm () function must only be called once per terminal.

The set_term () function can be used to switch between the screens defined by callingnewterm (), a
pointer to the previous screen structure that was in use will be returned on success.

Callingdelscreen () will destroy the given screen and free all allocated resources.

Callingendwin () will end the curses session and restore the saved terminal settings.

The curses session must be initialised by callinginitscr () which saves the current terminal state and sets
up the terminal and internal data structures to support the curses application. This function call must be, with
few exceptions, the first Curses library call made. The exception to this rule is thenewterm () call which
may be called prior toinitscr (). Thesize of the curses screen is determined by checking thetty (4) size
and then thetermcap (5) entries for the terminal type. If the environment variablesLINESor COLSare set,
then these will be used instead.

NetBSD 3.0 October 24, 2007 1

CURSES_SCREEN (3) NetBSD Library Functions Manual CURSES_SCREEN (3)

When eithernewterm () or initscr () are called, the Curses library sets up signal handlers forSIGTSTP
andSIGWINCH. If a signal handler is already installed forSIGWINCH, this will also be called when the
Curses library handler is called.

The isendwin () function can be used to determine whether or not a refresh of the screen has occurred
since the last call toendwin ().

The size of the screen may be changedby callingresizeterm () with the updated number of lines and col-
umns. Thiswill resize the curses internal data structures to accommodate the changed terminal geometry.
Thecurscr andstdscr windows and any of their subwindows will be resized to fit the new screen size.
The application must redraw the screen after a call toresizeterm ().

The setterm () function sets the terminal type for the current screen to the one passed, initialising all the
curses internal data structures with information related to the named terminal.Thename argument must be
a valid name or alias in thetermcap (5) database for this function to succeed.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_window (3), tty (4), termcap (5), signal (7)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD. The resizeterm () function is ancursesextension to the Curses
library and was added inNetBSD 1.6.

NetBSD 3.0 October 24, 2007 2

CURSES_SCROLL (3) NetBSD Library Functions Manual CURSES_SCROLL (3)

NAME
curses_scroll , scrl , wscrl scroll , scrollok , setscrreg , wsetscrreg — curses window
scrolling routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
scrl (int n);

int
wscrl (WINDOW∗win , int n);

int
scroll (WINDOW∗win);

int
scrollok (WINDOW∗win , boolf flag);

int
setscrreg (int top , int bottom);

int
wsetscrreg (WINDOW∗win , int top , int bottom);

DESCRIPTION
These functions scroll areas onstdscr or on the specified window.

Thescrl () function scrollsstdscr by n lines. If n is positive then thenstdscr is scrolled up.n lines
are lost from the top ofstdscr andn blank lines are inserted at the bottom.If n is negative thenstdscr
is scrolled down.n blank lines are inserted at the top ofstdscr andn lines are lost from the bottom.

Thewscrl () function is the same as thescrl () function, excepting that it scrolls the window specified by
win .

Thescroll () function scrolls the windowwin up by one line.

The scrolling behaviour of a window can be controlled by using thescrollok () function. If theflag
argument isTRUEthen a line wrap at the bottom of the window will cause the window to be scrolled up one
line, if flag is FALSEthen lines that would force a scroll will be truncated.

Thesetscrreg () function sets up a software scrolling region onstdscr which will define a region of the
screen that will be scrolled. The scrolling of this region is also controlled by thescrollok () function.

Thewsetscrreg () function does the same as thesetscrreg () function, except that the scrolling region
is set on the window specified bywin .

If a scrolling region has been set with thesetscrreg () or wsetscrreg () functions and the current cursor
position is inside the scrolling region, then only the area inside the scrolling region is scrolled.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

NetBSD 3.0 August 12, 2002 1

CURSES_SCROLL (3) NetBSD Library Functions Manual CURSES_SCROLL (3)

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_deleteln (3), curses_insdelln (3), curses_insertln (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 August 12, 2002 2

CURSES_STANDOUT (3) NetBSD Library Functions Manual CURSES_STANDOUT (3)

NAME
curses_standout , standout , standend , wstandout , wstandend — curses standout attribute
manipulation routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
standout (void);

int
standend (void);

int
wstandout (void);

int
wstandend (void);

DESCRIPTION
These functions manipulate the standout attribute onstdscr or on the specified window.

Thestandout () function turns on the standout attribute onstdscr . Thestandend () function turns off
the standout attribute onstdscr .

Thewstandout () andwstandend () functions are equivalent tostandout () andstandend (), respec-
tively, excepting that the attribute is manipulated on the window specified bywin .

The standout () and standend () functions are equivalent to attron (A_STANDOUT) and
attroff (A_STANDOUT), respectively.

RETURN VALUES
These functions always return 1.

SEE ALSO
curses_attributes (3), curses_underscore (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

BUGS
On modern terminals that support other attributes, there is no difference between characters displayed with
the standout attribute set and those displayed with one of the other attributes set (usually bold).It is best to
avoid using standout if the terminal supports other attributes.

NetBSD 3.0 October 13, 2002 1

CURSES_TERMCAP (3) NetBSD Library Functions Manual CURSES_TERMCAP (3)

NAME
curses_termcap , fullname , getcap , longname — curses termcap querying routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

char ∗
fullname (char ∗termbuf , char ∗name);

char ∗
getcap (char ∗name);

char ∗
longname (void);

DESCRIPTION
The fullname () function takes the termcap entry intermbuf and copies the full name of the terminal
from the entry into the target variablename. The full name of the terminal is assumed to be the last alias in
the termcap entry name. It is assumed that thename variable has sufficient storage to hold the full name of
the terminal.

A termcap entry can be retrieved by calling thegetcap () function with the name of the capability inname.
The matching capability string for the terminal is returned.

The longname () function returns a verbose description of the terminal which is taken from the last name
alias in the termcap description for the terminal. This string will be at most 128 characters long and will
only be defined after a call toinitscr () or newterm ().

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
termcap (5)

STANDARDS
The Curses Library (libcurses, −lcurses) library complies with the X/Open Curses specification, part of the
Single Unix Specification.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 August 12, 2002 1

CURSES_TOUCH (3) NetBSD Library Functions Manual CURSES_TOUCH (3)

NAME
curses_touch , touchline , touchoverlap , touchwin , untouchwin , wtouchln ,
is_linetouched , is_wintouched , redrawwin , wredrawln — curses window modification rou-
tines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
touchline (WINDOW∗win , int start , int count);

int
touchoverlap (WINDOW∗win1 , WINDOW∗win2);

int
touchwin (WINDOW∗win);

int
untouchwin (WINDOW∗win);

int
wtouchln (WINDOW∗win , int line , int n , boolf changed);

bool
is_linetouched (WINDOW∗win , int line);

bool
is_wintouched (WINDOW∗win);

int
redrawwin (WINDOW∗win);

int
wredrawln (WINDOW∗win , int line , int n);

DESCRIPTION
These functions mark lines and windows as modified and check the modification status of lines and win-
dows.

The touchline () function markscount lines starting fromstart in window win as having been modi-
fied. Thesecharacters will be synced to the terminal on the next call towrefresh ().

Thetouchoverlap () function marks the portion ofwin2 that overlapswin1 as being modified.

The touchwin () function marks the entire window win as having been modified.Conversely, the
untouchwin () function marks the window win as being unmodified, so that any changes made to that
window will not be synced to the terminal during awrefresh ().

Thewtouchln () function performs one of two operations onn lines starting atline in the given window.
If changed is 1 then the given line range is marked as being modified, ifchanged is 0 then the given line
range is set to being unmodified.

The is_linetouched () function returnsTRUEif line in window win has been modified since the last
refresh was done, otherwiseFALSE is returned.

NetBSD 3.0 March 4, 2005 1

CURSES_TOUCH (3) NetBSD Library Functions Manual CURSES_TOUCH (3)

is_wintouched () returnsTRUEif the window win has been modified since the last refresh, otherwise
FALSE is returned.

The redrawwin () function marks the entire window win as having been corrupted.Is is equivalent to the
touchwin () function.

The wredrawln () function marksn lines starting atline in the given window as corrupted. Itis equiv-
alent towtouchln (win , line , n , 1).

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_refresh (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 March 4, 2005 2

CURSES_TTY (3) NetBSD Library Functions Manual CURSES_TTY (3)

NAME
curses_tty , beep , flash , curs_set , def_prog_mode , reset_prog_mode ,
def_shell_mode , reset_shell_mode , echo , noecho , delay_output , erasechar ,
flushinp , gettmode , halfdelay , has_ic , has_il , idcok , idlok , intrflush , noqiflush ,
qiflush , killchar , meta , napms, nl , nonl , cbreak , nocbreak , raw , noraw , savetty ,
resetty — curses terminal manipulation routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
beep (void);

int
flash (void);

int
curs_set (int visibility);

int
def_prog_mode (void);

int
reset_prog_mode (void);

int
def_shell_mode (void);

int
reset_shell_mode (void);

int
echo (void);

int
noecho (void);

int
delay_output (int ms);

char
erasechar (void);

int
flushinp (void);

int
gettmode (void);

int
has_ic (void);

int
has_il (void);

NetBSD 3.0 June 13, 2003 1

CURSES_TTY (3) NetBSD Library Functions Manual CURSES_TTY (3)

int
idcok (WINDOW∗win , boolf flag);

int
idlok (WINDOW∗win , boolf flag);

int
intrflush (WINDOW∗win , boolf flag);

void
noqiflush (void);

void
qiflush (void);

char
killchar (void);

int
meta (WINDOW∗win , boolf flag);

int
napms(int ms);

int
nl (void);

int
nonl (void);

int
cbreak (void);

int
nocbreak (void);

int
halfdelay (int);

int
raw (void);

int
noraw (void);

int
savetty (void);

int
resetty (void);

DESCRIPTION
These functions manipulate curses terminal settings.

The beep () function rings the terminal bell, if this is possible.Failing that, the terminal screen will be
flashed. Ifneither of these are possible, then no action will be taken. flash () will flash the terminal screen
if possible. Failing that, the terminal bell will be rung. If neither of these are possible then no action will be
taken.

NetBSD 3.0 June 13, 2003 2

CURSES_TTY (3) NetBSD Library Functions Manual CURSES_TTY (3)

The cursor visibility can be set by callingcurs_set (). The following visibility settings are valid for
curs_set ():

Visibility Effect
0 cursor is invisible.
1 cursor is normal visibility
2 cursor is high visibility

A successful call tocurs_set () will return the previous visibility setting for the cursor.

Thedelay_output () function pauses the output to the terminal by sending the appropriate number of ter-
minal pad characters such that the transmission time of the pad characters will takemsmilliseconds.

Calling def_prog_mode () will cause the current terminal curses setting to be saved. A subsequent call to
reset_prog_mode (), will restore the saved settings. Thisis useful when calls to external programs are
made that may reset the terminal characteristics.

Thedef_shell_mode () function saves the current terminal line settings.These settings are the ones that
will be restored when the curses application exits. Conversely, reset_shell_mode () will save the cur-
rent terminal curses settings for later restoration and restores the previously saved terminal line settings.

Theecho () function turns on curses echo mode, characters entered will be echoed to the terminal by curses.
Thenoecho () function disables this feature.

The current erase character for the terminal can be determined by calling theerasechar () function.

Theflushinp () function discards any pending input for the current screen.

The modes for the current terminal can be reset by callinggettmode (), this will perform the initialisation
on the terminal that is normally done by curses at start up.

Thehas_ic () function returns eitherTRUEor FALSEdepending on whether or not the terminal has a insert
character capability or not. Similarly thehas_il () function does the same test but for a insert line capabil-
ity.

The use of the insert character capability in curses operations can be enabled or disabled by callingidcok ()
on the desired window. Similarly, the use of the insert line capability can be controlled using theidlok ()
function.

The intrflush () function controls whether or not a flush of the input buffer is performed when an inter-
rupt key (kill, suspend or quit) is pressed.The win parameter is ignored.The noqiflush () function is
equivalent to intrflush (stdscr , FALSE). The qiflush () function is equivalent to
intrflush (stdscr , TRUE).

The character that performs the line kill function can be determined by calling thekillchar () function.

The meta () function turns on and off the generation of 8 bit characters by the terminal, ifflag is FALSE
then only 7 bit characters will be returned, ifflag is TRUEthen 8 bit characters will be returned by the ter-
minal.

Thenapms() causes the application to sleep for the number of milliseconds specified byms.

Calling nl () will cause curses to map all carriage returns to newlines on input, this functionality is enabled
by default. Thenonl () function disables this behaviour.

Thecbreak () function will put the terminal into cbreak mode, which means that characters will be returned
one at a time instead of waiting for a newline character, line discipline processing will be performed.The
nocbreak () function disables this mode.

NetBSD 3.0 June 13, 2003 3

CURSES_TTY (3) NetBSD Library Functions Manual CURSES_TTY (3)

Calling halfdelay () puts the terminal into the same mode ascbreak () with the exception that if no char-
acter is received within the specified number of tenths of a second then the input routine will returnERR.
This mode can be cancelled by callingnocbreak (). Thevalid range for the timeout is from 1 to 255 tenths
of a second.

Thenoraw () function sets the input mode for the current terminal into Cooked mode, that is input character
translation and signal character processing is performed.The raw () function puts the terminal into Raw
mode, no input character translation is done nor is signal character processing.

The terminal tty flags can be saved by calling savetty () and may be restored by callingresetty (), the
use of these functions is discouraged as they may cause the terminal to be put into a state that is incompatible
with curses operation.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
getch (3), termios (4)

NOTES
The idcok () and idlok () currently have no effect on the curses code at all, currently curses will always
use the terminal insert character and insert line capabilities if available.

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 June 13, 2003 4

CURSES_UNDERSCORE (3) NetBSD Library Functions Manual CURSES_UNDERSCORE (3)

NAME
curses_underscore , underscore , underend , wunderscore , wunderend — curses underscore
attribute manipulation routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
underscore (void);

int
underend (void);

int
wunderscore (void);

int
wunderend (void);

DESCRIPTION
These functions manipulate the underscore attribute onstdscr or on the specified window.

The underscore () function turns on the underscore attribute onstdscr . The underend () function
turns off the underscore attribute onstdscr .

The wunderscore () andwunderend () functions are equivalent to underscore () andunderend (),
respectively, excepting that the attribute is manipulated on the window specified bywin .

The underscore () and underend () functions are equivalent to wattron (A_UNDERLINE) and
wattroff (A_UNDERLINE), respectively.

RETURN VALUES
These functions always return 1.

SEE ALSO
curses_attributes (3), curses_standout (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
These functions first appeared inNetBSD 1.5.

NetBSD 3.0 October 13, 2002 1

CURSES_WINDOW (3) NetBSDLibrary Functions Manual CURSES_WINDOW (3)

NAME
curses_window , copywin , dupwin , delwin , derwin , mvwin , mvderwin , newwin , overlay ,
overwrite , subwin , wresize — curses window routines

LIBRARY
Curses Library (libcurses, −lcurses)

SYNOPSIS
#include <curses.h>

int
copywin (WINDOW∗source , WINDOW∗dest , int sminrow , int smincol , int dminrow ,

int dmincol , int dmaxrow , int dmaxcol , int overlay);

WINDOW∗
dupwin (WINDOW∗win);

WINDOW∗
derwin (WINDOW∗win , int lines , int cols , int y , int x);

int
delwin (WINDOW∗win);

int
mvwin (WINDOW∗win , int y , int x);

int
mvderwin (WINDOW∗win , int y , int x);

WINDOW∗
newwin (int lines , int cols , int begin_y , int begin_x);

WINDOW∗
subwin (WINDOW∗win , int lines , int cols , int begin_y , int begin_x);

int
overlay (WINDOW∗source , WINDOW∗dest);

int
overwrite (WINDOW∗source , WINDOW∗dest);

int
wresize (WINDOW∗win , int lines , int cols);

DESCRIPTION
These functions create, modify and delete windows on the current screen.

The contents of a window may be copied to another window by using thecopywin () function, a section of
the destination window dest bounded by(dminrow , dmincol) and (dmaxrow , dmaxcol) will be
overwritten with the contents of the window source starting at the coordinates(sminrow , smincol). If
the overlay flag is TRUE then only non-blank characters fromsource will be copied todest , if
overlay is FALSE then all characters fromsource will be copied todest . If the bounding rectangles
of either the source or the destination windows lay outside the maximum size of the respective windows then
the size of the window copied will be adjusted to be within the bounds of both the source and destination
windows.

Thedupwin () function creates an exact duplicate ofwin and returns a pointer to it.

NetBSD 3.0 March 31, 2008 1

CURSES_WINDOW (3) NetBSDLibrary Functions Manual CURSES_WINDOW (3)

Calling derwin () will create a subwindow of win in the same manner assubwin () excepting that the
starting column and rowy , x are relative to the parent window origin.

A window may deleted and all resources freed by calling thedelwin () function with the pointer to the win-
dow to be deleted inwin .

A window can be moved to a new position by calling themvwin () function. They andx positions are the
new origin of the window on the screen. If the new position would cause the any part of the window to lie
outside the screen, it is an error and the window is not moved.

A subwindow can be moved relative to the parent window by calling themvderwin () function, they andx
positions are relative to the origin of the parent window. If the given window in win is not a subwindow
then an error will be returned. If the new position would cause the any part of the window to lie outside the
parent window, it is an error and the window is not moved.

The newwin () function creates a new window of size lines , cols with an origin atbegin_y ,
begin_x . If lines is less than or equal to zero then the number of rows for the window is set toLINES
- begin_x + lines . Similarly if cols is less than or equal to zero then the number of columns for the
window is set toCOLS - begin_y + cols .

subwin () is similar tonewwin () excepting that the size of the subwindow is bounded by the parent win-
dow win . The subwindow shares internal data structures with the parent window and will be refreshed when
the parent window is refreshed. Thesubwindow inherits the background character and attributes of the par-
ent window.

The overlay () function copies the contents of the source window source to the destination window
dest , only the characters that are not the background character in the source window are copied to the desti-
nation. Thewindows need not be the same size, only the overlapping portion of both windows will be
copied. Theoverwrite () function performs the same functions asoverlay () excepting that characters
from the source window are copied to the destination without exception.

wresize () resizes the specified window to the new number of lines and columns given, all internal curses
structures are resized.Any subwindows of the specified window will also be resized if any part of them falls
outside the new parent window size. Theapplication must redraw the window after it has been resized.Note
thatcurscr andstdscr can not be resized to be larger than the size of the screen.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following values:

OK The function completed successfully.
ERR An error occurred in the function.

SEE ALSO
curses_pad (3), curses_fileio (3), curses_screen (3)

STANDARDS
TheNetBSD Curses library complies with the X/Open Curses specification, part of the Single Unix Specifica-
tion.

HISTORY
The Curses package appeared in 4.0BSD.

NetBSD 3.0 March 31, 2008 2

CUSERID (3) NetBSD Library Functions Manual CUSERID (3)

NAME
cuserid — get user name

LIBRARY
Compatibility Library (libcompat, −lcompat)

SYNOPSIS
#include <stdio.h>

char ∗
cuserid (char ∗buf);

DESCRIPTION
This interface is available from the compatibility library , libcompat and has been obsoleted by
getlogin (2).

Thecuserid () function returns a character string representation of the user name associated with the effec-
tive user ID of the calling process.

If buf is not theNULLpointer, the user name is copied into the memory referenced bybuf . The argument
buf is assumed to point to an array at leastL_cuserid (as defined in the include file〈stdio.h 〉) bytes
long. Otherwise,the user name is copied to a static buffer.

RETURN VALUES
If buf is not theNULLpointer,buf is returned; otherwise the address of the static buffer is returned.

If the user name could not be determined, ifbuf is not theNULL pointer, the null character ‘\0’ will be
stored at∗buf ; otherwise theNULLpointer is returned.

SEE ALSO
getlogin (2), getpwent (3)

STANDARDS
Thecuserid () function conforms toIEEE Std 1003.1-1988 (“POSIX.1”).

BUGS
Due to irreconcilable differences in historic implementations,cuserid () was removed from theISO/IEC
9945-1:1990 (“POSIX.1”) standard. This implementation exists purely for compatibility with existing pro-
grams. New programs should use one of the following three alternatives to obtain the user name:

1. getlogin () to return the user’s login name.
2. getpwuid (geteuid ()) to return the user name associated with the calling process’ effective

user ID.
3. getpwuid (getuid ()) to return the user name associated with the calling process’ real user

ID.

NetBSD 3.0 November 28, 1993 1

d2i_ASN1_OBJECT(3) OpenSSL d2i_ASN1_OBJECT(3)

NAME
d2i_ASN1_OBJECT, i2d_ASN1_OBJECT − ASN1 OBJECT IDENTIFIER functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/objects.h>

ASN1_OBJECT *d2i_ASN1_OBJECT(ASN1_OBJECT **a, unsigned char **pp, long length);
int i2d_ASN1_OBJECT(ASN1_OBJECT *a, unsigned char **pp);

DESCRIPTION
These functions decode and encode anASN1 OBJECT IDENTIFIER.

Othewise these behave in a similar way tod2i_X509()and i2d_X509()described in thed2i_X509(3) man-
ual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.9-dev 2003-07-24 1

d2i_DHparams(3) OpenSSL d2i_DHparams(3)

NAME
d2i_DHparams, i2d_DHparams − PKCS#3 DH parameter functions.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dh.h>

DH *d2i_DHparams(DH **a, unsigned char **pp, long length);
int i2d_DHparams(DH *a, unsigned char **pp);

DESCRIPTION
These functions decode and encode PKCS#3DH parameters using the DHparameter structure described in
PKCS#3.

Othewise these behave in a similar way tod2i_X509()and i2d_X509()described in thed2i_X509(3) man-
ual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.9-dev 2003-07-24 1

d2i_DSAPublicKey(3) OpenSSL d2i_DSAPublicKey(3)

NAME
d2i_DSAPublicKey, i2d_DSAPublicKey, d2i_DSAPrivateKey, i2d_DSAPrivateKey, d2i_DSA_PUBKEY,
i2d_DSA_PUBKEY, d2i_DSA_SIG, i2d_DSA_SIG − DSA key encoding and parsing functions.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dsa.h>
#include <openssl/x509.h>

DSA * d2i_DSAPublicKey(DSA **a, const unsigned char **pp, long length);

int i2d_DSAPublicKey(const DSA *a, unsigned char **pp);

DSA * d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length);

int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp);

DSA * d2i_DSAPrivateKey(DSA **a, const unsigned char **pp, long length);

int i2d_DSAPrivateKey(const DSA *a, unsigned char **pp);

DSA * d2i_DSAparams(DSA **a, const unsigned char **pp, long length);

int i2d_DSAparams(const DSA *a, unsigned char **pp);

DSA * d2i_DSA_SIG(DSA_SIG **a, const unsigned char **pp, long length);

int i2d_DSA_SIG(const DSA_SIG *a, unsigned char **pp);

DESCRIPTION
d2i_DSAPublicKey() and i2d_DSAPublicKey() decode and encode theDSA public key components struc-
ture.

d2i_DSA_PUBKEY()andi2d_DSA_PUBKEY()decode and encode anDSA public key using a SubjectPub-
licKeyInfo (certificate public key) structure.

d2i_DSAPrivateKey(), i2d_DSAPrivateKey() decode and encode theDSA private key components.

d2i_DSAparams(), i2d_DSAparams()decode and encode theDSA parameters using aDss-Parmsstructure
as defined inRFC2459.

d2i_DSA_SIG(), i2d_DSA_SIG()decode and encode aDSA signature using aDss-Sig-Valuestructure as
defined inRFC2459.

The usage of all of these functions is similar to thed2i_X509() and i2d_X509() described in the
d2i_X509(3) manual page.

NOTES
TheDSA structure passed to the private key encoding functions should have all the private key components
present.

The data encoded by the private key functions is unencrypted and therefore offers no private key security.

TheDSA_PUBKEY functions should be used in preference to theDSAPublicKey functions when encoding
public keys because they use a standard format.

TheDSAPublicKey functions use an non standard format the actual data encoded depends on the value of
the write_params field of thea key parameter. If write_params is zero then only thepub_key field is
encoded as anINTEGER . If write_params is 1 then aSEQUENCE consisting of thep, q, g andpub_key
respectively fields are encoded.

TheDSAPrivateKey functions also use a non standard structure consiting consisting of aSEQUENCEcon-
taining thep, q, g andpub_keyandpriv_key fields respectively.

SEE ALSO
d2i_X509(3)

0.9.9-dev 2004-03-19 1

d2i_DSAPublicKey(3) OpenSSL d2i_DSAPublicKey(3)

HISTORY
TBA

0.9.9-dev 2004-03-19 2

d2i_PKCS8PrivateKey(3) OpenSSL d2i_PKCS8PrivateKey(3)

NAME
d2i_PKCS8PrivateKey_bio, d2i_PKCS8PrivateKey_fp, i2d_PKCS8PrivateKey_bio, i2d_PKCS8Pri-
vateKey_fp, i2d_PKCS8PrivateKey_nid_bio, i2d_PKCS8PrivateKey_nid_fp − PKCS#8 format private key
functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u);
EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
char *kstr, int klen,
pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
char *kstr, int klen,
pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid,
char *kstr, int klen,
pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid,
char *kstr, int klen,
pem_password_cb *cb, void *u);

DESCRIPTION
The PKCS#8 functions encode and decode private keys in PKCS#8 format using both PKCS#5 v1.5 and
PKCS#5 v2.0 password based encryption algorithms.

Other than the use ofDER as opposed toPEM these functions are identical to the correspondingPEM func-
tion as described in thepem(3) manual page.

NOTES
Before using these functionsOpenSSL_add_all_algorithms(3) should be called to initialize the internal
algorithm lookup tables otherwise errors about unknown algorithms will occur if an attempt is made to
decrypt a private key.

These functions are currently the only way to store encrypted private keys usingDER format.

Currently all the functions use BIOs orFILE pointers, there are no functions which work directly on mem-
ory: this can be readily worked around by converting the buffers to memory BIOs, seeBIO_s_mem(3) for
details.

SEE ALSO
pem(3)

0.9.9-dev 2003-07-24 1

d2i_RSAPublicKey(3) OpenSSL d2i_RSAPublicKey(3)

NAME
d2i_RSAPublicKey, i2d_RSAPublicKey, d2i_RSAPrivateKey, i2d_RSAPrivateKey, d2i_RSA_PUBKEY,
i2d_RSA_PUBKEY, i2d_Netscape_RSA, d2i_Netscape_RSA − RSA public and private key encoding
functions.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>
#include <openssl/x509.h>

RSA * d2i_RSAPublicKey(RSA **a, unsigned char **pp, long length);

int i2d_RSAPublicKey(RSA *a, unsigned char **pp);

RSA * d2i_RSA_PUBKEY(RSA **a, unsigned char **pp, long length);

int i2d_RSA_PUBKEY(RSA *a, unsigned char **pp);

RSA * d2i_RSAPrivateKey(RSA **a, unsigned char **pp, long length);

int i2d_RSAPrivateKey(RSA *a, unsigned char **pp);

int i2d_Netscape_RSA(RSA *a, unsigned char **pp, int (*cb)());

RSA * d2i_Netscape_RSA(RSA **a, unsigned char **pp, long length, int (*cb)());

DESCRIPTION
d2i_RSAPublicKey() andi2d_RSAPublicKey() decode and encode a PKCS#1 RSAPublicKey structure.

d2i_RSA_PUBKEY()and i2d_RSA_PUBKEY()decode and encode anRSA public key using a SubjectPub-
licKeyInfo (certificate public key) structure.

d2i_RSAPrivateKey(), i2d_RSAPrivateKey() decode and encode a PKCS#1 RSAPrivateKey structure.

d2i_Netscape_RSA(), i2d_Netscape_RSA()decode and encode anRSA private key in NET format.

The usage of all of these functions is similar to thed2i_X509() and i2d_X509() described in the
d2i_X509(3) manual page.

NOTES
The RSA structure passed to the private key encoding functions should have all the PKCS#1 private key
components present.

The data encoded by the private key functions is unencrypted and therefore offers no private key security.

The NET format functions are present to provide compatibility with certain very old software. This format
has some severe security weaknesses and should be avoided if possible.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.9-dev 2004-03-19 1

d2i_SSL_SESSION(3) OpenSSL d2i_SSL_SESSION(3)

NAME
d2i_SSL_SESSION, i2d_SSL_SESSION − convert SSL_SESSION object from/to ASN1 representation

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ssl.h>

SSL_SESSION *d2i_SSL_SESSION(SSL_SESSION **a, const unsigned char **pp, long length);
int i2d_SSL_SESSION(SSL_SESSION *in, unsigned char **pp);

DESCRIPTION
d2i_SSL_SESSION()transforms the externalASN1 representation of anSSL/TLS session, stored as binary
data at locationpp with lengthlength, into anSSL_SESSIONobject.

i2d_SSL_SESSION()transforms theSSL_SESSIONobject in into theASN1 representation and stores it into
the memory location pointed to bypp. The length of the resultingASN1 representation is returned. Ifpp is
theNULL pointer, only the length is calculated and returned.

NOTES
The SSL_SESSIONobject is built from several malloc()ed parts, it can therefore not be moved, copied or
stored directly. In order to store session data on disk or into a database, it must be transformed into a binary
ASN1 representation.

When usingd2i_SSL_SESSION(), theSSL_SESSIONobject is automatically allocated. The reference count
is 1, so that the session must be explicitly removed usingSSL_SESSION_free(3), unless theSSL_SESSION
object is completely taken over, when being called inside theget_session_cb() (see
SSL_CTX_sess_set_get_cb(3)).

SSL_SESSIONobjects keep internal link information about the session cache list, when being inserted into
one SSL_CTX object’s session cache.One SSL_SESSIONobject, regardless of its reference count, must
therefore only be used with oneSSL_CTXobject (and theSSLobjects created from thisSSL_CTXobject).

When usingi2d_SSL_SESSION(), the memory location pointed to bypp must be large enough to hold the
binary representation of the session. There is no known limit on the size of the createdASN1 representation,
so the necessary amount of space should be obtained by first callingi2d_SSL_SESSION()with pp=NULL ,
and obtain the size needed, then allocate the memory and calli2d_SSL_SESSION()again.

RETURN VALUES
d2i_SSL_SESSION()returns a pointer to the newly allocatedSSL_SESSIONobject. In case of failure the
NULL-pointer is returned and the error message can be retrieved from the error stack.

i2d_SSL_SESSION()returns the size of theASN1 representation in bytes.When the session is not valid, 0
is returned and no operation is performed.

SEE ALSO
ssl(3), SSL_SESSION_free(3), SSL_CTX_sess_set_get_cb(3)

0.9.9-dev 2005-04-23 1

d2i_X509(3) OpenSSL d2i_X509(3)

NAME
d2i_X509, i2d_X509, d2i_X509_bio, d2i_X509_fp, i2d_X509_bio, i2d_X509_fp − X509 encode and
decode functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

X509 *d2i_X509(X509 **px, const unsigned char **in, int len);
int i2d_X509(X509 *x, unsigned char **out);

X509 *d2i_X509_bio(BIO *bp, X509 **x);
X509 *d2i_X509_fp(FILE *fp, X509 **x);

int i2d_X509_bio(X509 *x, BIO *bp);
int i2d_X509_fp(X509 *x, FILE *fp);

DESCRIPTION
The X509 encode and decode routines encode and parse anX509 structure, which represents an X509 cer-
tificate.

d2i_X509()attempts to decodelen bytes at*in . If successful a pointer to theX509 structure is returned. If
an error occurred thenNULL is returned. Ifpx is notNULL then the returned structure is written to*px . If
*px is notNULL then it is assumed that*px contains a valid X509 structure and an attempt is made to re-
use it. If the call is successful*in is incremented to the byte following the parsed data.

i2d_X509()encodes the structure pointed to byx into DER format. If out is not NULL is writes theDER
encoded data to the buffer at*out , and increments it to point after the data just written. If the return value
is negative an error occurred, otherwise it returns the length of the encoded data.

For OpenSSL 0.9.7 and later if*out is NULL memory will be allocated for a buffer and the encoded data
written to it. In this case*out is not incremented and it points to the start of the data just written.

d2i_X509_bio()is similar tod2i_X509()except it attempts to parse data fromBIO bp.

d2i_X509_fp()is similar tod2i_X509()except it attempts to parse data fromFILE pointerfp.

i2d_X509_bio()is similar toi2d_X509()except it writes the encoding of the structurex to BIO bp and it
returns 1 for success and 0 for failure.

i2d_X509_fp()is similar to i2d_X509()except it writes the encoding of the structurex to BIO bp and it
returns 1 for success and 0 for failure.

NOTES
The lettersi and d in for example i2d_X509 stand for ‘‘internal’’ (that is an internal C structure) and
‘‘ DER’’ . So that i2d_X509converts from internal toDER.

The functions can also understandBER forms.

The actual X509 structure passed toi2d_X509()must be a valid populatedX509 structure it cannot simply
be fed with an empty structure such as that returned byX509_new().

The encoded data is in binary form and may contain embedded zeroes.Therefore any FILE pointers or
BIOs should be opened in binary mode. Functions such asstrlen() will not return the correct length of the
encoded structure.

The ways that*in and*out are incremented after the operation can trap the unwary. See theWARNINGS
section for some common errors.

The reason for the auto increment behaviour is to reflect a typical usage ofASN1 functions: after one struc-
ture is encoded or decoded another will processed after it.

0.9.9-dev 2005-11-24 1

d2i_X509(3) OpenSSL d2i_X509(3)

EXAMPLES
Allocate and encode theDER encoding of an X509 structure:

int len;
unsigned char *buf, *p;

len = i2d_X509(x, NULL);

buf = OPENSSL_malloc(len);

if (buf == NULL)
/* error */

p = buf;

i2d_X509(x, &p);

If you are using OpenSSL 0.9.7 or later then this can be simplified to:

int len;
unsigned char *buf;

buf = NULL;

len = i2d_X509(x, &buf);

if (len < 0)
/* error */

Attempt to decode a buffer:

X509 *x;

unsigned char *buf, *p;

int len;

/* Something to setup buf and len */

p = buf;

x = d 2i_X509(NULL, &p, len);

if (x == NULL)
/* Some error */

Alternative technique:

X509 *x;

unsigned char *buf, *p;

int len;

/* Something to setup buf and len */

p = buf;

x = NULL;

if(!d2i_X509(&x, &p, len))
/* Some error */

WARNINGS
The use of temporary variable is mandatory. A common mistake is to attempt to use a buffer directly as fol-
lows:

int len;
unsigned char *buf;

len = i2d_X509(x, NULL);

0.9.9-dev 2005-11-24 2

d2i_X509(3) OpenSSL d2i_X509(3)

buf = OPENSSL_malloc(len);

if (buf == NULL)
/* error */

i2d_X509(x, &buf);

/* Other stuff ... */

OPENSSL_free(buf);

This code will result inbuf apparently containing garbage because it was incremented after the call to point
after the data just written.Also buf will no longer contain the pointer allocated byOPENSSL_malloc()
and the subsequent call toOPENSSL_free()may well crash.

The auto allocation feature (setting buf toNULL) only works on OpenSSL 0.9.7 and later. Attempts to use it
on earlier versions will typically cause a segmentation violation.

Another trap to avoid is misuse of thexp argument tod2i_X509():

X509 *x;

if (!d2i_X509(&x, &p, len))
/* Some error */

This will probably crash somewhere ind2i_X509(). The reason for this is that the variablex is uninitialized
and an attempt will be made to interpret its (invalid) value as anX509 structure, typically causing a seg-
mentation violation. Ifx is set toNULL first then this will not happen.

BUGS
In some versions of OpenSSL the ‘‘reuse’’ behaviour of d2i_X509()when*px is valid is broken and some
parts of the reused structure may persist if they are not present in the new one. As a result the use of this
‘‘ reuse’’ behaviour is strongly discouraged.

i2d_X509()will not return an error in many versions of OpenSSL, if mandatory fields are not initialized due
to a programming error then the encoded structure may contain invalid data or omit the fields entirely and
will not be parsed byd2i_X509(). This may be fixed in future so code should not assume thati2d_X509()
will always succeed.

RETURN VALUES
d2i_X509(), d2i_X509_bio()andd2i_X509_fp()return a valid X509 structure orNULL if an error occurs.
The error code that can be obtained byERR_get_error(3).

i2d_X509(), i2d_X509_bio()and i2d_X509_fp()return a the number of bytes successfully encoded or a
negative value if an error occurs. The error code can be obtained byERR_get_error(3).

i2d_X509_bio()and i2d_X509_fp()returns 1 for success and 0 if an error occurs The error code can be
obtained byERR_get_error(3).

SEE ALSO
ERR_get_error(3)

HISTORY
d2i_X509, i2d_X509, d2i_X509_bio, d2i_X509_fp, i2d_X509_bio and i2d_X509_fp are available in all
versions of SSLeay and OpenSSL.

0.9.9-dev 2005-11-24 3

d2i_X509_ALGOR(3) OpenSSL d2i_X509_ALGOR(3)

NAME
d2i_X509_ALGOR, i2d_X509_ALGOR − AlgorithmIdentifier functions.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

X509_ALGOR *d2i_X509_ALGOR(X509_ALGOR **a, unsigned char **pp, long length);
int i2d_X509_ALGOR(X509_ALGOR *a, unsigned char **pp);

DESCRIPTION
These functions decode and encode anX509_ALGOR structure which is equivalent to theAlgorithmI-
dentifier structure.

Othewise these behave in a similar way tod2i_X509()and i2d_X509()described in thed2i_X509(3) man-
ual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.9-dev 2003-07-24 1

d2i_X509_CRL(3) OpenSSL d2i_X509_CRL(3)

NAME
d2i_X509_CRL, i2d_X509_CRL, d2i_X509_CRL_bio, d2i_509_CRL_fp, i2d_X509_CRL_bio,
i2d_X509_CRL_fp − PKCS#10 certificate request functions.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

X509_CRL *d2i_X509_CRL(X509_CRL **a, const unsigned char **pp, long length);
int i2d_X509_CRL(X509_CRL *a, unsigned char **pp);

X509_CRL *d2i_X509_CRL_bio(BIO *bp, X509_CRL **x);
X509_CRL *d2i_X509_CRL_fp(FILE *fp, X509_CRL **x);

int i2d_X509_CRL_bio(X509_CRL *x, BIO *bp);
int i2d_X509_CRL_fp(X509_CRL *x, FILE *fp);

DESCRIPTION
These functions decode and encode an X509CRL (certificate revocation list).

Othewise the functions behave in a similar way to d2i_X509() and i2d_X509() described in the
d2i_X509(3) manual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.9-dev 2005-11-24 1

d2i_X509_NAME(3) OpenSSL d2i_X509_NAME(3)

NAME
d2i_X509_NAME, i2d_X509_NAME − X509_NAME encoding functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

X509_NAME *d2i_X509_NAME(X509_NAME **a, unsigned char **pp, long length);
int i2d_X509_NAME(X509_NAME *a, unsigned char **pp);

DESCRIPTION
These functions decode and encode anX509_NAME structure which is the the same as theName type
defined inRFC2459(and elsewhere) and used for example in certificate subject and issuer names.

Othewise the functions behave in a similar way to d2i_X509() and i2d_X509() described in the
d2i_X509(3) manual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.9-dev 2003-07-24 1

d2i_X509_REQ(3) OpenSSL d2i_X509_REQ(3)

NAME
d2i_X509_REQ, i2d_X509_REQ, d2i_X509_REQ_bio, d2i_X509_REQ_fp, i2d_X509_REQ_bio,
i2d_X509_REQ_fp − PKCS#10 certificate request functions.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

X509_REQ *d2i_X509_REQ(X509_REQ **a, const unsigned char **pp, long length);
int i2d_X509_REQ(X509_REQ *a, unsigned char **pp);

X509_REQ *d2i_X509_REQ_bio(BIO *bp, X509_REQ **x);
X509_REQ *d2i_X509_REQ_fp(FILE *fp, X509_REQ **x);

int i2d_X509_REQ_bio(X509_REQ *x, BIO *bp);
int i2d_X509_REQ_fp(X509_REQ *x, FILE *fp);

DESCRIPTION
These functions decode and encode a PKCS#10 certificate request.

Othewise these behave in a similar way tod2i_X509()and i2d_X509()described in thed2i_X509(3) man-
ual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.9-dev 2005-11-24 1

d2i_X509_SIG(3) OpenSSL d2i_X509_SIG(3)

NAME
d2i_X509_SIG, i2d_X509_SIG − DigestInfo functions.

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

X509_SIG *d2i_X509_SIG(X509_SIG **a, unsigned char **pp, long length);
int i2d_X509_SIG(X509_SIG *a, unsigned char **pp);

DESCRIPTION
These functions decode and encode an X509_SIG structure which is equivalent to theDigestInfo structure
defined in PKCS#1 and PKCS#7.

Othewise these behave in a similar way tod2i_X509()and i2d_X509()described in thed2i_X509(3) man-
ual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.9-dev 2003-07-24 1

DAEMON (3) NetBSD Library Functions Manual DAEMON (3)

NAME
daemon — run in the background

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
daemon(int nochdir , int noclose);

DESCRIPTION
Thedaemon() function is for programs wishing to detach themselves from the controlling terminal and run
in the background as system daemons.

Unless the argumentnochdir is non-zero,daemon() changes the current working directory to the root
(/) .

Unless the argumentnoclose is non-zero,daemon() will redirect standard input, standard output and stan-
dard error to/dev/null .

RETURN VALUES
On return 0 indicates success with −1 indicating error.

ERRORS
The functiondaemon() may fail and seterrno for any of the errors specified for the library functions
fork (2) andsetsid (2).

SEE ALSO
fork (2), setsid (2)

HISTORY
Thedaemon() function first appeared in 4.4BSD.

CAVEATS
Unless thenoclose argument is non-zero,daemon() will close the first three file descriptors and redirect
them to /dev/null . Normally, these correspond to standard input, standard output and standard error.
However, if any of those file descriptors refer to something else they will still be closed, resulting in incorrect
behavior of the calling program. This can happen if any of standard input, standard output or standard error
have been closed before the program was run. Programs usingdaemon() should therefore make sure to
either calldaemon() before opening any files or sockets or, alternately, verifying that any file descriptors
obtained have a value greater than 2.

BUGS
daemon() usesfork () as part of its tty detachment mechanism.Consequently the process id changes when
daemon() is invoked. Processesemployingdaemon() can not be reliably waited upon untildaemon() has
been invoked.

NetBSD 3.0 September 3, 1999 1

DBM_CLEARERR (3) NetBSD Library Functions Manual DBM_CLEARERR (3)

NAME
dbm_clearerr , dbm_close , dbm_delete , dbm_dirfno , dbm_error , dbm_fetch ,
dbm_firstkey , dbm_nextkey , dbm_open, dbm_store , ndbm — database functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ndbm.h>

int
dbm_clearerr (DBM ∗db);

void
dbm_close (DBM ∗db);

int
dbm_delete (DBM ∗db , datum key);

int
dbm_dirfno (DBM ∗db);

int
dbm_error (DBM ∗db);

datum
dbm_fetch (DBM ∗db , datum key);

datum
dbm_firstkey (DBM ∗db);

datum
dbm_nextkey (DBM ∗db);

DBM ∗
dbm_open(const char ∗file , int open_flags , mode_t file_mode);

int
dbm_store (DBM ∗db , datum key , datum content , int store_mode);

DESCRIPTION
Thendbm facility provides access to hash database files.

Tw o data types are fundamental to thendbm facility. DBMserves as a handle to a database. It is an opaque
type.

The other data type isdatum , which is a structure type which includes the following members:

void ∗ dptr
size_t dsize

A datum is thus given by dptr pointing at an object ofdsize bytes in length.

The dbm_open() function opens a database.The file argument is the pathname which the actual data-
base file pathname is based on. This implementation uses a single file with the suffix .db appended to
file . Theopen_flags argument has the same meaning as theflags argument toopen (2) except that
when opening a database for write-only access the file is opened for read/write access, and theO_APPEND
flag must not be specified.The file_mode argument has the same meaning as themode argument to
open (2).

NetBSD 3.0 April 30, 2004 1

DBM_CLEARERR (3) NetBSD Library Functions Manual DBM_CLEARERR (3)

For the following functions, thedb argument is a handle previously returned by a call todbm_open().

Thedbm_close () function closes a database.

Thedbm_fetch () function retrieves a record from the database. Thekey argument is adatum that identi-
fies the record to be fetched.

Thedbm_store () function stores a record into the database.Thekey argument is adatum that identifies
the record to be stored.The content argument is adatum that specifies the value of the record to be
stored. Thestore_mode argument specifies the behavior ofdbm_store () if a record matchingkey is
already present in the database,db . store_mode must be one of the following:

DBM_INSERT If a record matchingkey is already present, it is left unchanged.

DBM_REPLACE If a record matchingkey is already present, its value is replaced bycontent .

If no record matchingkey is present, a new record is inserted regardless ofstore_mode .

Thedbm_delete () function deletes a record from the database.Thekey argument is adatum that identi-
fies the record to be deleted.

Thedbm_firstkey () function returns the first key in the database.

The dbm_nextkey () function returns the next key in the database. In order to be meaningful, it must be
preceded by a call todbm_firstkey ().

Thedbm_error () function returns the error indicator of the database.

Thedbm_clearerr () function clears the error indicator of the database.

Thedbm_dirfno () function returns the file descriptor of the underlying database file.

IMPLEMENT ATION NOTES
Thendbm facility is implemented on top of thehash (3) access method of thedb(3) database facility.

RETURN VALUES
Thedbm_open() function returns a pointer to aDBMwhen successful; otherwise a null pointer is returned.

Thedbm_close () function returns no value.

The dbm_fetch () function returns a contentdatum ; if no record matchingkey was found or if an error
occured, itsdptr member is a null pointer.

The dbm_store () function returns 0 when then record was successfully inserted; it returns 1 when called
with store_mode beingDBM_INSERTand a record matchingkey is already present; otherwise a neg-
ative value is returned.

Thedbm_delete () function returns 0 when the record was successfully deleted; otherwise a negative value
is returned.

Thedbm_firstkey () anddbm_nextkey () functions return a key datum . When the end of the database
is reached or if an error occured, itsdptr member is a null pointer.

The dbm_error () function returns 0 if the error indicator is clear; if the error indicator is set a non-zero
value is returned.

Thedbm_clearerr () function always returns 0.

Thedbm_dirfno () function returns the file descriptor of the underlying database file.

NetBSD 3.0 April 30, 2004 2

DBM_CLEARERR (3) NetBSD Library Functions Manual DBM_CLEARERR (3)

ERRORS
No errors are defined.

SEE ALSO
open (2), db(3), hash (3)

STANDARDS
The dbm_clearerr (), dbm_close (), dbm_delete (), dbm_error (), dbm_fetch (),
dbm_firstkey (), dbm_nextkey (), dbm_open(), and dbm_store () functions conform toX/Open
Portability Guide Issue 4, Version 2 (“XPG4.2”). Thedbm_dirfno () function is an extension.

NetBSD 3.0 April 30, 2004 3

DBOPEN (3) NetBSD Library Functions Manual DBOPEN (3)

NAME
dbopen , db — database access methods

SYNOPSIS
#include <sys/types.h>
#include <limits.h>
#include <db.h>
#include <fcntl.h>

DB ∗
dbopen (const char ∗file , int flags , mode_t mode , DBTYPE type ,

const void ∗openinfo);

DESCRIPTION
dbopen is the library interface to database files.The supported file formats are btree, hashed, and UNIX
file oriented. The btree format is a representation of a sorted, balanced tree structure. The hashed format is
an extensible, dynamic hashing scheme.The flat-file format is a byte stream file with fixed or variable length
records. Theformats and file format specific information are described in detail in their respective manual
pagesbtree (3), hash (3), andrecno (3).

dbopen opensfile for reading and/or writing. Files never intended to be preserved on disk may be cre-
ated by setting the file parameter toNULL.

The flags and mode arguments are as specified to theopen (2) routine, however, only the O_CREAT,
O_EXCL, O_EXLOCK, O_NONBLOCK, O_RDONLY, O_RDWR, O_SHLOCK, and O_TRUNCflags are mean-
ingful. (Note,opening a database fileO_WRONLYis not possible.)

The type argument is of typeDBTYPE (as defined in the〈db.h 〉 include file) and may be set to
DB_BTREE, DB_HASH, or DB_RECNO.

The openinfo argument is a pointer to an access method specific structure described in the access
method’s manual page.If openinfo is NULL, each access method will use defaults appropriate for the sys-
tem and the access method.

dbopen returns a pointer to a DB structure on success andNULL on error. The DB structure is defined in
the〈db.h 〉 include file, and contains at least the following fields:

typedef struct {
DBTYPE type;
int (∗close)(const DB ∗db);
int (∗del)(const DB ∗db, const DBT ∗key, u_int flags);
int (∗fd)(const DB ∗db);
int (∗get)(const DB ∗db, DBT ∗key, DBT ∗data, u_int flags);
int (∗put)(const DB ∗db, DBT ∗key, const DBT ∗data,

u_int flags);
int (∗sync)(const DB ∗db, u_int flags);
int (∗seq)(const DB ∗db, DBT ∗key, DBT ∗data, u_int flags);

} D B;

These elements describe a database type and a set of functions performing various actions. These functions
take a pointer to a structure as returned bydbopen , and sometimes one or more pointers to key/data struc-
tures and a flag value.

type The type of the underlying access method (and file format).

NetBSD 3.0 April 17, 2003 1

DBOPEN (3) NetBSD Library Functions Manual DBOPEN (3)

close A pointer to a routine to flush any cached information to disk, free any allocated resources, and
close the underlying file(s).Since key/data pairs may be cached in memory, failing to sync the file
with a close or sync function may result in inconsistent or lost information.close routines
return −1 on error (settingerrno) and 0 on success.

del A pointer to a routine to remove key/data pairs from the database.

The parameterflag may be set to the following value:

R_CURSOR Delete the record referenced by the cursor. The cursor must have previously been
initialized.

delete routines return −1 on error (settingerrno), 0 on success, and 1 if the specifiedkey was
not in the file.

fd A pointer to a routine which returns a file descriptor representative of the underlying database.A
file descriptor referencing the same file will be returned to all processes which calldbopen with
the samefile name. Thisfile descriptor may be safely used as an argument to thefcntl (2) and
flock (2) locking functions. The file descriptor is not necessarily associated with any of the
underlying files used by the access method.No file descriptor is available for in memory data-
bases.fd routines return −1 on error (settingerrno), and the file descriptor on success.

get A pointer to a routine which is the interface for keyed retrieval f rom the database. The address and
length of the data associated with the specifiedkey are returned in the structure referenced by
data . get routines return −1 on error (settingerrno), 0 on success, and 1 if thekey was not in
the file.

put A pointer to a routine to store key/data pairs in the database.

The parameterflag may be set to one of the following values:

R_CURSOR Replace the key/data pair referenced by the cursor. The cursor must have
previously been initialized.

R_IAFTER Append the data immediately after the data referenced bykey , creating a
new key/data pair. The record number of the appended key/data pair is
returned in thekey structure. (Applicableonly to theDB_RECNOaccess
method.)

R_IBEFORE Insert the data immediately before the data referenced bykey , creating a
new key/data pair. The record number of the inserted key/data pair is
returned in thekey structure. (Applicableonly to theDB_RECNOaccess
method.)

R_NOOVERWRITEEnter the new key/data pair only if the key does not previously exist.

R_SETCURSOR Store the key/data pair, setting or initializing the position of the cursor to ref-
erence it. (Applicable only to theDB_BTREEandDB_RECNOaccess meth-
ods.)

R_SETCURSORis available only for theDB_BTREEandDB_RECNOaccess methods because it
implies that the keys hav ean inherent order which does not change.

R_IAFTER andR_IBEFOREare available only for theDB_RECNOaccess method because they
each imply that the access method is able to create new keys. This is only true if the keys are
ordered and independent, record numbers for example.

The default behavior of theput routines is to enter the new key/data pair, replacing any previously
existing key.

NetBSD 3.0 April 17, 2003 2

DBOPEN (3) NetBSD Library Functions Manual DBOPEN (3)

put routines return −1 on error (settingerrno), 0 on success, and 1 if theR_NOOVERWRITE
flag was set and the key already exists in the file.

seq A pointer to a routine which is the interface for sequential retrieval f rom the database. The address
and length of the key are returned in the structure referenced bykey , and the address and length of
the data are returned in the structure referenced bydata .

Sequential key/data pair retrieval may begin at any time, and the position of the “cursor” is not
affected by calls to thedel , get , put , or sync routines. Modificationsto the database during a
sequential scan will be reflected in the scan, i.e., records inserted behind the cursor will not be
returned while records inserted in front of the cursor will be returned.

The flag valuemustbe set to one of the following values:

R_CURSOR The data associated with the specified key is returned. Thisdiffers from theget
routines in that it sets or initializes the cursor to the location of the key as well.
(Note, for theDB_BTREEaccess method, the returned key is not necessarily an
exact match for the specified key. The returned key is the smallest key greater than
or equal to the specified key, permitting partial key matches and range searches.)

R_FIRST The first key/data pair of the database is returned, and the cursor is set or initialized
to reference it.

R_LAST The last key/data pair of the database is returned, and the cursor is set or initialized
to reference it. (Applicable only to theDB_BTREEandDB_RECNOaccess meth-
ods.)

R_NEXT Retrieve the key/data pair immediately after the cursor. If the cursor is not yet set,
this is the same as theR_FIRST flag.

R_PREV Retrieve the key/data pair immediately before the cursor. If the cursor is not yet set,
this is the same as theR_LAST flag. (Applicableonly to theDB_BTREEand
DB_RECNOaccess methods.)

R_LAST and R_PREVare available only for theDB_BTREEand DB_RECNOaccess methods
because they each imply that the keys hav ean inherent order which does not change.

seq routines return −1 on error (settingerrno), 0 on success and 1 if there are no key/data pairs
less than or greater than the specified or current key. If the DB_RECNOaccess method is being
used, and if the database file is a character special file and no complete key/data pairs are currently
available, theseq routines return 2.

sync A pointer to a routine to flush any cached information to disk.If the database is in memory only,
thesync routine has no effect and will always succeed.

The flag value may be set to the following value:

R_RECNOSYNC
If the DB_RECNOaccess method is being used, this flag causes the sync routine to apply to
the btree file which underlies the recno file, not the recno file itself. (See thebfname field
of therecno (3) manual page for more information.)

sync routines return −1 on error (settingerrno) and 0 on success.

KEY/DAT A PAIRS
Access to all file types is based on key/data pairs. Both keys and data are represented by the following data
structure:

NetBSD 3.0 April 17, 2003 3

DBOPEN (3) NetBSD Library Functions Manual DBOPEN (3)

typedef struct {
void ∗data;
size_t size;

} D BT;

The elements of the DBT structure are defined as follows:

data A pointer to a byte string.

size The length of the byte string.

Ke y and data byte strings may reference strings of essentially unlimited length although any two of them
must fit into available memory at the same time.It should be noted that the access methods provide no guar-
antees about byte string alignment.

ERRORS
The dbopen routine may fail and seterrno for any of the errors specified for the library routinesopen (2)
andmalloc (3) or the following:

EFTYPE A file is incorrectly formatted.

EINVAL A parameter has been specified (hash function, pad byte, etc.) that is incompatible
with the current file specification or which is not meaningful for the function (for
example, use of the cursor without prior initialization) or there is a mismatch between
the version number of file and the software.

EFBIG The key could not be inserted due to limitations in the DB file format (e.g., a hash
database was out of overflow pages).

Theclose routines may fail and seterrno for any of the errors specified for the library routinesclose (2),
read (2), write (2), free (3), orfsync (2).

The del , get , put , and seq routines may fail and seterrno for any of the errors specified for the library
routinesread (2), write (2), free (3), ormalloc (3).

Thefd routines will fail and seterrno to ENOENTfor in memory databases.

Thesync routines may fail and seterrno for any of the errors specified for the library routinefsync (2).

SEE ALSO
btree (3), hash (3), mpool (3), recno (3)

Margo Seltzer and Michael Olson, "LIBTP: Portable, Modular Transactions for UNIX",USENIX
proceedings, Winter 1992.

BUGS
The typedef DBT is a mnemonic for “data base thang”, and was used because no one could think of a reason-
able name that wasn’t already used.

The file descriptor interface is a kludge and will be deleted in a future version of the interface.

None of the access methods provide any form of concurrent access, locking, or transactions.

NetBSD 3.0 April 17, 2003 4

des(3) libdes des(3)

NN AAMM EE
des_random_key, des_set_key, des_key_sched, des_set_key_checked, des_set_key_unchecked,
des_set_odd_parity, des_is_weak_key, des_ecb_encrypt, des_ecb2_encrypt, des_ecb3_encrypt,
des_ncbc_encrypt, des_cfb_encrypt, des_ofb_encrypt, des_pcbc_encrypt, des_cfb64_encrypt,
des_ofb64_encrypt, des_xcbc_encrypt, des_ede2_cbc_encrypt, des_ede2_cfb64_encrypt,
des_ede2_ofb64_encrypt, des_ede3_cbc_encrypt, des_ede3_cbcm_encrypt, des_ede3_cfb64_encrypt,
des_ede3_ofb64_encrypt, des_read_password, des_read_2passwords, des_read_pw_string,
des_cbc_cksum, des_quad_cksum, des_string_to_key, des_string_to_2keys, des_fcrypt, des_crypt,
des_enc_read, des_enc_write −DESencryption

SSYYNNOOPPSSII SS
#include <openssl/des.h>

void des_random_key(des_cblock *ret);

int des_set_key(const_des_cblock *key, des_key_schedule schedule);
int des_key_sched(const_des_cblock *key, des_key_schedule schedule);
int des_set_key_checked(const_des_cblock *key,

des_key_schedule schedule);
void des_set_key_unchecked(const_des_cblock *key,

des_key_schedule schedule);

void des_set_odd_parity(des_cblock *key);
int des_is_weak_key(const_des_cblock *key);

void des_ecb_encrypt(const_des_cblock *input, des_cblock *output,
des_key_schedule ks, int enc);

void des_ecb2_encrypt(const_des_cblock *input, des_cblock *output,
des_key_schedule ks1, des_key_schedule ks2, int enc);

void des_ecb3_encrypt(const_des_cblock *input, des_cblock *output,
des_key_schedule ks1, des_key_schedule ks2,
des_key_schedule ks3, int enc);

void des_ncbc_encrypt(const unsigned char *input, unsigned char *output,
long length, des_key_schedule schedule, des_cblock *ivec,
int enc);

void des_cfb_encrypt(const unsigned char *in, unsigned char *out,
int numbits, long length, des_key_schedule schedule,
des_cblock *ivec, int enc);

void des_ofb_encrypt(const unsigned char *in, unsigned char *out,
int numbits, long length, des_key_schedule schedule,
des_cblock *ivec);

void des_pcbc_encrypt(const unsigned char *input, unsigned char *output,
long length, des_key_schedule schedule, des_cblock *ivec,
int enc);

void des_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, des_key_schedule schedule, des_cblock *ivec,
int *num, int enc);

void des_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, des_key_schedule schedule, des_cblock *ivec,
int *num);

2003-07-23 0.9.6j 1

des(3) libdes des(3)

void des_xcbc_encrypt(const unsigned char *input, unsigned char *output,
long length, des_key_schedule schedule, des_cblock *ivec,
const_des_cblock *inw, const_des_cblock *outw, int enc);

void des_ede2_cbc_encrypt(const unsigned char *input,
unsigned char *output, long length, des_key_schedule ks1,
des_key_schedule ks2, des_cblock *ivec, int enc);

void des_ede2_cfb64_encrypt(const unsigned char *in,
unsigned char *out, long length, des_key_schedule ks1,
des_key_schedule ks2, des_cblock *ivec, int *num, int enc);

void des_ede2_ofb64_encrypt(const unsigned char *in,
unsigned char *out, long length, des_key_schedule ks1,
des_key_schedule ks2, des_cblock *ivec, int *num);

void des_ede3_cbc_encrypt(const unsigned char *input,
unsigned char *output, long length, des_key_schedule ks1,
des_key_schedule ks2, des_key_schedule ks3, des_cblock *ivec,
int enc);

void des_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
long length, des_key_schedule ks1, des_key_schedule ks2,
des_key_schedule ks3, des_cblock *ivec1, des_cblock *ivec2,
int enc);

void des_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, des_key_schedule ks1, des_key_schedule ks2,
des_key_schedule ks3, des_cblock *ivec, int *num, int enc);

void des_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, des_key_schedule ks1,
des_key_schedule ks2, des_key_schedule ks3,
des_cblock *ivec, int *num);

int des_read_password(des_cblock *key, const char *prompt, int verify);
int des_read_2passwords(des_cblock *key1, des_cblock *key2,

const char *prompt, int verify);
int des_read_pw_string(char *buf, int length, const char *prompt,

int verify);

DES_LONG des_cbc_cksum(const unsigned char *input, des_cblock *output,
long length, des_key_schedule schedule,
const_des_cblock *ivec);

DES_LONG des_quad_cksum(const unsigned char *input, des_cblock output[],
long length, int out_count, des_cblock *seed);

void des_string_to_key(const char *str, des_cblock *key);
void des_string_to_2keys(const char *str, des_cblock *key1,

des_cblock *key2);

char *des_fcrypt(const char *buf, const char *salt, char *ret);
char *des_crypt(const char *buf, const char *salt);
char *crypt(const char *buf, const char *salt);

int des_enc_read(int fd, void *buf, int len, des_key_schedule sched,
des_cblock *iv);

int des_enc_write(int fd, const void *buf, int len,
des_key_schedule sched, des_cblock *iv);

2003-07-23 0.9.6j 2

des(3) libdes des(3)

DDEESSCCRRII PPTTII OONN
This library contains a fast implementation of theDESencryption algorithm.

There are two phases to the use ofDESencryption. Thefirst is the generation of ades_key_schedulefrom a
key, the second is the actual encryption.A DES key is of typedes_cblock. This type is consists of 8 bytes
with odd parity. The least significant bit in each byte is the parity bit. The key schedule is an expanded
form of the key; it is used to speed the encryption process.

des_random_key() generates a random key. The PRNG must be seeded prior to using this function (see
rand(3); for backward compatibility the functiondes_random_seed()is available as well). If the PRNG
could not generate a secure key, 0 is returned. Inearlier versions of the library, des_random_key() did not
generate secure keys.

Before aDES key can be used, it must be converted into the architecture dependentdes_key_schedulevia
thedes_set_key_checked() or des_set_key_unchecked() function.

des_set_key_checked() will check that the key passed is of odd parity and is not a week or semi-weak key.
If the parity is wrong, then −1 is returned.If the key is a weak key, then −2 is returned. If an error is
returned, the key schedule is not generated.

des_set_key() (called des_key_sched() in the MIT library) works like des_set_key_checked() if the
des_check_keyflag is non-zero, otherwise like des_set_key_unchecked(). These functions are available for
compatibility; it is recommended to use a function that does not depend on a global variable.

des_set_odd_parity()(calleddes_fixup_key_parity() in theMIT library) sets the parity of the passedkey to
odd.

des_is_weak_key() returns 1 is the passed key is a weak key, 0 if it is ok. Theprobability that a randomly
generated key is weak is 1/2ˆ52, so it is not really worth checking for them.

The following routines mostly operate on an input and output stream ofdes_cblocks.

des_ecb_encrypt()is the basicDESencryption routine that encrypts or decrypts a single 8−bytedes_cblock
in electronic code book(ECB) mode. Italways transforms the input data, pointed to byinput, into the out-
put data, pointed to by theoutput argument. If the encryptargument is non-zero (DES_ENCRYPT), the
input (cleartext) is encrypted in to theoutput(ciphertext) using the key_schedule specified by theschedule
argument, previously set viades_set_key. If encryptis zero (DES_DECRYPT), the input (now ciphertext) is
decrypted into theoutput (now cleartext). Input and output may overlap. des_ecb_encrypt()does not
return a value.

des_ecb3_encrypt()encrypts/decrypts theinput block by using three-key Triple-DES encryption inECB
mode. Thisinvolves encrypting the input withks1, decrypting with the key scheduleks2, and then encrypt-
ing with ks3. This routine greatly reduces the chances of brute force breaking ofDES and has the advan-
tage of ifks1, ks2andks3are the same, it is equivalent to just encryption usingECB mode andks1as the
key.

The macrodes_ecb2_encrypt()is provided to perform two-key Triple-DES encryption by usingks1for the
final encryption.

des_ncbc_encrypt()encrypts/decrypts using thecipher-block-chaining(CBC) mode ofDES. If the encrypt
argument is non-zero, the routine cipher-block-chain encrypts the cleartext data pointed to by theinput
argument into the ciphertext pointed to by theoutput argument, using the key schedule provided by the
scheduleargument, and initialization vector provided by theivecargument. Ifthe lengthargument is not an
integral multiple of eight bytes, the last block is copied to a temporary area and zero filled.The output is
always an integral multiple of eight bytes.

des_xcbc_encrypt()is RSA’s DESX mode ofDES. It usesinw andoutw to ’whiten’ the encryption.inw and
outware secret (unlike the iv) and are as such, part of the key. So the key is sort of 24 bytes. This is much
better thanCBC DES.

des_ede3_cbc_encrypt()implements outer tripleCBC DESencryption with three keys. This means that each
DESoperation inside theCBC mode is really anC=E(ks3,D(ks2,E(ks1,M))) . This mode is used by
SSL.

2003-07-23 0.9.6j 3

des(3) libdes des(3)

The des_ede2_cbc_encrypt()macro implements two-key Triple-DES by reusingks1 for the final encryp-
tion. C=E(ks1,D(ks2,E(ks1,M))) . This form of Triple-DES is used by theRSAREFlibrary.

des_cfb_encrypt()encrypt/decrypts using cipher feedback mode. This method takes an array of characters
as input and outputs and array of characters. It does not require any padding to 8 character groups.Note:
the ivecvariable is changed and the new changed value needs to be passed to the next call to this function.
Since this function runs a completeDES ECBencryption pernumbits, this function is only suggested for use
when sending small numbers of characters.

des_cfb64_encrypt()implementsCFB mode ofDES with 64bit feedback.Why is this useful you ask?
Because this routine will allow you to encrypt an arbitrary number of bytes, no 8 byte padding.Each call to
this routine will encrypt the input bytes to output and then update ivec and num. num contains ’how far’
we are though ivec. If this does not make much sense, read more about cfb mode ofDES :−).

des_ede3_cfb64_encrypt()and des_ede2_cfb64_encrypt()is the same asdes_cfb64_encrypt()except that
Triple-DES is used.

des_ofb_encrypt()encrypts using output feedback mode.This method takes an array of characters as input
and outputs and array of characters. It does not require any padding to 8 character groups.Note: theivec
variable is changed and the new changed value needs to be passed to the next call to this function.Since
this function runs a completeDES ECBencryption per numbits, this function is only suggested for use when
sending small numbers of characters.

des_ofb64_encrypt()is the same asdes_cfb64_encrypt()using Output Feed Back mode.

des_ede3_ofb64_encrypt()and des_ede2_ofb64_encrypt()is the same asdes_ofb64_encrypt(), using
Triple-DES.

des_read_pw_string()writes the string specified byprompt to standard output, turns echo off and reads in
input string from the terminal. The string is returned inbuf, which must have space for at leastlength
bytes. Ifverify is set, the user is asked for the password twice and unless the two copies match, an error is
returned. Areturn code of −1 indicates a system error, 1 failure due to use interaction, and 0 is success.

des_read_password()does the same and converts the password to aDES key by calling
des_string_to_key(); des_read_2password()operates in the same way asdes_read_password()except that it
generates two keys by using thedes_string_to_2key() function. des_string_to_key() is available for back-
ward compatibility with theMIT library. New applications should use a cryptographic hash function.The
same applies fordes_string_to_2key().

The following are DES-based transformations:

des_fcrypt()is a fast version of the Unixcrypt(3) function. This version takes only a small amount of
space relative to other fastcrypt() implementations. Thisis different to the normal crypt in that the third
parameter is the buffer that the return value is written into. It needs to be at least 14 bytes long.This func-
tion is thread safe, unlike the normal crypt.

des_crypt()is a faster replacement for the normal systemcrypt(). This function callsdes_fcrypt()with a
static array passed as the third parameter. This emulates the normal non-thread safe semantics ofcrypt(3).

des_enc_write()writes len bytes to file descriptorfd from buffer buf. The data is encrypted via
pcbc_encrypt(default) usingschedfor the key and iv as a starting vector. The actual data send down fd
consists of 4 bytes (in network byte order) containing the length of the following encrypted data.The
encrypted data then follows, padded with random data out to a multiple of 8 bytes.

des_enc_read()is used to readlen bytes from file descriptorfd into buffer buf. The data being read fromfd
is assumed to have come fromdes_enc_write()and is decrypted usingschedfor the key schedule andiv for
the initial vector.

WW aarrnniinngg:: The data format used bydes_enc_write()and des_enc_read()has a cryptographic weakness:
When asked to write more thanMAXWRITE bytes,des_enc_write()will split the data into several chunks
that are all encrypted using the sameIV . So don’t use these functions unless you are sure you know what
you do (in which case you might not want to use them anyway). They cannot handle non-blocking sockets.

2003-07-23 0.9.6j 4

des(3) libdes des(3)

des_enc_read()uses an internal state and thus cannot be used on multiple files.

des_rw_modeis used to specify the encryption mode to use withdes_enc_read()anddes_end_write(). If
set to DES_PCBC_MODE (the default), des_pcbc_encrypt is used. If set toDES_CBC_MODE
des_cbc_encrypt is used.

NNOO TTEESS
Single-key DES is insecure due to its short key size. ECB mode is not suitable for most applications; see
des_modes(7).

The evp(3) library provides higher-level encryption functions.

BB UUGGSS
des_3cbc_encrypt()is flawed and must not be used in applications.

des_cbc_encrypt()does not modifyii vveecc; usedes_ncbc_encrypt()instead.

des_cfb_encrypt()and des_ofb_encrypt()operates on input of 8 bits.What this means is that if you set
numbits to 12, and length to 2, the first 12 bits will come from the 1st input byte and the low half of the sec-
ond input byte. The second 12 bits will have the low 8 bits taken from the 3rd input byte and the top 4 bits
taken from the 4th input byte. The same holds for output. This function has been implemented this way
because most people will be using a multiple of 8 and because once you get into pulling bytes input bytes
apart things get ugly!

des_read_pw_string()is the most machine/OS dependent function and normally generates the most prob-
lems when porting this code.

CCOONNFFOORRMM II NNGG TTOO
ANSI X3.106

SSEEEE AALLSSOO
crypt(3), des_modes(7), evp(3), rand(3)

HHII SSTT OORRYY
des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(), des_is_weak_key(), des_key_sched(),
des_pcbc_encrypt(), des_quad_cksum(), des_random_key(), des_read_password()anddes_check_key_par-
ity(), des_fixup_key_parity()anddes_is_weak_key() are available in newer versions of that library.

des_set_key_checked() anddes_set_key_unchecked() were added in OpenSSL 0.9.5.

des_generate_random_block(), des_init_random_number_generator(), des_new_random_key(),
des_set_random_generator_seed()anddes_set_sequence_number()anddes_rand_data()are used in newer
versions of Kerberos but are not implemented here.

des_random_key() generated cryptographically weak random data in SSLeay and in OpenSSL prior version
0.9.5, as well as in the originalMIT library.

AA UUTTHHOORR
Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project (http://www.openssl.org).

2003-07-23 0.9.6j 5

DEVNAME (3) NetBSD Library Functions Manual DEVNAME (3)

NAME
devname — get device name

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>
#include <sys/stat.h>

char ∗
devname(dev_t dev , mode_t type);

DESCRIPTION
The devname() function returns a pointer to the name of the block or character device in “/dev ” with a
device number ofdev , and a file type matching the one encoded intype which must be one of S_IFBLK or
S_IFCHR. Thedevice name is cached so that multiple calls with the samedev and type do not require
additional queries of the device database file.If no device matches the specified values, or no information is
available,NULL is returned.

The traditional display for applications when no device is found is the string “??”.

FILES
/var/run/dev.db Device database file.

SEE ALSO
stat (2), dev_mkdb (8)

HISTORY
Thedevname function call appeared in 4.4BSD.

NetBSD 3.0 April 29, 1995 1

DHCPCTL (3) NetBSD Library Functions Manual DHCPCTL (3)

NAME
dhcpctl_initialize — dhcpctl library initialization

SYNOPSIS
#include <dhcpctl/dhcpctl.h>

dhcpctl_status
dhcpctl_initialize (void);

dhcpctl_status
dhcpctl_connect (dhcpctl_handle ∗cxn , const char ∗host , int port ,

dhcpctl_handle auth);

dhcpctl_status
dhcpctl_wait_for_completion (dhcpctl_handle object , dhcpctl_status ∗status);

dhcpctl_status
dhcpctl_get_value (dhcpctl_data_string ∗value , dhcpctl_handle object ,

const char ∗name);

dhcpctl_status
dhcpctl_get_boolean (int ∗value , dhcpctl_handle object , const char ∗name);

dhcpctl_status
dhcpctl_set_value (dhcpctl_handle object , dhcpctl_data_string value ,

const char ∗name);

dhcpctl_status
dhcpctl_set_string_value (dhcpctl_handle object , const char ∗value ,

const char ∗name);

dhcpctl_status
dhcpctl_set_boolean_value (dhcpctl_handle object , int value ,

const char ∗name);

dhcpctl_status
dhcpctl_set_int_value (dhcpctl_handle object , int value , const char ∗name);

dhcpctl_status
dhcpctl_object_update (dhcpctl_handle connection , dhcpctl_handle object);

dhcpctl_status
dhcpctl_object_refresh (dhcpctl_handle connection , dhcpctl_handle object);

dhcpctl_status
dhcpctl_object_remove (dhcpctl_handle connection , dhcpctl_handle object);

dhcpctl_status
dhcpctl_set_callback (dhcpctl_handle object , void ∗data ,

void (∗function) (dhcpctl_handle, dhcpctl_status, void ∗));

dhcpctl_status
dhcpctl_new_authenticator (dhcpctl_handle ∗object , const char ∗name,

const char ∗algorithm , const char ∗secret , unsigned secret_len);

dhcpctl_status
dhcpctl_new_object (dhcpctl_handle ∗object , dhcpctl_handle connection ,

const char ∗object_type);

NetBSD 3.0 November 15, 2000 1

DHCPCTL (3) NetBSD Library Functions Manual DHCPCTL (3)

dhcpctl_status
dhcpctl_open_object (dhcpctl_handle object , dhcpctl_handle connection ,

int flags);

isc_result_t
omapi_data_string_new (dhcpctl_data_string , ∗data , unsigned , int , length ,

const , char , ∗filename, , int , lineno);

isc_result_t
dhcpctl_data_string_dereference (dhcpctl_data_string ∗ , const char ∗ , int);

DESCRIPTION
The dhcpctl set of functions provide an API that can be used to communicate with and manipulate a running
ISC DHCP server. All functions return a value ofisc_result_t . The return values reflects the result of
operations to local data structures. If an operation fails on the server for any reason, then the error result will
be returned through the second parameter of thedhcpctl_wait_for_completion () call.

dhcpctl_initialize () sets up the data structures the library needs to do its work. This function must
be called once before any other.

dhcpctl_connect () opens a connection to the DHCP server at the given host and port. If an authentica-
tor has been created for the connection, then it is given as the 4th argument. On a successful return the
address pointed at by the first argument will have a new connection object assigned to it.

For example:

s = d hcpctl_connect(&cxn, "127.0.0.1", 7911, NULL);

connects to the DHCP server on the localhost via port 7911 (the standard OMAPI port). No authentication is
used for the connection.

dhcpctl_wait_for_completion () flushes a pending message to the server and waits for the
response. The result of the request as processed on the server is returned via the second parameter.

s = d hcpctl_wait_for_completion(cxn, &wv);
if (s != ISC_R_SUCCESS)

local_failure(s);
else if (wv != ISC_R_SUCCESS)

server_failure(wc);

The call todhcpctl_wait_for_completion () won’t return until the remote message processing com-
pletes or the connection to the server is lost.

dhcpctl_get_value () extracts a value of an attribute from the handle. The value can be of any length
and is treated as a sequence of bytes. The handle must have been created first with
dhcpctl_new_object () and opened withdhcpctl_open_object (). Thevalue is returned via the
parameter named “value”. Thelast parameter is the name of attribute to retrieve.

dhcpctl_data_string value = NULL;
dhcpctl_handle lease;
time_t thetime;

s = d hcpctl_get_value (&value, lease, "ends");
assert(s == ISC_R_SUCCESS && value->len == sizeof(thetime));
memcpy(&thetime, value->value, value->len);

dhcpctl_get_boolean () extracts a boolean valued attribute from the object handle.

NetBSD 3.0 November 15, 2000 2

DHCPCTL (3) NetBSD Library Functions Manual DHCPCTL (3)

The dhcpctl_set_value (), dhcpctl_set_string_value (),
dhcpctl_set_boolean_value (), anddhcpctl_set_int_value () functions all set a value on the
object handle.

dhcpctl_object_update () function queues a request for all the changes made to the object handle be
be sent to the remote for processing. The changes made to the atributes on the handle will be applied to
remote object if permitted.

dhcpctl_object_refresh () queues up a request for a fresh copy of all the attribute values to be sent
from the remote to refresh the values in the local object handle.

dhcpctl_object_remove () queues a request for the removal on the server of the object referenced by
the handle.

Thedhcpctl_set_callback () function sets up a user-defined function to be called when an event com-
pletes on the given object handle. This is needed for asynchronous handling of events, versus the synchro-
nous handling given by dhcpctl_wait_for_completion (). When the function is called the first
parameter is the object the event arrived for, the second is the status of the message that was processed, the
third is the same value as the second parameter given to dhcpctl_set_callback ().

The dhcpctl_new_authenticator () creates a new authenticator object to be used for signing the
messages that cross over the network. The “name”, “algorithm”, and “secret” values must all match what the
server uses and are defined in its configuration file. The created object is returned through the first parameter
and must be used as the 4th parameter todhcpctl_connect (). Notethat the ’secret’ value must not be
base64 encoded, which is different from how the value appears in the dhcpd.conf file.

dhcpctl_new_object () creates a local handle for an object on the the server. The “object_type” param-
eter is the ascii name of the type of object being accessed. e.g."lease". Thisfunction only sets up local data
structures, it does not queue any messages to be sent to the remote side,dhcpctl_open_object () does
that.

dhcpctl_open_object () builds and queues the request to the remote side. This function is used with
handle created viadhcpctl_new_object (). Theflags argument is a bit mask with the following values
available for setting:

DHCPCTL_CREATE
if the object does not exist then the remote will create it

DHCPCTL_UPDATE
update the object on the remote side using the attributes already set in the handle.

DHCPCTL_EXCL
return and error if the object exists and DHCPCTL_CREATE was also specified

Theomapi_data_string_new () function allocates a new dhcpctl_data_string object. The data
string will be large enough to hold “length” bytes of data. The “file” and “lineno” arguments are the source
file location the call is made from, typically by using the__FILE__ and__LINE__ macros or theMDL
macro defined in

dhcpctl_data_string_dereference () deallocates a data string created by
omapi_data_string_new (). The memory for the object won’t be freed until the last reference is
released.

EXAMPLES
The following program will connect to the DHCP server running on the local host and will get the details of
the existing lease for IP address 10.0.0.101. It will then print out the time the lease is due to expire. Note that
most error checking has been ommitted for brevity.

NetBSD 3.0 November 15, 2000 3

DHCPCTL (3) NetBSD Library Functions Manual DHCPCTL (3)

#include <stdarg.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>

#include <isc/result.h>
#include <dhcpctl/dhcpctl.h>

int main (int argc, char ∗∗argv) {
dhcpctl_data_string ipaddrstring = NULL;
dhcpctl_data_string value = NULL;
dhcpctl_handle connection = NULL;
dhcpctl_handle lease = NULL;
isc_result_t waitstatus;
struct in_addr convaddr;
time_t thetime;

dhcpctl_initialize ();

dhcpctl_connect (&connection, "127.0.0.1",
7911, 0);

dhcpctl_new_object (&lease, connection,
"lease");

memset (&ipaddrstring, 0, sizeof
ipaddrstring);

inet_pton(AF_INET, "10.0.0.101",
&convaddr);

omapi_data_string_new (&ipaddrstring,
4, MDL);

memcpy(ipaddrstring->value, &convaddr.s_addr, 4);

dhcpctl_set_value (lease, ipaddrstring,
"ip-address");

dhcpctl_open_object (lease, connection, 0);

dhcpctl_wait_for_completion (lease,
&waitstatus);

if (waitstatus != ISC_R_SUCCESS) {
/ ∗ server not authoritative ∗/
exit (0);

}

dhcpctl_data_string_dereference(&ipaddrstring,
MDL);

dhcpctl_get_value (&value, lease, "ends");

NetBSD 3.0 November 15, 2000 4

DHCPCTL (3) NetBSD Library Functions Manual DHCPCTL (3)

memcpy(&thetime, value->value, value->len);

dhcpctl_data_string_dereference(&value, MDL);

fprintf (stdout, "ending time is %s",
ctime(&thetime));

}

SEE ALSO
omshell (1), dhclient.conf (5), dhcpd.conf (5), dhclient (8), dhcpd (8)

AUTHORS
dhcpctl_initialize was written by Ted Lemon of Nominum, Inc.This preliminary documentation
was written by James Brister of Nominum, Inc.

NetBSD 3.0 November 15, 2000 5

DIRECTORY (3) NetBSDLibrary Functions Manual DIRECTORY (3)

NAME
opendir , readdir , readdir_r , telldir , seekdir , rewinddir , closedir , dirfd — direc-
tory operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <dirent.h>

DIR ∗
opendir (const char ∗filename);

struct dirent ∗
readdir (DIR ∗dirp);

int
readdir_r (DIR ∗ restrict dirp , struct dirent ∗ restrict entry ,

struct dirent ∗∗ restrict result);

long
telldir (DIR ∗dirp);

void
seekdir (DIR ∗dirp , long loc);

void
rewinddir (DIR ∗dirp);

int
closedir (DIR ∗dirp);

int
dirfd (DIR ∗dirp);

DESCRIPTION
The opendir () function opens the directory named byfilename , associates adirectory streamwith it
and returns a pointer to be used to identify thedirectory streamin subsequent operations. The pointerNULL
is returned iffilename cannot be accessed, or if it cannotmalloc (3) enough memory to hold the whole
thing.

Thereaddir () function returns a pointer to the next directory entry. It returnsNULLupon reaching the end
of the directory or detecting an invalid seekdir () operation.

The readdir_r () function provides the same functionality asreaddir (), but the caller must provide a
directoryentry buffer to store the results in. If the read succeeds,result is pointed at theentry ; upon
reaching the end of the directoryresult is set toNULL. The readdir_r () function returns 0 on success
or an error number to indicate failure.

Thetelldir () function returns the current location associated with the nameddirectory stream.

The seekdir () function sets the position of the next readdir () operation on thedirectory stream. The
new position reverts to the one associated with thedirectory streamwhen thetelldir () operation was per-
formed. Values returned bytelldir () are good only for the lifetime of theDIR pointer, dirp , from
which they are derived. If the directory is closed and then reopened, thetelldir () value cannot be re-
used.

NetBSD 3.0 May 18, 2006 1

DIRECTORY (3) NetBSDLibrary Functions Manual DIRECTORY (3)

The rewinddir () function resets the position of the nameddirectory streamto the beginning of the direc-
tory.

The closedir () function closes the nameddirectory streamand frees the structure associated with the
dirp pointer, returning 0 on success. On failure, −1 is returned and the global variableerrno is set to indi-
cate the error.

The dirfd () function returns the integer file descriptor associated with the nameddirectory stream, see
open (2).

EXAMPLES
Sample code which searches a directory for entry “name” is:

len = strlen(name);
dirp = opendir(".");
if (dirp != NULL) {

while ((dp = readdir(dirp)) != NULL)
if (dp->d_namlen == len &&

!strcmp(dp->d_name, name)) {
(void)closedir(dirp);
return (FOUND);

}
(void)closedir(dirp);

}
return (NOT_FOUND);

SEE ALSO
close (2), lseek (2), open (2), read (2), dir (5)

STANDARDS
Theopendir (), readdir (), rewinddir () andclosedir () functions conform toISO/IEC 9945-1:1990
(“POSIX.1”).

HISTORY
Theopendir (), readdir (), telldir (), seekdir (), rewinddir (), closedir (), anddirfd () func-
tions appeared in 4.2BSD.

NetBSD 3.0 May 18, 2006 2

DIRNAME (3) NetBSD Library Functions Manual DIRNAME (3)

NAME
dirname — report the parent directory name of a file pathname

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <libgen.h>

char ∗
dirname (char ∗path);

DESCRIPTION
Thedirname () function takes a pointer to a character string that contains a pathname,path , and returns a
pointer to a string that is a pathname of the parent directory ofpath . Trailing ‘/’ characters inpath are not
counted as part of the path.

If path does not contain a ‘/’, thendirname () returns a pointer to the string “.”.

If path is a null pointer or points to an empty string,dirname () returns a pointer to the string “.”.

RETURN VALUES
Thedirname () function returns a pointer to a string that is the parent directory ofpath .

SEE ALSO
dirname (1), basename (3)

STANDARDS
• X/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”)
• IEEE Std 1003.1-2001 (“POSIX.1”)

BUGS
If the length of the result is longer thanPATH_MAXbytes (including the terminating nul) , the result will be
truncated.

The dirname () function returns a pointer to static storage that may be overwritten by subsequent calls to
dirname (). Thisis not strictly a bug; it is explicitly allowed byIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 May 10, 2008 1

DISKLABEL_DKCKSUM (3) NetBSD Library Functions Manual DISKLABEL_DKCKSUM (3)

NAME
disklabel_dkcksum — compute the checksum for a disklabel

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

uint16_t
disklabel_dkcksum (struct disklabel ∗lp);

DESCRIPTION
disklabel_dkcksum () computes the checksum for the disklabel passed in aslp .

RETURN VALUES
Thedisklabel_dkcksum () returns the computed checksum.

HISTORY
Thedisklabel_dkcksum function call appeared inNetBSD 2.0.

NetBSD 3.0 May 15, 2005 1

DISKLABEL_SCAN (3) NetBSD Library Functions Manual DISKLABEL_SCAN (3)

NAME
disklabel_scan — scan a buffer for a valid disklabel

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
disklabel_scan (struct disklabel ∗lp , char ∗buf , size_t buflen);

DESCRIPTION
disklabel_scan () scans the memory region specified bybuf andbuflen for a valid disklabel. If such
a label is found, it is copied intolp .

RETURN VALUES
Thedisklabel_scan () function returns 0 if a valid disklabel was found and 1 if not.

HISTORY
Thedisklabel_scan function call appeared inNetBSD 2.0.

NetBSD 3.0 October 12, 2002 1

DIV (3) NetBSD Library Functions Manual DIV (3)

NAME
div — return quotient and remainder from division

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

div_t
div (int num , int denom);

DESCRIPTION
The div () function computes the valuenum/denom and returns the quotient and remainder in a structure
nameddiv_t that contains twoint members namedquot andrem.

SEE ALSO
ldiv (3), lldiv (3), math (3), qdiv (3)

STANDARDS
Thediv () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

DLFCN (3) NetBSD Library Functions Manual DLFCN (3)

NAME
dlopen , dlclose , dlsym , dladdr , dlctl , dlerror — dynamic link interface

LIBRARY
(These functions are not in a library. They are included in every dynamically linked program automatically.)

SYNOPSIS
#include <dlfcn.h>

void ∗
dlopen (const char ∗path , int mode);

int
dlclose (void ∗handle);

void ∗
dlsym (void ∗ restrict handle , const char ∗ restrict symbol);

int
dladdr (void ∗ restrict addr , Dl_info ∗ restrict dli);

int
dlctl (void ∗handle , int cmd , void ∗data);

char ∗
dlerror (void);

DESCRIPTION
These functions provide an interface to the run-time linker ld.so (1). They allow new shared objects to be
loaded into the process’ address space under program control.The dlopen () function takes a name of a
shared object as the first argument. Theshared object is mapped into the address space, relocated and its
external references are resolved in the same way as is done with the implicitly loaded shared libraries at pro-
gram startup. The argument can either be an absolute pathname or it can be of the form
“lib 〈name〉.so [.xx [.yy]]” in which case the same library search rules apply that are used for “intrinsic”
shared library searches. If the first argument isNULL, dlopen () returns a handle on the global symbol
object. This object provides access to all symbols from an ordered set of objects consisting of the original
program image and any dependencies loaded during startup.

The second argument has currently no effect, but should be set toRTLD_LAZY for future compatibility.
dlopen () returns a handle to be used in calls todlclose (), dlsym () anddlctl (). If the named shared
object has already been loaded by a previous call todlopen () (and not yet unloaded bydlclose ()) , a
handle referring to the resident copy is returned.

dlclose () unlinks and removes the object referred to byhandle from the process address space.If mul-
tiple calls todlopen () have been done on this object(or the object was one loaded at startup time) the
object is removed when its reference count drops to zero.

dlsym () looks for a definition ofsymbol in the shared object designated byhandle . The symbols
address is returned. If the symbol cannot be resolved,NULL is returned.

dladdr () examines all currently mapped shared objects for a symbol whose address -- as mapped in the
process address space -- is closest to but not exceeding the value passed in the first argumentaddr . The
symbols of a shared object are only eligible ifaddr is between the base address of the shared object and the
value of the symbol “_end” in the same shared object. If no object for which this condition holds true can be
found,dladdr () will return 0. Otherwise, a non-zero value is returned and thedli argument will be used
to provide information on the selected symbol and the shared object it is contained in.The dli argument
points at a caller-providedDl_info structure defined as follows:

NetBSD 3.0 March 31, 2008 1

DLFCN (3) NetBSD Library Functions Manual DLFCN (3)

typedef struct {
const char ∗dli_fname; / ∗ File defining the symbol ∗/
void ∗dli_fbase; / ∗ Base address ∗/
const char ∗dli_sname; / ∗ Symbol name ∗/
const void ∗dli_saddr; / ∗ Symbol address ∗/

} D l_info;

The memberdli_snamepoints at the nul-terminated name of the selected symbol, anddli_saddris the actual
address (as it appears in the process address space) of the symbol. The memberdli_fnamepoints at the file
name corresponding to the shared object in which the symbol was found, whiledli_fbaseis the base address
at which this shared object is loaded in the process address space.dli_fnameanddli_fbasemay be zero if the
symbol was found in the internally generated “copy” section(see link (5)) which is not associated with a
file. Note: both strings pointed at bydli_fnameand dli_snamereside in memory private to the run-time
linker module and should not be modified by the caller.

dlctl () provides an interface similar toioctl (2) to control several aspects of the run-time linker’s opera-
tion. Thisinterface is currently under development.

dlerror () returns a character string representing the most recent error that has occurred while processing
one of the other functions described here.If no dynamic linking errors have occurred since the last invoca-
tion of dlerror (), dlerror () returnsNULL. Thus, invoking dlerror () a second time, immediately fol-
lowing a prior invocation, will result inNULLbeing returned.

SEE ALSO
ld (1), rtld (1), link (5)

HISTORY
Some of thedl ∗ functions first appeared in SunOS 4.

BUGS
An error that occurs while processing adlopen () request results in the termination of the program.

NetBSD 3.0 March 31, 2008 2

ECALLOC (3) NetBSD Library Functions Manual ECALLOC (3)

NAME
ecalloc , emalloc , eread , erealloc , esetenv , estrdup , ewrite — exit-on-failure wrapper
functions

LIBRARY
The roken library (libroken, -lroken)

SYNOPSIS
#include <roken.h>

void ∗
ecalloc (size_t number , size_t size);

void ∗
emalloc (size_t sz);

ssize_t
eread (int fd , void ∗buf , size_t nbytes);

void ∗
erealloc (void ∗ptr , size_t sz);

void
esetenv (const char ∗var , const char ∗val , int rewrite);

char ∗
estrdup (const char ∗str);

ssize_t
ewrite (int fd , const void ∗buf , size_t nbytes);

DESCRIPTION
These functions do the same as the ones without the “e” prefix, but if there is an error they will print a mes-
sage witherrx (3), and exit. Foreread andewrite this is also true for partial data.

This is useful in applications when there is no need for a more advanced failure mode.

SEE ALSO
read (2), write (2), calloc (3), errx (3), malloc (3), realloc (3), setenv (3), strdup (3)

NetBSD 3.0 August 14, 2003 1

EDITLINE(3) EDITLINE(3)

NAME
editline − command-line editing library with history

SYNOPSIS
char *
readline(prompt)

char *pr ompt;

void
add_history(line)

char *line;

DESCRIPTION
Editline is a library that provides an line-editing interface with text recall. It is intended to be compatible
with the readline library provided by the Free Software Foundation, but much smaller. The bulk of this
manual page describes the user interface.

The readline routine returns a line of text with the trailing newline removed. Thedata is returned in a
buffer allocated withmalloc(3), so the space should be released withfree(3) when the calling program is
done with it. Before accepting input from the user, the specifiedprompt is displayed on the terminal.

Theadd_historyroutine makes a copy of the specifiedline and adds it to the internal history list.

User Interface
A program that uses this library provides a simple emacs-like editing interface to its users.A l ine may be
edited before it is sent to the calling program by typing either control characters or escape sequences.A
control character, shown as a caret followed by a letter, is typed by holding down the ‘‘control’’ key while
the letter is typed.For example, ‘‘ˆA’’ i s a control-A. An escape sequence is entered by typing the
‘‘ escape’’ key followed by one or more characters. The escape key is abbreviated as ‘‘ESC.’’ N ote that
unlike control keys, case matters in escape sequences; ‘‘ESC F’’ is not the same as ‘‘ESC f’’ .

An editing command may be typed anywhere on the line, not just at the beginning. Inaddition, a return
may also be typed anywhere on the line, not just at the end.

Most editing commands may be given a repeat count,n, wheren is a number. To enter a repeat count, type
the escape key, the number, and then the command to execute. For example, ‘‘ESC 4 ˆf’’ moves forward
four characters.If a command may be given a repeat count then the text ‘‘[n]’ ’ is giv en at the end of its
description.

The following control characters are accepted:
ˆA Move to the beginning of the line
ˆB Move left (backwards) [n]
ˆD Deletecharacter [n]
ˆE Move to end of line
ˆF Move right (forwards) [n]
ˆG Ringthe bell
ˆH Deletecharacter before cursor (backspace key) [n]
ˆI Completefilename (tab key); see below
ˆJ Donewith line (return key)
ˆK Kill to end of line (or column [n])
ˆL Redisplayline
ˆM Donewith line (alternate return key)
ˆN Getnext line from history [n]
ˆP Getprevious line from history [n]
ˆR Searchbackward (forward if [n]) through history for text;

must start line if text begins with an uparrow
ˆT Transpose characters
ˆV Insertnext character, even if it is an edit command
ˆW Wipe to the mark

1

EDITLINE(3) EDITLINE(3)

ˆXˆX Exchangecurrent location and mark
ˆY Yank back last killed text
ˆ[Startan escape sequence (escape key)
ˆ]c Move forward to next character ‘‘c’’
ˆ? Deletecharacter before cursor (delete key) [n]

The following escape sequences are provided.
ESC ˆH Delete previous word (backspace key) [n]
ESC DEL Delete previous word (delete key) [n]
ESC SP Set the mark (space key); see ˆXˆX and ˆY above
ESC . Get the last (or [n]’th) word from previous line
ESC ? Show possible completions; see below
ESC < Move to start of history
ESC > Move to end of history
ESC b Move backward a word [n]
ESC d Delete word under cursor [n]
ESC f Move forward a word [n]
ESC l Make word lowercase [n]
ESC u Make word uppercase [n]
ESC y Yank back last killed text
ESC v Show library version
ESC w Make area up to mark yankable
ESC nn Set repeat count to the number nn
ESC C Read from environment variable ‘‘_C_’’, where C is

an uppercase letter

The editline library has a small macro facility. If you type the escape key followed by an uppercase letter,
C, then the contents of the environment variable_C_ are read in as if you had typed them at the keyboard.
For example, if the variable_L_ contains the following:

ˆAˆKecho ’ˆVˆ[[HˆVˆ[[2J’ˆM
Then typing ‘‘ESC L’’ w ill move to the beginning of the line, kill the entire line, enter the echo command
needed to clear the terminal (if your terminal is like a VT-100), and send the line back to the shell.

Theeditline library also does filename completion. Suppose the root directory has the following files in it:
bin vmunix
core vmunix.old

If you type ‘‘rm /v’’ and then the tab key. Editline will then finish off as much of the name as possible by
adding ‘‘munix’’. Becausethe name is not unique, it will then beep.If you type the escape key and a ques-
tion mark, it will display the two choices. Ifyou then type a period and a tab, the library will finish off the
filename for you:

rm /v[TAB]munix.TABold
The tab key is shown by ‘‘[TAB]’ ’ and the automatically-entered text is shown in italics.

BUGS AND LIMIT ATIONS
Cannot handle lines more than 80 columns.

AUTHORS
Simmule R. Turner <uunet.uu.net!capitol!sysgo!simmy> and Rich $alz <rsalz@osf.org>. Originalmanual
page by DaviD W. Sanderson <dws@ssec.wisc.edu>.

2

EDITLINE (3) NetBSD Library Functions Manual EDITLINE (3)

NAME
editline , el_init , el_end , el_reset , el_gets , el_getc , el_push , el_parse , el_set ,
el_get , el_source , el_resize , el_line , el_insertstr , el_deletestr , history_init ,
history_end , history , tok_init , tok_end , tok_reset , tok_line , tok_str — line editor,
history and tokenization functions

LIBRARY
Command Line Editor Library (libedit, −ledit)

SYNOPSIS
#include <histedit.h>

EditLine ∗
el_init (const char ∗prog , FILE ∗fin , FILE ∗fout , FILE ∗ferr);

void
el_end (EditLine ∗e);

void
el_reset (EditLine ∗e);

const char ∗
el_gets (EditLine ∗e , int ∗count);

int
el_getc (EditLine ∗e , char ∗ch);

void
el_push (EditLine ∗e , const char ∗str);

int
el_parse (EditLine ∗e , int argc , const char ∗argv[]);

int
el_set (EditLine ∗e , int op , . . .);

int
el_get (EditLine ∗e , int op , . . .);

int
el_source (EditLine ∗e , const char ∗file);

void
el_resize (EditLine ∗e);

const LineInfo ∗
el_line (EditLine ∗e);

int
el_insertstr (EditLine ∗e , const char ∗str);

void
el_deletestr (EditLine ∗e , int count);

History ∗
history_init ();

void
history_end (History ∗h);

NetBSD 3.0 April 5, 2008 1

EDITLINE (3) NetBSD Library Functions Manual EDITLINE (3)

int
history (History ∗h , HistEvent ∗ev , int op , . . .);

Tokenizer ∗
tok_init (const char ∗IFS);

void
tok_end (Tokenizer ∗t);

void
tok_reset (Tokenizer ∗t);

int
tok_line (Tokenizer ∗t , const LineInfo ∗li , int ∗argc , const char ∗∗argv[] ,

int ∗cursorc , int ∗cursoro);

int
tok_str (Tokenizer ∗t , const char ∗str , int ∗argc , const char ∗∗argv[]);

DESCRIPTION
The editline library provides generic line editing, history and tokenization functions, similar to those
found insh (1).

These functions are available in thelibedit library (which needs thelibtermcap library). Programs
should be linked with−ledit −ltermcap .

LINE EDITING FUNCTIONS
The line editing functions use a common data structure,EditLine , which is created byel_init () and
freed byel_end ().

The following functions are available:

el_init ()
Initialise the line editor, and return a data structure to be used by all other line editing functions.prog
is the name of the invoking program, used when reading theeditrc (5) file to determine which set-
tings to use.fin , fout and ferr are the input, output, and error streams (respectively) to use. In
this documentation, references to “the tty” are actually to this input/output stream combination.

el_end ()
Clean up and finish withe, assumed to have been created withel_init ().

el_reset ()
Reset the tty and the parser. This should be called after an error which may have upset the tty’s state.

el_gets ()
Read a line from the tty. count is modified to contain the number of characters read.Returns the
line read if successful, orNULL if no characters were read or if an error occurred.

el_getc ()
Read a character from the tty. ch is modified to contain the character read. Returns the number of
characters read if successful, −1 otherwise.

el_push ()
Pushesstr back onto the input stream. This is used by the macro expansion mechanism. Refer to the
description ofbind −s in editrc (5) for more information.

el_parse ()
Parses theargv array (which isargc elements in size) to execute builtin editline commands. If
the command is prefixed with “prog”: thenel_parse () will only execute the command if “prog”

NetBSD 3.0 April 5, 2008 2

EDITLINE (3) NetBSD Library Functions Manual EDITLINE (3)

matches theprog argument supplied toel_init (). The return value is −1 if the command is
unknown, 0 if there was no error or “prog” didn’t match, or 1 if the command returned an error. Refer
to editrc (5) for more information.

el_set ()
Set editline parameters.op determines which parameter to set, and each operation has its own
parameter list.

The following values forop are supported, along with the required argument list:

EL_PROMPT, char ∗(∗f)(EditLine ∗)
Define prompt printing function asf , which is to return a string that contains the prompt.

EL_REFRESH
Re-display the current line on the next terminal line.

EL_RPROMPT, char ∗(∗f)(EditLine ∗)
Define right side prompt printing function asf , which is to return a string that contains the
prompt.

EL_TERMINAL, const char ∗type
Define terminal type of the tty to betype , or to TERMif type is NULL.

EL_EDITOR, const char ∗mode
Set editing mode tomode, which must be one of “emacs” or “vi”.

EL_SIGNAL, int flag
If flag is non-zero,editline will install its own signal handler for the following signals
when reading command input:SIGCONT, SIGHUP, SIGINT , SIGQUIT , SIGSTOP,
SIGTERM, SIGTSTP, andSIGWINCH. Otherwise, the current signal handlers will be used.

EL_BIND, const char ∗, . . . , NULL
Perform thebind builtin command. Refer toeditrc (5) for more information.

EL_ECHOTC, const char ∗, . . . , NULL
Perform theechotc builtin command. Refer toeditrc (5) for more information.

EL_SETTC, const char ∗, . . . , NULL
Perform thesettc builtin command. Refer toeditrc (5) for more information.

EL_SETTY, const char ∗, . . . , NULL
Perform thesetty builtin command. Refer toeditrc (5) for more information.

EL_TELLTC, const char ∗, . . . , NULL
Perform thetelltc builtin command. Refer toeditrc (5) for more information.

EL_ADDFN, const char ∗name, const char ∗help , unsigned char
(∗func)(EditLine ∗e, int ch)
Add a user defined function,func (), referred to asname which is invoked when a key which is
bound toname is entered.help is a description ofname. At inv ocation time,ch is the key
which caused the invocation. Thereturn value offunc () should be one of:

CC_NORM Add a normal character.

CC_NEWLINE End of line was entered.

CC_EOF EOF was entered.

CC_ARGHACK Expecting further command input as arguments, do nothing visually.

NetBSD 3.0 April 5, 2008 3

EDITLINE (3) NetBSD Library Functions Manual EDITLINE (3)

CC_REFRESH Refresh display.

CC_REFRESH_BEEP
Refresh display, and beep.

CC_CURSOR Cursor moved, so update and performCC_REFRESH.

CC_REDISPLAYRedisplay entire input line.This is useful if a key binding outputs extra
information.

CC_ERROR An error occurred. Beep, and flush tty.

CC_FATAL Fatal error, reset tty to known state.

EL_HIST , History ∗(∗func)(History ∗, i nt op, ...) , const char ∗ptr
Defines which history function to use, which is usuallyhistory (). ptr should be the value
returned byhistory_init ().

EL_EDITMODE, int flag
If flag is non-zero, editing is enabled (the default). Notethat this is only an indication, and
does not affect the operation ofeditline . At this time, it is the caller’s responsibility to
check this (usingel_get ()) to determine if editing should be enabled or not.

EL_GETCFN, int (∗f)(EditLine ∗, c har ∗c)
Define the character reading function asf , which is to return the number of characters read and
store them inc . This function is called internally byel_gets () andel_getc (). Thebuiltin
function can be set or restored with the special function name ‘‘EL_BUILTIN_GETCFN’’.

EL_CLIENTDATA, void ∗data
Registerdata to be associated with this EditLine structure.It can be retrieved with the corre-
spondingel_get () call.

EL_SETFP, int fd , FILE ∗fp
Set the currenteditline file pointer for “input” fd = 0, “output” fd = 1, or “error” fd = 2
from fp .

el_get ()
Get editline parameters.op determines which parameter to retrieve into result . Returns 0 if
successful, −1 otherwise.

The following values forop are supported, along with actual type ofresult :

EL_PROMPT, char ∗(∗f)(EditLine ∗)
Return a pointer to the function that displays the prompt.

EL_RPROMPT, char ∗(∗f)(EditLine ∗)
Return a pointer to the function that displays the rightside prompt.

EL_EDITOR, const char ∗
Return the name of the editor, which will be one of “emacs” or “vi”.

EL_GETTC, const char ∗name, void ∗value
Return non-zero ifname is a valid termcap (5) capability and setvalue to the current value
of that capability.

EL_SIGNAL, int ∗
Return non-zero ifeditline has installed private signal handlers (seeel_get () above).

EL_EDITMODE, int ∗
Return non-zero if editing is enabled.

NetBSD 3.0 April 5, 2008 4

EDITLINE (3) NetBSD Library Functions Manual EDITLINE (3)

EL_GETCFN, int (∗∗f)(EditLine ∗, c har ∗)
Return a pointer to the function that read characters, which is equal to
‘‘ EL_BUILTIN_GETCFN’’ in the case of the default builtin function.

EL_CLIENTDATA, void ∗∗data
Retrievedata previously registered with the correspondingel_set () call.

EL_UNBUFFERED, int
Sets or clears unbuffered mode. In this mode,el_gets () will return immediately after pro-
cessing a single character.

EL_PREP_TERM, int
Sets or clears terminal editing mode.

EL_GETFP, int fd , FILE ∗∗fp
Return infp the currenteditline file pointer for “input”fd = 0, “output” fd = 1, or “error”
fd = 2.

el_source ()
Initialise editline by reading the contents offile . el_parse () is called for each line infile .
If file is NULL, try $PWD/.editrc then$HOME/.editrc . Refer toeditrc (5) for details on
the format offile .

el_resize ()
Must be called if the terminal size changes.If EL_SIGNAL has been set withel_set (), then this is
done automatically. Otherwise, it’s the responsibility of the application to callel_resize () on the
appropriate occasions.

el_line ()
Return the editing information for the current line in aLineInfo structure, which is defined as fol-
lows:

typedef struct lineinfo {
const char ∗buffer; / ∗ address of buffer ∗/
const char ∗cursor; / ∗ address of cursor ∗/
const char ∗lastchar; / ∗ address of last character ∗/

} L ineInfo;

buffer is not NUL terminated. This function may be called afterel_gets () to obtain the
LineInfo structure pertaining to line returned by that function, and from within user defined func-
tions added withEL_ADDFN.

el_insertstr ()
Insertstr into the line at the cursor. Returns −1 ifstr is empty or won’t fit, and 0 otherwise.

el_deletestr ()
Deletecount characters before the cursor.

HISTORY L IST FUNCTIONS
The history functions use a common data structure,History , which is created byhistory_init () and
freed byhistory_end ().

The following functions are available:

history_init ()
Initialise the history list, and return a data structure to be used by all other history list functions.

NetBSD 3.0 April 5, 2008 5

EDITLINE (3) NetBSD Library Functions Manual EDITLINE (3)

history_end ()
Clean up and finish withh, assumed to have been created withhistory_init ().

history ()
Perform operationop on the history list, with optional arguments as needed by the operation.ev is
changed accordingly to operation. The following values forop are supported, along with the required
argument list:

H_SETSIZE, int size
Set size of history tosize elements.

H_GETSIZE
Get number of events currently in history.

H_END
Cleans up and finishes withh, assumed to be created withhistory_init ().

H_CLEAR
Clear the history.

H_FUNC, void ∗ptr , history_gfun_t first , history_gfun_t next ,
history_gfun_t last , history_gfun_t prev , history_gfun_t curr ,
history_sfun_t set , history_vfun_t clear , history_efun_t enter ,
history_efun_t add
Define functions to perform various history operations.ptr is the argument given to a function
when it’s inv oked.

H_FIRST
Return the first element in the history.

H_LAST
Return the last element in the history.

H_PREV
Return the previous element in the history.

H_NEXT
Return the next element in the history.

H_CURR
Return the current element in the history.

H_SET
Set the cursor to point to the requested element.

H_ADD, const char ∗str
Appendstr to the current element of the history, or perform theH_ENTERoperation with
argumentstr if there is no current element.

H_APPEND, const char ∗str
Appendstr to the last new element of the history.

H_ENTER, const char ∗str
Add str as a new element to the history, and, if necessary, removing the oldest entry to keep
the list to the created size.If H_SETUNIQUEwas has been called with a non-zero arguments,
the element will not be entered into the history if its contents match the ones of the current his-
tory element. If the element is enteredhistory () returns 1, if it is ignored as a duplicate
returns 0. Finallyhistory () returns −1 if an error occurred.

NetBSD 3.0 April 5, 2008 6

EDITLINE (3) NetBSD Library Functions Manual EDITLINE (3)

H_PREV_STR, const char ∗str
Return the closest previous event that starts withstr .

H_NEXT_STR, const char ∗str
Return the closest next event that starts withstr .

H_PREV_EVENT, int e
Return the previous event numberede.

H_NEXT_EVENT, int e
Return the next event numberede.

H_LOAD, const char ∗file
Load the history list stored infile .

H_SAVE, const char ∗file
Save the history list tofile .

H_SETUNIQUE, int unique
Set flag that adjacent identical event strings should not be entered into the history.

H_GETUNIQUE
Retrieve the current setting if adjacent identical elements should be entered into the history.

H_DEL, int e
Delete the event numberede. This function is only provided forreadline (3) compatibility.
The caller is responsible for free’ing the string in the returnedHistEvent .

history () returns >= 0 if the operationop succeeds. Otherwise,−1 is returned andev is updated to
contain more details about the error.

TOKENIZA TION FUNCTIONS
The tokenization functions use a common data structure,Tokenizer , which is created bytok_init ()
and freed bytok_end ().

The following functions are available:

tok_init ()
Initialise the tokenizer, and return a data structure to be used by all other tokenizer functions.IFS
contains the Input Field Separators, which defaults to〈space〉, 〈tab〉, and 〈newline〉 if NULL.

tok_end ()
Clean up and finish witht , assumed to have been created withtok_init ().

tok_reset ()
Reset the tokenizer state. Use after a line has been successfully tokenized by tok_line () or
tok_str () and before a new line is to be tokenized.

tok_line ()
Tokenize li , If successful, modify:argv to contain the words,argc to contain the number of words,
cursorc (if not NULL) to contain the index of the word containing the cursor, and cursoro (if not
NULL) to contain the offset withinargv[cursorc] of the cursor.

Returns 0 if successful, −1 for an internal error, 1 for an unmatched single quote, 2 for an unmatched
double quote, and 3 for a backslash quoted〈newline〉. A positive exit code indicates that another line
should be read and tokenization attempted again.

tok_str ()
A simpler form oftok_line (); str is a NUL terminated string to tokenize.

NetBSD 3.0 April 5, 2008 7

EDITLINE (3) NetBSD Library Functions Manual EDITLINE (3)

SEE ALSO
sh (1), signal (3), termcap (3), editrc (5), termcap (5)

HISTORY
The editline library first appeared in 4.4BSD. CC_REDISPLAY appeared in NetBSD 1.3.
CC_REFRESH_BEEP, EL_EDITMODEand the readline emulation appeared inNetBSD 1.4. EL_RPROMPT
appeared inNetBSD 1.5.

AUTHORS
Theeditline library was written by Christos Zoulas.Luke Mewburn wrote this manual and implemented
CC_REDISPLAY, CC_REFRESH_BEEP, EL_EDITMODE, and EL_RPROMPT. Jaromir Dolecek imple-
mented the readline emulation.

BUGS
At this time, it is the responsibility of the caller to check the result of theEL_EDITMODEoperation of
el_get () (after anel_source () or el_parse ()) to determine ifeditline should be used for further
input. I.e.,EL_EDITMODEis purely an indication of the result of the most recenteditrc (5) edit com-
mand.

NetBSD 3.0 April 5, 2008 8

EFUN (3) NetBSD Library Functions Manual EFUN (3)

NAME
esetfunc , easprintf , efopen , emalloc , ecalloc , erealloc , estrdup , estrndup ,
estrlcat , estrlcpy , evasprintf — error-checked utility functions

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

void (∗)(int, const char ∗, . ..)
esetfunc (void (∗)(int, const char ∗, . ..));

int
easprintf (char ∗∗ restrict str , const char ∗ restrict fmt , . . .);

FILE ∗
efopen (const char ∗p , const char ∗m);

void ∗
ecalloc (size_t n , size_t c);

void ∗
emalloc (size_t n);

void ∗
erealloc (void ∗p , size_t n);

char ∗
estrdup (const char ∗s);

char ∗
estrndup (const char ∗s , size_t len);

size_t
estrlcat (char ∗dst , const char ∗src , size_t len);

size_t
estrlcpy (char ∗dst , const char ∗src , size_t len);

int
evasprintf (char ∗∗ restrict str , const char ∗ restrict fmt , . . .);

DESCRIPTION
The easprintf , efopen , ecalloc , emalloc , erealloc , estrdup , estrndup , estrlcat ,
estrlcpy , and evasprintf functions operate exactly as the corresponding functions that do not start
with an ‘e’ except that in case of an error, they call the installed error handler that can be configured with
esetfunc . For the string handling functions, it is an error when the destination buffer is not large enough
to hold the complete string.For functions that allocate memory or open a file, it is an error when they would
return a null pointer. The default error handler iserr (3). Thefunction esetfunc returns the previous
error handler function. ANULLerror handler will just callexit (3).

SEE ALSO
asprintf (3), calloc (3), err (3), exit (3), fopen (3), malloc (3), realloc (3), strdup (3),
strndup (3), strlcat (3), strlcpy (3), vasprintf (3)

NetBSD 3.0 February 23, 2008 1

END (3) NetBSD Library Functions Manual END (3)

NAME
end , etext , edata — end boundaries of image segments

SYNOPSIS
extern int end;
extern int etext;
extern int edata;

DESCRIPTION
The globalsend, etextandedataare program segment end addresses.

etextis located at the first address after the end of the text segment.

edatais located at the first address after the end of the initialized data segment.

endis located at the first address after the end of the data segment (BSS) when the program is loaded.Use
thesbrk (2) system call with zero as its argument to find the current end of the data segment.

SEE ALSO
sbrk (2), malloc (3), a.out (5)

HISTORY
An end manual page appeared in Version 6AT&T UNIX .

BUGS
Traditionally, no variable existed that pointed to the start of the text segment because the text segment always
started at address zero. Although it is no longer valid to make this assumption, no variable similar to the ones
documented above exists to point to the start of the text segment.

NetBSD 3.0 September 1, 2005 1

ENDUTXENT (3) NetBSD Library Functions Manual ENDUTXENT (3)

NAME
endutxent , getutxent , getutxid , getutxline , pututxline , setutxent — user accounting
database functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <utmpx.h>

void
endutxent (void);

struct utmpx ∗
getutxent (void);

struct utmpx ∗
getutxid (const struct utmpx ∗);

struct utmpx ∗
getutxline (const struct utmpx ∗);

struct utmpx ∗
pututxline (const struct utmpx ∗);

void
setutxent (void);

DESCRIPTION
These functions provide access to theutmpx (5) user accounting database.

getutxent () reads the next entry from the database; if the database was not yet open, it also opens it.
setutxent () resets the database, so that the next getutxent () call will get the first entry.
endutxent () closes the database.

getutxid () returns the next entry of the type specified in its argument’sut_typefield, or NULL if none is
found. getutxline () returns the next LOGIN_PROCESSor USER_PROCESSentry which has the same
name as specified in theut_linefield, orNULL if no match is found.

pututxline () adds the argumentutmpx (5) entry line to the accounting database, replacing a previous
entry for the same user if it exists.

The utmpx structure
Theutmpx structure has the following definition:

struct utmpx {
char ut_name[_UTX_USERSIZE]; / ∗ login name ∗/
char ut_id[_UTX_IDSIZE]; / ∗ inittab id ∗/
char ut_line[_UTX_LINESIZE]; / ∗ tty name ∗/
char ut_host[_UTX_HOSTSIZE]; / ∗ host name ∗/
uint16_t ut_session; / ∗ session id used for windowing ∗/
uint16_t ut_type; / ∗ type of this entry ∗/
pid_t ut_pid; / ∗ process id creating the entry ∗/
struct {

uint16_t e_termination; / ∗ process termination signal ∗/
uint16_t e_exit; / ∗ process exit status ∗/

} u t_exit;

NetBSD 3.0 September 26, 2002 1

ENDUTXENT (3) NetBSD Library Functions Manual ENDUTXENT (3)

struct sockaddr_storage ut_ss; / ∗ address where entry was made from ∗/
struct timeval ut_tv; / ∗ time entry was created ∗/
uint32_t ut_pad[10]; / ∗ reserved for future use ∗/

};

Valid entries forut_type are:
BOOT_TIME Time of a system boot.
DEAD_PROCESS A session leader exited.
EMPTY No valid user accounting information.
INIT_PROCESS A process spawned byinit (8).
LOGIN_PROCESS The session leader of a logged-in user.
NEW_TIME Time after system clock change.
OLD_TIME Time before system clock change.
RUN_LVL Run level. Provided for compatibility, not used onNetBSD.
USER_PROCESS A user process.

RETURN VALUES
getutxent () returns the next entry, or NULL on failure (end of database or problems reading from the
database).getutxid () andgetutxline () return the matching structure on success, orNULL if no match
was found. pututxline () returns the structure that was successfully written, orNULL.

SEE ALSO
logwtmpx (3), utmpx (5)

STANDARDS
The endutxent (), getutxent (), getutxid (), getutxline (), pututxline (), setutxent () all
conform toIEEE Std 1003.1-2001 (“POSIX.1”) (XSI extension), and previously toX/OpenPortability Guide
Issue 4, Version 2 (“XPG4.2”). Thefieldsut_user , ut_id , ut_line , ut_pid , ut_type , and ut_tv
conform toIEEE Std 1003.1-2001 (“POSIX.1”) (XSI extension), and previously toX/OpenPortability Guide
Issue 4, Version 2 (“XPG4.2”).

NetBSD 3.0 September 26, 2002 2

ERF (3) NetBSD Library Functions Manual ERF (3)

NAME
erf , erff , erfc , erfcf — error function operators

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
erf (double x);

float
erff (float x);

double
erfc (double x);

float
erfcf (float x);

DESCRIPTION
These functions calculate the error function ofx .

Theerf () calculates the error function of x; where

erf (x) := (2/√π) ∫
0
x exp(−t2) dt.

Theerfc () function calculates the complementary error function ofx ; that iserfc () subtracts the result of
the error functionerf (x) from 1.0. This is useful, since for largex places disappear.

SEE ALSO
math (3)

HISTORY
Theerf () anderfc () functions appeared in 4.3BSD.

NetBSD 3.0 April 20, 1991 1

ERR (3) NetBSD Library Functions Manual ERR (3)

NAME
err , verr , errx , verrx , warn , vwarn , warnx , vwarnx — formatted error messages

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <err.h>

void
err (int status , const char ∗fmt , . . .);

void
verr (int status , const char ∗fmt , va_list args);

void
errx (int status , const char ∗fmt , . . .);

void
verrx (int status , const char ∗fmt , va_list args);

void
warn (const char ∗fmt , . . .);

void
vwarn (const char ∗fmt , va_list args);

void
warnx (const char ∗fmt , . . .);

void
vwarnx (const char ∗fmt , va_list args);

DESCRIPTION
The err () andwarn () family of functions display a formatted error message on the standard error output.
In all cases, the last component of the program name, a colon character, and a space are output. If thefmt
argument is notNULL, the formatted error message is output. In the case of theerr (), verr (), warn (), and
vwarn () functions, the error message string affiliated with the current value of the global variableerrno is
output next, preceded by a colon character and a space iffmt is notNULL. In all cases, the output is fol-
lowed by a newline character. The errx (), verrx (), warnx (), andvwarnx () functions will not output
this error message string.

The err (), verr (), errx (), andverrx () functions do not return, but instead cause the program to termi-
nate with the status value given by the argument status . It is often appropriate to use the value
EXIT_FAILURE , defined in〈stdlib.h 〉, as thestatus argument given to these functions.

EXAMPLES
Display the currenterrno information string and terminate with status indicating failure:

if ((p = malloc(size)) == NULL)
err(EXIT_FAILURE, NULL);

if ((fd = open(file_name, O_RDONLY, 0)) == -1)
err(EXIT_FAILURE, "%s", file_name);

Display an error message and terminate with status indicating failure:

NetBSD 3.0 March 21, 2001 1

ERR (3) NetBSD Library Functions Manual ERR (3)

if (tm.tm_hour < START_TIME)
errx(EXIT_FAILURE, "too early, wait until %s",

start_time_string);

Warn of an error:

if ((fd = open(raw_device, O_RDONLY, 0)) == -1)
warnx("%s: %s: trying the block device",

raw_device, strerror(errno));
if ((fd = open(block_device, O_RDONLY, 0)) == -1)

warn("%s", block_device);

SEE ALSO
exit (3), getprogname (3), strerror (3)

HISTORY
Theerr () andwarn () functions first appeared in 4.4BSD.

CAVEATS
It is important never to pass a string with user-supplied data as a format without using ‘%s’. An attacker can
put format specifiers in the string to mangle your stack, leading to a possible security hole.This holds true
ev en if you have built the string “by hand” using a function like snprintf (), as the resulting string may
still contain user-supplied conversion specifiers for later interpolation by theerr () andwarn () functions.

Always be sure to use the proper secure idiom:

err(1, "%s", string);

NetBSD 3.0 March 21, 2001 2

ETHERS (3) NetBSD Library Functions Manual ETHERS (3)

NAME
ether_ntoa , ether_aton , ether_ntohost , ether_hostton , ether_line , — get ethers entry

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_ether.h>

char ∗
ether_ntoa (const struct ether_addr ∗e);

struct ether_addr ∗
ether_aton (const char ∗s);

int
ether_ntohost (char ∗hostname , const struct ether_addr ∗e);

int
ether_hostton (const char ∗hostname , struct ether_addr ∗e);

int
ether_line (const char ∗line , struct ether_addr ∗e , char ∗hostname);

DESCRIPTION
Ethernet addresses are represented by the following structure:

struct ether_addr {
u_char ether_addr_octet[6];

};

Theether_ntoa () function converts this structure into an ASCII string of the form ‘‘xx:xx:xx:xx:xx:xx’’,
consisting of 6 hexadecimal numbers separated by colons.It returns a pointer to a static buffer that is reused
for each call.Theether_aton () converts an ASCII string of the same form and to a structure containing
the 6 octets of the address. It returns a pointer to a static structure that is reused for each call.

The ether_ntohost () andether_hostton () functions interrogate the data base mapping host names
to Ethernet addresses,/etc/ethers . The ether_ntohost () function looks up the given Ethernet
address and writes the associated host name into the character buffer passed.Theether_hostton () func-
tion looks up the given host name and writes the associated Ethernet address into the structure passed.Both
functions return zero if they find the requested host name or address, and -1 if not.Each call reads
/etc/ethers from the beginning; if a + appears alone on a line in the file, thenether_hostton () will
consult theethers.byname YP map, andether_ntohost () will consult theethers.byaddr YP
map.

The ether_line () function parses a line from the/etc/ethers file and fills in the passed ‘‘struct
ether_addr’’ and character buffer with the Ethernet address and host name on the line. It returns zero if the
line was successfully parsed and -1 if not.

The hostname buffer for ether_line () and ether_ntohost () should be at least
MAXHOSTNAMELEN+ 1 characters long, to prevent a buffer overflow during parsing.

NetBSD 3.0 November 2, 1997 1

ETHERS (3) NetBSD Library Functions Manual ETHERS (3)

FILES
/etc/ethers

SEE ALSO
ethers (5)

HISTORY
The ether_ntoa (), ether_aton (), ether_ntohost (), ether_hostton (), and ether_line ()
functions were adopted fromSunOSand appeared inNetBSD 1.0.

BUGS
The data space used by these functions is static; if future use requires the data, it should be copied before any
subsequent calls to these functions overwrite it.

NetBSD 3.0 November 2, 1997 2

EVDNS (3) NetBSD Library Functions Manual EVDNS (3)

NAME
evdns_init evdns_shutdown evdns_err_to_string evdns_nameserver_add
evdns_count_nameservers evdns_clear_nameservers_and_suspend evdns_resume
evdns_nameserver_ip_add evdns_resolve_ipv4 evdns_resolve_reverse
evdns_resolv_conf_parse evdns_search_clear evdns_search_add
evdns_search_ndots_set evdns_set_log_fn — asynchronous functions for DNS resolution

SYNOPSIS
#include <sys/time.h>
#include <event.h>
#include <evdns.h>

int
evdns_init ();

void
evdns_shutdown (int fail_requests);

const char ∗
evdns_err_to_string (int err);

int
evdns_nameserver_add (unsigned long int address);

int
evdns_count_nameservers ();

int
evdns_clear_nameservers_and_suspend ();

int
evdns_resume ();

int
evdns_nameserver_ip_add (const char ∗ip_as_string);

int
evdns_resolve_ipv4 (const char ∗name, int flags ,

evdns_callback_type callback , void ∗ptr);

int
evdns_resolve_reverse (struct in_addr ∗in , int flags ,

evdns_callback_type callback , void ∗ptr);

int
evdns_resolv_conf_parse (int flags , const char ∗);

void
evdns_search_clear ();

void
evdns_search_add (const char ∗domain);

void
evdns_search_ndots_set (const int ndots);

void
evdns_set_log_fn (evdns_debug_log_fn_type fn);

NetBSD 3.0 May 14, 2008 1

EVDNS (3) NetBSD Library Functions Manual EVDNS (3)

DESCRIPTION
Welcome, gentle reader

Async DNS lookups are really a whole lot harder than they should be, mostly stemming from the fact that
the libc resolver has never been very good at them. Before you use this library you should see if libc can do
the job for you with the modern async call getaddrinfo_a (see http://www.imperialvio-
let.org/page25.html#e498). Otherwise, please continue.

This code is based on libevent and you must call event_init before any of the APIs in this file. You must also
seed the OpenSSL random source if you are using OpenSSL for ids (see below).

This library is designed to be included and shipped with your source code. You statically link with it. You
should also test for the existence of strtok_r and define HAVE_STRTOK_R if you have it.

The DNS protocol requires a good source of id numbers and these numbers should be unpredictable for
spoofing reasons. There are three methods for generating them here and you must define exactly one of them.
In increasing order of preference:

DNS_USE_GETTIMEOFDAY_FOR_ID
Using the bottom 16 bits of the usec result from gettimeof-
day. This is a pretty poor solution but should work any-
where.

DNS_USE_CPU_CLOCK_FOR_ID Using the bottom 16 bits of the nsec result from the CPU’s
time counter. This is better, but may not work everywhere.
Requires POSIX realtime support and you’ll need to link
against -lrt on glibc systems at least.

DNS_USE_OPENSSL_FOR_ID Uses the OpenSSL RAND_bytes call to generate the data.
You must have seeded the pool before making any calls to
this library.

The library keeps track of the state of nameservers and will avoid them when they go down. Otherwise it will
round robin between them.

Quick start guide:
#include "evdns.h"
void callback(int result, char type, int count, int ttl, void ∗addresses, void∗arg);
evdns_resolv_conf_parse(DNS_OPTIONS_ALL, "/etc/resolv.conf");
evdns_resolve("www.hostname.com", 0, callback, NULL);

When the lookup is complete the callback function is called. The first argument will be one of the
DNS_ERR_∗ defines in evdns.h. Hopefullyit will be DNS_ERR_NONE, in which case type will be
DNS_IPv4_A, count will be the number of IP addresses, ttl is the time which the data can be cached for (in
seconds), addresses will point to an array of uint32_t’s and arg will be whatever you passed to evdns_resolve.

Searching:

In order for this library to be a good replacement for glibc’s resolver it supports searching. This involves set-
ting a list of default domains, in which names will be queried for. The number of dots in the query name
determines the order in which this list is used.

Searching appears to be a single lookup from the point of view of the API, although many DNS queries may
be generated from a single call to evdns_resolve. Searching can also drastically slow down the resolution of
names.

To disable searching:

NetBSD 3.0 May 14, 2008 2

EVDNS (3) NetBSD Library Functions Manual EVDNS (3)

1. Never set it up. If you never call evdns_resolv_conf_parse (), evdns_init (), or
evdns_search_add () then no searching will occur.

2. If you do callevdns_resolv_conf_parse () then don’t passDNS_OPTION_SEARCH(or
DNS_OPTIONS_ALL, which implies it).

3. Whencallingevdns_resolve (), pass theDNS_QUERY_NO_SEARCHflag.

The order of searches depends on the number of dots in the name. If the number is greater than the ndots set-
ting then the names is first tried globally. Otherwise each search domain is appended in turn.

The ndots setting can either be set from a resolv.conf, or by calling evdns_search_ndots_set.

For example, with ndots set to 1 (the default) and a search domain list of ["myhome.net"]:
Query: www
Order: www.myhome.net, www.

Query: www.abc
Order: www.abc., www.abc.myhome.net

API r eference
int evdns_init ()

Initializes support for non-blocking name resolution by calling
evdns_resolv_conf_parse ().

int evdns_nameserver_add (unsigned long int address)
Add a nameserver. The address should be an IP address in network byte order. The type of
address is chosen so that it matches in_addr.s_addr. Returns non-zero on error.

int evdns_nameserver_ip_add (const char ∗ip_as_string)
This wraps the above function by parsing a string as an IP address and adds it as a nameserver.
Returns non-zero on error

int evdns_resolve (const char ∗name, int flags , evdns_callback_type
callback , void ∗ptr)
Resolve a name. The name parameter should be a DNS name. The flags parameter should be 0,
or DNS_QUERY_NO_SEARCH which disables searching for this query. (see defn of searching
above).

The callback argument is a function which is called when this query completes and ptr is an argu-
ment which is passed to that callback function.

Returns non-zero on error

void evdns_search_clear ()
Clears the list of search domains

void evdns_search_add (const char ∗domain)
Add a domain to the list of search domains

void evdns_search_ndots_set (int ndots)
Set the number of dots which, when found in a name, causes the first query to be without any
search domain.

int evdns_count_nameservers (void)
Return the number of configured nameservers (not necessarily the number of running name-
servers). Thisis useful for double-checking whether our calls to the various nameserver configu-
ration functions have been successful.

NetBSD 3.0 May 14, 2008 3

EVDNS (3) NetBSD Library Functions Manual EVDNS (3)

int evdns_clear_nameservers_and_suspend (void)
Remove all currently configured nameservers, and suspend all pending resolves. Resolves will
not necessarily be re-attempted untilevdns_resume () is called.

int evdns_resume (void)
Re-attempt resolves left in limbo after an earlier call to
evdns_clear_nameservers_and_suspend ().

int evdns_resolv_conf_parse (int flags , const char ∗filename)
Parse a resolv.conf like file from the given filename.

See the man page for resolv.conf for the format of this file.The flags argument determines what
information is parsed from this file:

DNS_OPTION_SEARCH domain, search and ndots options
DNS_OPTION_NAMESERVERS nameserver lines
DNS_OPTION_MISC timeout and attempts options
DNS_OPTIONS_ALL all of the above

The following directives are not parsed from the file:
sortlist, rotate, no-check-names, inet6, debug

Returns non-zero on error:
0 no errors
1 failed to open file
2 failed to stat file
3 file too large
4 out of memory
5 short read from file

Internals
Requests are kept in two queues. The first is the inflight queue. In this queue requests have an allocated trans-
action id and nameserver. They will soon be transmitted if they hav en’t already been.

The second is the waiting queue. The size of the inflight ring is limited and all other requests wait in waiting
queue for space. This bounds the number of concurrent requests so that we don’t flood the nameserver. Sev-
eral algorithms require a full walk of the inflight queue and so bounding its size keeps thing going nicely
under huge (many thousands of requests) loads.

If a nameserver loses too many requests it is considered down and we try not to use it. After a while we send
a probe to that nameserver (a lookup for google.com) and, if it replies, we consider it working again. If the
nameserver fails a probe we wait longer to try again with the next probe.

SEE ALSO
event (3), gethostbyname (3), resolv.conf (5)

HISTORY
The evdns API was developed by Adam Langley on top of thelibevent API. Thecode was integrate
into Tor by Nick Mathewson and finally put intolibevent itself by Niels Provos.

AUTHORS
Theevdns API and code was written by Adam Langley with significant contributions by Nick Mathewson.

BUGS
This documentation is neither complete nor authoritative. If you are in doubt about the usage of this API
then check the source code to find out how it works, write up the missing piece of documentation and send it

NetBSD 3.0 May 14, 2008 4

EVDNS (3) NetBSD Library Functions Manual EVDNS (3)

to me for inclusion in this man page.

NetBSD 3.0 May 14, 2008 5

EVENT (3) NetBSD Library Functions Manual EVENT (3)

NAME
event_init , event_dispatch , event_loop , event_loopexit , event_loopbreak ,
event_set , event_base_dispatch , event_base_loop , event_base_loopexit ,
event_base_loopbreak , event_base_set , event_base_free , event_add , event_del ,
event_once , event_base_once , event_pending , event_initialized ,
event_priority_init , event_priority_set , evtimer_set , evtimer_add ,
evtimer_del , evtimer_pending , evtimer_initialized , signal_set , signal_add ,
signal_del , signal_pending , signal_initialized , bufferevent_new ,
bufferevent_free , bufferevent_write , bufferevent_write_buffer ,
bufferevent_read , bufferevent_enable , bufferevent_disable ,
bufferevent_settimeout , bufferevent_base_set , evbuffer_new , evbuffer_free ,
evbuffer_add , evbuffer_add_buffer , evbuffer_add_printf , evbuffer_add_vprintf ,
evbuffer_drain , evbuffer_write , evbuffer_read , evbuffer_find ,
evbuffer_readline , evhttp_new , evhttp_bind_socket , evhttp_free — execute a func-
tion when a specific event occurs

LIBRARY
Event Notification Library (libevent, −levent)

SYNOPSIS
#include <sys/time.h>
#include <event.h>

struct event_base ∗
event_init ();

int
event_dispatch ();

int
event_loop (int flags);

int
event_loopexit (struct timeval ∗tv);

int
event_loopbreak (void);

int
event_base_dispatch (struct event_base ∗base);

void
event_base_free (struct event_base ∗base);

int
event_base_loop (struct event_base ∗base , int flags);

int
event_base_loopexit (struct event_base ∗base , struct timeval ∗tv);

int
event_base_loopbreak (struct event_base ∗base);

int
event_base_set (struct event_base ∗base , struct event ∗);

NetBSD 3.0 May 14, 2008 1

EVENT (3) NetBSD Library Functions Manual EVENT (3)

void
event_set (struct event ∗ev , int fd , short event ,

void (∗fn)(int, short, void ∗) , void ∗arg);

int
event_add (struct event ∗ev , struct timeval ∗tv);

int
event_del (struct event ∗ev);

int
event_once (int fd , short event , void (∗fn)(int, short, void ∗) , void ∗arg ,

struct timeval ∗tv);

inr
event_base_once (struct event_base ∗base , int fd , short event ,

void (∗fn)(int, short, void ∗) , void ∗arg , struct timeval ∗tv);

int
event_pending (struct event ∗ev , short event , struct timeval ∗tv);

int
event_initialized (struct event ∗ev);

void
evtimer_set (struct event ∗ev , void (∗fn)(int, short, void ∗) , void ∗arg);

void
evtimer_add (struct event ∗ev , struct timeval ∗tv);

void
evtimer_del (struct event ∗ev);

int
evtimer_pending (struct event ∗ev , struct timeval ∗tv);

int
evtimer_initialized (struct event ∗ev);

void
signal_set (struct event ∗ev , int signal , void (∗fn)(int, short, void ∗) ,

void ∗arg);

void
signal_add (struct event ∗ev , struct timeval ∗tv);

void
signal_del (struct event ∗ev);

int
signal_pending (struct event ∗ev , struct timeval ∗tv);

int
signal_initialized (struct event ∗ev);

struct bufferevent ∗
bufferevent_new (int fd , evbuffercb readcb , evbuffercb writecb , everrorcb ,

void ∗cbarg);

NetBSD 3.0 May 14, 2008 2

EVENT (3) NetBSD Library Functions Manual EVENT (3)

void
bufferevent_free (struct bufferevent ∗bufev);

int
bufferevent_write (struct bufferevent ∗bufev , void ∗data , size_t size);

int
bufferevent_write_buffer (struct bufferevent ∗bufev , struct evbuffer ∗buf);

size_t
bufferevent_read (struct bufferevent ∗bufev , void ∗data , size_t size);

int
bufferevent_enable (struct bufferevent ∗bufev , short event);

int
bufferevent_disable (struct bufferevent ∗bufev , short event);

void
bufferevent_settimeout (struct bufferevent ∗bufev , int timeout_read ,

int timeout_write);

int
bufferevent_base_set (struct event_base ∗base , struct bufferevent ∗bufev);

struct evbuffer ∗
evbuffer_new (void);

void
evbuffer_free (struct evbuffer ∗buf);

int
evbuffer_add (struct evbuffer ∗buf , const void ∗data , size_t size);

int
evbuffer_add_buffer (struct evbuffer ∗dst , struct evbuffer ∗src);

int
evbuffer_add_printf (struct evbuffer ∗buf , const char ∗fmt , . . .);

int
evbuffer_add_vprintf (struct evbuffer ∗buf , const char ∗fmt , va_list ap);

void
evbuffer_drain (struct evbuffer ∗buf , size_t size);

int
evbuffer_write (struct evbuffer ∗buf , int fd);

int
evbuffer_read (struct evbuffer ∗buf , int fd , int size);

u_char ∗
evbuffer_find (struct evbuffer ∗buf , const u_char ∗data , size_t size);

char ∗
evbuffer_readline (struct evbuffer ∗buf);

struct evhttp ∗
evhttp_new (struct event_base ∗base);

NetBSD 3.0 May 14, 2008 3

EVENT (3) NetBSD Library Functions Manual EVENT (3)

int
evhttp_bind_socket (struct evhttp ∗http , const char ∗address , u_short port);

void
evhttp_free (struct evhttp ∗http);

int (∗event_sigcb)(void) ;

volatile sig_atomic_t event_gotsig ;

DESCRIPTION
Theevent API provides a mechanism to execute a function when a specific event on a file descriptor occurs
or after a given time has passed.

Theevent API needs to be initialized withevent_init () before it can be used.

In order to process events, an application needs to callevent_dispatch (). This function only returns on
error, and should replace the event core of the application program.

The functionevent_set () prepares the event structureev to be used in future calls toevent_add () and
event_del (). Theev ent will be prepared to call the function specified by thefn argument with anint
argument indicating the file descriptor, a short argument indicating the type of event, and avoid ∗ argu-
ment given in the arg argument. Thefd indicates the file descriptor that should be monitored for events.
The events can be eitherEV_READ, EV_WRITE, or both, indicating that an application can read or write
from the file descriptor respectively without blocking.

The functionfn will be called with the file descriptor that triggered the event and the type of event which
will be eitherEV_TIMEOUT, EV_SIGNAL, EV_READ, or EV_WRITE. Additionally, an event which has
registered interest in more than one of the preceeding events, via bitwise-OR toevent_set (), can provide
its callback function with a bitwise-OR of more than one triggered event. Theadditional flagEV_PERSIST
makes anevent_add () persistent untilevent_del () has been called.

Once initialized, theev structure can be used repeatedly withevent_add () andevent_del () and does
not need to be reinitialized unless the function called and/or the argument to it are to be changed.However,
when anev structure has been added to libevent usingevent_add () the structure must persist until the
ev ent occurs (assumingEV_PERSIST is not set) or is removed using event_del (). You may not reuse
the sameev structure for multiple monitored descriptors; each descriptor needs its ownev .

The function event_add () schedules the execution of the ev ev ent when the event specified in
event_set () occurs or in at least the time specified in thetv . If tv is NULL, no timeout occurs and the
function will only be called if a matching event occurs on the file descriptor. The event in theev argument
must be already initialized byevent_set () and may not be used in calls toevent_set () until it has
timed out or been removed with event_del (). If the event in theev argument already has a scheduled
timeout, the old timeout will be replaced by the new one.

The functionevent_del () will cancel the event in the argumentev . If the event has already executed or
has never been added the call will have no effect.

The functionsevtimer_set (), evtimer_add (), evtimer_del (), evtimer_initialized (), and
evtimer_pending () are abbreviations for common situations where only a timeout is required. The file
descriptor passed will be −1, and the event type will beEV_TIMEOUT.

The functions signal_set (), signal_add (), signal_del (), signal_initialized (), and
signal_pending () are abbreviations. Theev ent type will be a persistentEV_SIGNAL. That means
signal_set () addsEV_PERSIST.

In order to avoid races in signal handlers, theevent API provides two variables: event_sigcband
event_gotsig. A signal handler setsevent_gotsigto indicate that a signal has been received. Theapplication

NetBSD 3.0 May 14, 2008 4

EVENT (3) NetBSD Library Functions Manual EVENT (3)

setsevent_sigcbto a callback function. After the signal handler setsevent_gotsig, event_dispatch will
execute the callback function to process received signals. Thecallback returns 1 when no events are regis-
tered any more. Itcan return −1 to indicate an error to theevent library, causingevent_dispatch () to
terminate witherrnoset toEINTR.

The functionevent_once () is similar toevent_set (). However, it schedules a callback to be called
exactly once and does not require the caller to prepare anevent structure. Thisfunction supports
EV_TIMEOUT, EV_READ, andEV_WRITE.

The event_pending () function can be used to check if the event specified byevent is pending to run.
If EV_TIMEOUTwas specified andtv is notNULL, the expiration time of the event will be returned intv .

Theevent_initialized () macro can be used to check if an event has been initialized.

The event_loop function provides an interface for single pass execution of pending events. Theflags
EVLOOP_ONCEandEVLOOP_NONBLOCKare recognized.Theevent_loopexit function exits from
the event loop. The next event_loop () iteration after the given timer expires will complete normally (han-
dling all queued events) then exit without blocking for events again. Subsequent invocations of
event_loop () will proceed normally. The event_loopbreak function exits from the event loop
immediately. event_loop () will abort after the next event is completed;event_loopbreak () is typi-
cally invoked from this event’s callback. This behavior is analogous to the "break;" statement. Subsequent
invocations ofevent_loop () will proceed normally.

It is the responsibility of the caller to provide these functions with pre-allocated event structures.

EVENT PRIORITIES
By default libevent schedules all active events with the same priority. Howev er, sometimes it is desirable
to process some events with a higher priority than others.For that reason,libevent supports strict priority
queues. Active events with a lower priority are always processed before events with a higher priority.

The number of different priorities can be set initially with theevent_priority_init () function. This
function should be called before the first call toevent_dispatch (). The event_priority_set ()
function can be used to assign a priority to an event. By default,libevent assigns the middle priority to
all events unless their priority is explicitly set.

THREAD SAFE EVENTS
Libevent has experimental support for thread-safe events. When initializing the library via
event_init (), an event base is returned. This event base can be used in conjunction with calls to
event_base_set (), event_base_dispatch (), event_base_loop (),
event_base_loopexit (), bufferevent_base_set () and event_base_free ().
event_base_set () should be called after preparing an event with event_set (), as event_set ()
assigns the provided event to the most recently created event base.bufferevent_base_set () should be
called after preparing a bufferevent with bufferevent_new (). event_base_free () should be used to
free memory associated with the event base when it is no longer needed.

BUFFERED EVENTS
libevent provides an abstraction on top of the regular event callbacks. This abstraction is called a
“buffered event”. A buffered event provides input and output buffers that get filled and drained automati-
cally. The user of a buffered event no longer deals directly with the IO, but instead is reading from input and
writing to output buffers.

A new bufferevent is created bybufferevent_new (). Theparameterfd specifies the file descriptor from
which data is read and written to. This file descriptor is not allowed to be apipe (2). Thenext three param-
eters are callbacks. The read and write callback have the following form: void (∗cb) (struct
bufferevent ∗bufev , void ∗arg). The error callback has the following form:void

NetBSD 3.0 May 14, 2008 5

EVENT (3) NetBSD Library Functions Manual EVENT (3)

(∗cb) (struct bufferevent ∗bufev , short what , void ∗arg). Theargument is specified by
the fourth parametercbarg . A bufferevent struct pointer is returned on success, NULL on error.
Both the read and the write callback may be NULL. The error callback has to be always provided.

Once initialized, the bufferevent structure can be used repeatedly withbufferevent_enable () and
bufferevent_disable (). The flags parameter can be a combination ofEV_READand EV_WRITE.
When read enabled the bufferevent will try to read from the file descriptor and call the read callback.The
write callback is executed whenever the output buffer is drained below the write low watermark, which is0
by default.

The bufferevent_write () function can be used to write data to the file descriptor. The data is
appended to the output buffer and written to the descriptor automatically as it becomes available for writing.
bufferevent_write () returns 0 on success or −1 on failure. Thebufferevent_read () function is
used to read data from the input buffer, returning the amount of data read.

If multiple bases are in use,bufferevent_base_set () must be called before enabling the bufferevent
for the first time.

NON-BLOCKING HTTP SUPPORT
libevent provides a very thin HTTP layer that can be used both to host an HTTP server and also to make
HTTP requests.An HTTP server can be created by callingevhttp_new (). It can be bound to any port and
address with theevhttp_bind_socket () function. When the HTTP server is no longer used, it can be
freed viaevhttp_free ().

To be notified of HTTP requests, a user needs to register callbacks with the HTTP server. This can be done
by callingevhttp_set_cb (). Thesecond argument is the URI for which a callback is being registered.
The corresponding callback will receive an struct evhttp_requestobject that contains all information about
the request.

This section does not document all the possible function calls; please checkevent.hfor the public interfaces.

ADDITION AL NOTES
It is possible to disable support forepoll, kqueue, devpoll, poll or selectby setting the environment variable
EVENT_NOEPOLL, EVENT_NOKQUEUE, EVENT_NODEVPOLL, EVENT_NOPOLL or
EVENT_NOSELECT, respectively. By setting the environment variable EVENT_SHOW_METHOD,
libevent displays the kernel notification method that it uses.

RETURN VALUES
Upon successful completionevent_add () andevent_del () return 0. Otherwise, −1 is returned and the
global variable errno is set to indicate the error.

SEE ALSO
kqueue (2), poll (2), evdns (3), timeout (9)

HISTORY
event_init appeared inNetBSD 2.0. Theevent API manpage is based on thetimeout (9) manpage
by Artur Grabowski.

AUTHORS
Theevent library was written by Niels Provos.

BUGS
This documentation is neither complete nor authoritative. If you are in doubt about the usage of this API
then check the source code to find out how it works, write up the missing piece of documentation and send it

NetBSD 3.0 May 14, 2008 6

EVENT (3) NetBSD Library Functions Manual EVENT (3)

to me for inclusion in this man page.

NetBSD 3.0 May 14, 2008 7

EXEC (3) NetBSD Library Functions Manual EXEC (3)

NAME
execl , execlp , execle , exect , execv , execvp — execute a file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

extern char ∗∗environ;

int
execl (const char ∗path , const char ∗arg , . . .);

int
execlp (const char ∗file , const char ∗arg , . . .);

int
execle (const char ∗path , const char ∗arg , . . . , char ∗const envp[]);

int
exect (const char ∗path , char ∗const argv[] , char ∗const envp[]);

int
execv (const char ∗path , char ∗const argv[]);

int
execvp (const char ∗file , char ∗const argv[]);

DESCRIPTION
Theexec family of functions replaces the current process image with a new process image. The functions
described in this manual page are front-ends for the functionexecve (2). (Seethe manual page for
execve (2) for detailed information about the replacement of the current process.The script (7) manual
page provides detailed information about the execution of interpreter scripts.)

The initial argument for these functions is the pathname of a file which is to be executed.

Theconst char ∗arg and subsequent ellipses in theexecl (), execlp (), andexecle () functions can
be thought of asarg0, arg1, ..., argn. Together they describe a list of one or more pointers to null-terminated
strings that represent the argument list available to the executed program.The first argument, by convention,
should point to the file name associated with the file being executed. Thelist of argumentsmustbe termi-
nated by aNULLpointer.

Theexect (), execv (), andexecvp () functions provide an array of pointers to null-terminated strings that
represent the argument list available to the new program. Thefirst argument, by convention, should point to
the file name associated with the file being executed. Thearray of pointersmust be terminated by aNULL
pointer.

The execle () andexect () functions also specify the environment of the executed process by following
the NULL pointer that terminates the list of arguments in the parameter list or the pointer to the argv array
with an additional parameter. This additional parameter is an array of pointers to null-terminated strings and
mustbe terminated by aNULLpointer. The other functions take the environment for the new process image
from the external variableenvironin the current process.

Some of these functions have special semantics.

The functionsexeclp () andexecvp () will duplicate the actions of the shell in searching for an executable
file if the specified file name does not contain a slash “/ ” character. The search path is the path specified in

NetBSD 3.0 May 6, 2005 1

EXEC (3) NetBSD Library Functions Manual EXEC (3)

the environment by thePATHvariable. If this variable isn’t specified,_PATH_DEFPATH from 〈paths.h 〉
is used instead, its value being:/usr/bin:/bin:/usr/pkg/bin:/usr/local/bin . In addition,
certain errors are treated specially.

If permission is denied for a file (the attemptedexecve (2) returnedEACCES), these functions will continue
searching the rest of the search path. If no other file is found, however, they will return with the global vari-
ableerrnoset toEACCES.

If the header of a file isn’t recognized (the attemptedexecve (2) returnedENOEXEC), these functions will
execute the shell with the path of the file as its first argument. (Ifthis attempt fails, no further searching is
done.)

If the file is currently busy (the attemptedexecve (2) returnedETXTBUSY), these functions will sleep for
several seconds, periodically re-attempting to execute the file.

The functionexect () executes a file with the program tracing facilities enabled (seeptrace (2)).

RETURN VALUES
If any of theexec functions returns, an error will have occurred. Thereturn value is −1, and the global vari-
ableerrnowill be set to indicate the error.

FILES
/bin/sh The shell.

ERRORS
execl (), execle (), execlp () andexecvp () may fail and seterrno for any of the errors specified for the
library functionsexecve (2) andmalloc (3).

exect () and execv () may fail and seterrno for any of the errors specified for the library function
execve (2).

SEE ALSO
sh (1), execve (2), fork (2), ptrace (2), environ (7), script (7)

COMPATIBILITY
Historically, the default path for theexeclp () andexecvp () functions was “:/bin:/usr/bin ”. This
was changed to improve security and behaviour.

The behavior ofexeclp () andexecvp () when errors occur while attempting to execute the file is historic
practice, but has not traditionally been documented and is not specified by thePOSIXstandard.

Traditionally, the functionsexeclp () andexecvp () ignored all errors except for the ones described above
and ENOMEMand E2BIG, upon which they returned. They now return if any error other than the ones
described above occurs.

STANDARDS
execl (), execv (), execle (), execlp () andexecvp () conform toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 May 6, 2005 2

EXIT (3) NetBSD Library Functions Manual EXIT (3)

NAME
exit — perform normal program termination

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

void
exit (int status);

DESCRIPTION
exit () terminates a process.The status valuesEXIT_SUCCESSandEXIT_FAILURE can be used to
indicate successful and unsuccessful termination, respectively.

Before termination it performs the following functions in the order listed:

1. Call the functions registered with theatexit (3) function, in the reverse order of their registra-
tion.

2. Flushall open output streams.

3. Closeall open streams.

4. Unlinkall files created with thetmpfile (3) function.

Following this, exit () calls _exit (2). Note that typically _exit (2) only passes the lower 8 bits of
status on to the parent, thus negative values have less meaning.

RETURN VALUES
Theexit () function never returns.

SEE ALSO
_exit (2), atexit (3), intro (3), tmpfile (3)

STANDARDS
Theexit () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 August 11, 2002 1

EXP (3) NetBSD Library Functions Manual EXP (3)

NAME
exp , expf , expm1, expm1f , log , logf , log2 , log2f , log10 , log10f , log1p , log1pf , pow,
powf — exponential, logarithm, power functions

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
exp (double x);

float
expf (float x);

double
expm1(double x);

float
expm1f (float x);

double
log (double x);

float
logf (float x);

double
log2 (double x);

float
log2f (float x);

double
log10 (double x);

float
log10f (float x);

double
log1p (double x);

float
log1pf (float x);

double
pow(double x , double y);

float
powf (float x , float y);

DESCRIPTION
Theexp () function computes the exponential value of the given argumentx .

Theexpm1() function computes the value exp(x)−1 accurately even for tiny argumentx .

The log () function computes the value of the natural logarithm of argumentx .

NetBSD 3.0 July 21, 2005 1

EXP (3) NetBSD Library Functions Manual EXP (3)

The log10 () function computes the value of the logarithm of argumentx to base 10.

The log1p () function computes the value of log(1+x) accurately even for tiny argumentx .

The log2 () and thelog2f () functions compute the value of the logarithm of argumentx to base 2.

Thepow() computes the value ofx to the exponenty .

RETURN VALUES
These functions will return the appropriate computation unless an error occurs or an argument is out of
range. Thefunctionsexp (), expm1() andpow() detect if the computed value will overflow, set the global
variableerrno to ERANGEand cause a reserved operand fault on aVAX. The functionpow(x , y) checks to
see ifx < 0 and y is not an integer, in the event this is true, the global variableerrno is set toEDOMand on
the VAX generate a reserved operand fault. Ona VAX, errno is set toEDOMand the reserved operand is
returned by log unlessx > 0, by log1p () unlessx > −1.

ERRORS
exp(x), log(x), expm1(x) and log1p(x) are accurate to within anulp, and log10(x) to within about 2ulps; an
ulp is oneUnit in theLast Place. The error inpow(x , y) is below about 2ulpswhen its magnitude is mod-
erate, but increases aspow(x , y) approaches the over/underflow thresholds until almost as many bits could
be lost as are occupied by the floating−point format’s exponent field; that is 8 bits forVAX D and 11 bits for
IEEE 754 Double. No such drastic loss has been exposed by testing; the worst errors observed have been
below 20 ulps for VAX D, 300 ulps for IEEE 754 Double. Moderate values ofpow() are accurate enough that
pow(integer , integer) is exact until it is bigger than 2∗∗56 on aVAX, 2∗∗53 for IEEE 754.

NOTES
The functions exp(x)−1 and log(1+x) are called expm1 and logp1 inBASIC on the Hewlett−PackardHP−71B
andAPPLEMacintosh,EXP1andLN1 in Pascal, exp1 and log1 in C onAPPLEMacintoshes, where they hav e
been provided to make sure financial calculations of ((1+x)∗∗n−1)/x, namely expm1(n∗log1p(x))/x, will be
accurate when x is tiny. They also provide accurate inverse hyperbolic functions.

The functionpow(x , 0) returns x∗∗0 = 1 for all x including x = 0,∞ (not found on aVAX), andNaN (the
reserved operand on aVAX). Previous implementations of pow may have defined x∗∗0 to be undefined in
some or all of these cases. Here are reasons for returning x∗∗0 = 1 always:

1. Any program that already tests whether x is zero (or infinite orNaN) before computing x∗∗0 can-
not care whether 0∗∗0 = 1 or not. Any program that depends upon 0∗∗0 to be inv alid is dubious
anyway since that expression’s meaning and, if invalid, its consequences vary from one computer
system to another.

2. SomeAlgebra texts (e.g. Sigler’s) define x∗∗0 = 1 for all x, including x = 0.This is compatible
with the convention that accepts a[0] as the value of polynomial

p(x) = a[0] ∗x∗∗0 + a[1] ∗x∗∗1 + a[2] ∗x∗∗2 +...+ a[n] ∗x∗∗n

at x = 0 rather than reject a[0]∗0∗∗0 as inv alid.

3. Analystswill accept 0∗∗0 = 1 despite that x∗∗y can approach anything or nothing as x and y
approach 0 independently. The reason for setting 0∗∗0 = 1 anyway is this:

If x(z) and y(z) areany functions analytic (expandable in power series) in z around z = 0,
and if there x(0) = y(0) = 0, then x(z)∗∗y(z) → 1 as z→ 0.

4. If 0∗∗0 = 1, then∞∗∗0 = 1/0∗∗0 = 1 too; and thenNaN∗∗0 = 1 too because x∗∗0 = 1 for all finite
and infinite x, i.e., independently of x.

NetBSD 3.0 July 21, 2005 2

EXP (3) NetBSD Library Functions Manual EXP (3)

SEE ALSO
math (3)

STANDARDS
Theexp (), log (), log10 () andpow() functions conform toANSI X3.159-1989 (“ANSI C89”).

HISTORY
A exp (), log () andpow() functions appeared in Version 6AT&T UNIX . A log10 () function appeared in
Version 7AT&T UNIX . The log1p () andexpm1() functions appeared in 4.3BSD.

NetBSD 3.0 July 21, 2005 3

EXTATTR (3) NetBSD Library Functions Manual EXTATTR (3)

NAME
extattr_namespace_to_string , extattr_string_to_namespace — convert an extended
attribute namespace identifier to a string and vice versa

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/extattr.h>

int
extattr_namespace_to_string (int attrnamespace , char ∗∗string);

int
extattr_string_to_namespace (const char ∗string , int ∗attrnamespace);

DESCRIPTION
The extattr_namespace_to_string () function converts a VFS extended attribute identifier to a
human-readable string.Theextattr_string_to_namespace () converts a human-readable string rep-
resenting a namespace to a namespace identifier. Although a file system may implement arbitrary names-
paces, these functions only support theEXTATTR_NAMESPACE_USER(“user”) and
EXTATTR_NAMESPACE_SYSTEM(“system”)namespaces, which are defined inextattr (9).

These functions are meant to be used in error reporting and other interactive tasks. For example, instead of
printing the integer identifying an extended attribute in an error message, a program might use
extattr_namespace_to_string () to obtain a human-readable representation.Likewise, instead of
requiring a user to enter the integer representing a namespace, an interactive program might ask for a name
and useextattr_string_to_namespace () to get the desired identifier.

RETURN VALUES
If any of the calls are unsuccessful, the value −1 is returned and the global variableerrno is set to indicate the
error.

ERRORS
[EINVAL] The requested namespace could not be identified.

SEE ALSO
getextattr (1), extattr_get_file (2), extattr (9)

HISTORY
Extended attribute support was developed as part of theTrustedBSDProject, and introduced inFreeBSD5.0
andNetBSD 3.0. It was dev eloped to support security extensions requiring additional labels to be associated
with each file or directory.

NetBSD 3.0 January 2, 2004 1

FABS (3) NetBSD Library Functions Manual FABS (3)

NAME
fabs , fabsf — floating-point absolute value function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
fabs (double x);

float
fabsf (float x);

DESCRIPTION
Thefabs () andfabsf () functions compute the absolute value of a floating-point numberx .

RETURN VALUES
Thefabs () function returns the absolute value ofx .

SEE ALSO
abs (3), ceil (3), floor (3), ieee (3), math (3), rint (3)

STANDARDS
Thefabs () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 May 2, 1991 1

FCLOSE (3) NetBSD Library Functions Manual FCLOSE (3)

NAME
fclose — close a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

int
fclose (FILE ∗stream);

DESCRIPTION
The fclose () function dissociates the namedstream from its underlying file or set of functions.If the
stream was being used for output, any buffered data is written first, usingfflush (3).

RETURN VALUES
Upon successful completion 0 is returned.Otherwise,EOFis returned and the global variableerrno is set to
indicate the error. In either case no further access to the stream is possible.

ERRORS
[EBADF] The argumentstream is not an open stream.

The fclose () function may also fail and seterrno for any of the errors specified for the routinesclose (2)
or fflush (3).

SEE ALSO
close (2), fflush (3), fopen (3), setbuf (3)

STANDARDS
Thefclose () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

FERROR (3) NetBSD Library Functions Manual FERROR (3)

NAME
clearerr , feof , ferror , fileno — check and reset stream status

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

void
clearerr (FILE ∗stream);

int
feof (FILE ∗stream);

int
ferror (FILE ∗stream);

int
fileno (FILE ∗stream);

DESCRIPTION
The functionclearerr () clears the end-of-file and error indicators for the stream pointed to bystream .

The functionfeof () tests the end-of-file indicator for the stream pointed to bystream , returning non-zero
if it is set. The end-of-file indicator can only be cleared by the functionclearerr ().

The functionferror () tests the error indicator for the stream pointed to bystream , returning non-zero if
it is set. The error indicator can only be reset by theclearerr () function.

The functionfileno () examines the argumentstream and returns its integer descriptor.

ERRORS
These functions should not fail and do not set the external variableerrno.

SEE ALSO
open (2), stdio (3)

STANDARDS
The functionsclearerr (), feof (), and ferror () conform toANSI X3.159-1989 (“ANSI C89”). The
functionfileno () conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 April 19, 1994 1

FETCH (3) NetBSD Library Functions Manual FETCH (3)

NAME
fetchMakeURL , fetchParseURL , fetchFreeURL , fetchXGetURL , fetchGetURL ,
fetchPutURL , fetchStatURL , fetchListURL , fetchXGet , fetchGet , fetchPut ,
fetchStat , fetchList , fetchXGetFile , fetchGetFile , fetchPutFile , fetchStatFile ,
fetchListFile , fetchXGetHTTP , fetchGetHTTP , fetchPutHTTP , fetchStatHTTP ,
fetchListHTTP , fetchXGetFTP , fetchGetFTP , fetchPutFTP , fetchStatFTP ,
fetchListFTP — file transfer functions

LIBRARY
library “libfetch”

SYNOPSIS
#include <sys/param.h>
#include <stdio.h>
#include <fetch.h>

struct url ∗
fetchMakeURL (const char ∗scheme , const char ∗host , int port ,

const char ∗doc , const char ∗user , const char ∗pwd);

struct url ∗
fetchParseURL (const char ∗URL);

void
fetchFreeURL (struct url ∗u);

FILE ∗
fetchXGetURL (const char ∗URL, struct url_stat ∗us , const char ∗flags);

FILE ∗
fetchGetURL (const char ∗URL, const char ∗flags);

FILE ∗
fetchPutURL (const char ∗URL, const char ∗flags);

int
fetchStatURL (const char ∗URL, struct url_stat ∗us , const char ∗flags);

struct url_ent ∗
fetchListURL (const char ∗URL, const char ∗flags);

FILE ∗
fetchXGet (struct url ∗u , struct url_stat ∗us , const char ∗flags);

FILE ∗
fetchGet (struct url ∗u , const char ∗flags);

FILE ∗
fetchPut (struct url ∗u , const char ∗flags);

int
fetchStat (struct url ∗u , struct url_stat ∗us , const char ∗flags);

struct url_ent ∗
fetchList (struct url ∗u , const char ∗flags);

FILE ∗
fetchXGetFile (struct url ∗u , struct url_stat ∗us , const char ∗flags);

NetBSD 3.0 April 22, 2007 1

FETCH (3) NetBSD Library Functions Manual FETCH (3)

FILE ∗
fetchGetFile (struct url ∗u , const char ∗flags);

FILE ∗
fetchPutFile (struct url ∗u , const char ∗flags);

int
fetchStatFile (struct url ∗u , struct url_stat ∗us , const char ∗flags);

struct url_ent ∗
fetchListFile (struct url ∗u , const char ∗flags);

FILE ∗
fetchXGetHTTP (struct url ∗u , struct url_stat ∗us , const char ∗flags);

FILE ∗
fetchGetHTTP (struct url ∗u , const char ∗flags);

FILE ∗
fetchPutHTTP (struct url ∗u , const char ∗flags);

int
fetchStatHTTP (struct url ∗u , struct url_stat ∗us , const char ∗flags);

struct url_ent ∗
fetchListHTTP (struct url ∗u , const char ∗flags);

FILE ∗
fetchXGetFTP (struct url ∗u , struct url_stat ∗us , const char ∗flags);

FILE ∗
fetchGetFTP (struct url ∗u , const char ∗flags);

FILE ∗
fetchPutFTP (struct url ∗u , const char ∗flags);

int
fetchStatFTP (struct url ∗u , struct url_stat ∗us , const char ∗flags);

struct url_ent ∗
fetchListFTP (struct url ∗u , const char ∗flags);

DESCRIPTION
These functions implement a high-level l ibrary for retrieving and uploading files using Uniform Resource
Locators (URLs).

fetchParseURL () takes a URL in the form of a null-terminated string and splits it into its components
function according to the Common Internet Scheme Syntax detailed in RFC1738.A regular expression
which produces this syntax is:

<scheme>:(//(<user>(:<pwd>)?@)?<host>(:<port>)?)?/(<document>)?

If the URL does not seem to begin with a scheme name, the following syntax is assumed:

((<user>(:<pwd>)?@)?<host>(:<port>)?)?/(<document>)?

Note that some components of the URL are not necessarily relevant to all URL schemes.For instance, the
file scheme only needs the <scheme> and <document> components.

fetchMakeURL () andfetchParseURL () return a pointer to aurl structure, which is defined as follows
in <fetch.h >:

NetBSD 3.0 April 22, 2007 2

FETCH (3) NetBSD Library Functions Manual FETCH (3)

#define URL_SCHEMELEN 16
#define URL_USERLEN 256
#define URL_PWDLEN 256

struct url {
char scheme[URL_SCHEMELEN+1];
char user[URL_USERLEN+1];
char pwd[URL_PWDLEN+1];
char host[MAXHOSTNAMELEN+1];
int port;
char ∗doc;
off_t offset;
size_t length;

};

The pointer returned byfetchMakeURL () or fetchParseURL () should be freed using
fetchFreeURL ().

fetchXGetURL (), fetchGetURL (), andfetchPutURL () constitute the recommended interface to the
fetch library. They examine the URL passed to them to determine the transfer method, and call the appro-
priate lower-level functions to perform the actual transfer. fetchXGetURL () also returns the remote docu-
ment’s metadata in theurl_stat structure pointed to by theus argument.

The flags argument is a string of characters which specify transfer options.The meaning of the individual
flags is scheme-dependent, and is detailed in the appropriate section below.

fetchStatURL () attempts to obtain the requested document’s metadata and fill in the structure pointed to
by its second argument. Theurl_stat structure is defined as follows in <fetch.h >:

struct url_stat {
off_t size;
time_t atime;
time_t mtime;

};

If the size could not be obtained from the server, thesize field is set to -1. If the modification time could
not be obtained from the server, themtime field is set to the epoch.If the access time could not be obtained
from the server, theatime field is set to the modification time.

fetchListURL () attempts to list the contents of the directory pointed to by the URL provided. If success-
ful, it returns a malloced array ofurl_ent structures. Theurl_ent structure is defined as follows in
<fetch.h >:

struct url_ent {
char name[MAXPATHLEN];
struct url_stat stat;

};

The list is terminated by an entry with an empty name.

The pointer returned byfetchListURL () should be freed usingfree ().

fetchXGet (), fetchGet (), fetchPut () and fetchStat () are similar to fetchXGetURL (),
fetchGetURL (), fetchPutURL () andfetchStatURL (), except that they expect a pre-parsed URL in
the form of a pointer to astruct url rather than a string.

NetBSD 3.0 April 22, 2007 3

FETCH (3) NetBSD Library Functions Manual FETCH (3)

All of the fetchXGetXXX (), fetchGetXXX () and fetchPutXXX () functions return a pointer to a
stream which can be used to read or write data from or to the requested document, respectively. Note that
although the implementation details of the individual access methods vary, it can generally be assumed that a
stream returned by one of thefetchXGetXXX () or fetchGetXXX () functions is read-only, and that a
stream returned by one of thefetchPutXXX () functions is write-only.

FILE SCHEME
fetchXGetFile (), fetchGetFile () and fetchPutFile () provide access to documents which are
files in a locally mounted file system. Only the <document> component of the URL is used.

fetchXGetFile () andfetchGetFile () do not accept any flags.

fetchPutFile () accepts the ‘a’ (append to file) flag.If that flag is specified, the data written to the
stream returned byfetchPutFile () will be appended to the previous contents of the file, instead of
replacing them.

FTP SCHEME
fetchXGetFTP (), fetchGetFTP () and fetchPutFTP () implement the FTP protocol as described in
RFC959.

If the ‘p’ (passive) flag is specified, a passive (rather than active) connection will be attempted.

If the ‘l ’ (low) flag is specified, data sockets will be allocated in the low (or default) port range instead of the
high port range (seeip (4)).

If the ‘d’ (direct) flag is specified,fetchXGetFTP (), fetchGetFTP () andfetchPutFTP () will use a
direct connection even if a proxy server is defined.

If no user name or password is given, thefetch library will attempt an anonymous login, with user name
"anonymous" and password "anonymous@<hostname>".

HTTP SCHEME
The fetchXGetHTTP (), fetchGetHTTP () and fetchPutHTTP () functions implement the HTTP/1.1
protocol. With a little luck, there is even a chance that they comply with RFC2616 and RFC2617.

If the ‘d’ (direct) flag is specified,fetchXGetHTTP (), fetchGetHTTP () and fetchPutHTTP () will
use a direct connection even if a proxy server is defined.

Since there seems to be no good way of implementing the HTTP PUT method in a manner consistent with
the rest of thefetch library, fetchPutHTTP () is currently unimplemented.

AUTHENTICATION
Apart from setting the appropriate environment variables and specifying the user name and password in the
URL or thestruct url , the calling program has the option of defining an authentication function with
the following prototype:

int myAuthMethod (struct url ∗u)

The callback function should fill in theuser andpwd fields in the providedstruct url and return 0 on
success, or any other value to indicate failure.

To register the authentication callback, simply setfetchAuthMethodto point at it. The callback will be used
whenever a site requires authentication and the appropriate environment variables are not set.

This interface is experimental and may be subject to change.

NetBSD 3.0 April 22, 2007 4

FETCH (3) NetBSD Library Functions Manual FETCH (3)

RETURN VALUES
fetchParseURL () returns a pointer to astruct url containing the individual components of the URL.
If it is unable to allocate memory, or the URL is syntactically incorrect,fetchParseURL () returns a
NULL pointer.

ThefetchStat () functions return 0 on success and -1 on failure.

All other functions return a stream pointer which may be used to access the requested document, or NULL if
an error occurred.

The following error codes are defined in <fetch.h >:

[FETCH_ABORT] Operation aborted

[FETCH_AUTH] Authentication failed

[FETCH_DOWN] Service unavailable

[FETCH_EXISTS] File exists

[FETCH_FULL] File system full

[FETCH_INFO] Informational response

[FETCH_MEMORY] Insufficient memory

[FETCH_MOVED] File has moved

[FETCH_NETWORK] Network error

[FETCH_OK] No error

[FETCH_PROTO] Protocol error

[FETCH_RESOLV] Resolver error

[FETCH_SERVER] Server error

[FETCH_TEMP] Temporary error

[FETCH_TIMEOUT] Operation timed out

[FETCH_UNAVAIL] File is not available

[FETCH_UNKNOWN] Unknown error

[FETCH_URL] Invalid URL

The accompanying error message includes a protocol-specific error code and message, e.g. "File is not avail-
able (404 Not Found)"

ENVIRONMENT
FETCH_BIND_ADDRESSSpecifies a hostname or IP address to which sockets used for outgoing connec-

tions will be bound.

FTP_LOGIN Default FTP login if none was provided in the URL.

FTP_PASSIVE_MODE If set to anything but ‘no ’, forces the FTP code to use passive mode.

FTP_PASSWORD Default FTP password if the remote server requests one and none was provided
in the URL.

FTP_PROXY URL of the proxy to use for FTP requests. The document part is ignored.FTP
and HTTP proxies are supported; if no scheme is specified, FTP is assumed.If
the proxy is an FTP proxy, libfetch will senduser@host as user name to

NetBSD 3.0 April 22, 2007 5

FETCH (3) NetBSD Library Functions Manual FETCH (3)

the proxy, whereuser is the real user name, andhost is the name of the FTP
server.

If this variable is set to an empty string, no proxy will be used for FTP requests,
ev en if theHTTP_PROXYvariable is set.

ftp_proxy Same asFTP_PROXY, for compatibility.

HTTP_AUTH Specifies HTTP authorization parameters as a colon-separated list of items.The
first and second item are the authorization scheme and realm respectively; fur-
ther items are scheme-dependent.Currently, only basic authorization is sup-
ported.

Basic authorization requires two parameters: the user name and password, in that
order.

This variable is only used if the server requires authorization and no user name
or password was specified in the URL.

HTTP_PROXY URL of the proxy to use for HTTP requests.The document part is ignored.
Only HTTP proxies are supported for HTTP requests.If no port number is spec-
ified, the default is 3128.

Note that this proxy will also be used for FTP documents, unless the
FTP_PROXYvariable is set.

http_proxy Same asHTTP_PROXY, for compatibility.

HTTP_PROXY_AUTH Specifies authorization parameters for the HTTP proxy in the same format as the
HTTP_AUTHvariable.

This variable is used if and only if connected to an HTTP proxy, and is ignored if
a user and/or a password were specified in the proxy URL.

HTTP_REFERER Specifies the referrer URL to use for HTTP requests.If set to “auto”, the docu-
ment URL will be used as referrer URL.

HTTP_USER_AGENT Specifies the User-Agent string to use for HTTP requests.This can be useful
when working with HTTP origin or proxy servers that differentiate between user
agents.

NETRC Specifies a file to use instead of˜/.netrc to look up login names and pass-
words for FTP sites.Seeftp (1) for a description of the file format. This fea-
ture is experimental.

EXAMPLES
To access a proxy server onproxy.example.com port 8080, set theHTTP_PROXYenvironment variable
in a manner similar to this:

HTTP_PROXY=http://proxy.example.com:8080

If the proxy server requires authentication, there are two options available for passing the authentication data.
The first method is by using the proxy URL:

HTTP_PROXY=http://<user>:<pwd>@proxy.example.com:8080

The second method is by using theHTTP_PROXY_AUTHenvironment variable:

HTTP_PROXY=http://proxy.example.com:8080
HTTP_PROXY_AUTH=basic:∗:<user>:<pwd>

NetBSD 3.0 April 22, 2007 6

FETCH (3) NetBSD Library Functions Manual FETCH (3)

SEE ALSO
fetch (1), ftpio (3), ip (4)

J. Postel and J. K. Reynolds,File Transfer Protocol, October 1985, RFC959.

P. Deutsch, A. Emtage, and A. Marine.,How to Use Anonymous FTP, May 1994, RFC1635.

T. Berners-Lee, L. Masinter, and M. McCahill,Uniform Resource Locators (URL), December 1994,
RFC1738.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,Hypertext Transfer
Protocol -- HTTP/1.1, January 1999, RFC2616.

J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart, HTTP
Authentication: Basic and Digest Access Authentication, June 1999, RFC2617.

HISTORY
Thefetch library first appeared inFreeBSD3.0.

AUTHORS
The fetch library was mostly written by Dag-Erling Smørgrav〈des@FreeBSD.org〉 with numerous sugges-
tions from Jordan K. Hubbard〈jkh@FreeBSD.org〉, Eugene Skepner 〈eu@qub.com〉 and otherFreeBSD
developers. It replaces the olderftpio library written by Poul-Henning Kamp〈phk@FreeBSD.org〉 and
Jordan K. Hubbard〈jkh@FreeBSD.org〉.

This manual page was written by Dag-Erling Smørgrav〈des@FreeBSD.org〉.

BUGS
Some parts of the library are not yet implemented. The most notable examples of this are
fetchPutHTTP (), fetchListHTTP (), fetchListFTP () and FTP proxy support.

There is no way to select a proxy at run-time other than setting theHTTP_PROXYor FTP_PROXYenviron-
ment variables as appropriate.

libfetch does not understand or obey 305 (Use Proxy) replies.

Error numbers are unique only within a certain context; the error codes used for FTP and HTTP overlap, as
do those used for resolver and system errors.For instance, error code 202 means "Command not imple-
mented, superfluous at this site" in an FTP context and "Accepted" in an HTTP context.

fetchStatFTP () does not check that the result of an MDTM command is a valid date.

The man page is incomplete, poorly written and produces badly formatted text.

The error reporting mechanism is unsatisfactory.

Some parts of the code are not fully reentrant.

NetBSD 3.0 April 22, 2007 7

FFLUSH (3) NetBSD Library Functions Manual FFLUSH (3)

NAME
fflush , fpurge — flush a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

int
fflush (FILE ∗stream);

int
fpurge (FILE ∗stream);

DESCRIPTION
The functionfflush () forces a write of all buffered data for the given output or updatestream via the
stream’s underlying write function. The open status of the stream is unaffected.

If the stream argument isNULL, fflush () flushesall open output streams.

The functionfpurge () erases any input or output buffered in the given stream . For output streams this
discards any unwritten output.For input streams this discards any input read from the underlying object but
not yet obtained viagetc (3); this includes any text pushed back viaungetc (3).

RETURN VALUES
Upon successful completion 0 is returned.Otherwise,EOFis returned and the global variableerrno is set to
indicate the error.

ERRORS
[EBADF] stream is not an open stream, or, in the case offflush (), not a stream open for

writing.

The functionfflush () may also fail and seterrno for any of the errors specified for the routinewrite (2).

SEE ALSO
write (2), fclose (3), fopen (3), setbuf (3)

STANDARDS
Thefflush () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

FFS (3) NetBSD Library Functions Manual FFS (3)

NAME
ffs — find first bit set in a bit string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <strings.h>

int
ffs (int value);

DESCRIPTION
The ffs () function finds the first bit set invalue and returns the index of that bit. Bits are numbered start-
ing from 1, starting at the right-most bit.A return value of 0 means that the argument was zero.

SEE ALSO
bitstring (3)

HISTORY
Theffs () function appeared in 4.3BSD.

NetBSD 3.0 April 19, 1994 1

FGETLN (3) NetBSD Library Functions Manual FGETLN (3)

NAME
fgetln — get a line from a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

char ∗
fgetln (FILE ∗ restrict stream , size_t ∗ restrict len);

DESCRIPTION
The fgetln () function returns a pointer to the next line from the stream referenced bystream . This line
is not a C string as it does not end with a terminatingNULcharacter. The length of the line, including the
final newline, is stored in the memory location to whichlen points. (Note,however, that if the line is the
last in a file that does not end in a newline, the returned text will not contain a newline.)

RETURN VALUES
Upon successful completion a pointer is returned; this pointer becomes invalid after the next I/O operation on
stream (whether successful or not) or as soon as the stream is closed.Otherwise,NULL is returned.The
fgetln () function does not distinguish between end-of-file and error; the routinesfeof (3) andferror (3)
must be used to determine which occurred. If an error occurs, the global variableerrno is set to indicate the
error. The end-of-file condition is remembered, even on a terminal, and all subsequent attempts to read will
returnNULLuntil the condition is cleared withclearerr (3).

The text to which the returned pointer points may be modified, provided that no changes are made beyond
the returned size. These changes are lost as soon as the pointer becomes invalid.

ERRORS
[EBADF] The argumentstream is not a stream open for reading.

The fgetln () function may also fail and seterrno for any of the errors specified for the routines
fflush (3), malloc (3), read (2), stat (2), orrealloc (3).

SEE ALSO
ferror (3), fgets (3), fopen (3), putc (3)

HISTORY
Thefgetln () function first appeared in 4.4BSD.

CAVEATS
Since the returned buffer is not a C string (it is not null terminated), a common practice is to replace the new-
line character with ‘\0’.However, if the last line in a file does not contain a newline, the returned text won’t
contain a newline either. The following code demonstrates how to deal with this problem by allocating a
temporary buffer:

char ∗buf, ∗lbuf;
size_t len;

lbuf = NULL;
while ((buf = fgetln(fp, &len))) {

if (buf[len - 1] == ’\n’)
buf[len - 1] = ’\0’;

NetBSD 3.0 April 21, 2004 1

FGETLN (3) NetBSD Library Functions Manual FGETLN (3)

else {
if ((lbuf = (char ∗)malloc(len + 1)) == NULL)

err(1, NULL);
memcpy(lbuf, buf, len);
lbuf[len] = ’\0’;
buf = lbuf;

}
printf("%s\n", buf);

if (lbuf != NULL) {
free(lbuf);
lbuf = NULL;

}
}

NetBSD 3.0 April 21, 2004 2

FGETS (3) NetBSD Library Functions Manual FGETS (3)

NAME
fgets , gets — get a line from a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

char ∗
fgets (char ∗ restrict str , int size , FILE ∗ restrict stream);

char ∗
gets (char ∗str);

DESCRIPTION
The fgets () function reads at most one less than the number of characters specified bysize from the
given stream and stores them in the stringstr . Reading stops when a newline character is found, at end-
of-file or error. The newline, if any, is retained, and a ‘\0 ’ character is appended to end the string.

Thegets () function is equivalent tofgets () with an infinitesize and astream of stdin, except that the
newline character (if any) is not stored in the string.It is the caller’s responsibility to ensure that the input
line, if any, is sufficiently short to fit in the string.

RETURN VALUES
Upon successful completion,fgets () andgets () return a pointer to the string.If end-of-file or an error
occurs before any characters are read, they returnNULL. The fgets () andgets () functions do not distin-
guish between end-of-file and error, and callers must usefeof (3) and ferror (3) to determine which
occurred.

ERRORS
[EBADF] The given stream is not a readable stream.

The functionfgets () may also fail and seterrno for any of the errors specified for the routinesfflush (3),
fstat (2), read (2), ormalloc (3).

The functiongets () may also fail and seterrno for any of the errors specified for the routinegetchar (3).

SEE ALSO
feof (3), ferror (3), fgetln (3)

STANDARDS
The functionsfgets () andgets () conform toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The following bit of code illustrates a case where the programmer assumes a string is too long if it does not
contain a newline:

char buf[1024], ∗p;

while (fgets(buf, sizeof(buf), fp) != NULL) {
if ((p = strchr(buf, ’\n’)) == NULL) {

fprintf(stderr, "input line too long.\n");
exit(1);

}

NetBSD 3.0 June 4, 1993 1

FGETS (3) NetBSD Library Functions Manual FGETS (3)

∗p = ’ \0’;
printf("%s\n", buf);

}

While the error would be true if a line > 1023 characters were read, it would be false in two other cases:

1. If the last line in a file does not contain a newline, the string returned byfgets () will not con-
tain a newline either. Thusstrchr () will return NULLand the program will terminate, even if
the line was valid.

2. All C string functions, includingstrchr (), correctly assume the end of the string is represented
by a null (‘ \0’) character. If the first character of a line returned byfgets () were null,
strchr () would immediately return without considering the rest of the returned text which
may indeed include a newline.

Consider usingfgetln (3) instead when dealing with untrusted input.

SECURITY CONSIDERATIONS
Since it is usually impossible to ensure that the next input line is less than some arbitrary length, and because
overflowing the input buffer is almost invariably a security violation, programs shouldNEVERusegets ().
Thegets () function exists purely to conform toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 2

FGETWLN (3) NetBSD Library Functions Manual FGETWLN (3)

NAME
fgetwln — get a line of wide characters from a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wchar_t ∗
fgetwln (FILE ∗ restrict stream , size_t ∗ restrict len);

DESCRIPTION
The fgetwln () function returns a pointer to the next line from the stream referenced bystream . This line
is not a standard wide character string as it does not end with a terminating null wide character. The length
of the line, including the final newline, is stored in the memory location to whichlen points. (Note,how-
ev er, that if the line is the last in a file that does not end in a newline, the returned text will not contain a new-
line.)

RETURN VALUES
Upon successful completion a pointer is returned; this pointer becomes invalid after the next I/O operation on
stream (whether successful or not) or as soon as the stream is closed.Otherwise,NULL is returned.The
fgetwln () function does not distinguish between end-of-file and error; the routinesfeof (3) and
ferror (3) must be used to determine which occurred. If an error occurs, the global variableerrno is set to
indicate the error. The end-of-file condition is remembered, even on a terminal, and all subsequent attempts
to read will returnNULLuntil the condition is cleared withclearerr (3).

The text to which the returned pointer points may be modified, provided that no changes are made beyond
the returned size. These changes are lost as soon as the pointer becomes invalid.

ERRORS
[EBADF] The argumentstream is not a stream open for reading.

The fgetwln () function may also fail and seterrno for any of the errors specified for the routines
mbrtowc (3), realloc (3), orread (2).

SEE ALSO
ferror (3), fgetln (3), fgetws (3), fopen (3)

NetBSD 3.0 July 16, 2004 1

FGETWS (3) NetBSD Library Functions Manual FGETWS (3)

NAME
fgetws — get a line of wide characters from a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wchar_t ∗
fgetws (wchar_t ∗ restrict ws , int n , FILE ∗ restrict fp);

DESCRIPTION
The fgetws () function reads at most one less than the number of characters specified byn from the given
fp and stores them in the wide character stringws. Reading stops when a newline character is found, at
end-of-file or error. The newline, if any, is retained. Ifany characters are read and there is no error, a ‘\0 ’
character is appended to end the string.

RETURN VALUES
Upon successful completion,fgetws () returnsws. If end-of-file occurs before any characters are read,
fgetws () returnsNULL and the buffer contents remain unchanged. If an error occurs,fgetws () returns
NULLand the buffer contents are indeterminate.The fgetws () function does not distinguish between end-
of-file and error, and callers must usefeof (3) andferror (3) to determine which occurred.

ERRORS
[EBADF] The given fp argument is not a readable stream.

[EILSEQ] The data obtained from the input stream does not form a valid multibyte character.

The function fgetws () may also fail and seterrno for any of the errors specified for the routines
fflush (3), fstat (2), read (2), ormalloc (3).

SEE ALSO
feof (3), ferror (3), fgets (3)

STANDARDS
Thefgetws () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 August 6, 2002 1

FLOCKFILE (3) NetBSD Library Functions Manual FLOCKFILE (3)

NAME
flockfile , ftrylockfile , funlockfile — stdio stream locking functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

void
flockfile (FILE ∗file);

int
ftrylockfile (FILE ∗file);

void
funlockfile (FILE ∗file);

DESCRIPTION
The flockfile (), ftrylockfile (), andfunlockfile () functions provide applications with explicit
control of locking of stdio stream objects.They can be used by a thread to execute a sequence of I/O opera-
tions as a unit, without interference from another thread.

Locks on stdio streams are recursive, and a lock count is maintained. stdio streams are created unlocked,
with a lock count of zero. After successful acquisition of the lock, its count is incremented to one, indicating
locked state of the stdio stream. Each subsequent relock operation performed by the owner thread incre-
ments the lock count by one, and each subsequent unlock operation performed by the owner thread decre-
ments the lock count by one, allowing matching lock and unlock operations to be nested. After its lock count
is decremented to zero, the stdio stream returns to unlocked state, and ownership of the stdio stream is relin-
quished.

The flockfile () function acquires the ownership offile for the calling thread.If file is already
owned by another thread, the calling thread is suspended until the acquisition is possible (i.e.,file is relin-
quished again and the calling thread is scheduled to acquire it).

The ftrylockfile () function acquires the ownership offile for the calling thread only iffile is
available.

The funlockfile () function relinquishes the ownership offile previously granted to the calling thread.
Only the current owner offile mayfunlockfile () it.

RETURN VALUES
If successful, theftrylockfile () function returns 0.Otherwise, it returns non-zero to indicate that the
lock cannot be acquired.

SEE ALSO
getc_unlocked (3), getchar_unlocked (3), putc_unlocked (3), putchar_unlocked (3)

STANDARDS
The flockfile (), ftrylockfile () andfunlockfile () functions conform toIEEE Std 1003.1-2001
(“POSIX.1”).

BUGS
The design of these interfaces does not allow for addressing the problem of priority inversion.

NetBSD 3.0 January 28, 2003 1

FLOOR (3) NetBSD Library Functions Manual FLOOR (3)

NAME
floor , floorf — round to largest integral value not greater than x

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
floor (double x);

float
floorf (float x);

DESCRIPTION
Thefloor () andfloorf () functions return the largest integral value less than or equal tox .

SEE ALSO
abs (3), ceil (3), fabs (3), ieee (3), math (3), rint (3)

STANDARDS
Thefloor () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 March 10, 1994 1

FMOD (3) NetBSD Library Functions Manual FMOD (3)

NAME
fmod , fmodf — floating-point remainder function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
fmod (double x , double y);

float
fmodf (float x , float y);

DESCRIPTION
Thefmod () function computes the floating-point remainder ofx / y .

RETURN VALUES
The fmod () andfmodf () functions return the valuex- i∗y , for some integer i such that, ify is non-zero, the
result has the same sign asx and magnitude less than the magnitude ofy . If y is zero, whether a domain
error occurs or thefmod () function returns zero is implementation-defined.

SEE ALSO
math (3)

STANDARDS
Thefmod () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 May 2, 1991 1

FMTCHECK (3) NetBSD Library Functions Manual FMTCHECK (3)

NAME
fmtcheck — sanitizes user-supplied printf(3)-style format string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

const char ∗
fmtcheck (const char ∗fmt_suspect , const char ∗fmt_default);

DESCRIPTION
The fmtcheck function scansfmt_suspect and fmt_default to determine iffmt_suspect will
consume the same argument types asfmt_default and to ensure thatfmt_suspect is a valid format
string.

The printf (3) family of functions can not verify the types of arguments that they are passed at run-time.
In some cases, like catgets (3), it is useful or necessary to use a user-supplied format string with no guar-
antee that the format string matches the specified parameters.

Thefmtcheck function was designed to be used in these cases, as in:

printf(fmtcheck(user_format, standard_format), arg1, arg2);

In the check, field widths, fillers, precisions, etc. are ignored (unless the field width or precision is an asterisk
‘∗’ i nstead of a digit string). Also, any text other than the format specifiers is completely ignored.

Note that the formats may be quite different as long as they accept the same parameters.For example, "%p
%o %30s %#llx %-10.∗e %n" is compatible with "This number %lu %d%% and string %s has %qd numbers
and %.∗g floats (%n)." However, "%o" is not equivalent to "%lx" because the first requires an integer and
the second requires a long.

RETURN VALUES
If fmt_suspect is a valid format and consumes the same argument types asfmt_default , then the
fmtcheck function will returnfmt_suspect . Otherwise, it will returnfmt_default .

SEE ALSO
printf (3)

NetBSD 3.0 October 17, 2000 1

FMTMSG (3) NetBSD Library Functions Manual FMTMSG (3)

NAME
fmtmsg — format and display a message

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <fmtmsg.h>

int
fmtmsg (long classification , const char ∗label , int severity ,

const char ∗text , const char ∗action , const char ∗tag);

DESCRIPTION
The fmtmsg () function can be used to display messages in the specified format. Messages may be written
either to standard error, to the console, or both.

A formatted message consists of up to five components specified inlabel , severity , text , action
andtag . Further information such as the origin of the message, the recoverability from the condition caus-
ing the message and where to display the message is specified inclassification .

classification
The classification argument consists of a major classification and several sub-classifications. It has
no effect on the content of the message displayed.With the exception of the display sub-classification, only
a single identifier may be specified for each (sub-)classification. The following classifications are available:

Major Classifications The source of the condition.Av ailable identifiers are:
MM_HARD(hardware), MM_SOFT(software), and
MM_FIRM(firmware).

Message Source Sub-classifications The type of software detecting the condition.Av ail-
able identifiers are: MM_APPL (application),
MM_UTIL (utility), and MM_OPSYS(operating sys-
tem).

Display Sub-classifications The displays the formatted messages is to be written
to. Available identifiers are:MM_PRINT (standard
error stream) andMM_CONSOLE(system console).

Status Sub-classifications The capability of the calling software to recover from
the condition. Av ailable identifiers are:
MM_RECOVER(recoverable) andMM_NRECOV(non-
recoverable).

If no classification is to be supplied,MM_NULLMCmust be specified.

label
The label argument identifies the source of the message.It consists of two fields separated by a colon (:).
The first field is up to 10 characters, the second is up to 14 characters.

If no label is to be supplied,MM_NULLLBLmust be specified.

severity
The seriousness of the condition causing the message. The followingseverity levels are available:

NetBSD 3.0 September 10, 1999 1

FMTMSG (3) NetBSD Library Functions Manual FMTMSG (3)

MM_HALT The software has encountered a severe fault and is halting.

MM_ERROR The software has encountered a fault.

MM_WARNING The software has encountered an unusual non-fault condition.

MM_INFO The software informs about a non-error condition.

If no severity level is to be supplied,MM_NOSEVmust be specified.

text
The description of the condition the software encountered. The character string is not limited to a specific
size.

If no text is to be supplied,MM_NOTXTmust be specified.

action
The first step to be taken to recover from the condition the software encountered; it will be preceded by the
prefix “TO FIX:”. The character string is not limited to a specific size.

If no action is to be supplied,MM_NOACTmust be specified.

tag
The on-line documentation which provides further information about the condition and the message, such as
“ fmtmsg (3)”. Thecharacter string is not limited to a specific size.

If no tag is to be supplied,MM_NOTAGmust be specified.

Further effect on the formatting of the message as displayed on the standard error stream (but not on the sys-
tem console!) may be taken by setting theMSGVERBenvironment variable, which selects the subset of mes-
sage components to be printed. It consists of a colon-separated list of the optional keywords label ,
severity , text , action , and tag , which correspond to the arguments tofmtmsg () with the same
names. IfMSGVERBis either not set or malformed (containing empty or unknown keywords), its content is
ignored an all message components will be selected.

Note that displaying a message on the system console may fail due to inappropriate privileges or a non-per-
missive file mode of the console device.

RETURN VALUES
Thefmtmsg () function returns one of the following values:

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on standard error, but otherwise succeeded.

MM_NOCOM The function was unable to generate a message on the console, but otherwise succeeded.

SEE ALSO
printf (3), syslog (3)

STANDARDS
Thefmtmsg () function conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

NetBSD 3.0 September 10, 1999 2

FNMATCH (3) NetBSD Library Functions Manual FNMATCH (3)

NAME
fnmatch — match filename or pathname using shell glob rules

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <fnmatch.h>

int
fnmatch (const char ∗pattern , const char ∗string , int flags);

DESCRIPTION
The fnmatch () function matches patterns according to the globbing rules used by the shell. It checks the
string specified by thestring argument to see if it matches the pattern specified by thepattern argu-
ment.

The flags argument modifies the interpretation ofpattern andstring . The value offlags is the bit-
wise inclusive OR of any of the following constants, which are defined in the include filefnmatch.h .

FNM_NOESCAPE Normally, every occurrence of a backslash(‘ \ ’) f ollowed by a character in
pattern is replaced by that character. This is done to negate any special mean-
ing for the character. If the FNM_NOESCAPEflag is set, a backslash character is
treated as an ordinary character.

FNM_PATHNAME Slash characters instring must be explicitly matched by slashes inpattern .
If this flag is not set, then slashes are treated as regular characters.

FNM_PERIOD Leading periods in strings match periods in patterns.The definition of ‘‘leading’’
is related to the specification ofFNM_PATHNAME. A period is always ‘‘leading’’
if it is the first character instring . Additionally, if FNM_PATHNAMEis set, a
period is ‘‘leading’’ if it i mmediately follows a slash.

FNM_LEADING_DIR Ignore “/∗” rest after successfulpattern matching.

FNM_CASEFOLD The pattern is matched in a case-insensitive fashion.

RETURN VALUES
The fnmatch () function returns zero ifstring matches the pattern specified bypattern , otherwise, it
returns the valueFNM_NOMATCH.

SEE ALSO
sh (1), glob (3), regex (3)

STANDARDS
The fnmatch () function conforms toIEEE Std 1003.2-1992 (“POSIX.2”). TheFNM_CASEFOLDflag is a
NetBSD extension.

HISTORY
Thefnmatch () function first appeared in 4.4BSD.

BUGS
The pattern ‘∗’ matches the empty string, even if FNM_PATHNAMEis specified.

NetBSD 3.0 October 7, 2002 1

FOPEN (3) NetBSD Library Functions Manual FOPEN (3)

NAME
fopen , fdopen , freopen — stream open functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

FILE ∗
fopen (const char ∗ restrict path , const char ∗ restrict mode);

FILE ∗
fdopen (int fildes , const char ∗mode);

FILE ∗
freopen (const char ∗ restrict path , const char ∗ restrict mode ,

FILE ∗ restrict stream);

DESCRIPTION
The fopen () function opens the file whose name is the string pointed to bypath and associates a stream
with it.

The argumentmode points to a string beginning with one of the following sequences (Additional characters
may follow these sequences.):

“ r ” Open for reading.

“ r+ ” Open for reading and writing.

“w” Open for writing. Truncate file to zero length or create file.

“w+” Open for reading and writing.Truncate file to zero length or create file.

“a” Append; open for writing. The file is created if it does not exist.

“a+” Append; open for reading and writing. The file is created if it does not exist.

Themode string can also include the letter ‘‘b’ ’ either as a last character or as a character between the char-
acters in any of the two-character strings described above. This is strictly for compatibility withANSI
X3.159-1989 (“ANSI C89”) and has no effect; the ‘‘b’’ is ignored.

The letter ‘‘f ’ ’ in the mode string restricts fopen to regular files; if the file opened is not a regular file,
fopen () will f ail. Thisis a nonANSI X3.159-1989 (“ANSI C89”) extension.

Any created files will have mode "S_IRUSR | S_IWUSR| S_IRGRP | S_IWGRP| S_IROTH | S_IWOTH"
(0666) , as modified by the process’ umask value (seeumask(2)).

Opening a file with append mode causes all subsequent writes to it to be forced to the then current end of file,
regardless of intervening repositioning of the stream.

The fopen () andfreopen () functions initially position the stream at the start of the file unless the file is
opened with append mode, in which case the stream is initially positioned at the end of the file.

The fdopen () function associates a stream with the existing file descriptor, fildes . The mode of the
stream must be compatible with the mode of the file descriptor. The stream is positioned at the file offset of
the file descriptor.

The freopen () function opens the file whose name is the string pointed to bypath and associates the
stream pointed to bystream with it. The original stream (if it exists) is closed.The mode argument is

NetBSD 3.0 June 4, 1993 1

FOPEN (3) NetBSD Library Functions Manual FOPEN (3)

used just as in thefopen () function. The primary use of thefreopen () function is to change the file asso-
ciated with a standard text stream (stderr, stdin, or stdout).

RETURN VALUES
Upon successful completionfopen (), fdopen () andfreopen () return aFILE pointer. Otherwise,NULL
is returned and the global variableerrno is set to indicate the error.

ERRORS
[EINVAL] Themode provided tofopen (), fdopen (), or freopen () was invalid.

[EFTYPE] The file is not a regular file and the character ‘‘f ’ ’ is specified in the mode.

The fopen (), fdopen () andfreopen () functions may also fail and seterrno for any of the errors speci-
fied for the routinemalloc (3).

Thefopen () function may also fail and seterrno for any of the errors specified for the routineopen (2).

Thefdopen () function may also fail and seterrno for any of the errors specified for the routinefcntl (2).

The freopen () function may also fail and seterrno for any of the errors specified for the routinesopen (2),
fclose (3) andfflush (3).

SEE ALSO
open (2), fclose (3), fileno (3), fseek (3), funopen (3)

STANDARDS
The fopen () andfreopen () functions conform toANSI X3.159-1989 (“ANSI C89”). The fdopen () func-
tion conforms toISO/IEC9945-1:1990 (“POSIX.1”).

CAVEATS
Proper code usingfdopen () with error checking shouldclose (2) fildes in case of failure, and
fclose (3) the resulting FILE∗ in case of success.

FILE ∗file;
int fd;

if ((file = fdopen(fd, "r")) != NULL) {
/ ∗ perform operations on the FILE ∗ ∗/
fclose(file);

} e lse {
/ ∗ failure, report the error ∗/
close(fd);

}

NetBSD 3.0 June 4, 1993 2

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
pos_form_cursor — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

int
pos_form_cursor (FORM∗form);

DESCRIPTION
The functionpos_form_cursor () positions the screen cursor at the correct position for the form.This
function can be used to restore the cursor state after using other curses routines.

RETURN VALUES
pos_form_cursor () will return one of the following error values:

E_OK The function was successful.
E_BAD_ARGUMENT A bad argument was passed to the function.
E_NOT_POSTED The form is not posted to the screen.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORM_DAT A (3) NetBSDLibrary Functions Manual FORM_DAT A (3)

NAME
form — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

int
data_ahead (FORM∗form);

int
data_behind (FORM∗form);

DESCRIPTION
If there is data offscreen to the right of the current field of the given form thendata_ahead () will return
TRUE, otherwiseFALSE is returned.Similarly, if there is data offscreen to the left of the current field of the
given form thendata_behind () will returnTRUE.

RETURN VALUES
If the condition is met then the functions will returnTRUE, if there is an error or there is no data offscreen
the functions will returnFALSE.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
form_driver — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

int
form_driver (FORM∗form , int request);

DESCRIPTION
The form_driver () is the heart of the forms library, it takes commands in therequest parameter that is
either a request to the driver to perform some action or is a character to be inserted into the current field.The
form driver will attempt to insert any printable character passed to it into the current field.This may or may
not succeed depending on the state of the current field. If the character passed is not printable then the driver
attempts to process it as a driver request. Ifthe character passed is not a valid request then the driver will
return an unknown command error.

PARAMETERS
The forms driver recognizes the following requests:

REQ_NEXT_PAGE Change to the next page in the form.
REQ_PREV_PAGE Change to the previous page in the form.
REQ_FIRST_PAGE Select the first page in the form.
REQ_LAST_PAGE Go to the last page in the form.
REQ_NEXT_FIELD Move to the next field in the form field array.
REQ_PREV_FIELD Move to the previous field in the form field array.
REQ_FIRST_FIELD Go to the first field in the form field array.
REQ_LAST_FIELD Go to the last field in the form field array.
REQ_SNEXT_FIELD Move to the next sorted field on the form.
REQ_SPREV_FIELD Move to the previous sorted field on the form.
REQ_SFIRST_FIELD Go to the first field in the sorted list.
REQ_SLAST_FIELD Move to the last field in the sorted list.
REQ_LEFT_FIELD Go one field to the left on the form page.
REQ_RIGHT_FIELD Go one field to the right on the form page.
REQ_UP_FIELD Go up one field on the form page.
REQ_DOWN_FIELD Go down one field on the form page.
REQ_NEXT_CHAR Move one char to the right within the field
REQ_PREV_CHAR Move one char to the left within the current field.
REQ_NEXT_LINE Go down one line in the current field.
REQ_PREV_LINE Go up one line in the current field.
REQ_NEXT_WORD Go forward one word in the current field
REQ_PREV_WORD Go backward one word in the current field.
REQ_BEG_FIELD Move the cursor to the beginning of the current field.
REQ_END_FIELD Move the cursor to the end of the current field.
REQ_BEG_LINE Move the cursor to the beginning of the line in the current field.
REQ_END_LINE Move the cursor to the end of the line.
REQ_LEFT_CHAR Move the cursor left one character

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

REQ_RIGHT_CHAR Move the cursor right one character
REQ_UP_CHAR Move the cursor up one line.
REQ_DOWN_CHAR Move the cursor down one line.
REQ_NEW_LINE Insert a new line at the current cursor position.
REQ_INS_CHAR Insert a blank character at the current cursor position
REQ_INS_LINE Open a blank line at the current cursor position.
REQ_DEL_CHAR Delete the character at the current cursor position.
REQ_DEL_PREV Delete the character to the left of the current cursor position.
REQ_DEL_LINE Delete the current line.
REQ_DEL_WORD Delete the word at the current cursor position.
REQ_CLR_EOL Clear the field from the current cursor position to the end of the current line.
REQ_CLR_EOF Clear the field from the current cursor position to the end of the field.
REQ_CLR_FIELD Clear the field.
REQ_OVL_MODE Enter overlay mode, characters added to the field will replace the ones already

there.
REQ_INS_MODE Enter insert mode, characters will be inserted at the current cursor position.Any

characters to the right of the cursor will be moved right to accommodate the new
characters.

REQ_SCR_FLINE Scroll the field forward one line.
REQ_SCR_BLINE Scroll the field backward one line.
REQ_SCR_FPAGE Scroll the field forward one field page.
REQ_SCR_BPAGE Scroll the field backward one field page.
REQ_SCR_FHPAGE Scroll the field forward half one field page.
REQ_SCR_BHPAGE Scroll the field backward half one field page.
REQ_SCR_FCHAR Scroll the field horizontally forward one character
REQ_SCR_BCHAR Scroll the field horizontally backward one character
REQ_SCR_HFLINE Scroll the field horizontally forward one field line.
REQ_SCR_HBLINE Scroll the field horizontally backward one field line.
REQ_SCR_HFHALF Scroll the field horizontally forward half a field line.
REQ_SCR_HBHALF Scroll the field horizontally backward half a field line.
REQ_VALIDATION Request the contents of the current field be validated using any field validation

function that has been set for the field.Normally, the field is validated before the
current field changes. This request allows the current field to be validated.

REQ_PREV_CHOICE Select the previous choice in an enumerated type field.
REQ_NEXT_CHOICE Select the next choice in an enumerated type field.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.
E_REQUEST_DENIED The forms driver request could not be fulfilled
E_UNKNOWN_COMMANDThe passed character is not a printable character and is not a valid forms driver

request.
E_BAD_ARGUMENT A bad argument was passed to the forms driver.
E_INVALID_FIELD The form passed to the driver has no valid attached fields.
E_NOT_POSTED The given form is not currently posted to the screen.
E_BAD_STATE The forms driver was called from within an init or term function.
E_INVALID_FIELD The character passed to the forms driver fails the character validation for the cur-

rent field.

NetBSD 3.0 January 1, 2001 2

FORMS (3) NetBSD Library Functions Manual FORMS (3)

SEE ALSO
curses (3), forms (3)

NOTES
Field sorting is done by location of the field on the form page, the fields are sorted by position starting with
the top-most, left-most field and progressing left to right.For the purposes of sorting, the fields top left cor-
ner is used as the sort criteria.The header〈form.h 〉 automatically includes both〈curses.h 〉 and
〈eti.h 〉.

NetBSD 3.0 January 1, 2001 3

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
field_count , form_fields , move_field , set_form_fields — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

int
field_count (FORM∗form);

FIELD ∗∗
form_fields (FORM∗form);

int
move_field (FIELD ∗field , int frow , int fcol);

int
set_form_fields (FORM∗form , FIELD ∗∗fields);

DESCRIPTION
The field_count () function returns the number of fields that are attached to the given form, if the form
argument passed isNULL thenfield_count () will return −1. The functionform_fields () will return
a pointer to array of attach fields for the given form, this array is notNULL terminated, fields may be attached
to the given form by callingset_form_fields (). Thefields argument in this function is a pointer to
a NULL terminated array of fields that will be attached to the form.If there are already fields attached to the
form then they will be detached before the new fields are attached. The new fields given must not be
attached to any other form. Themove_field () function will move the given field to the location specified
by frow andfcol .

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.
E_CONNECTED The field is connected to a form.
E_POSTED The form is currently posted to the screen.
E_BAD_ARGUMENT The function was passed a bad argument.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
field_back , field_fore , field_pad , set_field_back , set_field_fore ,
set_field_pad — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

chtype
field_back (FIELD ∗field);

chtype
field_fore (FIELD ∗field);

int
field_pad (FIELD ∗field);

int
set_field_back (FIELD ∗field , chtype attribute);

int
set_field_fore (FIELD ∗field , chtype attribute);

int
set_field_pad (FIELD ∗field , int pad);

DESCRIPTION
Calling the functionfield_back () will return the character attributes that will be applied to a field that is
not the current field, these attributes can be set by theset_field_back () function. The field_fore ()
function returns the character attributes that will be used to indicate that a field is the currently active one on
the form, this attribute may be set by using theset_field_fore () function. The pad character for a field
is the character that will be printed in all field locations not occupied with actual field contents.The pad
character can be retrieved by calling the field_pad () function, the pad character is set by using the
set_field_pad () function.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
field_buffer , field_status , set_field_buffer , set_field_printf ,
set_field_status , set_max_field — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

char ∗
field_buffer (FIELD ∗field , int buffer);

int
field_status (FIELD ∗field);

int
set_field_buffer (FIELD ∗field , int buffer , char ∗value);

int
set_field_printf (FIELD ∗field , int buffer , char ∗fmt , . . .);

int
set_field_status (FIELD ∗field , int status);

int
set_max_field (FIELD ∗field , int max);

DESCRIPTION
The field_buffer () function returns the contents of the buffer number specified bybuffer for the
given field. If the requested buffer number exceeds the number of buffers attached to the field thenNULL
will be returned. If the field optionO_REFORMATis enabled on the given field then storage will be allocated
to hold the reformatted buffer. This storage must be release by callingfree (3) when it is no longer
required. IftheO_REFORMATfield option is not set then no extra storage is allocated. The field buffer may
be set by callingset_field_buffer () which will set the given buffer number to the contents of the
string passed.A buffer may also be set by callingset_field_printf () which sets the buffer using the
format arg fmt after being expanded using the subsequent arguments in the same manner assprintf (3)
does. Callingfield_status () will return the status of the first buffer attached to the field.If the field has
been modified then the function will returnTRUEotherwiseFALSE is returned, the status of the first buffer
may be programmatically set by callingset_field_status (). Themaximum growth of a dynamic field
can be set by callingset_max_field () which limits the fields rows if the field is a multiline field or the
fields columns if the field only has a single row.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.
E_BAD_ARGUMENT A bad parameter was passed to the function.
E_SYSTEM_ERROR A system error occurred performing the function.

SEE ALSO
curses (3), forms (3)

NetBSD 3.0 October 15, 2005 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NOTES
The header 〈form.h 〉 automatically includes both〈curses.h 〉 and 〈eti.h 〉. The function
set_field_printf () is aNetBSD extension and must not be used in portable code.

NetBSD 3.0 October 15, 2005 2

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
dynamic_field_info , field_info — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

int
dynamic_field_info (FIELD ∗field , int ∗drows , int ∗dcols , int ∗max);

int
field_info (FIELD ∗field , int ∗rows , int ∗cols , int ∗frow , int ∗fcol ,

int ∗nrow , int ∗nbuf);

DESCRIPTION
The functiondynamic_field_info () returns the sizing information for the field given. Thefunction
will return the number of rows, columns and the maximum growth of the field in the storage pointed to by
the drows, dcols and max parameters respectively. Dynamic field information cannot be requested for the
default field. If the field given is not dynamic thendynamic_field_info () will simply return the size of
the actual field.The field_info () will return the number or rows, columns, field starting row, field start-
ing column, number of off screen rows and number of buffers in rows , cols , frow , fcol , nrow and
nbuf respectively.

RETURN VALUES
The functions will return one of the following error values:

E_OK The function was successful.
E_BAD_ARGUMENT A bad argument was passed to the function.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
field_just , set_field_just — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

int
field_just (FIELD ∗field);

int
set_field_just (FIELD ∗field , int justification);

DESCRIPTION
Field justification is only applied to static fields, a dynamic field will not be justified.The default justifica-
tion for a field is NO_JUSTIFICATION. The field_just () will return the current justification value of
the given field and the justification may be set by calling theset_field_just () function.

PARAMETERS
The following are the valid justifications for a field:

NO_JUSTIFICATION No justification is to be applied to the field.In practice, this is the same as JUS-
TIFY_LEFT.

JUSTIFY_RIGHT The field will be right justified.That is, the end of each line will be butted up
against the right hand side of the field.

JUSTIFY_LEFT The field will be left justified.That is, the start of each line will be butted up
against the left hand side of the field.

JUSTIFY_CENTER The field will be centre justified, padding will be applied to either end of the line to
make the line centred in the field.

RETURN VALUES
The functions will return one of the following error values:

E_OK The function was successful.
E_CURRENT The field specified is the currently active one on the form.
E_BAD_ARGUMENT A bad argument was passed to the function.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
dup_field , free_field , link_field , new_field — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

FIELD ∗
dup_field (FIELD ∗field , int frow , int fcol);

int
free_field (FIELD ∗field);

FIELD ∗
link_field (FIELD ∗field , int frow , int fcol);

FIELD ∗
new_field (int rows , int cols , int frow , int fcol , int nrows , int nbuf);

DESCRIPTION
The dup_field () function duplicates the given field, including any buffers associated with the field and
returns the pointer to the newly created field.free_field () destroys the field and frees any allocated
resources associated with the field. The functionlink_field () copies the given field to a new field at the
locationfrow andfcol but shares the buffers with the original field.new_field () creates a new field of
sizerows by cols at locationfrow , fcol on the page, the argumentnrows specified the number of off
screen rows the field has and thenbuf parameter specifies the number of extra buffers attached to the field.
There will always be one buffer associated with a field.

RETURN VALUES
On errordup_field () andnew_field () will return NULL. The functions will one of the following error
values:

E_OK The function was successful.
E_BAD_ARGUMENT A bad argument was passed to the function.
E_CONNECTED The field is connected to a form.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
field_opts , field_opts_off , field_opts_on , set_field_opts — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

Form_Options
field_opts (FIELD ∗field);

int
field_opts_off (FIELD ∗field , Form_Options options);

int
field_opts_on (FIELD ∗field , Form_Options options);

int
set_field_opts (FIELD ∗field , Form_Options options);

DESCRIPTION
The function field_opts () returns the current options settings for the given field. The
field_opts_off () will turn the options given in options off for the given field, options not specified
in options will remain unchanged.Conversely, the functionfield_opts_on () will turn on the options
given in options for the specified field, again, any options not specified will remain unchanged.The
options for a field may be set to a specific set of options by calling theset_field_opts () function.
Options may only be changed if the field given is not the currently active one.

PARAMETERS
The following options are available for a field:

O_VISIBLE The field is visible, hence is displayed when the form is posted.
O_ACTIVE The field is active in the form, meaning that it can be visited during form processing.
O_PUBLIC The contents of the field are echoed to the screen.
O_EDIT The contents of the field can be modified
O_WRAP The contents of the field are wrapped on a word boundary, if this option is off then the field

will be wrapped on a character boundary.
O_BLANK Blank the field on new data being entered if and only if the field cursor is at the left hand

side of the field.
O_AUTOSKIPSkip to the next field when the current field reaches its maximum size.
O_NULLOK The field is allowed to contain no data
O_STATIC The field is not dynamic, it has a fixed size.
O_PASSOK An unmodified field is allowed.
O_REFORMATRetain the formatting of a field when the buffer is retrieved. If this option is not set then the

buffer returned will be a single string with no line breaks.When this option is set newline
characters will be inserted at the point where the string has been wrapped in a multiline field.
This option is an extension to the forms library and must not be used in portable code.See
the field_buffer (3) man page for how this option modifies the behaviour of
field_buffer ().

The following options are on by default for a field:O_VISIBLE , O_ACTIVE, O_PUBLIC, O_EDIT,
O_WRAP, O_BLANK, O_AUTOSKIP, O_NULLOK, O_PASSOK, andO_STATIC.

NetBSD 3.0 November 24, 2004 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.
E_CURRENT The field specified is the currently active one in the form.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and 〈eti.h 〉. The optionO_REFORMAT
is aNetBSD
extension and must not be used in portable code.

NetBSD 3.0 November 24, 2004 2

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
field_userptr , set_field_userptr — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

void ∗
field_userptr (FIELD ∗field);

int
set_field_userptr (FIELD ∗field , void ∗ptr);

DESCRIPTION
The field_userptr () function returns the pointer to the user defined data for the field, this pointer may
be set by calling theset_field_userptr () function.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
field_arg , field_type , set_field_type — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

char ∗
field_arg (FIELD ∗field);

FIELDTYPE ∗
field_type (FIELD ∗field);

int
set_field_type (FIELD ∗field , FIELDTYPE ∗type , . . .);

DESCRIPTION
The field_arg () function returns the field type arguments that are associated with the given field. The
field_type () function returns the field type structure associated with the given field, this type can be set
by calling theset_field_type () function which associates the given field type with the field, the third
and subsequent parameters are field dependent arguments.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
free_fieldtype , link_fieldtype , new_fieldtype , set_fieldtype_arg ,
set_fieldtype_choice — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

int
free_fieldtype (FIELDTYPE ∗fieldtype);

FIELDTYPE ∗
link_fieldtype (FIELDTYPE ∗type1 , FIELDTYPE ∗type2);

FIELDTYPE ∗
new_fieldtype (int (∗field_check)(FIELD ∗, c har ∗) ,

int (∗char_check)(int, char ∗));

int
set_fieldtype_arg (FIELDTYPE ∗fieldtype , char ∗ (∗make_args)(va_list ∗) ,

char ∗ (∗copy_args)(char ∗) , void (∗free_args)(char ∗));

int
set_fieldtype_choice (FIELDTYPE ∗fieldtype ,

int (∗next_choice)(FIELD ∗, c har ∗) ,
int (∗prev_choice)(FIELD ∗, c har ∗));

DESCRIPTION
The functionfree_fieldtype () frees the storage associated with the field type and destroys it. The
function link_fieldtype () links together the two giv en field types to produce a new field type. A new
field type can be created by callingnew_fieldtype () which requires pointers to two functions which per-
form validation, thefield_check function must validate the field contents and returnTRUEif they are
acceptable andFALSE if they are not. The char_check validates the character input into the field, this
function will be called for each character entered, if the character can be entered into the field then
char_check must returnTRUE. Neither field_check nor char_check may beNULL. The func-
tions for handling the field type arguments can be defined by using theset_fieldtype_arg () function,
themake_args function is used to create new arguments for the fieldtype, thecopy_args is used to copy
the fieldtype arguments to a new arguments structure andfree_args is used to destroy the fieldtype argu-
ments and release any associated storage, none of these function pointers may beNULL. The field type
choice functions can be set by callingset_fieldtype_choice (), the next_choice and
prev_choice specify the next and previous choice functions for the field type. These functions must per-
form the necessary actions to select the next or previous choice for the field, updating the field buffer if nec-
essary. The choice functions must returnTRUEif the function succeeded andFALSEotherwise.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.
E_BAD_ARGUMENT The function was passed a bad argument.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

E_CONNECTED The field is connected to a form.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 2

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
field_init , field_term , form_init , form_term , set_field_init , set_field_term ,
set_form_init , set_form_term — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

void (∗)(FORM ∗)
field_init (FORM∗form);

void (∗)(FORM ∗)
field_term (FORM∗form);

void (∗)(FORM ∗)
form_init (FORM∗form);

void (∗)(FORM ∗)
form_term (FORM∗form);

int
set_field_init (FORM∗form , void (∗function)(FORM ∗));

int
set_field_term (FORM∗form , void (∗function)(FORM ∗));

int
set_form_init (FORM∗form , void (∗function)(FORM ∗));

int
set_form_term (FORM∗form , void (∗function)(FORM ∗));

DESCRIPTION
The field_init () function returns a pointer to the function that will be called just after the current field
changes and just before the form is posted, this function may be set by using theset_field_init () func-
tion. Similarly, the functionfield_term () will return a pointer to the function that will be called just
before the current field changes and just after the form is unposted, this function pointer may be set by using
the set_field_term () function. The form_init () function will return a pointer to the function that
will be called just before the form is posted to the screen, this function can be set by calling the
set_form_init () function. The form_term () function will return a pointer to the function that will be
called just after the form is unposted from the screen, this function may be set by using the
set_form_term () function. By default, the init and term function pointers areNULL.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.

SEE ALSO
curses (3), forms (3)

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 2

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
free_form , new_form — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

int
free_form (FORM∗form);

FORM∗
new_form (FIELD ∗∗fields);

DESCRIPTION
The functionfree_form () frees all the resources associated with the form and destroys the form.Calling
new_form () will create a new form, set the form parameters to the current defaults and attach the passed
fields to the form. The array of fields passed tonew_form () must be terminated with aNULL pointer to
indicate the end of the fields.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.
E_BAD_ARGUMENT The function was passed a bad argument.
E_POSTED The form is posted to the screen.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
new_page , set_new_page — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

int
new_page (FIELD ∗field);

int
set_new_page (FIELD ∗field , int page);

DESCRIPTION
The new_page () function returnsTRUEif the given field is the start of a new page, otherwise it returns
FALSE, the new page status of a field can be set or unset using theset_new_page () function.

RETURN VALUES
The functions will return one of the following error values:

E_OK The function was successful.
E_CONNECTED The field is connected to a form.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
form_opts , form_opts_off , form_opts_on , set_form_opts — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

Form_Options
form_opts (FORM∗form);

int
form_opts_off (FORM∗form , Form_Options options);

int
form_opts_on (FORM∗form , Form_Options options);

int
set_form_opts (FORM∗form , Form_Options options);

DESCRIPTION
The function form_opts () returns the current options that are set on the given form. The
form_opts_off () will turn off the form options given in options for the form, similarly,
form_opts_on () will turn on the options specified inoptions for the given form. Theform options can
be set to an explicit set by callingset_form_opts ().

PARAMETERS
The following form options are valid:

O_BS_OVERLOAD
If this option is set and the cursor is at the first character in the field then the backspace
character will perform the same function as a REQ_PREV_FIELD driver request, mov-
ing to the previous field in the form.

O_NL_OVERLOAD
If this option is set and the cursor is at the end of the field then the new line character
will perform the same function as a REQ_NEXT_FIELD driver request, moving to the
next field in the form.

By default no form options are set.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORM_PAGE (3) NetBSDLibrary Functions Manual FORM_PAGE (3)

NAME
current_field , field_index , form_page , form_max_page , set_current_field ,
set_form_page — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

FIELD ∗
current_field (FORM∗form);

int
field_index (FIELD ∗field);

int
form_page (FORM∗form);

int
form_max_page (FORM∗form);

int
set_current_field (FORM∗form , FIELD ∗field);

int
set_form_page (FORM∗form , int page);

DESCRIPTION
Thecurrent_field () returns a pointer to the structure for the field that is currently active on the page.If
there is an error, current_field () will return NULL. Calling field_index () will return the index of
the given field in the form field array. The current page the form is on can be determined by using
form_page (), the current page of a form can be programmatically set by callingset_form_page (). The
maximum page number for a form can be found by calling the functionform_max_page () but note that
this function is aNetBSD extension and must not be used in portable forms library programs.The current
field on the form may be set by callingset_current_field () which will set the current field to the one
given.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.
E_BAD_ARGUMENT The function was passed a bad argument.
E_NOT_CONNECTED The given field is not associated with a form.
E_BAD_STATE The function was called from within an init or term function.
E_INVALID_FIELD The field given is not part of the given form.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORM_PAGE (3) NetBSDLibrary Functions Manual FORM_PAGE (3)

Theform_max_page is aNetBSD extension and should not be used in portable applications.

NetBSD 3.0 January 1, 2001 2

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
post_form , unpost_form — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

int
post_form (FORM∗form);

int
unpost_form (FORM∗form);

DESCRIPTION
Thepost_form () function performs the actions necessary to present the form on the curses screen.If there
are any init functions that need to be called then they will be called prior to the form being posted and the
cursor will be positioned on the first active field that can be visited.Conversely, the function
unpost_form () removes the form from the screen and calls any termination functions that were specified.

RETURN VALUES
The functions will return one of the following error values:

E_OK The function was successful.
E_BAD_ARGUMENT A bad argument was passed to the function.
E_POSTED The form is already posted to the screen.
E_NOT_POSTED The form was not posted to the screen.
E_NOT_CONNECTED There are no fields associated with the form.
E_BAD_STATE The function was called from within a init or term function.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
form_userptr , set_form_userptr — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

void ∗
form_userptr (FORM∗form);

int
set_form_userptr (FORM∗form , void ∗ptr);

DESCRIPTION
The form_userptr () function returns the pointer to the user defined data associated with the form, this
pointer may be set using theset_form_userptr () call.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
form_sub , form_win , scale_form , set_form_sub , set_form_win — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

WINDOW∗
form_sub (FORM∗form);

WINDOW∗
form_win (FORM∗form);

int
scale_form (FORM∗form , int ∗rows , int ∗cols);

int
set_form_sub (FORM∗form , WINDOW∗window);

int
set_form_win (FORM∗form , WINDOW∗window);

DESCRIPTION
All output to the screen done by the forms library is handled by the curses library routines.By default, the
forms library will output to the cursesstdscr , but if the forms window has been set viaset_form_win ()
then output will be sent to the window specified byset_form_win (), unless the forms subwindow has
been set usingset_form_sub (). If a subwindow has been specified usingset_form_sub () then it will
be used by the forms library to for screen output.The current setting for the form window can be retrieved
by calling form_win (). If the forms window has not been set thenNULL will be returned.Similarly, the
forms subwindow can be found by calling theform_sub () function, again, if the subwindow has not been
set thenNULLwill be returned.Thescale_form () function will return the minimum number of rows and
columns that will entirely contain the given form.

RETURN VALUES
Functions returning pointers will returnNULL if an error is detected.The functions that return an int will
return one of the following error values:

E_OK The function was successful.
E_NOT_CONNECTED The form has no fields connected to it.
E_POSTED The form is posted to the screen.

SEE ALSO
curses (3), forms (3)

NOTES
The header〈form.h 〉 automatically includes both〈curses.h 〉 and〈eti.h 〉.

NetBSD 3.0 January 1, 2001 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

NAME
form — form library

LIBRARY
Curses Form Library (libform, −lform)

SYNOPSIS
#include <form.h>

DESCRIPTION
The form library provides a terminal independent form system using thecurses (3) library. Before using
the form functions the terminal must be set up bycurses (3) using theinitscr () function or similar.
Programs usingform functions must be linked with thecurses (3) library −lcurses .

The form library provides facilities for defining form fields, placing a form on the terminal screen, assign
pre and post change operations and setting the attributes of both the form and its fields.

Defining default attributes for forms and fields
The form library allows any settable attribute or option of both the form and field objects to be defined such
that any new form or field automatically inherits the value as default. Settingthe default value will not affect
any field or form that has already been created but will be applied to subsequent objects.To set the default
attribute or option the set routine is passed aNULLpointer in the field or form parameter when calling the set
routine. Thecurrent default value can be retrieved by calling the get routine with aNULL pointer for the
field or form parameter.

Form Routine Name Manual Page Name
current_field form_page (3)
data_ahead form_data (3)
data_behind form_data (3)
dup_field form_field_new (3)
dynamic_field_info form_field_info (3)
field_arg form_field_validation (3)
field_back form_field_attributes (3)
field_buffer form_field_buffer (3)
field_count form_field (3)
field_fore form_field_attributes (3)
field_index form_page (3)
field_info form_field_info (3)
field_init form_hook (3)
field_just form_field_just (3)
field_opts form_field_opts (3)
field_opts_off form_field_opts (3)
field_opts_on form_field_opts (3)
field_pad form_field_attributes (3)
field_status form_field_buffer (3)
field_term form_hook (3)
field_type form_field_validation (3)
field_userptr form_field_userptr (3)
form_driver form_driver (3)
form_fields form_field (3)

NetBSD 3.0 November 24, 2004 1

FORMS (3) NetBSD Library Functions Manual FORMS (3)

form_init form_hook (3)
form_max_page form_page (3)
form_opts form_opts (3)
form_opts_off form_opts (3)
form_opts_on form_opts (3)
form_page form_page (3)
form_sub form_win (3)
form_term form_hook (3)
form_userptr form_userptr (3)
form_win form_win (3)
free_field form_field_new (3)
free_fieldtype form_fieldtype (3)
free_form form_new (3)
link_field form_field_new (3)
link_fieldtype form_fieldtype (3)
move_field form_field (3)
new_field form_field_new (3)
new_fieldtype form_fieldtype (3)
new_form form_new (3)
new_page form_new_page (3)
pos_form_cursor form_cursor (3)
post_form form_post (3)
scale_form form_win (3)
set_current_field form_page (3)
set_field_back form_field_attributes (3)
set_field_buffer form_field_buffer (3)
set_field_fore form_field_attributes (3)
set_field_init form_hook (3)
set_field_just form_field_just (3)
set_field_opts form_field_opts (3)
set_field_pad form_field_attributes (3)
set_field_printf form_field_buffer (3)
set_field_status form_field_buffer (3)
set_field_term form_hook (3)
set_field_type form_field_validation (3)
set_field_userptr form_field_userptr (3)
set_fieldtype_arg form_fieldtype (3)
set_fieldtype_choice form_fieldtype (3)
set_form_fields form_field (3)
set_form_init form_hook (3)
set_form_opts form_opts (3)
set_form_page form_page (3)
set_form_sub form_win (3)
set_form_term form_hook (3)
set_form_userptr form_userptr (3)
set_form_win form_win (3)
set_max_field form_field_buffer (3)
set_new_page form_new_page (3)
unpost_form form_post (3)

NetBSD 3.0 November 24, 2004 2

FORMS (3) NetBSD Library Functions Manual FORMS (3)

RETURN VALUES
Any function returning a string pointer will returnNULL if an error occurs.Functions returning an integer
will return one of the following:

E_OK The function was successful.
E_SYSTEM_ERROR There was a system error during the call.
E_BAD_ARGUMENT One or more of the arguments passed to the function was incorrect.
E_POSTED The form is already posted.
E_CONNECTED A field was already connected to a form.
E_BAD_STATE The function was called from within an initialization or termination routine.
E_NO_ROOM The form does not fit within the subwindow.
E_NOT_POSTED The form is not posted.
E_UNKNOWN_COMMANDThe form driver does not recognize the request passed to it.
E_NOT_SELECTABLE The field could not be selected.
E_NOT_CONNECTED The field is not connected to a form.
E_REQUEST_DENIED The form driver could not process the request.
E_INVALID_FIELD The field is invalid.
E_CURRENT The field is the active one on the form.

SEE ALSO
curses (3), menus(3)

NOTES
This implementation of the forms library does depart in behavior subtly from the original AT&T implemen-
tation. Someof the more notable departures are:

field wrapping For multi-line fields the data will be wrapped as it is entered, this does not happen
in the AT&T implementation.

buffer 0 In this implementation, the contents of buffer 0 are always current regardless of
whether the field has been validated or not.

circular fields In the AT&T implementation fields are circular on a page, that is, a next field from
the last field will go to the first field on the current page. In this implementation a
next field request on the last field of a page will result in the forms library posi-
tioning the cursor on the first field of the next page. If the field is the last field in
the form then going to the next field will be denied, in the AT&T it would result in
the cursor being placed on the first field of the first page.

buffer returns In this implementation only the data entered by the user in the form field will be
returned, unlike the AT&T library which would return the contents of the field
padded to the size of the field with the pad character.

The TAB character The handling of the TAB character in fields varies between implementations.In
ncurses attempting to set a field contents with a string containing a TAB will result
in an error and will not allow a TAB to be entered into a field. The AT&T library
statically converts tabs to the equivalent number of spaces when the field buffer is
set but the form driver will not allow a TAB to be inserted into the field buffer.
This implementation allows TAB when setting the field buffer and also will allow
TAB to be inserted into a field buffer via the form driver and correctly calculates
the cursor position allowing for expansion of the TAB character.

set_field_printf This function is aNetBSD extension and must not be used in portable code.
O_REFORMAT This field option is aNetBSD extension and must not be used in portable code.

NetBSD 3.0 November 24, 2004 3

FPARSELN (3) NetBSD Library Functions Manual FPARSELN (3)

NAME
fparseln — return the next logical line from a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

char ∗
fparseln (FILE ∗stream , size_t ∗len , size_t ∗lineno , const char delim[3] ,

int flags);

DESCRIPTION
The fparseln () function returns a pointer to the next logical line from the stream referenced bystream .
This string isNUL terminated and it is dynamically allocated on each invocation. It is the responsibility of
the caller to free the pointer.

By default, if a character is escaped, both it and the preceding escape character will be present in the returned
string. Variousflags alter this behaviour.

The meaning of the arguments is as follows:

stream The stream to read from.

len If not NULL, the length of the string is stored in the memory location to which it points.

lineno If not NULL, the value of the memory location to which is pointed to, is incremented by the num-
ber of lines actually read from the file.

delim Contains the escape, continuation, and comment characters.If a character isNUL then processing
for that character is disabled.If NULL, all characters default to values specified below. The con-
tents ofdelim is as follows:

delim[0] The escape character, which defaults to\ , is used to remove any special meaning
from the next character.

delim[1] The continuation character, which defaults to\ , is used to indicate that the next line
should be concatenated with the current one if this character is the last character on
the current line and is not escaped.

delim[2] The comment character, which defaults to#, if not escaped indicates the beginning of
a comment that extends until the end of the current line.

flags If non-zero, alter the operation offparseln (). Thevarious flags, which may beor-ed together,
are:

FPARSELN_UNESCCOMMRemove escape preceding an escaped comment.

FPARSELN_UNESCCONTRemove escape preceding an escaped continuation.

FPARSELN_UNESCESCRemove escape preceding an escaped escape.

FPARSELN_UNESCRESTRemove escape preceding any other character.

FPARSELN_UNESCALL All of the above.

RETURN VALUES
Upon successful completion a pointer to the parsed line is returned; otherwise,NULL is returned.

NetBSD 3.0 November 30, 2002 1

FPARSELN (3) NetBSD Library Functions Manual FPARSELN (3)

The fparseln () function uses internallyfgetln (3), so all error conditions that apply tofgetln (3),
apply tofparseln (). In additionfparseln () may seterrno to [ENOMEM] and returnNULL if it runs out
of memory.

SEE ALSO
fgetln (3)

HISTORY
Thefparseln () function first appeared inNetBSD 1.4.

NetBSD 3.0 November 30, 2002 2

FPCLASSIFY (3) NetBSD Library Functions Manual FPCLASSIFY (3)

NAME
fpclassify — classify real floating type

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <math.h>

int
fpclassify (real-floating x);

DESCRIPTION
The fpclassify () macro performs classification of its argumentx . An argument represented in a format
wider than its semantic type is converted to its semantic type first. The classification is then based on the
type of the argument.

IEEE 754
FP_INFINITE infinity, either positive or neg ative
FP_NAN not-a-number (“NaN”)
FP_NORMAL normal
FP_SUBNORMAL subnormal
FP_ZERO zero

VAX
FP_ROP reserved operand(“ROP”)
FP_DIRTYZERO dirty zero
FP_NORMAL finite
FP_ZERO true zero

RETURN VALUES
The fpclassify () macro returns the value of the number classification macro appropriate to its argument
x as described above.

ERRORS
No errors are defined.

SEE ALSO
isfinite (3), isnormal (3), math (3), signbit (3)

STANDARDS
Thefpclassify () macro conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 January 14, 2004 1

FPGETMASK (3) NetBSD Library Functions Manual FPGETMASK (3)

NAME
fpgetmask , fpgetround , fpgetsticky , fpsetmask , fpsetround , fpsetsticky — IEEE FP
mode control

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ieeefp.h>

fp_except
fpgetmask (void);

fp_rnd
fpgetround (void);

fp_except
fpgetsticky (void);

fp_except
fpsetmask (fp_except mask);

fp_rnd
fpsetround (fp_rnd rnd_dir);

fp_except
fpsetsticky (fp_except sticky);

DESCRIPTION
A rounding mode is one ofFP_RZ, FP_RM, FP_RN, or FP_RP, for rounding towards zero, rounding
(Minus infinity) down, rounding tonearest, and rounding (Plus infinity) up. Thedefault mode isFP_RN.

An fp_except value is a bitmask specifying an exception type and containing any of the values listed
below.

FP_X_INV Invalid Operation
FP_X_DZ Division by zero
FP_X_OFL Overflow
FP_X_UFL Underflow
FP_X_IMP Imprecision (inexact)
FP_X_IOV Integer Overflow

The fpsetmask () function will set the current exception mask, i.e., it will cause future operations with the
specified result status to raise theSIGFPE exception. Thefpgetmask () function will return the current
exception mask.

The fpsetround () function will cause future operations to use the specified dynamic rounding mode.The
fpgetround () function will return the current rounding mode.

Note: On some architectures, instructions can optionally specify static rounding modes and exception
enables that will supersede the specified dynamic mode. On other architectures, these features
may not be fully supported.

A “ sticky” status word may be maintained in which a bit is set every time an exceptional floating point con-
dition is encountered, whether or not aSIGFPE is generated.The fpsetsticky () function will set or
clear the specified exception history bits.The fpgetsticky () function will return the exception history
bits.

NetBSD 3.0 April 4, 2004 1

FPGETMASK (3) NetBSD Library Functions Manual FPGETMASK (3)

RETURN VALUES
The fpgetround () and fpsetround () functions return the (previous) rounding mode. The
fpgetmask (), fpsetmask (), fpgetsticky (), andfpsetsticky () functions return the(previous)
exception mask and exception history bits.

SEE ALSO
sigaction (2)

NetBSD 3.0 April 4, 2004 2

FPUTS (3) NetBSD Library Functions Manual FPUTS (3)

NAME
fputs , puts — output a line to a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

int
fputs (const char ∗ restrict str , FILE ∗ restrict stream);

int
puts (const char ∗str);

DESCRIPTION
The functionfputs () writes the string pointed to bystr to the stream pointed to bystream .

The functionputs () writes the stringstr , and a terminating newline character, to the streamstdout.

RETURN VALUES
The fputs () function returns 0 on success andEOFon error;puts () returns a nonnegative integer on suc-
cess andEOFon error.

ERRORS
[EBADF] Thestream supplied is not a writable stream.

The functionsfputs () andputs () may also fail and seterrno for any of the errors specified for the routines
write (2).

SEE ALSO
ferror (3), putc (3), stdio (3)

STANDARDS
The functionsfputs () andputs () conform toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

FPUTWS (3) NetBSD Library Functions Manual FPUTWS (3)

NAME
fputws — output a line of wide characters to a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int
fputws (const wchar_t ∗ restrict ws , FILE ∗ restrict fp);

DESCRIPTION
Thefputws () function writes the wide character string pointed to byws to the stream pointed to byfp .

RETURN VALUES
Thefputws () function returns 0 on success and −1 on error.

ERRORS
[EBADF] The fp argument supplied is not a writable stream.

Thefputws () function may also fail and seterrno for any of the errors specified for the routinewrite (2).

SEE ALSO
ferror (3), fputs (3), putwc (3), stdio (3)

STANDARDS
Thefputws () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 August 6, 2002 1

FREAD (3) NetBSD Library Functions Manual FREAD (3)

NAME
fread , fwrite — binary stream input/output

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

size_t
fread (void ∗ restrict ptr , size_t size , size_t nmemb ,

FILE ∗ restrict stream);

size_t
fwrite (const void ∗ restrict ptr , size_t size , size_t nmemb ,

FILE ∗ restrict stream);

DESCRIPTION
The functionfread () readsnmembobjects, eachsize bytes long, from the stream pointed to bystream ,
storing them at the location given by ptr .

The functionfwrite () writesnmembobjects, eachsize bytes long, to the stream pointed to bystream ,
obtaining them from the location given by ptr .

RETURN VALUES
The functionsfread () and fwrite () advance the file position indicator for the stream by the number of
bytes read or written.They return the number of objects read or written.If size or nmembis 0, the func-
tions return 0 and the state ofstream remains unchanged.If an error occurs, or the end-of-file is reached,
the return value is a short object count (or zero).

The functionfread () does not distinguish between end-of-file and error, and callers must usefeof (3) and
ferror (3) to determine which occurred. The functionfwrite () returns a value less thannmembonly if a
write error has occurred.

SEE ALSO
read (2), write (2)

STANDARDS
The functionsfread () andfwrite () conform toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 March 8, 1994 1

FREXP (3) NetBSD Library Functions Manual FREXP (3)

NAME
frexp — convert floating-point number to fractional and integral components

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
frexp (double value , int ∗exp);

float
frexpf (float value , int ∗exp);

DESCRIPTION
The frexp () function breaks a floating-point number into a normalized fraction and an integral power of 2.
It stores the integer in theint object pointed to byexp .

RETURN VALUES
The frexp () function returns the valuex, such thatx is adoublewith magnitude in the interval [1/2, 1) or
zero, andvalue equalsx times 2 raised to the power ∗exp . If value is zero, both parts of the result are
zero.

SEE ALSO
ldexp (3), math (3), modf (3)

STANDARDS
Thefrexp () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 March 21, 2006 1

FSEEK (3) NetBSD Library Functions Manual FSEEK (3)

NAME
fgetpos , fseek , fseeko , fsetpos , ftell , ftello , rewind — reposition a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

int
fseek (FILE ∗stream , long int offset , int whence);

int
fseeko (FILE ∗stream , off_t offset , int whence);

long int
ftell (FILE ∗stream);

off_t
ftello (FILE ∗stream);

void
rewind (FILE ∗stream);

int
fgetpos (FILE ∗ restrict stream , fpos_t ∗ restrict pos);

int
fsetpos (FILE ∗ restrict stream , const fpos_t ∗ restrict pos);

DESCRIPTION
The fseek () function sets the file position indicator for the stream pointed to bystream . The new posi-
tion, measured in bytes, is obtained by addingoffset bytes to the position specified bywhence . If
whence is set toSEEK_SET, SEEK_CUR, or SEEK_END, the offset is relative to the start of the file, the
current position indicator, or end-of-file, respectively. A successful call to thefseek () function clears the
end-of-file indicator for the stream and undoes any effects of theungetc (3) function on the same stream.

The fseeko () function is identical to thefseek () function except that theoffset argument is of type
off_t .

The ftell () function obtains the current value of the file position indicator for the stream pointed to by
stream .

Theftello () function is identical to theftell () function except that the return value is of typeoff_t .

Therewind () function sets the file position indicator for the stream pointed to bystream to the beginning
of the file. It is equivalent to:

(void)fseek(stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared (seeclearerr (3)).

In this implementation, thefgetpos () and fsetpos () functions are alternative interfaces equivalent to
ftell (), ftello (), fseek () andfseeko () (with whence set toSEEK_SET), setting and storing the cur-
rent value of the file offset into or from the object referenced bypos . In others implementations, an
“ fpos_t ” object may be a complex object and these routines may be the only way to portably reposition a
text stream.

NetBSD 3.0 July 8, 2000 1

FSEEK (3) NetBSD Library Functions Manual FSEEK (3)

RETURN VALUES
The rewind () function returns no value. Uponsuccessful completion,fgetpos (), fseek (), fsetpos ()
return 0, andftell () returns the current offset. Otherwise,fseek () andftell () return −1 and the others
return a nonzero value and the global variableerrno is set to indicate the error.

ERRORS
[EBADF] Thestream specified is not a seekable stream.

[EINVAL] The whence argument tofseek () was notSEEK_SET, SEEK_END, or SEEK_CUR.

The functionfgetpos (), fseek (), fseeko (), fsetpos (), ftell (), ftello (), andrewind () may also
fail and seterrno for any of the errors specified for the routinesfflush (3), fstat (2), lseek (2), and
malloc (3).

SEE ALSO
lseek (2)

STANDARDS
The fgetpos (), fsetpos (), fseek (), ftell (), andrewind () functions conform toANSI X3.159-1989
(“ANSI C89”). The fseeko () andftello () functions conform toX/OpenSystem Interfaces and Headers
Issue 5 (“XSH5”).

BUGS
Thefgetpos () andfsetpos () functions don’t store/set shift states of the stream in this implementation.

NetBSD 3.0 July 8, 2000 2

FTIME (3) NetBSD Library Functions Manual FTIME (3)

NAME
ftime — get date and time

LIBRARY
Compatibility Library (libcompat, −lcompat)

SYNOPSIS
#include <sys/types.h>
#include <sys/timeb.h>

int
ftime (struct timeb ∗tp);

DESCRIPTION
This interface is obsoleted bygettimeofday (2). It is available from the compatibility library , lib-
compat.

Note: time zone information is no longer provided by this interface. Seelocaltime (3) for i nforma-
tion on how to retrieve it.

Theftime () routine fills in a structure pointed to by its argument, as defined by〈sys/timeb.h 〉:

struct timeb {
time_t time;
unsigned short millitm;
short timezone;
short dstflag;

};

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more-precise interval.
Thetimezoneanddstflagfields are provided for source compatibility, but are always zero.

SEE ALSO
gettimeofday (2), settimeofday (2), ctime (3), localtime (3), time (3)

HISTORY
Theftime () function appeared in 4.1BSD.

NetBSD 3.0 June 4, 1993 1

FTOK (3) NetBSD Library Functions Manual FTOK (3)

NAME
ftok — create IPC identifier from path name

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

key_t
ftok (const char ∗path , int id);

DESCRIPTION
The ftok () function attempts to create a unique key suitable for use with themsgget (2), semget (2) and
shmget (2) functions given thepath of an existing file and a user-selectableid .

The specifiedpath must specify an existing file that is accessible to the calling process or the call will fail.
Also, note that links to files will return the same key, giv en the sameid .

Only the 8 least significant bits ofid are used in the key generation; the rest of the bits are ignored.

RETURN VALUES
The ftok () function will return ((key_t)-1) if path does not exist or if it cannot be accessed by the calling
process.

SEE ALSO
msgget (2), semget (2), shmget (2)

HISTORY
The ftok () function originated with System V and is typically used by programs that use the System V IPC
routines.

AUTHORS
Thorsten Lockert <tholo@sigmasoft.com>

BUGS
The returned key is computed based on the device and inode of the specifiedpath in combination with the
given id . Thus it is quite possible for the routine to return duplicate keys giv en that those fields are not 8-
and 16-bit quantities like they were on System V based systems where this library routine’s ancestor were
originally created.

NetBSD 3.0 June 24, 1994 1

FTS (3) NetBSD Library Functions Manual FTS (3)

NAME
fts , fts_open , fts_read , fts_children , fts_set , fts_close — traverse a file hierarchy

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fts.h>

FTS ∗
fts_open (char ∗ const ∗path_argv , int options ,

int (∗compar)(const FTSENT ∗∗, c onst FTSENT ∗∗));

FTSENT ∗
fts_read (FTS ∗ftsp);

FTSENT ∗
fts_children (FTS ∗ftsp , int options);

int
fts_set (FTS ∗ftsp , FTSENT ∗f , int options);

int
fts_close (FTS ∗ftsp);

DESCRIPTION
The fts functions are provided for traversing UNIX file hierarchies. A simple overview is that the
fts_open () function returns a “handle” on a file hierarchy, which is then supplied to the otherfts func-
tions. Thefunction fts_read () returns a pointer to a structure describing one of the files in the file hierar-
chy. The functionfts_children () returns a pointer to a linked list of structures, each of which describes
one of the files contained in a directory in the hierarchy. In general, directories are visited two distinguish-
able times; in pre-order (before any of their descendants are visited) and in post-order (after all of their
descendants have been visited). Files are visited once.It is possible to walk the hierarchy “ logically” (ignor-
ing symbolic links) or physically (visiting symbolic links), order the walk of the hierarchy or prune and/or
re-visit portions of the hierarchy.

Tw o structures are defined (and typedef’d) in the include file〈fts.h 〉. The first isFTS, the structure that
represents the file hierarchy itself. Thesecond isFTSENT, the structure that represents a file in the file hier-
archy. Normally, an FTSENTstructure is returned for every file in the file hierarchy. In this manual page,
“file” and “FTSENT structure” are generally interchangeable.The FTSENTstructure contains at least the
following fields, which are described in greater detail below:

typedef struct _ftsent {
u_short fts_info; / ∗ flags for FTSENT structure ∗/
char ∗fts_accpath; / ∗ access path ∗/
char ∗fts_path; / ∗ root path ∗/
short fts_pathlen; / ∗ strlen(fts_path) ∗/
char ∗fts_name; / ∗ file name ∗/
short fts_namelen; / ∗ strlen(fts_name) ∗/
short fts_level; / ∗ depth (−1 to N) ∗/
int fts_errno; / ∗ file errno ∗/
long fts_number; / ∗ local numeric value ∗/
void ∗fts_pointer; / ∗ local address value ∗/

NetBSD 3.0 March 31, 2004 1

FTS (3) NetBSD Library Functions Manual FTS (3)

struct ftsent ∗fts_parent; / ∗ parent directory ∗/
struct ftsent ∗fts_link; / ∗ next file structure ∗/
struct ftsent ∗fts_cycle; / ∗ cycle structure ∗/
struct stat ∗fts_statp; / ∗ stat(2) information ∗/

} F TSENT;

These fields are defined as follows:

fts_info One of the following flags describing the returnedFTSENTstructure and the file it repre-
sents. With the exception of directories without errors(FTS_D) , all of these entries are
terminal, that is, they will not be revisited, nor will any of their descendants be visited.

FTS_D A directory being visited in pre-order.

FTS_DC A directory that causes a cycle in the tree.(The fts_cycle field of the
FTSENTstructure will be filled in as well).

FTS_DEFAULTAny FTSENTstructure that represents a file type not explicitly described
by one of the otherfts_info values.

FTS_DNR A directory which cannot be read.This is an error return, and the
fts_errno field will be set to indicate what caused the error.

FTS_DOT A file named ‘. ’ or ‘ .. ’ which was not specified as a file name to
fts_open () (seeFTS_SEEDOT).

FTS_DP A directory being visited in post-order. The contents of theFTSENT
structure will be unchanged from when it was returned in pre-order, i.e.,
with thefts_info field set toFTS_D.

FTS_ERR This is an error return, and thefts_errno field will be set to indicate
what caused the error.

FTS_F A regular file.

FTS_NS A file for which nostat (2) information was available. Thecontents of
the fts_statp field are undefined.This is an error return, and the
fts_errno field will be set to indicate what caused the error.

FTS_NSOK A file for which nostat (2) information was requested.The contents of
thefts_statp field are undefined.

FTS_SL A symbolic link.

FTS_SLNONE A symbolic link with a non-existent target. The contents of the
fts_statp field reference the file characteristic information for the
symbolic link itself.

FTS_W A whiteout object.

fts_accpath A path for accessing the file from the current directory.

fts_path The path for the file relative to the root of the traversal. Thispath contains the path speci-
fied tofts_open () as a prefix.

fts_pathlen The length of the string referenced byfts_path .

fts_name The name of the file.

fts_namelen The length of the string referenced byfts_name .

NetBSD 3.0 March 31, 2004 2

FTS (3) NetBSD Library Functions Manual FTS (3)

fts_level The depth of the traversal, numbered from −1 to N, where this file was found. The
FTSENTstructure representing the parent of the starting point (or root) of the traversal is
numbered −1, and theFTSENTstructure for the root itself is numbered 0.

fts_errno Upon return of aFTSENTstructure from thefts_children () or fts_read () func-
tions, with itsfts_info field set toFTS_DNR, FTS_ERRor FTS_NS, the fts_errno
field contains the value of the external variableerrno specifying the cause of the error.
Otherwise, the contents of thefts_errno field are undefined.

fts_number This field is provided for the use of the application program and is not modified by thefts
functions. Itis initialized to 0.

fts_pointer This field is provided for the use of the application program and is not modified by thefts
functions. Itis initialized toNULL.

fts_parent A pointer to theFTSENTstructure referencing the file in the hierarchy immediately above
the current file, i.e., the directory of which this file is a member. A parent structure for the
initial entry point is provided as well, however, only the fts_level , fts_number and
fts_pointer fields are guaranteed to be initialized.

fts_link Upon return from thefts_children () function, thefts_link field points to the next
structure in theNULL-terminated linked list of directory members.Otherwise, the contents
of thefts_link field are undefined.

fts_cycle If a directory causes a cycle in the hierarchy (seeFTS_DC), either because of a hard link
between two directories, or a symbolic link pointing to a directory, the fts_cycle field
of the structure will point to theFTSENTstructure in the hierarchy that references the same
file as the currentFTSENTstructure. Otherwise,the contents of thefts_cycle field are
undefined.

fts_statp A pointer tostat (2) information for the file.

A single buffer is used for all of the paths of all of the files in the file hierarchy. Therefore, thefts_path
andfts_accpath fields are guaranteed to beNULL-terminatedonly for the file most recently returned by
fts_read (). To use these fields to reference any files represented by otherFTSENTstructures will require
that the path buffer be modified using the information contained in thatFTSENTstructure’sfts_pathlen
field. Any such modifications should be undone before further calls tofts_read () are attempted.The
fts_name field is always NULL-terminated.

FTS_OPEN
The fts_open () function takes a pointer to an array of character pointers naming one or more paths which
make up a logical file hierarchy to be traversed. Thearray must be terminated by aNULLpointer.

There are a number of options, at least one of which (eitherFTS_LOGICALor FTS_PHYSICAL) must be
specified. Theoptions are selected byor’ing the following values:

FTS_COMFOLLOW
This option causes any symbolic link specified as a root path to be followed immediately
whether or notFTS_LOGICAL is also specified.

FTS_LOGICAL This option causes thefts routines to returnFTSENTstructures for the targets of sym-
bolic links instead of the symbolic links themselves. If this option is set, the only sym-
bolic links for whichFTSENTstructures are returned to the application are those refer-
encing non-existent files. Either FTS_LOGICAL or FTS_PHYSICALmustbe provided
to thefts_open () function.

NetBSD 3.0 March 31, 2004 3

FTS (3) NetBSD Library Functions Manual FTS (3)

FTS_NOCHDIR As a performance optimization, thefts functions change directories as they walk the file
hierarchy. This has the side-effect that an application cannot rely on being in any particu-
lar directory during the traversal. TheFTS_NOCHDIRoption turns off this optimization,
and thefts functions will not change the current directory. Note that applications
should not themselves change their current directory and try to access files unless
FTS_NOCHDIRis specified and absolute pathnames were provided as arguments to
fts_open ().

FTS_NOSTAT By default, returnedFTSENT structures reference file characteristic information (the
statp field) for each file visited.This option relaxes that requirement as a performance
optimization, allowing thefts functions to set thefts_info field to FTS_NSOKand
leave the contents of thestatp field undefined.

FTS_PHYSICAL This option causes thefts routines to returnFTSENT structures for symbolic links
themselves instead of the target files they point to. If this option is set,FTSENTstruc-
tures for all symbolic links in the hierarchy are returned to the application.Either
FTS_LOGICALor FTS_PHYSICALmustbe provided to thefts_open () function.

FTS_SEEDOT By default, unless they are specified as path arguments tofts_open (), any files named
‘ . ’ or ‘ .. ’ encountered in the file hierarchy are ignored.This option causes thefts rou-
tines to returnFTSENTstructures for them.

FTS_WHITEOUTReturn whiteout entries, which are normally hidden.

FTS_XDEV This option prevents fts from descending into directories that have a different device
number than the file from which the descent began.

The argumentcompar () specifies a user-defined function which may be used to order the traversal of the
hierarchy. It takes two pointers to pointers toFTSENTstructures as arguments and should return a negative
value, zero, or a positive value to indicate if the file referenced by its first argument comes before, in any
order with respect to, or after, the file referenced by its second argument. Thefts_accpath , fts_path
and fts_pathlen fields of the FTSENT structures maynever be used in this comparison. If the
fts_info field is set toFTS_NSor FTS_NSOK, the fts_statp field may not either. If thecompar ()
argument isNULL, the directory traversal order is in the order listed inpath_argv for the root paths, and
in the order listed in the directory for everything else.

FTS_READ
The fts_read () function returns a pointer to anFTSENT structure describing a file in the hierarchy.
Directories (that are readable and do not cause cycles) are visited at least twice, once in pre-order and once in
post-order. All other files are visited at least once.(Hard links between directories that do not cause cycles
or symbolic links to symbolic links may cause files to be visited more than once, or directories more than
twice.)

If all the members of the hierarchy hav ebeen returned,fts_read () returnsNULL and sets the external
variable errno to 0. If an error unrelated to a file in the hierarchy occurs,fts_read () returnsNULL and
setserrno appropriately. If an error related to a returned file occurs, a pointer to anFTSENTstructure is
returned, anderrnomay or may not have been set (seefts_info).

The FTSENTstructures returned byfts_read () may be overwritten after a call tofts_close () on the
same file hierarchy stream, or, after a call tofts_read () on the same file hierarchy stream unless they rep-
resent a file of type directory, in which case they will not be overwritten until after a call tofts_read ()
after theFTSENTstructure has been returned by the functionfts_read () in post-order.

NetBSD 3.0 March 31, 2004 4

FTS (3) NetBSD Library Functions Manual FTS (3)

FTS_CHILDREN
The fts_children () function returns a pointer to anFTSENTstructure describing the first entry in a
NULL-terminated linked list of the files in the directory represented by theFTSENTstructure most recently
returned byfts_read (). Thelist is linked through thefts_link field of theFTSENTstructure, and is
ordered by the user-specified comparison function, if any. Repeated calls tofts_children () will recreate
this linked list.

As a special case, iffts_read () has not yet been called for a hierarchy, fts_children () will return a
pointer to the files in the logical directory specified tofts_open (), i.e., the arguments specified to
fts_open (). Otherwise,if the FTSENTstructure most recently returned byfts_read () is not a directory
being visited in pre-order, or the directory does not contain any files, fts_children () returnsNULL and
setserrno to zero. If an error occurs,fts_children () returnsNULLand setserrnoappropriately.

The FTSENT structures returned byfts_children () may be overwritten after a call to
fts_children (), fts_close () or fts_read () on the same file hierarchy stream.

Optionmay be set to the following value:

FTS_NAMEONLYOnly the names of the files are needed.The contents of all the fields in the returned
linked list of structures are undefined with the exception of the fts_name and
fts_namelen fields.

FTS_SET
The functionfts_set () allows the user application to determine further processing for the filef of the
streamftsp . The fts_set () function returns 0 on success, and −1 if an error occurs.Optionmust be set
to one of the following values:

FTS_AGAIN Re-visit the file; any file type may be re-visited. The next call tofts_read () will return
the referenced file.The fts_stat andfts_info fields of the structure will be reini-
tialized at that time, but no other fields will have been changed. This option is meaning-
ful only for the most recently returned file fromfts_read (). Normaluse is for post-
order directory visits, where it causes the directory to be re-visited (in both pre and post-
order) as well as all of its descendants.

FTS_FOLLOW The referenced file must be a symbolic link.If the referenced file is the one most recently
returned by fts_read (), the next call tofts_read () returns the file with the
fts_info andfts_statp fields reinitialized to reflect the target of the symbolic link
instead of the symbolic link itself. If the file is one of those most recently returned by
fts_children (), the fts_info and fts_statp fields of the structure, when
returned byfts_read (), will reflect the target of the symbolic link instead of the sym-
bolic link itself. In either case, if the target of the symbolic link does not exist the fields
of the returned structure will be unchanged and thefts_info field will be set to
FTS_SLNONE.

If the target of the link is a directory, the pre-order return, followed by the return of all of
its descendants, followed by a post-order return, is done.

FTS_SKIP No descendants of this file are visited.The file may be one of those most recently
returned by eitherfts_children () or fts_read ().

FTS_CLOSE
The fts_close () function closes a file hierarchy stream ftsp and restores the current directory to the
directory from whichfts_open () was called to openftsp . The fts_close () function returns 0 on suc-
cess, and −1 if an error occurs.

NetBSD 3.0 March 31, 2004 5

FTS (3) NetBSD Library Functions Manual FTS (3)

ERRORS
The functionfts_open () may fail and seterrno for any of the errors specified for the library functions
open (2) andmalloc (3).

The functionfts_close () may fail and seterrno for any of the errors specified for the library functions
chdir (2) andclose (2).

The functionsfts_read () andfts_children () may fail and seterrno for any of the errors specified for
the library functionschdir (2), malloc (3), opendir (3), readdir (3) andstat (2).

In addition,fts_children (), fts_open () andfts_set () may fail and seterrnoas follows:

[EINVAL] The options were invalid.

SEE ALSO
find (1), chdir (2), stat (2), qsort (3), symlink (7)

STANDARDS
Thefts utility is expected to be included in a futureIEEE Std 1003.1-1988 (“POSIX.1”) revision.

NetBSD 3.0 March 31, 2004 6

FTW (3) NetBSD Library Functions Manual FTW (3)

NAME
ftw, nftw — traverse (walk) a file tree

SYNOPSIS
#include <ftw.h>

int
ftw (const char ∗path , int (∗fn)(const char ∗, c onst struct stat ∗, i nt) ,

int maxfds);

int
nftw (const char ∗path ,

int (∗fn)(const char ∗, c onst struct stat ∗, i nt, struct FTW ∗) ,
int maxfds , int flags);

DESCRIPTION
These functions are pro vided for compatibility with legacy code. New code should use thefts (3)
functions.

The ftw () andnftw () functions traverse (walk) the directory hierarchy rooted inpath . For each object in
the hierarchy, these functions call the function pointed to byfn . The ftw () function passes this function a
pointer to a NUL-terminated string containing the name of the object, a pointer to a stat structure correspond-
ing to the object, and an integer flag.The nftw () function passes the aforementioned arguments plus a
pointer to aFTWstructure as defined by〈ftw.h 〉 (shown below):

struct FTW {
int base; / ∗ offset of basename into pathname ∗/
int level; / ∗ directory depth relative to starting point ∗/

};

Possible values for the flag passed tofn are:

FTW_F A regular file.

FTW_D A directory being visited in pre-order.

FTW_DNRA directory which cannot be read. The directory will not be descended into.

FTW_DP A directory being visited in post-order (nftw () only) .

FTW_NS A file for which nostat (2) information was available. Thecontents of the stat structure are
undefined.

FTW_SL A symbolic link.

FTW_SLNA symbolic link with a non-existent target (nftw () only) .

The ftw () function traverses the tree in pre-order. That is, it processes the directory before the directory’s
contents.

Themaxfds argument specifies the maximum number of file descriptors to keep open while traversing the
tree. Ithas no effect in this implementation.

Thenftw () function has an additionalflags argument with the following possible values:

FTW_PHYS Physical walk, don’t follow symbolic links.

FTW_MOUNTThe walk will not cross a mount point.

NetBSD 3.0 May 20, 2003 1

FTW (3) NetBSD Library Functions Manual FTW (3)

FTW_DEPTH
Process directories in post-order. Contents of a directory are visited before the directory itself.
By default,nftw () traverses the tree in pre-order.

FTW_CHDIR
Change to a directory before reading it. By default, nftw () will change its starting directory.
The current working directory will be restored to its original value beforenftw () returns.

RETURN VALUES
If the tree was traversed successfully, the ftw () andnftw () functions return 0. If the function pointed to by
fn returns a non-zero value,ftw () andnftw () will stop processing the tree and return the value fromfn .
Both functions return −1 if an error is detected.

ERRORS
The ftw () andnftw () functions may fail and seterrno for any of the errors specified for the library func-
tions close (2), open (2), stat (2), malloc (3), opendir (3), andreaddir (3). If the FGTW_CHDIR
flag is set, thenftw () function may fail and seterrno for any of the errors specified forchdir (2). In addi-
tion, either function may fail and seterrnoas follows:

[EINVAL] Themaxfds argument is less than 1 or greater thanOPEN_MAX.

SEE ALSO
chdir (2), close (2), open (2), stat (2), fts (3), malloc (3), opendir (3), readdir (3)

STANDARDS
Theftw () andnftw () functions conform toIEEE Std 1003.1-2001 (“POSIX.1”).

BUGS
Themaxfds argument is currently ignored.

NetBSD 3.0 May 20, 2003 2

FUNOPEN (3) NetBSD Library Functions Manual FUNOPEN (3)

NAME
funopen , fropen , fwopen — open a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

FILE ∗
funopen (void ∗cookie , int (∗readfn)(void ∗, c har ∗, i nt) ,

int (∗writefn)(void ∗, c onst char ∗, i nt) ,
fpos_t (∗seekfn)(void ∗, f pos_t, int) , int (∗closefn)(void ∗));

FILE ∗
fropen (void ∗cookie , int (∗readfn)(void ∗, c har ∗, i nt));

FILE ∗
fwopen (void ∗cookie , int (∗writefn)(void ∗, c onst char ∗, i nt));

DESCRIPTION
The funopen () function associates a stream with up to four “I/O functions”. Eitherreadfn or writefn
must be specified; the others can be given as an appropriately-typedNULLpointer. TheseI/O functions will
be used to read, write, seek and close the new stream.

In general, omitting a function means that any attempt to perform the associated operation on the resulting
stream will fail. If the close function is omitted, closing the stream will flush any buffered output and then
succeed.

The calling conventions ofreadfn , writefn , seekfn andclosefn must match those, respectively, of
read (2), write (2), lseek (2), andclose (2); except that they are passed thecookie argument specified
to funopen () in place of the traditional file descriptor argument, andseekfn usesfpos_t instead of
off_t .

Read and writeI/O functions are allowed to change the underlying buffer on fully buffered or line buffered
streams by callingsetvbuf (3). They are also not required to completely fill or empty the buffer. They are
not, however, allowed to change streams from unbuffered to buffered or to change the state of the line buffer-
ing flag. They must also be prepared to have read or write calls occur on buffers other than the one most
recently specified.

All user I/O functions can report an error by returning −1.Additionally, all of the functions should set the
external variableerrnoappropriately if an error occurs.

An error onclosefn () does not keep the stream open.

As a convenience, the include file〈stdio.h 〉 defines the macrosfropen () and fwopen () as calls to
funopen () with only a read or write function specified.

RETURN VALUES
Upon successful completion,funopen () returns aFILE pointer. Otherwise,NULL is returned and the
global variableerrno is set to indicate the error.

ERRORS
[EINVAL] The funopen () function was called without either a read or write function.The

funopen () function may also fail and seterrno for any of the errors specified for the
routinemalloc (3).

NetBSD 3.0 June 9, 1993 1

FUNOPEN (3) NetBSD Library Functions Manual FUNOPEN (3)

SEE ALSO
fcntl (2), open (2), fclose (3), fopen (3), fseek (3), setbuf (3)

HISTORY
Thefunopen () functions first appeared in 4.4BSD.

BUGS
Thefunopen () function may not be portable to systems other thanBSD.

NetBSD 3.0 June 9, 1993 2

FWIDE (3) NetBSD Library Functions Manual FWIDE (3)

NAME
fwide — get/set orientation of a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int
fwide (FILE ∗stream , int mode);

DESCRIPTION
Thefwide () function determines the orientation of the stream pointed at bystream .

If the orientation ofstream has already been determined,fwide () leaves it unchanged. Otherwise,
fwide () sets the orientation ofstream according tomode.

If mode is less than zero,stream is set to byte-oriented.If it is greater than zero,stream is set to wide-
oriented. Otherwise,mode is zero, andstream is unchanged.

RETURN VALUES
fwide () returns a value according to orientation after the call offwide (); a value less than zero if byte-ori-
ented, a value greater than zero if wide-oriented, and zero if the stream has no orientation.

SEE ALSO
ferror (3), fgetc (3), fgetwc (3), fopen (3), fputc (3), fputwc (3), freopen (3), stdio (3)

STANDARDS
Thefwide () function conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 October 24, 2001 1

GAI_STRERROR (3) NetBSD Library Functions Manual GAI_STRERROR (3)

NAME
gai_strerror — get error message string from EAI_xxx error code

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

const char ∗
gai_strerror (int ecode);

DESCRIPTION
Thegai_strerror () function returns an error message string corresponding to the error code returned by
getaddrinfo (3) orgetnameinfo (3).

The following error codes and their meaning are defined in〈netdb.h 〉:

EAI_ADDRFAMILY address family forhostname not supported
EAI_AGAIN temporary failure in name resolution
EAI_BADFLAGS invalid value forai_flags
EAI_BADHINTS invalid value forhints
EAI_FAIL non-recoverable failure in name resolution
EAI_FAMILY ai_family not supported.
EAI_MEMORY memory allocation failure
EAI_NODATA no address associated withhostname
EAI_NONAME hostname or servname not provided, or not known
EAI_OVERFLOW argument buffer overflow
EAI_PROTOCOL resolved protocol is unknown
EAI_SERVICE servname not supported forai_socktype
EAI_SOCKTYPE ai_socktype not supported
EAI_SYSTEM system error returned inerrno

RETURN VALUES
gai_strerror () returns a pointer to the error message string corresponding toecode . If ecode is out
of range, an implementation-specific error message string is returned.

SEE ALSO
getaddrinfo (3), getnameinfo (3)

NetBSD 3.0 February 22, 2006 1

gcq (3) NetBSD Library Functions Manual gcq (3)

NAME
GCQ_INIT, GCQ_INIT_HEAD, gcq_init , gcq_init_head , gcq_q , gcq_hq , gcq_head ,
gcq_remove , gcq_onlist , gcq_empty , gcq_linked , gcq_insert_after ,
gcq_insert_before , gcq_insert_head , gcq_insert_tail , gcq_tie , gcq_tie_after ,
gcq_tie_before , gcq_merge , gcq_merge_head , gcq_merge_tail , gcq_clear ,
gcq_remove_all , GCQ_ITEM, GCQ_GOT_FIRST, GCQ_GOT_LAST, GCQ_GOT_NEXT,
GCQ_GOT_PREV, GCQ_DEQUEUED_FIRST, GCQ_DEQUEUED_LAST, GCQ_DEQUEUED_NEXT,
GCQ_DEQUEUED_PREV, GCQ_GOT_FIRST_TYPED, GCQ_GOT_LAST_TYPED,
GCQ_GOT_NEXT_TYPED, GCQ_GOT_PREV_TYPED, GCQ_DEQUEUED_FIRST_TYPED,
GCQ_DEQUEUED_LAST_TYPED, GCQ_DEQUEUED_NEXT_TYPED, GCQ_DEQUEUED_PREV_TYPED,
GCQ_GOT_FIRST_COND, GCQ_GOT_LAST_COND, GCQ_GOT_NEXT_COND, GCQ_GOT_PREV_COND,
GCQ_DEQUEUED_FIRST_COND, GCQ_DEQUEUED_LAST_COND, GCQ_DEQUEUED_NEXT_COND,
GCQ_DEQUEUED_PREV_COND, GCQ_GOT_FIRST_COND_TYPED, GCQ_GOT_LAST_COND_TYPED,
GCQ_GOT_NEXT_COND_TYPED, GCQ_GOT_PREV_COND_TYPED,
GCQ_DEQUEUED_FIRST_COND_TYPED, GCQ_DEQUEUED_LAST_COND_TYPED,
GCQ_DEQUEUED_NEXT_COND_TYPED, GCQ_DEQUEUED_PREV_COND_TYPED, GCQ_FOREACH,
GCQ_FOREACH_REV, GCQ_FOREACH_NVAR, GCQ_FOREACH_NVAR_REV, GCQ_FOREACH_RO,
GCQ_FOREACH_RO_REV, GCQ_FOREACH_DEQUEUED, GCQ_FOREACH_DEQUEUED_REV,
GCQ_FOREACH_TYPED, GCQ_FOREACH_REV_TYPED, GCQ_FOREACH_NVAR_TYPED,
GCQ_FOREACH_NVAR_REV_TYPED, GCQ_FOREACH_RO_TYPED, GCQ_FOREACH_RO_REV_TYPED,
GCQ_FOREACH_DEQUEUED_TYPED, GCQ_FOREACH_DEQUEUED_REV_TYPED, GCQ_FIND,
GCQ_FIND_REV, GCQ_FIND_TYPED, GCQ_FIND_REV_TYPED— Generic Circular Queues

SYNOPSIS
#include <sys/gcq.h>

struct gcq ;
struct gcq_head ;

GCQ_INIT(name);

GCQ_INIT_HEAD(name);

static inline void
gcq_init (struct gcq ∗q);

static inline void
gcq_init_head (struct gcq_head ∗head);

static inline struct gcq ∗
gcq_q (struct gcq_head ∗head);

static inline struct gcq ∗
gcq_hq (struct gcq_head ∗head);

static inline struct gcq_head ∗
gcq_head (struct gcq ∗q);

static inline struct gcq ∗
gcq_remove (struct gcq ∗q);

static inline bool
gcq_onlist (struct gcq ∗q);

static inline bool
gcq_empty (struct gcq_head ∗head);

NetBSD 3.0 May 1, 2007 1

gcq (3) NetBSD Library Functions Manual gcq (3)

static inline bool
gcq_linked (struct gcq ∗prev , struct gcq ∗next);

static inline void
gcq_insert_after (struct gcq ∗on , struct gcq ∗off);

static inline void
gcq_insert_before (struct gcq ∗on , struct gcq ∗off);

static inline void
gcq_insert_head (struct gcq_head ∗head , struct gcq ∗q);

static inline void
gcq_insert_tail (struct gcq_head ∗head , struct gcq ∗q);

static inline void
gcq_tie (struct gcq ∗dst , struct gcq ∗src);

static inline void
gcq_tie_after (struct gcq ∗dst , struct gcq ∗src);

static inline void
gcq_tie_before (struct gcq ∗dst , struct gcq ∗src);

static inline void
gcq_merge (struct gcq ∗dst , struct gcq ∗src);

static inline void
gcq_merge_tail (struct gcq_head ∗dst , struct gcq_head ∗src);

static inline void
gcq_merge_head (struct gcq_head ∗dst , struct gcq_head ∗src);

static inline void
gcq_clear (struct gcq ∗q);

static inline void
gcq_remove_all (struct gcq_head ∗head);

type ∗
GCQ_ITEM(q , type , name);

bool
GCQ_GOT_FIRST(var , head);

bool
GCQ_GOT_LAST(var , head);

bool
GCQ_GOT_NEXT(var , current , head , start);

bool
GCQ_GOT_PREV(var , current , head , start);

bool
GCQ_DEQUEUED_FIRST(var , head);

bool
GCQ_DEQUEUED_LAST(var , head);

NetBSD 3.0 May 1, 2007 2

gcq (3) NetBSD Library Functions Manual gcq (3)

bool
GCQ_DEQUEUED_NEXT(var , current , head , start);

bool
GCQ_DEQUEUED_PREV(var , current , head , start);

bool
GCQ_GOT_FIRST_TYPED(tvar , head , type , name);

bool
GCQ_GOT_LAST_TYPED(tvar , head , type , name);

bool
GCQ_GOT_NEXT_TYPED(tvar , current , head , start , type , name);

bool
GCQ_GOT_PREV_TYPED(tvar , current , head , start , type , name);

bool
GCQ_DEQUEUED_FIRST_TYPED(tvar , head , type , name);

bool
GCQ_DEQUEUED_LAST_TYPED(tvar , head , type , name);

bool
GCQ_DEQUEUED_NEXT_TYPED(tvar , current , head , start , type , name);

bool
GCQ_DEQUEUED_PREV_TYPED(tvar , current , head , start , type , name);

bool
GCQ_GOT_FIRST_COND(var , head , cond);

bool
GCQ_GOT_LAST_COND(var , head , cond);

bool
GCQ_GOT_NEXT_COND(var , current , head , start , cond);

bool
GCQ_GOT_PREV_COND(var , current , head , start , cond);

bool
GCQ_DEQUEUED_FIRST_COND(var , head , cond);

bool
GCQ_DEQUEUED_LAST_COND(var , head , cond);

bool
GCQ_DEQUEUED_NEXT_COND(var , current , head , start , cond);

bool
GCQ_DEQUEUED_PREV_COND(var , current , head , start , cond);

bool
GCQ_GOT_FIRST_COND_TYPED(tvar , head , type , name, cond);

bool
GCQ_GOT_LAST_COND_TYPED(tvar , head , type , name, cond);

NetBSD 3.0 May 1, 2007 3

gcq (3) NetBSD Library Functions Manual gcq (3)

bool
GCQ_GOT_NEXT_COND_TYPED(tvar , current , head , start , type , name, cond);

bool
GCQ_GOT_PREV_COND_TYPED(tvar , current , head , start , type , name, cond);

bool
GCQ_DEQUEUED_FIRST_COND_TYPED(tvar , head , type , name, cond);

bool
GCQ_DEQUEUED_LAST_COND_TYPED(tvar , head , type , name, cond);

bool
GCQ_DEQUEUED_NEXT_COND_TYPED(tvar , current , head , start , type , name, cond);

bool
GCQ_DEQUEUED_PREV_COND_TYPED(tvar , current , head , start , type , name, cond);

GCQ_FOREACH(var , head);

GCQ_FOREACH_REV(var , head);

GCQ_FOREACH_NVAR(var , nvar , head);

GCQ_FOREACH_NVAR_REV(var , nvar , head);

GCQ_FOREACH_RO(var , nvar , head);

GCQ_FOREACH_RO_REV(var , nvar , head);

GCQ_FOREACH_DEQUEUED(var , nvar , head);

GCQ_FOREACH_DEQUEUED_REV(var , nvar , head);

GCQ_FOREACH_TYPED(var , head , tvar , type , name);

GCQ_FOREACH_REV_TYPED(var , head , tvar , type , name);

GCQ_FOREACH_NVAR_TYPED(var , nvar , head , tvar , type , name);

GCQ_FOREACH_NVAR_REV_TYPED(var , nvar , head , tvar , type , name);

GCQ_FOREACH_RO_TYPED(var , nvar , head , tvar , type , name);

GCQ_FOREACH_RO_REV_TYPED(var , nvar , head , tvar , type , name);

GCQ_FOREACH_DEQUEUED_TYPED(var , nvar , head , tvar , type , name);

GCQ_FOREACH_DEQUEUED_REV_TYPED(var , nvar , head , tvar , type , name);

GCQ_FIND(var , head , cond);

GCQ_FIND_REV(var , head , cond);

GCQ_FIND_TYPED(var , head , tvar , type , name, cond);

GCQ_FIND_REV_TYPED(var , head , tvar , type , name, cond);

GCQ_ASSERT(cond);

DESCRIPTION
The generic circular queue is a doubly linked list designed for efficient merge operations and unconditional
removal. All basic operations can be perfomed with or without use of a separate head, allowing easy
replacement of any pointers where efficient removal is desired. Themeaning of the data type will not
change; direct use and defined operations can be mixed when convienient. Thebasic type is:

NetBSD 3.0 May 1, 2007 4

gcq (3) NetBSD Library Functions Manual gcq (3)

struct gcq {
struct gcq ∗q_next;
struct gcq ∗q_prev;

};

The structure must first be initialized such that theq_nextandq_prevmembers point to the beginning of the
struct gcq . This can be done withgcq_init () andgcq_init_head () or with constant initializers
GCQ_INIT() andGCQ_INIT_HEAD(). A struct gcq shouldneverbe given NULLvalues.

The structure containing thestruct gcq can be retrieved by pointer arithmetic in theGCQ_ITEM()
macro. Listtraversal normally requires knowledge of the list head to safely retrieve list items.

Capitalized operation names are macros and should be assumed to cause multiple evaluation of arguments.
TYPEDvariants of macros set a typed pointer variable instead of or in addition tostruct gcq ∗ argu-
ments. Additionaltype specific inlines and macros around some GCQ operations can be useful.

A few assertions are provided whenDIAGNOSTIC is defined in the kernel or_DIAGNOSTIC is defined in
userland. IfGCQ_USE_ASSERTis defined prior to header inclusions thenassert () will be used for asser-
tions andNDEBUGcan be used to turn them off. GCQ_ASSERT() is a wrapper around the used assertion
function. Noneof the operations acceptNULLarguements, however this is not tested by assertion.

The head is separately named for type checking but contains only astruct gcq , a pointer to which can be
retrieved via gcq_hq (). Thereverse operation is performed bygcq_head (), turning the suppliedstruct
gcq ∗ into struct gcq_head ∗. gcq_q () returns itsstruct gcq ∗ argument and is used for type
checking inGCQ_ITEM(). Thereare no functions for retrieving the raw q_prevandq_nextpointers as these
are usually clearer when used directly (if at all).

gcq_remove () returns the element removed and is always a valid operation after initialization.
gcq_onlist () returnsfalse if the structure links to itself andtrue otherwise. gcq_empty () is the
negation of this operation performed on a head.gcq_linked () tests ifprev->q_next == next &&
next->q_prev == prev .

gcq_tie () ties src after dst such that that if the old lists are DST, DST2 and SRC, SRC2, the new list is
DST, SRC, SRC2, DST2.If dstandsrc are on the same list then any elements between but not includingdst
andsrc are cut from the list.If dst == src then the result is the same asgcq_remove (). gcq_tie () is
equivalent togcq_tie_after () except that the latter must only be used with arguments on separate lists
or not on lists and asserts thatsrc != dst && dst->q_prev != src . gcq_tie_before () per-
forms the same operation ondst->q_prev .

gcq_merge () moves any elements on listsrc (but not src itself) to list dst. It is normally used with two
heads viagcq_merge_head () or gcq_merge_tail (). If GCQ_UNCONDITIONAL_MERGEis defined
prior to header inclusion then the merge operations will always perform a tie then remove src from the new
list, which may reduce code size slightly.

gcq_clear () initializes all elements currently linked with q and is normally used with a head as
gcq_remove_all ().

gcq_insert_after () andgcq_insert_before () are slightly optimized versions ofgcq_tie () for
the case whereoff is not on a list and include assertions to this effect, which are also useful to detect missing
initialization. gcq_insert_head () and gcq_insert_tail () are the same operations applied to a
head.

GCQ_GOT_FIRST() andGCQ_GOT_LAST() setvar to a pointer to the first or laststruct gcq in the list
or NULL if the list is empty and returnfalse if empty andtrue otherwise. Theboolean return is to
emphasise that it is not normally safe and useful to directly pass the raw first/next/etc. pointer to another
function. Themacros are written such that theNULL values will be optimized out if not otherwise used.
DEQUEUEDvariants also remove the member from the list.CONDvariants take an additional condition that

NetBSD 3.0 May 1, 2007 5

gcq (3) NetBSD Library Functions Manual gcq (3)

is evaluated when the macro would otherwise returntrue . If the condition is falsevar or tvar is set to
NULLand no dequeue is performed.

GCQ_GOT_NEXT() and variants take pointers to the current position, list head, and starting point as argu-
ments. Thelist head will be skipped when it is reached unless it is equal to the starting point; upon reaching
the starting pointvar will be set toNULLand the macro will returnfalse . The next and prev macros also
assert thatcurrent is on the list unless it is equal tostart. These macros are the only provided method for
iterating through the list from an arbitrary point.Trav ersal macros are only provided for list heads, however
gcq_head () can be used to treat any item as a head.

Foreach variants contain an embeddedfor statement for iterating over a list. ThosecontainingREVuse the
q_prev pointer for traversal, others useq_next. The plainGCQ_FOREACH() uses a single variable. NVAR
variants save the next pointer at the top of the loop so that the current element can be removed without
adjustingvar. This is useful whenvar is passed to a function that might remove it but will not otherwise
modify the list. When the head is reached bothvar and nvar elements are left pointing to the list head.
FOREACHasserts thatvar, and NVARasserts thatnvar does not point to itself when starting the next loop.
This assertion takes place after the variable is tested against the head so it is safe to remove all elements from
the list. ROvariants also setnvar but assert that the two variables are linked at the end of each iteration.This
is useful when calling a function that is not supposed to remove the element passed.DEQUEUEDvarients are
like NVARbut remove each element before the code block is executed. TYPEDvariants are equvalent to the
untyped versions except that they take three extra arguments: a typed pointer, the type name, and the member
name of thestruct gcq used in this list.tvar is set toNULLwhen the head is reached.

GCQ_FIND() is a foreach loop that does nothing except break when the supplied condition is true.REVand
TYPEDvariants are available.

SEE ALSO
gcc (1), assert (3), _DIAGASSERT(3), queue (3), KASSERT(9)

HISTORY
GCQ appeared inNetBSD 5.0.

NetBSD 3.0 May 1, 2007 6

GETADDRINFO (3) NetBSD Library Functions Manual GETADDRINFO (3)

NAME
getaddrinfo , freeaddrinfo — host and service name to socket address structure

SYNOPSIS
#include <netdb.h>

int
getaddrinfo (const char ∗ restrict hostname ,

const char ∗ restrict servname ,
const struct addrinfo ∗ restrict hints ,
struct addrinfo ∗∗ restrict res);

void
freeaddrinfo (struct addrinfo ∗ai);

DESCRIPTION
The getaddrinfo () function is used to get a list ofIP addresses and port numbers for hosthostname
and serviceservname . It is a replacement for and provides more flexibility than thegethostbyname (3)
andgetservbyname (3) functions.

Thehostname andservname arguments are either pointers to NUL-terminated strings or the null pointer.
An acceptable value forhostname is either a valid host name or a numeric host address string consisting of
a dotted decimal IPv4 address or an IPv6 address.Theservname is either a decimal port number or a ser-
vice name listed inservices (5). At least one ofhostname andservname must be non-null.

hints is an optional pointer to astruct addrinfo , as defined by〈netdb.h 〉:

struct addrinfo {
int ai_flags; / ∗ input flags ∗/
int ai_family; / ∗ protocol family for socket ∗/
int ai_socktype; / ∗ socket type ∗/
int ai_protocol; / ∗ protocol for socket ∗/
socklen_t ai_addrlen; / ∗ length of socket-address ∗/
struct sockaddr ∗ai_addr; / ∗ socket-address for socket ∗/
char ∗ai_canonname; / ∗ canonical name for service location ∗/
struct addrinfo ∗ai_next; / ∗ pointer to next in list ∗/

};

This structure can be used to provide hints concerning the type of socket that the caller supports or wishes to
use. Thecaller can supply the following structure elements inhints :

ai_family The protocol family that should be used.Whenai_family is set toPF_UNSPEC, it
means the caller will accept any protocol family supported by the operating system.

ai_socktype Denotes the type of socket that is wanted: SOCK_STREAM, SOCK_DGRAM, or
SOCK_RAW. Whenai_socktype is zero the caller will accept any socket type.

ai_protocol Indicates which transport protocol is desired,IPPROTO_UDPor IPPROTO_TCP. If
ai_protocol is zero the caller will accept any protocol.

ai_flags ai_flags is formed byOR’ing the following values:

AI_CANONNAME If the AI_CANONNAMEbit is set, a successful call to
getaddrinfo () will return a NUL-terminated string containing
the canonical name of the specified hostname in the
ai_canonname element of the firstaddrinfo structure
returned.

NetBSD 3.0 November 24, 2006 1

GETADDRINFO (3) NetBSD Library Functions Manual GETADDRINFO (3)

AI_NUMERICHOSTIf the AI_NUMERICHOSTbit is set, it indicates thathostname
should be treated as a numeric string defining an IPv4 or IPv6
address and no name resolution should be attempted.

AI_NUMERICSERVIf the AI_NUMERICSERV bit is set, it indicates that the
servname string contains a numeric port number. This is used
to prevent service name resolution.

AI_PASSIVE If the AI_PASSIVE bit is set it indicates that the returned socket
address structure is intended for use in a call tobind (2). In this
case, if thehostname argument is the null pointer, then the IP
address portion of the socket address structure will be set to
INADDR_ANYfor an IPv4 address orIN6ADDR_ANY_INIT for
an IPv6 address.

If the AI_PASSIVE bit is not set, the returned socket address
structure will be ready for use in a call toconnect (2) for a con-
nection-oriented protocol orconnect (2), sendto (2), or
sendmsg (2) if a connectionless protocol was chosen.The IP
address portion of the socket address structure will be set to the
loopback address ifhostname is the null pointer and
AI_PASSIVE is not set.

All other elements of theaddrinfo structure passed viahints must be zero or the null pointer.

If hints is the null pointer, getaddrinfo () behaves as if the caller provided astruct addrinfo
with ai_family set toPF_UNSPECand all other elements set to zero orNULL.

After a successful call togetaddrinfo (), ∗res is a pointer to a linked list of one or moreaddrinfo
structures. Thelist can be traversed by following theai_next pointer in eachaddrinfo structure until a
null pointer is encountered.The three membersai_family , ai_socktype , and ai_protocol in
each returnedaddrinfo structure are suitable for a call tosocket (2). For eachaddrinfo structure in
the list, theai_addr member points to a filled-in socket address structure of lengthai_addrlen .

This implementation ofgetaddrinfo () allows numeric IPv6 address notation with scope identifier, as
documented in chapter 11 of draft-ietf-ipv6-scoping-arch-02.txt.By appending the percent character and
scope identifier to addresses, one can fill thesin6_scope_id field for addresses. This would make man-
agement of scoped addresses easier and allows cut-and-paste input of scoped addresses.

At this moment the code supports only link-local addresses with the format. The scope identifier is hard-
coded to the name of the hardware interface associated with the link(such asne0) . An example is
“ fe80::1%ne0 ”, which means “fe80::1 on the link associated with thene0 interface”.

The current implementation assumes a one-to-one relationship between the interface and link, which is not
necessarily true from the specification.

All of the information returned bygetaddrinfo () is dynamically allocated: theaddrinfo structures
themselves as well as the socket address structures and the canonical host name strings included in the
addrinfo structures.

Memory allocated for the dynamically allocated structures created by a successful call togetaddrinfo ()
is released by thefreeaddrinfo () function. Theai pointer should be aaddrinfo structure created by
a call to getaddrinfo ().

RETURN VALUES
getaddrinfo () returns zero on success or one of the error codes listed ingai_strerror (3) if an error
occurs.

NetBSD 3.0 November 24, 2006 2

GETADDRINFO (3) NetBSD Library Functions Manual GETADDRINFO (3)

EXAMPLES
The following code tries to connect to “www.kame.net ” service “http ” v ia a stream socket. It loops
through all the addresses available, regardless of address family. If the destination resolves to an IPv4
address, it will use anAF_INET socket. Similarly, if i t resolves to IPv6, anAF_INET6 socket is used.
Observe that there is no hardcoded reference to a particular address family. The code works even if
getaddrinfo () returns addresses that are not IPv4/v6.

struct addrinfo hints, ∗res, ∗res0;
int error;
int s;
const char ∗cause = NULL;

memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
error = getaddrinfo("www.kame.net", "http", &hints, &res0);
if (error) {

errx(1, "%s", gai_strerror(error));
/ ∗NOTREACHED∗/

}
s = - 1;
for (res = res0; res; res = res->ai_next) {

s = s ocket(res->ai_family, res->ai_socktype,
res->ai_protocol);

if (s < 0) {
cause = "socket";
continue;

}

if (connect(s, res->ai_addr, res->ai_addrlen) < 0) {
cause = "connect";
close(s);
s = - 1;
continue;

}

break; / ∗ okay we got one ∗/
}
if (s < 0) {

err(1, "%s", cause);
/ ∗NOTREACHED∗/

}
freeaddrinfo(res0);

The following example tries to open a wildcard listening socket onto service “http ”, for all the address
families available.

struct addrinfo hints, ∗res, ∗res0;
int error;
int s[MAXSOCK];
int nsock;
const char ∗cause = NULL;

NetBSD 3.0 November 24, 2006 3

GETADDRINFO (3) NetBSD Library Functions Manual GETADDRINFO (3)

memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;
error = getaddrinfo(NULL, "http", &hints, &res0);
if (error) {

errx(1, "%s", gai_strerror(error));
/ ∗NOTREACHED∗/

}
nsock = 0;
for (res = res0; res && nsock < MAXSOCK; res = res->ai_next) {

s[nsock] = socket(res->ai_family, res->ai_socktype,
res->ai_protocol);

if (s[nsock] < 0) {
cause = "socket";
continue;

}

if (bind(s[nsock], res->ai_addr, res->ai_addrlen) < 0) {
cause = "bind";
close(s[nsock]);
continue;

}
(void) listen(s[nsock], 5);

nsock++;
}
if (nsock == 0) {

err(1, "%s", cause);
/ ∗NOTREACHED∗/

}
freeaddrinfo(res0);

SEE ALSO
bind (2), connect (2), send (2), socket (2), gai_strerror (3), gethostbyname (3),
getnameinfo (3), getservbyname (3), resolver (3), hosts (5), resolv.conf (5), services (5),
hostname (7), named(8)

R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens,Basic Socket Interface Extensions for IPv6,
RFC 3493, February 2003.

S. Deering, B. Haberman, T. Jinmei, E. Nordmark, and B. Zill,IPv6 Scoped Address Architecture, internet
draft, draft-ietf-ipv6-scoping-arch-02.txt, work in progress material.

Craig Metz, "Protocol Independence Using the Sockets API",Proceedings of the FREENIX track: 2000
USENIX annual technical conference, June 2000.

STANDARDS
Thegetaddrinfo () function is defined by theIEEE Std 1003.1g-2000 (“POSIX.1”) draft specification and
documented inRFC 3493 , “Basic Socket Interface Extensions for IPv6”.

NetBSD 3.0 November 24, 2006 4

GETARG (3) NetBSD Library Functions Manual GETARG (3)

NAME
getarg , arg_printusage — collect command line options

SYNOPSIS
#include <getarg.h>

int
getarg (struct getargs ∗args , size_t num_args , int argc , char ∗∗argv ,

int ∗optind);

void
arg_printusage (struct getargs ∗args , size_t num_args , const char ∗progname ,

const char ∗extra_string);

DESCRIPTION
getarg () collects any command line options given to a program in an easily used way.
arg_printusage () pretty-prints the available options, with a short help text.

args is the option specification to use, and it’s an array of struct getargs elements.num_args is
the size ofargs (in elements).argc and argv are the argument count and argument vector to extract
option from. optind is a pointer to an integer where the index to the last processed argument is stored, it
must be initialised to the first index (minus one) to process (normally 0) before the first call.

arg_printusage take the sameargs andnum_args as getarg; progname is the name of the program
(to be used in the help text), andextra_string is a string to print after the actual options to indicate more
arguments. The usefulness of this function is realised only be people who has used programs that has help
strings that doesn’t match what the code does.

Thegetargs struct has the following elements.

struct getargs{
const char ∗long_name;
char short_name;
enum { arg_integer,

arg_string,
arg_flag,
arg_negative_flag,
arg_strings,
arg_double,
arg_collect

} t ype;
void ∗value;
const char ∗help;
const char ∗arg_help;

};

long_name is the long name of the option, it can beNULL, if you don’t want a long name.short_name
is the characted to use as short option, it can be zero. If the option has a value thevalue field gets filled in
with that value interpreted as specified by thetype field. help is a longer help string for the option as a
whole, if it’s NULL the help text for the option is omitted (but it’s still displayed in the synopsis).
arg_help is a description of the argument, ifNULLa default value will be used, depending on the type of
the option:

ROKEN September24, 1999 1

GETARG (3) NetBSD Library Functions Manual GETARG (3)

arg_integer theargument is a signed integer, andvalue should point to anint .

arg_string the argument is a string, andvalue should point to achar ∗.

arg_flag the argument is a flag, andvalue should point to aint . It gets filled in with
either zero or one, depending on how the option is given, the normal case being
one. Note that if the option isn’t giv en, the value isn’t altered, so it should be ini-
tialised to some useful default.

arg_negative_flag this is the same asarg_flag but it rev erses the meaning of the flag (a given
short option clears the flag), and the synopsis of a long option is negated.

arg_strings the argument can be given multiple times, and the values are collected in an array;
value should be a pointer to astruct getarg_strings structure, which
holds a length and a string pointer.

arg_double argument is a double precision floating point value, andvalue should point to a
double .

arg_collect allows more fine-grained control of the option parsing process.value should be
a pointer to agetarg_collect_info structure:

typedef int (∗getarg_collect_func)(int short_opt,
int argc,
char ∗∗argv,
int ∗optind,
int ∗optarg,
void ∗data);

typedef struct getarg_collect_info {
getarg_collect_func func;
void ∗data;

} g etarg_collect_info;

With the func member set to a function to call, anddata to some application
specific data. The parameters to the collect function are:

short_flag non-zero if this call is via a short option flag, zero otherwise

argc , argv the whole argument list

optind pointer to the index in argv where the flag is

optarg pointer to the index in argv[∗optind] where the flag name starts

data application specific data

You can modify ∗optind , and ∗optarg , but to do this correct you (more or
less) have to know about the inner workings of getarg.

You can skip parts of arguments by increasing∗optarg (you could implement
the −z3 set of flags fromgzip with this), or whole argument strings by increas-
ing ∗optind (let’s say you want a flag−c x y z to specify a coordinate); if
you also have to set ∗optarg to a sane value.

The collect function should return one ofARG_ERR_NO_MATCH,
ARG_ERR_BAD_ARG, ARG_ERR_NO_ARG, ENOMEMon error, zero otherwise.

For your convenience there is a function,getarg_optarg (), that returns the
traditional argument string, and you pass it all arguments, sans data, that where

ROKEN September24, 1999 2

GETARG (3) NetBSD Library Functions Manual GETARG (3)

given to the collection function.

Don’t use this more this unless you absolutely have to.

Option parsing is similar to whatgetopt uses. Short options without arguments can be compressed (−xyz
is the same as−x −y −z), and short options with arguments take these as either the rest of the argv-string
or as the next option (−ofoo , or −o foo).

Long option names are prefixed with -- (double dash), and the value with a = (equal),−-foo= bar . Long
option flags can either be specified as they are (−-help), or with an (boolean parsable) option
(−-help= yes , −-help= true , or similar), or they can also be negated (−-no-help is the same as
−-help= no), and if you’re really confused you can do it multiple times (−-no-no-help= false , or
ev en −-no-no-help= maybe).

EXAMPLE
#include <stdio.h>
#include <string.h>
#include <getarg.h>

char ∗source = "Ouagadougou";
char ∗destination;
int weight;
int include_catalog = 1;
int help_flag;

struct getargs args[] = {
{ " source", ’s’, arg_string, &source,

"source of shippment", "city" },
{ " destination", ’d’, arg_string, &destination,

"destination of shippment", "city" },
{ " weight", ’w’, arg_integer, &weight,

"weight of shippment", "tons" },
{ " catalog", ’c’, arg_negative_flag, &include_catalog,

"include product catalog" },
{ " help", ’h’, arg_flag, &help_flag }

};

int num_args = sizeof(args) / sizeof(args[0]); / ∗ number of elements in args ∗/

const char ∗progname = "ship++";

int
main(int argc, char ∗∗argv)
{

int optind = 0;
if (getarg(args, num_args, argc, argv, &optind)) {

arg_printusage(args, num_args, progname, "stuff...");
exit (1);

}
if (help_flag) {

arg_printusage(args, num_args, progname, "stuff...");
exit (0);

}

ROKEN September24, 1999 3

GETARG (3) NetBSD Library Functions Manual GETARG (3)

if (destination == NULL) {
fprintf(stderr, "%s: must specify destination\n", progname);
exit(1);

}
if (strcmp(source, destination) == 0) {

fprintf(stderr, "%s: destination must be different from source\n");
exit(1);

}
/ ∗ include more stuff here ... ∗/
exit(2);

}

The output help output from this program looks like this:

$ s hip++ --help
Usage: ship++ [--source=city] [-s city] [--destination=city] [-d city]

[--weight=tons] [-w tons] [--no-catalog] [-c] [--help] [-h] stuff...
-s city, --source=city source of shippment
-d city, --destination=city destination of shippment
-w tons, --weight=tons weight of shippment
-c, --no-catalog include product catalog

BUGS
It should be more flexible, so it would be possible to use other more complicated option syntaxes, such as
what ps (1), andtar (1), uses, or the AFS model where you can skip the flag names as long as the options
come in the correct order.

Options with multiple arguments should be handled better.

Should be integreated with SL.

It’s very confusing that the struct you pass in is called getargS.

SEE ALSO
getopt (3)

ROKEN September24, 1999 4

GETBOOTFILE (3) NetBSD Library Functions Manual GETBOOTFILE (3)

NAME
getbootfile — get the name of the booted kernel file

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

const char ∗
getbootfile (void);

DESCRIPTION
getbootfile () returns a static pointer to the full path name of the file from which the current kernel was
loaded. Ifit can not be determined, or the file is not ‘‘secure’’ (seesecure_path (3)), _PATH_UNIX from
〈paths.h 〉 is returned instead.

SEE ALSO
secure_path (3), sysctl (3)

HISTORY
Thegetbootfile function call appeared inFreeBSD2.0 andNetBSD 1.6.

NetBSD 3.0 April 6, 2001 1

GETBSIZE (3) NetBSD Library Functions Manual GETBSIZE (3)

NAME
getbsize — get user block size

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

char ∗
getbsize (int ∗headerlenp , long ∗blocksizep);

DESCRIPTION
The getbsize function determines the user’s preferred block size based on the value of the
“BLOCKSIZE” environment variable; seeenviron (7) for details on its use and format.

The getbsize function returns a pointer to aNUL terminated string describing the block size, something
like “1K-blocks”. If theheaderlenp parameter is notNULL the memory referenced byheaderlenp is
filled in with the length of the string (not including the terminatingNUL). If theblocksizep parameter is
notNULL the memory referenced byblocksizep is filled in with block size, in bytes.

If the user’s block size is unreasonable, a warning message is written to standard error and the returned infor-
mation reflects a block size of 512 bytes.

SEE ALSO
df (1), du(1), ls (1), systat (1), environ (7)

HISTORY
Thegetbsize function first appeared in 4.4BSD.

NetBSD 3.0 May 30, 2003 1

GETC (3) NetBSD Library Functions Manual GETC (3)

NAME
fgetc , getc , getchar , getc_unlocked , getchar_unlocked , getw — get next character or
word from input stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

int
fgetc (FILE ∗stream);

int
getc (FILE ∗stream);

int
getchar ();

int
getc_unlocked (FILE ∗stream);

int
getchar_unlocked ();

int
getw (FILE ∗stream);

DESCRIPTION
The fgetc () function obtains the next input character (if present) from the stream pointed at bystream , or
the next character pushed back on the stream viaungetc (3).

Thegetc () function acts essentially identically tofgetc (), but is a macro that expands in-line.

Thegetchar () function is equivalent to: getc with the argument stdin.

The getc_unlocked () andgetchar_unlocked () functions provide functionality identical to that of
getc () andgetchar (), respectively, but do not perform implicit locking of the streams they operate on.In
multi-threaded programs they may be usedonly within a scope in which the stream has been successfully
locked by the calling thread using eitherflockfile (3) or ftrylockfile (3), and may later be released
usingfunlockfile (3).

Thegetw () function obtains the nextint (if present) from the stream pointed at bystream .

RETURN VALUES
If successful, these routines return the next requested object from thestream . If the stream is at end-of-file
or a read error occurs, the routines returnEOF. The routinesfeof (3) andferror (3) must be used to dis-
tinguish between end-of-file and error. If an error occurs, the global variableerrno is set to indicate the error.
The end-of-file condition is remembered, even on a terminal, and all subsequent attempts to read will return
EOFuntil the condition is cleared withclearerr (3).

SEE ALSO
ferror (3), flockfile (3), fopen (3), fread (3), ftrylockfile (3), funlockfile (3), putc (3),
ungetc (3)

NetBSD 3.0 April 25, 2001 1

GETC (3) NetBSD Library Functions Manual GETC (3)

STANDARDS
The fgetc (), getc () and getchar () functions conform toANSI X3.159-1989 (“ANSI C89”). The
getc_unlocked () andgetchar_unlocked () functions conform toISO/IEC 9945-1:1996 (“POSIX.1”).

BUGS
SinceEOFis a valid integer value,feof (3) andferror (3) must be used to check for failure after calling
getw (). Thesize and byte order of anint varies from one machine to another, and getw () is not recom-
mended for portable applications.

NetBSD 3.0 April 25, 2001 2

GETCWD (3) NetBSD Library Functions Manual GETCWD (3)

NAME
getcwd , getwd — get working directory pathname

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

char ∗
getcwd (char ∗buf , size_t size);

char ∗
getwd (char ∗buf);

DESCRIPTION
Thegetcwd () function copies the absolute pathname of the current working directory into the memory ref-
erenced bybuf and returns a pointer tobuf . The size argument is the size, in bytes, of the array refer-
enced bybuf .

If buf is NULL, space is allocated as necessary to store the pathname. This space may later befree (3)’d.

The functiongetwd () is a compatibility routine which callsgetcwd () with its buf argument and a size of
MAXPATHLEN(as defined in the include file〈sys/param.h 〉). Obviously, buf should be at least
MAXPATHLENbytes in length.

These routines have traditionally been used by programs to save the name of a working directory for the pur-
pose of returning to it.A much faster and less error-prone method of accomplishing this is to open the cur-
rent directory(‘ . ’) and use thefchdir (2) function to return.

RETURN VALUES
Upon successful completion, a pointer to the pathname is returned. Otherwise aNULL pointer is returned
and the global variableerrno is set to indicate the error. In addition,getwd () copies the error message asso-
ciated witherrno into the memory referenced bybuf .

ERRORS
Thegetcwd () function will fail if:

[EACCES] Read or search permission was denied for a component of the pathname.

[EINVAL] Thesize argument is zero.

[ENOENT] A component of the pathname no longer exists.

[ENOMEM] Insufficient memory is available.

[ERANGE] The size argument is greater than zero but smaller than the length of the pathname
plus 1.

SEE ALSO
chdir (2), fchdir (2), malloc (3), strerror (3)

STANDARDS
The getcwd () function conforms toISO/IEC 9945-1:1990 (“POSIX.1”). The ability to specify aNULL
pointer and havegetcwd () allocate memory as necessary is an extension.

NetBSD 3.0 December 11, 1993 1

GETCWD (3) NetBSD Library Functions Manual GETCWD (3)

HISTORY
Thegetwd () function appeared in 4.0BSD.

SECURITY CONSIDERATIONS
As getwd () does not know the length of the supplied buffer, it is possible for a long (but valid) path to over-
flow the buffer and provide a means for an attacker to exploit the caller. getcwd () should be used in place
of getwd () (the latter is only provided for compatibility purposes).

NetBSD 3.0 December 11, 1993 2

GETDEVMAJOR (3) NetBSD Library Functions Manual GETDEVMAJOR (3)

NAME
getdevmajor — get block or character device major number

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>
#include <sys/stat.h>

dev_t
getdevmajor (const char ∗name, mode_t type);

DESCRIPTION
Thegetdevmajor () function returns the major device number of the block or character device specified by
name and a file type matching the one encoded intype which must be one ofS_IFBLK or S_IFCHR.

RETURN VALUES
If no device matches the specified values, no information is available, or an error occurs,(dev_t)˜0 is
returned anderrno is set to indicate the error.

EXAMPLES
To retrieve the major number forpty (4) slave devices (aka pts devices):

#include <stdlib.h>
#include <sys/stat.h>

dev_t pts;
pts = getdevmajor("pts", S_IFCHR);

To retrieve the major numbers for the block and characterwd(4) devices:

#include <stdlib.h>
#include <sys/stat.h>

dev_t c, b;
c = g etdevmajor("wd", S_IFCHR);
b = getdevmajor("wd", S_IFBLK);

ERRORS
Thegetdevmajor () function may fail and seterrno for any of the errors specified for the library functions
malloc (3) andsysctlbyname (3). Inaddition, the following errors may be reported:

[EINVAL] The value of themajor argument is notS_IFCHR or S_IFBLK .

[ENOENT] The named device is not found.

SEE ALSO
stat (2), devname(3), malloc (3), sysctlbyname (3)

HISTORY
Thegetdevmajor () function call appeared inNetBSD 3.0.

NetBSD 3.0 December 15, 2004 1

GETDIRENTRIES (3) NetBSD Library Functions Manual GETDIRENTRIES (3)

NAME
getdirentries — get directory entries in a filesystem independent format

SYNOPSIS
#include <dirent.h>

int
getdirentries (int fd , char ∗buf , int nbytes , long ∗basep);

DESCRIPTION
This interface is provided for compatibility only and has been obsoleted bygetdents (2).

getdirentries () reads directory entries from the directory referenced by the file descriptorfd into the
buffer pointed to bybuf , in a filesystem independent format. Up tonbytes of data will be transferred.
nbytes must be greater than or equal to the block size associated with the file, seestat (2). Somefilesys-
tems may not supportgetdirentries () with buffers smaller than this size.

The data in the buffer is a series ofdirentstructures each containing the following entries:

unsigned long d_fileno;
unsigned short d_reclen;
unsigned short d_namlen;
char d_name[MAXNAMELEN + 1]; / ∗ see below ∗/

The d_fileno entry is a number which is unique for each distinct file in the filesystem. Files that are
linked by hard links (seelink (2)) have the samed_fileno . If d_fileno is zero, the entry refers to a
deleted file.

Thed_reclen entry is the length, in bytes, of the directory record.

The d_namlen entry specifies the length of the file name excluding the null byte. Thus the actual size of
d_name may vary from 1 toMAXNAMELEN+ 1.

Thed_name entry contains a null terminated file name.

Entries may be separated by extra space.Thed_reclen entry may be used as an offset from the start of a
dirent structure to the next structure, if any.

The actual number of bytes transferred is returned.The current position pointer associated withfd is set to
point to the next block of entries. The pointer may not advance by the number of bytes returned by
getdirentries (). A value of zero is returned when the end of the directory has been reached.

getdirentries () writes the position of the block read into the location pointed to bybasep . Alterna-
tively, the current position pointer may be set and retrieved by lseek (2). The current position pointer
should only be set to a value returned bylseek (2), a value returned in the location pointed to bybasep , or
zero.

RETURN VALUES
If successful, the number of bytes actually transferred is returned. Otherwise, −1 is returned and the global
variableerrno is set to indicate the error.

ERRORS
getdirentries () will fail if:

[EBADF] fd is not a valid file descriptor open for reading.

NetBSD 3.0 June 9, 1993 1

GETDIRENTRIES (3) NetBSD Library Functions Manual GETDIRENTRIES (3)

[EFAULT] Eitherbuf or basep point outside the allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.

SEE ALSO
lseek (2), open (2)

HISTORY
Thegetdirentries () function first appeared in 4.4BSD.

NetBSD 3.0 June 9, 1993 2

GETDISKBYNAME (3) NetBSD Library Functions Manual GETDISKBYNAME (3)

NAME
getdiskbyname , setdisktab — get generic disk description by its name

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/disklabel.h>
#include <disktab.h>

int
setdisktab (char ∗name);

struct disklabel ∗
getdiskbyname (const char ∗name);

DESCRIPTION
Thegetdiskbyname () function takes a disk name (e.g.rm03) and returns a prototype disk label describ-
ing its geometry information and the standard disk partition tables.All information is obtained from the
disktab (5) file.

The setdisktab () function changes the default file name from/etc/disktab (aka
_PATH_DISKTAB) to name.

RETURN VALUES
getdiskbyname () returns a null pointer if the entry is not found in the currentdisktab file.

setdisktab () returns 0 on success and −1 ifname is a null pointer or points to an empty string.

FILES
/etc/disktab the default database of disk types.

SEE ALSO
disklabel (5), disktab (5), disklabel (8)

HISTORY
Thegetdiskbyname () function appeared in 4.3BSD.

Thesetdisktab () function appeared inNetBSD 1.4.

BUGS
The getdiskbyname () function leaves its results in an internal static object and returns a pointer to that
object. Subsequentcalls will modify the same object.

NetBSD 3.0 June 4, 1993 1

GETDOMAINNAME (3) NetBSD Library Functions Manual GETDOMAINNAME (3)

NAME
getdomainname , setdomainname — get/set domain name of current host

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
getdomainname (char ∗name, size_t namelen);

int
setdomainname (const char ∗name, size_t namelen);

DESCRIPTION
getdomainname () returns the standard domain name for the current processor, as previously set by
setdomainname (). Theparameternamelen specifies the size of thename array. The returned name is
null-terminated unless insufficient space is provided.

setdomainname () sets the domain name of the host machine to bename, which has lengthnamelen .
This call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUES
If the call succeeds a value of 0 is returned. If the call fails, a value of −1 is returned and an error code is
placed in the global locationerrno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] Thename or namelen parameter gav ean invalid address.

[EPERM] The caller tried to set the domain name and was not the super-user.

SEE ALSO
gethostid (3), gethostname (3), sysctl (3)

HISTORY
Thegetdomainname function call appeared in 4.2BSD.

BUGS
Domain names are limited toMAXHOSTNAMELEN(from 〈sys/param.h 〉) characters including null-termi-
nation, currently 256.

NetBSD 3.0 May 6, 1994 1

GETDTABLESIZE (3) NetBSD Library Functions Manual GETDTABLESIZE (3)

NAME
getdtablesize — get descriptor table size

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
getdtablesize (void);

DESCRIPTION
Each process has a fixed size descriptor table, which is guaranteed to have at least 20 slots. The entries in the
descriptor table are numbered with small integers starting at 0.The callgetdtablesize () returns the size
of this table.

SEE ALSO
close (2), dup (2), getrlimit (2), open (2), select (2), sysconf (3)

HISTORY
Thegetdtablesize () function call appeared in 4.2BSD.

NetBSD 3.0 June 4, 1993 1

GETENV (3) NetBSD Library Functions Manual GETENV (3)

NAME
getenv , getenv_r , putenv , setenv , unsetenv — environment variable functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

char ∗
getenv (const char ∗name);

int
getenv_r (const char ∗name, char ∗buf , size_t len);

int
setenv (const char ∗name, const char ∗value , int overwrite);

int
putenv (const char ∗string);

int
unsetenv (const char ∗name);

DESCRIPTION
These functions set, unset and fetch environment variables from the hostenvironment list. For compatibility
with differing environment conventions, the given argumentsname and value may be appended and
prepended, respectively, with an equal sign “=”, except forunsetenv ().

Thegetenv () function obtains the current value of the environment variablename. If the variablename is
not in the current environment, aNULLpointer is returned.

Thegetenv_r () function obtains the current value of the environment variablename and copies it tobuf .
If name is not in the current environment, or the string length of the value ofname is longer thanlen char-
acters, then −1 is returned anderrno is set to indicate the error.

The setenv () function inserts or resets the environment variablename in the current environment list.If
the variablename does not exist in the list, it is inserted with the given value . If the variable does exist,
the argumentoverwrite is tested; ifoverwrite is zero, the variable is not reset, otherwise it is reset
to the given value .

Theputenv () function takes an argument of the form ‘‘name=value’’ and is equivalent to:

setenv(name, value, 1);

Theunsetenv () function deletes all instances of the variable name pointed to byname from the list.

RETURN VALUES
The functionsgetenv_r (), setenv (), putenv (), andunsetenv () return zero if successful; otherwise
the global variableerrno is set to indicate the error and a −1 is returned.

If getenv () is successful, the string returned should be considered read-only.

ERRORS
[EINVAL] The name argument tounsetenv () is a null pointer, points to an empty string, or

points to a string containing an “=” character.

NetBSD 3.0 September 25, 2005 1

GETENV (3) NetBSD Library Functions Manual GETENV (3)

[ENOMEM] The functionsetenv () or putenv () failed because they were unable to allocate
memory for the environment.

The functiongetenv_r () can return the following errors:

[ENOENT] The variablename was not found in the environment.

[ERANGE] The value of the named variable is too long to fit in the supplied buffer.

SEE ALSO
csh (1), sh (1), execve (2), environ (7)

STANDARDS
Thegetenv () function conforms toANSI X3.159-1989 (“ANSI C89”). The putenv () function conforms to
X/OpenPortability Guide Issue 4 (“XPG4”). The unsetenv () function conforms toIEEE Std 1003.1-2001
(“POSIX.1”).

HISTORY
The functionssetenv () and unsetenv () appeared in Version 7AT&T UNIX . The putenv () function
appeared in 4.3BSD−Reno.

NetBSD 3.0 September 25, 2005 2

GETFSENT (3) NetBSD Library Functions Manual GETFSENT (3)

NAME
getfsent , getfsspec , getfsfile , setfsent , endfsent — get file system descriptor file entry

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <fstab.h>

struct fstab ∗
getfsent (void);

struct fstab ∗
getfsspec (const char ∗spec);

struct fstab ∗
getfsfile (const char ∗file);

int
setfsent (void);

void
endfsent (void);

DESCRIPTION
The getfsent (), getfsspec (), andgetfsfile () functions each return a pointer to an object with the
following structure containing the broken-out fields of a line in the file system description file,〈fstab.h 〉.

struct fstab {
char ∗fs_spec; / ∗ block special device name ∗/
char ∗fs_file; / ∗ file system path prefix ∗/
char ∗fs_vfstype; / ∗ type of file system ∗/
char ∗fs_mntops; / ∗ comma separated mount options ∗/
char ∗fs_type; / ∗ rw, ro, sw, or xx ∗/
int fs_freq; / ∗ dump frequency, in days ∗/
int fs_passno; / ∗ pass number on parallel dump ∗/

};

The fields have meanings described infstab (5).

The setfsent () function opens the file (closing any previously opened file) or rewinds it if it is already
open.

Theendfsent () function closes the file.

Thegetfsspec () andgetfsfile () functions search the entire file (opening it if necessary) for a match-
ing special file name or file system file name.

For programs wishing to read the entire database,getfsent () reads the next entry (opening the file if nec-
essary).

All entries in the file with a type field equivalent toFSTAB_XXare ignored.

RETURN VALUES
The getfsent (), getfsspec (), andgetfsfile () functions return a null pointer (0) onEOFor error.
Thesetfsent () function returns 0 on failure, 1 on success. Theendfsent () function returns nothing.

NetBSD 3.0 June 4, 1993 1

GETFSENT (3) NetBSD Library Functions Manual GETFSENT (3)

FILES
/etc/fstab

SEE ALSO
fstab (5)

HISTORY
The getfsent () function appeared in 4.0BSD; the endfsent (), getfsfile (), getfsspec (), and
setfsent () functions appeared in 4.3BSD.

BUGS
These functions use static data storage; if the data is needed for future use, it should be copied before any
subsequent calls overwrite it.

NetBSD 3.0 June 4, 1993 2

GETGRENT (3) NetBSD Library Functions Manual GETGRENT (3)

NAME
getgrent , getgrent_r , getgrgid , getgrgid_r , getgrnam , getgrnam_r , setgroupent ,
setgrent , endgrent — group database operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <grp.h>

struct group ∗
getgrent (void);

int
getgrent_r (struct group ∗grp , char ∗buffer , size_t buflen ,

struct group ∗∗result);

struct group ∗
getgrgid (gid_t gid);

int
getgrgid_r (gid_t gid , struct group ∗grp , char ∗buffer , size_t buflen ,

struct group ∗∗result);

struct group ∗
getgrnam (const char ∗name);

int
getgrnam_r (const char ∗name, struct group ∗grp , char ∗buffer , size_t buflen ,

struct group ∗∗result);

int
setgroupent (int stayopen);

void
setgrent (void);

void
endgrent (void);

DESCRIPTION
These functions operate on the group database which is described ingroup (5). Eachline of the database is
defined by the structuregroup found in the include file〈grp.h 〉:

struct group {
char ∗gr_name; / ∗ group name ∗/
char ∗gr_passwd; / ∗ group password ∗/
gid_t gr_gid; / ∗ group id ∗/
char ∗∗gr_mem; / ∗ group members ∗/

};

The functionsgetgrnam () andgetgrgid () search the group database for the given group name pointed
to by name or the group id pointed to bygid , respectively, returning the first one encountered.Identical
group names or group ids may result in undefined behavior.

The getgrent () function sequentially reads the group database and is intended for programs that wish to
step through the complete list of groups.

NetBSD 3.0 April 30, 2008 1

GETGRENT (3) NetBSD Library Functions Manual GETGRENT (3)

All three functions will open the group file for reading, if necessary.

The functionsgetgrnam_r (), getgrgid_r (), andgetgrent_r () act like their non re-entrant counter-
parts respectively, updating the contents ofgrp and storing a pointer to that inresult , and returning0.
Storage used bygrp is allocated frombuffer , which isbuflen bytes in size.If the requested entry can-
not be found,result will point to NULLand0 will be returned. If an error occurs, a non-zero error num-
ber will be returned andresult will point to NULL. Calling getgrent_r () from multiple threads will
result in each thread reading a disjoint portion of the group database.

Thesetgroupent () function opens the file, or rewinds it if it is already open.If stayopen is non-zero,
file descriptors are left open, significantly speeding functions subsequent calls.This functionality is unneces-
sary forgetgrent () as it doesn’t close its file descriptors by default. It should also be noted that it is dan-
gerous for long-running programs to use this functionality as the group file may be updated.

Thesetgrent () function is equivalent tosetgroupent () with an argument of zero.

Theendgrent () function closes any open files.

RETURN VALUES
The functionsgetgrgid (), getgrnam (), andgetgrent () return a valid pointer to a group structure on
success and aNULL pointer if the entry was not found or an error occured. If an error occured, the global
variableerrno is set to indicate the nature of the failure.

The functionsgetgrgid_r (), getgrnam_r (), and getgrent_r () return 0 on success or entry not
found, and non-zero on failure, setting the global variableerrno to indicate the nature of the failure.

Thesetgroupent () function returns the value 1 if successful, otherwise the value 0 is returned, setting the
global variableerrno to indicate the nature of the failure.

Theendgrent () andsetgrent () functions have no return value.

ERRORS
The following error codes may be set inerrno for getgrent , getgrent_r , getgrnam , getgrnam_r ,
getgrgid , getgrgid_r , andsetgroupent :

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during the database search.

[EMFILE] The limit on open files for this process has been reached.

[ENFILE] The system limit on open files has been reached.

The following error code may be set inerrno for getgrent_r , getgrnam_r , andgetgrgid_r :

[ERANGE] The resultingstruct group does not fit in the space defined bybuffer and
buflen

Othererrno values may be set depending on the specific database backends.

FILES
/etc/group group database file

SEE ALSO
getpwent (3), group (5), nsswitch.conf (5)

NetBSD 3.0 April 30, 2008 2

GETGRENT (3) NetBSD Library Functions Manual GETGRENT (3)

STANDARDS
The getgrgid () and getgrnam () functions conform toISO/IEC 9945-1:1990 (“POSIX.1”). The
getgrgid_r () and getgrnam_r () functions conform toIEEE Std 1003.1c-1995 (“POSIX.1”). The
endgrent (), getgrent (), and setgrent () functions conform toX/Open Portability Guide Issue 4,
Version 2 (“XPG4.2”) and IEEE Std 1003.1-2004 " (“POSIX.1”) (XSI extension).

HISTORY
The functionsendgrent (), getgrent (), getgrgid (), getgrnam (), and setgrent () appeared in
Version 7 AT&T UNIX . The functionssetgrfile () and setgroupent () appeared in 4.3BSD−Reno.
The functionsgetgrgid_r () andgetgrnam_r () appeared inNetBSD 3.0.

COMPATIBILITY
The historic functionsetgrfile (), which allowed the specification of alternative group databases, has
been deprecated and is no longer available.

BUGS
The functionsgetgrent (), getgrgid (), getgrnam (), setgroupent () andsetgrent () leave their
results in an internal static object and return a pointer to that object.Subsequent calls to the same function
will modify the same object.

The functionsgetgrent (), endgrent (), setgroupent (), andsetgrent () are fairly useless in a net-
worked environment and should be avoided, if possible.getgrent () makes no attempt to suppress dupli-
cate information if multiple sources are specified innsswitch.conf (5)

NetBSD 3.0 April 30, 2008 3

GETGROUPLIST (3) NetBSD Library Functions Manual GETGROUPLIST (3)

NAME
getgrouplist , getgroupmembership , — calculate group access list

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
getgrouplist (const char ∗name, gid_t basegid , gid_t ∗groups , int ∗ngroups);

int
getgroupmembership (const char ∗name, gid_t basegid , gid_t ∗groups ,

int maxgrp , int ∗ngroups);

DESCRIPTION
Thegetgrouplist () andgetgroupmembership () functions read through the group database and cal-
culate the group access list for the user specified inname. The basegid is automatically included in the
groups list.Typically this value is given as the group number from the password database.

The resulting group list is returned in the integer array pointed to bygroups .

For getgrouplist (), the caller specifies the size of thegroups array in the integer pointed to by
ngroups .

For getgroupmembership (), the caller specifies the size of thegroups array inmaxgrp .

The actual number of groups found is returned inngroups .

Duplicate group ids will be suppressed from the result.

RETURN VALUES
The getgrouplist () andgetgroupmembership () functions return 0 if successful, and return −1 if
the size of the group list is too small to hold all the user’s groups. Inthe latter case, thegroups array will
be filled with as many groups as will fit andngroups will contain the total number of groups found.

FILES
/etc/group group membership list

SEE ALSO
setgroups (2), initgroups (3), group (5)

HISTORY
The getgrouplist () function first appeared in 4.4BSD. The getgroupmembership () function first
appeared inNetBSD 3.0 to address an API deficiency in getgrouplist ().

BUGS
The getgrouplist () function uses the routines based ongetgrent (3). If the invoking program uses
any of these routines, the group structure will be overwritten in the call togetgrouplist ().

NetBSD 3.0 January 6, 2005 1

GETHOSTBYNAME (3) NetBSD Library Functions Manual GETHOSTBYNAME (3)

NAME
gethostbyname , gethostbyname2 , gethostbyaddr , gethostent , sethostent ,
endhostent , herror , hstrerror — get network host entry

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <netdb.h>
extern int h_errno;

struct hostent ∗
gethostbyname (const char ∗name);

struct hostent ∗
gethostbyname2 (const char ∗name, int af);

struct hostent ∗
gethostbyaddr (const char ∗addr , socklen_t len , int type);

struct hostent ∗
gethostent (void);

void
sethostent (int stayopen);

void
endhostent (void);

void
herror (const char ∗string);

const char ∗
hstrerror (int err);

DESCRIPTION
Thegethostbyname (), gethostbyname2 () andgethostbyaddr () functions each return a pointer to
an object with the following structure describing an internet host.

struct hostent {
char ∗h_name; / ∗ official name of host ∗/
char ∗∗h_aliases; / ∗ alias list ∗/
int h_addrtype; / ∗ host address type ∗/
int h_length; / ∗ length of address ∗/
char ∗∗h_addr_list; / ∗ list of addresses from name server ∗/

};
#define h_addr h_addr_list[0] / ∗ address, for backward compatibility ∗/

The members of this structure are:

h_name Official name of the host.

h_aliases A NULL-terminated array of alternative names for the host.

h_addrtype The type of address being returned; currently always AF_INET .

h_length The length, in bytes, of the address.

NetBSD 3.0 October 7, 2006 1

GETHOSTBYNAME (3) NetBSD Library Functions Manual GETHOSTBYNAME (3)

h_addr_list A NULL-terminated array of network addresses for the host. Host addresses are returned
in network byte order.

h_addr The first address inh_addr_list ; this is for backward compatibility.

In the case ofgethostbyname () and gethostbyname2 (), the host is specified by name, or using a
string representation of a numeric address. In the case ofgethostbyaddr (), the host is specified using a
binary representation of an address.

The returnedstruct hostent structure may contain the result of a simple string to binary conversion,
information obtained from the domain name resolver (seeresolver (3)), broken-out fields from a line in
/etc/hosts , or database entries supplied by theyp (8) system. The order of the lookups is controlled by
the ‘hosts’ entry innsswitch.conf (5).

When using the domain name resolver, gethostbyname () andgethostbyname2 () will search for the
named host in the current domain and its parents unless the name ends in a dot. If the name contains no dot,
and if the environment variable “HOSTALIASES” contains the name of an alias file, the alias file will first be
searched for an alias matching the input name.Seehostname (7) for the domain search procedure and the
alias file format.

The gethostbyname2 () function is an evolution of gethostbyname () which is intended to allow
lookups in address families other thanAF_INET , for exampleAF_INET6 . Currently theaf argument must
be specified asAF_INET or AF_INET6 , else the function will returnNULL after having seth_errno to
NETDB_INTERNAL.

Thegethostent () function reads the next line of the/etc/hosts file, opening the file if necessary.

The sethostent () function may be used to request the use of a connectedTCP socket for queries. If the
stayopen flag is non-zero, this sets the option to send all queries to the name server usingTCP and to
retain the connection after each call togethostbyname (), gethostbyname2 (), or
gethostbyaddr (). Otherwise,queries are performed usingUDP datagrams.

Theendhostent () function closes theTCPconnection.

The herror () function writes a message to the diagnostic output consisting of the string parameters , the
constant string ": ", and a message corresponding to the value ofh_errno.

Thehstrerror () function returns a string which is the message text corresponding to the value of theerr
parameter.

FILES
/etc/hosts

DIAGNOSTICS
Error return status from gethostbyent (), gethostbyname (), gethostbyname2 (), and
gethostbyaddr () is indicated by return of a null pointer. The external integer h_errno may then be
checked to see whether this is a temporary failure or an invalid or unknown host. The routineherror () can
be used to print an error message describing the failure. If its argumentstring is non-NULL , it is printed,
followed by a colon and a space. The error message is printed with a trailing newline.

The variableh_errnocan have the following values:

HOST_NOT_FOUNDNo such host is known.

TRY_AGAIN This is usually a temporary error and means that the local server did not receive a
response from an authoritative server. A retry at some later time may succeed.

NetBSD 3.0 October 7, 2006 2

GETHOSTBYNAME (3) NetBSD Library Functions Manual GETHOSTBYNAME (3)

NO_RECOVERY Some unexpected server failure was encountered. This is a non-recoverable error.

NO_DATA The requested name is valid but does not have an IP address; this is not a temporary
error. This means that the name is known to the name server but there is no address
associated with this name. Another type of request to the name server using this
domain name will result in an answer; for example, a mail-forwarder may be registered
for this domain.

SEE ALSO
resolver (3), hosts (5), nsswitch.conf (5), hostname (7), named(8)

HISTORY
The herror () function appeared in 4.3BSD. The endhostent (), gethostbyaddr (),
gethostbyname (), gethostent (), and sethostent () functions appeared in 4.2BSD. The
gethostbyname2 () function first appeared in bind-4.9.4.IPv6 support was implemented in WIDE
Hydrangea IPv6 protocol stack kit.

CAVEATS
If the search routines specified innsswitch.conf (5) decide to read the/etc/hosts file,
gethostbyname (), gethostbyname2 (), andgethostbyaddr () will read the next line of the file, re-
opening the file if necessary.

The sethostent () function opens and/or rewinds the file/etc/hosts . If the stayopen argument is
non-zero, the file will not be closed after each call togethostbyname (), gethostbyname2 (),
gethostbyaddr (), orgethostent ().

Theendhostent () function closes the file.

BUGS
These functions use static data storage; if the data is needed for future use, it should be copied before any
subsequent calls overwrite it. Only the Internet address format is currently understood.

Thegethostent () does not currently follow the search order specified innsswitch.conf (5) and only
reads the/etc/hosts file.

NetBSD 3.0 October 7, 2006 3

GETHOSTID (3) NetBSD Library Functions Manual GETHOSTID (3)

NAME
gethostid , sethostid — get/set unique identifier of current host

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

long
gethostid (void);

int
sethostid (long hostid);

DESCRIPTION
sethostid () establishes a 32-bit identifier for the current processor that is intended to be unique among all
UNIX systems in existence. Thisis normally a DARPA Internet address for the local machine.This call is
allowed only to the super-user and is normally performed at boot time.

gethostid () returns the 32-bit identifier for the current processor.

This function has been deprecated. The hostid should be set or retrieved by use ofsysctl (3).

SEE ALSO
gethostname (3), sysctl (3), sysctl (8)

HISTORY
Thegethostid () andsethostid () syscalls appeared in 4.2BSD and were dropped in 4.4BSD.

BUGS
32 bits for the identifier is too small.

NetBSD 3.0 June 2, 1993 1

GETHOSTNAME (3) NetBSD Library Functions Manual GETHOSTNAME (3)

NAME
gethostname , sethostname — get/set name of current host

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
gethostname (char ∗name, size_t namelen);

int
sethostname (const char ∗name, size_t namelen);

DESCRIPTION
gethostname () returns the standard host name for the current processor, as previously set by
sethostname (). The parameternamelen specifies the size of thename array. The returned name is
null-terminated unless insufficient space is provided.

sethostname () sets the name of the host machine to bename, which has lengthnamelen . This call is
restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUES
If the call succeeds a value of 0 is returned. If the call fails, a value of −1 is returned and an error code is
placed in the global locationerrno.

ERRORS
If the gethostname () or sethostname () functions fail, they will set errno for any of the errors specified
for the routinesysctl (3).

SEE ALSO
gethostid (3), sysctl (3), sysctl (8)

STANDARDS
Thegethostname () function conforms toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

HISTORY
Thegethostname function call appeared in 4.2BSD.

BUGS
Host names are limited toMAXHOSTNAMELEN(from 〈sys/param.h 〉) characters including null-termina-
tion, currently 256.

NetBSD 3.0 October 14, 2005 1

GETIFADDRS (3) NetBSD Library Functions Manual GETIFADDRS (3)

NAME
getifaddrs — get interface addresses

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <ifaddrs.h>

int
getifaddrs (struct ifaddrs ∗∗ifap);

void
freeifaddrs (struct ifaddrs ∗ifp);

DESCRIPTION
The getifaddrs () function stores a reference to a linked list of the network interfaces on the local
machine in the memory referenced byifap . The list consists ofifaddrs structures, as defined in the
include file〈ifaddrs.h 〉. The ifaddrs structure contains at least the following entries:

struct ifaddrs ∗ifa_next; / ∗ Pointer to next struct ∗/
char ∗ifa_name; / ∗ Interface name ∗/
u_int ifa_flags; / ∗ Interface flags ∗/
struct sockaddr ∗ifa_addr; / ∗ Interface address ∗/
struct sockaddr ∗ifa_netmask; / ∗ Interface netmask ∗/
struct sockaddr ∗ifa_broadaddr; / ∗ Interface broadcast address ∗/
struct sockaddr ∗ifa_dstaddr; / ∗ P2P interface destination ∗/
void ∗ifa_data; / ∗ Address specific data ∗/

The ifa_next field contains a pointer to the next structure on the list. This field isNULL in last structure
on the list.

The ifa_name field contains the interface name.

The ifa_flags field contains the interface flags, as set byifconfig (8) utility.

The ifa_addr field references either the address of the interface or the link level address of the interface, if
one exists, otherwise it is NULL.(The sa_family field of the ifa_addr field should be consulted to
determine the format of theifa_addr address.)

The ifa_netmask field references the netmask associated withifa_addr , if one is set, otherwise it is
NULL.

The ifa_broadaddr field, which should only be referenced for non-P2P interfaces, references the broad-
cast address associated withifa_addr , if one exists, otherwise it is NULL.

The ifa_dstaddr field references the destination address on a P2P interface, if one exists, otherwise it is
NULL.

The ifa_data field references address family specific data.For AF_LINK addresses it contains a pointer
to the struct if_data (as defined in include file〈net/if.h 〉) which contains various interface
attributes and statistics.For all other address families, it contains a pointer to thestruct ifa_data (as
defined in include file〈net/if.h 〉) which contains per-address interface statistics.

The data returned bygetifaddrs () is dynamically allocated and should be freed usingfreeifaddrs ()
when no longer needed.

NetBSD 3.0 October 12, 1995 1

GETIFADDRS (3) NetBSD Library Functions Manual GETIFADDRS (3)

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned anderrno is set to
indicate the error.

ERRORS
Thegetifaddrs () may fail and seterrno for any of the errors specified for the library routinesioctl (2),
socket (2), malloc (3) orsysctl (3).

SEE ALSO
ioctl (2), socket (2), sysctl (3), networking (4), ifconfig (8)

HISTORY
Thegetifaddrs implementation first appeared inBSD/OS.

BUGS
If both 〈net/if.h 〉 and 〈ifaddrs.h 〉 are being included,〈net/if.h 〉 must be included before
〈ifaddrs.h 〉.

NetBSD 3.0 October 12, 1995 2

GETLABELSECTOR (3) NetBSD Library Functions Manual GETLABELSECTOR (3)

NAME
getlabelsector , getlabeloffset — get the sector number and offset of the disklabel

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

daddr_t
getlabelsector (void);

off_t
getlabeloffset (void);

DESCRIPTION
The getlabelsector () andgetlabeloffset () functions return values which describe the exact on-
disk location of thedisklabel (5) on the current system, or −1 on error. These functions supercede the
hardcodedLABELSECTORand LABELOFFSETdefinitions previously used to derive the location of the
disklabel (5).

SEE ALSO
sysctl (3), disklabel (5)

HISTORY
Thegetlabelsector () andgetlabeloffset () functions appeared inNetBSD 2.0.

NetBSD 3.0 December 11, 2002 1

GETLASTLOGX (3) NetBSD Library Functions Manual GETLASTLOGX (3)

NAME
getlastlogx , getutmp , getutmpx , updlastlogx , updwtmpx , utmpxname — user accounting
database functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <utmpx.h>

struct lastlogx ∗
getlastlogx (const char ∗fname , uid_t uid , struct lastlogx ∗ll);

void
getutmp (const struct utmpx ∗ux , struct utmp ∗u);

void
getutmpx (const struct utmp ∗u , struct utmpx ∗ux);

int
updlastlogx (const char ∗fname , uid_t uid , struct lastlogx ∗ll);

int
updwtmpx (const char ∗file , const struct utmpx ∗utx);

int
utmpxname (const char ∗fname);

DESCRIPTION
The getlastlogx () function looks up the entry for the user with user iduid in the lastlogx (5) file
given by fname and returns it inll . If the provided ll is NULL, the necessary space will be allocated by
getlastlogx () and should befree ()d by the caller.

Thegetutmp () function fills out the entries in the struct utmpu with the data provided in the struct utmpx
ux . getutmpx () does the opposite, filling out the entries in the struct utmpxux with the data provided in
the struct utmpu, and initializing all the unknown fields to 0. The sole exception is theut_type field,
which will be initialized toUSER_PROCESS.

The updlastlogx () function tries to update the information for the user with the user iduid in the
lastlogx (5) file given by fname with the data supplied inll . A struct lastlogx is defined like
this:

struct lastlogx {
struct timeval ll_tv; / ∗ time entry was created ∗/
char ll_line[_UTX_LINESIZE]; / ∗ tty name ∗/
char ll_host[_UTX_HOSTSIZE]; / ∗ host name ∗/
struct sockaddr_storage ll_ss; / ∗ address where entry was made from ∗/

};
All the fields should be filled out by the caller.

Theupdwtmpx () function updates thewtmpx (5) file file with theutmpx (5) entryutx .

Theutmpxname () function sets the defaultutmpx (5) database file name tofname .

RETURN VALUES
getlastlogx () returns the found entry on success, orNULL if it could not open the database, could not
find an entry matchinguid in there, or could not allocate the necessary space (in casell was NULL).

NetBSD 3.0 August 26, 2003 1

GETLASTLOGX (3) NetBSD Library Functions Manual GETLASTLOGX (3)

utmpxname () returns 1 on success, or 0 if the supplied file name was too long or did not end with ‘x’.

updlastlogx () andupdwtmpx () return 0 on success, or −1 in case the database or file respectively could
not be opened or the data not written into it.

SEE ALSO
endutxent (3), loginx (3), utmpx (5)

HISTORY
The functionsgetutmp (), getutmpx (), updwtmpx (), and utmpxname () first appeared inSolaris.
getlastlogx andupdlastlogx first appeared inNetBSD 2.0.

NetBSD 3.0 August 26, 2003 2

GETLOADAV G (3) NetBSDLibrary Functions Manual GETLOADAV G (3)

NAME
getloadavg — get system load averages

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
getloadavg (double loadavg[] , int nelem);

DESCRIPTION
Thegetloadavg () function returns the number of processes in the system run queue averaged over various
periods of time. Up tonelem samples are retrieved and assigned to successive elements ofloadavg [] .
The system imposes a maximum of 3 samples, representing averages over the last 1, 5, and 15 minutes,
respectively.

DIAGNOSTICS
If the load average was unobtainable, −1 is returned; otherwise, the number of samples actually retrieved is
returned.

SEE ALSO
uptime (1), kvm_getloadavg (3), sysctl (3)

HISTORY
Thegetloadavg () function appeared in 4.3BSD−Reno.

NetBSD 3.0 June 4, 1993 1

GETMAXPARTITIONS (3) NetBSD Library Functions Manual GETMAXPARTITIONS (3)

NAME
getmaxpartitions — get the maximum number of partitions allowed per disk

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
getmaxpartitions (void);

DESCRIPTION
getmaxpartitions () returns the number of partitions that are allowed per disk on the system, or −1 in
case of an error, setting the globalerrno variable. Thepossible values forerrno are the same as in
sysctl (3).

SEE ALSO
getrawpartition (3), sysctl (3)

HISTORY
Thegetmaxpartitions function call appeared inNetBSD 1.2.

NetBSD 3.0 May 24, 2006 1

GETMNTINFO (3) NetBSD Library Functions Manual GETMNTINFO (3)

NAME
getmntinfo — get information about mounted file systems

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/statvfs.h>

int
getmntinfo (struct statvfs ∗∗mntbufp , int flags);

DESCRIPTION
The getmntinfo () function returns an array ofstatvfsstructures describing each currently mounted file
system (seestatvfs (2)).

Thegetmntinfo () function passes itsflags parameter transparently togetvfsstat (2).

RETURN VALUES
On successful completion,getmntinfo () returns a count of the number of elements in the array. The
pointer to the array is stored intomntbufp .

If an error occurs, zero is returned and the external variableerrno is set to indicate the error. Although the
pointermntbufp will be unmodified, any information previously returned bygetmntinfo () will be lost.

ERRORS
The getmntinfo () function may fail and seterrno for any of the errors specified for the library routines
getvfsstat (2) ormalloc (3).

SEE ALSO
getvfsstat (2), mount (2), statvfs (2), mount (8)

HISTORY
The getmntinfo () function first appeared in 4.4BSD. It was converted from usinggetfsstat (2) to
getvfsstat (2) in NetBSD 3.0.

BUGS
The getmntinfo () function writes the array of structures to an internal static object and returns a pointer
to that object. Subsequent calls togetmntinfo () will modify the same object.

The memory allocated bygetmntinfo () cannot befree (3)’d by the application.

NetBSD 3.0 April 14, 2004 1

GETMNTOPTS (3) NetBSD Library Functions Manual GETMNTOPTS (3)

NAME
getmntopts — scan mount options

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <mntopts.h>

mntoptparse_t
getmntopts (const char ∗options , const struct mntopt ∗mopts , int ∗flagp ,

int ∗altflagp);

const char ∗
getmntoptstr (mntoptparse_t mp , const char ∗opt);

long
getmntoptnum (mntoptparse_t mp , const char ∗opt);

void
freemntopts (mntoptparse_t mp);

DESCRIPTION
Thegetmntopts () function takes a comma separated option list and a list of valid option names, and com-
putes the bitmask corresponding to the requested set of options.

The stringoptions is broken down into a sequence of comma separated tokens. Eachtoken is looked up
in the table described bymopts and the bits in the word referenced by eitherflagp or altflagp
(depending on them_altloc field of the option’s table entry) are updated. The flag words are not initial-
ized bygetmntopts (). Thetable,mopts , has the following format:

struct mntopt {
const char ∗m_option; / ∗ option name ∗/
int m_inverse; / ∗ negative option, e.g., "dev" ∗/
int m_flag; / ∗ bit to set, e.g., MNT_RDONLY ∗/
int m_altloc; / ∗ use altflagp rather than flagp ∗/

};

The members of this structure are:

m_option the option name, for example “suid”.

m_inverse tells getmntopts () that the name has the inverse meaning of the bit.For example, “suid” is
the string, whereas the mount flag isMNT_NOSUID. In this case, the sense of the string and
the flag are inverted, so them_inverse flag should be set.

m_flag the value of the bit to be set or cleared in the flag word when the option is recognized. The bit
is set when the option is discovered, but cleared if the option name was preceded by the letters
“no”. Them_inverse flag causes these two operations to be reversed.

m_altloc the bit should be set or cleared inaltflagp rather thanflagp .

Each of the user visibleMNT_ flags has a correspondingMOPT_macro which defines an appropriate
struct mntopt entry. To simplify the program interface and ensure consistency across all programs, a
general purpose macro,MOPT_STDOPTS, is defined which contains an entry for all the generic VFS
options. Inaddition, the macrosMOPT_FORCEandMOPT_UPDATEexist to enable theMNT_FORCEand
MNT_UPDATEflags to be set. Finally, the table must be terminated by an entry with aNULLfirst element.

NetBSD 3.0 August 26, 2007 1

GETMNTOPTS (3) NetBSD Library Functions Manual GETMNTOPTS (3)

The getmntoptstr () function returns the string value of the named option, if such a value was set it the
option string.

The getmntoptnum () returns the long value of the named option, if such a value was set it the option
string. Itprints an error message and exits if the value was not set, or could not be converted from a string to
a long.

Thefreemntopts () frees the storage used bygetmntopts ().

EXAMPLES
Most commands will use the standard option set. Local filesystems which support theMNT_UPDATEflag,
would also have an MOPT_UPDATEentry. This can be declared and used as follows:

#include <mntopts.h>

static const struct mntopt mopts[] = {
MOPT_STDOPTS,
MOPT_UPDATE,
{ N ULL }

};

long val;
mntflags = mntaltflags = 0;
mntoptparse_t mp;
if ((mp = getmntopts(options, mopts, &mntflags, &mntaltflags)) == NULL)

err(1, NULL);
val = getmntoptnum(mp, "rsize");
freemntopts(mp);

RETURN VALUE
getmntopts () returnsNULL if an error occurred.Note that some bits may already have been set inflagp
andaltflagpev en if NULL is returned.getmntoptstr () returnsNULL if the option does not have an argu-
ment, or the option string.getmntoptnum () returns −1 if an error occurred.

DIAGNOSTICS
If the external integer variablegetmnt_silentis zero then thegetmntopts () function displays an error mes-
sage and exits if an unrecognized option is encountered. By defaultgetmnt_silentis zero.

SEE ALSO
err (3), mount (8)

HISTORY
The getmntopts () function appeared in 4.4BSD. It was moved to the utilities library and enhanced to
retrieve option values inNetBSD 2.0.

NetBSD 3.0 August 26, 2007 2

GETNAMEINFO (3) NetBSD Library Functions Manual GETNAMEINFO (3)

NAME
getnameinfo — socket address structure to hostname and service name

SYNOPSIS
#include <netdb.h>

int
getnameinfo (const struct sockaddr ∗ restrict sa , socklen_t salen ,

char ∗ restrict host , size_t hostlen , char ∗ restrict serv ,
size_t servlen , int flags);

DESCRIPTION
Thegetnameinfo () function is used to convert a sockaddr structure to a pair of host name and service
strings. It is a replacement for and provides more flexibility than thegethostbyaddr (3) and
getservbyport (3) functions and is the converse of thegetaddrinfo (3) function.

The sockaddr structuresa should point to either asockaddr_in or sockaddr_in6 structure (for
IPv4 or IPv6 respectively) that issalen bytes long.

The host and service names associated withsa are stored inhost andserv which have length parameters
hostlen andservlen . The maximum value forhostlen is NI_MAXHOSTand the maximum value for
servlen is NI_MAXSERV, as defined by〈netdb.h 〉. If a length parameter is zero, no string will be
stored. Otherwise,enough space must be provided to store the host name or service string plus a byte for the
NUL terminator.

Theflags argument is formed byOR’ing the following values:

NI_NOFQDN A fully qualified domain name is not required for local hosts. The local part of the
fully qualified domain name is returned instead.

NI_NUMERICHOST Return the address in numeric form, as if callinginet_ntop (3), instead of a host
name.

NI_NAMEREQD A name is required. If the host name cannot be found in DNS and this flag is set, a
non-zero error code is returned. If the host name is not found and the flag is not set,
the address is returned in numeric form.

NI_NUMERICSERV The service name is returned as a digit string representing the port number.

NI_DGRAM Specifies that the service being looked up is a datagram service, and causes
getservbyport (3) to be called with a second argument of “udp” instead of its
default of “tcp”. This is required for the few ports (512−514) that have different
services forUDP andTCP.

This implementation allows numeric IPv6 address notation with scope identifier, as documented in chapter
11 of draft-ietf-ipv6-scoping-arch-02.txt. IPv6 link-local address will appear as a string like
“ fe80::1%ne0 ”. Referto getaddrinfo (3) for more information.

RETURN VALUES
getnameinfo () returns zero on success or one of the error codes listed ingai_strerror (3) if an error
occurs.

EXAMPLES
The following code tries to get a numeric host name, and service name, for a given socket address.Observe
that there is no hardcoded reference to a particular address family.

NetBSD 3.0 March 21, 2005 1

GETNAMEINFO (3) NetBSD Library Functions Manual GETNAMEINFO (3)

struct sockaddr ∗sa; / ∗ input ∗/
char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];

if (getnameinfo(sa, sa->sa_len, hbuf, sizeof(hbuf), sbuf,
sizeof(sbuf), NI_NUMERICHOST | NI_NUMERICSERV)) {

errx(1, "could not get numeric hostname");
/ ∗NOTREACHED∗/

}
printf("host=%s, serv=%s\n", hbuf, sbuf);

The following version checks if the socket address has a reverse address mapping:

struct sockaddr ∗sa; / ∗ input ∗/
char hbuf[NI_MAXHOST];

if (getnameinfo(sa, sa->sa_len, hbuf, sizeof(hbuf), NULL, 0,
NI_NAMEREQD)) {

errx(1, "could not resolve hostname");
/ ∗NOTREACHED∗/

}
printf("host=%s\n", hbuf);

SEE ALSO
gai_strerror (3), getaddrinfo (3), gethostbyaddr (3), getservbyport (3), inet_ntop (3),
resolver (3), hosts (5), resolv.conf (5), services (5), hostname (7), named(8)

R. Gilligan, S. Thomson, J. Bound, and W. Stevens,Basic Socket Interface Extensions for IPv6, RFC 2553,
March 1999.

S. Deering, B. Haberman, T. Jinmei, E. Nordmark, and B. Zill,IPv6 Scoped Address Architecture, internet
draft, draft-ietf-ipv6-scoping-arch-02.txt, work in progress material.

Craig Metz, "Protocol Independence Using the Sockets API",Proceedings of the FREENIX track: 2000
USENIX annual technical conference, June 2000.

STANDARDS
Thegetnameinfo () function is defined by theIEEE Std 1003.1g-2000 (“POSIX.1”) draft specification and
documented inRFC 2553, “Basic Socket Interface Extensions for IPv6”.

CAVEATS
getnameinfo () can return both numeric and FQDN forms of the address specified insa . There is no
return value that indicates whether the string returned inhost is a result of binary to numeric-text transla-
tion (like inet_ntop (3)), or is the result of a DNS reverse lookup. Because of this, malicious parties could
set up a PTR record as follows:

1.0.0.127.in-addr.arpa. IN PTR 10.1.1.1

and trick the caller ofgetnameinfo () into believing thatsa is 10.1.1.1 when it is actually
127.0.0.1 .

To prevent such attacks, the use ofNI_NAMEREQDis recommended when the result ofgetnameinfo () is
used for access control purposes:

struct sockaddr ∗sa;
socklen_t salen;
char addr[NI_MAXHOST];

NetBSD 3.0 March 21, 2005 2

GETNAMEINFO (3) NetBSD Library Functions Manual GETNAMEINFO (3)

struct addrinfo hints, ∗res;
int error;

error = getnameinfo(sa, salen, addr, sizeof(addr),
NULL, 0, NI_NAMEREQD);

if (error == 0) {
memset(&hints, 0, sizeof(hints));
hints.ai_socktype = SOCK_DGRAM; / ∗dummy∗/
hints.ai_flags = AI_NUMERICHOST;
if (getaddrinfo(addr, "0", &hints, &res) == 0) {

/ ∗ malicious PTR record ∗/
freeaddrinfo(res);
printf("bogus PTR record\n");
return -1;

}
/ ∗ addr is FQDN as a result of PTR lookup ∗/

} e lse {
/ ∗ addr is numeric string ∗/
error = getnameinfo(sa, salen, addr, sizeof(addr),

NULL, 0, NI_NUMERICHOST);
}

BUGS
The implementation ofgetnameinfo () is not thread-safe.

NetBSD 3.0 March 21, 2005 3

GETNETCONFIG (3) NetBSD Library Functions Manual GETNETCONFIG (3)

NAME
getnetconfig , setnetconfig , endnetconfig , getnetconfigent , freenetconfigent ,
nc_perror , nc_sperror — get network configuration database entry

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <netconfig.h>

struct netconfig ∗
getnetconfig (void ∗handlep);

void ∗
setnetconfig (void);

int
endnetconfig (void ∗handlep);

struct netconfig ∗
getnetconfigent (const char ∗netid);

void
freenetconfigent (struct netconfig ∗netconfigp);

void
nc_perror (const char ∗msg);

char ∗
nc_sperror (void);

DESCRIPTION
The library routines described on this page provide the application access to the system network configura-
tion database,/etc/netconfig .

struct netconfig {
char ∗nc_netid; / ∗ Network ID ∗/
unsigned long nc_semantics; / ∗ Semantics ∗/
unsigned long nc_flag; / ∗ Flags ∗/
char ∗nc_protofmly; / ∗ Protocol family ∗/
char ∗nc_proto; / ∗ Protocol name ∗/
char ∗nc_device; / ∗ Network device pathname ∗/
unsigned long nc_nlookups; / ∗ Number of directory lookup libs ∗/
char ∗∗nc_lookups; / ∗ Names of the libraries ∗/

};

getnetconfig () returns a pointer to the current entry in thenetconfig database, formatted as a struct
netconfig. Successive calls will return successive netconfig entries in the netconfig database.
getnetconfig () can be used to search the entire netconfig file.getnetconfig () returnsNULL at the
end of the file.handlep is the handle obtained throughsetnetconfig ().

A call to setnetconfig () has the effect of ‘‘binding’’ to or ‘‘rewinding’’ the netconfig database.
setnetconfig () must be called before the first call togetnetconfig () and may be called at any other
time. setnetconfig () need not be called before a call togetnetconfigent (). setnetconfig ()
returns a unique handle to be used bygetnetconfig ().

NetBSD 3.0 April 22, 2000 1

GETNETCONFIG (3) NetBSD Library Functions Manual GETNETCONFIG (3)

endnetconfig () should be called when processing is complete to release resources for reuse.handlep
is the handle obtained throughsetnetconfig (). Programmersshould be aware, however, that the last call
to endnetconfig () frees all memory allocated bygetnetconfig () for the struct netconfig data struc-
ture. endnetconfig () may not be called beforesetnetconfig ().

getnetconfigent () returns a pointer to the netconfig structure corresponding tonetid . It returns
NULL if netid is invalid (that is, does not name an entry in the netconfig database).

freenetconfigent () frees the netconfig structure pointed to bynetconfigp (previously returned by
getnetconfigent ()).

nc_perror () prints a message to the standard error indicating why any of the above routines failed. The
message is prepended with the stringmsg and a colon.A newline character is appended at the end of the
message.

nc_sperror () is similar tonc_perror () but instead of sending the message to the standard error, will
return a pointer to a string that contains the error message.

nc_perror () and nc_sperror () can also be used with theNETPATH access routines defined in
getnetpath (3).

RETURN VALUES
setnetconfig () returns a unique handle to be used bygetnetconfig (). In the case of an error,
setnetconfig () returns NULL andnc_perror () or nc_sperror () can be used to print the reason for
failure.

getnetconfig () returns a pointer to the current entry in the netconfig database, formatted as a struct net-
config. getnetconfig () returns NULL at the end of the file, or upon failure.

endnetconfig () returns 0 on success and -1 on failure (for example, ifsetnetconfig () was not called
previously).

On success,getnetconfigent () returns a pointer to thestruct netconfig structure corresponding
to netid ; otherwise it returnsNULL.

nc_sperror () returns a pointer to a buffer which contains the error message string.This buffer is over-
written on each call. In multithreaded applications, this buffer is implemented as thread-specific data.

FILES
/etc/netconfig

SEE ALSO
getnetpath (3), netconfig (5)

NetBSD 3.0 April 22, 2000 2

GETNETENT (3) NetBSD Library Functions Manual GETNETENT (3)

NAME
getnetent , getnetbyaddr , getnetbyname , setnetent , endnetent — get network entry

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <netdb.h>

struct netent ∗
getnetent ();

struct netent ∗
getnetbyname (const char ∗name);

struct netent ∗
getnetbyaddr (uint32_t net , int type);

setnetent (int stayopen);

endnetent ();

DESCRIPTION
Thegetnetent (), getnetbyname (), andgetnetbyaddr () functions each return a pointer to an object
with the following structure containing the broken-out fields of a line in the network data base as described in
networks (5).

struct netent {
char ∗n_name; / ∗ official name of net ∗/
char ∗∗n_aliases; / ∗ alias list ∗/
int n_addrtype; / ∗ net number type ∗/
uint32_t n_net; / ∗ net number ∗/

};

The members of this structure are:

n_name The official name of the network.

n_aliases A zero terminated list of alternative names for the network.

n_addrtype The type of the network number returned; currently only AF_INET.

n_net The network number. Network numbers are returned in machine byte order.

Thegetnetent () function reads the next line of the file, opening the file if necessary.

Thesetnetent () function opens and rewinds the file. If thestayopen flag is non-zero, the net data base
will not be closed after each call togetnetbyname () or getnetbyaddr ().

Theendnetent () function closes the file.

The getnetbyname () function andgetnetbyaddr () sequentially search from the beginning of the file
until a matching net name or net address and type is found, or untilEOFis encountered.Network numbers
are supplied in host order.

FILES
/etc/networks

NetBSD 3.0 May 8, 2004 1

GETNETENT (3) NetBSD Library Functions Manual GETNETENT (3)

DIAGNOSTICS
Null pointer (0) returned onEOFor error.

SEE ALSO
networks (5), nsswitch.conf (5)

HISTORY
Thegetnetent (), getnetbyaddr (), getnetbyname (), setnetent (), andendnetent () functions
appeared in 4.2BSD.

BUGS
The data space used by these functions is static; if future use requires the data, it should be copied before any
subsequent calls to these functions overwrite it. Only Internet network numbers are currently understood.
Expecting network numbers to fit in no more than 32 bits is probably naive.

NetBSD 3.0 May 8, 2004 2

GETNETGRENT (3) NetBSD Library Functions Manual GETNETGRENT (3)

NAME
getnetgrent , innetgr , setnetgrent , endnetgrent — netgroup database operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <netgroup.h>

int
getnetgrent (const char ∗∗host , const char ∗∗user , const char ∗∗domain);

int
innetgr (const char ∗netgroup , const char ∗host , const char ∗user ,

const char ∗domain);

void
setnetgrent (const char ∗netgroup);

void
endnetgrent (void);

DESCRIPTION
These functions operate on the netgroup database file which is described innetgroup (5).

The database defines a set of netgroups, each made up of one or more triples:

(host, user, domain)

that defines a combination of host, user and domain.Any of the three fields may be specified as ‘‘wildcards’’
that match any string.

The functiongetnetgrent () sets the three pointer arguments to the strings of the next member of the cur-
rent netgroup. If any of the string pointers areNULL that field is considered a wildcard.

The functionssetnetgrent () andendnetgrent () set the current netgroup and terminate the current
netgroup respectively. If setnetgrent () is called with a different netgroup than the previous call, an
implicit endnetgrent () is implied. setnetgrent () also sets the offset to the first member of the net-
group.

The functioninnetgr () searches for a match of all fields within the specified group. If any of the host,
user, or domain arguments areNULL those fields will match any string value in the netgroup member.

RETURN VALUES
The functiongetnetgrent () returns 0 for ‘‘no more netgroup members’’ and 1 otherwise. The function
innetgr () returns 1 for a successful match and 0 otherwise.The functionssetnetgrent () and
endnetgrent () have no return value.

FILES
/etc/netgroup netgroup database file

SEE ALSO
netgroup (5), nsswitch.conf (5)

NetBSD 3.0 January 16, 1999 1

GETNETGRENT (3) NetBSD Library Functions Manual GETNETGRENT (3)

BUGS
The functiongetnetgrent () returns pointers to dynamically allocated data areas that are free’d when the
functionendnetgrent () is called.

NetBSD 3.0 January 16, 1999 2

GETNETPATH (3) NetBSDLibrary Functions Manual GETNETPATH (3)

NAME
getnetpath , setnetpath , endnetpath — get /etc/netconfig entry corresponding to NETPATH com-
ponent

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <netconfig.h>

struct netconfig ∗
getnetpath (void ∗handlep);

void ∗
setnetpath (void);

int
endnetpath (void ∗handlep);

DESCRIPTION
The routines described in this page provide the application access to the system network configuration data-
base,/etc/netconfig , as it is “filtered” by the NETPATH environment variable (seeenviron (7)). See
getnetconfig (3) for other routines that also access the network configuration database directly. The
NETPATH variable is a list of colon-separated network identifiers.

getnetpath () returns a pointer to the netconfig database entry corresponding to the first valid NETPATH
component. Thenetconfig entry is formatted as a struct netconfig.On each subsequent call,
getnetpath () returns a pointer to the netconfig entry that corresponds to the next valid NETPATH compo-
nent. getnetpath () can thus be used to search the netconfig database for all networks included in the
NETPATH variable. WhenNETPATH has been exhausted,getnetpath () returns NULL.

A call to setnetpath () “binds” to or “rewinds” NETPATH. setnetpath () must be called before the
first call to getnetpath () and may be called at any other time. It returns a handle that is used by
getnetpath ().

getnetpath () silently ignores invalid NETPATH components. ANETPATH component is invalid if there
is no corresponding entry in the netconfig database.

If the NETPATH variable is unset,getnetpath () behaves as if NETPATH were set to the sequence of
“default” or “visible” networks in the netconfig database, in the order in which they are listed.

endnetpath () may be called to “unbind” from NETPATH when processing is complete, releasing
resources for reuse. Programmers should be aware, however, that endnetpath () frees all memory allo-
cated bygetnetpath () for the struct netconfig data structure.

RETURN VALUES
setnetpath () returns a handle that is used bygetnetpath (). In case of an error, setnetpath ()
returns NULL.

endnetpath () returns 0 on success and -1 on failure (for example, ifsetnetpath () was not called previ-
ously). nc_perror () or nc_sperror () can be used to print out the reason for failure. See
getnetconfig (3).

When first called,getnetpath () returns a pointer to the netconfig database entry corresponding to the first
valid NETPATH component. WhenNETPATH has been exhausted,getnetpath () returns NULL.

NetBSD 3.0 April 22, 2000 1

GETNETPATH (3) NetBSDLibrary Functions Manual GETNETPATH (3)

SEE ALSO
getnetconfig (3), netconfig (5), environ (7)

NetBSD 3.0 April 22, 2000 2

GETOPT (3) NetBSD Library Functions Manual GETOPT (3)

NAME
getopt — get option character from command line argument list

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

extern char ∗optarg;
extern int optind;
extern int optopt;
extern int opterr;
extern int optreset;

int
getopt (int argc , char ∗ const argv[] , const char ∗optstring);

DESCRIPTION
The getopt () function incrementally parses a command line argument listargv and returns the next
knownoption character. An option character isknownif it has been specified in the string of accepted option
characters,optstring .

The option stringoptstring may contain the following elements: individual characters, and characters
followed by a colon to indicate an option argument is to follow. For example, an option string "x" recognizes
an option “−x ”, and an option string "x:" recognizes an option and argument “−x argument ”. It does not
matter togetopt () if a following argument has leading whitespace.

On return fromgetopt (), optarg points to an option argument, if it is anticipated, and the variableoptind
contains the index to the next argv argument for a subsequent call togetopt (). Thevariableoptoptsaves
the lastknownoption character returned bygetopt ().

The variablesopterr andoptind are both initialized to 1.The optind variable may be set to another value
before a set of calls togetopt () in order to skip over more or less argv entries.

In order to usegetopt () to evaluate multiple sets of arguments, or to evaluate a single set of arguments
multiple times, the variableoptresetmust be set to 1 before the second and each additional set of calls to
getopt (), and the variableoptindmust be reinitialized.

Thegetopt () function returns −1 when the argument list is exhausted. Theinterpretation of options in the
argument list may be cancelled by the option “--” (double dash) which causesgetopt () to signal the end of
argument processing and return −1. When all options have been processed (i.e., up to the first non-option
argument),getopt () returns −1.

RETURN VALUES
Thegetopt () function returns the next known option character inoptstring . If getopt () encounters a
character not found inoptstring or if it detects a missing option argument, it returns ‘?’ (question mark).
If optstring has a leading ‘:’ then a missing option argument causes ‘:’ to be returned instead of ‘?’.In
either case, the variableoptopt is set to the character that caused the error. The getopt () function returns
−1 when the argument list is exhausted.

EXAMPLES
extern char ∗optarg;
extern int optind;
int bflag, ch, fd;

NetBSD 3.0 September 10, 2003 1

GETOPT (3) NetBSD Library Functions Manual GETOPT (3)

bflag = 0;
while ((ch = getopt(argc, argv, "bf:")) != -1) {

switch (ch) {
case ’b’:

bflag = 1;
break;

case ’f’:
if ((fd = open(optarg, O_RDONLY, 0)) < 0) {

(void)fprintf(stderr,
"myname: %s: %s\n", optarg, strerror(errno));

exit(1);
}
break;

case ’?’:
default:

usage();
}

}
argc -= optind;
argv += optind;

DIAGNOSTICS
If the getopt () function encounters a character not found in the stringoptstring or detects a missing
option argument it writes an error message tostderr and returns ‘?’.Settingopterr to a zero will disable
these error messages.If optstring has a leading ‘:’ then a missing option argument causes a ‘:’ to be
returned in addition to suppressing any error messages.

Option arguments are allowed to begin with ‘-’; this is reasonable but reduces the amount of error checking
possible.

SEE ALSO
getopt (1), getopt_long (3), getsubopt (3)

STANDARDS
Theoptresetvariable was added to make it possible to call thegetopt () function multiple times. This is an
extension to theIEEE Std 1003.2 (“POSIX.2”) specification.

HISTORY
Thegetopt () function appeared in 4.3BSD.

BUGS
The getopt () function was once specified to returnEOF instead of −1. This was changed byIEEE Std
1003.2-1992 (“POSIX.2”) to decouplegetopt () from 〈stdio.h 〉.

A single dash(‘ -’) may be specified as a character inoptstring , howev er it shouldneverhave an argu-
ment associated with it. This allows getopt () to be used with programs that expect ‘-’ as an option flag.
This practice is wrong, and should not be used in any current development. Itis provided for backward com-
patibility only. Care should be taken not to use ‘-’ as the first character inoptstring to avoid a semantic
conflict withGNU getopt (), which assigns different meaning to anoptstring that begins with a ‘-’.By
default, a single dash causesgetopt () to return −1.

It is also possible to handle digits as option letters. This allows getopt () to be used with programs that
expect a number(“−3”) as an option. Thispractice is wrong, and should not be used in any current devel-

NetBSD 3.0 September 10, 2003 2

GETOPT (3) NetBSD Library Functions Manual GETOPT (3)

opment. Itis provided for backward compatibilityonly. The following code fragment works in most cases.

int ch;
long length;
char ∗p;

while ((ch = getopt(argc, argv, "0123456789")) != -1) {
switch (ch) {
case ’0’: case ’1’: case ’2’: case ’3’: case ’4’:
case ’5’: case ’6’: case ’7’: case ’8’: case ’9’:

p = argv[optind - 1];
if (p[0] == ’-’ && p[1] == ch && !p[2])

length = ch - ’0’;
else

length = strtol(argv[optind] + 1, NULL, 10);
break;

}
}

NetBSD 3.0 September 10, 2003 3

GETOPT_LONG (3) NetBSD Library Functions Manual GETOPT_LONG (3)

NAME
getopt_long — get long options from command line argument list

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <getopt.h>

int
getopt_long (int argc , char ∗ const ∗argv , const char ∗optstring ,

struct option ∗long_options , int ∗index);

DESCRIPTION
Thegetopt_long () function is similar togetopt (3) but it accepts options in two forms: words and char-
acters. The getopt_long () function provides a superset of the functionality ofgetopt (3).
getopt_long () can be used in two ways. Inthe first way, every long option understood by the program
has a corresponding short option, and the option structure is only used to translate from long options to short
options. Whenused in this fashion,getopt_long () behaves identically togetopt (3). This is a good
way to add long option processing to an existing program with the minimum of rewriting.

In the second mechanism, a long option sets a flag in theoption structure passed, or will store a pointer to
the command line argument in theoption structure passed to it for options that take arguments. Addition-
ally, the long option’s argument may be specified as a single argument with an equal sign, e.g.

myprogram --myoption=somevalue

When a long option is processed the call togetopt_long () will return 0. For this reason, long option pro-
cessing without shortcuts is not backwards compatible withgetopt (3).

It is possible to combine these methods, providing for long options processing with short option equivalents
for some options. Less frequently used options would be processed as long options only.

Abbreviated long option names are accepted whengetopt_long () processes long options if the abbrevia-
tion is unique. An exact match is always preferred for a defined long option.

Thegetopt_long () call requires a structure to be initialized describing the long options. The structure is:

struct option {
char ∗name;
int has_arg;
int ∗flag;
int val;

};

Thename field should contain the option name without the leading double dash.

Thehas_arg field should be one of:

no_argument no argument to the option is expect.

required_argument an argument to the option is required.

optional_argument an argument to the option may be presented.

If flag is notNULL, then the integer pointed to by it will be set to the value in theval field. If the flag
field isNULL, then theval field will be returned.Settingflag to NULLand settingval to the correspond-
ing short option will make this function act just likegetopt (3).

NetBSD 3.0 July 2, 2007 1

GETOPT_LONG (3) NetBSD Library Functions Manual GETOPT_LONG (3)

If the index field is notNULL, the integer it points to will be set to the index of the long option in the
long_options array.

The last element of thelong_options array has to be filled with zeroes (seeEXAMPLES section).

EXAMPLES
extern char ∗optarg;
extern int optind;
int bflag, ch, fd;
int daggerset;

/ ∗ options descriptor ∗/
static struct option longopts[] = {

{ " buffy", no_argument, 0, ’b’ },
{ " fluoride", required_argument, 0, ’f’ },
{ " daggerset", no_argument, &daggerset, 1 },
{ N ULL, 0, NULL, 0 }

};

bflag = 0;
while ((ch = getopt_long(argc, argv, "bf:", longopts, NULL)) != -1)

switch (ch) {
case ’b’:

bflag = 1;
break;

case ’f’:
if ((fd = open(optarg, O_RDONLY, 0)) < 0) {

(void)fprintf(stderr,
"myname: %s: %s\n", optarg, strerror(errno));

exit(1);
}
break;

case 0:
if(daggerset) {

fprintf(stderr,"Buffy will use her dagger to "
"apply fluoride to dracula’s teeth\n");

}
break;

case ’?’:
default:

usage();
}
argc -= optind;
argv += optind;

IMPLEMENT ATION DIFFERENCES
This section describes differences to the GNU implementation found in glibc-2.1.3:

o handling of - as first char of option string in presence of environment variable POSIXLY_CORRECT:

GNU ignores POSIXLY_CORRECT and returns non-options as arguments to option ’\1’.

NetBSD 3.0 July 2, 2007 2

GETOPT_LONG (3) NetBSD Library Functions Manual GETOPT_LONG (3)

NetBSD honors POSIXLY_CORRECT and stops at the first non-option.

o handling of :: in options string in presence of POSIXLY_CORRECT:

Both GNU and NetBSD ignore POSIXLY_CORRECT here and take :: to mean the preceding
option takes an optional argument.

o return value in case of missing argument if first character (after + or -) in option string is not ’:’:

GNU returns ’?’

NetBSD returns ’:’ (since NetBSD’s getopt does).

o handling of --a in getopt:

GNU parses this as option ’-’, option ’a’.

NetBSD parses this as ’--’, and returns −1 (ignoring the a). (Because the original getopt does.)

o setting of optopt for long options with flag !=NULL:

GNU sets optopt to val.

NetBSD sets optopt to 0 (since val would never be returned).

o handling of -W with W; in option string in getopt (not getopt_long):

GNU causes a segfault.

NetBSD returns −1, with optind pointing past the argument of -W (as if ‘-W arg’ were ‘--arg’, and
thus ’--’ had been found).

o setting of optarg for long options without an argument that are invoked via -W (W; in option string):

GNU sets optarg to the option name (the argument of -W).

NetBSD sets optarg to NULL(the argument of the long option).

o handling of -W with an argument that is not (a prefix to) a known long option (W; in option string):

GNU returns -W with optarg set to the unknown option.

NetBSD treats this as an error (unknown option) and returns ’?’ with optopt set to 0 and optarg set to
NULL(as GNU’s man page documents).

o The error messages are different.

o NetBSD does not permute the argument vector at the same points in the calling sequence as GNU does.
The aspects normally used by the caller (ordering after −1 is returned, value of optind relative to cur-
rent positions) are the same, though. (We do fewer variable swaps.)

SEE ALSO
getopt (3)

HISTORY
Thegetopt_long () function first appeared in GNU libiberty. The firstNetBSD implementation appeared
in 1.5.

BUGS
The implementation can completely replacegetopt (3), but right now we are using separate code.

Theargv argument is not really const.

NetBSD 3.0 July 2, 2007 3

GETPAGESIZE (3) NetBSD Library Functions Manual GETPAGESIZE (3)

NAME
getpagesize — get system page size

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
getpagesize (void);

DESCRIPTION
This interface is obsoleted bysysconf (3).

getpagesize () returns the number of bytes in a page.Page granularity is the granularity of many of the
memory management calls.

The page size is asystempage size and may not be the same as the underlying hardware page size.

SEE ALSO
pagesize (1), sbrk (2), sysconf (3)

HISTORY
Thegetpagesize function call appeared in 4.2BSD.

NetBSD 3.0 June 4, 1993 1

GETPASS (3) NetBSD Library Functions Manual GETPASS (3)

NAME
getpass — get a password

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <pwd.h>
#include <unistd.h>

char ∗
getpass (const char ∗prompt);

DESCRIPTION
Thegetpass () function displays a prompt to, and reads in a password from,/dev/tty . If this file is not
accessible,getpass displays the prompt on the standard error output and reads from the standard input.

The password may be up to _PASSWORD_LEN (currently 128) characters in length.Any additional char-
acters and the terminating newline character are discarded.

getpass turns off character echoing while reading the password.

RETURN VALUES
getpass returns a pointer to the null terminated password.

FILES
/dev/tty

SEE ALSO
crypt (3)

HISTORY
A getpass function appeared in Version 7AT&T UNIX .

BUGS
Thegetpass function leaves its result in an internal static object and returns a pointer to that object.Sub-
sequent calls togetpass will modify the same object.

SECURITY CONSIDERATIONS
The calling process should zero the password as soon as possible to avoid leaving the cleartext password vis-
ible in the process’s address space.

NetBSD 3.0 June 4, 1993 1

GETPEEREID (3) NetBSD Library Functions Manual GETPEEREID (3)

NAME
getpeereid — get the effective credentials of a UNIX-domain peer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

int
getpeereid (int s , uid_t ∗euid , gid_t ∗egid);

DESCRIPTION
The getpeereid () function returns the effective user and group IDs of the peer connected to a
UNIX-domain socket. Thearguments must be aUNIX-domain socket (unix (4)) of typeSOCK_STREAM
on which eitherconnect (2) has been called, or one returned fromaccept (2) after bind (2) and
listen (2) have been called. If non-NULL, the effective used ID is placed ineuid , and the effective group
ID in egid .

The credentials returned to theaccept (2) caller are those of its peer at the time it calledconnect (2); the
credentials returned to theconnect (2) caller are those of its peer at the time it calledbind (2). Thismech-
anism is reliable; there is no way for either side to influence the credentials returned to its peer except by
calling the appropriate system call (i.e., eitherconnect (2) or bind (2)) under different effective creden-
tials.

One common use of this routine is for aUNIX-domain server to verify the credentials of its client.Likewise,
the client can verify the credentials of the server.

IMPLEMENT ATION NOTES
On NetBSD, getpeereid () is implemented in terms of theLOCAL_PEEREID unix (4) socket option.

RETURN VALUES
The getpeereid () function returns the value 0 if successful; otherwise the value −1 is returned and the
global variableerrno is set to indicate the error.

ERRORS
Thegetpeereid () function fails if:

[EBADF] The arguments is not a valid descriptor.

[ENOTSOCK] The arguments is a file, not a socket.

[ENOTCONN] The arguments does not refer to a socket on whichconnect (2) have been called nor
one returned fromlisten (2).

[EINVAL] The arguments does not refer to a socket of typeSOCK_STREAM, or the kernel
returned invalid data.

SEE ALSO
connect (2), getpeername (2), getsockname (2), getsockopt (2), listen (2), unix (4)

HISTORY
Thegetpeereid () function appeared inNetBSD 5.0.

NetBSD 3.0 August 8, 2007 1

GETPROGNAME (3) NetBSD Library Functions Manual GETPROGNAME (3)

NAME
getprogname , setprogname — get/set the name of the current program

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

const char ∗
getprogname (void);

void
setprogname (const char ∗name);

DESCRIPTION
These utility functions get and set the current program’s name as used by various error-reporting functions.

getprogname () returns the name of the current program.This function is typically useful when generat-
ing error messages or other diagnostic output.If the program name has not been set,getprogname () will
returnNULL.

setprogname () sets the name of the current program to be the last pathname component of thename
argument. Itshould be invoked at the start of the program, using theargv[0] passed into the program’s
main () function. A pointer into the string pointed to by thename argument is kept as the program name.
Therefore, the string pointed to byname should not be modified during the rest of the program’s operation.

A program’s name can only be set once, and inNetBSD that is actually done by program start-up code that is
run beforemain () is called. Therefore, inNetBSD, calling setprogname () from main () has no effect.
However, it does serve to increase the portability of the program: on other operating systems,
getprogname () and setprogname () may be implemented by a portability library, and a call to
setprogname () allows that library to know the program name without modifications to that system’s pro-
gram start-up code.

SEE ALSO
err (3), setproctitle (3)

HISTORY
Thegetprogname andsetprogname function calls appeared inNetBSD 1.6.

RESTRICTIONS
The string returned bygetprogname () is supplied by the invoking process and should not be trusted by
setuid or setgid programs.

NetBSD 3.0 March 29, 2008 1

GETPROT OENT (3) NetBSD Library Functions Manual GETPROT OENT (3)

NAME
getprotoent , getprotobynumber , getprotobyname , setprotoent , endprotoent — get
protocol entry

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <netdb.h>

struct protoent ∗
getprotoent ();

struct protoent ∗
getprotobyname (const char ∗name);

struct protoent ∗
getprotobynumber (int proto);

setprotoent (int stayopen);

endprotoent ();

DESCRIPTION
Thegetprotoent (), getprotobyname (), andgetprotobynumber () functions each return a pointer
to an object with the following structure containing the broken-out fields of a line in the network protocol
data base,/etc/protocols .

struct protoent {
char ∗p_name; / ∗ official name of protocol ∗/
char ∗∗p_aliases; / ∗ alias list ∗/
int p_proto; / ∗ protocol number ∗/

};

The members of this structure are:

p_name The official name of the protocol.

p_aliases A zero terminated list of alternative names for the protocol.

p_proto The protocol number.

Thegetprotoent () function reads the next line of the file, opening the file if necessary.

The setprotoent () function opens and rewinds the file. If thestayopen flag is non-zero, the net data
base will not be closed after each call togetprotobyname () or getprotobynumber ().

Theendprotoent () function closes the file.

Thegetprotobyname () function andgetprotobynumber () sequentially search from the beginning of
the file until a matching protocol name or protocol number is found, or untilEOFis encountered.

RETURN VALUES
Null pointer (0) returned onEOFor error.

NetBSD 3.0 June 4, 1993 1

GETPROT OENT (3) NetBSD Library Functions Manual GETPROT OENT (3)

FILES
/etc/protocols

SEE ALSO
protocols (5)

HISTORY
The getprotoent (), getprotobynumber (), getprotobyname (), setprotoent (), and
endprotoent () functions appeared in 4.2BSD.

BUGS
These functions use a static data space; if the data is needed for future use, it should be copied before any
subsequent calls overwrite it. Only the Internet protocols are currently understood.

NetBSD 3.0 June 4, 1993 2

GETPWENT (3) NetBSD Library Functions Manual GETPWENT (3)

NAME
getpwent , getpwent_r , getpwnam , getpwnam_r , getpwuid , getpwuid_r , setpassent ,
setpwent , endpwent — password database operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <pwd.h>

struct passwd ∗
getpwent (void);

int
getpwent_r (struct passwd ∗pw , char ∗buffer , size_t buflen ,

struct passwd ∗∗result);

struct passwd ∗
getpwnam (const char ∗name);

int
getpwnam_r (const char ∗name, struct passwd ∗pw , char ∗buffer , size_t buflen ,

struct passwd ∗∗result);

struct passwd ∗
getpwuid (uid_t uid);

int
getpwuid_r (uid_t uid , struct passwd ∗pw , char ∗buffer , size_t buflen ,

struct passwd ∗∗result);

int
setpassent (int stayopen);

void
setpwent (void);

void
endpwent (void);

DESCRIPTION
These functions operate on the password database which is described inpasswd (5). Eachentry in the data-
base is defined by the structurepasswd found in the include file〈pwd.h 〉:

struct passwd {
char ∗pw_name; / ∗ user name ∗/
char ∗pw_passwd; / ∗ encrypted password ∗/
uid_t pw_uid; / ∗ user uid ∗/
gid_t pw_gid; / ∗ user gid ∗/
time_t pw_change; / ∗ password change time ∗/
char ∗pw_class; / ∗ user login class ∗/
char ∗pw_gecos; / ∗ general information ∗/
char ∗pw_dir; / ∗ home directory ∗/
char ∗pw_shell; / ∗ default shell ∗/
time_t pw_expire; / ∗ account expiration ∗/

};

NetBSD 3.0 April 30, 2008 1

GETPWENT (3) NetBSD Library Functions Manual GETPWENT (3)

The functionsgetpwnam () andgetpwuid () search the password database for the given user name pointed
to by name or user id pointed to byuid respectively, always returning the first one encountered.Identical
user names or user ids may result in undefined behavior.

Thegetpwent () function sequentially reads the password database and is intended for programs that wish
to process the complete list of users.

The functionsgetpwnam_r (), getpwuid_r (), andgetpwent_r () act like their non re-entrant counter-
parts, updating the contents ofpw and storing a pointer to that inresult , and returning0. Storage used by
pw is allocated frombuffer , which is buflen bytes in size. If the requested entry cannot be found,
result will point to NULL and 0 will be returned. If an error occurs, a non-zero error number will be
returned andresult will point to NULL. Calling getpwent_r () from multiple threads will result in each
thread reading a disjoint portion of the password database.

The setpassent () function accomplishes two purposes. First,it causesgetpwent () to “rewind” to the
beginning of the database.Additionally, if stayopen is non-zero, file descriptors are left open, signifi-
cantly speeding up subsequent accesses for all of the functions. (This latter functionality is unnecessary for
getpwent () as it doesn’t close its file descriptors by default.)

It is dangerous for long-running programs to keep the file descriptors open as the database will become out
of date if it is updated while the program is running.

Thesetpwent () function is equivalent tosetpassent () with an argument of zero.

Theendpwent () function closes any open files.

These functions have been written to “shadow” the password file, e.g. allow only certain programs to have
access to the encrypted password. If the process which calls them has an effective uid of 0, the encrypted
password will be returned, otherwise, the password field of the returned structure will point to the string ‘∗’.

RETURN VALUES
The functionsgetpwent (), getpwnam (), andgetpwuid (), return a valid pointer to a passwd structure on
success and aNULL pointer if the entry was not found or an error occured. If an error occured, the global
variableerrno is set to indicate the nature of the failure. Thesetpassent () function returns 0 on failure,
setting the global variableerrno to indicate the nature of the failure, and 1 on success.Theendpwent ()
and setpwent () functions have no return value. Thefunctions getpwnam_r (), getpwuid_r (), and
getpwent_r () return0 on success or entry not found, and non-zero on failure, setting the global variable
errno to indicate the nature of the failure.

ERRORS
The following error codes may be set inerrno for getpwent , getpwent_r , getpwnam , getpwnam_r ,
getpwuid , getpwuid_r , andsetpassent :

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during the database search.

[EMFILE] The limit on open files for this process has been reached.

[ENFILE] The system limit on open files has been reached.

The following error code may be set inerrno for getpwent_r , getpwnam_r , andgetpwuid_r :

[ERANGE] The resultingstruct passwd does not fit in the space defined bybuffer and
buflen

Othererrno values may be set depending on the specific database backends.

NetBSD 3.0 April 30, 2008 2

GETPWENT (3) NetBSD Library Functions Manual GETPWENT (3)

FILES
/etc/pwd.db The insecure password database file
/etc/spwd.db The secure password database file
/etc/master.passwd The current password file
/etc/passwd A Version 7 format password file

SEE ALSO
getlogin (2), getgrent (3), nsswitch.conf (5), passwd (5), passwd.conf (5), pwd_mkdb(8),
vipw (8)

STANDARDS
The getpwnam () and getpwuid (), functions conform toISO/IEC 9945-1:1990 (“POSIX.1”). The
getpwnam_r () and getpwuid_r () functions conform toIEEE Std 1003.1c-1995 (“POSIX.1”). The
endpwent (), getpwent (), and setpwent () functions conform toX/Open Portability Guide Issue 4,
Version 2 (“XPG4.2”) and IEEE Std 1003.1-2004 " (“POSIX.1”) (XSI extension).

HISTORY
The getpwent , getpwnam , getpwuid , setpwent , and endpwent functions appeared in Version 7
AT&T UNIX . The setpassent function appeared in 4.3BSD−Reno. Thefunctionsgetpwnam_r () and
getpwuid_r () appeared inNetBSD 3.0.

BUGS
The functionsgetpwent (), getpwnam (), andgetpwuid (), leave their results in an internal static object
and return a pointer to that object. Subsequent calls to any of these functions will modify the same object.

The functionsgetpwent (), endpwent (), setpassent (), andsetpwent () are fairly useless in a net-
worked environment and should be avoided, if possible.getpwent () makes no attempt to suppress dupli-
cate information if multiple sources are specified innsswitch.conf (5).

COMPATIBILITY
The historic functionsetpwfile () which allowed the specification of alternative password databases, has
been deprecated and is no longer available.

NetBSD 3.0 April 30, 2008 3

GETRAWPARTITION (3) NetBSD Library Functions Manual GETRAWPARTITION (3)

NAME
getrawpartition — get the system “raw” partition

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
getrawpartition (void);

DESCRIPTION
getrawpartition () returns the partition number (‘a’ == 0, ‘b’ == 1, ...) of the “raw” partition of the sys-
tem’s disks, or −1 in case of an error, setting the globalerrno variable. Thepossible values forerrno are the
same as insysctl (3). The“raw” partition is defined as the partition which provides access to the entire
disk, regardless of the disk’s partition map.

SEE ALSO
getmaxpartitions (3), sysctl (3)

HISTORY
Thegetrawpartition function call appeared inNetBSD 1.2.

NetBSD 3.0 May 24, 2006 1

GETRPCENT (3) NetBSD Library Functions Manual GETRPCENT (3)

NAME
getrpcent , getrpcbyname , getrpcbynumber , endrpcent , setrpcent — get RPC entry

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <rpc/rpc.h>

struct rpcent ∗
getrpcent (void);

struct rpcent ∗
getrpcbyname (const char ∗name);

struct rpcent ∗
getrpcbynumber (int number);

void
setrpcent (int stayopen);

void
endrpcent (void);

DESCRIPTION
getrpcent (), getrpcbyname (), andgetrpcbynumber (), each return a pointer to an object with the
following structure containing the broken-out fields of a line in the rpc program number data base,
/etc/rpc :

struct rpcent {
char ∗r_name; / ∗ name of server for this rpc program ∗/
char ∗∗r_aliases; / ∗ alias list ∗/
long r_number; / ∗ rpc program number ∗/

};

The members of this structure are:

r_name The name of the server for this rpc program.

r_aliases A zero terminated list of alternative names for the rpc program.

r_number The rpc program number for this service.

getrpcent () reads the next line of the file, opening the file if necessary.

setrpcent () opens and rewinds the file. If thestayopen flag is non-zero, the net data base will not be
closed after each call togetrpcent () (either directly, or indirectly through one of the other “getrpc” calls).

endrpcent () closes the file.

getrpcbyname () and getrpcbynumber () sequentially search from the beginning of the file until a
matching rpc program name or program number is found, or until end-of-file is encountered.

FILES
/etc/rpc

NetBSD 3.0 August 16, 2004 1

GETRPCENT (3) NetBSD Library Functions Manual GETRPCENT (3)

DIAGNOSTICS
A NULLpointer is returned onEOFor error.

SEE ALSO
rpc (5), rpcinfo (8), ypserv (8)

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

NetBSD 3.0 August 16, 2004 2

GETRPCPORT (3) NetBSDLibrary Functions Manual GETRPCPORT (3)

NAME
getrpcport — get RPC port number

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
int
getrpcport (char ∗host , int prognum , int versnum , int proto);

DESCRIPTION
getrpcport () returns the port number for versionversnum of the RPC programprognum running on
host and using protocolproto . It returns 0 if it cannot contact the portmapper, or if prognum is not reg-
istered. Ifprognum is registered but not with versionversnum , it will still return a port number (for some
version of the program) indicating that the program is indeed registered. Theversion mismatch will be
detected upon the first call to the service.

NetBSD 3.0 October 6, 1987 1

GETSERVENT (3) NetBSD Library Functions Manual GETSERVENT (3)

NAME
getservent , getservbyport , getservbyname , setservent , endservent — get service entry

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <netdb.h>

struct servent ∗
getservent ();

struct servent ∗
getservbyname (const char ∗name, const char ∗proto);

struct servent ∗
getservbyport (int port , const char ∗proto);

void
setservent (int stayopen);

void
endservent (void);

DESCRIPTION
The getservent (), getservbyname (), andgetservbyport () functions each return a pointer to an
object with the following structure containing the broken-out fields of a line in the network services data
base,/etc/services .

struct servent {
char ∗s_name; / ∗ official name of service ∗/
char ∗∗s_aliases; / ∗ alias list ∗/
int s_port; / ∗ port service resides at ∗/
char ∗s_proto; / ∗ protocol to use ∗/

};

The members of this structure are:

s_name The official name of the service.

s_aliases A NULL terminated list of alternative names for the service.

s_port The port number at which the service resides.Port numbers must be given and are returned in
network byte order.

s_proto The name of the protocol to use when contacting the service.

Thegetservent () function reads the next line of the file, opening the file if necessary.

The setservent () function opens and rewinds the file.If the stayopen flag is non-zero, the net data
base will not be closed after each call togetservbyname () or getservbyport ().

Theendservent () function closes the file.

The getservbyname () andgetservbyport () functions sequentially search from the beginning of the
file until a matching protocol name or port number is found, or untilEOFis encountered. If a protocol name
is also supplied (non-NULL), searches must also match the protocol.

NetBSD 3.0 May 25, 1995 1

GETSERVENT (3) NetBSD Library Functions Manual GETSERVENT (3)

FILES
/etc/services

DIAGNOSTICS
Null pointer (0) returned onEOFor error.

SEE ALSO
getprotoent (3), services (5)

HISTORY
The getservent (), getservbyport (), getservbyname (), setservent (), and endservent ()
functions appeared in 4.2BSD.

BUGS
These functions use static data storage; if the data is needed for future use, it should be copied before any
subsequent calls overwrite it. Expecting port numbers to fit in a 32 bit quantity is probably naive.

NetBSD 3.0 May 25, 1995 2

GETSUBOPT (3) NetBSD Library Functions Manual GETSUBOPT (3)

NAME
getsubopt — get sub options from an argument

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

extern char ∗suboptarg

int
getsubopt (char ∗∗optionp , char ∗ const ∗tokens , char ∗∗valuep);

DESCRIPTION
Thegetsubopt () function parses a string containing tokens delimited by one or more tab, space or comma
(‘ , ’) characters. Itis intended for use in parsing groups of option arguments provided as part of a utility
command line.

The argumentoptionp is a pointer to a pointer to the string. The argumenttokens is a pointer to a
NULL-terminated array of pointers to strings.

The getsubopt () function returns the zero-based offset of the pointer in thetokens array referencing a
string which matches the first token in the string, or −1 if the string contains no tokens ortokens does not
contain a matching string.

If the token is of the form ‘‘name=value’’, the location referenced byvaluep will be set to point to the start
of the ‘‘value’’ portion of the token.

On return fromgetsubopt (), optionp will be set to point to the start of the next token in the string, or
the null at the end of the string if no more tokens are present. The external variablesuboptarg will be set
to point to the start of the current token, orNULL if no tokens were present. The argumentvaluep will be
set to point to the ‘‘value’’ portion of the token, orNULL if no ‘‘value’’ portion was present.

EXAMPLES
char ∗tokens[] = {

#define ONE 0
"one",

#define TWO 1
"two",

NULL
};

...

extern char ∗optarg, ∗suboptarg;
char ∗options, ∗value;

while ((ch = getopt(argc, argv, "ab:")) != −1) {
switch(ch) {
case ’a’:

/ ∗ process ‘‘a’’ option ∗/
break;

case ’b’:
options = optarg;

NetBSD 3.0 June 9, 1993 1

GETSUBOPT (3) NetBSD Library Functions Manual GETSUBOPT (3)

while (∗options) {
switch(getsubopt(&options, tokens, &value)) {
case ONE:

/ ∗ process ‘‘one’’ sub option ∗/
break;

case TWO:
/ ∗ process ‘‘two’’ sub option ∗/
if (!value)

error("no value for two");
i = a toi(value);
break;

case −1:
if (suboptarg)

error("unknown sub option %s",
suboptarg);

else
error("missing sub option");

break;
}
break;

}

SEE ALSO
getopt (3), strsep (3)

HISTORY
Thegetsubopt () function first appeared in 4.4BSD.

NetBSD 3.0 June 9, 1993 2

GETTEXT(3) GETTEXT(3)

NAME
gettext, dgettext, dcgettext − translate message

SYNOPSIS
#include <libintl.h>

char * gettext (const char *msgid);
char * dgettext (const char *domainname, const char * msgid);
char * dcgettext (const char *domainname, const char * msgid,

int category);

DESCRIPTION
The gettext, dgettext anddcgettext functions attempt to translate a text string into the user’s native lan-
guage, by looking up the translation in a message catalog.

Themsgidargument identifies the message to be translated. By convention, it is the English version of the
message, with non-ASCII characters replaced by ASCII approximations. This choice allows the translators
to work with message catalogs, called PO files, that contain both the English and the translated versions of
each message, and can be installed using themsgfmt utility.

A message domain is a set of translatablemsgidmessages. Usually, every software package has its own
message domain. The domain name is used to determine the message catalog where the translation is
looked up; it must be a non-empty string. For thegettext function, it is specified through a preceding
textdomain call. For thedgettext anddcgettext functions, it is passed as thedomainnameargument; if this
argument is NULL, the domain name specified through a precedingtextdomain call is used instead.

Translation lookup operates in the context of the current locale. For thegettext anddgettext functions, the
LC_MESSAGES locale facet is used. It is determined by a preceding call to thesetlocalefunction.setlo-
cale(LC_ALL,"") initializes theLC_MESSAGES locale based on the first nonempty value of the three
environment variablesLC_ALL , LC_MESSAGES, LANG ; seesetlocale(3). For thedcgettext function,
the locale facet is determined by thecategoryargument, which should be one of theLC_xxx constants
defined in the <locale.h> header, excluding LC_ALL . In both cases, the functions also use the
LC_CTYPE locale facet in order to convert the translated message from the translator’s codeset to the cur-
rent locale’s codeset, unless overridden by a prior call to thebind_textdomain_codesetfunction.

The message catalog used by the functions is at the pathnamedirname/locale/category/domainname.mo.
Here dirname is the directory specified throughbindtextdomain. Its default is system and configuration
dependent; typically it isprefix/share/locale, whereprefix is the installation prefix of the package.locale is
the name of the current locale facet; the GNU implementation also tries generalizations, such as the lan-
guage name without the territory name.categoryis LC_MESSAGES for the gettext anddgettext func-
tions, or the argument passed to thedcgettextfunction.

If the LANGUAGE environment variable is set to a nonempty value, and the locale is not the "C" locale,
the value ofLANGUAGE is assumed to contain a colon separated list of locale names. The functions will
attempt to look up a translation ofmsgidin each of the locales in turn. This is a GNU extension.

In the "C" locale, or if none of the used catalogs contain a translation formsgid, thegettext, dgettext and
dcgettextfunctions returnmsgid.

RETURN VALUE
If a translation was found in one of the specified catalogs, it is converted to the locale’s codeset and
returned. The resulting string is statically allocated and must not be modified or freed. Otherwisemsgidis
returned.

ERRORS
errno is not modified.

BUGS
The return type ought to beconst char *, but ischar * to avoid warnings in C code predating ANSI C.

When an empty string is used formsgid, the functions may return a nonempty string.

GNU gettext 0.14.4 May 2001 1

GETTEXT(3) GETTEXT(3)

SEE ALSO
ngettext(3), dngettext(3), dcngettext(3), setlocale(3), textdomain(3), bindtextdomain(3), bind_textdo-
main_codeset(3), msgfmt(1)

GNU gettext 0.14.4 May 2001 2

GETTEXT (3) NetBSD Library Functions Manual GETTEXT (3)

NAME
gettext , dgettext , ngettext , dngettext , textdomain , bindtextdomain ,
bind_textdomain_codeset , dcgettext , dcngettext — message handling functions

LIBRARY
Internationalized Message Handling Library (libintl, −lintl)

SYNOPSIS
#include <libintl.h>

char ∗
gettext (const char ∗msgid);

char ∗
dgettext (const char ∗domainname , const char ∗msgid);

char ∗
ngettext (const char ∗msgid1 , const char ∗msgid2 , unsigned long int n);

char ∗
dngettext (const char ∗domainname , const char ∗msgid1 , const char ∗msgid2 ,

unsigned long int n);

char ∗
textdomain (const char ∗domainname);

char ∗
bindtextdomain (const char ∗domainname , const char ∗dirname);

char ∗
bind_textdomain_codeset (const char ∗domainname , const char ∗codeset);

#include <libintl.h>
#include <locale.h>

char ∗
dcgettext (const char ∗domainname , const char ∗msgid , int category);

char ∗
dcngettext (const char ∗domainname , const char ∗msgid1 , const char ∗msgid2 ,

unsigned long int n , int category);

DESCRIPTION
Thegettext (), dgettext (), anddcgettext () functions attempt to retrieve a target string based on the
specifiedmsgid argument within the context of a specific domain and the current locale. The length of
strings returned bygettext (), dgettext (), and dcgettext () is undetermined until the function is
called. Themsgid argument is a nul-terminated string.

The ngettext (), dngettext (), and dcngettext () functions are equivalent to gettext (),
dgettext (), anddcgettext (), respectively, except for the handling of plural forms.Thengettext (),
dngettext (), anddcngettext () functions search for the message string using themsgid1 argument as
the key, using the argumentn to determine the plural form. If no message catalogs are found,msgid1 is
returned ifn == 1 , otherwisemsgid2 is returned.

The LANGUAGEenvironment variable is examined first to determine the message catalogs to be used.The
value of theLANGUAGEenvironment variable is a list of locale names separated by colon (:) character. If the
LANGUAGEenvironment variable is defined, each locale name is tried in the specified order and if a message
catalog containing the requested message is found, the message is returned. If theLANGUAGEenvironment

NetBSD 3.0 November 10, 2004 1

GETTEXT (3) NetBSD Library Functions Manual GETTEXT (3)

variable is defined but failed to locate a message catalog, themsgid string will be returned.

If the LANGUAGEenvironment variable is not defined,LC_ALL, LC_xxx , and LANGenvironment variables
are examined to locate the message catalog, following the convention used by thesetlocale (3) function.

The pathname used to locate the message catalog isdirname/locale/category/domainname.mo ,
where dirname is the directory specified bybindtextdomain (), locale is a locale name determined by the
definition of environment variables, category is LC_MESSAGESif gettext (), ngettext (),
dgettext (), or dngettext () is called, otherwiseLC_xxx where the name is the same as the locale cate-
gory name specified by thecategory argument ofdcgettext () or dcngettext (). domainname is
the name of the domain specified bytextdomain () or the domainname argument ofdgettext (),
dngettext (), dcgettext (), ordcngettext ().

For gettext () andngettext (), the domain used is set by the last valid call totextdomain (). If a valid
call to textdomain () has not been made, the default domain (called messages) is used.

For dgettext (), dngettext (), dcgettext (), anddcngettext (), the domain used is specified by the
domainname argument. Thedomainname argument is equivalent in syntax and meaning to the
domainname argument totextdomain (), except that the selection of the domain is valid only for the
duration of thedgettext (), dngettext (), dcgettext (), ordcngettext () function call.

The dcgettext () and dcngettext () functions require additional argumentcategory for retrieving
message string for other thanLC_MESSAGEScategory. Available value for thecategory argument are
LC_CTYPE, LC_COLLATE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME. The call of
dcgettext (domainname , msgid , LC_MESSAGES) is equivalent to dgettext (domainname ,
msgid). NotethatLC_ALL must not be used.

The textdomain () function sets or queries the name of the current domain of the active LC_MESSAGES
locale category. Thedomainname argument is a nul-terminated string that can contain only the characters
allowed in legal fi lenames.

Thedomainname argument is the unique name of a domain on the system. If there are multiple versions of
the same domain on one system, namespace collisions can be avoided by usingbindtextdomain (). If
textdomain () is not called, a default domain is selected. The setting of domain made by the last valid call
to textdomain () remains valid across subsequent calls tosetlocale (3), andgettext ().

Thedomainname argument is applied to the currently active LC_MESSAGES locale.

The current setting of the domain can be queried without affecting the current state of the domain by calling
textdomain () with domainname set to the NULL pointer. Calling textdomain () with a
domainname argument of aNULLstring sets the domain to the default domain(messages) .

The bindtextdomain () function binds the path predicate for a message domaindomainname to the
value contained in dirname.If domainname is a non-empty string and has not been bound previously,
bindtextdomain () bindsdomainname with dirname .

If domainname is a non-empty string and has been bound previously, bindtextdomain () replaces the
old binding with dirname. The dirname argument can be an absolute pathname being resolved when
gettext (), ngettext (), dgettext (), dngettext (), dcgettext (), or dcngettext () are called.If
domainname is a NULL pointer or an empty string,bindtextdomain () returns aNULL pointer. If
bindtextdomain () is not called, implementation-defined default directory is used.

The bind_textdomain_codeset () function can be used to specify the outputcodeset for message
catalogs for domaindomainname . The codeset argument must be a valid codeset name which can be
used for theiconv_open (3) function.

If the codeset argument is theNULL pointer, bind_textdomain_codeset () returns the currently
selectedcodeset for the domain with the namedomainname . It returns aNULLpointer if nocodeset

NetBSD 3.0 November 10, 2004 2

GETTEXT (3) NetBSD Library Functions Manual GETTEXT (3)

has yet been selected.

Thebind_textdomain_codeset () function can be used several times. If used multiple times, with the
samedomainname argument, the later call overrides the settings made by the earlier one.

The bind_textdomain_codeset () function returns a pointer to a string containing the name of the
selectedcodeset .

SEE ALSO
setlocale (3), nls (7)

HISTORY
The functions are implemented by Citrus project, based on the documentations for GNU gettext.

BUGS
bind_textdomain_codeset () does not work at this moment(it always fails) .

NetBSD 3.0 November 10, 2004 3

GETTTYENT (3) NetBSD Library Functions Manual GETTTYENT (3)

NAME
getttyent , getttynam , setttyent , setttyentpath , endttyent — get ttys file entry

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ttyent.h>

struct ttyent ∗
getttyent ();

struct ttyent ∗
getttynam (char ∗name);

int
setttyent (void);

int
setttyentpath (const char ∗path);

int
endttyent (void);

DESCRIPTION
The getttyent (), and getttynam () functions each return a pointer to an object, with the following
structure, containing the broken-out fields of a line from the tty description file.

struct ttyent {
char ∗ty_name; / ∗ terminal device name ∗/
char ∗ty_getty; / ∗ command to execute ∗/
char ∗ty_type; / ∗ terminal type ∗/

#define TTY_ON 0x01 / ∗ enable logins ∗/
#define TTY_SECURE 0x02 / ∗ allow uid of 0 to login ∗/
#define TTY_LOCAL 0x04 / ∗ set ’CLOCAL’ on open (dev. specific) ∗/
#define TTY_RTSCTS 0x08 / ∗ set ’CRTSCTS’ on open (dev. specific) ∗/
#define TTY_SOFTCAR 0x10 / ∗ ignore hardware carrier (dev. spec.) ∗/
#define TTY_MDMBUF 0x20 / ∗ set ’MDMBUF’ on open (dev. specific) ∗/
#define TTY_DTRCTS 0x40 / ∗ set ’CDTRCTS’ on open (dev. specific) ∗/

int ty_status; / ∗ flag values ∗/
char ∗ty_window; / ∗ command for window manager ∗/
char ∗ty_comment; / ∗ comment field ∗/
char ∗ty_class; / ∗ category of tty usage ∗/

};

The fields are as follows:

ty_name The name of the character-special file.

ty_getty The name of the command invoked by init (8) to initialize tty line characteristics.

ty_type The name of the default terminal type connected to this tty line.

ty_status A mask of bit fields which indicate various actions allowed on this tty line. The possible
flags are as follows:

NetBSD 3.0 April 18, 2006 1

GETTTYENT (3) NetBSD Library Functions Manual GETTTYENT (3)

TTY_ON Enables logins (i.e.,init (8) will start the command referenced by
ty_getty on this entry).

TTY_SECURE Allow users with a uid of 0 to login on this terminal.

TTY_LOCAL If the terminal port’s driver supports it, cause the line to be treated as
‘‘ local.’’

TTY_MDMBUF If the terminal port’s driver supports it, use DTR/DCD hardware flow con-
trol on the line by default.

TTY_RTSCTS If the terminal port’s driver supports it, use full-duplex RTS/CTS hardware
flow control on the line by default.

TTY_SOFTCARIf the terminal port’s driver supports it, ignore hardware carrier on the line.

ty_window The command to execute for a window system associated with the line.

ty_comment Any trailing comment field, with any leading hash marks (‘‘#’’) or whitespace removed.

ty_class A key indexing into a termcap-style database (/etc/ttyclasses) of attributes for this class of
tty. No attributes are currently defined or used, so there are currently no functions to retrieve
them.

If any of the fields pointing to character strings are unspecified, they are returned as null pointers. The field
ty_status will be zero if no flag values are specified.

Seettys (5) for a more complete discussion of the meaning and usage of the fields.

The getttyent () function reads the next line from the ttys file, opening the file if necessary. The
setttyent () function rewinds the file if open, or opens the file if it is unopened.Thesetttyentpath ()
function is equivalent tosetttyent () but accepts an additional argument to read the ttys information from
an alternate file instead of the default location (defined in_PATH_TTYS) . The endttyent () function
closes any open files.

Thegetttynam () function searches from the beginning of the file until a matchingname is found (or until
EOFis encountered).

RETURN VALUES
The routinesgetttyent () andgetttynam () return a null pointer onEOFor error. The setttyent ()
andsetttyentpath () functions andendttyent () return 0 on failure and 1 on success.

FILES
/etc/ttys

SEE ALSO
login (1), ttyslot (3), gettytab (5), termcap (5), ttys (5), getty (8), init (8), ttyflags (8)

HISTORY
Thegetttyent (), getttynam (), setttyent (), andendttyent () functions appeared in 4.3BSD. The
setttyentpath () function appeared inNetBSD 4.0.

BUGS
These functions use static data storage; if the data is needed for future use, it should be copied before any
subsequent calls overwrite it.

NetBSD 3.0 April 18, 2006 2

GETUSERSHELL (3) NetBSD Library Functions Manual GETUSERSHELL (3)

NAME
getusershell , setusershell , endusershell — get valid user shells

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

char ∗
getusershell (void);

void
setusershell (void);

void
endusershell (void);

DESCRIPTION
The getusershell () function returns a pointer to a valid user shell as defined by the system manager in
the shells database as described inshells (5). If the shells database is not available, getusershell ()
behaves as if /bin/sh and/bin/csh were listed.

The getusershell () function reads the next line (opening the file if necessary);setusershell ()
rewinds the file;endusershell () closes it.

FILES
/etc/shells

DIAGNOSTICS
The routinegetusershell () returns a null pointer (0) onEOF.

SEE ALSO
nsswitch.conf (5), shells (5)

HISTORY
Thegetusershell () function appeared in 4.3BSD.

BUGS
The getusershell () function leaves its result in an internal static object and returns a pointer to that
object. Subsequentcalls togetusershell () will modify the same object.

NetBSD 3.0 November 23, 2004 1

GETWC (3) NetBSD Library Functions Manual GETWC (3)

NAME
fgetwc , getwc , getwchar , — get next wide-character from input stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t
fgetwc (FILE ∗stream);

wint_t
getwc (FILE ∗stream);

wint_t
getwchar ();

DESCRIPTION
The fgetwc () function obtains the next input wide-character (if present) from the stream pointed at by
stream , or the next character pushed back on the stream viaungetwc (3).

Thegetwc () function acts essentially identically tofgetwc (), but is a macro that expands in-line.

Thegetwchar () function is equivalent togetwc () with the argument stdin.

RETURN VALUES
If successful, these routines return the next wide-character from thestream . If the stream is at end-of-file
or a read error occurs, the routines returnWEOF. The routinesfeof (3) andferror (3) must be used to dis-
tinguish between end-of-file and error. If an error occurs, the global variableerrno is set to indicate the error.
The end-of-file condition is remembered, even on a terminal, and all subsequent attempts to read will return
WEOFuntil the condition is cleared withclearerr (3).

SEE ALSO
ferror (3), fopen (3), fread (3), putwc (3), stdio (3), ungetwc (3)

STANDARDS
Thefgetwc (), getwc () andgetwchar () functions conform toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 October 24, 2001 1

GLOB (3) NetBSD Library Functions Manual GLOB (3)

NAME
glob , globfree — generate pathnames matching a pattern

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <glob.h>

int
glob (const char ∗ restrict pattern , int flags ,

const int (∗errfunc)(const char ∗, i nt) , glob_t ∗ restrict pglob);

void
globfree (glob_t ∗pglob);

DESCRIPTION
Theglob () function is a pathname generator that implements the rules for file name pattern matching used
by the shell.

The include fileglob.h defines the structure typeglob_t , which contains at least the following fields:

typedef struct {
size_t gl_pathc; / ∗ count of total paths so far ∗/
size_t gl_matchc; / ∗ count of paths matching pattern ∗/
size_t gl_offs; / ∗ reserved at beginning of gl_pathv ∗/
int gl_flags; / ∗ returned flags ∗/
char ∗∗gl_pathv; / ∗ list of paths matching pattern ∗/

} g lob_t;

The argumentpattern is a pointer to a pathname pattern to be expanded. Theglob () argument matches
all accessible pathnames against the pattern and creates a list of the pathnames that match. In order to have
access to a pathname,glob () requires search permission on every component of a path except the last and
read permission on each directory of any filename component ofpattern that contains any of the special
characters ‘∗’, ‘ ?’ or ‘ [’.

Theglob () argument stores the number of matched pathnames into thegl_pathc field, and a pointer to a
list of pointers to pathnames into thegl_pathv field. Thefirst pointer after the last pathname isNULL. If
the pattern does not match any pathnames, the returned number of matched paths is set to zero.

It is the caller’s responsibility to create the structure pointed to bypglob . The glob () function allocates
other space as needed, including the memory pointed to bygl_pathv .

The argumentflags is used to modify the behavior ofglob (). Thevalue of flags is the bitwise inclu-
sive OR of any of the following values defined inglob.h :

GLOB_APPEND Append pathnames generated to the ones from a previous call (or calls) toglob ().
The value ofgl_pathc will be the total matches found by this call and the previous
call(s). Thepathnames are appended to, not merged with the pathnames returned by
the previous call(s). Between calls, the caller must not change the setting of the
GLOB_DOOFFSflag, nor change the value ofgl_offs when GLOB_DOOFFSis
set, nor (obviously) callglobfree () for pglob .

GLOB_DOOFFS Make use of thegl_offs field. If this flag is set,gl_offs is used to specify how
manyNULL pointers to prepend to the beginning of thegl_pathv field. In other
words,gl_pathv will point to gl_offs NULL pointers, followed bygl_pathc
pathname pointers, followed by aNULLpointer.

NetBSD 3.0 February 22, 2008 1

GLOB (3) NetBSD Library Functions Manual GLOB (3)

GLOB_ERR Causesglob () to return when it encounters a directory that it cannot open or read.
Ordinarily,glob () continues to find matches.

GLOB_MARK Each pathname that is a directory that matchespattern has a slash appended.

GLOB_NOCHECK If pattern does not match any pathname, thenglob () returns a list consisting of
only pattern , with the number of total pathnames set to 1, and the number of
matched pathnames set to 0.

GLOB_NOSORT By default, the pathnames are sorted in ascendingASCII order; this flag prevents that
sorting (speeding upglob ()).

The following values may also be included inflags , howev er, they are non-standard extensions toIEEE Std
1003.2 (“POSIX.2”).

GLOB_ALTDIRFUNCThe following additional fields in the pglob structure have been initialized with alter-
nate functions for glob to use to open, read, and close directories and to get stat infor-
mation on names found in those directories.

void ∗(∗gl_opendir)(const char ∗ name);
struct dirent ∗(∗gl_readdir)(void ∗);
void (∗gl_closedir)(void ∗);
int (∗gl_lstat)(const char ∗name, struct stat ∗st);
int (∗gl_stat)(const char ∗name, struct stat ∗st);

This extension is provided to allow programs such asrestore (8) to provide glob-
bing from directories stored on tape.

GLOB_BRACE Pre-process the pattern string to expand{pat,pat,...} strings like csh (1). The
pattern ‘{} ’ is left unexpanded for historical reasons(csh (1) does the same thing to
ease typing offind (1) patterns) .

GLOB_MAGCHAR Set by theglob () function if the pattern included globbing characters. See the
description of the usage of thegl_matchc structure member for more details.

GLOB_NOMAGIC Is the same asGLOB_NOCHECKbut it only appends thepattern if it does not con-
tain any of the special characters ‘‘∗’’ , ‘‘?’’ or ‘ ‘[’’. GLOB_NOMAGICis provided to
simplify implementing the historiccsh (1) globbing behavior and should probably
not be used anywhere else.

GLOB_NOESCAPE Disable the use of the backslash(‘ \ ’) character for quoting.

GLOB_TILDE Expand patterns that start with ‘˜ ’ to user name home directories.

GLOB_LIMIT Limit the amount of memory used by matches toARG_MAX. This option should be
set for programs that can be coerced to a denial of service attack via patterns that
expand to a very large number of matches, such as a long string of∗/../ ∗/..

GLOB_PERIOD Allow metacharacters to match a leading period in a filename.

GLOB_NO_DOTDIRSHide ‘. ’ and ‘.. ’ f rom metacharacter matches, regardless of whether
GLOB_PERIODis set and whether the pattern component begins with a literal
period.

If, during the search, a directory is encountered that cannot be opened or read anderrfunc is non-NULL,
glob () calls (∗errfunc)(path, errno) . This may be unintuitive: a pattern like ∗/Makefile will
try to stat (2) foo/Makefile ev en if foo is not a directory, resulting in a call toerrfunc . The error
routine can suppress this action by testing forENOENTandENOTDIR; howev er, the GLOB_ERRflag will
still cause an immediate return when this happens.

NetBSD 3.0 February 22, 2008 2

GLOB (3) NetBSD Library Functions Manual GLOB (3)

If errfunc returns non-zero,glob () stops the scan and returnsGLOB_ABORTEDafter settinggl_pathc
and gl_pathv to reflect any paths already matched. This also happens if an error is encountered and
GLOB_ERRis set inflags , reg ardless of the return value oferrfunc , if called. If GLOB_ERRis not set
and eithererrfunc is NULLor errfunc returns zero, the error is ignored.

Theglobfree () function frees any space associated withpglob from a previous call(s) toglob ().

The historicalGLOB_QUOTEflag is no longer supported.PerIEEE Std 1003.2-1992 (“POSIX.2”), backslash
escaping of special characters is the default behaviour; it may be disabled by specifying the
GLOB_NOESCAPEflag.

RETURN VALUES
On successful completion,glob () returns zero.In addition the fields ofpglob contain the values described
below:

gl_pathc contains the total number of matched pathnames so far. This includes other matches from
previous invocations ofglob () if GLOB_APPENDwas specified.

gl_matchc contains the number of matched pathnames in the current invocation ofglob ().

gl_flags contains a copy of the flags parameter with the bitGLOB_MAGCHARset if pattern
contained any of the special characters ‘‘∗’’ , ‘‘?’’ or ‘ ‘[’’, cleared if not.

gl_pathv contains a pointer to aNULL-terminated list of matched pathnames.However, if
gl_pathc is zero, the contents ofgl_pathv are undefined.

If glob () terminates due to an error, it setserrno and returns one of the following non-zero constants, which
are defined in the include file〈glob.h 〉:

GLOB_ABORTED The scan was stopped because an error was encountered and eitherGLOB_ERRwas
set or(∗errfunc)() returned non-zero.

GLOB_NOMATCH The pattern does not match any existing pathname, andGLOB_NOCHECKwas not set
in flags .

GLOB_NOSPACE An attempt to allocate memory failed, or iferrno was 0GLOB_LIMIT was specified
in the flags andARG_MAXpatterns were matched.

The historicalGLOB_ABENDreturn constant is no longer supported.Portable applications should use the
GLOB_ABORTEDconstant instead.

The argumentspglob−>gl_pathc andpglob−>gl_pathv are still set as specified above.

ENVIRONMENT
HOMEIf defined, used as the home directory of the current user in tilde expansions.

EXAMPLES
A rough equivalent of ls -l ∗.c ∗.h can be obtained with the following code:

glob_t g;

g.gl_offs = 2;
glob(" ∗.c", GLOB_DOOFFS, NULL, &g);
glob(" ∗.h", GLOB_DOOFFS | GLOB_APPEND, NULL, &g);
g.gl_pathv[0] = "ls";
g.gl_pathv[1] = "-l";
execvp("ls", g.gl_pathv);

NetBSD 3.0 February 22, 2008 3

GLOB (3) NetBSD Library Functions Manual GLOB (3)

SEE ALSO
sh (1), fnmatch (3), regexp (3)

STANDARDS
The glob () function is expected to beIEEE Std 1003.2 (“POSIX.2”) compatible with the exception that the
flags GLOB_ALTDIRFUNC, GLOB_BRACE, GLOB_MAGCHAR, GLOB_NOMAGIC, GLOB_TILDE, and
GLOB_LIMIT and the fieldsgl_matchc andgl_flags should not be used by applications striving for
strict POSIXconformance.

HISTORY
Theglob () andglobfree () functions first appeared in 4.4BSD.

BUGS
Patterns longer thanMAXPATHLENmay cause unchecked errors.

Theglob () function may fail and seterrno for any of the errors specified for the library routinesstat (2),
closedir (3), opendir (3), readdir (3), malloc (3), andfree (3).

NetBSD 3.0 February 22, 2008 4

GRANTPT (3) NetBSD Library Functions Manual GRANTPT (3)

NAME
grantpt — grant access to a slave pseudo-terminal device

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
grantpt (int fildes);

DESCRIPTION
The grantpt () function changes the mode and ownership of the slave pseudo-terminal device that corre-
sponds to the master pseudo-terminal device associated withfildes to be owned by the real user id of the
calling process, group id oftty . The permissions are set to readable and writable by owner, and writable by
group. If the slave pseudo-terminal device was being accessed by other file descriptors at the time, all such
access will be revoked.

RETURN VALUES
If successful,grantpt () returns 0; otherwise a value of −1 is returned anderrno is set to indicate the error.

ERRORS
Thegrantpt () function will fail if:

[EACCESS] the corresponding pseudo-terminal device could not be accessed.

[EBADF] fildes is not a valid descriptor.

[EINVAL] fildes is not associated with a master pseudo-terminal device.

NOTES
Setting the group totty and revoking accesses by other file descriptors areNetBSD extensions. Calling
grantpt () is equivalent to:

ioctl(fildes, TIOCGRANTPT, 0);

SEE ALSO
ioctl (2), posix_openpt (3), ptsname (3), unlockpt (3)

STANDARDS
The grantpt () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”). Its first release was inX/Open
Portability Guide Issue 4, Version 2 (“XPG4.2”).

NetBSD 3.0 May 25, 2004 1

GSS_ACQUIRE_CRED (3) NetBSD Library Functions Manual GSS_ACQUIRE_CRED (3)

NAME
gss_accept_sec_context , gss_acquire_cred , gss_add_cred ,
gss_add_oid_set_member , gss_canonicalize_name , gss_compare_name ,
gss_context_time , gss_create_empty_oid_set , gss_delete_sec_context ,
gss_display_name , gss_display_status , gss_duplicate_name , gss_export_name ,
gss_export_sec_context , gss_get_mic , gss_import_name , gss_import_sec_context ,
gss_indicate_mechs , gss_init_sec_context , gss_inquire_context ,
gss_inquire_cred , gss_inquire_cred_by_mech , gss_inquire_mechs_for_name ,
gss_inquire_names_for_mech , gss_krb5_ccache_name , gss_krb5_compat_des3_mic ,
gss_krb5_copy_ccache , gss_krb5_import_cred
gsskrb5_extract_authz_data_from_sec_context ,
gsskrb5_register_acceptor_identity , gss_krb5_import_ccache ,
gss_krb5_get_tkt_flags , gss_process_context_token , gss_release_buffer ,
gss_release_cred , gss_release_name , gss_release_oid_set , gss_seal , gss_sign ,
gss_test_oid_set_member , gss_unseal , gss_unwrap , gss_verify , gss_verify_mic ,
gss_wrap , gss_wrap_size_limit — Generic Security Service Application Program Interface library

LIBRARY
GSS-API library (libgssapi, -lgssapi)

SYNOPSIS
#include <gssapi/gssapi.h>

OM_uint32
gss_accept_sec_context (OM_uint32 ∗ minor_status ,

gss_ctx_id_t ∗ context_handle ,
const gss_cred_id_t acceptor_cred_handle ,
const gss_buffer_t input_token_buffer ,
const gss_channel_bindings_t input_chan_bindings ,
gss_name_t ∗ src_name , gss_OID ∗ mech_type , gss_buffer_t output_token ,
OM_uint32 ∗ ret_flags , OM_uint32 ∗ time_rec ,
gss_cred_id_t ∗ delegated_cred_handle);

OM_uint32
gss_acquire_cred (OM_uint32 ∗ minor_status , const gss_name_t desired_name ,

OM_uint32 time_req , const gss_OID_set desired_mechs ,
gss_cred_usage_t cred_usage , gss_cred_id_t ∗ output_cred_handle ,
gss_OID_set ∗ actual_mechs , OM_uint32 ∗ time_rec);

OM_uint32
gss_add_cred (OM_uint32 ∗minor_status ,

const gss_cred_id_t input_cred_handle , const gss_name_t desired_name ,
const gss_OID desired_mech , gss_cred_usage_t cred_usage ,
OM_uint32 initiator_time_req , OM_uint32 acceptor_time_req ,
gss_cred_id_t ∗output_cred_handle , gss_OID_set ∗actual_mechs ,
OM_uint32 ∗initiator_time_rec , OM_uint32 ∗acceptor_time_rec);

OM_uint32
gss_add_oid_set_member (OM_uint32 ∗ minor_status , const gss_OID member_oid ,

gss_OID_set ∗ oid_set);

OM_uint32
gss_canonicalize_name (OM_uint32 ∗ minor_status ,

const gss_name_t input_name , const gss_OID mech_type ,

NetBSD 3.0 October 26, 2005 1

GSS_ACQUIRE_CRED (3) NetBSD Library Functions Manual GSS_ACQUIRE_CRED (3)

gss_name_t ∗ output_name);

OM_uint32
gss_compare_name (OM_uint32 ∗ minor_status , const gss_name_t name1 ,

const gss_name_t name2 , int ∗ name_equal);

OM_uint32
gss_context_time (OM_uint32 ∗ minor_status ,

const gss_ctx_id_t context_handle , OM_uint32 ∗ time_rec);

OM_uint32
gss_create_empty_oid_set (OM_uint32 ∗ minor_status , gss_OID_set ∗ oid_set);

OM_uint32
gss_delete_sec_context (OM_uint32 ∗ minor_status ,

gss_ctx_id_t ∗ context_handle , gss_buffer_t output_token);

OM_uint32
gss_display_name (OM_uint32 ∗ minor_status , const gss_name_t input_name ,

gss_buffer_t output_name_buffer , gss_OID ∗ output_name_type);

OM_uint32
gss_display_status (OM_uint32 ∗minor_status , OM_uint32 status_value ,

int status_type , const gss_OID mech_type , OM_uint32 ∗message_context ,
gss_buffer_t status_string);

OM_uint32
gss_duplicate_name (OM_uint32 ∗ minor_status , const gss_name_t src_name ,

gss_name_t ∗ dest_name);

OM_uint32
gss_export_name (OM_uint32 ∗ minor_status , const gss_name_t input_name ,

gss_buffer_t exported_name);

OM_uint32
gss_export_sec_context (OM_uint32 ∗ minor_status ,

gss_ctx_id_t ∗ context_handle , gss_buffer_t interprocess_token);

OM_uint32
gss_get_mic (OM_uint32 ∗ minor_status , const gss_ctx_id_t context_handle ,

gss_qop_t qop_req , const gss_buffer_t message_buffer ,
gss_buffer_t message_token);

OM_uint32
gss_import_name (OM_uint32 ∗ minor_status ,

const gss_buffer_t input_name_buffer , const gss_OID input_name_type ,
gss_name_t ∗ output_name);

OM_uint32
gss_import_sec_context (OM_uint32 ∗ minor_status ,

const gss_buffer_t interprocess_token , gss_ctx_id_t ∗ context_handle);

OM_uint32
gss_indicate_mechs (OM_uint32 ∗ minor_status , gss_OID_set ∗ mech_set);

OM_uint32
gss_init_sec_context (OM_uint32 ∗ minor_status ,

const gss_cred_id_t initiator_cred_handle ,
gss_ctx_id_t ∗ context_handle , const gss_name_t target_name ,

NetBSD 3.0 October 26, 2005 2

GSS_ACQUIRE_CRED (3) NetBSD Library Functions Manual GSS_ACQUIRE_CRED (3)

const gss_OID mech_type , OM_uint32 req_flags , OM_uint32 time_req ,
const gss_channel_bindings_t input_chan_bindings ,
const gss_buffer_t input_token , gss_OID ∗ actual_mech_type ,
gss_buffer_t output_token , OM_uint32 ∗ ret_flags ,
OM_uint32 ∗ time_rec);

OM_uint32
gss_inquire_context (OM_uint32 ∗ minor_status ,

const gss_ctx_id_t context_handle , gss_name_t ∗ src_name ,
gss_name_t ∗ targ_name , OM_uint32 ∗ lifetime_rec , gss_OID ∗ mech_type ,
OM_uint32 ∗ ctx_flags , int ∗ locally_initiated , int ∗ open_context);

OM_uint32
gss_inquire_cred (OM_uint32 ∗ minor_status ,

const gss_cred_id_t cred_handle , gss_name_t ∗ name,
OM_uint32 ∗ lifetime , gss_cred_usage_t ∗ cred_usage ,
gss_OID_set ∗ mechanisms);

OM_uint32
gss_inquire_cred_by_mech (OM_uint32 ∗ minor_status ,

const gss_cred_id_t cred_handle , const gss_OID mech_type ,
gss_name_t ∗ name, OM_uint32 ∗ initiator_lifetime ,
OM_uint32 ∗ acceptor_lifetime , gss_cred_usage_t ∗ cred_usage);

OM_uint32
gss_inquire_mechs_for_name (OM_uint32 ∗ minor_status ,

const gss_name_t input_name , gss_OID_set ∗ mech_types);

OM_uint32
gss_inquire_names_for_mech (OM_uint32 ∗ minor_status ,

const gss_OID mechanism , gss_OID_set ∗ name_types);

OM_uint32
gss_krb5_ccache_name (OM_uint32 ∗minor , const char ∗name,

const char ∗∗old_name);

OM_uint32
gss_krb5_copy_ccache (OM_uint32 ∗minor , gss_cred_id_t cred , krb5_ccache out);

OM_uint32
gss_krb5_import_cred (OM_uint32 ∗minor_status , krb5_ccache id ,

krb5_principal keytab_principal , krb5_keytab keytab ,
gss_cred_id_t ∗cred);

OM_uint32
gss_krb5_compat_des3_mic (OM_uint32 ∗ minor_status ,

gss_ctx_id_t context_handle , int onoff);

OM_uint32
gsskrb5_extract_authz_data_from_sec_context (OM_uint32 ∗minor_status ,

gss_ctx_id_t context_handle , int ad_type , gss_buffer_t ad_data);

OM_uint32
gsskrb5_register_acceptor_identity (const char ∗identity);

OM_uint32
gss_krb5_import_cache (OM_uint32 ∗minor , krb5_ccache id , krb5_keytab keytab ,

gss_cred_id_t ∗cred);

NetBSD 3.0 October 26, 2005 3

GSS_ACQUIRE_CRED (3) NetBSD Library Functions Manual GSS_ACQUIRE_CRED (3)

OM_uint32
gss_krb5_get_tkt_flags (OM_uint32 ∗minor_status ,

gss_ctx_id_t context_handle , OM_uint32 ∗tkt_flags);

OM_uint32
gss_process_context_token (OM_uint32 ∗ minor_status ,

const gss_ctx_id_t context_handle , const gss_buffer_t token_buffer);

OM_uint32
gss_release_buffer (OM_uint32 ∗ minor_status , gss_buffer_t buffer);

OM_uint32
gss_release_cred (OM_uint32 ∗ minor_status , gss_cred_id_t ∗ cred_handle);

OM_uint32
gss_release_name (OM_uint32 ∗ minor_status , gss_name_t ∗ input_name);

OM_uint32
gss_release_oid_set (OM_uint32 ∗ minor_status , gss_OID_set ∗ set);

OM_uint32
gss_seal (OM_uint32 ∗ minor_status , gss_ctx_id_t context_handle ,

int conf_req_flag , int qop_req , gss_buffer_t input_message_buffer ,
int ∗ conf_state , gss_buffer_t output_message_buffer);

OM_uint32
gss_sign (OM_uint32 ∗ minor_status , gss_ctx_id_t context_handle ,

int qop_req , gss_buffer_t message_buffer , gss_buffer_t message_token);

OM_uint32
gss_test_oid_set_member (OM_uint32 ∗ minor_status , const gss_OID member ,

const gss_OID_set set , int ∗ present);

OM_uint32
gss_unseal (OM_uint32 ∗ minor_status , gss_ctx_id_t context_handle ,

gss_buffer_t input_message_buffer , gss_buffer_t output_message_buffer ,
int ∗ conf_state , int ∗ qop_state);

OM_uint32
gss_unwrap (OM_uint32 ∗ minor_status , const gss_ctx_id_t context_handle ,

const gss_buffer_t input_message_buffer ,
gss_buffer_t output_message_buffer , int ∗ conf_state ,
gss_qop_t ∗ qop_state);

OM_uint32
gss_verify (OM_uint32 ∗ minor_status , gss_ctx_id_t context_handle ,

gss_buffer_t message_buffer , gss_buffer_t token_buffer ,
int ∗ qop_state);

OM_uint32
gss_verify_mic (OM_uint32 ∗ minor_status ,

const gss_ctx_id_t context_handle , const gss_buffer_t message_buffer ,
const gss_buffer_t token_buffer , gss_qop_t ∗ qop_state);

OM_uint32
gss_wrap (OM_uint32 ∗ minor_status , const gss_ctx_id_t context_handle ,

int conf_req_flag , gss_qop_t qop_req ,
const gss_buffer_t input_message_buffer , int ∗ conf_state ,

NetBSD 3.0 October 26, 2005 4

GSS_ACQUIRE_CRED (3) NetBSD Library Functions Manual GSS_ACQUIRE_CRED (3)

gss_buffer_t output_message_buffer);

OM_uint32
gss_wrap_size_limit (OM_uint32 ∗ minor_status ,

const gss_ctx_id_t context_handle , int conf_req_flag ,
gss_qop_t qop_req , OM_uint32 req_output_size ,
OM_uint32 ∗ max_input_size);

DESCRIPTION
Generic Security Service API (GSS-API) version 2, and its C binding, is described inRFC2743 and
RFC2744. Version 1 (deprecated) of the C binding is described inRFC1509.

Heimdals GSS-API implementation supports the following mechanisms

• GSS_KRB5_MECHANISM

• GSS_SPNEGO_MECHANISM

GSS-API have generic name types that all mechanism are supposed to implement (if possible):

• GSS_C_NT_USER_NAME

• GSS_C_NT_MACHINE_UID_NAME

• GSS_C_NT_STRING_UID_NAME

• GSS_C_NT_HOSTBASED_SERVICE

• GSS_C_NT_ANONYMOUS

• GSS_C_NT_EXPORT_NAME

GSS-API implementations that supports Kerberos 5 have some additional name types:

• GSS_KRB5_NT_PRINCIPAL_NAME

• GSS_KRB5_NT_USER_NAME

• GSS_KRB5_NT_MACHINE_UID_NAME

• GSS_KRB5_NT_STRING_UID_NAME

In GSS-API, names have two forms, internal names and contiguous string names.

• Internal name and mechanism name

Internal names are implementation specific representation of a GSS-API name.Mechanism names
special form of internal names corresponds to one and only one mechanism.

In GSS-API an internal name is stored in agss_name_t .

• Contiguous string name and exported name

Contiguous string names are gssapi names stored in aOCTET STRINGthat together with a name type
identifier (OID) uniquely specifies a gss-name.A special form of the contiguous string name is the
exported name that have a OID embedded in the string to make it unique. Exportedname have the name-
typeGSS_C_NT_EXPORT_NAME.

In GSS-API an contiguous string name is stored in agss_buffer_t .

Exported names also have the property that they are specified by the mechanism itself and compatible
between diffrent GSS-API implementations.

NetBSD 3.0 October 26, 2005 5

GSS_ACQUIRE_CRED (3) NetBSD Library Functions Manual GSS_ACQUIRE_CRED (3)

ACCESS CONTROL
There are two ways of comparing GSS-API names, either comparing two internal names with each other or
two contiguous string names with either other.

To compare two internal names with each other, import (if needed) the names withgss_import_name ()
into the GSS-API implementation and the compare the imported name withgss_compare_name ().

Importing names can be slow, so when its possible to store exported names in the access control list, compar-
ing contiguous string name might be better.

when comparing contiguous string name, first export them into aGSS_C_NT_EXPORT_NAMEname with
gss_export_name () and then compare withmemcmp(3).

Note that there are might be a difference between the two methods of comparing names. The first (using
gss_compare_name ()) will compare to (unauthenticated) names are the same.The second will compare
if a mechanism will authenticate them as the same principal.

For example, ifgss_import_name () name was used withGSS_C_NO_OIDthe default syntax is used for
all mechanism the GSS-API implementation supports. When compare the imported name of
GSS_C_NO_OIDit may match serveral mechanism names (MN).

The resulting name fromgss_display_name () must not be used for acccess control.

FUNCTIONS
gss_display_name () takes the gss name ininput_name and puts a printable form in
output_name_buffer . output_name_buffer should be freed when done using
gss_release_buffer (). output_name_type can either beNULL or a pointer to agss_OID and
will in the latter case contain the OID type of the name.The name must only be used for printing. If access
control is needed, see sectionACCESS CONTROL.

gss_inquire_context () returns information about the context. Informationis available even after the
context have expired. lifetime_rec argument is set toGSS_C_INDEFINITE (dont expire) or the num-
ber of seconds that the context is still valid. A value of 0 means that the context is expired. mech_type
argument should be considered readonly and must not be released.src_name anddest_name () are both
mechanims names and must be released withgss_release_name () when no longer used.

gss_context_time will return the amount of time (in seconds) of the context is still valid. If its expired
time_rec will be set to 0 andGSS_S_CONTEXT_EXPIREDreturned.

gss_sign (), gss_verify (), gss_seal (), andgss_unseal () are part of the GSS-API V1 interface
and are obsolete. The functions should not be used for new applications. They are provided so that version 1
applications can link against the library.

EXTENSIONS
gss_krb5_ccache_name () sets the internal kerberos 5 credential cache name toname. The old name is
returned inold_name , and must not be freed. The data allocated forold_name is free upon next call to
gss_krb5_ccache_name (). Thisfunction is not threadsafe ifold_name argument is used.

gss_krb5_copy_ccache () will extract the krb5 credentials that are transferred from the initiator to the
acceptor when using token delegation in the Kerberos mechanism. The acceptor receives the delegated token
in the last argument togss_accept_sec_context ().

gss_krb5_import_cred () will import the krb5 credentials (both keytab and/or credential cache) into
gss credential so it can be used withing GSS-API.Theccache is copied by reference and thus shared, so if
the credential is destroyed withkrb5_cc_destroy , all users of thepgss_cred_id_t returned by
gss_krb5_import_ccache () will fail.

NetBSD 3.0 October 26, 2005 6

GSS_ACQUIRE_CRED (3) NetBSD Library Functions Manual GSS_ACQUIRE_CRED (3)

gsskrb5_register_acceptor_identity () sets the Kerberos 5 filebased keytab that the acceptor
will use. Theidentifier is the file name.

gsskrb5_extract_authz_data_from_sec_context () extracts the Kerberos authorizationdata
that may be stored within the context. Tha caller must free the returned buffer ad_data with
gss_release_buffer () upon success.

gss_krb5_get_tkt_flags () return the ticket flags for the kerberos ticket receive when authenticating
the initiator. Only valid on the acceptor context.

gss_krb5_compat_des3_mic () turns on or off the compatibility with older version of Heimdal using
des3 get and verify mic, this is way to programmatically set the [gssapi]broken_des3_mic and [gssapi]cor-
rect_des3_mic flags (see COMPATIBILITY section in gssapi (3)). If the CPP symbol
GSS_C_KRB5_COMPAT_DES3_MIC is present, gss_krb5_compat_des3_mic () exists.
gss_krb5_compat_des3_mic () will be removed in a later version of the GSS-API library.

SEE ALSO
gssapi (3), krb5 (3), krb5_ccache (3), kerberos (8)

NetBSD 3.0 October 26, 2005 7

GSSAPI (3) NetBSD Library Functions Manual GSSAPI (3)

NAME
gssapi — Generic Security Service Application Program Interface library

LIBRARY
GSS-API Library (libgssapi, -lgssapi)

DESCRIPTION
The Generic Security Service Application Program Interface (GSS-API) provides security services to callers
in a generic fashion, supportable with a range of underlying mechanisms and technologies and hence allow-
ing source-level portability of applications to different environments.

The GSS-API implementation in Heimdal implements the Kerberos 5 and the SPNEGO GSS-API security
mechanisms.

LIST OF FUNCTIONS
These functions constitute the gssapi library, libgssapi. Declarations for these functions may be obtained
from the include filegssapi/gssapi.h .

Name/Page Description

gss_accept_sec_context.3
gss_acquire_cred.3
gss_add_cred.3
gss_add_oid_set_member.3
gss_canonicalize_name.3
gss_compare_name.3
gss_context_time.3
gss_create_empty_oid_set.3
gss_delete_sec_context.3
gss_display_name.3
gss_display_status.3
gss_duplicate_name.3
gss_export_name.3
gss_export_sec_context.3
gss_get_mic.3
gss_import_name.3
gss_import_sec_context.3
gss_indicate_mechs.3
gss_init_sec_context.3
gss_inquire_context.3
gss_inquire_cred.3
gss_inquire_cred_by_mech.3
gss_inquire_mechs_for_name.3
gss_inquire_names_for_mech.3
gss_krb5_ccache_name.3
gss_krb5_compat_des3_mic.3
gss_krb5_copy_ccache.3
gss_krb5_extract_authz_data_from_sec_context.3
gss_krb5_import_ccache.3
gss_process_context_token.3
gss_release_buffer.3
gss_release_cred.3

NetBSD 3.0 April 20, 2005 1

GSSAPI (3) NetBSD Library Functions Manual GSSAPI (3)

gss_release_name.3
gss_release_oid_set.3
gss_seal.3
gss_sign.3
gss_test_oid_set_member.3
gss_unseal.3
gss_unwrap.3
gss_verify.3
gss_verify_mic.3
gss_wrap.3
gss_wrap_size_limit.3

COMPATIBILITY
The Heimdal GSS-API implementation had a bug in releases before 0.6 that made it fail to inter-operate
when using DES3 with other GSS-API implementations when usinggss_get_mic () /
gss_verify_mic (). It is possible to modify the behavior of the generator of the MIC with the
krb5.conf configuration file so that old clients/servers will still work.

New clients/servers will try both the old and new MIC in Heimdal 0.6. In 0.7 it will check only if configured
- the compatibility code will be removed in 0.8.

Heimdal 0.6 still generates by default the broken GSS-API DES3 mic, this will change in 0.7 to generate cor-
rect des3 mic.

To turn on compatibility with older clients and servers, change the[gssapi] broken_des3_mic in
krb5.conf that contains a list of globbing expressions that will be matched against the server name.To
turn off generation of the old (incompatible) mic of the MIC use[gssapi] correct_des3_mic .

If a match for a entry is in both[gssapi] correct_des3_mic and[gssapi] broken_des3_mic ,
the later will override.

This config option modifies behaviour for both clients and servers.

Microsoft implemented SPNEGO to Windows2000, however, they manage to get it wrong, their implementa-
tion didn’t fill in the MechListMIC in the reply token with the right content. There is a work around for this
problem, but not all implementation support it.

Heimdal defaults to correct SPNEGO when the the kerberos implementation uses CFX, or when it is config-
ured by the user. To turn on compatibility with peers, use option[gssapi] require_mechlist_mic .

EXAMPLES
[gssapi]

broken_des3_mic = cvs/ ∗@SU.SE
broken_des3_mic = host/ ∗@E.KTH.SE
correct_des3_mic = host/ ∗@SU.SE
require_mechlist_mic = host/ ∗@SU.SE

BUGS
All of 0.5.x versions ofheimdal had broken token delegations in the client side, the server side was cor-
rect.

SEE ALSO
krb5 (3), krb5.conf (5), kerberos (8)

NetBSD 3.0 April 20, 2005 2

HASH (3) NetBSD Library Functions Manual HASH (3)

NAME
hash — hash database access method

SYNOPSIS
#include <sys/types.h>
#include <db.h>

DESCRIPTION
The routinedbopen () is the library interface to database files. One of the supported file formats is hash
files. Thegeneral description of the database access methods is indbopen (3), this manual page describes
only the hash specific information.

The hash data structure is an extensible, dynamic hashing scheme.

The access method specific data structure provided todbopen () is defined in the〈db.h 〉 include file as fol-
lows:

typedef struct {
u_int bsize;
u_int ffactor;
u_int nelem;
u_int cachesize;
uint32_t (∗hash)(const void ∗, s ize_t);
int lorder;

} H ASHINFO;

The elements of this structure are as follows:

bsize bsize defines the hash table bucket size, and is, by default, 256 bytes. It may be preferable
to increase the page size for disk-resident tables and tables with large data items.

ffactor ffactor indicates a desired density within the hash table. It is an approximation of the
number of keys allowed to accumulate in any one bucket, determining when the hash table
grows or shrinks. The default value is 8.

nelem nelem is an estimate of the final size of the hash table.If not set or set too low, hash tables
will expand gracefully as keys are entered, although a slight performance degradation may
be noticed. The default value is 1.

cachesize A suggested maximum size, in bytes, of the memory cache. This value isonly advisory, and
the access method will allocate more memory rather than fail.

hash hash is a user defined hash function.Since no hash function performs equally well on all
possible data, the user may find that the built-in hash function does poorly on a particular
data set. User specified hash functions must take two arguments (a pointer to a byte string
and a length) and return a 32-bit quantity to be used as the hash value.

lorder The byte order for integers in the stored database metadata. The number should represent
the order as an integer; for example, big endian order would be the number 4,321.If
lorder is 0 (no order is specified) the current host order is used.If the file already exists,
the specified value is ignored and the value specified when the tree was created is used.

If the file already exists (and theO_TRUNCflag is not specified), the values specified for the parameters
bsize , ffactor , lorder , and nelem are ignored and the values specified when the tree was created are
used.

NetBSD 3.0 April 17, 2003 1

HASH (3) NetBSD Library Functions Manual HASH (3)

If a hash function is specified,hash_open () will attempt to determine if the hash function specified is the
same as the one with which the database was created, and will fail if it is not.

ERRORS
Thehash access method routines may fail and seterrno for any of the errors specified for the library routine
dbopen (3).

SEE ALSO
btree (3), dbopen (3), mpool (3), recno (3)

Per-Ake Larson, "Dynamic Hash Tables",Communications of the ACM, April 1988.

Margo Seltzer, "A New Hash Package for UNIX",USENIX Proceedings, Winter 1991.

BUGS
Only big and little endian byte order is supported.

NetBSD 3.0 April 17, 2003 2

HCREATE (3) NetBSD Library Functions Manual HCREATE (3)

NAME
hcreate , hdestroy , hsearch — manage hash search table

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <search.h>

int
hcreate (size_t nel);

void
hdestroy (void);

ENTRY ∗
hsearch (ENTRY item , ACTION action);

DESCRIPTION
Thehcreate (), hdestroy () andhsearch () functions manage hash search tables.

The hcreate () function allocates and initializes the table.The nel argument specifies an estimate of the
maximum number of entries to be held by the table. Unless further memory allocation fails, supplying an
insufficient nel value will not result in functional harm, although a performance degradation may occur.
Initialization using thehcreate () function is mandatory prior to any access operations usinghsearch ().

The hdestroy () function destroys a table previously created usinghcreate (). After a call to
hdestroy (), the data can no longer be accessed.

Thehsearch () function is used to search to the hash table. It returns a pointer into the hash table indicat-
ing the address of an item.The item argument is of typeENTRY, a structural type which contains the fol-
lowing members:

char ∗key comparison key.
void ∗data pointer to data associated withkey .

The key comparison function used byhsearch () is strcmp (3).

Theaction argument is of typeACTION, an enumeration type which defines the following values:
ENTER Insert item into the hash table. If an existing item with the same key is found, it is not

replaced. Notethat thekey anddata elements ofitem are used directly by the new ta-
ble entry. The storage for the key must not be modified during the lifetime of the hash ta-
ble.

FIND Search the hash table without insertingitem .

RETURN VALUES
If successful, thehcreate () function returns a non-zero value. Otherwise,a value of 0 is returned and
errno is set to indicate the error.

Thehdestroy () functions returns no value.

If successful, thehsearch () function returns a pointer to hash table entry matching the provided key. If the
action isFIND and the item was not found, or if the action isENTERand the insertion failed, NULL is
returned anderrno is set to indicate the error. If the action isENTERand an entry already existed in the table
matching the given key, the existing entry is returned and is not replaced.

NetBSD 3.0 February 13, 2001 1

HCREATE (3) NetBSD Library Functions Manual HCREATE (3)

ERRORS
Thehcreate () andhsearch () functions will fail if:

[ENOMEM] Insufficient memory is available.

SEE ALSO
bsearch (3), lsearch (3), malloc (3), strcmp (3)

STANDARDS
The hcreate (), hdestroy () and hsearch () functions conform toX/Open Portability Guide Issue 4,
Version 2 (“XPG4.2”).

HISTORY
Thehcreate (), hdestroy () andhsearch () functions first appeared inAT&T System VUNIX .

BUGS
The interface permits the use of only one hash table at a time.

NetBSD 3.0 February 13, 2001 2

HESIOD (3) NetBSD Library Functions Manual HESIOD (3)

NAME
hesiod , hesiod_init , hesiod_resolve , hesiod_free_list , hesiod_to_bind ,
hesiod_end — Hesiod name server interface library

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <hesiod.h>

int
hesiod_init (void ∗∗context);

char
∗∗hesiod_resolve (void ∗context , const char ∗name, const char ∗type);

void
hesiod_free_list (void ∗context , char ∗∗list);

char
∗hesiod_to_bind (void ∗context , const char ∗name, const char ∗type);

void
hesiod_end (void ∗context);

DESCRIPTION
This family of functions allows you to perform lookups of Hesiod information, which is stored as text
records in the Domain Name Service.To perform lookups, you must first initialize acontext , an opaque
object which stores information used internally by the library between calls.hesiod_init () initializes a
context, storing a pointer to the context in the location pointed to by thecontext argument.
hesiod_end () frees the resources used by a context.

hesiod_resolve () is the primary interface to the library. If successful, it returns a list of one or more
strings giving the records matchingname and type . The last element of the list is followed by aNULL
pointer. It is the caller’s responsibility to callhesiod_free_list () to free the resources used by the
returned list.

hesiod_to_bind () converts name and type into the DNS name used byhesiod_resolve (). It is
the caller’s responsibility to free the returned string usingfree (3).

RETURN VALUES
If successful,hesiod_init () returns 0; otherwise it returns −1 and setserrno to indicate the error. On
failure, hesiod_resolve () andhesiod_to_bind () returnNULL and set the global variableerrno to
indicate the error.

ENVIRONMENT
If the environment variableHES_DOMAINis set, it will override the domain in the Hesiod configuration file.
If the environment variableHESIOD_CONFIGis set, it specifies the location of the Hesiod configuration
file.

ERRORS
Hesiod calls may fail because of:
ENOMEM Insufficient memory was available to carry out the requested operation.

NetBSD 3.0 September 16, 2001 1

HESIOD (3) NetBSD Library Functions Manual HESIOD (3)

ENOEXEC hesiod_init () failed because the Hesiod configuration file was invalid.
ECONNREFUSEDhesiod_resolve () failed because no name server could be contacted to answer the

query.
EMSGSIZE hesiod_resolve () or hesiod_to_bind () failed because the query or response was

too big to fit into the packet buffers.
ENOENT hesiod_resolve () failed because the name server had no text records matchingname

and type , or hesiod_to_bind () failed because thename argument had a domain
extension which could not be resolved with type “rhs-extension” in the local Hesiod
domain.

SEE ALSO
hesiod.conf (5), named(8)

Hesiod - Project Athena Technical Plan -- Name Service.

AUTHORS
Steve Dyer, IBM/Project Athena
Greg Hudson, MIT Team Athena
Copyright 1987, 1988, 1995, 1996 by the Massachusetts Institute of Technology.

BUGS
The strings corresponding to theerrno values set by the Hesiod functions are not particularly indicative of
what went wrong, especially forENOEXECandENOENT.

NetBSD 3.0 September 16, 2001 2

HISTORY(3) HISTORY(3)

NAME
history − GNU History Library

COPYRIGHT
The GNU History Library is Copyright © 1989-2002 by the Free Software Foundation, Inc.

DESCRIPTION
Many programs read input from the user a line at a time.The GNU History library is able to keep track of
those lines, associate arbitrary data with each line, and utilize information from previous lines in composing
new ones.

HISTORY EXPANSION
The history library supports a history expansion feature that is identical to the history expansion inbash.
This section describes what syntax features are available.

History expansions introduce words from the history list into the input stream, making it easy to repeat
commands, insert the arguments to a previous command into the current input line, or fix errors in previous
commands quickly.

History expansion is usually performed immediately after a complete line is read. It takes place in two
parts. Thefirst is to determine which line from the history list to use during substitution. The second is to
select portions of that line for inclusion into the current one.The line selected from the history is theevent,
and the portions of that line that are acted upon arewords. Variousmodifiersare available to manipulate
the selected words. Theline is broken into words in the same fashion asbashdoes when reading input, so
that several words that would otherwise be separated are considered one word when surrounded by quotes
(see the description ofhistory_tokenize()below). Historyexpansions are introduced by the appearance of
the history expansion character, which is ! by default. Onlybackslash (\) and single quotes can quote the
history expansion character.

Event Designators
An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when followed by ablank, newline, = or (.
!n Refer to command linen.
!−n Refer to the current command line minusn.
!! Refer to the previous command. This is a synonym for ‘!−1’.
!string Refer to the most recent command starting withstring.
!?string[?]

Refer to the most recent command containingstring. The trailing? may be omitted ifstring is
followed immediately by a newline.

ˆstring1̂ string2̂
Quick substitution. Repeat the last command, replacingstring1 with string2. Equivalent to
‘‘ !!:s/string1/string2/’’ (seeModifiers below).

!# The entire command line typed so far.

Word Designators
Word designators are used to select desired words from the event. A : separates the event specification
from the word designator. It may be omitted if the word designator begins with aˆ, $, * , −, or % . Words
are numbered from the beginning of the line, with the first word being denoted by 0 (zero).Words are
inserted into the current line separated by single spaces.

0 (zero)
The zeroth word. For the shell, this is the command word.

n Thenth word.
ˆ The first argument. Thatis, word 1.
$ The last argument.
% The word matched by the most recent ‘?string?’ search.
x−y A range of words; ‘−y’ abbreviates ‘0−y’.

GNU History 5.0 2003 July 31 1

HISTORY(3) HISTORY(3)

* All of the words but the zeroth.This is a synonym for ‘1−$’. It is not an error to use* if there is
just one word in the event; the empty string is returned in that case.

x* Abbreviatesx−$.
x− Abbreviatesx−$ like x* , but omits the last word.

If a word designator is supplied without an event specification, the previous command is used as the event.

Modifiers
After the optional word designator, there may appear a sequence of one or more of the following modifiers,
each preceded by a ‘:’.

h Remove a trailing file name component, leaving only the head.
t Remove all leading file name components, leaving the tail.
r Remove a trailing suffix of the form.xxx, leaving the basename.
e Remove all but the trailing suffix.
p Print the new command but do not execute it.
q Quote the substituted words, escaping further substitutions.
x Quote the substituted words as withq, but break into words atblanks and newlines.
s/old/new/

Substitutenewfor the first occurrence ofold in the event line. Any delimiter can be used in place
of /. The final delimiter is optional if it is the last character of the event line. The delimiter may
be quoted inold andnewwith a single backslash. If & appears innew, it is replaced byold. A
single backslash will quote the &.If old is null, it is set to the lastold substituted, or, if no previ-
ous history substitutions took place, the laststring in a !?string[?] search.

& Repeat the previous substitution.
g Cause changes to be applied over the entire event line. This is used in conjunction with ‘:s’ (e.g.,

‘ :gs/old/new/’) or ‘ :& ’. If used with ‘:s’, any delimiter can be used in place of /, and the final
delimiter is optional if it is the last character of the event line. An a may be used as a synonym for
g.

G Apply the following ‘s’ modifier once to each word in the event line.

PROGRAMMING WITH HISTOR Y FUNCTIONS
This section describes how to use the History library in other programs.

Introduction to History
The programmer using the History library has available functions for remembering lines on a history list,
associating arbitrary data with a line, removing lines from the list, searching through the list for a line con-
taining an arbitrary text string, and referencing any line in the list directly. In addition, a historyexpansion
function is available which provides for a consistent user interface across different programs.

The user using programs written with the History library has the benefit of a consistent user interface with a
set of well-known commands for manipulating the text of previous lines and using that text in new com-
mands. Thebasic history manipulation commands are identical to the history substitution provided by
bash.

If the programmer desires, he can use the Readline library, which includes some history manipulation by
default, and has the added advantage of command line editing.

Before declaring any functions using any functionality the History library provides in other code, an appli-
cation writer should include the file<readline/history.h> in any file that uses the History library’s features.
It supplies extern declarations for all of the library’s public functions and variables, and declares all of the
public data structures.

History Storage
The history list is an array of history entries.A history entry is declared as follows:

typedef void *histdata_t;

typedef struct _hist_entry {
char *line;

GNU History 5.0 2003 July 31 2

HISTORY(3) HISTORY(3)

char *timestamp;
histdata_t data;

} H IST_ENTRY;

The history list itself might therefore be declared as

HIST_ENTRY ** the_history_list;

The state of the History library is encapsulated into a single structure:

/*
* A structure used to pass around the current state of the history.
*/
typedef struct _hist_state {
HIST_ENTRY * *entries; /* Pointer to the entries themselves. */
int offset; /* The location pointer within this array. */
int length; /* Number of elements within this array. */
int size; /* Number of slots allocated to this array. */
int flags;

} H ISTORY_STATE;

If the flags member includesHS_STIFLED, the history has been stifled.

History Functions
This section describes the calling sequence for the various functions exported by the GNU History library.

Initializing History and State Management
This section describes functions used to initialize and manage the state of the History library when you
want to use the history functions in your program.

voidusing_history (void)
Begin a session in which the history functions might be used. This initializes the interactive variables.

HISTORY_STATE * history_get_history_state(void)
Return a structure describing the current state of the input history.

voidhistory_set_history_state(HISTORY_STATE *state)
Set the state of the history list according tostate.

History List Management
These functions manage individual entries on the history list, or set parameters managing the list itself.

voidadd_history (const char *string)
Placestringat the end of the history list. The associated data field (if any) is set toNULL .

voidadd_history_time (const char *string)
Change the time stamp associated with the most recent history entry tostring.

HIST_ENTRY * remove_history (int which)
Remove history entry at offsetwhich from the history. The removed element is returned so you can free the
line, data, and containing structure.

histdata_tfree_history_entry (HIST_ENTRY *histent)
Free the history entryhistentand any history library private data associated with it.Returns the applica-
tion-specific data so the caller can dispose of it.

HIST_ENTRY * replace_history_entry (int which, constchar *line, histdata_t data)
Make the history entry at offset which have line and data. This returns the old entry so the caller can

GNU History 5.0 2003 July 31 3

HISTORY(3) HISTORY(3)

dispose of any application-specific data. In the case of an invalid which, aNULL pointer is returned.

voidclear_history (void)
Clear the history list by deleting all the entries.

voidstifle_history (int max)
Stifle the history list, remembering only the lastmaxentries.

int unstifle_history (void)
Stop stifling the history. This returns the previously-set maximum number of history entries (as set bysti-
fle_history()). historywas stifled. Thevalue is positive if the history was stifled, negative if it wasn’t.

int history_is_stifled (void)
Returns non-zero if the history is stifled, zero if it is not.

Information About the History List
These functions return information about the entire history list or individual list entries.

HIST_ENTRY ** history_list (void)
Return aNULL terminated array ofHIST_ENTRY * which is the current input history. Element 0 of this
list is the beginning of time. If there is no history, returnNULL .

int where_history (void)
Returns the offset of the current history element.

HIST_ENTRY * current_history (void)
Return the history entry at the current position, as determined bywhere_history(). If there is no entry
there, return aNULL pointer.

HIST_ENTRY * history_get (int offset)
Return the history entry at positionoffset, starting fromhistory_base. If there is no entry there, or ifoffset
is greater than the history length, return aNULL pointer.

time_thistory_get_time (HIST_ENTRY *)
Return the time stamp associated with the history entry passed as the argument.

int history_total_bytes (void)
Return the number of bytes that the primary history entries are using.This function returns the sum of the
lengths of all the lines in the history.

Moving Around the History List
These functions allow the current index into the history list to be set or changed.

int history_set_pos(int pos)
Set the current history offset topos, an absolute index into the list. Returns 1 on success, 0 ifpos is less
than zero or greater than the number of history entries.

HIST_ENTRY * previous_history (void)
Back up the current history offset to the previous history entry, and return a pointer to that entry. If there is
no previous entry, return aNULL pointer.

HIST_ENTRY * next_history (void)
Move the current history offset forward to the next history entry, and return the a pointer to that entry. If
there is no next entry, return aNULL pointer.

GNU History 5.0 2003 July 31 4

HISTORY(3) HISTORY(3)

Searching the History List
These functions allow searching of the history list for entries containing a specific string. Searching may be
performed both forward and backward from the current history position. The search may beanchored,
meaning that the string must match at the beginning of the history entry.

int history_search (const char *string, int direction)
Search the history forstring, starting at the current history offset. If direction is less than 0, then the search
is through previous entries, otherwise through subsequent entries.If string is found, then the current his-
tory index is set to that history entry, and the value returned is the offset in the line of the entry wherestring
was found. Otherwise,nothing is changed, and a -1 is returned.

int history_search_prefix (const char *string, int direction)
Search the history forstring, starting at the current history offset. Thesearch is anchored: matching lines
must begin withstring. If direction is less than 0, then the search is through previous entries, otherwise
through subsequent entries.If string is found, then the current history index is set to that entry, and the
return value is 0. Otherwise, nothing is changed, and a -1 is returned.

int history_search_pos(const char *string, int direction, intpos)
Search forstring in the history list, starting atpos, an absolute index into the list. If direction is negative,
the search proceeds backward frompos, otherwise forward. Returnsthe absolute index of the history ele-
ment wherestringwas found, or -1 otherwise.

Managing the History File
The History library can read the history from and write it to a file.This section documents the functions for
managing a history file.

int read_history (const char *filename)
Add the contents offilenameto the history list, a line at a time.If filenameis NULL , then read from̃/.his-
tory. Returns 0 if successful, orerrno if not.

int read_history_range (const char *filename, int from, intto)
Read a range of lines fromfilename, adding them to the history list. Start reading at linefrom and end atto.
If from is zero, start at the beginning. If to is less thanfrom, then read until the end of the file.If filename
is NULL , then read from̃/.history. Returns 0 if successful, orerrno if not.

int write_history (const char *filename)
Write the current history tofilename, overwriting filenameif necessary. If filenameis NULL , then write
the history list tõ /.history. Returns 0 on success, orerrno on a read or write error.

int append_history (int nelements, const char *filename)
Append the lastnelementsof the history list tofilename. If filenameis NULL , then append tõ/.history.
Returns 0 on success, orerrno on a read or write error.

int history_truncate_file (const char *filename, int nlines)
Truncate the history filefilename, leaving only the lastnlineslines. If filenameis NULL , then˜/.history is
truncated. Returns0 on success, orerrno on failure.

History Expansion
These functions implement history expansion.

int history_expand (char *string, char **output)
Expandstring, placing the result intooutput, a pointer to a string. Returns:

GNU History 5.0 2003 July 31 5

HISTORY(3) HISTORY(3)

0 If no expansions took place (or, if the only change in the text was the removal of escape
characters preceding the history expansion character);

1 if expansions did take place;
-1 if there was an error in expansion;
2 if the returned line should be displayed, but not executed, as with the:p modifier.

If an error ocurred in expansion, thenoutputcontains a descriptive error message.

char * get_history_event (const char *string, int *cindex, int qchar)
Returns the text of the history event beginning atstring + *cindex. *cindex is modified to point to after the
ev ent specifier. At function entry, cindexpoints to the index into string where the history event specifica-
tion begins. qchar is a character that is allowed to end the event specification in addition to the ‘‘normal’’
terminating characters.

char ** history_tokenize (const char *string)
Return an array of tokens parsed out ofstring, much as the shell might. The tokens are split on the charac-
ters in thehistory_word_delimiters variable, and shell quoting conventions are obeyed.

char * history_arg_extract (int first, int last, constchar *string)
Extract a string segment consisting of thefirst throughlast arguments present instring. Arguments are split
usinghistory_tokenize().

History Variables
This section describes the externally-visible variables exported by the GNU History Library.

int history_base
The logical offset of the first entry in the history list.

int history_length
The number of entries currently stored in the history list.

int history_max_entries
The maximum number of history entries. This must be changed usingstifle_history().

int history_write_timestamps
If non-zero, timestamps are written to the history file, so they can be preserved between sessions.The
default value is 0, meaning that timestamps are not saved.

char history_expansion_char
The character that introduces a history event. Thedefault is!. Setting this to 0 inhibits history expansion.

char history_subst_char
The character that invokes word substitution if found at the start of a line. The default isˆ.

char history_comment_char
During tokenization, if this character is seen as the first character of a word, then it and all subsequent char-
acters up to a newline are ignored, suppressing history expansion for the remainder of the line. This is dis-
abled by default.

char * history_word_delimiters
The characters that separate tokens forhistory_tokenize(). The default value is" \ t\n()<>;&|" .

char * history_no_expand_chars
The list of characters which inhibit history expansion if found immediately following history_expan-
sion_char. The default is space, tab, newline,\r , and=.

GNU History 5.0 2003 July 31 6

HISTORY(3) HISTORY(3)

char * history_search_delimiter_chars
The list of additional characters which can delimit a history search string, in addition to space, tab,: and?
in the case of a substring search. The default is empty.

int history_quotes_inhibit_expansion
If non-zero, single-quoted words are not scanned for the history expansion character. The default value is
0.

rl_linebuf_func_t *history_inhibit_expansion_function
This should be set to the address of a function that takes two arguments: achar * (string) and anint index
into that string (i). It should return a non-zero value if the history expansion starting atstring[i] should not
be performed; zero if the expansion should be done. It is intended for use by applications like bash that use
the history expansion character for additional purposes. By default, this variable is set toNULL .

FILES
˜/.history

Default filename for reading and writing saved history

SEE ALSO
The Gnu Readline Library, Brian Fox and Chet Ramey
The Gnu History Library, Brian Fox and Chet Ramey
bash(1)
readline(3)

AUTHORS
Brian Fox, Free Software Foundation
bfox@gnu.org

Chet Ramey, Case Western Reserve University
chet@ins.CWRU.Edu

BUG REPORTS
If you find a bug in thehistory library, you should report it. But first, you should make sure that it really is
a bug, and that it appears in the latest version of thehistory library that you have.

Once you have determined that a bug actually exists, mail a bug report tobug−readline@gnu.org. If you
have a fix, you are welcome to mail that as well!Suggestions and ‘philosophical’ bug reports may be
mailed tobug-readline@gnu.orgor posted to the Usenet newsgroupgnu.bash.bug.

Comments and bug reports concerning this manual page should be directed tochet@ins.CWRU.Edu.

GNU History 5.0 2003 July 31 7

HOSTS_ACCESS(3) HOSTS_ACCESS(3)

NAME
hosts_access, hosts_ctl, request_init, request_set − access control library

SYNOPSIS
#include "tcpd.h"

extern int allow_severity;
extern int deny_severity;

struct request_info *request_init(request, key, value, ..., 0)
struct request_info *request;

struct request_info *request_set(request, key, value, ..., 0)
struct request_info *request;

int hosts_access(request)
struct request_info *request;

int hosts_ctl(daemon, client_name, client_addr, client_user)
char *daemon;
char *client_name;
char *client_addr;
char *client_user;

DESCRIPTION
The routines described in this document are part of thelibwrap.a library. They implement a rule-based
access control language with optional shell commands that are executed when a rule fires.

request_init() initializes a structure with information about a client request.request_set() updates an
already initialized request structure.Both functions take a variable-length list of key-value pairs and return
their first argument. Theargument lists are terminated with a zero key value. All string-valued arguments
are copied. The expected keys (and corresponding value types) are:

RQ_FILE (int)
The file descriptor associated with the request.

RQ_CLIENT_NAME (char *)
The client host name.

RQ_CLIENT_ADDR (char *)
A printable representation of the client network address.

RQ_CLIENT_SIN (struct sockaddr_in *)
An internal representation of the client network address and port. The contents of the structure are
not copied.

RQ_SERVER_NAME (char *)
The hostname associated with the server endpoint address.

RQ_SERVER_ADDR (char *)
A printable representation of the server endpoint address.

RQ_SERVER_SIN (struct sockaddr_in *)
An internal representation of the server endpoint address and port. The contents of the structure
are not copied.

RQ_DAEMON (char *)
The name of the daemon process running on the server host.

RQ_USER (char *)
The name of the user on whose behalf the client host makes the request.

1

HOSTS_ACCESS(3) HOSTS_ACCESS(3)

hosts_access() consults the access control tables described in thehosts_access(5)manual page.When
internal endpoint information is available, host names and client user names are looked up on demand,
using the request structure as a cache. hosts_access() returns zero if access should be denied.

hosts_ctl() is a wrapper around the request_init() and hosts_access() routines with a perhaps more con-
venient interface (though it does not pass on enough information to support automated client username
lookups). Theclient host address, client host name and username arguments should contain valid data or
STRING_UNKNOWN. hosts_ctl()returns zero if access should be denied.

The allow_severityand deny_severityvariables determine how accepted and rejected requests may be
logged. They must be provided by the caller and may be modified by rules in the access control tables.

DIAGNOSTICS
Problems are reported via the syslog daemon.

SEE ALSO
hosts_access(5), format of the access control tables. hosts_options(5), optional extensions to the base lan-
guage.

FILES
/etc/hosts.allow, /etc/hosts.deny, access control tables.

AUTHOR
Wietse Venema (wietse@wzv.win.tue.nl)
Department of Mathematics and Computing Science
Eindhoven University of Technology
Den Dolech 2, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

2

HUMANIZE_NUMBER (3) NetBSD Library Functions Manual HUMANIZE_NUMBER (3)

NAME
dehumanize_number , humanize_number — format a number into a human readable form and vicev-
ersa

SYNOPSIS
#include <stdlib.h>

int
dehumanize_number (const char ∗str , int64_t ∗result);

int
humanize_number (char ∗buf , size_t len , int64_t number , const char ∗suffix ,

int scale , int flags);

DESCRIPTION
Thehumanize_number () function formats the signed 64 bit quantity given in number into buffer . A
space and thensuffix is appended to the end.buffer must be at leastlen bytes long.

If the formatted number (includingsuffix) would be too long to fit intobuffer , then divide number by
1024 until it will. In this case, prefixsuffix with the appropriate SI designator.

The prefixes are:

Prefix Description Multiplier
k kilo 1024
M meg a 1048576
G giga 1073741824
T tera 1099511627776
P peta 1125899906842624
E exa 1152921504606846976

len must be at least 4 plus the length ofsuffix , in order to ensure a useful result is generated into
buffer . To use a specific prefix, specify this asscale (Multiplier = 1024 ˆ scale). This can not be com-
bined with any of thescale flags below.

The following flags may be passed inscale :

HN_AUTOSCALE
Format the buffer using the lowest multiplier possible.

HN_GETSCALE
Return the prefix index number (the number of timesnumber must be divided to fit)
instead of formatting it to the buffer.

The following flags may be passed inflags :

HN_DECIMALIf the final result is less than 10, display it using one digit.

HN_NOSPACEDo not put a space betweennumber and the prefix.

HN_B Use ’B’ (bytes) as prefix if the original result does not have a prefix.

HN_DIVISOR_1000
Divide number with 1000 instead of 1024.

The dehumanize_number () function parses the string representing an integral value given in str and
stores the numerical value in the integer pointed to byresult . The provided string may hold one of the
suffixes, which will be interpreted and used to scale up its accompanying numerical value.

NetBSD 3.0 February 9, 2008 1

HUMANIZE_NUMBER (3) NetBSD Library Functions Manual HUMANIZE_NUMBER (3)

RETURN VALUES
humanize_number () returns the number of characters stored inbuffer (excluding the terminating
NUL) upon success, or −1 upon failure. If HN_GETSCALEis specified, the prefix index number will be
returned instead.

dehumanize_number () returns 0 if the string was parsed correctly. A −1 is returned to indicate failure
and an error code is stored inerrno.

ERRORS
dehumanize_number () will fail and no number will be stored inresult if:

[EINVAL] The string instr was empty or carried an unknown suffix.

[ERANGE] The string instr represented a number that does not fit inresult .

SEE ALSO
humanize_number (9)

HISTORY
humanize_number () first appeared inNetBSD 2.0.

dehumanize_number () first appeared inNetBSD 5.0.

NetBSD 3.0 February 9, 2008 2

HYPOT (3) NetBSDLibrary Functions Manual HYPOT (3)

NAME
hypot , hypotf — Euclidean distance and complex absolute value functions

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
hypot (double x , double y);

float
hypotf (float x , float y);

DESCRIPTION
Thehypot () functions compute the sqrt(x∗x+y∗y) in such a way that underflow will not happen, and over-
flow occurs only if the final result deserves it.

hypot (∞ , v) = hypot (v , ∞) = +∞ for all v , includingNaN.

ERRORS
Below 0.97 ulps. Consequentlyhypot (5.0 , 12.0) = 13.0 exactly; in general, hypot returns an integer
whenever an integer might be expected.

The same cannot be said for the shorter and faster version of hypot that is provided in the comments in
cabs.c; its error can exceed 1.2ulps.

NOTES
As might be expected,hypot (v , NaN) and hypot (NaN, v) are NaN for all finite v ; with "reserved oper-
and" in place of "NaN", the same is true on aVAX. But programmers on machines other than aVAX (it has
no ∞) might be surprised at first to discover that hypot (±∞ , NaN) = +∞. This is intentional; it happens
becausehypot (∞ , v) = +∞ for all v , finite or infinite. Hencehypot (∞ , v) is independent ofv . Unlike
the reserved operand fault on aVAX, the IEEE NaN is designed to disappear when it turns out to be irrelevant,
as it does inhypot (∞ , NaN).

SEE ALSO
math (3), sqrt (3)

HISTORY
Both ahypot () function and acabs () function appeared in Version 7AT&T UNIX . cabs () was removed
from public namespace inNetBSD 5.0 to avoid conflicts with the complex function in C99.

NetBSD 3.0 February 12, 2007 1

ICONV (3) NetBSD Library Functions Manual ICONV (3)

NAME
iconv_open , iconv_close , iconv — codeset conversion functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <iconv.h>

iconv_t
iconv_open (const char ∗dstname , const char ∗srcname);

int
iconv_close (iconv_t cd);

size_t
iconv (iconv_t cd , const char ∗∗ restrict src , size_t ∗ restrict srcleft ,

char ∗∗ restrict dst , size_t ∗ restrict dstleft);

DESCRIPTION
The iconv_open () function opens a converter from the codesetsrcname to the codesetdstname and
returns its descriptor.

The iconv_close () function closes the specified convertercd .

The iconv () function converts the string in the buffer ∗src of length∗srcleft bytes and stores the con-
verted string in the buffer ∗dst of size∗dstleft bytes. Aftercalling iconv (), the values pointed to by
src , srcleft , dst , anddstleft are updated as follows:

∗src Pointer to the byte just after the last character fetched.

∗srcleft Number of remaining bytes in the source buffer.

∗dst Pointer to the byte just after the last character stored.

∗dstleft Number of remainder bytes in the destination buffer.

If the string pointed to by∗src contains a byte sequence which is not a valid character in the source codeset,
the conversion stops just after the last successful conversion. If the output buffer is too small to store the
converted character, the conversion also stops in the same way. In these cases, the values pointed to bysrc ,
srcleft , dst , anddstleft are updated to the state just after the last successful conversion.

If the string pointed to by∗src contains a character which is valid under the source codeset but can not be
converted to the destination codeset, the character is replaced by an “invalid character” which depends on the
destination codeset, e.g., ‘?’, and the conversion is continued.iconv () returns the number of such “invalid
conversions”.

There are two special cases oficonv ():

src == NULL ||∗src == NULL
If the source and/or destination codesets are stateful,iconv () places these into their initial state.

If both dst and∗dst are non-NULL, iconv () stores the shift sequence for the destination switching
to the initial state in the buffer pointed to by∗dst . The buffer size is specified by the value pointed
to bydstleft as above. iconv () will fail if the buffer is too small to store the shift sequence.

On the other hand,dst or ∗dst may beNULL. In this case, the shift sequence for the destination
switching to the initial state is discarded.

NetBSD 3.0 August 1, 2004 1

ICONV (3) NetBSD Library Functions Manual ICONV (3)

RETURN VALUES
Upon successful completion oficonv_open (), it returns a conversion descriptor. Otherwise,
iconv_open () returns (iconv_t)−1 and sets errno to indicate the error.

Upon successful completion oficonv_close (), it returns 0.Otherwise,iconv_close () returns −1 and
sets errno to indicate the error.

Upon successful completion oficonv (), it returns the number of “invalid” conversions. Otherwise,
iconv () returns (size_t)−1 and sets errno to indicate the error.

ERRORS
The iconv_open () function may cause an error in the following cases:

[ENOMEM] Memory is exhausted.

[EINVAL] There is no converter specified bysrcname anddstname .

The iconv_close () function may cause an error in the following case:

[EBADF] The conversion descriptor specified bycd is invalid.

The iconv () function may cause an error in the following cases:

[EBADF] The conversion descriptor specified bycd is invalid.

[EILSEQ] The string pointed to by∗src contains a byte sequence which does not describe a
valid character of the source codeset.

[E2BIG] The output buffer pointed to by∗dst is too small to store the result string.

[EINVAL] The string pointed to by∗src terminates with an incomplete character or shift
sequence.

SEE ALSO
iconv (1)

STANDARDS
iconv_open (), iconv_close (), andiconv () conform toIEEE Std 1003.1-2001 (“POSIX.1”).

BUGS
If iconv () is aborted due to the occurrence of some error, the “invalid conversion” count mentioned above is
unfortunately lost.

NetBSD 3.0 August 1, 2004 2

IEEE (3) NetBSD Library Functions Manual IEEE (3)

NAME
copysign , copysignf , finite , finitef , ilogb , ilogbf , nextafter , nextafterf ,
remainder , remainderf , scalbn , scalbnf — functions for IEEE arithmetic

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
copysign (double x , double y);

float
copysignf (float x , float y);

int
finite (double x);

int
finitef (float x);

int
ilogb (double x);

int
ilogbf (float x);

double
nextafter (double x , double y);

float
nextafterf (float x , float y);

double
remainder (double x , double y);

float
remainderf (float x , float y);

double
scalbn (double x , int n);

float
scalbnf (float x , int n);

DESCRIPTION
These functions are required or recommended byIEEE Std 754-1985.

copysign () returnsx with its sign changed toy ’s.

finite () returns the value 1 just when −∞ < x < +∞; otherwise a zero is returned (when |x | = ∞ or x is
NaN).

ilogb () returnsx ’s exponentn, in integer format. ilogb (±∞) returnsINT_MAX and ilogb (0) returns
INT_MIN .

nextafter () returns the next machine representable number fromx in directiony .

NetBSD 3.0 February 25, 1994 1

IEEE (3) NetBSD Library Functions Manual IEEE (3)

remainder () returns the remainderr := x − n∗y wheren is the integer nearest the exact value ofx /y ;
moreover if |n − x /y | = 1/2 thenn is even. Consequentlythe remainder is computed exactly and |r | ≤ |y |/2.
But remainder (x , 0) and remainder (∞ , 0) are invalid operations that produce aNaN.

scalbn () returnsx∗(2∗∗n) computed by exponent manipulation.

SEE ALSO
math (3)

STANDARDS
IEEE Std 754-1985

HISTORY
The ieee functions appeared in 4.3BSD.

NetBSD 3.0 February 25, 1994 2

IEEE_TEST (3) NetBSD Library Functions Manual IEEE_TEST (3)

NAME
logb , logbf , scalb , scalbf , significand , significandf — IEEE test functions

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
logb (double x);

float
logbf (float x);

double
scalb (double x , double n);

float
scalbf (float x , float n);

double
significand (double x);

float
significandf (float x);

DESCRIPTION
These functions allow users to test conformance toIEEE Std 754-1985. Their use is not otherwise recom-
mended.

logb (x) returnsx ’s exponentn, a signed integer converted to double−precision floating−point.logb (±∞)
= +∞; logb (0) = -∞ with a division by zero exception.

scalbn (x , n) returnsx∗(2∗∗n) computed by exponent manipulation.

significand (x) returnssig , wherex := sig ∗ 2∗∗n with 1 ≤ sig < 2. significand (x) is not
defined whenx is 0,±∞, or NaN.

SEE ALSO
ieee (3), math (3)

STANDARDS
IEEE Std 754-1985

NetBSD 3.0 March 10, 1994 1

IF_NAMETOINDEX (3) NetBSD Library Functions Manual IF_NAMETOINDEX (3)

NAME
if_nametoindex , if_indextoname , if_nameindex , if_freenameindex — provide mappings
between interface names and indexes

SYNOPSIS
#include <net/if.h>

unsigned int
if_nametoindex (const char ∗ifname);

char ∗
if_indextoname (unsigned int ifindex , char ∗ifname);

struct if_nameindex ∗
if_nameindex (void);

void
if_freenameindex (struct if_nameindex ∗ptr);

DESCRIPTION
The if_nametoindex () function maps the interface name specified inifname to its corresponding
index. If the specified interface does not exist, it returns 0.

The if_indextoname () function maps the interface index specified in ifindex to it corresponding
name, which is copied into the buffer pointed to byifname , which must be of at least IFNAMSIZ bytes.
This pointer is also the return value of the function. If there is no interface corresponding to the specified
index, NULL is returned.

The if_nameindex () function returns an array ofif_nameindex structures, one structure per interface,
as defined in the include file〈net/if.h 〉. The if_nameindex structure contains at least the following
entries:

unsigned int if_index; / ∗ 1, 2, ... ∗/
char ∗if_name; / ∗ null terminated name: "le0", ... ∗/

The end of the array of structures is indicated by a structure with anif_index of 0 and anif_name of
NULL. A NULL pointer is returned upon an error.

The if_freenameindex () function frees the dynamic memory that was allocated byif_nameindex ().

RETURN VALUES
Upon successful completion,if_nametoindex () returns the index number of the interface. If the inter-
face is not found, a value of 0 is returned anderrno is set toENXIO. A value of 0 is also returned if an error
occurs while retrieving the list of interfaces viagetifaddrs (3).

Upon successful completion,if_indextoname () returnsifname . If the interface is not found, a NULL
pointer is returned anderrno is set toENXIO. A NULL pointer is also returned if an error occurs while
retrieving the list of interfaces viagetifaddrs (3).

The if_nameindex () returns a NULL pointer if an error occurs while retrieving the list of interfaces via
getifaddrs (3), or if sufficient memory cannot be allocated.

SEE ALSO
getifaddrs (3), networking (4)

NetBSD 3.0 March 11, 2005 1

IF_NAMETOINDEX (3) NetBSD Library Functions Manual IF_NAMETOINDEX (3)

STANDARDS
The if_nametoindex (), if_indextoname (), if_nameindex (), andif_freenameindex () func-
tions conform toIEEE Std 1003.1-2001 (“POSIX.1”), X/OpenNetworking Services Issue 5.2 (“XNS5.2”), and
RFC 3493.

HISTORY
The implementation first appeared inBSD/OS.

NetBSD 3.0 March 11, 2005 2

INDEX (3) NetBSD Library Functions Manual INDEX (3)

NAME
index — locate character in string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <strings.h>

char ∗
index (const char ∗s , int c);

DESCRIPTION
The index () function locates the first character matchingc (converted to achar) in the nul-terminated
strings .

RETURN VALUES
A pointer to the character is returned if it is found; otherwiseNULL is returned.If c is ’\0’, index () locates
the terminating ’\0’.

SEE ALSO
memchr(3), rindex (3), strchr (3), strcspn (3), strpbrk (3), strrchr (3), strsep (3), strspn (3),
strstr (3), strtok (3)

HISTORY
An index () function appeared in Version 6AT&T UNIX .

NetBSD 3.0 June 4, 1993 1

INET (3) NetBSD Library Functions Manual INET (3)

NAME
inet_addr , inet_aton , inet_lnaof , inet_makeaddr , inet_netof , inet_network ,
inet_ntoa , inet_ntop , inet_pton , addr , ntoa , network — Internet address manipulation rou-
tines

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <arpa/inet.h>

in_addr_t
inet_addr (const char ∗cp);

int
inet_aton (const char ∗cp , struct in_addr ∗addr);

in_addr_t
inet_lnaof (struct in_addr in);

struct in_addr
inet_makeaddr (in_addr_t net , in_addr_t lna);

in_addr_t
inet_netof (struct in_addr in);

in_addr_t
inet_network (const char ∗cp);

char ∗
inet_ntoa (struct in_addr in);

const char ∗
inet_ntop (int af , const void ∗ restrict src , char ∗ restrict dst ,

socklen_t size);

int
inet_pton (int af , const char ∗ restrict src , void ∗ restrict dst);

DESCRIPTION
The routinesinet_aton (), inet_addr () andinet_network () interpret character strings representing
numbers expressed in the Internet standard "dotted quad" notation.

The inet_pton () function converts a presentation format address (that is, printable form as held in a char-
acter string) to network format (usually astruct in_addr or some other internal binary representation,
in network byte order). It returns 1 if the address was valid for the specified address family, or 0 if the
address wasn’t parsable in the specified address family, or -1 if some system error occurred (in which case
errnowill have been set). This function is presently valid forAF_INET andAF_INET6 .

The inet_aton () routine interprets the specified character string as an Internet address, placing the address
into the structure provided. Itreturns 1 if the string was successfully interpreted, or 0 if the string is invalid.

The inet_addr () and inet_network () functions return numbers suitable for use as Internet addresses
and Internet network numbers, respectively.

The functioninet_ntop () converts an address from network format (usually astruct in_addr or
some other binary form, in network byte order) to presentation format (suitable for external display pur-
poses). Itreturns NULL if a system error occurs (in which case,errno will have been set), or it returns a

NetBSD 3.0 June 30, 2003 1

INET (3) NetBSD Library Functions Manual INET (3)

pointer to the destination string.

The routineinet_ntoa () takes an Internet address and returns anASCII string representing the address in
"dotted quad" notation.

The routineinet_makeaddr () takes an Internet network number and a local network address (both in host
order) and constructs an Internet address from it. Note that to convert only a single value to astruct
in_addr form that value should be passed as the first parameter and ‘0L ’ should be given for the second
parameter.

The routinesinet_netof () andinet_lnaof () break apart Internet host addresses, returning the network
number and local network address part, respectively (both in host order).

All Internet addresses are returned in network order (bytes ordered from left to right). All network numbers
and local address parts are returned as machine format integer values.

INTERNET ADDRESSES (IP VERSION 4)
Values specified using the "dotted quad" notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the four
bytes of an Internet address. Note that when an Internet address is viewed as a 32-bit integer quantity on a
system that uses little-endian byte order (e.g.Intel i386, i486and Pentiumprocessors) the bytes referred to
above appear as “d.c.b.a ”. That is, little-endian bytes are ordered from right to left.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in the right-
most two bytes of the network address. This makes the three part address format convenient for specifying
Class B network addresses as “128.net.host ”.

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in the right
most three bytes of the network address. This makes the two part address format convenient for specifying
Class A network addresses as “net.host ”.

When only one part is given, the value is stored directly in the network address without any byte rearrange-
ment.

All numbers supplied as “parts” in a "dotted quad" notation may be decimal, octal, or hexadecimal, as speci-
fied in the C language (i.e., a leading 0x or 0X implies hexadecimal; otherwise, a leading 0 implies octal;
otherwise, the number is interpreted as decimal).

INTERNET ADDRESSES (IP VERSION 6)
In order to support scoped IPv6 addresses, the use ofgetaddrinfo (3) andgetnameinfo (3) is recom-
mended rather than the functions presented here.

The presentation format of an IPv6 address is given in RFC 2373:

There are three conventional forms for representing IPv6 addresses as text strings:

1. Thepreferred form is x:x:x:x:x:x:x:x, where the ’x’s are the hexadecimal values of the eight 16-bit
pieces of the address. Examples:

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
1080:0:0:0:8:800:200C:417A

NetBSD 3.0 June 30, 2003 2

INET (3) NetBSD Library Functions Manual INET (3)

Note that it is not necessary to write the leading zeros in an individual field, but there must be at least
one numeral in every field (except for the case described in 2).

2. Dueto the method of allocating certain styles of IPv6 addresses, it will be common for addresses to
contain long strings of zero bits. In order to make writing addresses containing zero bits easier, a spe-
cial syntax is available to compress the zeros. The use of ‘‘::’ ’ i ndicates multiple groups of 16-bits of
zeros. The‘‘ ::’’ can only appear once in an address. The ‘‘::’ ’ can also be used to compress the leading
and/or trailing zeros in an address.

For example the following addresses:

1080:0:0:0:8:800:200C:417A a unicast address
FF01:0:0:0:0:0:0:43 a multicast address
0:0:0:0:0:0:0:1 the loopback address
0:0:0:0:0:0:0:0 the unspecified addresses

may be represented as:

1080::8:800:200C:417A a unicast address
FF01::43 a multicast address
::1 the loopback address
:: the unspecified addresses

3. An alternative form that is sometimes more convenient when dealing with a mixed environment of IPv4
and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the ’x’s are the hexadecimal values of the six high-order
16-bit pieces of the address, and the ’d’s are the decimal values of the four low-order 8-bit pieces of the
address (standard IPv4 representation). Examples:

0:0:0:0:0:0:13.1.68.3
0:0:0:0:0:FFFF:129.144.52.38

or in compressed form:

::13.1.68.3
::FFFF:129.144.52.38

DIAGNOSTICS
The constantINADDR_NONEis returned byinet_addr () andinet_network () for malformed requests.

SEE ALSO
byteorder (3), gethostbyname (3), getnetent (3), inet_net (3), hosts (5), networks (5)

IP Version 6 Addressing Architecture, RFC 2373, July 1998.

Basic Socket Interface Extensions for IPv6, RFC 3493, February 2003.

STANDARDS
The inet_ntop and inet_pton functions conform toIEEE Std 1003.1-2001 (“POSIX.1”). Note that
inet_pton does not accept 1-, 2-, or 3-part dotted addresses; all four parts must be specified.This is a
narrower input set than that accepted byinet_aton .

HISTORY
The inet_addr , inet_network , inet_makeaddr , inet_lnaof and inet_netof functions
appeared in 4.2BSD. They were changed to usein_addr_t in place ofunsigned longin NetBSD 2.0. The
inet_aton and inet_ntoa functions appeared in 4.3BSD. The inet_pton and inet_ntop func-
tions appeared in BIND 4.9.4 and thenceNetBSD 1.3; they were also inX/Open Networking Services
Issue 5.2 (“XNS5.2”).

NetBSD 3.0 June 30, 2003 3

INET (3) NetBSD Library Functions Manual INET (3)

BUGS
The value INADDR_NONE(0xffffffff) is a valid broadcast address, but inet_addr () cannot return that
value without indicating failure. Thenewerinet_aton () function does not share this problem.

The problem of host byte ordering versus network byte ordering is confusing.

The string returned byinet_ntoa () resides in a static memory area.

inet_addr () should return astruct in_addr .

NetBSD 3.0 June 30, 2003 4

INET6_OPT_INIT (3) NetBSD Library Functions Manual INET6_OPT_INIT (3)

NAME
inet6_opt_init , inet6_opt_append , inet6_opt_finish , inet6_opt_set_val ,
inet6_opt_next , inet6_opt_find , inet6_opt_get_val — IPv6 Hop-by-Hop and Destination
Options manipulation

SYNOPSIS
#include <netinet/in.h>

int
inet6_opt_init (void ∗extbuf , socklen_t extlen);

int
inet6_opt_append (void ∗extbuf , socklen_t extlen , int offset , u_int8_t type ,

socklen_t len , u_int8_t align , void ∗∗databufp);

int
inet6_opt_finish (void ∗extbuf , socklen_t extlen , int offset);

int
inet6_opt_set_val (void ∗databuf , int offset , void ∗val , socklen_t vallen);

int
inet6_opt_next (void ∗extbuf , socklen_t extlen , int offset , u_int8_t ∗typep ,

socklen_t ∗lenp , void ∗∗databufp);

int
inet6_opt_find (void ∗extbuf , socklen_t extlen , int offset , u_int8_t type ,

socklen_t ∗lenp , void ∗∗databufp);

int
inet6_opt_get_val (void ∗databuf , socklen_t offset , void ∗val ,

socklen_t vallen);

DESCRIPTION
Building and parsing the Hop-by-Hop and Destination options is complicated.The advanced sockets API
defines a set of functions to help applications create and manipulate Hop-by-Hope and Destination options.
These functions use the formatting rules specified in Appendix B in RFC2460, i.e., that the largest field is
placed last in the option. The function prototypes for these functions are all contained in the
<netinet/in.h > header file.

inet6_opt_init
The inet6_opt_init () function returns the number of bytes needed for an empty extension header, one
without any options. If the extbuf argument points to a valid section of memory then the
inet6_opt_init () function also initializes the extension header’s length field. When attempting to ini-
tialize an extension buffer passed in theextbuf argumentextlen must be a positive multiple of 8 or else the
function fails and returns −1 to the caller.

inet6_opt_append
The inet6_opt_append () function can perform to different jobs. When a valid extbuf argument is
supplied it appends an option to the extension buffer and returns the updated total length as well as a pointer
to the newly created option indatabufp . If the value of extbuf is NULL then the
inet6_opt_append (function , only , reports , what , the , total , length , would) be if
the option were actually appended.The len andalign arguments specify the length of the option and the
required data alignment which must be used when appending the option.Theoffset argument should be
the length returned by theinet6_opt_init () function or a previous call toinet6_opt_append ().

NetBSD 3.0 December 23, 2004 1

INET6_OPT_INIT (3) NetBSD Library Functions Manual INET6_OPT_INIT (3)

Thetype argument is the 8-bit option type.

After inet6_opt_append () has been called, the application can use the buffer pointed to bydatabufp
directly, or useinet6_opt_set_val () to specify the data to be contained in the option.

Option types of0 and1 are reserved for thePad1 andPadN options. Allother values from 2 through 255
may be used by applications.

The length of the option data is contained in an 8-bit value and so may contain any value from 0 through 255.

Thealign parameter must have a value of 1, 2, 4, or 8 and cannot exceed the value oflen . The alignment
values represent no alignment, 16 bit, 32 bit and 64 bit alignments respectively.

inet6_opt_finish
The inet6_opt_finish () calculates the final padding necessary to make the extension header a multiple
of 8 bytes, as required by the IPv6 extension header specification, and returns the extension header’s updated
total length. The offset argument should be the length returned byinet6_opt_init () or
inet6_opt_append (). Whenextbuf is not NULL the function also sets up the appropriate padding
bytes by inserting a Pad1 or PadN option of the proper length.

If the extension header is too small to contain the proper padding then an error of −1 is returned to the caller.

inet6_opt_set_val
The inet6_opt_set_val () function inserts data items of various sizes into the data portion of the
option. Thedatabuf argument is a pointer to memory that was returned by theinet6_opt_append ()
call and theoffset argument specifies where the option should be placed in
the data buffer. Theval argument points to an area of memory containing the data to be inserted into the
extension header, and thevallen argument indicates how much data to copy.

The caller should ensure that each field is aligned on its natural boundaries as described in Appendix B of
RFC2460.

The function returns the offset for the next field which is calculated asoffset + vallen and is used when
composing options with multiple fields.

inet6_opt_next
The inet6_opt_next () function parses received extension headers.The extbuf and extlen argu-
ments specify the location and length of the extension header being parsed.The offset argument should
either be zero, for the first option, or the length value returned by a previous call toinet6_opt_next () or
inet6_opt_find (). The return value specifies the position where to continue scanning the extension
buffer. The option is returned in the argumentstypep , lenp , and databufp . typep, lenp, and
databufp point to the 8-bit option type, the 8-bit option length and the option data respectively. This func-
tion does not return any PAD1 or PADN options. When an error occurs or there are no more options the
return value is −1.

inet6_opt_find
The inet6_opt_find () function searches the extension buffer for a particular option type, passed in
through thetype argument. Ifthe option is found then thelenp anddatabufp arguments are updated to
point to the option’s length and data respectively. extbuf and extlen must point to a valid extension
buffer and give its length. The offset argument can be used to search from a location anywhere in the
extension header.

inet6_opt_get_val
The inet6_opt_get_val () function extracts data items of various sizes in the data portion of the option.
The databuf is a pointer returned by theinet6_opt_next () or inet6_opt_find () functions. The

NetBSD 3.0 December 23, 2004 2

INET6_OPT_INIT (3) NetBSD Library Functions Manual INET6_OPT_INIT (3)

val argument points where the data will be extracted. Theoffset argument specifies from where in the
data portion of the option the value should be extracted; the first byte of option data is specified by an offset
of zero.

It is expected that each field is aligned on its natural boundaries as described in Appendix B of RFC2460.

The function returns the offset for the next field by calculatingoffset + vallen which can be used when
extracting option content with multiple fields.Robust receivers must verify alignment before calling this
function.

DIAGNOSTICS
All the functions return −1 on an error.

EXAMPLES
RFC3542 gives comprehensive examples in Section 23.

KAME also provides examples in theadvapitest directory of its kit.

SEE ALSO
W. Stevens, M. Thomas, E. Nordmark, and T. Jinmei,Advanced Sockets API for IPv6, RFC3542, October
2002.

S. Deering and R. Hinden,Internet Protocol, Version 6 (IPv6) Specification, RFC2460, December 1998.

HISTORY
The implementation first appeared in KAME advanced networking kit.

STANDARDS
The functions are documented in “Advanced Sockets API for IPv6”(RFC3542) .

NetBSD 3.0 December 23, 2004 3

INET6_OPTION_SPACE (3) NetBSDLibrary Functions Manual INET6_OPTION_SPACE (3)

NAME
inet6_option_space , inet6_option_init , inet6_option_append ,
inet6_option_alloc , inet6_option_next , inet6_option_find — IPv6 Hop-by-Hop and
Destination Options manipulation

SYNOPSIS
#include <netinet/in.h>

int
inet6_option_space (int nbytes);

int
inet6_option_init (void ∗bp , struct cmsghdr ∗∗cmsgp , int type);

int
inet6_option_append (struct cmsghdr ∗cmsg , const uint8_t ∗typep , int multx ,

int plusy);

uint8_t ∗
inet6_option_alloc (struct cmsghdr ∗cmsg , int datalen , int multx , int plusy);

int
inet6_option_next (const struct cmsghdr ∗cmsg , uint8_t ∗∗tptrp);

int
inet6_option_find (const struct cmsghdr ∗cmsg , uint8_t ∗∗tptrp , int type);

DESCRIPTION
Building and parsing the Hop-by-Hop and Destination options is complicated due to alignment constraints,
padding and ancillary data manipulation. RFC 2292 defines a set of functions to help the application.The
function prototypes for these functions are all in the〈netinet/in.h 〉 header.

inet6_option_space
inet6_option_space () returns the number of bytes required to hold an option when it is stored as ancil-
lary data, including thecmsghdr structure at the beginning, and any padding at the end(to make its size a
multiple of 8 bytes) . The argument is the size of the structure defining the option, which must include any
pad bytes at the beginning (the valuey in the alignment term “xn + y ”) , the type byte, the length byte,
and the option data.

Note: If multiple options are stored in a single ancillary data object, which is the recommended technique,
this function overestimates the amount of space required by the size ofN-1 cmsghdr structures, whereN is
the number of options to be stored in the object.This is of little consequence, since it is assumed that most
Hop-by-Hop option headers and Destination option headers carry only one option(appendix B of [RFC
2460]) .

inet6_option_init
inet6_option_init () is called once per ancillary data object that will contain either Hop-by-Hop or
Destination options. It returns0 on success or-1 on an error.

bp is a pointer to previously allocated space that will contain the ancillary data object. It must be large
enough to contain all the individual options to be added by later calls toinet6_option_append () and
inet6_option_alloc ().

cmsgp is a pointer to a pointer to acmsghdr structure. ∗cmsgp is initialized by this function to point to
thecmsghdr structure constructed by this function in the buffer pointed to bybp .

NetBSD 3.0 December 10, 1999 1

INET6_OPTION_SPACE (3) NetBSDLibrary Functions Manual INET6_OPTION_SPACE (3)

type is eitherIPV6_HOPOPTSor IPV6_DSTOPTS. This type is stored in thecmsg_type member of
thecmsghdr structure pointed to by∗cmsgp.

inet6_option_append
This function appends a Hop-by-Hop option or a Destination option into an ancillary data object that has
been initialized byinet6_option_init (). Thisfunction returns0 if it succeeds or-1 on an error.

cmsg is a pointer to thecmsghdr structure that must have been initialized byinet6_option_init ().

typep is a pointer to the 8-bit option type. It is assumed that this field is immediately followed by the 8-bit
option data length field, which is then followed immediately by the option data. The caller initializes these
three fields(the type-length-value, or TLV) before calling this function.

The option type must have a value from2 to 255 , inclusive. (0 and1 are reserved for thePad1 andPadN
options, respectively.)

The option data length must have a value between0 and255 , inclusive, and is the length of the option data
that follows.

multx is the valuex in the alignment term “xn + y ”. It must have a value of1, 2, 4, or 8.

plusy is the valuey in the alignment term “xn + y ”. It must have a value between0 and7, inclusive.

inet6_option_alloc
This function appends a Hop-by-Hop option or a Destination option into an ancillary data object that has
been initialized byinet6_option_init (). This function returns a pointer to the 8-bit option type field
that starts the option on success, orNULLon an error.

The difference between this function andinet6_option_append () is that the latter copies the contents
of a previously built option into the ancillary data object while the current function returns a pointer to the
space in the data object where the option’s TLV must then be built by the caller.

cmsg is a pointer to thecmsghdr structure that must have been initialized byinet6_option_init ().

datalen is the value of the option data length byte for this option. This value is required as an argument to
allow the function to determine if padding must be appended at the end of the option.(The
inet6_option_append () function does not need a data length argument since the option data length
must already be stored by the caller.)

multx is the valuex in the alignment term “xn + y ”. It must have a value of1, 2, 4, or 8.

plusy is the valuey in the alignment term “xn + y ”. It must have a value between0 and7, inclusive.

inet6_option_next
This function processes the next Hop-by-Hop option or Destination option in an ancillary data object.If
another option remains to be processed, the return value of the function is0 and∗tptrp points to the 8-bit
option type field(which is followed by the 8-bit option data length, followed by the option data) . If no
more options remain to be processed, the return value is-1 and∗tptrp is NULL. If an error occurs, the
return value is-1 and∗tptrp is notNULL.

cmsg is a pointer to cmsghdr structure of which cmsg_level equals IPPROTO_IPV6 and
cmsg_type equals eitherIPV6_HOPOPTSor IPV6_DSTOPTS.

tptrp is a pointer to a pointer to an 8-bit byte and∗tptrp is used by the function to remember its place in
the ancillary data object each time the function is called.The first time this function is called for a given
ancillary data object,∗tptrp must be set toNULL.

NetBSD 3.0 December 10, 1999 2

INET6_OPTION_SPACE (3) NetBSDLibrary Functions Manual INET6_OPTION_SPACE (3)

Each time this function returns success,∗tptrp points to the 8-bit option type field for the next option to be
processed.

inet6_option_find
This function is similar to the previously describedinet6_option_next () function, except this function
lets the caller specify the option type to be searched for, instead of always returning the next option in the
ancillary data object. cmsg is a pointer to cmsghdr structure of whichcmsg_level equals
IPPROTO_IPV6 andcmsg_type equals eitherIPV6_HOPOPTSor IPV6_DSTOPTS.

tptrp is a pointer to a pointer to an 8-bit byte and∗tptrp is used by the function to remember its place in
the ancillary data object each time the function is called.The first time this function is called for a given
ancillary data object,∗tptrp must be set toNULL. ˜ This function starts searching for an option of the
specified type beginning after the value of∗tptrp . If an option of the specified type is located, this func-
tion returns0 and∗tptrp points to the 8- bit option type field for the option of the specified type.If an
option of the specified type is not located, the return value is-1 and∗tptrp is NULL. If an error occurs,
the return value is-1 and∗tptrp is notNULL.

EXAMPLES
RFC 2292 gives comprehensive examples in chapter 6.

DIAGNOSTICS
inet6_option_init () andinet6_option_append () return0 on success or-1 on an error.

inet6_option_alloc () returnsNULLon an error.

On errors,inet6_option_next () and inet6_option_find () return -1 setting ∗tptrp to non
NULLvalue.

SEE ALSO
W. Stevens and M. Thomas,Advanced Sockets API for IPv6, RFC 2292, February 1998.

S. Deering and R. Hinden,Internet Protocol, Version 6 (IPv6) Specification, RFC 2460, December 1998.

STANDARDS
The functions are documented in “Advanced Sockets API for IPv6”(RFC 2292) .

HISTORY
The implementation first appeared in KAME advanced networking kit.

BUGS
The text was shamelessly copied from RFC 2292.

NetBSD 3.0 December 10, 1999 3

INET6_OPTION_SPACE (3) NetBSDLibrary Functions Manual INET6_OPTION_SPACE (3)

NAME
inet6_option_space , inet6_option_init , inet6_option_append ,
inet6_option_alloc , inet6_option_next , inet6_option_find — IPv6 Hop-by-Hop and
Destination Options manipulation

SYNOPSIS
#include <netinet/in.h>

int
inet6_option_space (int nbytes);

int
inet6_option_init (void ∗bp , struct cmsghdr ∗∗cmsgp , int type);

int
inet6_option_append (struct cmsghdr ∗cmsg , const uint8_t ∗typep , int multx ,

int plusy);

uint8_t ∗
inet6_option_alloc (struct cmsghdr ∗cmsg , int datalen , int multx , int plusy);

int
inet6_option_next (const struct cmsghdr ∗cmsg , uint8_t ∗∗tptrp);

int
inet6_option_find (const struct cmsghdr ∗cmsg , uint8_t ∗∗tptrp , int type);

DESCRIPTION
Building and parsing the Hop-by-Hop and Destination options is complicated due to alignment constraints,
padding and ancillary data manipulation. RFC 2292 defines a set of functions to help the application.The
function prototypes for these functions are all in the〈netinet/in.h 〉 header.

inet6_option_space
inet6_option_space () returns the number of bytes required to hold an option when it is stored as ancil-
lary data, including thecmsghdr structure at the beginning, and any padding at the end(to make its size a
multiple of 8 bytes) . The argument is the size of the structure defining the option, which must include any
pad bytes at the beginning (the valuey in the alignment term “xn + y ”) , the type byte, the length byte,
and the option data.

Note: If multiple options are stored in a single ancillary data object, which is the recommended technique,
this function overestimates the amount of space required by the size ofN-1 cmsghdr structures, whereN is
the number of options to be stored in the object.This is of little consequence, since it is assumed that most
Hop-by-Hop option headers and Destination option headers carry only one option(appendix B of [RFC
2460]) .

inet6_option_init
inet6_option_init () is called once per ancillary data object that will contain either Hop-by-Hop or
Destination options. It returns0 on success or-1 on an error.

bp is a pointer to previously allocated space that will contain the ancillary data object. It must be large
enough to contain all the individual options to be added by later calls toinet6_option_append () and
inet6_option_alloc ().

cmsgp is a pointer to a pointer to acmsghdr structure. ∗cmsgp is initialized by this function to point to
thecmsghdr structure constructed by this function in the buffer pointed to bybp .

NetBSD 3.0 December 10, 1999 1

INET6_OPTION_SPACE (3) NetBSDLibrary Functions Manual INET6_OPTION_SPACE (3)

type is eitherIPV6_HOPOPTSor IPV6_DSTOPTS. This type is stored in thecmsg_type member of
thecmsghdr structure pointed to by∗cmsgp.

inet6_option_append
This function appends a Hop-by-Hop option or a Destination option into an ancillary data object that has
been initialized byinet6_option_init (). Thisfunction returns0 if it succeeds or-1 on an error.

cmsg is a pointer to thecmsghdr structure that must have been initialized byinet6_option_init ().

typep is a pointer to the 8-bit option type. It is assumed that this field is immediately followed by the 8-bit
option data length field, which is then followed immediately by the option data. The caller initializes these
three fields(the type-length-value, or TLV) before calling this function.

The option type must have a value from2 to 255 , inclusive. (0 and1 are reserved for thePad1 andPadN
options, respectively.)

The option data length must have a value between0 and255 , inclusive, and is the length of the option data
that follows.

multx is the valuex in the alignment term “xn + y ”. It must have a value of1, 2, 4, or 8.

plusy is the valuey in the alignment term “xn + y ”. It must have a value between0 and7, inclusive.

inet6_option_alloc
This function appends a Hop-by-Hop option or a Destination option into an ancillary data object that has
been initialized byinet6_option_init (). This function returns a pointer to the 8-bit option type field
that starts the option on success, orNULLon an error.

The difference between this function andinet6_option_append () is that the latter copies the contents
of a previously built option into the ancillary data object while the current function returns a pointer to the
space in the data object where the option’s TLV must then be built by the caller.

cmsg is a pointer to thecmsghdr structure that must have been initialized byinet6_option_init ().

datalen is the value of the option data length byte for this option. This value is required as an argument to
allow the function to determine if padding must be appended at the end of the option.(The
inet6_option_append () function does not need a data length argument since the option data length
must already be stored by the caller.)

multx is the valuex in the alignment term “xn + y ”. It must have a value of1, 2, 4, or 8.

plusy is the valuey in the alignment term “xn + y ”. It must have a value between0 and7, inclusive.

inet6_option_next
This function processes the next Hop-by-Hop option or Destination option in an ancillary data object.If
another option remains to be processed, the return value of the function is0 and∗tptrp points to the 8-bit
option type field(which is followed by the 8-bit option data length, followed by the option data) . If no
more options remain to be processed, the return value is-1 and∗tptrp is NULL. If an error occurs, the
return value is-1 and∗tptrp is notNULL.

cmsg is a pointer to cmsghdr structure of which cmsg_level equals IPPROTO_IPV6 and
cmsg_type equals eitherIPV6_HOPOPTSor IPV6_DSTOPTS.

tptrp is a pointer to a pointer to an 8-bit byte and∗tptrp is used by the function to remember its place in
the ancillary data object each time the function is called.The first time this function is called for a given
ancillary data object,∗tptrp must be set toNULL.

NetBSD 3.0 December 10, 1999 2

INET6_OPTION_SPACE (3) NetBSDLibrary Functions Manual INET6_OPTION_SPACE (3)

Each time this function returns success,∗tptrp points to the 8-bit option type field for the next option to be
processed.

inet6_option_find
This function is similar to the previously describedinet6_option_next () function, except this function
lets the caller specify the option type to be searched for, instead of always returning the next option in the
ancillary data object. cmsg is a pointer to cmsghdr structure of whichcmsg_level equals
IPPROTO_IPV6 andcmsg_type equals eitherIPV6_HOPOPTSor IPV6_DSTOPTS.

tptrp is a pointer to a pointer to an 8-bit byte and∗tptrp is used by the function to remember its place in
the ancillary data object each time the function is called.The first time this function is called for a given
ancillary data object,∗tptrp must be set toNULL. ˜ This function starts searching for an option of the
specified type beginning after the value of∗tptrp . If an option of the specified type is located, this func-
tion returns0 and∗tptrp points to the 8- bit option type field for the option of the specified type.If an
option of the specified type is not located, the return value is-1 and∗tptrp is NULL. If an error occurs,
the return value is-1 and∗tptrp is notNULL.

EXAMPLES
RFC 2292 gives comprehensive examples in chapter 6.

DIAGNOSTICS
inet6_option_init () andinet6_option_append () return0 on success or-1 on an error.

inet6_option_alloc () returnsNULLon an error.

On errors,inet6_option_next () and inet6_option_find () return -1 setting ∗tptrp to non
NULLvalue.

SEE ALSO
W. Stevens and M. Thomas,Advanced Sockets API for IPv6, RFC 2292, February 1998.

S. Deering and R. Hinden,Internet Protocol, Version 6 (IPv6) Specification, RFC 2460, December 1998.

STANDARDS
The functions are documented in “Advanced Sockets API for IPv6”(RFC 2292) .

HISTORY
The implementation first appeared in KAME advanced networking kit.

BUGS
The text was shamelessly copied from RFC 2292.

NetBSD 3.0 December 10, 1999 3

INET6_RTH_SPACE (3) NetBSDLibrary Functions Manual INET6_RTH_SPACE (3)

NAME
inet6_rth_space , inet6_rth_init , inet6_rth_add , inet6_rth_reverse ,
inet6_rth_segments , inet6_rth_getaddr — IPv6 Routing Header Options manipulation

SYNOPSIS
#include <netinet/in.h>

socklen_t
inet6_rth_space (int , int);

void ∗
inet6_rth_init (void ∗ , socklen_t , int , int);

int
inet6_rth_add (void ∗ , const struct in6_addr ∗);

int
inet6_rth_reverse (const void ∗ , void ∗);

int
inet6_rth_segments (const void ∗);

struct in6_addr ∗
inet6_rth_getaddr (const void ∗ , int);

DESCRIPTION
The IPv6 Advanced API, RFC 3542, defines the functions that an application calls to build and examine IPv6
Routing headers. Routing headers are used to perform source routing in IPv6 networks. TheRFC uses the
word “segments” to describe addresses and that is the term used here as well.All of the functions are
defined in the <netinet/in.h > header file.The functions described in this manual page all operate on
routing header structures which are defined in <netinet/ip6.h > but which should not need to be modi-
fied outside the use of this API.The size and shape of the route header structures may change, so using the
APIs is a more portable, long term, solution.

The functions in the API are split into two groups, those that build a routing header and those that parse a
received routing header. We will describe the builder functions followed by the parser functions.

inet6_rth_space
The inet6_rth_space () function returns the number of bytes required to hold a Routing Header of the
type, specified in thetype argument and containing the number of addresses specified in thesegments
argumment. Whenthe type isIPV6_RTHDR_TYPE_0the number of segments must be from 0 through
127. Routingheaders of typeIPV6_RTHDR_TYPE_2contain only one segment, and are only used with
Mobile IPv6. The return value from this function is the number of bytes required to store the routing header.
If the value 0 is returned then either the route header type was not recognized or another error occurred.

inet6_rth_init
The inet6_rth_init () function initializes the pre-allocated buffer pointed to bybp to contain a routing
header of the specified type Thebp_len argument is used to verify that the buffer is large enough.The
caller must allocate the buffer pointed to by bp. The necessary buffer size should be determined by calling
inet6_rth_space () described in the previous sections.

The inet6_rth_init () function returns a pointer tobp on success andNULLwhen there is an error.

NetBSD 3.0 December 24, 2004 1

INET6_RTH_SPACE (3) NetBSDLibrary Functions Manual INET6_RTH_SPACE (3)

inet6_rth_add
The inet6_rth_add () function adds the IPv6 address pointed to byaddr to the end of the routing header
being constructed.

A successful addition results in the function returning 0, otherwise −1 is returned.

inet6_rth_rev erse
The inet6_rth_reverse () function takes a routing header, pointed to by the argumentin , and writes a
new routing header into the argument pointed to byout . The routing header at that sends datagrams along
the reverse of that route.Both arguments are allowed to point to the same buffer meaning that the reversal
can occur in place.

The return value of the function is 0 on success, or −1 when there is an error.

The next set of functions operate on a routing header that the application wants to parse.In the usual case
such a routing header is received from the network, although these functions can also be used with routing
headers that the application itself created.

inet6_rth_segments
The inet6_rth_segments () function returns the number of segments contained in the routing header
pointed to bybp . The return value is the number of segments contained in the routing header, or −1 if an
error occurred. It is not an error for 0 to be returned as a routing header may contain 0 segments.

inet6_rth_getaddr
The inet6_rth_getaddr () function is used to retrieve a single address from a routing header. The
index is the location in the routing header from which the application wants to retrieve an address. The
index parameter must have a value between 0 and one less than the number of segments present in the rout-
ing header. The inet6_rth_segments () function, described in the last section, should be used to deter-
mine the total number of segments in the routing header. The inet6_rth_getaddr () function returns a
pointer to an IPv6 address on success orNULLwhen an error has occurred.

DIAGNOSTICS
The inet6_rth_space () andinet6_rth_getaddr () functions return 0 on errors.

The inet6_rthdr_init () function returns NULL on error. The inet6_rth_add () and
inet6_rth_reverse () functions return 0 on success, or −1 upon an error.

EXAMPLES
RFC 3542 gives extensive examples in Section 21, Appendix B.

KAME also provides examples in the advapitest directory of its kit.

SEE ALSO
W. Stevens, M. Thomas, E. Nordmark, and T. Jinmei,Advanced Sockets API for IPv6, RFC 3542, May 2003.

S. Deering and R. Hinden,Internet Protocol, Version 6 (IPv6) Specification, RFC2460, December 1998.

HISTORY
The implementation first appeared in KAME advanced networking kit.

NetBSD 3.0 December 24, 2004 2

INET6_RTHDR_SPACE (3) NetBSDLibrary Functions Manual INET6_RTHDR_SPACE (3)

NAME
inet6_rthdr_space , inet6_rthdr_init , inet6_rthdr_add , inet6_rthdr_lasthop ,
inet6_rthdr_reverse , inet6_rthdr_segments , inet6_rthdr_getaddr ,
inet6_rthdr_getflags — IPv6 Routing Header Options manipulation

SYNOPSIS
#include <netinet/in.h>

size_t
inet6_rthdr_space (int type , int segments);

struct cmsghdr ∗
inet6_rthdr_init (void ∗bp , int type);

int
inet6_rthdr_add (struct cmsghdr ∗cmsg , const struct in6_addr ∗addr ,

unsigned int flags);

int
inet6_rthdr_lasthop (struct cmsghdr ∗cmsg , unsigned int flags);

int
inet6_rthdr_reverse (const struct cmsghdr ∗in , struct cmsghdr ∗out);

int
inet6_rthdr_segments (const struct cmsghdr ∗cmsg);

struct in6_addr ∗
inet6_rthdr_getaddr (struct cmsghdr ∗cmsg , int index);

int
inet6_rthdr_getflags (const struct cmsghdr ∗cmsg , int index);

DESCRIPTION
RFC 2292 IPv6 advanced API defines eight functions that the application calls to build and examine a Rout-
ing header. Four functions build a Routing header:

inet6_rthdr_space () return #bytes required for ancillary data

inet6_rthdr_init () initialize ancillary data for Routing header

inet6_rthdr_add () add IPv6 address & flags to Routing header

inet6_rthdr_lasthop () specify the flags for the final hop

Four functions deal with a returned Routing header:

inet6_rthdr_reverse () reverse a Routing header

inet6_rthdr_segments () return #segments in a Routing header

inet6_rthdr_getaddr () fetch one address from a Routing header

inet6_rthdr_getflags () fetch one flag from a Routing header

The function prototypes for these functions are all in the〈netinet/in.h 〉 header.

inet6_rthdr_space
This function returns the number of bytes required to hold a Routing header of the specifiedtype contain-
ing the specified number ofsegments (addresses) .For an IPv6 Type 0 Routing header, the number of
segments must be between 1 and 23, inclusive. The return value includes the size of the cmsghdr structure

NetBSD 3.0 December 10, 1999 1

INET6_RTHDR_SPACE (3) NetBSDLibrary Functions Manual INET6_RTHDR_SPACE (3)

that precedes the Routing header, and any required padding.

If the return value is 0, then either the type of the Routing header is not supported by this implementation or
the number of segments is invalid for this type of Routing header.

Note: This function returns the size but does not allocate the space required for the ancillary data.This
allows an application to allocate a larger buffer, if other ancillary data objects are desired, since all the ancil-
lary data objects must be specified tosendmsg (2) as a singlemsg_control buffer.

inet6_rthdr_init
This function initializes the buffer pointed to bybp to contain acmsghdr structure followed by a Routing
header of the specifiedtype . The cmsg_len member of thecmsghdr structure is initialized to the size
of the structure plus the amount of space required by the Routing header. The cmsg_level and
cmsg_type members are also initialized as required.

The caller must allocate the buffer and its size can be determined by callinginet6_rthdr_space ().

Upon success the return value is the pointer to thecmsghdr structure, and this is then used as the first argu-
ment to the next two functions. Uponan error the return value isNULL.

inet6_rthdr_add
This function adds the address pointed to byaddr to the end of the Routing header being constructed and
sets the type of this hop to the value offlags . For an IPv6 Type 0 Routing header, flags must be either
IPV6_RTHDR_LOOSEor IPV6_RTHDR_STRICT.

If successful, thecmsg_len member of thecmsghdr structure is updated to account for the new address
in the Routing header and the return value of the function is 0. Upon an error the return value of the function
is -1.

inet6_rthdr_lasthop
This function specifies the Strict/Loose flag for the final hop of a Routing header. For an IPv6 Type 0 Rout-
ing header,flags must be eitherIPV6_RTHDR_LOOSEor IPV6_RTHDR_STRICT.

The return value of the function is 0 upon success, or -1 upon an error.

Notice that a Routing header specifyingN intermediate nodes requiresN+1 Strict/Loose flags. This requires
Ncalls toinet6_rthdr_add () followed by one call toinet6_rthdr_lasthop ().

inet6_rthdr_r ev erse
This function takes a Routing header that was received as ancillary data (pointed to by the first argument,
in) and writes a new Routing header that sends datagrams along the reverse of that route. Both arguments
are allowed to point to the same buffer (that is, the reversal can occur in place) .

The return value of the function is 0 on success, or -1 upon an error.

inet6_rthdr_segments
This function returns the number of segments (addresses)contained in the Routing header described by
cmsg. On success the return value is between 1 and 23, inclusive. The return value of the function is -1
upon an error.

inet6_rthdr_getaddr
This function returns a pointer to the IPv6 address specified byindex (which must have a value between 1
and the value returned byinet6_rthdr_segments ()) in the Routing header described bycmsg. An
application should first callinet6_rthdr_segments () to obtain the number of segments in the Routing
header.

NetBSD 3.0 December 10, 1999 2

INET6_RTHDR_SPACE (3) NetBSDLibrary Functions Manual INET6_RTHDR_SPACE (3)

Upon an error the return value of the function isNULL.

inet6_rthdr_getflags
This function returns the flags value specified byindex (which must have a value between 0 and the value
returned byinet6_rthdr_segments ()) in the Routing header described bycmsg. For an IPv6 Type 0
Routing header the return value will be eitherIPV6_RTHDR_LOOSEor IPV6_RTHDR_STRICT.

Upon an error the return value of the function is -1.

Note: Addresses are indexed starting at 1, and flags starting at 0, to maintain consistency with the terminol-
ogy and figures in RFC 2460.

EXAMPLES
RFC 2292 gives comprehensive examples in chapter 8.

DIAGNOSTICS
inet6_rthdr_space () returns 0 on errors.

inet6_rthdr_add (), inet6_rthdr_lasthop () and inet6_rthdr_reverse () return 0 on suc-
cess, and returns -1 on error.

inet6_rthdr_init () andinet6_rthdr_getaddr () returnNULLon error.

inet6_rthdr_segments () andinet6_rthdr_getflags () return -1 on error.

SEE ALSO
W. Stevens and M. Thomas,Advanced Sockets API for IPv6, RFC 2292, February 1998.

S. Deering and R. Hinden,Internet Protocol, Version 6 (IPv6) Specification, RFC 2460, December 1998.

STANDARDS
The functions are documented in “Advanced Sockets API for IPv6”(RFC 2292) .

HISTORY
The implementation first appeared in KAME advanced networking kit.

BUGS
The text was shamelessly copied from RFC 2292.

inet6_rthdr_reverse () is not implemented yet.

NetBSD 3.0 December 10, 1999 3

INET6_RTHDR_SPACE (3) NetBSDLibrary Functions Manual INET6_RTHDR_SPACE (3)

NAME
inet6_rthdr_space , inet6_rthdr_init , inet6_rthdr_add , inet6_rthdr_lasthop ,
inet6_rthdr_reverse , inet6_rthdr_segments , inet6_rthdr_getaddr ,
inet6_rthdr_getflags — IPv6 Routing Header Options manipulation

SYNOPSIS
#include <netinet/in.h>

size_t
inet6_rthdr_space (int type , int segments);

struct cmsghdr ∗
inet6_rthdr_init (void ∗bp , int type);

int
inet6_rthdr_add (struct cmsghdr ∗cmsg , const struct in6_addr ∗addr ,

unsigned int flags);

int
inet6_rthdr_lasthop (struct cmsghdr ∗cmsg , unsigned int flags);

int
inet6_rthdr_reverse (const struct cmsghdr ∗in , struct cmsghdr ∗out);

int
inet6_rthdr_segments (const struct cmsghdr ∗cmsg);

struct in6_addr ∗
inet6_rthdr_getaddr (struct cmsghdr ∗cmsg , int index);

int
inet6_rthdr_getflags (const struct cmsghdr ∗cmsg , int index);

DESCRIPTION
RFC 2292 IPv6 advanced API defines eight functions that the application calls to build and examine a Rout-
ing header. Four functions build a Routing header:

inet6_rthdr_space () return #bytes required for ancillary data

inet6_rthdr_init () initialize ancillary data for Routing header

inet6_rthdr_add () add IPv6 address & flags to Routing header

inet6_rthdr_lasthop () specify the flags for the final hop

Four functions deal with a returned Routing header:

inet6_rthdr_reverse () reverse a Routing header

inet6_rthdr_segments () return #segments in a Routing header

inet6_rthdr_getaddr () fetch one address from a Routing header

inet6_rthdr_getflags () fetch one flag from a Routing header

The function prototypes for these functions are all in the〈netinet/in.h 〉 header.

inet6_rthdr_space
This function returns the number of bytes required to hold a Routing header of the specifiedtype contain-
ing the specified number ofsegments (addresses) .For an IPv6 Type 0 Routing header, the number of
segments must be between 1 and 23, inclusive. The return value includes the size of the cmsghdr structure

NetBSD 3.0 December 10, 1999 1

INET6_RTHDR_SPACE (3) NetBSDLibrary Functions Manual INET6_RTHDR_SPACE (3)

that precedes the Routing header, and any required padding.

If the return value is 0, then either the type of the Routing header is not supported by this implementation or
the number of segments is invalid for this type of Routing header.

Note: This function returns the size but does not allocate the space required for the ancillary data.This
allows an application to allocate a larger buffer, if other ancillary data objects are desired, since all the ancil-
lary data objects must be specified tosendmsg (2) as a singlemsg_control buffer.

inet6_rthdr_init
This function initializes the buffer pointed to bybp to contain acmsghdr structure followed by a Routing
header of the specifiedtype . The cmsg_len member of thecmsghdr structure is initialized to the size
of the structure plus the amount of space required by the Routing header. The cmsg_level and
cmsg_type members are also initialized as required.

The caller must allocate the buffer and its size can be determined by callinginet6_rthdr_space ().

Upon success the return value is the pointer to thecmsghdr structure, and this is then used as the first argu-
ment to the next two functions. Uponan error the return value isNULL.

inet6_rthdr_add
This function adds the address pointed to byaddr to the end of the Routing header being constructed and
sets the type of this hop to the value offlags . For an IPv6 Type 0 Routing header, flags must be either
IPV6_RTHDR_LOOSEor IPV6_RTHDR_STRICT.

If successful, thecmsg_len member of thecmsghdr structure is updated to account for the new address
in the Routing header and the return value of the function is 0. Upon an error the return value of the function
is -1.

inet6_rthdr_lasthop
This function specifies the Strict/Loose flag for the final hop of a Routing header. For an IPv6 Type 0 Rout-
ing header,flags must be eitherIPV6_RTHDR_LOOSEor IPV6_RTHDR_STRICT.

The return value of the function is 0 upon success, or -1 upon an error.

Notice that a Routing header specifyingN intermediate nodes requiresN+1 Strict/Loose flags. This requires
Ncalls toinet6_rthdr_add () followed by one call toinet6_rthdr_lasthop ().

inet6_rthdr_r ev erse
This function takes a Routing header that was received as ancillary data (pointed to by the first argument,
in) and writes a new Routing header that sends datagrams along the reverse of that route. Both arguments
are allowed to point to the same buffer (that is, the reversal can occur in place) .

The return value of the function is 0 on success, or -1 upon an error.

inet6_rthdr_segments
This function returns the number of segments (addresses)contained in the Routing header described by
cmsg. On success the return value is between 1 and 23, inclusive. The return value of the function is -1
upon an error.

inet6_rthdr_getaddr
This function returns a pointer to the IPv6 address specified byindex (which must have a value between 1
and the value returned byinet6_rthdr_segments ()) in the Routing header described bycmsg. An
application should first callinet6_rthdr_segments () to obtain the number of segments in the Routing
header.

NetBSD 3.0 December 10, 1999 2

INET6_RTHDR_SPACE (3) NetBSDLibrary Functions Manual INET6_RTHDR_SPACE (3)

Upon an error the return value of the function isNULL.

inet6_rthdr_getflags
This function returns the flags value specified byindex (which must have a value between 0 and the value
returned byinet6_rthdr_segments ()) in the Routing header described bycmsg. For an IPv6 Type 0
Routing header the return value will be eitherIPV6_RTHDR_LOOSEor IPV6_RTHDR_STRICT.

Upon an error the return value of the function is -1.

Note: Addresses are indexed starting at 1, and flags starting at 0, to maintain consistency with the terminol-
ogy and figures in RFC 2460.

EXAMPLES
RFC 2292 gives comprehensive examples in chapter 8.

DIAGNOSTICS
inet6_rthdr_space () returns 0 on errors.

inet6_rthdr_add (), inet6_rthdr_lasthop () and inet6_rthdr_reverse () return 0 on suc-
cess, and returns -1 on error.

inet6_rthdr_init () andinet6_rthdr_getaddr () returnNULLon error.

inet6_rthdr_segments () andinet6_rthdr_getflags () return -1 on error.

SEE ALSO
W. Stevens and M. Thomas,Advanced Sockets API for IPv6, RFC 2292, February 1998.

S. Deering and R. Hinden,Internet Protocol, Version 6 (IPv6) Specification, RFC 2460, December 1998.

STANDARDS
The functions are documented in “Advanced Sockets API for IPv6”(RFC 2292) .

HISTORY
The implementation first appeared in KAME advanced networking kit.

BUGS
The text was shamelessly copied from RFC 2292.

inet6_rthdr_reverse () is not implemented yet.

NetBSD 3.0 December 10, 1999 3

INET_NET (3) NetBSD Library Functions Manual INET_NET (3)

NAME
inet_net_ntop , inet_net_pton — Internet network number manipulation routines

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char ∗
inet_net_ntop (int af , const void ∗src , int bits , char ∗dst , size_t size);

int
inet_net_pton (int af , const char ∗src , void ∗dst , size_t size);

DESCRIPTION
The inet_net_ntop () function converts an Internet network number from network format (usually a
struct in_addr or some other binary form, in network byte order) to CIDR presentation format (suit-
able for external display purposes).bits is the number of bits insrc that are the network number. It
returns NULL if a system error occurs (in which case,errno will have been set), or it returns a pointer to the
destination string.

The inet_net_pton () function converts a presentation format Internet network number (that is, printable
form as held in a character string) to network format (usually astruct in_addr or some other internal
binary representation, in network byte order). It returns the number of bits (either computed based on the
class, or specified with /CIDR), or -1 if a failure occurred (in which caseerrno will have been set. It will be
set toENOENTif the Internet network number was not valid).

The currently supported values foraf areAF_INET andAF_INET6 . size is the size of the result buffer
dst .

NETWORK NUMBERS (IP VERSION 4)
Internet network numbers may be specified in one of the following forms:

a.b.c.d/bits
a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the four
bytes of an Internet network number. Note that when an Internet network number is viewed as a 32-bit inte-
ger quantity on a system that uses little-endian byte order (such as theIntel 386, 486andPentiumprocessors)
the bytes referred to above appear as “d.c.b.a ”. That is, little-endian bytes are ordered from right to left.

When a three part number is specified, the last part is interpreted as a 16-bit quantity and placed in the right-
most two bytes of the Internet network number. This makes the three part number format convenient for
specifying Class B network numbers as “128.net.host ”.

When a two part number is supplied, the last part is interpreted as a 24-bit quantity and placed in the right
most three bytes of the Internet network number. This makes the two part number format convenient for
specifying Class A network numbers as “net.host ”.

NetBSD 3.0 December 8, 2001 1

INET_NET (3) NetBSD Library Functions Manual INET_NET (3)

When only one part is given, the value is stored directly in the Internet network number without any byte re-
arrangement.

All numbers supplied as “parts” in a ‘. ’ notation may be decimal, octal, or hexadecimal, as specified in the C
language (i.e., a leading 0x or 0X implies hexadecimal; otherwise, a leading 0 implies octal; otherwise, the
number is interpreted as decimal).

SEE ALSO
byteorder (3), inet (3), networks (5)

HISTORY
The inet_net_ntop and inet_net_pton functions appeared in BIND 4.9.4 and thenceNetBSD 1.3.
Support forAF_INET6 appeared inNetBSD 1.6.

NetBSD 3.0 December 8, 2001 2

INITGROUPS (3) NetBSD Library Functions Manual INITGROUPS (3)

NAME
initgroups — initialize supplementary group IDs

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
initgroups (const char ∗name, gid_t basegid);

DESCRIPTION
The initgroups () function uses thegetgrouplist (3) function to calculate the supplementary group
IDs for the user specified inname. This group list is then set up for the current process using
setgroups (2). Thebasegid is automatically included in the group list.Typically this value is given as
the group number from the password file.

If the groups database lists more thanNGROUPSgroups forname (including one forbasegid), the later
groups are ignored.

RETURN VALUES
The initgroups () function returns −1 if it was not invoked by the super-user.

SEE ALSO
setgroups (2), getgrouplist (3)

HISTORY
The initgroups () function appeared in 4.2BSD.

BUGS
The getgrouplist () function called byinitgroups () uses the routines based ongetgrent (3). If
the invoking program uses any of these routines, the group structure will be overwritten in the call to
initgroups ().

NetBSD 3.0 August 10, 2002 1

INSQUE (3) NetBSD Library Functions Manual INSQUE (3)

NAME
insque , remque — insert/remove element from a queue

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <search.h>

void
insque (void ∗elem , void ∗pred);

void
remque (void ∗elem);

DESCRIPTION
insque () andremque () manipulate queues built from doubly linked lists.The queue can be either circular
or linear. The functions expect their arguments to point to a structure whose first and second members are
pointers to the next and previous element, respectively. The insque () function also allows thepred argu-
ment to be aNULLpointer for the initialization of a new linear list’s head element.

STANDARDS
The insque () andremque () functions conform toIEEE Std 1003.1-2001 (“POSIX.1”).

HISTORY
These are derived from the insque and remque instructions on a VAX.

NetBSD 3.0 July 6, 2005 1

IPSEC_SET_POLICY (3) NetBSD Library Functions Manual IPSEC_SET_POLICY (3)

NAME
ipsec_set_policy , ipsec_get_policylen , ipsec_dump_policy — manipulate IPsec policy
specification structure from human-readable policy string

LIBRARY
IPsec Policy Control Library (libipsec, −lipsec)

SYNOPSIS
#include <netinet6/ipsec.h>

char ∗
ipsec_set_policy (char ∗policy , int len);

int
ipsec_get_policylen (char ∗buf);

char ∗
ipsec_dump_policy (char ∗buf , char ∗delim);

DESCRIPTION
ipsec_set_policy () generates an IPsec policy specification structure, namelystruct
sadb_x_policy and/orstruct sadb_x_ipsecrequest from a human-readable policy specifica-
tion. The policy specification must be given as a C string policy and its length len .
ipsec_set_policy () will return a buffer with the corresponding IPsec policy specification structure.
The buffer is dynamically allocated, and must befree (3)’d by the caller.

You can get the length of the generated buffer with ipsec_get_policylen () (i.e. for calling
setsockopt (2)).

ipsec_dump_policy () converts an IPsec policy structure into human-readable form.Therefore,
ipsec_dump_policy () can be regarded as the inverse function toipsec_set_policy (). buf points
to an IPsec policy structure,struct sadb_x_policy . delim is a delimiter string, which is usually a
blank character. If you setdelim to NULL, a single whitespace is assumed.ipsec_dump_policy ()
returns a pointer to a dynamically allocated string. It is the caller’s responsibility tofree (3) it.

policy is formatted as either of the following:

direction [priority specification] discard
direction must bein , out , or fwd . direction specifies in which direction the policy
needs to be applied. The non-standard directionfwd is substituted within on platforms which
do not support forward policies.

priority specification is used to control the placement of the policy within the SPD.
The policy position is determined by a signed integer where higher priorities indicate the policy
is placed closer to the beginning of the list and lower priorities indicate the policy is placed closer
to the end of the list. Policies with equal priorities are added at the end of the group of such poli-
cies.

Priority can only be specified when libipsec has been compiled against kernel headers that sup-
port policy priorities (Linux >= 2.6.6). It takes one of the following formats:

{priority,prio} offset
offset is an integer in the range -2147483647..214783648.

{priority,prio} base {+,-} offset
base is eitherlow (-1073741824) , def (0) , or high (1073741824) .

NetBSD 3.0 May 5, 1998 1

IPSEC_SET_POLICY (3) NetBSD Library Functions Manual IPSEC_SET_POLICY (3)

offset is an unsigned integer. It can be up to 1073741824 for positive offsets, and
up to 1073741823 for negative offsets.

The interpretation of policy priority in these functions and the kernel DOES differ. The relation-
ship between the two can be described as p(kernel) = 0x80000000 - p(func)

With discard policy, packets will be dropped if they match the policy.

direction [priority specification] entrust
entrust means to consult the SPD defined bysetkey (8).

direction [priority specification] bypass
bypass means to bypass the IPsec processing.(the packet will be transmitted in clear) . This
is for privileged sockets.

direction [priority specification] ipsec request . . .
ipsec means that the matching packets are subject to IPsec processing.ipsec can be fol-
lowed by one or morerequest strings, which are formatted as below:

protocol / mode / src - dst [/level]
protocol is eitherah , esp , or ipcomp .

mode is eithertransport or tunnel .

src anddst specifies the IPsec endpoint.src always means the “sending node”
anddst always means the “receiving node”. Therefore, whendirection is in ,
dst is this node andsrc is the other node(peer) . If mode is transport , Both
src anddst can be omitted.

level must be set to one of the following: default , use , require , or
unique . default means that the kernel should consult the system default policy
defined bysysctl (8), such asnet.inet.ipsec.esp_trans_deflev . See
ipsec (4) regarding the system default. use means that a relevant SA can be used
when available, since the kernel may perform IPsec operation against packets when
possible. In this case, packets can be transmitted in clear(when SA is not
available) ,or encrypted(when SA is available) . require means that a relevant
SA is required, since the kernel must perform IPsec operation against packets.
unique is the same asrequire , but adds the restriction that the SA for outbound
traffic is used only for this policy. You may need the identifier in order to relate the
policy and the SA when you define the SA by manual keying. You can put the deci-
mal number as the identifier afterunique like unique : number . number must
be between 1 and 32767 . If therequest string is kept unambiguous,level and
slash prior tolevel can be omitted.However, it is encouraged to specify them
explicitly to avoid unintended behavior. If level is omitted, it will be interpreted as
default .

Note that there are slight differences to the specification ofsetkey (8). In the specification of
setkey (8), bothentrust andbypass are not used. Refer tosetkey (8) for details.

Here are several examples (long lines are wrapped for readability) :

in discard
out ipsec esp/transport//require
in ipsec ah/transport//require
out ipsec esp/tunnel/10.1.1.2-10.1.1.1/use
in ipsec ipcomp/transport//use

esp/transport//use

NetBSD 3.0 May 5, 1998 2

IPSEC_SET_POLICY (3) NetBSD Library Functions Manual IPSEC_SET_POLICY (3)

RETURN VALUES
ipsec_set_policy () returns a pointer to the allocated buffer with the policy specification if successful;
otherwise aNULL pointer is returned.ipsec_get_policylen () returns a positive value (meaning the
buffer size) on success, and a negative value on errors.ipsec_dump_policy () returns a pointer to a
dynamically allocated region on success, andNULLon errors.

SEE ALSO
ipsec_strerror (3), ipsec (4), setkey (8)

HISTORY
The functions first appeared in the WIDE/KAME IPv6 protocol stack kit.

NetBSD 3.0 May 5, 1998 3

IPSEC_STRERROR (3) NetBSD Library Functions Manual IPSEC_STRERROR (3)

NAME
ipsec_strerror — error messages for the IPsec policy manipulation library

LIBRARY
IPsec Policy Control Library (libipsec, −lipsec)

SYNOPSIS
#include <netinet6/ipsec.h>

const char ∗
ipsec_strerror (void);

DESCRIPTION
netinet6/ipsec.h declares

extern int ipsec_errcode ;

which is used to pass an error code from the IPsec policy manipulation library to a program.
ipsec_strerror () can be used to obtain the error message string for the error code.

The array pointed to is not to be modified by the calling program.Since ipsec_strerror () uses
strerror (3) as underlying function, callingstrerror (3) after ipsec_strerror () will make the
return value fromipsec_strerror () invalid or overwritten.

RETURN VALUES
ipsec_strerror () always returns a pointer to a C string. The C string must not be overwritten by the
calling program.

SEE ALSO
ipsec_set_policy (3)

HISTORY
ipsec_strerror () first appeared in the WIDE/KAME IPv6 protocol stack kit.

BUGS
ipsec_strerror () will return its result which may be overwritten by subsequent calls.

ipsec_errcodeis not thread safe.

NetBSD 3.0 May 6, 1998 1

ISALNUM (3) NetBSD Library Functions Manual ISALNUM (3)

NAME
isalnum — alphanumeric character test

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
isalnum (int c);

DESCRIPTION
The isalnum () function tests for any character for whichisalpha (3) or isdigit (3) is true.

RETURN VALUES
The isalnum () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalpha (3), isascii (3), isblank (3), iscntrl (3), isdigit (3), isgraph (3),
islower (3), isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The isalnum () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument toisalnum () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

ISALPHA (3) NetBSD Library Functions Manual ISALPHA (3)

NAME
isalpha — alphabetic character test

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
isalpha (int c);

DESCRIPTION
The isalpha () function tests for any character for whichisupper (3) or islower (3) is true and for
which none ofiscntrl (3), isdigit (3), ispunct (3), or isspace (3) is true. In the‘‘ C’’ locale,
isalpha () returns true only for the characters for whichisupper (3) or islower (3) is true.

RETURN VALUES
The isalpha () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalnum (3), isascii (3), isblank (3), iscntrl (3), isdigit (3), isgraph (3),
islower (3), isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The isalpha () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument toisalpha () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

ISASCII (3) NetBSD Library Functions Manual ISASCII (3)

NAME
isascii — test for ASCII character

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
isascii (int c);

DESCRIPTION
The isascii () function tests for anASCII character, which is any character with a value in the range from
0 to 127, inclusive.

The isascii () is defined on all integer values.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isblank (3), iscntrl (3), isdigit (3), isgraph (3),
islower (3), isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The isascii () function conforms toX/OpenPortability Guide Issue 4 (“XPG4”).

NetBSD 3.0 April 17, 2008 1

ISBLANK (3) NetBSD Library Functions Manual ISBLANK (3)

NAME
isblank — blank-space character test

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
isblank (int c);

DESCRIPTION
The isblank () function tests for the standard blank-space characters.The standard blank-space characters
are the following:

‘ ’ Space character.
\t Horizontal tab.

In the‘‘ C’’ locale,isblank () returns true only for the standard blank-space characters.

RETURN VALUES
The isblank () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), iscntrl (3), isdigit (3), isgraph (3),
islower (3), isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

CAVEATS
The argument toisblank () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

ISCNTRL (3) NetBSD Library Functions Manual ISCNTRL (3)

NAME
iscntrl — control character test

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
iscntrl (int c);

DESCRIPTION
The iscntrl () function tests for any control character.

RETURN VALUES
The iscntrl () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), isblank (3), isdigit (3), isgraph (3),
islower (3), isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The iscntrl () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument toiscntrl () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

ISDIGIT (3) NetBSD Library Functions Manual ISDIGIT (3)

NAME
isdigit — decimal-digit character test

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
isdigit (int c);

DESCRIPTION
The isdigit () function tests for any decimal-digit character.

RETURN VALUES
The isdigit () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), isblank (3), iscntrl (3), isgraph (3),
islower (3), isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The isdigit () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument toisdigit () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

ISFINITE (3) NetBSD Library Functions Manual ISFINITE (3)

NAME
isfinite — test for finite value

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <math.h>

int
isfinite (real-floating x);

DESCRIPTION
The isfinite () determines whether its argumentx has a finite value. Anargument represented in a for-
mat wider than its semantic type is converted to its semantic type first.The determination is then based on
the type of the argument.

IEEE 754
It is determined whether the value ofx is zero, subnormal, or normal, and neither infinite nor NaN.

VAX
It is determined whether the value ofx is true zero or finite, and neither dirty zero nor ROP.

RETURN VALUES
The isfinite () macro returns a non-zero value if the value ofx is finite. Otherwise 0 is returned.

ERRORS
No errors are defined.

SEE ALSO
fpclassify (3), isnormal (3), math (3), signbit (3)

STANDARDS
The isfinite () macro conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 October 29, 2003 1

ISGRAPH (3) NetBSD Library Functions Manual ISGRAPH (3)

NAME
isgraph — printing character test (space character exclusive)

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
isgraph (int c);

DESCRIPTION
The isgraph () function tests for any printing character except space (’ ’).

RETURN VALUES
The isgraph () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), isblank (3), iscntrl (3), isdigit (3),
islower (3), isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The isgraph () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument toisgraph () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

ISGREATER (3) NetBSD Library Functions Manual ISGREATER (3)

NAME
isgreater , isgreaterequal , isless , islessequal , islessgreater , isunordered —
compare two floating-point numbers

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <math.h>

int
isgreater (real-floating x , real-floating y);

int
isgreaterequal (real-floating x , real-floating y);

int
isless (real-floating x , real-floating y);

int
islessequal (real-floating x , real-floating y);

int
islessgreater (real-floating x , real-floating y);

int
isunordered (real-floating x , real-floating y);

DESCRIPTION
Each of the macrosisgreater (), isgreaterequal (), isless (), islessequal (), and
islessgreater () take argumentsx andy and return a non-zero value if and only if its nominal relation
on x andy is true. These macros always return zero if either argument is not a number (NaN), but unlike the
corresponding C operators, they nev er raise a floating point exception.

The isunordered () macro takes argumentsx andy and returns non-zero if and only if neitherx nor y are
NaNs. For any pair of floating-point values, one of the relationships (less, greater, equal, unordered) holds.

SEE ALSO
fpclassify (3), math (3), signbit (3)

STANDARDS
The isgreater (), isgreaterequal (), isless (), islessequal (), islessgreater (), and
isunordered () macros conform toISO/IEC9899:1999 (“ISO C99”).

HISTORY
The relational macros described above first appeared inNetBSD 5.0.

NetBSD 3.0 February 12, 2003 1

ISINF (3) NetBSD Library Functions Manual ISINF (3)

NAME
isinf — test for infinity

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <math.h>

int
isinf (real-floating x);

DESCRIPTION
The isinf () macro determines whether its argumentx is an infinity (positive or neg ative). An argument
represented in a format wider than its semantic type is converted to its semantic type first. The determination
is then based on the type of the argument.

IEEE 754
It is determined whether the value ofx is an infinity.

VAX
Infinities are not supported.

RETURN VALUES
The isinf () macro returns a non-zero value if the value ofx is an infinity. Otherwise 0 is returned.

SEE ALSO
fpclassify (3), isfinite (3), isinff (3), isnan (3), isnanf (3), isnormal (3), math (3),
signbit (3)

IEEE Standard for Binary Floating-Point Arithmetic, Std 754-1985, ANSI.

STANDARDS
The isinf () macro conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 March 5, 2004 1

ISINFF (3) NetBSD Library Functions Manual ISINFF (3)

NAME
isinff , isnanf — test for infinity or not-a-number

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

int
isinff (float);

int
isnanf (float);

DESCRIPTION
The isinff () function returns 1 if the number is “∞”, otherwise 0.

The isnanf () function returns 1 if the number is “not-a-number”, otherwise 0.

SEE ALSO
isinf (3), isnan (3), math (3)

IEEE Standard for Binary Floating-Point Arithmetic, Std 754-1985, ANSI.

BUGS
Neither theVAX nor the Tahoe floating point have distinguished values for either infinity or not-a-number.
These routines always return 0 on those architectures.

NetBSD 3.0 August 16, 1999 1

ISLOWER (3) NetBSD Library Functions Manual ISLOWER (3)

NAME
islower — lower-case character test

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
islower (int c);

DESCRIPTION
The islower () function tests for any lower-case letter for which none ofiscntrl (3), isdigit (3),
ispunct (3), or isspace (3) is true. In the‘‘ C’’ locale, islower () returns true only for the characters
defined as lower-case letters.

RETURN VALUES
The islower () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), isblank (3), iscntrl (3), isdigit (3),
isgraph (3), isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The islower () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument toislower () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

ISNAN (3) NetBSD Library Functions Manual ISNAN (3)

NAME
isnan — test for not-a-number

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <math.h>

int
isnan (real-floating x);

DESCRIPTION
The isnan () macro determines whether its argumentx is not-a-number(“NaN”) . An argument repre-
sented in a format wider than its semantic type is converted to its semantic type first. The determination is
then based on the type of the argument.

IEEE 754
It is determined whether the value ofx is a NaN.

VAX
NaNs are not supported.

RETURN VALUES
The isnan () macro returns a non-zero value if the value ofx is a NaN. Otherwise 0 is returned.

SEE ALSO
fpclassify (3), isfinite (3), isinf (3), isinff (3), isnanf (3), isnormal (3), math (3),
signbit (3)

IEEE Standard for Binary Floating-Point Arithmetic, Std 754-1985, ANSI.

STANDARDS
The isnan () macro conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 March 5, 2004 1

ISNORMAL (3) NetBSD Library Functions Manual ISNORMAL (3)

NAME
isnormal — test for normal value

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <math.h>

int
isnormal (real-floating x);

DESCRIPTION
The isnormal () macro determines whether its argumentx has a normal value. Anargument represented
in a format wider than its semantic type is converted to its semantic type first.The determination is then
based on the type of the argument.

IEEE 754
It is determined whether the value ofx is normal, and neither zero, subnormal, infinite nor NaN.

VAX
It is determined whether the value ofx is finite, and neither true zero, dirty zero nor ROP.

RETURN VALUES
The isnormal () macro returns a non-zero value if the value ofx is finite. Otherwise 0 is returned.

ERRORS
No errors are defined.

SEE ALSO
fpclassify (3), isfinite (3), math (3), signbit (3)

STANDARDS
The isnormal () macro conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 October 29, 2003 1

ISO_ADDR (3) NetBSD Library Functions Manual ISO_ADDR (3)

NAME
iso_addr , iso_ntoa — elementary network address conversion routines for Open System Interconnec-
tion

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <netiso/iso.h>

struct iso_addr ∗
iso_addr (const char ∗cp);

char ∗
iso_ntoa (struct iso_addr ∗isoa);

DESCRIPTION
The routineiso_addr () interprets character strings representingOSI addresses, returning binary informa-
tion suitable for use in system calls. The routineiso_ntoa () takesOSI addresses and returnsASCII strings
representing NSAPs (network service access points) in a notation inverse to that accepted byiso_addr ().

Unfortunately, no universal standard exists for representingOSI network addresses.

The format employed byiso_addr () is a sequence of hexadecimal “digits” (optionally separated by peri-
ods), of the form:

<hex digits>.<hex digits>.<hex digits>

Each pair of hexadecimal digits represents a byte with the leading digit indicating the higher-ordered bits.A
period following an even number of bytes has no effect (but may be used to increase legibility). A period
following an odd number of bytes has the effect of causing the byte of address being translated to have its
higher order bits filled with zeros.

RETURN VALUES
iso_ntoa () always returns a null terminated string.iso_addr () always returns a pointer to a struct
iso_addr. (SeeBUGS.)

SEE ALSO
iso (4)

HISTORY
The iso_addr () andiso_ntoa () functions appeared in 4.3BSD−Reno.

BUGS
The returned values reside in a static memory area.

The functioniso_addr () should diagnose improperly formed input, and there should be an unambiguous
way to recognize this.

NetBSD 3.0 June 4, 1993 1

ISPRINT (3) NetBSD Library Functions Manual ISPRINT (3)

NAME
isprint — printing character test (space character inclusive)

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
isprint (int c);

DESCRIPTION
The isprint () function tests for any printing character including space (’ ’).

RETURN VALUES
The isprint () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), isblank (3), iscntrl (3), isdigit (3),
isgraph (3), islower (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The isprint () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument toisprint () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

ISPUNCT (3) NetBSD Library Functions Manual ISPUNCT (3)

NAME
ispunct — punctuation character test

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
ispunct (int c);

DESCRIPTION
The ispunct () function tests for any printing character except space (’ ’) or a character for which
isalnum (3) is true.

RETURN VALUES
The ispunct () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), isblank (3), iscntrl (3), isdigit (3),
isgraph (3), islower (3), isprint (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The ispunct () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument toispunct () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

ISSPACE (3) NetBSDLibrary Functions Manual ISSPACE (3)

NAME
isspace — white-space character test

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
isspace (int c);

DESCRIPTION
The isspace () function tests for the standard white-space characters for whichisalnum (3) is false. The
standard white-space characters are the following:

‘ ’ Space character.
\f Form feed.
\n New-line.
\r Carriage return.
\t Horizontal tab.
\v And vertical tab.

In the‘‘ C’’ locale,isspace () returns true only for the standard white-space characters.

RETURN VALUES
The isspace () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), isblank (3), iscntrl (3), isdigit (3),
isgraph (3), islower (3), isprint (3), ispunct (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The isspace () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument toisspace () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

ISUPPER (3) NetBSD Library Functions Manual ISUPPER (3)

NAME
isupper — upper-case character test

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
isupper (int c);

DESCRIPTION
The isupper () function tests for any upper-case letter or any of an implementation-defined set of charac-
ters for which none ofiscntrl (3), isdigit (3), ispunct (3), or isspace (3) is true. In the‘‘ C’’
locale,isupper () returns true only for the characters defined as upper-case letters.

RETURN VALUES
The isupper () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), isblank (3), iscntrl (3), isdigit (3),
isgraph (3), islower (3), isprint (3), ispunct (3), isspace (3), isxdigit (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The isupper () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument toisupper () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

ISWALNUM (3) NetBSD Library Functions Manual ISWALNUM (3)

NAME
iswalnum , iswalpha , iswblank , iswcntrl , iswdigit , iswgraph , iswlower , iswprint ,
iswpunct , iswspace , iswupper , iswxdigit — wide character classification utilities

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wctype.h>

int
iswalnum (wint_t wc);

int
iswalpha (wint_t wc);

int
iswblank (wint_t wc);

int
iswcntrl (wint_t wc);

int
iswdigit (wint_t wc);

int
iswgraph (wint_t wc);

int
iswlower (wint_t wc);

int
iswprint (wint_t wc);

int
iswpunct (wint_t wc);

int
iswspace (wint_t wc);

int
iswupper (wint_t wc);

int
iswxdigit (wint_t wc);

DESCRIPTION
The functions are character classification utility functions, for use with wide characters(wchar_t or
wint_t) . See the description of singlebyte classification functions, likeisalnum (3), for details.

RETURN VALUES
The functions return zero if the character tests false and return non-zero if the character tests true.

SEE ALSO
isalnum (3), isalpha (3), isblank (3), iscntrl (3), isdigit (3), isgraph (3), islower (3),
isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3)

NetBSD 3.0 December 22, 2000 1

ISWALNUM (3) NetBSD Library Functions Manual ISWALNUM (3)

STANDARDS
The functions conform toISO/IEC9899:1999 (“ISO C99”).

CAVEATS
The argument to these functions must beWEOFor a valid wchar_t value with the current locale; otherwise,
the result is undefined.

NetBSD 3.0 December 22, 2000 2

ISWCTYPE (3) NetBSD Library Functions Manual ISWCTYPE (3)

NAME
iswctype — test a character for character class identifier

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wctype.h>

int
iswctype (wint_t wc , wctype_t charclass);

DESCRIPTION
The iswctype () function returns a boolean value that indicates whether a wide characterwc is in
charclass .

The behaviour ofiswctype () is undefined if theiswctype () function is called with an invalid
charclass (changes ofLC_CTYPEcategory invalidatecharclass) or inv alid wide characterwc.

The behaviour ofiswctype () is affected by theLC_CTYPEcategory of the current locale.

RETURN VALUES
The iswctype () returns:

0 wc is not incharclass .

non-zero wc is in charclass .

ERRORS
No errors are defined.

SEE ALSO
setlocale (3), towctrans (3), wctrans (3), wctype (3)

STANDARDS
The iswctype () function conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”).

NetBSD 3.0 March 4, 2003 1

ISXDIGIT (3) NetBSD Library Functions Manual ISXDIGIT (3)

NAME
isxdigit — hexadecimal-digit character test

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
isxdigit (int c);

DESCRIPTION
The isxdigit () function tests for any hexadecimal-digit character.

RETURN VALUES
The isxdigit () function returns zero if the character tests false and returns non-zero if the character tests
true.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), isblank (3), iscntrl (3), isdigit (3),
isgraph (3), islower (3), isprint (3), ispunct (3), isspace (3), isupper (3), stdio (3),
toascii (3), tolower (3), toupper (3), ascii (7)

STANDARDS
The isxdigit () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument toisxdigit () must beEOF or representable as anunsigned char ; otherwise, the
behavior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

J0 (3) NetBSD Library Functions Manual J0 (3)

NAME
j0 , j0f , j1 , j1f , jn , jnf , y0 , y0f , y1 , y1f , yn , ynf — Bessel functions of first and second kind

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
j0 (double x);

float
j0f (float x);

double
j1 (double x);

float
j1f (float x);

double
jn (int n , double x);

float
jnf (int n , float x);

double
y0 (double x);

float
y0f (float x);

double
y1 (double x);

float
y1f (float x);

double
yn (int n , double x);

float
ynf (int n , float x);

DESCRIPTION
The functionsj0 (), j0f (), j1 () andj1f () compute theBessel function of the first kind of the order 0 and
the order 1, respectively, for the real valuex ; the functionsjn () and jnf () compute theBessel function of
the first kind of the integer order n for the real valuex .

The functionsy0 (), y0f (), y1 () andy1f () compute the linearly independentBessel function of the second
kind of the order 0 and theorder 1, respectively, for the positive integer value x (expressed as a double); the
functionsyn () andynf () compute theBessel function of the second kind for the integer order n for the posi-
tive integer valuex (expressed as a double).

RETURN VALUES
If these functions are successful, the computed value is returned, otherwise the global variableerrno is set to
EDOMand a reserve operand fault is generated.

NetBSD 3.0 April 19, 1991 1

J0 (3) NetBSD Library Functions Manual J0 (3)

SEE ALSO
math (3)

HISTORY
This set of functions appeared in Version 7AT&T UNIX .

NetBSD 3.0 April 19, 1991 2

KADM5_PWCHECK (3) NetBSD Library Functions Manual KADM5_PWCHECK (3)

NAME
krb5_pwcheck , kadm5_setup_passwd_quality_check ,
kadm5_add_passwd_quality_verifier , kadm5_check_password_quality — Heimdal
warning and error functions

LIBRARY
Kerberos 5 Library (libkadm5srv, -lkadm5srv)

SYNOPSIS
#include <kadm5-protos.h>
#include <kadm5-pwcheck.h>

void
kadm5_setup_passwd_quality_check (krb5_context context ,

const char ∗check_library , const char ∗check_function);

krb5_error_code
kadm5_add_passwd_quality_verifier (krb5_context context ,

const char ∗check_library);

const char ∗
kadm5_check_password_quality (krb5_context context ,

krb5_principal principal , krb5_data ∗pwd_data);

int
(∗kadm5_passwd_quality_check_func) (krb5_context context ,

krb5_principal principal , krb5_data ∗password , const char ∗tuning ,
char ∗message , size_t length);

DESCRIPTION
These functions perform the quality check for the heimdal database library.

There are two versions of the shared object API; the old version (0) is deprecated, but still supported.The
new version (1) supports multiple password quality checking modules in the same shared object. See below
for details.

The password quality checker will run over all tests that are configured by the user.

Module names are of the formvendor:test-name or, if the the test name is unique enough, just
test-name .

IMPLEMENTING A P ASSWORD QUALITY CHECKING SHARED OBJECT
(This refers to the version 1 API only.)

Module shared objects may conveniently be compiled and linked with libtool (1). An object needs to
export a symbol called kadm5_password_verifier of the type struct
kadm5_pw_policy_verifier .

Its name and vendor fields should be contain the obvious information andversion should be
KADM5_PASSWD_VERSION_V1. funcs contains an array of struct
kadm5_pw_policy_check_func structures that is terminated with an entry whosename component is
NULL. The func Fields of the array elements are functions that are exported by the module to be called to
check the password. They get the following arguments: theKerberos context, principal, password, a tuning
parameter, and a pointer to a message buffer and its length. The tuning parameter for the quality check func-
tion is currently always NULL. If the password is acceptable, the function returns zero. Otherwise it returns
non-zero and fills in the message buffer with an appropriate explanation.

NetBSD 3.0 February 29, 2004 1

KADM5_PWCHECK (3) NetBSD Library Functions Manual KADM5_PWCHECK (3)

RUNNING THE CHECKS
kadm5_setup_passwd_quality_check sets up type 0 checks. It sets up all type 0 checks defined in
krb5.conf (5) if called with the last two arguments null.

kadm5_add_passwd_quality_verifier sets up type 1 checks. It sets up all type 1 tests defined in
krb5.conf (5) if called with a null second argument. kadm5_check_password_quality runs the
checks in the order in which they are defined inkrb5.conf (5) and the order in which they occur in a mod-
ule’s funcs array until one returns non-zero.

SEE ALSO
libtool (1), krb5 (3), krb5.conf (5)

NetBSD 3.0 February 29, 2004 2

KAFS (3) NetBSD Library Functions Manual KAFS (3)

NAME
k_hasafs , k_hasafs_recheck , k_pioctl , k_unlog , k_setpag , k_afs_cell_of_file ,
kafs_set_verbose , kafs_settoken_rxkad , kafs_settoken , krb_afslog ,
krb_afslog_uid , kafs_settoken5 , krb5_afslog , krb5_afslog_uid — AFS library

LIBRARY
AFS cache manager access library (libkafs, -lkafs)

SYNOPSIS
#include <kafs.h>

int
k_afs_cell_of_file (const char ∗path , char ∗cell , int len);

int
k_hasafs (void);

int
k_hasafs_recheck (void);

int
k_pioctl (char ∗a_path , int o_opcode , struct ViceIoctl ∗a_paramsP ,

int a_followSymlinks);

int
k_setpag (void);

int
k_unlog (void);

void
kafs_set_verbose (void (∗func)(void ∗, c onst char ∗, i nt) , void ∗);

int
kafs_settoken_rxkad (const char ∗cell , struct ClearToken ∗token ,

void ∗ticket , size_t ticket_len);

int
kafs_settoken (const char ∗cell , uid_t uid , CREDENTIALS ∗c);

krb_afslog (char ∗cell , char ∗realm);

int
krb_afslog_uid (char ∗cell , char ∗realm , uid_t uid);

krb5_error_code
krb5_afslog_uid (krb5_context context , krb5_ccache id , const char ∗cell ,

krb5_const_realm realm , uid_t uid);

int
kafs_settoken5 (const char ∗cell , uid_t uid , krb5_creds ∗c);

krb5_error_code
krb5_afslog (krb5_context context , krb5_ccache id , const char ∗cell ,

krb5_const_realm realm);

NetBSD 3.0 May 1, 2006 1

KAFS (3) NetBSD Library Functions Manual KAFS (3)

DESCRIPTION
k_hasafs () initializes some library internal structures, and tests for the presence of AFS in the kernel, none
of the other functions should be called beforek_hasafs () is called, or if it fails.

k_hasafs_recheck () forces a recheck if a AFS client has started since last timek_hasafs () or
k_hasafs_recheck () was called.

kafs_set_verbose () set a log function that will be called each time the kafs library does something
important so that the application using libkafs can output verbose logging. Calling the function
kafs_set_verbose with the function argument set toNULL will stop libkafs from calling the logging
function (if set).

kafs_settoken_rxkad () set rxkad with the token and ticket (that have the length
ticket_len) for a given cell .

kafs_settoken () and kafs_settoken5 () work the same way askafs_settoken_rxkad () but
internally converts the Kerberos 4 or 5 credential to a afs cleartoken and ticket.

krb_afslog (), and krb_afslog_uid () obtains new tokens (and possibly tickets) for the specified
cell andrealm . If cell is NULL, the local cell is used. Ifrealm is NULL, the function tries to guess
what realm to use. Unless youhave some good knowledge of what cell or realm to use, you should pass
NULL. krb_afslog () will use the real user-id for theViceId field in the token,krb_afslog_uid ()
will useuid .

krb5_afslog (), and krb5_afslog_uid () are the Kerberos 5 equivalents of krb_afslog (), and
krb_afslog_uid ().

krb5_afslog (), kafs_settoken5 () can be configured to behave differently via a
krb5_appdefault optionafs-use-524 in krb5.conf . Possible values forafs-use-524 are:

yes use the 524 server in the realm to convert the ticket

no use the Kerberos 5 ticket directly, can be used with if the afs cell support 2b token.

local, 2b
convert the Kerberos 5 credential to a 2b token locally (the same work as a 2b 524 server should
have done).

Example:

[appdefaults]
SU.SE = { afs-use-524 = local }
PDC.KTH.SE = { afs-use-524 = yes }
afs-use-524 = yes

libkafs will use thelibkafs as application name when running thekrb5_appdefault function call.

The (uppercased) cell name is used as the realm to thekrb5_appdefault function.

k_afs_cell_of_file () will in cell return the cell of a specified file, no more thanlen characters is
put incell .

k_pioctl () does apioctl () system call with the specified arguments. This function is equivalent to
lpioctl ().

k_setpag () initializes a new PAG.

k_unlog () removes destroys all tokens in the current PAG.

NetBSD 3.0 May 1, 2006 2

KAFS (3) NetBSD Library Functions Manual KAFS (3)

RETURN VALUES
k_hasafs () returns 1 if AFS is present in the kernel, 0 otherwise. krb_afslog () and
krb_afslog_uid () returns 0 on success, or a Kerberos error number on failure.
k_afs_cell_of_file (), k_pioctl (), k_setpag (), andk_unlog () all return the value of the under-
laying system call, 0 on success.

ENVIRONMENT
The following environment variable affect the mode of operation ofkafs :

AFS_SYSCALLNormally, kafs will try to figure out the correct system call(s) that are used by AFS by
itself. If it does not manage to do that, or does it incorrectly, you can set this variable to the
system call number or list of system call numbers that should be used.

EXAMPLES
The following code fromlogin will obtain a new PAG and tokens for the local cell and the cell of the users
home directory.

if (k_hasafs()) {
char cell[64];
k_setpag();
if(k_afs_cell_of_file(pwd->pw_dir, cell, sizeof(cell)) == 0)

krb_afslog(cell, NULL);
krb_afslog(NULL, NULL);

}

ERRORS
If any of these functions (apart fromk_hasafs ()) is called without AFS being present in the kernel, the
process will usually (depending on the operating system) receive a SIGSYS signal.

SEE ALSO
krb5_appdefault (3), krb5.conf (5)

Transarc Corporation, "File Server/Cache Manager Interface",AFS-3 Programmer’s Reference, 1991.

BUGS
AFS_SYSCALLhas no effect under AIX.

NetBSD 3.0 May 1, 2006 3

KILLPG (3) NetBSD Library Functions Manual KILLPG (3)

NAME
killpg — send signal to a process group

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
killpg (pid_t pgrp , int sig);

DESCRIPTION
killpg () sends the signalsig to the process grouppgrp . Seesigaction (2) for a list of signals.If
pgrp is 0,killpg () sends the signal to the sending process’s process group.

The sending process and members of the process group must have the same effective user ID, or the sender
must be the super-user. As a single special case the continue signal SIGCONT may be sent to any process
that is a descendant of the current process.

RETURN VALUES
Upon successful completion, a value of 0 is returned.Otherwise, a value of −1 is returned and the global
variableerrno is set to indicate the error.

ERRORS
killpg () will fail and no signal will be sent if:

[EINVAL] sig is not a valid signal number.

[ESRCH] No process can be found in the process group specified bypgrp .

[ESRCH] The process group was given as 0 but the sending process does not have a process
group.

[EPERM] The sending process is not the super-user and one or more of the target processes has
an effective user ID different from that of the sending process.

SEE ALSO
getpgrp (2), kill (2), sigaction (2)

HISTORY
Thekillpg () function call appeared in 4.0BSD.

NetBSD 3.0 June 2, 1993 1

KRB5 (3) NetBSD Library Functions Manual KRB5 (3)

NAME
krb5 — Kerberos 5 library

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

DESCRIPTION
These functions constitute the Kerberos 5 library,libkrb5.

LIST OF FUNCTIONS
Name/Page Description

krb524_convert_creds_kdc.3
krb524_convert_creds_kdc_cache.3
krb5_425_conv_principal.3
krb5_425_conv_principal_ext.3
krb5_524_conv_principal.3
krb5_abort.3
krb5_abortx.3
krb5_acl_match_file.3
krb5_acl_match_string.3
krb5_add_et_list.3
krb5_add_extra_addresses.3
krb5_add_ignore_addresses.3
krb5_addlog_dest.3
krb5_addlog_func.3
krb5_addr2sockaddr.3
krb5_address.3
krb5_address_compare.3
krb5_address_order.3
krb5_address_search.3
krb5_addresses.3
krb5_aname_to_localname.3
krb5_anyaddr.3
krb5_appdefault_boolean.3
krb5_appdefault_string.3
krb5_appdefault_time.3
krb5_append_addresses.3
krb5_auth_con_addflags.3
krb5_auth_con_free.3
krb5_auth_con_genaddrs.3
krb5_auth_con_generatelocalsubkey.3
krb5_auth_con_getaddrs.3
krb5_auth_con_getauthenticator.3
krb5_auth_con_getcksumtype.3
krb5_auth_con_getflags.3
krb5_auth_con_getkey.3
krb5_auth_con_getkeytype.3
krb5_auth_con_getlocalseqnumber.3
krb5_auth_con_getlocalsubkey.3

NetBSD 3.0 May 1, 2006 1

KRB5 (3) NetBSD Library Functions Manual KRB5 (3)

krb5_auth_con_getrcache.3
krb5_auth_con_getremotesubkey.3
krb5_auth_con_getuserkey.3
krb5_auth_con_init.3
krb5_auth_con_initivector.3
krb5_auth_con_removeflags.3
krb5_auth_con_setaddrs.3
krb5_auth_con_setaddrs_from_fd.3
krb5_auth_con_setcksumtype.3
krb5_auth_con_setflags.3
krb5_auth_con_setivector.3
krb5_auth_con_setkey.3
krb5_auth_con_setkeytype.3
krb5_auth_con_setlocalseqnumber.3
krb5_auth_con_setlocalsubkey.3
krb5_auth_con_setrcache.3
krb5_auth_con_setremoteseqnumber.3
krb5_auth_con_setremotesubkey.3
krb5_auth_con_setuserkey.3
krb5_auth_context.3
krb5_auth_getremoteseqnumber.3
krb5_build_principal.3
krb5_build_principal_ext.3
krb5_build_principal_va.3
krb5_build_principal_va_ext.3
krb5_c_block_size.3
krb5_c_checksum_length.3
krb5_c_decrypt.3
krb5_c_encrypt.3
krb5_c_encrypt_length.3
krb5_c_enctype_compare.3
krb5_c_get_checksum.3
krb5_c_is_coll_proof_cksum.3
krb5_c_is_keyed_cksum.3
krb5_c_make_checksum.3
krb5_c_make_random_key.3
krb5_c_set_checksum.3
krb5_c_valid_cksumtype.3
krb5_c_valid_enctype.3
krb5_c_verify_checksum.3
krb5_cc_cache_end_seq_get.3
krb5_cc_cache_get_first.3
krb5_cc_cache_match.3
krb5_cc_cache_next.3
krb5_cc_close.3
krb5_cc_copy_cache.3
krb5_cc_default.3
krb5_cc_default_name.3
krb5_cc_destroy.3
krb5_cc_end_seq_get.3
krb5_cc_gen_new.3
krb5_cc_get_full_name.3

NetBSD 3.0 May 1, 2006 2

KRB5 (3) NetBSD Library Functions Manual KRB5 (3)

krb5_cc_get_name.3
krb5_cc_get_ops.3
krb5_cc_get_principal.3
krb5_cc_get_type.3
krb5_cc_get_version.3
krb5_cc_initialize.3
krb5_cc_new_unique.3
krb5_cc_next_cred.3
krb5_cc_register.3
krb5_cc_remove_cred.3
krb5_cc_resolve.3
krb5_cc_retrieve_cred.3
krb5_cc_set_default_name.3
krb5_cc_set_flags.3
krb5_cc_store_cred.3
krb5_change_password.3
krb5_check_transited.3
krb5_check_transited_realms.3
krb5_checksum_disable.3
krb5_checksum_free.3
krb5_checksum_is_collision_proof.3
krb5_checksum_is_keyed.3
krb5_checksumsize.3
krb5_clear_error_string.3
krb5_closelog.3
krb5_config_file_free.3
krb5_config_free_strings.3
krb5_config_get.3
krb5_config_get_bool.3
krb5_config_get_bool_default.3
krb5_config_get_int.3
krb5_config_get_int_default.3
krb5_config_get_list.3
krb5_config_get_next.3
krb5_config_get_string.3
krb5_config_get_string_default.3
krb5_config_get_strings.3
krb5_config_get_time.3
krb5_config_get_time_default.3
krb5_config_parse_file.3
krb5_config_parse_file_multi.3
krb5_config_vget.3
krb5_config_vget_bool.3
krb5_config_vget_bool_default.3
krb5_config_vget_int.3
krb5_config_vget_int_default.3
krb5_config_vget_list.3
krb5_config_vget_next.3
krb5_config_vget_string.3
krb5_config_vget_string_default.3
krb5_config_vget_strings.3
krb5_config_vget_time.3

NetBSD 3.0 May 1, 2006 3

KRB5 (3) NetBSD Library Functions Manual KRB5 (3)

krb5_config_vget_time_default.3
krb5_context.3
krb5_copy_address.3
krb5_copy_addresses.3
krb5_copy_checksum.3
krb5_copy_data.3
krb5_copy_host_realm.3
krb5_copy_keyblock.3
krb5_copy_keyblock_contents.3
krb5_copy_principal.3
krb5_copy_ticket.3
krb5_create_checksum.3
krb5_creds.3
krb5_crypto_destroy.3
krb5_crypto_get_checksum_type.3
krb5_crypto_getblocksize.3
krb5_crypto_getconfoundersize.3
krb5_crypto_getenctype.3
krb5_crypto_getpadsize.3
krb5_crypto_init.3
krb5_data_alloc.3
krb5_data_copy.3
krb5_data_free.3
krb5_data_realloc.3
krb5_data_zero.3
krb5_decrypt.3
krb5_decrypt_EncryptedData.3
krb5_digest.3
krb5_digest_alloc.3
krb5_digest_free.3
krb5_digest_get_a1_hash.3
krb5_digest_get_client_binding.3
krb5_digest_get_identifier.3
krb5_digest_get_opaque.3
krb5_digest_get_responseData.3
krb5_digest_get_rsp.3
krb5_digest_get_server_nonce.3
krb5_digest_get_tickets.3
krb5_digest_init_request.3
krb5_digest_request.3
krb5_digest_set_authentication_user.3
krb5_digest_set_authid.3
krb5_digest_set_client_nonce.3
krb5_digest_set_digest.3
krb5_digest_set_hostname.3
krb5_digest_set_identifier.3
krb5_digest_set_method.3
krb5_digest_set_nonceCount.3
krb5_digest_set_opaque.3
krb5_digest_set_qop.3
krb5_digest_set_realm.3
krb5_digest_set_server_cb.3

NetBSD 3.0 May 1, 2006 4

KRB5 (3) NetBSD Library Functions Manual KRB5 (3)

krb5_digest_set_server_nonce.3
krb5_digest_set_type.3
krb5_digest_set_uri.3
krb5_digest_set_username.3
krb5_domain_x500_decode.3
krb5_domain_x500_encode.3
krb5_eai_to_heim_errno.3
krb5_encrypt.3
krb5_encrypt_EncryptedData.3
krb5_enctype_disable.3
krb5_enctype_to_string.3
krb5_enctype_valid.3
krb5_err.3
krb5_errx.3
krb5_expand_hostname.3
krb5_expand_hostname_realms.3
krb5_find_padata.3
krb5_format_time.3
krb5_free_address.3
krb5_free_addresses.3
krb5_free_authenticator.3
krb5_free_checksum.3
krb5_free_checksum_contents.3
krb5_free_config_files.3
krb5_free_context.3
krb5_free_data.3
krb5_free_data_contents.3
krb5_free_error_string.3
krb5_free_host_realm.3
krb5_free_kdc_rep.3
krb5_free_keyblock.3
krb5_free_keyblock_contents.3
krb5_free_krbhst.3
krb5_free_principal.3
krb5_free_salt.3
krb5_free_ticket.3
krb5_fwd_tgt_creds.3
krb5_generate_random_block.3
krb5_generate_random_keyblock.3
krb5_generate_subkey.3
krb5_get_all_client_addrs.3
krb5_get_all_server_addrs.3
krb5_get_cred_from_kdc.3
krb5_get_cred_from_kdc_opt.3
krb5_get_credentials.3
krb5_get_credentials_with_flags.3
krb5_get_default_config_files.3
krb5_get_default_principal.3
krb5_get_default_realm.3
krb5_get_default_realms.3
krb5_get_err_text.3
krb5_get_error_message.3

NetBSD 3.0 May 1, 2006 5

KRB5 (3) NetBSD Library Functions Manual KRB5 (3)

krb5_get_error_string.3
krb5_get_extra_addresses.3
krb5_get_fcache_version.3
krb5_get_forwarded_creds.3
krb5_get_host_realm.3
krb5_get_ignore_addresses.3
krb5_get_in_cred.3
krb5_get_in_tkt.3
krb5_get_in_tkt_with_keytab.3
krb5_get_in_tkt_with_password.3
krb5_get_in_tkt_with_skey.3
krb5_get_init_creds.3
krb5_get_init_creds_keytab.3
krb5_get_init_creds_opt_alloc.3
krb5_get_init_creds_opt_free.3
krb5_get_init_creds_opt_free_pkinit.3
krb5_get_init_creds_opt_init.3
krb5_get_init_creds_opt_set_address_list.3
krb5_get_init_creds_opt_set_anonymous.3
krb5_get_init_creds_opt_set_default_flags.3
krb5_get_init_creds_opt_set_etype_list.3
krb5_get_init_creds_opt_set_forwardable.3
krb5_get_init_creds_opt_set_pa_password.3
krb5_get_init_creds_opt_set_paq_request.3
krb5_get_init_creds_opt_set_pkinit.3
krb5_get_init_creds_opt_set_preauth_list.3
krb5_get_init_creds_opt_set_proxiable.3
krb5_get_init_creds_opt_set_renew_life.3
krb5_get_init_creds_opt_set_salt.3
krb5_get_init_creds_opt_set_tkt_life.3
krb5_get_init_creds_password.3
krb5_get_kdc_cred.3
krb5_get_krb524hst.3
krb5_get_krb_admin_hst.3
krb5_get_krb_changepw_hst.3
krb5_get_krbhst.3
krb5_get_pw_salt.3
krb5_get_server_rcache.3
krb5_get_use_admin_kdc.3
krb5_get_wrapped_length.3
krb5_getportbyname.3
krb5_h_addr2addr.3
krb5_h_addr2sockaddr.3
krb5_h_errno_to_heim_errno.3
krb5_have_error_string.3
krb5_hmac.3
krb5_init_context.3
krb5_init_ets.3
krb5_initlog.3
krb5_keyblock_get_enctype.3
krb5_keyblock_zero.3
krb5_keytab_entry.3

NetBSD 3.0 May 1, 2006 6

KRB5 (3) NetBSD Library Functions Manual KRB5 (3)

krb5_krbhst_format_string.3
krb5_krbhst_free.3
krb5_krbhst_get_addrinfo.3
krb5_krbhst_init.3
krb5_krbhst_init_flags.3
krb5_krbhst_next.3
krb5_krbhst_next_as_string.3
krb5_krbhst_reset.3
krb5_kt_add_entry.3
krb5_kt_close.3
krb5_kt_compare.3
krb5_kt_copy_entry_contents.3
krb5_kt_cursor.3
krb5_kt_default.3
krb5_kt_default_modify_name.3
krb5_kt_default_name.3
krb5_kt_end_seq_get.3
krb5_kt_free_entry.3
krb5_kt_get_entry.3
krb5_kt_get_name.3
krb5_kt_get_type.3
krb5_kt_next_entry.3
krb5_kt_ops.3
krb5_kt_read_service_key.3
krb5_kt_register.3
krb5_kt_remove_entry.3
krb5_kt_resolve.3.3
krb5_kt_start_seq_get
krb5_kuserok.3
krb5_log.3
krb5_log_msg.3
krb5_make_addrport.3
krb5_make_principal.3
krb5_max_sockaddr_size.3
krb5_openlog.3
krb5_padata_add.3
krb5_parse_address.3
krb5_parse_name.3
krb5_passwd_result_to_string.3
krb5_password_key_proc.3
krb5_prepend_config_files.3
krb5_prepend_config_files_default.3
krb5_princ_realm.3
krb5_princ_set_realm.3
krb5_principal.3
krb5_principal_compare.3
krb5_principal_compare_any_realm.3
krb5_principal_get_comp_string.3
krb5_principal_get_realm.3
krb5_principal_get_type.3
krb5_principal_match.3
krb5_principal_set_type.3

NetBSD 3.0 May 1, 2006 7

KRB5 (3) NetBSD Library Functions Manual KRB5 (3)

krb5_print_address.3
krb5_rc_close.3
krb5_rc_default.3
krb5_rc_default_name.3
krb5_rc_default_type.3
krb5_rc_destroy.3
krb5_rc_expunge.3
krb5_rc_get_lifespan.3
krb5_rc_get_name.3
krb5_rc_get_type.3
krb5_rc_initialize.3
krb5_rc_recover.3
krb5_rc_resolve.3
krb5_rc_resolve_full.3
krb5_rc_resolve_type.3
krb5_rc_store.3
krb5_rcache.3
krb5_realm_compare.3
krb5_ret_address.3
krb5_ret_addrs.3
krb5_ret_authdata.3
krb5_ret_creds.3
krb5_ret_data.3
krb5_ret_int16.3
krb5_ret_int32.3
krb5_ret_int8.3
krb5_ret_keyblock.3
krb5_ret_principal.3
krb5_ret_string.3
krb5_ret_stringz.3
krb5_ret_times.3
krb5_set_config_files.3
krb5_set_default_realm.3
krb5_set_error_string.3
krb5_set_extra_addresses.3
krb5_set_fcache_version.3
krb5_set_ignore_addresses.3
krb5_set_password.3
krb5_set_password_using_ccache.3
krb5_set_real_time.3
krb5_set_use_admin_kdc.3
krb5_set_warn_dest.3
krb5_sname_to_principal.3
krb5_sock_to_principal.3
krb5_sockaddr2address.3
krb5_sockaddr2port.3
krb5_sockaddr_uninteresting.3
krb5_storage.3
krb5_storage_clear_flags.3
krb5_storage_emem.3
krb5_storage_free.3
krb5_storage_from_data.3

NetBSD 3.0 May 1, 2006 8

KRB5 (3) NetBSD Library Functions Manual KRB5 (3)

krb5_storage_from_fd.3
krb5_storage_from_mem.3
krb5_storage_get_byteorder.3
krb5_storage_is_flags.3
krb5_storage_read.3
krb5_storage_seek.3
krb5_storage_set_byteorder.3
krb5_storage_set_eof_code.3
krb5_storage_set_flags.3
krb5_storage_to_data.3
krb5_storage_write.3
krb5_store_address.3
krb5_store_addrs.3
krb5_store_authdata.3
krb5_store_creds.3
krb5_store_data.3
krb5_store_int16.3
krb5_store_int32.3
krb5_store_int8.3
krb5_store_keyblock.3
krb5_store_principal.3
krb5_store_string.3
krb5_store_stringz.3
krb5_store_times.3
krb5_string_to_deltat.3
krb5_string_to_enctype.3
krb5_string_to_key.3
krb5_string_to_key_data.3
krb5_string_to_key_data_salt.3
krb5_string_to_key_data_salt_opaque.3
krb5_string_to_key_salt.3
krb5_string_to_key_salt_opaque.3
krb5_ticket.3
krb5_ticket_get_authorization_data_type.3
krb5_ticket_get_client.3
krb5_ticket_get_server.3
krb5_timeofday.3
krb5_unparse_name.3
krb5_unparse_name_fixed.3
krb5_unparse_name_fixed_short.3
krb5_unparse_name_short.3
krb5_us_timeofday.3
krb5_vabort.3
krb5_vabortx.3
krb5_verify_checksum.3
krb5_verify_init_creds.3
krb5_verify_init_creds_opt_init.3
krb5_verify_init_creds_opt_set_ap_req_nofail.3
krb5_verify_opt_init.3
krb5_verify_opt_set_ccache.3
krb5_verify_opt_set_flags.3
krb5_verify_opt_set_keytab.3

NetBSD 3.0 May 1, 2006 9

KRB5 (3) NetBSD Library Functions Manual KRB5 (3)

krb5_verify_opt_set_secure.3
krb5_verify_opt_set_service.3
krb5_verify_user.3
krb5_verify_user_lrealm.3
krb5_verify_user_opt.3
krb5_verr.3
krb5_verrx.3
krb5_vlog.3
krb5_vlog_msg.3
krb5_vset_error_string.3
krb5_vwarn.3
krb5_vwarnx.3
krb5_warn.3
krb5_warnx.3

SEE ALSO
krb5.conf (5), kerberos (8)

NetBSD 3.0 May 1, 2006 10

KRB524_CONVERT_CREDS_KDC . . .NetBSD Library Functions ManualKRB524_CONVERT_CREDS_KDC . . .

NAME
krb524_convert_creds_kdc , krb524_convert_creds_kdc_ccache — converts Kerberos 5
credentials to Kerberos 4 credentials

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb524_convert_creds_kdc (krb5_context context , krb5_creds ∗in_cred ,

struct credentials ∗v4creds);

krb5_error_code
krb524_convert_creds_kdc_ccache (krb5_context context , krb5_ccache ccache ,

krb5_creds ∗in_cred , struct credentials ∗v4creds);

DESCRIPTION
Convert the Kerberos 5 credential to Kerberos 4 credential. This is done by sending them to the 524 service
in the KDC.

krb524_convert_creds_kdc () converts the Kerberos 5 credential inin_cred to Kerberos 4 creden-
tial that is stored incredentials .

krb524_convert_creds_kdc_ccache () is diffrent fromkrb524_convert_creds_kdc () in that
way that if in_cred doesn’t contain a DES session key, then a new one is fetched from the KDC and stored
in the cred cacheccache , and then the KDC is queried to convert the credential.

This interfaces are used to make the migration to Kerberos 5 from Kerberos 4 easier. There are few services
that still need Kerberos 4, and this is mainly for compatibility for those services.Some services, like AFS,
really have Kerberos 5 supports, but still uses the 524 interface to make the migration easier.

SEE ALSO
krb5 (3), krb5.conf (5)

NetBSD 3.0 March 20, 2004 1

KRB5_425_CONV_PRINCIPAL (3) NetBSD Library Functions Manual KRB5_425_CONV_PRINCIPAL (3)

NAME
krb5_425_conv_principal , krb5_425_conv_principal_ext ,
krb5_524_conv_principal — converts to and from version 4 principals

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_425_conv_principal (krb5_context context , const char ∗name,

const char ∗instance , const char ∗realm , krb5_principal ∗principal);

krb5_error_code
krb5_425_conv_principal_ext (krb5_context context , const char ∗name,

const char ∗instance , const char ∗realm ,
krb5_boolean (∗func)(krb5_context, krb5_principal) ,
krb5_boolean resolve , krb5_principal ∗principal);

krb5_error_code
krb5_524_conv_principal (krb5_context context ,

const krb5_principal principal , char ∗name, char ∗instance ,
char ∗realm);

DESCRIPTION
Converting between version 4 and version 5 principals can at best be described as a mess.

A version 4 principal consists of a name, an instance, and a realm. A version 5 principal consists of one or
more components, and a realm. In some cases also the first component/name will differ between version 4
and version 5. Furthermore the second component of a host principal will be the fully qualified domain
name of the host in question, while the instance of a version 4 principal will only contain the first part (short
hostname). Becauseof these problems the conversion between principals will have to be site customized.

krb5_425_conv_principal_ext () will try to convert a version 4 principal, given by name,
instance , and realm , to a version 5 principal. This can result in several possible principals, and iffunc
is non-NULL, it will be called for each candidate principal.func should return true if the principal was
“good”. To accomplish this, krb5_425_conv_principal_ext () will look up the name in
krb5.conf . It first looks in thev4_name_convert/host subsection, which should contain a list of
version 4 names whose instance should be treated as a hostname. This list can be specified for each realm (in
the realms section), or in thelibdefaults section. Ifthe name is found the resulting name of the prin-
cipal will be the value of this binding. The instance is then first looked up inv4_instance_convert for
the specified realm. If found the resulting value will be used as instance (this can be used for special cases),
no further attempts will be made to find a conversion if this fails (withfunc). If theresolve parameter is
true, the instance will be looked up withgethostbyname (). This can be a time consuming, error prone,
and unsafe operation.Next a list of hostnames will be created from the instance and thev4_domains vari-
able, which should contain a list of possible domains for the specific realm.

On the other hand, if the name is not found in ahost section, it is looked up in a
v4_name_convert/plain binding. If found here the name will be converted, but the instance will be
untouched.

This list of default host-type conversions is compiled-in:

NetBSD 3.0 September 3, 2003 1

KRB5_425_CONV_PRINCIPAL (3) NetBSD Library Functions Manual KRB5_425_CONV_PRINCIPAL (3)

v4_name_convert = {
host = {

ftp = ftp
hprop = hprop
imap = imap
pop = pop
rcmd = host
smtp = smtp

}
}

It will only be used if there isn’t an entry for these names in the config file, so you can override these
defaults.

krb5_425_conv_principal () will call krb5_425_conv_principal_ext () with NULLasfunc ,
and the value ofv4_instance_resolve (from thelibdefaults section) asresolve .

krb5_524_conv_principal () basically does the opposite ofkrb5_425_conv_principal (), it
just doesn’t hav eto look up any names, but will instead truncate instances found to belong to a host princi-
pal. Thename, instance , and realm should be at least 40 characters long.

EXAMPLES
Since this is confusing an example is in place.

Assume that we have the “foo.com”, and “bar.com” domains that have shared a single version 4 realm,
FOO.COM. The version 4krb.realms file looked like:

foo.com FOO.COM
.foo.com FOO.COM
.bar.com FOO.COM

A krb5.conf file that covers this case might look like:

[libdefaults]
v4_instance_resolve = yes

[realms]
FOO.COM = {

kdc = kerberos.foo.com
v4_instance_convert = {

foo = foo.com
}
v4_domains = foo.com

}

With this setup and the following host table:

foo.com
a-host.foo.com
b-host.bar.com

the following conversions will be made:

rcmd.a-host -> host/a-host.foo.com
ftp.b-host -> ftp/b-host.bar.com
pop.foo -> pop/foo.com
ftp.other -> ftp/other.foo.com
other.a-host -> other/a-host

NetBSD 3.0 September 3, 2003 2

KRB5_425_CONV_PRINCIPAL (3) NetBSD Library Functions Manual KRB5_425_CONV_PRINCIPAL (3)

The first three are what you expect. If you remove the “v4_domains”, the fourth entry will result in an error
(since the host “other” can’t be found). Even if “a-host” is a valid host name, the last entry will not be con-
verted, since the “other” name is not known to represent a host-type principal. If you turn off
“v4_instance_resolve” the second example will result in “ftp/b-host.foo.com” (because of the default
domain). And all of this is of course only valid if you have working name resolving.

SEE ALSO
krb5_build_principal (3), krb5_free_principal (3), krb5_parse_name (3),
krb5_sname_to_principal (3), krb5_unparse_name (3), krb5.conf (5)

NetBSD 3.0 September 3, 2003 3

KRB5_ACL_MATCH_FILE (3) NetBSD Library Functions Manual KRB5_ACL_MATCH_FILE (3)

NAME
krb5_acl_match_file , krb5_acl_match_string — ACL matching functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
krb5_error_code
krb5_acl_match_file (krb5_context context , const char ∗file ,

const char ∗format , . . .);

krb5_error_code
krb5_acl_match_string (krb5_context context , const char ∗string ,

const char ∗format , . . .);

DESCRIPTION
krb5_acl_match_file matches ACL format against each line in a file.Lines starting with # are treated
like comments and ignored.

krb5_acl_match_string matches ACL format against a string.

The ACL format has three format specifiers: s, f, and r. Each specifier will retrieve one argument from the
variable arguments for either matching or storing data.The input string is split up using " " and "\t" as a
delimiter; multiple " " and "\t" in a row are considered to be the same.

s Matches a string usingstrcmp (3) (case sensitive).

f Matches the string withfnmatch (3). Theflags argument (the last argument) passed to the
fnmatch function is 0.

r Returns a copy of the string in the char∗∗ passed in; the copy must be freed withfree (3).
There is no need tofree (3) the string on error: the function will clean up and set the pointer to
NULL.

All unknown format specifiers cause an error.

EXAMPLES
char ∗s;

ret = krb5_acl_match_string(context, "foo", "s", "foo");
if (ret)

krb5_errx(context, 1, "acl didn’t match");
ret = krb5_acl_match_string(context, "foo foo baz/kaka",

"ss", "foo", &s, "foo/ ∗");
if (ret) {

/ ∗ no need to free(s) on error ∗/
assert(s == NULL);
krb5_errx(context, 1, "acl didn’t match");

}
free(s);

SEE ALSO
krb5 (3)

NetBSD 3.0 May 12, 2006 1

KRB5_ADDRESS (3) NetBSD Library Functions Manual KRB5_ADDRESS (3)

NAME
krb5_address , krb5_addresses , krb5_sockaddr2address , krb5_sockaddr2port ,
krb5_addr2sockaddr , krb5_max_sockaddr_size , krb5_sockaddr_uninteresting ,
krb5_h_addr2sockaddr , krb5_h_addr2addr , krb5_anyaddr , krb5_print_address ,
krb5_parse_address , krb5_address_order , krb5_address_compare ,
krb5_address_search , krb5_free_address , krb5_free_addresses ,
krb5_copy_address , krb5_copy_addresses , krb5_append_addresses ,
krb5_make_addrport — mange addresses in Kerberos

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_sockaddr2address (krb5_context context , const struct sockaddr ∗sa ,

krb5_address ∗addr);

krb5_error_code
krb5_sockaddr2port (krb5_context context , const struct sockaddr ∗sa ,

int16_t ∗port);

krb5_error_code
krb5_addr2sockaddr (krb5_context context , const krb5_address ∗addr ,

struct sockaddr ∗sa , krb5_socklen_t ∗sa_size , int port);

size_t
krb5_max_sockaddr_size (void);

krb5_boolean
krb5_sockaddr_uninteresting (const struct sockaddr ∗sa);

krb5_error_code
krb5_h_addr2sockaddr (krb5_context context , int af , const char ∗addr ,

struct sockaddr ∗sa , krb5_socklen_t ∗sa_size , int port);

krb5_error_code
krb5_h_addr2addr (krb5_context context , int af , const char ∗haddr ,

krb5_address ∗addr);

krb5_error_code
krb5_anyaddr (krb5_context context , int af , struct sockaddr ∗sa ,

krb5_socklen_t ∗sa_size , int port);

krb5_error_code
krb5_print_address (const krb5_address ∗addr , char ∗str , size_t len ,

size_t ∗ret_len);

krb5_error_code
krb5_parse_address (krb5_context context , const char ∗string ,

krb5_addresses ∗addresses);

int
krb5_address_order (krb5_context context , const krb5_address ∗addr1 ,

const krb5_address ∗addr2);

NetBSD 3.0 May 1, 2006 1

KRB5_ADDRESS (3) NetBSD Library Functions Manual KRB5_ADDRESS (3)

krb5_boolean
krb5_address_compare (krb5_context context , const krb5_address ∗addr1 ,

const krb5_address ∗addr2);

krb5_boolean
krb5_address_search (krb5_context context , const krb5_address ∗addr ,

const krb5_addresses ∗addrlist);

krb5_error_code
krb5_free_address (krb5_context context , krb5_address ∗address);

krb5_error_code
krb5_free_addresses (krb5_context context , krb5_addresses ∗addresses);

krb5_error_code
krb5_copy_address (krb5_context context , const krb5_address ∗inaddr ,

krb5_address ∗outaddr);

krb5_error_code
krb5_copy_addresses (krb5_context context , const krb5_addresses ∗inaddr ,

krb5_addresses ∗outaddr);

krb5_error_code
krb5_append_addresses (krb5_context context , krb5_addresses ∗dest ,

const krb5_addresses ∗source);

krb5_error_code
krb5_make_addrport (krb5_context context , krb5_address ∗∗res ,

const krb5_address ∗addr , int16_t port);

DESCRIPTION
Thekrb5_address structure holds a address that can be used in Kerberos API calls. There are help func-
tions to set and extract address information of the address.

Thekrb5_addresses structure holds a set of krb5_address:es.

krb5_sockaddr2address () stores a address astruct sockaddr sa in the krb5_addressaddr .

krb5_sockaddr2port () extracts aport (if possible) from astruct sockaddr sa .

krb5_addr2sockaddr () sets the struct sockaddrsockaddr from addr and port . The argument
sa_size should initially contain the size of thesa , and after the call, it will contain the actual length of the
address.

krb5_max_sockaddr_size () returns the max size of thestruct sockaddr that the Kerberos
library will return.

krb5_sockaddr_uninteresting () returnsTRUEfor all sa that the kerberos library thinks are unin-
teresting. Oneexample are link local addresses.

krb5_h_addr2sockaddr () initializes astruct sockaddr sa from af and thestruct hostent
(seegethostbyname (3)) h_addr_list component. Theargumentsa_size should initially contain
the size of thesa , and after the call, it will contain the actual length of the address.

krb5_h_addr2addr () works like krb5_h_addr2sockaddr () with the exception that it operates on a
krb5_address instead of astruct sockaddr .

krb5_anyaddr () fills in a struct sockaddr sa that can be used tobind (2) to. The argument
sa_size should initially contain the size of thesa , and after the call, it will contain the actual length of the
address.

NetBSD 3.0 May 1, 2006 2

KRB5_ADDRESS (3) NetBSD Library Functions Manual KRB5_ADDRESS (3)

krb5_print_address () prints the address inaddr to the stringstring that have the lengthlen . If
ret_len is notNULL, it will be filled with the length of the string if size were unlimited (not including the
final ‘\0 ’).

krb5_parse_address () Returns the resolved hostname instring to the krb5_addresses
addresses .

krb5_address_order () compares the addressesaddr1 andaddr2 so that it can be used for sorting
addresses. If the addresses are the same addresskrb5_address_order will return 0.

krb5_address_compare () compares the addressesaddr1 and addr2 . Returns TRUE if the two
addresses are the same.

krb5_address_search () checks if the addressaddr is a member of the address set listaddrlist .

krb5_free_address () frees the data stored in theaddress that is alloced with any of the krb5_address
functions.

krb5_free_addresses () frees the data stored in theaddresses that is alloced with any of the
krb5_address functions.

krb5_copy_address () copies the content of addressinaddr to outaddr .

krb5_copy_addresses () copies the content of the address listinaddr to outaddr .

krb5_append_addresses () adds the set of addresses insource to dest . While copying the
addresses, duplicates are also sorted out.

krb5_make_addrport () allocates and creates an krb5_address inres of type
KRB5_ADDRESS_ADDRPORT from (addr , port).

SEE ALSO
krb5 (3), krb5.conf (5), kerberos (8)

NetBSD 3.0 May 1, 2006 3

KRB5_ANAME_TO_LOCALNAM . . . NetBSD Library Functions Manual KRB5_ANAME_TO_LOCALNAM . . .

NAME
krb5_aname_to_localname — converts a principal to a system local name

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_boolean
krb5_aname_to_localname (krb5_context context , krb5_const_principal name ,

size_t lnsize , char ∗lname);

DESCRIPTION
This function takes a principalname, verifies that it is in the local realm (using
krb5_get_default_realms ()) and then returns the local name of the principal.

If name isn’t in one of the local realms an error is returned.

If the size (lnsize) of the local name (lname) is too small, an error is returned.

krb5_aname_to_localname () should only be use by an application that implements protocols that
don’t transport the login name and thus needs to convert a principal to a local name.

Protocols should be designed so that they authenticate using Kerberos, send over the login name and then
verify the principal that is authenticated is allowed to login and the login name.A way to check if a user is
allowed to login is using the functionkrb5_kuserok ().

SEE ALSO
krb5_get_default_realms (3), krb5_kuserok (3)

NetBSD 3.0 February 18, 2006 1

KRB5_APPDEFAULT (3) NetBSDLibrary Functions Manual KRB5_APPDEFAULT (3)

NAME
krb5_appdefault_boolean , krb5_appdefault_string , krb5_appdefault_time — get
application configuration value

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

void
krb5_appdefault_boolean (krb5_context context , const char ∗appname ,

krb5_realm realm , const char ∗option , krb5_boolean def_val ,
krb5_boolean ∗ret_val);

void
krb5_appdefault_string (krb5_context context , const char ∗appname ,

krb5_realm realm , const char ∗option , const char ∗def_val ,
char ∗∗ret_val);

void
krb5_appdefault_time (krb5_context context , const char ∗appname ,

krb5_realm realm , const char ∗option , time_t def_val , time_t ∗ret_val);

DESCRIPTION
These functions get application defaults from theappdefaults section of thekrb5.conf (5) configura-
tion file. These defaults can be specified per application, and/or per realm.

These values will be looked for inkrb5.conf (5), in order of descending importance.

[appdefaults]
appname = {

realm = {
option = value

}
}
appname = {

option = value
}
realm = {

option = value
}
option = value

appname is the name of the application, andrealm is the realm name. If the realm is omitted it will not be
used for resolving values.def_val is the value to return if no value is found inkrb5.conf (5).

SEE ALSO
krb5_config (3), krb5.conf (5)

NetBSD 3.0 July 25, 2000 1

KRB5_AUTH_CONTEXT (3) NetBSD Library Functions Manual KRB5_AUTH_CONTEXT (3)

NAME
krb5_auth_con_addflags , krb5_auth_con_free , krb5_auth_con_genaddrs ,
krb5_auth_con_generatelocalsubkey , krb5_auth_con_getaddrs ,
krb5_auth_con_getauthenticator , krb5_auth_con_getflags ,
krb5_auth_con_getkey , krb5_auth_con_getlocalsubkey ,
krb5_auth_con_getrcache , krb5_auth_con_getremotesubkey ,
krb5_auth_con_getuserkey , krb5_auth_con_init , krb5_auth_con_initivector ,
krb5_auth_con_removeflags , krb5_auth_con_setaddrs ,
krb5_auth_con_setaddrs_from_fd , krb5_auth_con_setflags ,
krb5_auth_con_setivector , krb5_auth_con_setkey ,
krb5_auth_con_setlocalsubkey , krb5_auth_con_setrcache ,
krb5_auth_con_setremotesubkey , krb5_auth_con_setuserkey , krb5_auth_context ,
krb5_auth_getcksumtype , krb5_auth_getkeytype , krb5_auth_getlocalseqnumber ,
krb5_auth_getremoteseqnumber , krb5_auth_setcksumtype , krb5_auth_setkeytype ,
krb5_auth_setlocalseqnumber , krb5_auth_setremoteseqnumber ,
krb5_free_authenticator — manage authentication on connection level

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_auth_con_init (krb5_context context , krb5_auth_context ∗auth_context);

void
krb5_auth_con_free (krb5_context context , krb5_auth_context auth_context);

krb5_error_code
krb5_auth_con_setflags (krb5_context context ,

krb5_auth_context auth_context , int32_t flags);

krb5_error_code
krb5_auth_con_getflags (krb5_context context ,

krb5_auth_context auth_context , int32_t ∗flags);

krb5_error_code
krb5_auth_con_addflags (krb5_context context ,

krb5_auth_context auth_context , int32_t addflags , int32_t ∗flags);

krb5_error_code
krb5_auth_con_removeflags (krb5_context context ,

krb5_auth_context auth_context , int32_t removelags , int32_t ∗flags);

krb5_error_code
krb5_auth_con_setaddrs (krb5_context context ,

krb5_auth_context auth_context , krb5_address ∗local_addr ,
krb5_address ∗remote_addr);

krb5_error_code
krb5_auth_con_getaddrs (krb5_context context ,

krb5_auth_context auth_context , krb5_address ∗∗local_addr ,
krb5_address ∗∗remote_addr);

NetBSD 3.0 May 17, 2005 1

KRB5_AUTH_CONTEXT (3) NetBSD Library Functions Manual KRB5_AUTH_CONTEXT (3)

krb5_error_code
krb5_auth_con_genaddrs (krb5_context context ,

krb5_auth_context auth_context , int fd , int flags);

krb5_error_code
krb5_auth_con_setaddrs_from_fd (krb5_context context ,

krb5_auth_context auth_context , void ∗p_fd);

krb5_error_code
krb5_auth_con_getkey (krb5_context context , krb5_auth_context auth_context ,

krb5_keyblock ∗∗keyblock);

krb5_error_code
krb5_auth_con_getlocalsubkey (krb5_context context ,

krb5_auth_context auth_context , krb5_keyblock ∗∗keyblock);

krb5_error_code
krb5_auth_con_getremotesubkey (krb5_context context ,

krb5_auth_context auth_context , krb5_keyblock ∗∗keyblock);

krb5_error_code
krb5_auth_con_generatelocalsubkey (krb5_context context ,

krb5_auth_context auth_context , krb5_keyblock , ∗key");

krb5_error_code
krb5_auth_con_initivector (krb5_context context ,

krb5_auth_context auth_context);

krb5_error_code
krb5_auth_con_setivector (krb5_context context ,

krb5_auth_context ∗auth_context , krb5_pointer ivector);

void
krb5_free_authenticator (krb5_context context ,

krb5_authenticator ∗authenticator);

DESCRIPTION
The krb5_auth_context structure holds all context related to an authenticated connection, in a similar
way to krb5_context that holds the context for the thread or process.krb5_auth_context is used
by various functions that are directly related to authentication between the server/client. Example of data that
this structure contains are various flags, addresses of client and server, port numbers, keyblocks (and sub-
keys), sequence numbers, replay cache, and checksum-type.

krb5_auth_con_init () allocates and initializes thekrb5_auth_context structure. Default values
can be changed withkrb5_auth_con_setcksumtype () andkrb5_auth_con_setflags (). The
auth_context structure must be freed bykrb5_auth_con_free ().

krb5_auth_con_getflags (), krb5_auth_con_setflags (), krb5_auth_con_addflags ()
andkrb5_auth_con_removeflags () gets and modifies the flags for akrb5_auth_context struc-
ture. Possible flags to set are:

KRB5_AUTH_CONTEXT_DO_SEQUENCE
Generate and check sequence-number on each packet.

KRB5_AUTH_CONTEXT_DO_TIME
Check timestamp on incoming packets.

NetBSD 3.0 May 17, 2005 2

KRB5_AUTH_CONTEXT (3) NetBSD Library Functions Manual KRB5_AUTH_CONTEXT (3)

KRB5_AUTH_CONTEXT_RET_SEQUENCE, KRB5_AUTH_CONTEXT_RET_TIME
Return sequence numbers and time stamps in the outdata parameters.

KRB5_AUTH_CONTEXT_CLEAR_FORWARDED_CRED
will force krb5_get_forwarded_creds () and krb5_fwd_tgt_creds () to create unen-
crypted) ENCTYPE_NULL) credentials. Thisis for use with old MIT server and JAVA based
servers as they can’t handle encryptedKRB-CRED. Note that sending suchKRB-CREDis clear
exposes crypto keys and tickets and is insecure, make sure the packet is encrypted in the protocol.
krb5_rd_cred (3), krb5_rd_priv (3), krb5_rd_safe (3), krb5_mk_priv (3) and
krb5_mk_safe (3). Settingthis flag requires that parameter to be passed to these functions.

The flags KRB5_AUTH_CONTEXT_DO_TIMEalso modifies the behavior the function
krb5_get_forwarded_creds () by removing the timestamp in the forward credential message,
this have backward compatibility problems since not all versions of the heimdal supports timeless
credentional messages. Is very useful since it always the sender of the message to cache forward
message and thus avoiding a round trip to the KDC for each time a credential is forwarded. The
same functionality can be obtained by using address-less tickets.

krb5_auth_con_setaddrs (), krb5_auth_con_setaddrs_from_fd () and
krb5_auth_con_getaddrs () gets and sets the addresses that are checked when a packet is received. It
is mandatory to set an address for the remote host. If the local address is not set, it iss deduced from the
underlaying operating system.krb5_auth_con_getaddrs () will call krb5_free_address () on
any address that is passed inlocal_addr or remote_addr . krb5_auth_con_setaddr () allows
passing in aNULLpointer aslocal_addr andremote_addr , in that case it will just not set that address.

krb5_auth_con_setaddrs_from_fd () fetches the addresses from a file descriptor.

krb5_auth_con_genaddrs () fetches the address information from the given file descriptorfd depend-
ing on the bitmap argumentflags .

Possible values onflags are:

KRB5_AUTH_CONTEXT_GENERATE_LOCAL_ADDR
fetches the local address fromfd .

KRB5_AUTH_CONTEXT_GENERATE_REMOTE_ADDR
fetches the remote address fromfd .

krb5_auth_con_setkey (), krb5_auth_con_setuserkey () and krb5_auth_con_getkey ()
gets and sets the key used for this auth context. The keyblock returned bykrb5_auth_con_getkey ()
should be freed withkrb5_free_keyblock (). Thekeyblock send intokrb5_auth_con_setkey ()
is copied into thekrb5_auth_context , and thus no special handling is needed.NULL is not a valid
keyblock tokrb5_auth_con_setkey ().

krb5_auth_con_setuserkey () is only useful when doing user to user authentication.
krb5_auth_con_setkey () is equivalent tokrb5_auth_con_setuserkey ().

krb5_auth_con_getlocalsubkey (), krb5_auth_con_setlocalsubkey (),
krb5_auth_con_getremotesubkey () andkrb5_auth_con_setremotesubkey () gets and sets
the keyblock for the local and remote subkey. The keyblock returned by
krb5_auth_con_getlocalsubkey () andkrb5_auth_con_getremotesubkey () must be freed
with krb5_free_keyblock ().

krb5_auth_setcksumtype () andkrb5_auth_getcksumtype () sets and gets the checksum type
that should be used for this connection.

krb5_auth_con_generatelocalsubkey () generates a local subkey that have the same encryption
type askey .

NetBSD 3.0 May 17, 2005 3

KRB5_AUTH_CONTEXT (3) NetBSD Library Functions Manual KRB5_AUTH_CONTEXT (3)

krb5_auth_getremoteseqnumber () krb5_auth_setremoteseqnumber (),
krb5_auth_getlocalseqnumber () and krb5_auth_setlocalseqnumber () gets and sets the
sequence-number for the local and remote sequence-number counter.

krb5_auth_setkeytype () and krb5_auth_getkeytype () gets and gets the keytype of the
keyblock inkrb5_auth_context .

krb5_auth_con_getauthenticator () Retrieves the authenticator that was used during mutual
authentication. The authenticator returned should be freed by calling
krb5_free_authenticator ().

krb5_auth_con_getrcache () andkrb5_auth_con_setrcache () gets and sets the replay-cache.

krb5_auth_con_initivector () allocates memory for and zeros the initial vector in the
auth_context keyblock.

krb5_auth_con_setivector () sets the i_vector portion ofauth_context to ivector .

krb5_free_authenticator () free the content ofauthenticator andauthenticator itself.

SEE ALSO
krb5_context (3), kerberos (8)

NetBSD 3.0 May 17, 2005 4

KRB5_C_MAKE_CHECKSUM (3) NetBSD Library Functions Manual KRB5_C_MAKE_CHECKSUM (3)

NAME
krb5_c_block_size , krb5_c_decrypt , krb5_c_encrypt , krb5_c_encrypt_length ,
krb5_c_enctype_compare , krb5_c_get_checksum , krb5_c_is_coll_proof_cksum ,
krb5_c_is_keyed_cksum , krb5_c_keylength , krb5_c_make_checksum ,
krb5_c_make_random_key , krb5_c_set_checksum , krb5_c_valid_cksumtype ,
krb5_c_valid_enctype , krb5_c_verify_checksum , krb5_c_checksum_length — Ker-
beros 5 crypto API

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_c_block_size (krb5_context context , krb5_enctype enctype ,

size_t ∗blocksize);

krb5_error_code
krb5_c_decrypt (krb5_context context , const krb5_keyblock key ,

krb5_keyusage usage , const krb5_data ∗ivec , krb5_enc_data ∗input ,
krb5_data ∗output);

krb5_error_code
krb5_c_encrypt (krb5_context context , const krb5_keyblock ∗key ,

krb5_keyusage usage , const krb5_data ∗ivec , const krb5_data ∗input ,
krb5_enc_data ∗output);

krb5_error_code
krb5_c_encrypt_length (krb5_context context , krb5_enctype enctype ,

size_t inputlen , size_t ∗length);

krb5_error_code
krb5_c_enctype_compare (krb5_context context , krb5_enctype e1 ,

krb5_enctype e2 , krb5_boolean ∗similar);

krb5_error_code
krb5_c_make_random_key (krb5_context context , krb5_enctype enctype ,

krb5_keyblock ∗random_key);

krb5_error_code
krb5_c_make_checksum (krb5_context context , krb5_cksumtype cksumtype ,

const krb5_keyblock ∗key , krb5_keyusage usage , const krb5_data ∗input ,
krb5_checksum ∗cksum);

krb5_error_code
krb5_c_verify_checksum (krb5_context context , const krb5_keyblock ∗key ,

krb5_keyusage usage , const krb5_data ∗data , const krb5_checksum ∗cksum ,
krb5_boolean ∗valid);

krb5_error_code
krb5_c_checksum_length (krb5_context context , krb5_cksumtype cksumtype ,

size_t ∗length);

krb5_error_code
krb5_c_get_checksum (krb5_context context , const krb5_checksum ∗cksum ,

krb5_cksumtype ∗type , krb5_data ∗∗data);

NetBSD 3.0 Nov 17, 2006 1

KRB5_C_MAKE_CHECKSUM (3) NetBSD Library Functions Manual KRB5_C_MAKE_CHECKSUM (3)

krb5_error_code
krb5_c_set_checksum (krb5_context context , krb5_checksum ∗cksum ,

krb5_cksumtype type , const krb5_data ∗data);

krb5_boolean
krb5_c_valid_enctype (krb5_enctype , etype");

krb5_boolean
krb5_c_valid_cksumtype (krb5_cksumtype ctype);

krb5_boolean
krb5_c_is_coll_proof_cksum (krb5_cksumtype ctype);

krb5_boolean
krb5_c_is_keyed_cksum (krb5_cksumtype ctype);

krb5_error_code
krb5_c_keylengths (krb5_context context , krb5_enctype enctype ,

size_t ∗inlength , size_t ∗keylength);

DESCRIPTION
The functions starting with krb5_c are compat functions with MIT kerberos.

The krb5_enc_data structure holds and encrypted data.There are two public accessable members of
krb5_enc_data . enctype that holds the encryption type of the data encrypted andciphertext that
is akrb5_data that might contain the encrypted data.

krb5_c_block_size () returns the blocksize of the encryption type.

krb5_c_decrypt () decryptsinput and store the data inoutput. If ivec is NULL the default initial-
ization vector for that encryption type will be used.

krb5_c_encrypt () encrypts the plaintext ininput and store the ciphertext inoutput .

krb5_c_encrypt_length () returns the length the encrypted data given the plaintext length.

krb5_c_enctype_compare () compares to encryption types and returns if they use compatible encryp-
tion key types.

krb5_c_make_checksum () creates a checksumcksum with the checksum typecksumtype of the data
in data . key andusage are used if the checksum is a keyed checksum type. Returns 0 or an error code.

krb5_c_verify_checksum () verifies the checksum ofdata in cksum that was created withkey
using the key usageusage . verify is set to non-zero if the checksum verifies correctly and zero if not.
Returns 0 or an error code.

krb5_c_checksum_length () returns the length of the checksum.

krb5_c_set_checksum () sets thekrb5_checksum structure given type anddata . The content of
cksum should be freeed withkrb5_c_free_checksum_contents ().

krb5_c_get_checksum () retrieves the components of thekrb5_checksum . structure. data should
be free withkrb5_free_data (). If some either ofdata or checksum is not needed for the application,
NULLcan be passed in.

krb5_c_valid_enctype () returns true ifetype is a valid encryption type.

krb5_c_valid_cksumtype () returns true ifctype is a valid checksum type.

krb5_c_is_keyed_cksum () return true ifctype is a keyed checksum type.

NetBSD 3.0 Nov 17, 2006 2

KRB5_C_MAKE_CHECKSUM (3) NetBSD Library Functions Manual KRB5_C_MAKE_CHECKSUM (3)

krb5_c_is_coll_proof_cksum () returns true ifctype is a collition proof checksum type.

krb5_c_keylengths () return the minimum length (inlength) bytes needed to create a key and the
length (keylength) of the resulting key for theenctype .

SEE ALSO
krb5 (3), krb5_create_checksum (3), krb5_free_data (3), kerberos (8)

NetBSD 3.0 Nov 17, 2006 3

KRB5_CCACHE (3) NetBSD Library Functions Manual KRB5_CCACHE (3)

NAME
krb5_ccache , krb5_cc_cursor , krb5_cc_ops , krb5_fcc_ops , krb5_mcc_ops ,
krb5_cc_clear_mcred , krb5_cc_close , krb5_cc_copy_cache , krb5_cc_default ,
krb5_cc_default_name , krb5_cc_destroy , krb5_cc_end_seq_get , krb5_cc_gen_new ,
krb5_cc_get_full_name , krb5_cc_get_name , krb5_cc_get_ops ,
krb5_cc_get_prefix_ops , krb5_cc_get_principal , krb5_cc_get_type ,
krb5_cc_get_version , krb5_cc_initialize , krb5_cc_next_cred ,
krb5_cc_next_cred_match , krb5_cc_new_unique , krb5_cc_register ,
krb5_cc_remove_cred , krb5_cc_resolve , krb5_cc_retrieve_cred ,
krb5_cc_set_default_name , krb5_cc_set_flags , krb5_cc_start_seq_get ,
krb5_cc_store_cred — mange credential cache

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

struct krb5_ccache;

struct krb5_cc_cursor;

struct krb5_cc_ops;

struct krb5_cc_ops ∗krb5_fcc_ops;

struct krb5_cc_ops ∗krb5_mcc_ops;

void
krb5_cc_clear_mcred (krb5_creds ∗mcred);

krb5_error_code
krb5_cc_close (krb5_context context , krb5_ccache id);

krb5_error_code
krb5_cc_copy_cache (krb5_context context , const krb5_ccache from ,

krb5_ccache to);

krb5_error_code
krb5_cc_default (krb5_context context , krb5_ccache ∗id);

const char ∗
krb5_cc_default_name (krb5_context context);

krb5_error_code
krb5_cc_destroy (krb5_context context , krb5_ccache id);

krb5_error_code
krb5_cc_end_seq_get (krb5_context context , const krb5_ccache id ,

krb5_cc_cursor ∗cursor);

krb5_error_code
krb5_cc_gen_new (krb5_context context , const krb5_cc_ops ∗ops ,

krb5_ccache ∗id);

krb5_error_code
krb5_cc_get_full_name (krb5_context context , krb5_ccache id , char ∗∗str);

NetBSD 3.0 October 19, 2005 1

KRB5_CCACHE (3) NetBSD Library Functions Manual KRB5_CCACHE (3)

const char ∗
krb5_cc_get_name (krb5_context context , krb5_ccache id);

krb5_error_code
krb5_cc_get_principal (krb5_context context , krb5_ccache id ,

krb5_principal ∗principal);

const char ∗
krb5_cc_get_type (krb5_context context , krb5_ccache id);

const krb5_cc_ops ∗
krb5_cc_get_ops (krb5_context context , krb5_ccache id);

const krb5_cc_ops ∗
krb5_cc_get_prefix_ops (krb5_context context , const char ∗prefix);

krb5_error_code
krb5_cc_get_version (krb5_context context , const krb5_ccache id);

krb5_error_code
krb5_cc_initialize (krb5_context context , krb5_ccache id ,

krb5_principal primary_principal);

krb5_error_code
krb5_cc_register (krb5_context context , const krb5_cc_ops ∗ops ,

krb5_boolean override);

krb5_error_code
krb5_cc_resolve (krb5_context context , const char ∗name, krb5_ccache ∗id);

krb5_error_code
krb5_cc_retrieve_cred (krb5_context context , krb5_ccache id ,

krb5_flags whichfields , const krb5_creds ∗mcreds , krb5_creds ∗creds);

krb5_error_code
krb5_cc_remove_cred (krb5_context context , krb5_ccache id , krb5_flags which ,

krb5_creds ∗cred);

krb5_error_code
krb5_cc_set_default_name (krb5_context context , const char ∗name);

krb5_error_code
krb5_cc_start_seq_get (krb5_context context , const krb5_ccache id ,

krb5_cc_cursor ∗cursor);

krb5_error_code
krb5_cc_store_cred (krb5_context context , krb5_ccache id , krb5_creds ∗creds);

krb5_error_code
krb5_cc_set_flags (krb5_context context , krb5_cc_set_flags id ,

krb5_flags flags);

krb5_error_code
krb5_cc_next_cred (krb5_context context , const krb5_ccache id ,

krb5_cc_cursor ∗cursor , krb5_creds ∗creds);

krb5_error_code
krb5_cc_next_cred_match (krb5_context context , const krb5_ccache id ,

krb5_cc_cursor ∗cursor , krb5_creds ∗creds , krb5_flags whichfields ,
const krb5_creds ∗mcreds);

NetBSD 3.0 October 19, 2005 2

KRB5_CCACHE (3) NetBSD Library Functions Manual KRB5_CCACHE (3)

krb5_error_code
krb5_cc_new_unique (krb5_context context , const char ∗type ,

const char ∗hint , krb5_ccache ∗id);

DESCRIPTION
Thekrb5_ccache structure holds a Kerberos credential cache.

Thekrb5_cc_cursor structure holds current position in a credential cache when iterating over the cache.

Thekrb5_cc_ops structure holds a set of operations that can me preformed on a credential cache.

There is no component insidekrb5_ccache , krb5_cc_cursor nor krb5_fcc_ops that is directly
referable.

Thekrb5_creds holds a Kerberos credential, see manpage forkrb5_creds (3).

krb5_cc_default_name () andkrb5_cc_set_default_name () gets and sets the default name for
thecontext .

krb5_cc_default () opens the default credential cache inid . Return 0 or an error code.

krb5_cc_gen_new () generates a new credential cache of typeops in id . Return 0 or an error code.The
Heimdal version of this function also runskrb5_cc_initialize () on the credential cache, but since the
MIT version doesn’t, portable code must call krb5_cc_initialize.

krb5_cc_new_unique () generates a new unique credential cache oftype in id . If type isNULL, the
library chooses the default credential cache type. The suppliedhint (that can beNULL) is a string that the
credential cache type can use to base the name of the credential on, this is to make it easier for the user to
differentiate the credentials. The returned credential cacheid should be freed usingkrb5_cc_close () or
krb5_cc_destroy (). Returns0 or an error code.

krb5_cc_resolve () finds and allocates a credential cache inid from the specification inresidual . If
the credential cache name doesn’t contain any colon (:), interpret it as a file name. Return 0 or an error code.

krb5_cc_initialize () creates a new credential cache inid for primary_principal . Return 0 or
an error code.

krb5_cc_close () stops using the credential cacheid and frees the related resources. Return 0 or an
error code. krb5_cc_destroy () removes the credential cache and closes (by calling
krb5_cc_close ()) id . Return 0 or an error code.

krb5_cc_copy_cache () copys the contents offrom to to .

krb5_cc_get_full_name () returns the complete resolvable name of the credential cacheid in str .
str should be freed withfree (3). Returns0 or an error, on error ∗str is set toNULL.

krb5_cc_get_name () returns the name of the credential cacheid .

krb5_cc_get_principal () returns the principal ofid in principal . Return 0 or an error code.

krb5_cc_get_type () returns the type of the credential cacheid .

krb5_cc_get_ops () returns the ops of the credential cacheid .

krb5_cc_get_version () returns the version ofid .

krb5_cc_register () Adds a new credential cache type with operationsops , overwriting any existing
one ifoverride . Return an error code or 0.

krb5_cc_get_prefix_ops () Get the cc ops that is registered incontext to handle theprefix .
ReturnsNULL if ops not found.

NetBSD 3.0 October 19, 2005 3

KRB5_CCACHE (3) NetBSD Library Functions Manual KRB5_CCACHE (3)

krb5_cc_remove_cred () removes the credential identified by (cred , which) from id .

krb5_cc_store_cred () storescreds in the credential cacheid . Return 0 or an error code.

krb5_cc_set_flags () sets the flags ofid to flags .

krb5_cc_clear_mcred () clears the mcreds argument so it is reset and can be used with
krb5_cc_retrieve_cred .

krb5_cc_retrieve_cred (), retrieves the credential identified bymcreds (andwhichfields) from
id in creds . creds should be freed usingkrb5_free_cred_contents (). Return0 or an error
code.

krb5_cc_start_seq_get () initiates thekrb5_cc_cursor structure to be used for iteration over the
credential cache.

krb5_cc_next_cred () retrieves the next cred pointed to by (id , cursor) in creds , and advance
cursor . Return 0 or an error code.

krb5_cc_next_cred_match () is similar tokrb5_cc_next_cred () except that it will only return
creds matchingwhichfields andmcreds (as interpreted bykrb5_compare_creds (3).)

krb5_cc_end_seq_get () Destroys the cursorcursor .

EXAMPLE
This is a minimalistic version ofklist .

#include <krb5/krb5.h>

int
main (int argc, char ∗∗argv)
{

krb5_context context;
krb5_cc_cursor cursor;
krb5_error_code ret;
krb5_ccache id;
krb5_creds creds;

if (krb5_init_context (&context) != 0)
errx(1, "krb5_context");

ret = krb5_cc_default (context, &id);
if (ret)

krb5_err(context, 1, ret, "krb5_cc_default");

ret = krb5_cc_start_seq_get(context, id, &cursor);
if (ret)

krb5_err(context, 1, ret, "krb5_cc_start_seq_get");

while((ret = krb5_cc_next_cred(context, id, &cursor, &creds)) == 0){
char ∗principal;

krb5_unparse_name_short(context, creds.server, &principal);
printf("principal: %s\n", principal);
free(principal);
krb5_free_cred_contents (context, &creds);

NetBSD 3.0 October 19, 2005 4

KRB5_CCACHE (3) NetBSD Library Functions Manual KRB5_CCACHE (3)

}
ret = krb5_cc_end_seq_get(context, id, &cursor);
if (ret)

krb5_err(context, 1, ret, "krb5_cc_end_seq_get");

krb5_cc_close(context, id);

krb5_free_context(context);
return 0;

}

SEE ALSO
krb5 (3), krb5.conf (5), kerberos (8)

NetBSD 3.0 October 19, 2005 5

KRB5_CHECK_TRANSITED (3) NetBSD Library Functions Manual KRB5_CHECK_TRANSITED (3)

NAME
krb5_check_transited , krb5_check_transited_realms , krb5_domain_x500_decode ,
krb5_domain_x500_encode — realm transit verification and encoding/decoding functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_check_transited (krb5_context context , krb5_const_realm client_realm ,

krb5_const_realm server_realm , krb5_realm ∗realms , int num_realms ,
int ∗bad_realm);

krb5_error_code
krb5_check_transited_realms (krb5_context context ,

const char ∗const ∗realms , int num_realms , int ∗bad_realm);

krb5_error_code
krb5_domain_x500_decode (krb5_context context , krb5_data tr , char ∗∗∗realms ,

int ∗num_realms , const char ∗client_realm , const char ∗server_realm);

krb5_error_code
krb5_domain_x500_encode (char ∗∗realms , int num_realms , krb5_data ∗encoding);

DESCRIPTION
krb5_check_transited () checks the path fromclient_realm to server_realm whererealms
andnum_realms is the realms between them. If the function returns an error value,bad_realm will be
set to the realm in the list causing the error. krb5_check_transited () is used internally by the KDC
and libkrb5 and should not be called by client applications.

krb5_check_transited_realms () is deprecated.

krb5_domain_x500_encode () andkrb5_domain_x500_decode () encodes and decodes the realm
names in the X500 format that Kerberos uses to describe the transited realms in krbtgts.

SEE ALSO
krb5 (3), krb5.conf (5)

NetBSD 3.0 May 1, 2006 1

KRB5_COMPARE_CREDS (3) NetBSD Library Functions Manual KRB5_COMPARE_CREDS (3)

NAME
krb5_compare_creds — compare Kerberos 5 credentials

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_boolean
krb5_compare_creds (krb5_context context , krb5_flags whichfields ,

const krb5_creds ∗mcreds , const krb5_creds ∗creds);

DESCRIPTION
krb5_compare_creds () comparesmcreds (usually filled in by the application) tocreds (most often
from a credentials cache) and returnTRUEif they are equal.Unlessmcreds->serveris NULL, the service of
the credentials are always compared. If the client name inmcreds is present, the client names are also
compared. This function is normally only called indirectly viakrb5_cc_retrieve_cred (3).

The following flags, set inwhichfields , affects the comparison:
KRB5_TC_MATCH_SRV_NAMEONLY

Consider all realms equal when comparing the service princi-
pal.

KRB5_TC_MATCH_KEYTYPE Compare enctypes.
KRB5_TC_MATCH_FLAGS_EXACT

Make sure that the ticket flags are identical.
KRB5_TC_MATCH_FLAGS Make sure that all ticket flags set inmcreds are also present

in creds .
KRB5_TC_MATCH_TIMES_EXACT

Compares the ticket times exactly.
KRB5_TC_MATCH_TIMES Compares only the expiration times of the creds.
KRB5_TC_MATCH_AUTHDAT A Compares the authdata fields.
KRB5_TC_MATCH_2ND_TKT Compares the second tickets (used by user-to-user authenti-

cation).
KRB5_TC_MATCH_IS_SKEY Compares the existance of the second ticket.

SEE ALSO
krb5 (3), krb5_cc_retrieve_cred (3), krb5_creds (3), krb5_get_init_creds (3),
kerberos (8)

NetBSD 3.0 May 10, 2005 1

KRB5_CONFIG_GET (3) NetBSD Library Functions Manual KRB5_CONFIG_GET (3)

NAME
krb5_config_file_free , krb5_config_free_strings , krb5_config_get ,
krb5_config_get_bool , krb5_config_get_bool_default , krb5_config_get_int ,
krb5_config_get_int_default , krb5_config_get_list , krb5_config_get_next ,
krb5_config_get_string , krb5_config_get_string_default ,
krb5_config_get_strings , krb5_config_get_time ,
krb5_config_get_time_default , krb5_config_parse_file ,
krb5_config_parse_file_multi , krb5_config_vget , krb5_config_vget_bool ,
krb5_config_vget_bool_default , krb5_config_vget_int ,
krb5_config_vget_int_default , krb5_config_vget_list , krb5_config_vget_next ,
krb5_config_vget_string , krb5_config_vget_string_default ,
krb5_config_vget_strings , krb5_config_vget_time ,
krb5_config_vget_time_default — get configuration value

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_config_file_free (krb5_context context , krb5_config_section ∗s);

void
krb5_config_free_strings (char ∗∗strings);

const void ∗
krb5_config_get (krb5_context context , const krb5_config_section ∗c ,

int type , . . .);

krb5_boolean
krb5_config_get_bool (krb5_context context , krb5_config_section ∗c , . . .);

krb5_boolean
krb5_config_get_bool_default (krb5_context context , krb5_config_section ∗c ,

krb5_boolean def_value , . . .);

int
krb5_config_get_int (krb5_context context , krb5_config_section ∗c , . . .);

int
krb5_config_get_int_default (krb5_context context , krb5_config_section ∗c ,

int def_value , . . .);

const char ∗
krb5_config_get_string (krb5_context context , krb5_config_section ∗c , . . .);

const char ∗
krb5_config_get_string_default (krb5_context context ,

krb5_config_section ∗c , const char ∗def_value , . . .);

char ∗∗
krb5_config_get_strings (krb5_context context ,

const krb5_config_section ∗c , . . .);

int
krb5_config_get_time (krb5_context context , krb5_config_section ∗c , . . .);

NetBSD 3.0 August 10, 2007 1

KRB5_CONFIG_GET (3) NetBSD Library Functions Manual KRB5_CONFIG_GET (3)

int
krb5_config_get_time_default (krb5_context context , krb5_config_section ∗c ,

int def_value , . . .);

krb5_error_code
krb5_config_parse_file (krb5_context context , const char ∗fname ,

krb5_config_section ∗∗res);

krb5_error_code
krb5_config_parse_file_multi (krb5_context context , const char ∗fname ,

krb5_config_section ∗∗res);

const void ∗
krb5_config_vget (krb5_context context , const krb5_config_section ∗c ,

int type , va_list args);

krb5_boolean
krb5_config_vget_bool (krb5_context context , const krb5_config_section ∗c ,

va_list args);

krb5_boolean
krb5_config_vget_bool_default (krb5_context context ,

const krb5_config_section ∗c , krb5_boolean def_value , va_list args);

int
krb5_config_vget_int (krb5_context context , const krb5_config_section ∗c ,

va_list args);

int
krb5_config_vget_int_default (krb5_context context ,

const krb5_config_section ∗c , int def_value , va_list args);

const krb5_config_binding ∗
krb5_config_vget_list (krb5_context context , const krb5_config_section ∗c ,

va_list args);

const void ∗
krb5_config_vget_next (krb5_context context , const krb5_config_section ∗c ,

const krb5_config_binding ∗∗pointer , int type , va_list args);

const char ∗
krb5_config_vget_string (krb5_context context ,

const krb5_config_section ∗c , va_list args);

const char ∗
krb5_config_vget_string_default (krb5_context context ,

const krb5_config_section ∗c , const char ∗def_value , va_list args);

char ∗∗
krb5_config_vget_strings (krb5_context context ,

const krb5_config_section ∗c , va_list args);

int
krb5_config_vget_time (krb5_context context , const krb5_config_section ∗c ,

va_list args);

int
krb5_config_vget_time_default (krb5_context context ,

const krb5_config_section ∗c , int def_value , va_list args);

NetBSD 3.0 August 10, 2007 2

KRB5_CONFIG_GET (3) NetBSD Library Functions Manual KRB5_CONFIG_GET (3)

DESCRIPTION
These functions get values from thekrb5.conf (5) configuration file, or another configuration database
specified by thec parameter.

The variable arguments should be a list of strings naming each subsection to look for. For example:

krb5_config_get_bool_default(context, NULL, FALSE,
"libdefaults", "log_utc", NULL);

gets the boolean value for thelog_utc option, defaulting toFALSE.

krb5_config_get_bool_default () will convert the option value to a boolean value, where ‘yes’,
‘true’, and any non-zero number meansTRUE, and any other valueFALSE.

krb5_config_get_int_default () will convert the value to an integer.

krb5_config_get_time_default () will convert the value to a period of time (not a time stamp) in
seconds, so the string ‘2 weeks’ will be converted to 1209600 (2∗ 7 ∗ 24 ∗ 60 ∗ 60).

krb5_config_get_string () returns aconst char ∗ to a string in the configuration database.The
string not be valid after reload of the configuration database so a caller should make a local copy if i ts need
to keep the database.

krb5_config_free_strings () freestrings as returned bykrb5_config_get_strings () and
krb5_config_vget_strings (). If the argumentstrings is aNULLpointer, no action occurs.

krb5_config_file_free () free the result of krb5_config_parse_file () and
krb5_config_parse_file_multi ().

SEE ALSO
krb5_appdefault (3), krb5_init_context (3), krb5.conf (5)

BUGS
For the default functions, other than for the string case, there’s no way to tell whether there was a value spec-
ified or not.

NetBSD 3.0 August 10, 2007 3

KRB5_CONTEXT (3) NetBSD Library Functions Manual KRB5_CONTEXT (3)

NAME
krb5_context — krb5 state structure

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

DESCRIPTION
Thekrb5_context structure is designed to hold all per thread state. All global variables that are context
specific are stored in this structure, including default encryption types, credentials-cache (ticket file), and
default realms.

The internals of the structure should never be accessed directly, functions exist for extracting information.

SEE ALSO
krb5_init_context (3), kerberos (8)

NetBSD 3.0 January 21, 2001 1

NAME (3) NetBSD Library Functions Manual NAME (3)

NAME
krb5_checksum , krb5_checksum_disable , krb5_checksum_is_collision_proof ,
krb5_checksum_is_keyed , krb5_checksumsize , krb5_cksumtype_valid ,
krb5_copy_checksum , krb5_create_checksum , krb5_crypto_get_checksum_type
krb5_free_checksum , krb5_free_checksum_contents , krb5_hmac ,
krb5_verify_checksum — creates, handles and verifies checksums

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

typedef Checksum krb5_checksum;

void
krb5_checksum_disable (krb5_context context , krb5_cksumtype type);

krb5_boolean
krb5_checksum_is_collision_proof (krb5_context context ,

krb5_cksumtype type);

krb5_boolean
krb5_checksum_is_keyed (krb5_context context , krb5_cksumtype type);

krb5_error_code
krb5_cksumtype_valid (krb5_context context , krb5_cksumtype ctype);

krb5_error_code
krb5_checksumsize (krb5_context context , krb5_cksumtype type , size_t ∗size);

krb5_error_code
krb5_create_checksum (krb5_context context , krb5_crypto crypto ,

krb5_key_usage usage , int type , void ∗data , size_t len ,
Checksum ∗result);

krb5_error_code
krb5_verify_checksum (krb5_context context , krb5_crypto crypto ,

krb5_key_usage usage , void ∗data , size_t len , Checksum ∗cksum);

krb5_error_code
krb5_crypto_get_checksum_type (krb5_context context , krb5_crypto crypto ,

krb5_cksumtype ∗type);

void
krb5_free_checksum (krb5_context context , krb5_checksum ∗cksum);

void
krb5_free_checksum_contents (krb5_context context , krb5_checksum ∗cksum);

krb5_error_code
krb5_hmac (krb5_context context , krb5_cksumtype cktype , const void ∗data ,

size_t len , unsigned usage , krb5_keyblock ∗key , Checksum ∗result);

krb5_error_code
krb5_copy_checksum (krb5_context context , const krb5_checksum ∗old ,

krb5_checksum ∗∗new);

NetBSD 3.0 August 12, 2005 1

NAME (3) NetBSD Library Functions Manual NAME (3)

DESCRIPTION
The krb5_checksum structure holds a Kerberos checksum. There is no component inside
krb5_checksum that is directly referable.

The functions are used to create and verify checksums.krb5_create_checksum () creates a checksum
of the specified data, and puts it inresult . If crypto is NULL, usage_or_type specifies the check-
sum type to use; it must not be keyed. Otherwisecrypto is an encryption context created by
krb5_crypto_init (), andusage_or_type specifies a key-usage.

krb5_verify_checksum () verifies thechecksum against the provided data.

krb5_checksum_is_collision_proof () returns true is the specified checksum is collision proof
(that it’s very unlikely that two strings has the same hash value, and that it’s hard to find two strings that has
the same hash). Examples of collision proof checksums are MD5, and SHA1, while CRC32 is not.

krb5_checksum_is_keyed () returns true if the specified checksum type is keyed (that the hash value is
a function of both the data, and a separate key). Examples of keyed hash algorithms are HMAC-
SHA1-DES3, and RSA-MD5-DES. The “plain” hash functions MD5, and SHA1 are not keyed.

krb5_crypto_get_checksum_type () returns the checksum type that will be used when creating a
checksum for the given crypto context. This function is useful in combination with
krb5_checksumsize () when you want to know the size a checksum will use when you create it.

krb5_cksumtype_valid () returns 0 or an error if the checksumtype is implemented and not currently
disabled in this kerberos library.

krb5_checksumsize () returns the size of the outdata of checksum function.

krb5_copy_checksum () returns a copy of the checksumkrb5_free_checksum () should use used to
free thenew checksum.

krb5_free_checksum () free the checksum and the content of the checksum.

krb5_free_checksum_contents () frees the content of checksum incksum .

krb5_hmac () calculates the HMAC over data (with lengthlen) using the keyusageusage and keyblock
key . Note that keyusage is not always used in checksums.

krb5_checksum_disable globally disables the checksum type.

SEE ALSO
krb5_crypto_init (3), krb5_c_encrypt (3), krb5_encrypt (3)

NetBSD 3.0 August 12, 2005 2

KRB5_CREDS (3) NetBSD Library Functions Manual KRB5_CREDS (3)

NAME
krb5_creds , krb5_copy_creds , krb5_copy_creds_contents , krb5_free_creds ,
krb5_free_cred_contents — Kerberos 5 credential handling functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_copy_creds (krb5_context context , const krb5_creds ∗incred ,

krb5_creds ∗∗outcred);

krb5_error_code
krb5_copy_creds_contents (krb5_context context , const krb5_creds ∗incred ,

krb5_creds ∗outcred);

krb5_error_code
krb5_free_creds (krb5_context context , krb5_creds ∗outcred);

krb5_error_code
krb5_free_cred_contents (krb5_context context , krb5_creds ∗cred);

DESCRIPTION
krb5_creds holds Kerberos credentials:

typedef struct krb5_creds {
krb5_principal client;
krb5_principal server;
krb5_keyblock session;
krb5_times times;
krb5_data ticket;
krb5_data second_ticket;
krb5_authdata authdata;
krb5_addresses addresses;
krb5_ticket_flags flags;

} k rb5_creds;

krb5_copy_creds () makes a copy of incred to outcred . outcred should be freed with
krb5_free_creds () by the caller.

krb5_copy_creds_contents () makes a copy of the content ofincred to outcreds . outcreds
should be freed by the called withkrb5_free_creds_contents ().

krb5_free_creds () frees the content of thecred structure and the structure itself.

krb5_free_cred_contents () frees the content of thecred structure.

SEE ALSO
krb5 (3), krb5_compare_creds (3), krb5_get_init_creds (3), kerberos (8)

NetBSD 3.0 May 1, 2006 1

NAME (3) NetBSD Library Functions Manual NAME (3)

NAME
krb5_crypto_destroy , krb5_crypto_init — encryption support in krb5

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_crypto_init (krb5_context context , krb5_keyblock ∗key ,

krb5_enctype enctype , krb5_crypto ∗crypto);

krb5_error_code
krb5_crypto_destroy (krb5_context context , krb5_crypto crypto);

DESCRIPTION
Heimdal exports parts of the Kerberos crypto interface for applications.

Each kerberos encrytion/checksum function takes a crypto context.

To setup and destroy crypto contextes there are two functions krb5_crypto_init () and
krb5_crypto_destroy (). Theencryption type to use is taken from the key, but can be overridden with
theenctype parameter . This can be useful for encryptions types which is compatiable (DES for exam-
ple).

SEE ALSO
krb5_create_checksum (3), krb5_encrypt (3)

NetBSD 3.0 April 7, 1999 1

KRB5_DAT A (3) NetBSDLibrary Functions Manual KRB5_DAT A (3)

NAME
krb5_data , krb5_data_zero , krb5_data_free , krb5_free_data_contents ,
krb5_free_data , krb5_data_alloc , krb5_data_realloc , krb5_data_copy ,
krb5_copy_data , krb5_data_cmp — operates on the Kerberos datatype krb5_data

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

struct krb5_data;

void
krb5_data_zero (krb5_data ∗p);

void
krb5_data_free (krb5_data ∗p);

void
krb5_free_data_contents (krb5_context context , krb5_data ∗p);

void
krb5_free_data (krb5_context context , krb5_data ∗p);

krb5_error_code
krb5_data_alloc (krb5_data ∗p , int len);

krb5_error_code
krb5_data_realloc (krb5_data ∗p , int len);

krb5_error_code
krb5_data_copy (krb5_data ∗p , const void ∗data , size_t len);

krb5_error_code
krb5_copy_data (krb5_context context , const krb5_data ∗indata ,

krb5_data ∗∗outdata);

krb5_error_code
krb5_data_cmp (const krb5_data ∗data1 , const krb5_data ∗data2);

DESCRIPTION
The krb5_data structure holds a data element. The structure contains two public accessible elements
length (the length of data) anddata (the data itself). The structure must always be initiated and freed by
the functions documented in this manual.

krb5_data_zero () resets the content ofp.

krb5_data_free () free the data inp and reset the content of the structure withkrb5_data_zero ().

krb5_free_data_contents () works the same way askrb5_data_free . The diffrence is that
krb5_free_data_contents is more portable (exists in MIT api).

krb5_free_data () frees the data inp andp itself.

krb5_data_alloc () allocateslen bytes inp. Returns 0 or an error.

krb5_data_realloc () reallocates the length ofp to the length inlen . Returns 0 or an error.

NetBSD 3.0 Jan 23, 2007 1

KRB5_DAT A (3) NetBSDLibrary Functions Manual KRB5_DAT A (3)

krb5_data_copy () copies thedata that have the lengthlen into p. p is not freed so the calling func-
tion should make sure thep doesn’t contain anything needs to be freed. Returns 0 or an error.

krb5_copy_data () copies thekrb5_data in indata to outdata . outdata is not freed so the call-
ing function should make sure theoutdata doesn’t contain anything needs to be freed.outdata should
be freed usingkrb5_free_data (). Returns0 or an error.

krb5_data_cmp () will compare two data object and check if they are the same in a simular way as mem-
cmp does it. The return value can be used for sorting.

SEE ALSO
krb5 (3), krb5_storage (3), kerberos (8)

NetBSD 3.0 Jan 23, 2007 2

KRB5_DIGEST (3) NetBSD Library Functions Manual KRB5_DIGEST (3)

NAME
krb5_digest , krb5_digest_alloc , krb5_digest_free , krb5_digest_set_server_cb ,
krb5_digest_set_type , krb5_digest_set_hostname ,
krb5_digest_get_server_nonce , krb5_digest_set_server_nonce ,
krb5_digest_get_opaque , krb5_digest_set_opaque , krb5_digest_get_identifier ,
krb5_digest_set_identifier , krb5_digest_init_request ,
krb5_digest_set_client_nonce , krb5_digest_set_digest ,
krb5_digest_set_username , krb5_digest_set_authid ,
krb5_digest_set_authentication_user , krb5_digest_set_realm ,
krb5_digest_set_method , krb5_digest_set_uri , krb5_digest_set_nonceCount ,
krb5_digest_set_qop , krb5_digest_request , krb5_digest_get_responseData ,
krb5_digest_get_rsp , krb5_digest_get_tickets ,
krb5_digest_get_client_binding , krb5_digest_get_a1_hash — remote digest (HTTP-
DIGEST, SASL, CHAP) suppport

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

typedef struct krb5_digest ∗krb5_digest;

krb5_error_code
krb5_digest_alloc (krb5_context context , krb5_digest ∗digest);

void
krb5_digest_free (krb5_digest digest);

krb5_error_code
krb5_digest_set_type (krb5_context context , krb5_digest digest ,

const char ∗type);

krb5_error_code
krb5_digest_set_server_cb (krb5_context context , krb5_digest digest ,

const char ∗type , const char ∗binding);

krb5_error_code
krb5_digest_set_hostname (krb5_context context , krb5_digest digest ,

const char ∗hostname);

const char ∗
krb5_digest_get_server_nonce (krb5_context context , krb5_digest digest);

krb5_error_code
krb5_digest_set_server_nonce (krb5_context context , krb5_digest digest ,

const char ∗nonce);

const char ∗
krb5_digest_get_opaque (krb5_context context , krb5_digest digest);

krb5_error_code
krb5_digest_set_opaque (krb5_context context , krb5_digest digest ,

const char ∗opaque);

const char ∗
krb5_digest_get_identifier (krb5_context context , krb5_digest digest);

NetBSD 3.0 February 18, 2007 1

KRB5_DIGEST (3) NetBSD Library Functions Manual KRB5_DIGEST (3)

krb5_error_code
krb5_digest_set_identifier (krb5_context context , krb5_digest digest ,

const char ∗id);

krb5_error_code
krb5_digest_init_request (krb5_context context , krb5_digest digest ,

krb5_realm realm , krb5_ccache ccache);

krb5_error_code
krb5_digest_set_client_nonce (krb5_context context , krb5_digest digest ,

const char ∗nonce);

krb5_error_code
krb5_digest_set_digest (krb5_context context , krb5_digest digest ,

const char ∗dgst);

krb5_error_code
krb5_digest_set_username (krb5_context context , krb5_digest digest ,

const char ∗username);

krb5_error_code
krb5_digest_set_authid (krb5_context context , krb5_digest digest ,

const char ∗authid);

krb5_error_code
krb5_digest_set_authentication_user (krb5_context context ,

krb5_digest digest , krb5_principal authentication_user);

krb5_error_code
krb5_digest_set_realm (krb5_context context , krb5_digest digest ,

const char ∗realm);

krb5_error_code
krb5_digest_set_method (krb5_context context , krb5_digest digest ,

const char ∗method);

krb5_error_code
krb5_digest_set_uri (krb5_context context , krb5_digest digest ,

const char ∗uri);

krb5_error_code
krb5_digest_set_nonceCount (krb5_context context , krb5_digest digest ,

const char ∗nonce_count);

krb5_error_code
krb5_digest_set_qop (krb5_context context , krb5_digest digest ,

const char ∗qop);

krb5_error_code
krb5_digest_request (krb5_context context , krb5_digest digest ,

krb5_realm realm , krb5_ccache ccache);

const char ∗
krb5_digest_get_responseData (krb5_context context , krb5_digest digest);

const char ∗
krb5_digest_get_rsp (krb5_context context , krb5_digest digest);

NetBSD 3.0 February 18, 2007 2

KRB5_DIGEST (3) NetBSD Library Functions Manual KRB5_DIGEST (3)

krb5_error_code
krb5_digest_get_tickets (krb5_context context , krb5_digest digest ,

Ticket ∗∗tickets);

krb5_error_code
krb5_digest_get_client_binding (krb5_context context , krb5_digest digest ,

char ∗∗type , char ∗∗binding);

krb5_error_code
krb5_digest_get_a1_hash (krb5_context context , krb5_digest digest ,

krb5_data ∗data);

DESCRIPTION
The krb5_digest_alloc () function allocatates thedigest structure. Thestructure should be freed
with krb5_digest_free () when it is no longer being used.

krb5_digest_alloc () returns 0 to indicate success. Otherwise an kerberos code is returned and the
pointer thatdigest points to is set toNULL.

krb5_digest_free () free the structuredigest .

SEE ALSO
krb5 (3), kerberos (8)

NetBSD 3.0 February 18, 2007 3

KRB5_EAI_TO_HEIM_ERRNO (3) NetBSD Library Functions Manual KRB5_EAI_TO_HEIM_ERRNO (3)

NAME
krb5_eai_to_heim_errno , krb5_h_errno_to_heim_errno — convert resolver error code to
com_err error codes

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_eai_to_heim_errno (int eai_errno , int system_error);

krb5_error_code
krb5_h_errno_to_heim_errno (int eai_errno);

DESCRIPTION
krb5_eai_to_heim_errno () andkrb5_h_errno_to_heim_errno () convert getaddrinfo (3),
getnameinfo (3), andh_errno (3) to com_err error code that are used by Heimdal, this is useful for for
function returning kerberos errors and needs to communicate failures from resolver function.

SEE ALSO
krb5 (3), kerberos (8)

NetBSD 3.0 April 13, 2004 1

KRB5_ENCRYPT (3) NetBSD Library Functions Manual KRB5_ENCRYPT (3)

NAME
krb5_crypto_getblocksize , krb5_crypto_getconfoundersize
krb5_crypto_getenctype , krb5_crypto_getpadsize , krb5_crypto_overhead ,
krb5_decrypt , krb5_decrypt_EncryptedData , krb5_decrypt_ivec ,
krb5_decrypt_ticket , krb5_encrypt , krb5_encrypt_EncryptedData ,
krb5_encrypt_ivec , krb5_enctype_disable , krb5_enctype_keysize ,
krb5_enctype_to_string , krb5_enctype_valid , krb5_get_wrapped_length ,
krb5_string_to_enctype — encrypt and decrypt data, set and get encryption type parameters

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_encrypt (krb5_context context , krb5_crypto crypto , unsigned usage ,

void ∗data , size_t len , krb5_data ∗result);

krb5_error_code
krb5_encrypt_EncryptedData (krb5_context context , krb5_crypto crypto ,

unsigned usage , void ∗data , size_t len , int kvno , EncryptedData ∗result);

krb5_error_code
krb5_encrypt_ivec (krb5_context context , krb5_crypto crypto , unsigned usage ,

void ∗data , size_t len , krb5_data ∗result , void ∗ivec);

krb5_error_code
krb5_decrypt (krb5_context context , krb5_crypto crypto , unsigned usage ,

void ∗data , size_t len , krb5_data ∗result);

krb5_error_code
krb5_decrypt_EncryptedData (krb5_context context , krb5_crypto crypto ,

unsigned usage , EncryptedData ∗e , krb5_data ∗result);

krb5_error_code
krb5_decrypt_ivec (krb5_context context , krb5_crypto crypto , unsigned usage ,

void ∗data , size_t len , krb5_data ∗result , void ∗ivec);

krb5_error_code
krb5_decrypt_ticket (krb5_context context , Ticket ∗ticket ,

krb5_keyblock ∗key , EncTicketPart ∗out , krb5_flags flags);

krb5_error_code
krb5_crypto_getblocksize (krb5_context context , size_t ∗blocksize);

krb5_error_code
krb5_crypto_getenctype (krb5_context context , krb5_crypto crypto ,

krb5_enctype ∗enctype);

krb5_error_code
krb5_crypto_getpadsize (krb5_context context , size_t , ∗padsize");

krb5_error_code
krb5_crypto_getconfoundersize (krb5_context context , krb5_crypto crypto ,

size_t , ∗confoundersize");

NetBSD 3.0 March 20, 2004 1

KRB5_ENCRYPT (3) NetBSD Library Functions Manual KRB5_ENCRYPT (3)

krb5_error_code
krb5_enctype_keysize (krb5_context context , krb5_enctype type ,

size_t ∗keysize);

krb5_error_code
krb5_crypto_overhead (krb5_context context , size_t , ∗padsize");

krb5_error_code
krb5_string_to_enctype (krb5_context context , const char ∗string ,

krb5_enctype ∗etype);

krb5_error_code
krb5_enctype_to_string (krb5_context context , krb5_enctype etype ,

char ∗∗string);

krb5_error_code
krb5_enctype_valid (krb5_context context , krb5_enctype etype);

void
krb5_enctype_disable (krb5_context context , krb5_enctype etype);

size_t
krb5_get_wrapped_length (krb5_context context , krb5_crypto crypto ,

size_t data_len);

DESCRIPTION
These functions are used to encrypt and decrypt data.

krb5_encrypt_ivec () puts the encrypted version ofdata (of sizelen) in result . If the encryption
type supports using derived keys,usage should be the appropriate key-usage.ivec is a pointer to a initial
IV, it is modified to the end IV at the end of the round.Ivec should be the size of IfNULL is passed in, the
default IV is used.krb5_encrypt () does the same askrb5_encrypt_ivec () but with ivec being
NULL. krb5_encrypt_EncryptedData () does the same askrb5_encrypt (), but it puts the
encrypted data in aEncryptedData structure instead. Ifkvno is not zero, it will be put in the (optional)
kvno field in theEncryptedData .

krb5_decrypt_ivec (), krb5_decrypt (), and krb5_decrypt_EncryptedData () works simi-
larly.

krb5_decrypt_ticket () decrypts the encrypted part of ticket with key .
krb5_decrypt_ticket () also verifies the timestamp in the ticket, invalid flag and if the KDC haven’t
verified the transited path, the transit path.

krb5_enctype_keysize (), krb5_crypto_getconfoundersize (),
krb5_crypto_getblocksize (), krb5_crypto_getenctype (),
krb5_crypto_getpadsize (), krb5_crypto_overhead () all returns various (sometimes) useful
information from a crypto context. krb5_crypto_overhead () is the combination of krb5_crypto_get-
confoundersize, krb5_crypto_getblocksize and krb5_crypto_getpadsize and return the maximum overhead
size.

krb5_enctype_to_string () converts a encryption type number to a string that can be printable and
stored. The strings returned should be freed withfree (3).

krb5_string_to_enctype () converts a encryption type strings to a encryption type number that can
use used for other Kerberos crypto functions.

krb5_enctype_valid () returns 0 if the encrypt is supported and not disabled, otherwise and error code
is returned.

NetBSD 3.0 March 20, 2004 2

KRB5_ENCRYPT (3) NetBSD Library Functions Manual KRB5_ENCRYPT (3)

krb5_enctype_disable () (globally, for all contextes) disables theenctype .

krb5_get_wrapped_length () returns the size of an encrypted packet bycrypto of length
data_len .

SEE ALSO
krb5_create_checksum (3), krb5_crypto_init (3)

NetBSD 3.0 March 20, 2004 3

KRB5_EXPAND_HOSTNAME (3) NetBSD Library Functions Manual KRB5_EXPAND_HOSTNAME (3)

NAME
krb5_expand_hostname , krb5_expand_hostname_realms — Kerberos 5 host name canonical-
ization functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_expand_hostname (krb5_context context , const char ∗orig_hostname ,

char ∗∗new_hostname);

krb5_error_code
krb5_expand_hostname_realms (krb5_context context ,

const char ∗orig_hostname , char ∗∗new_hostname , char ∗∗∗realms);

DESCRIPTION
krb5_expand_hostname () tries to make orig_hostname into a more canonical one in the newly
allocated space returned innew_hostname . Caller must free the hostname withfree (3).

krb5_expand_hostname_realms () expandsorig_hostname to a name we believe to be a host-
name in newly allocated space innew_hostname and return the realmsnew_hostname is belive to
belong to inrealms . Realms is a array terminated withNULL. Caller must free therealms with
krb5_free_host_realm () andnew_hostname with free (3).

SEE ALSO
krb5 (3), krb5_free_host_realm (3), krb5_get_host_realm (3), kerberos (8)

NetBSD 3.0 May 5, 2006 1

KRB5_FIND_PADAT A (3) NetBSDLibrary Functions Manual KRB5_FIND_PADAT A (3)

NAME
krb5_find_padata , krb5_padata_add — Kerberos 5 pre-authentication data handling functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

PA_DATA ∗
krb5_find_padata (PA_DATA ∗val , unsigned len , int type , int ∗index);

int
krb5_padata_add (krb5_context context , METHOD_DATA∗md, int type , void ∗buf ,

size_t len);

DESCRIPTION
krb5_find_padata () tries to find the pre-authentication data entry of typetype in the arrayval of
length len . The search is started at entry pointed out by∗index (zero based indexing). If the type isn’t
found,NULL is returned.

krb5_padata_add () adds a pre-authentication data entry of typetype pointed out bybuf and len to
md.

SEE ALSO
krb5 (3), kerberos (8)

NetBSD 3.0 March 21, 2004 1

KRB5_GENERATE_RANDOM_BL . . .NetBSD Library Functions ManualKRB5_GENERATE_RANDOM_BL . . .

NAME
krb5_generate_random_block — Kerberos 5 random functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

void
krb5_generate_random_block (void ∗buf , size_t len);

DESCRIPTION
krb5_generate_random_block () generates a cryptographically strong pseudo-random block into the
bufferbuf of lengthlen .

SEE ALSO
krb5 (3), krb5.conf (5)

NetBSD 3.0 March 21, 2004 1

KRB5_GET_ADDRS (3) NetBSD Library Functions Manual KRB5_GET_ADDRS (3)

NAME
krb5_get_all_client_addrs , krb5_get_all_server_addrs — return local addresses

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_get_all_client_addrs (krb5_context context , krb5_addresses ∗addrs);

krb5_error_code
krb5_get_all_server_addrs (krb5_context context , krb5_addresses ∗addrs);

DESCRIPTION
These functions return inaddrs a list of addresses associated with the local host.

The server variant returns all configured interface addresses (if possible), including loop-back addresses.
This is useful if you want to create sockets to listen to.

The client version will also scan local interfaces (can be turned off by setting
libdefaults/scan_interfaces to false inkrb5.conf), but will not include loop-back addresses,
unless there are no other addresses found. It will remove all addresses included in
libdefaults/ignore_addresses but will unconditionally include addresses in
libdefaults/extra_addresses .

The returned addresses should be freed by callingkrb5_free_addresses ().

SEE ALSO
krb5_free_addresses (3)

NetBSD 3.0 July 1, 2001 1

KRB5_GET_CREDENTIALS (3) NetBSD Library Functions Manual KRB5_GET_CREDENTIALS (3)

NAME
krb5_get_credentials , krb5_get_credentials_with_flags ,
krb5_get_cred_from_kdc , krb5_get_cred_from_kdc_opt , krb5_get_kdc_cred ,
krb5_get_renewed_creds — get credentials from the KDC using krbtgt

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_get_credentials (krb5_context context , krb5_flags options ,

krb5_ccache ccache , krb5_creds ∗in_creds , krb5_creds ∗∗out_creds);

krb5_error_code
krb5_get_credentials_with_flags (krb5_context context , krb5_flags options ,

krb5_kdc_flags flags , krb5_ccache ccache , krb5_creds ∗in_creds ,
krb5_creds ∗∗out_creds);

krb5_error_code
krb5_get_cred_from_kdc (krb5_context context , krb5_ccache ccache ,

krb5_creds ∗in_creds , krb5_creds ∗∗out_creds , krb5_creds ∗∗∗ret_tgts);

krb5_error_code
krb5_get_cred_from_kdc_opt (krb5_context context , krb5_ccache ccache ,

krb5_creds ∗in_creds , krb5_creds ∗∗out_creds , krb5_creds ∗∗∗ret_tgts ,
krb5_flags flags);

krb5_error_code
krb5_get_kdc_cred (krb5_context context , krb5_ccache id ,

krb5_kdc_flags flags , krb5_addresses ∗addresses , Ticket ∗second_ticket ,
krb5_creds ∗in_creds , krb5_creds ∗∗out_creds);

krb5_error_code
krb5_get_renewed_creds (krb5_context context , krb5_creds ∗creds ,

krb5_const_principal client , krb5_ccache ccache ,
const char ∗in_tkt_service);

DESCRIPTION
krb5_get_credentials_with_flags () get credentials specified byin_creds->server and
in_creds->client (the rest of thein_creds structure is ignored) by first looking in theccache and
if doesn’t exists or is expired, fetch the credential from the KDC using the krbtgt inccache . The credential
is returned inout_creds and should be freed using the functionkrb5_free_creds ().

Valid flags to pass intooptions argument are:

KRB5_GC_CACHED Only check theccache , don’t got out on network to fetch credential.
KRB5_GC_USER_USER

Request a user to user ticket. Thisoption doesn’t store the resulting user to user
credential in theccache .

KRB5_GC_EXPIRED_OK
returns the credential even if it is expired, default behavior is trying to refetch the
credential from the KDC.

NetBSD 3.0 July 26, 2004 1

KRB5_GET_CREDENTIALS (3) NetBSD Library Functions Manual KRB5_GET_CREDENTIALS (3)

Flags are KDCOptions, note the caller must fill in the bit-field and not use the integer associated structure.

krb5_get_credentials () works the same way as krb5_get_credentials_with_flags ()
except that theflags field is missing.

krb5_get_cred_from_kdc () andkrb5_get_cred_from_kdc_opt () fetches the credential from
the KDC very much like krb5_get_credentials, (but , doesn’t , look , in , the) ccache if
the credential exists there first.

krb5_get_kdc_cred () does the same as the functions above, but the caller must fill in all the informa-
tion andits closer to the wire protocol.

krb5_get_renewed_creds () renews a credential given by in_tkt_service (if NULL the default
krbtgt) using the credential cacheccache . The result is stored increds and should be freed using
krb5_free_creds .

EXAMPLES
Here is a example function that get a credential from a credential cacheid or the KDC and returns it to the
caller.

#include <krb5/krb5.h>

int
getcred(krb5_context context, krb5_ccache id, krb5_creds ∗∗creds)
{

krb5_error_code ret;
krb5_creds in;

ret = krb5_parse_name(context, "client@EXAMPLE.COM",
&in.client);

if (ret)
krb5_err(context, 1, ret, "krb5_parse_name");

ret = krb5_parse_name(context, "host/server.example.com@EXAMPLE.COM",
&in.server);

if (ret)
krb5_err(context, 1, ret, "krb5_parse_name");

ret = krb5_get_credentials(context, 0, id, &in, creds);
if (ret)

krb5_err(context, 1, ret, "krb5_get_credentials");

return 0;
}

SEE ALSO
krb5 (3), krb5_get_forwarded_creds (3), krb5.conf (5)

NetBSD 3.0 July 26, 2004 2

KRB5_GET_CREDS (3) NetBSD Library Functions Manual KRB5_GET_CREDS (3)

NAME
krb5_get_creds , krb5_get_creds_opt_add_options , krb5_get_creds_opt_alloc ,
krb5_get_creds_opt_free , krb5_get_creds_opt_set_enctype ,
krb5_get_creds_opt_set_impersonate , krb5_get_creds_opt_set_options ,
krb5_get_creds_opt_set_ticket — get credentials from the KDC

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_get_creds (krb5_context context , krb5_get_creds_opt opt ,

krb5_ccache ccache , krb5_const_principal inprinc ,
krb5_creds ∗∗out_creds);

void
krb5_get_creds_opt_add_options (krb5_context context ,

krb5_get_creds_opt opt , krb5_flags options);

krb5_error_code
krb5_get_creds_opt_alloc (krb5_context context , krb5_get_creds_opt ∗opt);

void
krb5_get_creds_opt_free (krb5_context context , krb5_get_creds_opt opt);

void
krb5_get_creds_opt_set_enctype (krb5_context context ,

krb5_get_creds_opt opt , krb5_enctype enctype);

krb5_error_code
krb5_get_creds_opt_set_impersonate (krb5_context context ,

krb5_get_creds_opt opt , krb5_const_principal self);

void
krb5_get_creds_opt_set_options (krb5_context context ,

krb5_get_creds_opt opt , krb5_flags options);

krb5_error_code
krb5_get_creds_opt_set_ticket (krb5_context context ,

krb5_get_creds_opt opt , const Ticket ∗ticket);

DESCRIPTION
krb5_get_creds () fetches credentials specified byopt by first looking in theccache , and then it
doesn’t exists, fetch the credential from the KDC using the krbtgts inccache . The credential is returned in
out_creds and should be freed using the functionkrb5_free_creds ().

The structurekrb5_get_creds_opt controls the behavior ofkrb5_get_creds (). The structure is
opaque to consumers that can set the content of the structure with accessors functions. All accessor functions
make copies of the data that is passed into accessor functions, so external consumers free the memory before
callingkrb5_get_creds ().

The structurekrb5_get_creds_opt is allocated withkrb5_get_creds_opt_alloc () and freed
with krb5_get_creds_opt_free (). Thefree function also frees the content of the structure set by the
accessor functions.

NetBSD 3.0 June 15, 2006 1

KRB5_GET_CREDS (3) NetBSD Library Functions Manual KRB5_GET_CREDS (3)

krb5_get_creds_opt_add_options () and krb5_get_creds_opt_set_options () adds and
sets options to the structure . The possible options to set are
KRB5_GC_CACHED Only check theccache , don’t got out on network to fetch credential.
KRB5_GC_USER_USER

request a user to user ticket. Thisoptions doesn’t store the resulting user to user
credential in theccache .

KRB5_GC_EXPIRED_OK
returns the credential even if it is expired, default behavior is trying to refetch the
credential from the KDC.

KRB5_GC_NO_STORE Do not store the resulting credentials in theccache .

krb5_get_creds_opt_set_enctype () sets the preferred encryption type of the application. Don’t set
this unless you have to since if there is no match in the KDC, the function call will fail.

krb5_get_creds_opt_set_impersonate () sets the principal to impersonate., Returns a ticket that
have the impersonation principal as a client and the requestor as the service. Note that the requested principal
have to be the same as the client principal in the krbtgt.

krb5_get_creds_opt_set_ticket () sets the extra ticket used in user-to-user or contrained dele-
gation use case.

SEE ALSO
krb5 (3), krb5_get_credentials (3), krb5.conf (5)

NetBSD 3.0 June 15, 2006 2

KRB5_GET_FORWARDED_CRED . . .NetBSD Library Functions Manual KRB5_GET_FORWARDED_CRED . . .

NAME
krb5_get_forwarded_creds , krb5_fwd_tgt_creds — get forwarded credentials from the KDC

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_get_forwarded_creds (krb5_context context ,

krb5_auth_context auth_context , krb5_ccache ccache , krb5_flags flags ,
const char ∗hostname , krb5_creds ∗in_creds , krb5_data ∗out_data);

krb5_error_code
krb5_fwd_tgt_creds (krb5_context context , krb5_auth_context auth_context ,

const char ∗hostname , krb5_principal client , krb5_principal server ,
krb5_ccache ccache , int forwardable , krb5_data ∗out_data);

DESCRIPTION
krb5_get_forwarded_creds () and krb5_fwd_tgt_creds () get tickets forwarded to
hostname. If the tickets that are forwarded are address-less, the forwarded tickets will also be address-
less, otherwisehostname will be used for figure out the address to forward the ticket too.

SEE ALSO
krb5 (3), krb5_get_credentials (3), krb5.conf (5)

NetBSD 3.0 July 26, 2004 1

KRB5_GET_IN_TKT (3) NetBSD Library Functions Manual KRB5_GET_IN_TKT (3)

NAME
krb5_get_in_tkt , krb5_get_in_cred , krb5_get_in_tkt_with_password ,
krb5_get_in_tkt_with_keytab , krb5_get_in_tkt_with_skey , krb5_free_kdc_rep ,
krb5_password_key_proc — deprecated initial authentication functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_get_in_tkt (krb5_context context , krb5_flags options ,

const krb5_addresses ∗addrs , const krb5_enctype ∗etypes ,
const krb5_preauthtype ∗ptypes , krb5_key_proc key_proc ,
krb5_const_pointer keyseed , krb5_decrypt_proc decrypt_proc ,
krb5_const_pointer decryptarg , krb5_creds ∗creds , krb5_ccache ccache ,
krb5_kdc_rep ∗ret_as_reply);

krb5_error_code
krb5_get_in_cred (krb5_context context , krb5_flags options ,

const krb5_addresses ∗addrs , const krb5_enctype ∗etypes ,
const krb5_preauthtype ∗ptypes , const krb5_preauthdata ∗preauth ,
krb5_key_proc key_proc , krb5_const_pointer keyseed ,
krb5_decrypt_proc decrypt_proc , krb5_const_pointer decryptarg ,
krb5_creds ∗creds , krb5_kdc_rep ∗ret_as_reply);

krb5_error_code
krb5_get_in_tkt_with_password (krb5_context context , krb5_flags options ,

krb5_addresses ∗addrs , const krb5_enctype ∗etypes ,
const krb5_preauthtype ∗pre_auth_types , const char ∗password ,
krb5_ccache ccache , krb5_creds ∗creds , krb5_kdc_rep ∗ret_as_reply);

krb5_error_code
krb5_get_in_tkt_with_keytab (krb5_context context , krb5_flags options ,

krb5_addresses ∗addrs , const krb5_enctype ∗etypes ,
const krb5_preauthtype ∗pre_auth_types , krb5_keytab keytab ,
krb5_ccache ccache , krb5_creds ∗creds , krb5_kdc_rep ∗ret_as_reply);

krb5_error_code
krb5_get_in_tkt_with_skey (krb5_context context , krb5_flags options ,

krb5_addresses ∗addrs , const krb5_enctype ∗etypes ,
const krb5_preauthtype ∗pre_auth_types , const krb5_keyblock ∗key ,
krb5_ccache ccache , krb5_creds ∗creds , krb5_kdc_rep ∗ret_as_reply);

krb5_error_code
krb5_free_kdc_rep (krb5_context context , krb5_kdc_rep ∗rep);

krb5_error_code
krb5_password_key_proc (krb5_context context , krb5_enctype type ,

krb5_salt salt , krb5_const_pointer keyseed , krb5_keyblock ∗∗key);

DESCRIPTION
All the functions in this manual page are deprecated in the MIT implementation, and will soon be deprecated
in Heimdal too, don’t use them.

NetBSD 3.0 May 31, 2003 1

KRB5_GET_IN_TKT (3) NetBSD Library Functions Manual KRB5_GET_IN_TKT (3)

Getting initial credential ticket for a principal.krb5_get_in_cred is the function all other krb5_get_in
function uses to fetch tickets. Theother krb5_get_in function are more specialized and therefor somewhat
easier to use.

If your need is only to verify a user and password, consider usingkrb5_verify_user (3) instead, it have
a much simpler interface.

krb5_get_in_tkt and krb5_get_in_cred fetches initial credential, queries after key using the
key_proc argument. Thedifferences between the two function is thatkrb5_get_in_tkt stores the
credential in akrb5_creds while krb5_get_in_cred stores the credential in akrb5_ccache .

krb5_get_in_tkt_with_password , krb5_get_in_tkt_with_keytab , and
krb5_get_in_tkt_with_skey does the same work askrb5_get_in_cred but are more special-
ized.

krb5_get_in_tkt_with_password uses the clients password to authenticate. If the password argu-
ment is the user user queried with the default password query function.

krb5_get_in_tkt_with_keytab searches the given keytab for a service entry for the client principal.
If the keytab isNULL the default keytab is used.

krb5_get_in_tkt_with_skey uses a key to get the initial credential.

There are some common arguments to the krb5_get_in functions, these are:

options are theKDC_OPTflags.

etypes is aNULL terminated array of encryption types that the client approves.

addrs a list of the addresses that the initial ticket. If it is NULL the list will be generated by the library.

pre_auth_types a NULL terminated array of pre-authentication types.If pre_auth_types is NULL
the function will try without pre-authentication and return those pre-authentication that the KDC returned.

ret_as_reply will (if not NULL) be filled in with the response of the KDC and should be free with
krb5_free_kdc_rep ().

key_proc is a pointer to a function that should return a key salted appropriately. UsingNULLwill use the
default password query function.

decrypt_proc UsingNULLwill use the default decryption function.

decryptarg will be passed to the decryption functiondecrypt_proc .

creds creds should be filled in with the template for a credential that should be requested.The client and
server elements of the creds structure must be filled in.Upon return of the function it will be contain the
content of the requested credential (krb5_get_in_cred), or it will be freed with
krb5_free_creds (3) (all the other krb5_get_in functions).

ccache will store the credential in the credential cacheccache . The credential cache will not be initial-
ized, thats up the the caller.

krb5_password_key_proc is a library function that is suitable using as thekrb5_key_proc argu-
ment tokrb5_get_in_cred or krb5_get_in_tkt . keyseed should be a pointer to aNUL termi-
nated string orNULL. krb5_password_key_proc will query the user for the pass on the console if the
password isn’t giv en as the argumentkeyseed .

krb5_free_kdc_rep () frees the content ofrep .

NetBSD 3.0 May 31, 2003 2

KRB5_GET_IN_TKT (3) NetBSD Library Functions Manual KRB5_GET_IN_TKT (3)

SEE ALSO
krb5 (3), krb5_verify_user (3), krb5.conf (5), kerberos (8)

NetBSD 3.0 May 31, 2003 3

KRB5_GET_INIT_CREDS (3) NetBSD Library Functions Manual KRB5_GET_INIT_CREDS (3)

NAME
krb5_get_init_creds , krb5_get_init_creds_keytab , krb5_get_init_creds_opt ,
krb5_get_init_creds_opt_alloc , krb5_get_init_creds_opt_free ,
krb5_get_init_creds_opt_init , krb5_get_init_creds_opt_set_address_list ,
krb5_get_init_creds_opt_set_addressless ,
krb5_get_init_creds_opt_set_anonymous ,
krb5_get_init_creds_opt_set_default_flags ,
krb5_get_init_creds_opt_set_etype_list ,
krb5_get_init_creds_opt_set_forwardable ,
krb5_get_init_creds_opt_set_pa_password ,
krb5_get_init_creds_opt_set_paq_request ,
krb5_get_init_creds_opt_set_preauth_list ,
krb5_get_init_creds_opt_set_proxiable ,
krb5_get_init_creds_opt_set_renew_life , krb5_get_init_creds_opt_set_salt ,
krb5_get_init_creds_opt_set_tkt_life ,
krb5_get_init_creds_opt_set_canonicalize ,
krb5_get_init_creds_opt_set_win2k , krb5_get_init_creds_password ,
krb5_prompt , krb5_prompter_posix — Kerberos 5 initial authentication functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_get_init_creds_opt;

krb5_error_code
krb5_get_init_creds_opt_alloc (krb5_context context ,

krb5_get_init_creds_opt ∗∗opt);

void
krb5_get_init_creds_opt_free (krb5_context context ,

krb5_get_init_creds_opt ∗opt);

void
krb5_get_init_creds_opt_init (krb5_get_init_creds_opt ∗opt);

void
krb5_get_init_creds_opt_set_address_list (krb5_get_init_creds_opt ∗opt ,

krb5_addresses ∗addresses);

void
krb5_get_init_creds_opt_set_addressless (krb5_get_init_creds_opt ∗opt ,

krb5_boolean addressless);

void
krb5_get_init_creds_opt_set_anonymous (krb5_get_init_creds_opt ∗opt ,

int anonymous);

void
krb5_get_init_creds_opt_set_default_flags (krb5_context context ,

const char ∗appname , krb5_const_realm realm ,
krb5_get_init_creds_opt ∗opt);

NetBSD 3.0 Sep 16, 2006 1

KRB5_GET_INIT_CREDS (3) NetBSD Library Functions Manual KRB5_GET_INIT_CREDS (3)

void
krb5_get_init_creds_opt_set_etype_list (krb5_get_init_creds_opt ∗opt ,

krb5_enctype ∗etype_list , int etype_list_length);

void
krb5_get_init_creds_opt_set_forwardable (krb5_get_init_creds_opt ∗opt ,

int forwardable);

krb5_error_code
krb5_get_init_creds_opt_set_pa_password (krb5_context context ,

krb5_get_init_creds_opt ∗opt , const char ∗password ,
krb5_s2k_proc key_proc);

krb5_error_code
krb5_get_init_creds_opt_set_paq_request (krb5_context context ,

krb5_get_init_creds_opt ∗opt , krb5_boolean req_pac);

krb5_error_code
krb5_get_init_creds_opt_set_pkinit (krb5_context context ,

krb5_get_init_creds_opt ∗opt , const char ∗cert_file ,
const char ∗key_file , const char ∗x509_anchors , int flags ,
char ∗password);

void
krb5_get_init_creds_opt_set_preauth_list (krb5_get_init_creds_opt ∗opt ,

krb5_preauthtype ∗preauth_list , int preauth_list_length);

void
krb5_get_init_creds_opt_set_proxiable (krb5_get_init_creds_opt ∗opt ,

int proxiable);

void
krb5_get_init_creds_opt_set_renew_life (krb5_get_init_creds_opt ∗opt ,

krb5_deltat renew_life);

void
krb5_get_init_creds_opt_set_salt (krb5_get_init_creds_opt ∗opt ,

krb5_data ∗salt);

void
krb5_get_init_creds_opt_set_tkt_life (krb5_get_init_creds_opt ∗opt ,

krb5_deltat tkt_life);

krb5_error_code
krb5_get_init_creds_opt_set_canonicalize (krb5_context context ,

krb5_get_init_creds_opt ∗opt , krb5_boolean req);

krb5_error_code
krb5_get_init_creds_opt_set_win2k (krb5_context context ,

krb5_get_init_creds_opt ∗opt , krb5_boolean req);

krb5_error_code
krb5_get_init_creds (krb5_context context , krb5_creds ∗creds ,

krb5_principal client , krb5_prompter_fct prompter , void ∗prompter_data ,
krb5_deltat start_time , const char ∗in_tkt_service ,
krb5_get_init_creds_opt ∗options);

NetBSD 3.0 Sep 16, 2006 2

KRB5_GET_INIT_CREDS (3) NetBSD Library Functions Manual KRB5_GET_INIT_CREDS (3)

krb5_error_code
krb5_get_init_creds_password (krb5_context context , krb5_creds ∗creds ,

krb5_principal client , const char ∗password ,
krb5_prompter_fct prompter , void ∗prompter_data ,
krb5_deltat start_time , const char ∗in_tkt_service ,
krb5_get_init_creds_opt ∗in_options);

krb5_error_code
krb5_get_init_creds_keytab (krb5_context context , krb5_creds ∗creds ,

krb5_principal client , krb5_keytab keytab , krb5_deltat start_time ,
const char ∗in_tkt_service , krb5_get_init_creds_opt ∗options);

int
krb5_prompter_posix (krb5_context context , void ∗data , const char ∗name,

const char ∗banner , int num_prompts , krb5_prompt prompts[]);

DESCRIPTION
Getting initial credential ticket for a principal.That may include changing an expired password, and doing
preauthentication. Thisinterface that replaces the deprecatedkrb5_in_tkt andkrb5_in_cred func-
tions.

If you only want to verify a username and password, consider usingkrb5_verify_user (3) instead, since
it also verifies that initial credentials with using a keytab to make sure the response was from the KDC.

First a krb5_get_init_creds_opt structure is initialized with
krb5_get_init_creds_opt_alloc () or krb5_get_init_creds_opt_init ().
krb5_get_init_creds_opt_alloc () allocates a extendible structures that needs to be freed with
krb5_get_init_creds_opt_free (). The structure may be modified by any of the
krb5_get_init_creds_opt_set () functions to change request parameters and authentication infor-
mation.

If the caller want to use the default options,NULLcan be passed instead.

The the actual request to the KDC is done by any of the krb5_get_init_creds (),
krb5_get_init_creds_password (), or krb5_get_init_creds_keytab () functions.
krb5_get_init_creds () is the least specialized function and can, with the right in data, behave like the
latter two. Thelatter two are there for compatibility with older releases and they are slightly easier to use.

krb5_prompt is a structure containing the following elements:

typedef struct {
const char ∗prompt;
int hidden;
krb5_data ∗reply;
krb5_prompt_type type

} k rb5_prompt;

prompt is the prompt that should shown to the user Ifhidden is set, the prompter function shouldn’t echo
the output to the display device. reply must be preallocated; it will not be allocated by the prompter func-
tion. Possiblevalues for thetype element are:

KRB5_PROMPT_TYPE_PASSWORD
KRB5_PROMPT_TYPE_NEW_PASSWORD
KRB5_PROMPT_TYPE_NEW_PASSWORD_AGAIN

NetBSD 3.0 Sep 16, 2006 3

KRB5_GET_INIT_CREDS (3) NetBSD Library Functions Manual KRB5_GET_INIT_CREDS (3)

KRB5_PROMPT_TYPE_PREAUTH
KRB5_PROMPT_TYPE_INFO

krb5_prompter_posix () is the default prompter function in a POSIX environment. It matches the
krb5_prompter_fct and can be used in thekrb5_get_init_creds functions.
krb5_prompter_posix () doesn’t requireprompter_data.

If the start_time is zero, then the requested ticket will be valid beginning immediately. Otherwise, the
start_time indicates how far in the future the ticket should be postdated.

If the in_tkt_service name isnon-NULL , that principal name will be used as the server name for the
initial ticket request. The realm of the name specified will be ignored and will be set to the realm of the
client name. If no in_tkt_service name is specified, krbtgt/CLIENT-REALM@CLIENT-REALM will be
used.

For the rest of arguments, a configuration or library default will be used if no value is specified in the options
structure.

krb5_get_init_creds_opt_set_address_list () sets the list ofaddresses that is should be
stored in the ticket.

krb5_get_init_creds_opt_set_addressless () controls if the ticket is requested with addresses
or not,krb5_get_init_creds_opt_set_address_list () overrides this option.

krb5_get_init_creds_opt_set_anonymous () make the request anonymous if theanonymous
parameter is non-zero.

krb5_get_init_creds_opt_set_default_flags () sets the default flags using the configuration
file.

krb5_get_init_creds_opt_set_etype_list () set a list of enctypes that the client is willing to
support in the request.

krb5_get_init_creds_opt_set_forwardable () request a forwardable ticket.

krb5_get_init_creds_opt_set_pa_password () set the password and key_proc that is
going to be used to get a new ticket. password or key_proc can beNULL if the caller wants to use the
default values. Ifthepassword is unset and needed, the user will be prompted for it.

krb5_get_init_creds_opt_set_paq_request () sets the password that is going to be used to get
a new ticket.

krb5_get_init_creds_opt_set_preauth_list () sets the list of client-supported preauth types.

krb5_get_init_creds_opt_set_proxiable () makes the request proxiable.

krb5_get_init_creds_opt_set_renew_life () sets the requested renewable lifetime.

krb5_get_init_creds_opt_set_salt () sets the salt that is going to be used in the request.

krb5_get_init_creds_opt_set_tkt_life () sets requested ticket lifetime.

krb5_get_init_creds_opt_set_canonicalize () requests that the KDC canonicalize the client
pricipal if possible.

krb5_get_init_creds_opt_set_win2k () turns on compatibility with Windows 2000.

SEE ALSO
krb5 (3), krb5_creds (3), krb5_verify_user (3), krb5.conf (5), kerberos (8)

NetBSD 3.0 Sep 16, 2006 4

KRB5_GET_KRBHST (3) NetBSD Library Functions Manual KRB5_GET_KRBHST (3)

NAME
krb5_get_krbhst , krb5_get_krb_admin_hst , krb5_get_krb_changepw_hst ,
krb5_get_krb524hst , krb5_free_krbhst — lookup Kerberos KDC hosts

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_get_krbhst (krb5_context context , const krb5_realm ∗realm ,

char ∗∗∗hostlist);

krb5_error_code
krb5_get_krb_admin_hst (krb5_context context , const krb5_realm ∗realm ,

char ∗∗∗hostlist);

krb5_error_code
krb5_get_krb_changepw_hst (krb5_context context , const krb5_realm ∗realm ,

char ∗∗∗hostlist);

krb5_error_code
krb5_get_krb524hst (krb5_context context , const krb5_realm ∗realm ,

char ∗∗∗hostlist);

krb5_error_code
krb5_free_krbhst (krb5_context context , char ∗∗hostlist);

DESCRIPTION
These functions implement the old API to get a list of Kerberos hosts, and are thus similar to the
krb5_krbhst_init () functions. However, since these functions returnsall hosts in one go, they poten-
tially have to do more lookups than necessary. These functions remain for compatibility reasons.

After a call to one of these functions,hostlist is a NULL terminated list of strings, pointing to the
requested Kerberos hosts. These should be freed withkrb5_free_krbhst () when done with.

EXAMPLES
The following code will print the KDCs of the realm “MY.REALM”.

char ∗∗hosts, ∗∗p;
krb5_get_krbhst(context, "MY.REALM", &hosts);
for(p = hosts; ∗p; p++)

printf("%s\n", ∗p);
krb5_free_krbhst(context, hosts);

SEE ALSO
krb5_krbhst_init (3)

NetBSD 3.0 April 24, 2005 1

NAME (3) NetBSD Library Functions Manual NAME (3)

NAME
krb5_getportbyname — get port number by name

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

int
krb5_getportbyname (krb5_context context , const char ∗service ,

const char ∗proto , int default_port);

DESCRIPTION
krb5_getportbyname () gets the port number forservice / proto pair from the global service table
for and returns it in network order. If it i sn’t found in the global table, thedefault_port (given in host
order) is returned.

EXAMPLE
int port = krb5_getportbyname(context, "kerberos", "tcp", 88);

SEE ALSO
krb5 (3)

NetBSD 3.0 August 15, 2004 1

KRB5_CONTEXT (3) NetBSD Library Functions Manual KRB5_CONTEXT (3)

NAME
krb5_add_et_list , krb5_add_extra_addresses , krb5_add_ignore_addresses ,
krb5_context , krb5_free_config_files , krb5_free_context ,
krb5_get_default_config_files , krb5_get_dns_canonize_hostname ,
krb5_get_extra_addresses , krb5_get_fcache_version ,
krb5_get_ignore_addresses , krb5_get_kdc_sec_offset , krb5_get_max_time_skew ,
krb5_get_use_admin_kdc krb5_init_context , krb5_init_ets ,
krb5_prepend_config_files , krb5_prepend_config_files_default ,
krb5_set_config_files , krb5_set_dns_canonize_hostname ,
krb5_set_extra_addresses , krb5_set_fcache_version ,
krb5_set_ignore_addresses , krb5_set_max_time_skew , krb5_set_use_admin_kdc ,
— create, modify and delete krb5_context structures

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

struct krb5_context;

krb5_error_code
krb5_init_context (krb5_context ∗context);

void
krb5_free_context (krb5_context context);

void
krb5_init_ets (krb5_context context);

krb5_error_code
krb5_add_et_list (krb5_context context , void (∗func)(struct et_list ∗∗));

krb5_error_code
krb5_add_extra_addresses (krb5_context context , krb5_addresses ∗addresses);

krb5_error_code
krb5_set_extra_addresses (krb5_context context ,

const krb5_addresses ∗addresses);

krb5_error_code
krb5_get_extra_addresses (krb5_context context , krb5_addresses ∗addresses);

krb5_error_code
krb5_add_ignore_addresses (krb5_context context , krb5_addresses ∗addresses);

krb5_error_code
krb5_set_ignore_addresses (krb5_context context ,

const krb5_addresses ∗addresses);

krb5_error_code
krb5_get_ignore_addresses (krb5_context context , krb5_addresses ∗addresses);

krb5_error_code
krb5_set_fcache_version (krb5_context context , int version);

krb5_error_code
krb5_get_fcache_version (krb5_context context , int ∗version);

NetBSD 3.0 December 8, 2004 1

KRB5_CONTEXT (3) NetBSD Library Functions Manual KRB5_CONTEXT (3)

void
krb5_set_dns_canonize_hostname (krb5_context context , krb5_boolean flag);

krb5_boolean
krb5_get_dns_canonize_hostname (krb5_context context);

krb5_error_code
krb5_get_kdc_sec_offset (krb5_context context , int32_t ∗sec , int32_t ∗usec);

krb5_error_code
krb5_set_config_files (krb5_context context , char ∗∗filenames);

krb5_error_code
krb5_prepend_config_files (const char ∗filelist , char ∗∗pq , char ∗∗∗ret_pp);

krb5_error_code
krb5_prepend_config_files_default (const char ∗filelist ,

char ∗∗∗pfilenames);

krb5_error_code
krb5_get_default_config_files (char ∗∗∗pfilenames);

void
krb5_free_config_files (char ∗∗filenames);

void
krb5_set_use_admin_kdc (krb5_context context , krb5_boolean flag);

krb5_boolean
krb5_get_use_admin_kdc (krb5_context context);

time_t
krb5_get_max_time_skew (krb5_context context);

krb5_error_code
krb5_set_max_time_skew (krb5_context context , time_t time);

DESCRIPTION
The krb5_init_context () function initializes thecontext structure and reads the configuration file
/etc/krb5.conf .

The structure should be freed by callingkrb5_free_context () when it is no longer being used.

krb5_init_context () returns 0 to indicate success. Otherwise an errno code is returned.Failure means
either that something bad happened during initialization (typically[ENOMEM]) or that Kerberos should not
be used[ENXIO].

krb5_init_ets () adds allcom_err (3) libs tocontext . This is done bykrb5_init_context ().

krb5_add_et_list () adds acom_err (3) error-code handlerfunc to the specifiedcontext . The
error handler must generated by the the re-rentrant version of the compile_et (3) program.
krb5_add_extra_addresses () add a list of addresses that should be added when requesting tickets.

krb5_add_ignore_addresses () add a list of addresses that should be ignored when requesting tickets.

krb5_get_extra_addresses () get the list of addresses that should be added when requesting tickets.

krb5_get_ignore_addresses () get the list of addresses that should be ignored when requesting tick-
ets.

NetBSD 3.0 December 8, 2004 2

KRB5_CONTEXT (3) NetBSD Library Functions Manual KRB5_CONTEXT (3)

krb5_set_ignore_addresses () set the list of addresses that should be ignored when requesting tick-
ets.

krb5_set_extra_addresses () set the list of addresses that should be added when requesting tickets.

krb5_set_fcache_version () sets the version of file credentials caches that should be used.

krb5_get_fcache_version () gets the version of file credentials caches that should be used.

krb5_set_dns_canonize_hostname () sets if the context is configured to canonicalize hostnames
using DNS.

krb5_get_dns_canonize_hostname () returns if the context is configured to canonicalize hostnames
using DNS.

krb5_get_kdc_sec_offset () returns the offset between the localtime and the KDC’s time. sec and
usec are both optional argument andNULLcan be passed in.

krb5_set_config_files () set the list of configuration files to use and re-initialize the configuration
from the files.

krb5_prepend_config_files () parse thefilelist and prepend the result to the already existing
list pq The result is returned inret_pp and should be freed withkrb5_free_config_files ().

krb5_prepend_config_files_default () parse thefilelist and append that to the default list
of configuration files.

krb5_get_default_config_files () get a list of default configuration files.

krb5_free_config_files () free a list of configuration files returned by
krb5_get_default_config_files (), krb5_prepend_config_files_default (), or
krb5_prepend_config_files ().

krb5_set_use_admin_kdc () sets if all KDC requests should go admin KDC.

krb5_get_use_admin_kdc () gets if all KDC requests should go admin KDC.

krb5_get_max_time_skew () andkrb5_set_max_time_skew () get and sets the maximum allowed
time skew between client and server.

SEE ALSO
errno (2), krb5 (3), krb5_config (3), krb5_context (3), kerberos (8)

NetBSD 3.0 December 8, 2004 3

KRB5_IS_THREAD_SAFE (3) NetBSD Library Functions Manual KRB5_IS_THREAD_SAFE (3)

NAME
krb5_is_thread_safe — is the Kerberos library compiled with multithread support

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_boolean
krb5_is_thread_safe (void);

DESCRIPTION
krb5_is_thread_safe returnsTRUEif the library was compiled with with multithread support. If the
library isn’t compiled, the consumer have to use a global lock to make sure Kerboros functions are not called
at the same time by diffrent threads.

SEE ALSO
krb5_create_checksum (3), krb5_encrypt (3)

NetBSD 3.0 May 5, 2006 1

KRB5_KEYBLOCK (3) NetBSD Library Functions Manual KRB5_KEYBLOCK (3)

NAME
krb5_keyblock , krb5_keyblock_get_enctype , krb5_copy_keyblock ,
krb5_copy_keyblock_contents , krb5_free_keyblock ,
krb5_free_keyblock_contents , krb5_generate_random_keyblock ,
krb5_generate_subkey , krb5_generate_subkey_extended , krb5_keyblock_init ,
krb5_keyblock_zero , krb5_random_to_key — Kerberos 5 key handling functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_keyblock ;

krb5_enctype
krb5_keyblock_get_enctype (const krb5_keyblock ∗block);

krb5_error_code
krb5_copy_keyblock (krb5_context context , krb5_keyblock ∗∗to);

krb5_error_code
krb5_copy_keyblock_contents (krb5_context context ,

const krb5_keyblock ∗inblock , krb5_keyblock ∗to);

void
krb5_free_keyblock (krb5_context context , krb5_keyblock ∗keyblock);

void
krb5_free_keyblock_contents (krb5_context context , krb5_keyblock ∗keyblock);

krb5_error_code
krb5_generate_random_keyblock (krb5_context context , krb5_enctype type ,

krb5_keyblock ∗key);

krb5_error_code
krb5_generate_subkey (krb5_context context , const krb5_keyblock ∗key ,

krb5_keyblock ∗∗subkey);

krb5_error_code
krb5_generate_subkey_extended (krb5_context context ,

const krb5_keyblock ∗key , krb5_enctype enctype ,
krb5_keyblock ∗∗subkey);

krb5_error_code
krb5_keyblock_init (krb5_context context , krb5_enctype type ,

const void ∗data , size_t size , krb5_keyblock ∗key);

void
krb5_keyblock_zero (krb5_keyblock ∗keyblock);

krb5_error_code
krb5_random_to_key (krb5_context context , krb5_enctype type ,

const void ∗data , size_t size , krb5_keyblock ∗key);

NetBSD 3.0 May 1, 2006 1

KRB5_KEYBLOCK (3) NetBSD Library Functions Manual KRB5_KEYBLOCK (3)

DESCRIPTION
krb5_keyblock holds the encryption key for a specific encryption type.There is no component inside
krb5_keyblock that is directly referable.

krb5_keyblock_get_enctype () returns the encryption type of the keyblock.

krb5_copy_keyblock () makes a copy the keyblock inblock to the outputout . out should be freed
by the caller withkrb5_free_keyblock .

krb5_copy_keyblock_contents () copies the contents ofinblock to theto keyblock. Thedesti-
nation keyblock is overritten.

krb5_free_keyblock () zeros out and frees the content and the keyblock itself.

krb5_free_keyblock_contents () zeros out and frees the content of the keyblock.

krb5_generate_random_keyblock () creates a new content of the keyblock key of type encrytion
type type . The content ofkey is overwritten and not freed, so the caller should be sure it is freed before
calling the function.

krb5_generate_subkey () generates asubkey of the same type askey . The caller must free the sub-
key with krb5_free_keyblock .

krb5_generate_subkey_extended () generates asubkey of the specified encryption typetype . If
type is ETYPE_NULL, of the same type askey . The caller must free the subkey with
krb5_free_keyblock .

krb5_keyblock_init () Fill in key with key data of typeenctype from data of lengthsize . Key
should be freed usingkrb5_free_keyblock_contents ().

krb5_keyblock_zero () zeros out the keyblock to to make sure no keymaterial is in memory. Note that
krb5_free_keyblock_contents () also zeros out the memory.

krb5_random_to_key () converts the random bytestring to a protocol key according to Kerberos crypto
frame work. It the resulting key will be of typeenctype . It may be assumed that all the bits of the input
string are equally random, even though the entropy present in the random source may be limited

SEE ALSO
krb5_crypto_init (3), krb5 (3), krb5.conf (5)

NetBSD 3.0 May 1, 2006 2

KRB5_KEYTAB (3) NetBSD Library Functions Manual KRB5_KEYTAB (3)

NAME
krb5_kt_ops , krb5_keytab_entry , krb5_kt_cursor , krb5_kt_add_entry ,
krb5_kt_close , krb5_kt_compare , krb5_kt_copy_entry_contents , krb5_kt_default ,
krb5_kt_default_modify_name , krb5_kt_default_name , krb5_kt_end_seq_get ,
krb5_kt_free_entry , krb5_kt_get_entry , krb5_kt_get_name , krb5_kt_get_type ,
krb5_kt_next_entry , krb5_kt_read_service_key , krb5_kt_register ,
krb5_kt_remove_entry , krb5_kt_resolve , krb5_kt_start_seq_get — manage keytab
(key storage) files

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_kt_add_entry (krb5_context context , krb5_keytab id ,

krb5_keytab_entry ∗entry);

krb5_error_code
krb5_kt_close (krb5_context context , krb5_keytab id);

krb5_boolean
krb5_kt_compare (krb5_context context , krb5_keytab_entry ∗entry ,

krb5_const_principal principal , krb5_kvno vno , krb5_enctype enctype);

krb5_error_code
krb5_kt_copy_entry_contents (krb5_context context ,

const krb5_keytab_entry ∗in , krb5_keytab_entry ∗out);

krb5_error_code
krb5_kt_default (krb5_context context , krb5_keytab ∗id);

krb5_error_code
krb5_kt_default_modify_name (krb5_context context , char ∗name,

size_t namesize);

krb5_error_code
krb5_kt_default_name (krb5_context context , char ∗name, size_t namesize);

krb5_error_code
krb5_kt_end_seq_get (krb5_context context , krb5_keytab id ,

krb5_kt_cursor ∗cursor);

krb5_error_code
krb5_kt_free_entry (krb5_context context , krb5_keytab_entry ∗entry);

krb5_error_code
krb5_kt_get_entry (krb5_context context , krb5_keytab id ,

krb5_const_principal principal , krb5_kvno kvno , krb5_enctype enctype ,
krb5_keytab_entry ∗entry);

krb5_error_code
krb5_kt_get_name (krb5_context context , krb5_keytab keytab , char ∗name,

size_t namesize);

NetBSD 3.0 August 12, 2005 1

KRB5_KEYTAB (3) NetBSD Library Functions Manual KRB5_KEYTAB (3)

krb5_error_code
krb5_kt_get_type (krb5_context context , krb5_keytab keytab , char ∗prefix ,

size_t prefixsize);

krb5_error_code
krb5_kt_next_entry (krb5_context context , krb5_keytab id ,

krb5_keytab_entry ∗entry , krb5_kt_cursor ∗cursor);

krb5_error_code
krb5_kt_read_service_key (krb5_context context , krb5_pointer keyprocarg ,

krb5_principal principal , krb5_kvno vno , krb5_enctype enctype ,
krb5_keyblock ∗∗key);

krb5_error_code
krb5_kt_register (krb5_context context , const krb5_kt_ops ∗ops);

krb5_error_code
krb5_kt_remove_entry (krb5_context context , krb5_keytab id ,

krb5_keytab_entry ∗entry);

krb5_error_code
krb5_kt_resolve (krb5_context context , const char ∗name, krb5_keytab ∗id);

krb5_error_code
krb5_kt_start_seq_get (krb5_context context , krb5_keytab id ,

krb5_kt_cursor ∗cursor);

DESCRIPTION
A keytab name is on the formtype:residual . Theresidual part is specific to each keytab-type.

When a keytab-name is resolved, the type is matched with an internal list of keytab types. If there is no
matching keytab type, the default keytab is used. The current default type isfile . The default value can be
changed in the configuration file /etc/krb5.conf by setting the variable
[defaults]default_keytab_name .

The keytab types that are implemented in Heimdal are:

file store the keytab in a file, the type’s name isFILE . The residual part is a filename.For compatibil-
ity with other Kerberos implemtationWRFILEand is also accepted.WRFILEhas the same format
asFILE . JAVA14 have a format that is compatible with older versions of MIT kerberos and SUN’s
Java based installation.They store a truncted kvno, so when the knvo excess 255, they are truncted
in this format.

keyfile
store the keytab in a AFS keyfile (usually /usr/afs/etc/KeyFile), the type’s name is
AFSKEYFILE. The residual part is a filename.

krb4 the keytab is a Kerberos 4srvtab that is on-the-fly converted to a keytab. The type’s name is
krb4 . The residual part is a filename.

memory
The keytab is stored in a memory segment. This allows sensitive and/or temporary data not to be
stored on disk. The type’s name isMEMORY. EachMEMORYkeytab is referenced counted by and
opened by the residual name, so two handles can point to the same memory area. When the last user
closes the entry, it disappears.

krb5_keytab_entry holds all data for an entry in a keytab file, like principal name, key-type, key, key-
version number, etc. krb5_kt_cursor holds the current position that is used when iterating through a

NetBSD 3.0 August 12, 2005 2

KRB5_KEYTAB (3) NetBSD Library Functions Manual KRB5_KEYTAB (3)

keytab entry with krb5_kt_start_seq_get (), krb5_kt_next_entry (), and
krb5_kt_end_seq_get ().

krb5_kt_ops contains the different operations that can be done to a keytab. This structure is normally
only used when doing a new keytab-type implementation.

krb5_kt_resolve () is the equivalent of anopen (2) on keytab. Resolve the keytab name inname into a
keytab inid . Returns 0 or an error. The opposite ofkrb5_kt_resolve () is krb5_kt_close ().

krb5_kt_close () frees all resources allocated to the keytab, even on failure. Returns0 or an error.

krb5_kt_default () sets the argumentid to the default keytab. Returns 0 or an error.

krb5_kt_default_modify_name () copies the name of the default modify keytab intoname. Return
0 or KRB5_CONFIG_NOTENUFSPACE if namesize is too short.

krb5_kt_default_name () copies the name of the default keytab intoname. Return 0 or KRB5_CON-
FIG_NOTENUFSPACE if namesize is too short.

krb5_kt_add_entry () adds a new entry to the keytab id . KRB5_KT_NOWRITEis returned if the
keytab is a readonly keytab.

krb5_kt_compare () compares the passed inentry againstprincipal , vno , and enctype . Any of
principal , vno or enctype might be 0 which acts as a wildcard. Return TRUE if they compare the
same, FALSE otherwise.

krb5_kt_copy_entry_contents () copies the contents ofin into out . Returns 0 or an error.

krb5_kt_get_name () retrieves the name of the keytabkeytab into name, namesize . Returns 0 or an
error.

krb5_kt_get_type () retrieves the type of the keytabkeytab and store the prefix/name for type of the
keytab into prefix , prefixsize . The prefix will have the maximum length of
KRB5_KT_PREFIX_MAX_LEN(including terminatingNUL). Returns0 or an error.

krb5_kt_free_entry () frees the contents ofentry .

krb5_kt_start_seq_get () setscursor to point at the beginning ofid . Returns 0 or an error.

krb5_kt_next_entry () gets the next entry fromid pointed to bycursor and advance thecursor .
On success the returne entry must be freed withkrb5_kt_free_entry (). Returns0 or an error.

krb5_kt_end_seq_get () releases all resources associated withcursor .

krb5_kt_get_entry () retrieves the keytab entry forprincipal , kvno , enctype into entry from
the keytab id . When comparing an entry in the keytab to determine a match, the function
krb5_kt_compare () is used, so the wildcard rules applies to the argument of too. On success the returne
entry must be freed withkrb5_kt_free_entry (). Returns0 or an error.

krb5_kt_read_service_key () reads the key identified by (principal , vno , enctype) from the
keytab inkeyprocarg (the system default keytab if NULL is used) into∗key . keyprocarg is the same
argument as toname argument tokrb5_kt_resolve (). Internalkrb5_kt_compare () will be used, so
the same wildcard rules applies tokrb5_kt_read_service_key (). On success the returned key must
be freed withkrb5_free_keyblock . Returns 0 or an error.

krb5_kt_remove_entry () removes the entryentry from the keytab id . When comparing an entry in
the keytab to determine a match, the functionkrb5_kt_compare () is use, so the wildcard rules applies to
the argument ofkrb5_kt_remove_entry (). Returns0, KRB5_KT_NOTFOUNDif not entry matched or
another error.

NetBSD 3.0 August 12, 2005 3

KRB5_KEYTAB (3) NetBSD Library Functions Manual KRB5_KEYTAB (3)

krb5_kt_register () registers a new keytab typeops . Returns 0 or an error.

EXAMPLES
This is a minimalistic version ofktutil .

int
main (int argc, char ∗∗argv)
{

krb5_context context;
krb5_keytab keytab;
krb5_kt_cursor cursor;
krb5_keytab_entry entry;
krb5_error_code ret;
char ∗principal;

if (krb5_init_context (&context) != 0)
errx(1, "krb5_context");

ret = krb5_kt_default (context, &keytab);
if (ret)

krb5_err(context, 1, ret, "krb5_kt_default");

ret = krb5_kt_start_seq_get(context, keytab, &cursor);
if (ret)

krb5_err(context, 1, ret, "krb5_kt_start_seq_get");
while((ret = krb5_kt_next_entry(context, keytab, &entry, &cursor)) == 0){

krb5_unparse_name_short(context, entry.principal, &principal);
printf("principal: %s\n", principal);
free(principal);
krb5_kt_free_entry(context, &entry);

}
ret = krb5_kt_end_seq_get(context, keytab, &cursor);
if (ret)

krb5_err(context, 1, ret, "krb5_kt_end_seq_get");
ret = krb5_kt_close(context, keytab);
if (ret)

krb5_err(context, 1, ret, "krb5_kt_close");
krb5_free_context(context);
return 0;

}

COMPATIBILITY
Heimdal stored the ticket flags in machine bit-field order before Heimdal 0.7.The behavior is possible to
change in with the option[libdefaults]fcc-mit-ticketflags . Heimdal 0.7 also code to detech
that ticket flags was in the wrong order and correct them. This matters when doing delegation in GSS-API
because the client code looks at the flag to determin if it is possible to do delegation if the user requested it.

SEE ALSO
krb5.conf (5), kerberos (8)

NetBSD 3.0 August 12, 2005 4

KRB5_KRBHST_INIT (3) NetBSD Library Functions Manual KRB5_KRBHST_INIT (3)

NAME
krb5_krbhst_init , krb5_krbhst_init_flags , krb5_krbhst_next ,
krb5_krbhst_next_as_string , krb5_krbhst_reset , krb5_krbhst_free ,
krb5_krbhst_format_string , krb5_krbhst_get_addrinfo — lookup Kerberos KDC hosts

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_krbhst_init (krb5_context context , const char ∗realm ,

unsigned int type , krb5_krbhst_handle ∗handle);

krb5_error_code
krb5_krbhst_init_flags (krb5_context context , const char ∗realm ,

unsigned int type , int flags , krb5_krbhst_handle ∗handle);

krb5_error_code
krb5_krbhst_next (krb5_context context , krb5_krbhst_handle handle ,

krb5_krbhst_info ∗∗host);

krb5_error_code
krb5_krbhst_next_as_string (krb5_context context ,

krb5_krbhst_handle handle , char ∗hostname , size_t hostlen);

void
krb5_krbhst_reset (krb5_context context , krb5_krbhst_handle handle);

void
krb5_krbhst_free (krb5_context context , krb5_krbhst_handle handle);

krb5_error_code
krb5_krbhst_format_string (krb5_context context ,

const krb5_krbhst_info ∗host , char ∗hostname , size_t hostlen);

krb5_error_code
krb5_krbhst_get_addrinfo (krb5_context context , krb5_krbhst_info ∗host ,

struct addrinfo ∗∗ai);

DESCRIPTION
These functions are used to sequence through all Kerberos hosts of a particular realm and service. The ser-
vice type can be the KDCs, the administrative servers, the password changing servers, or the servers for Ker-
beros 4 ticket conversion.

First a handle to a particular service is obtained by callingkrb5_krbhst_init () (or
krb5_krbhst_init_flags ()) with therealm of interest and the type of service to lookup. Thetype
can be one of:

KRB5_KRBHST_KDC
KRB5_KRBHST_ADMIN
KRB5_KRBHST_CHANGEPW
KRB5_KRBHST_KRB524

Thehandle is returned to the caller, and should be passed to the other functions.

NetBSD 3.0 May 10, 2005 1

KRB5_KRBHST_INIT (3) NetBSD Library Functions Manual KRB5_KRBHST_INIT (3)

The flag argument to krb5_krbhst_init_flags is the same flags as
krb5_send_to_kdc_flags () uses. Possible values are:

KRB5_KRBHST_FLAGS_MASTER only talk to master (readwrite) KDC
KRB5_KRBHST_FLAGS_LARGE_MSG

this is a large message, so use transport that can handle that.

For each call tokrb5_krbhst_next () information on a new host is returned. The former function returns
in host a pointer to a structure containing information about the host, such as protocol, hostname, and port:

typedef struct krb5_krbhst_info {
enum { KRB5_KRBHST_UDP,

KRB5_KRBHST_TCP,
KRB5_KRBHST_HTTP } proto;

unsigned short port;
struct addrinfo ∗ai;
struct krb5_krbhst_info ∗next;
char hostname[1];

} k rb5_krbhst_info;

The related function,krb5_krbhst_next_as_string (), return the same information as a URL-like
string.

When there are no more hosts, these functions returnKRB5_KDC_UNREACH.

To re-iterate over all hosts, callkrb5_krbhst_reset () and the next call tokrb5_krbhst_next () will
return the first host.

When done with the handle,krb5_krbhst_free () should be called.

To use akrb5_krbhst_info, there are two functions:krb5_krbhst_format_string () that will return a
printable representation of that struct andkrb5_krbhst_get_addrinfo () that will return astruct
addrinfothat can then be used for communicating with the server mentioned.

EXAMPLES
The following code will print the KDCs of the realm “MY.REALM”:

krb5_krbhst_handle handle;
char host[MAXHOSTNAMELEN];
krb5_krbhst_init(context, "MY.REALM", KRB5_KRBHST_KDC, &handle);
while(krb5_krbhst_next_as_string(context, handle,

host, sizeof(host)) == 0)
printf("%s\n", host);

krb5_krbhst_free(context, handle);

SEE ALSO
getaddrinfo (3), krb5_get_krbhst (3), krb5_send_to_kdc_flags (3)

HISTORY
These functions first appeared in Heimdal 0.3g.

NetBSD 3.0 May 10, 2005 2

KRB5_KUSEROK (3) NetBSD Library Functions Manual KRB5_KUSEROK (3)

NAME
krb5_kuserok — checks if a principal is permitted to login as a user

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_boolean
krb5_kuserok (krb5_context context , krb5_principal principal ,

const char ∗user);

DESCRIPTION
This function takes the name of a localuser and checks ifprincipal is allowed to log in as that user.

Theuser may have a˜/.k5login file listing principals that are allowed to login as that user. If that file
does not exist, all principals with a first component identical to the username, and a realm considered local,
are allowed access.

The .k5login file must contain one principal per line, be owned byuser , and not be writable by group or
other (but must be readable by anyone).

Note that if the file exists, no implicit access rights are given to user @〈localrealm〉.

Optionally, a set of files may be put iñ/.k5login.d (a directory), in which case they will all be
checked in the same manner as.k5login . The files may be called anything, but files starting with a hash
(“#”), or ending with a tilde (“˜”) are ignored. Subdirectories are not traversed. Note that this directory may
not be checked by other implementations.

RETURN VALUES
krb5_kuserok returnsTRUEif access should be granted,FALSEotherwise.

HISTORY
The˜/.k5login.d feature appeared in Heimdal 0.7.

SEE ALSO
krb5_get_default_realms (3), krb5_verify_user (3), krb5_verify_user_lrealm (3),
krb5_verify_user_opt (3), krb5.conf (5)

NetBSD 3.0 May 4, 2005 1

KRB5_MK_REQ (3) NetBSD Library Functions Manual KRB5_MK_REQ (3)

NAME
krb5_mk_req , krb5_mk_req_exact , krb5_mk_req_extended , krb5_rd_req ,
krb5_rd_req_with_keyblock , krb5_mk_rep , krb5_mk_rep_exact ,
krb5_mk_rep_extended , krb5_rd_rep , krb5_build_ap_req , krb5_verify_ap_req —
create and read application authentication request

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_mk_req (krb5_context context , krb5_auth_context ∗auth_context ,

const krb5_flags ap_req_options , const char ∗service ,
const char ∗hostname , krb5_data ∗in_data , krb5_ccache ccache ,
krb5_data ∗outbuf);

krb5_error_code
krb5_mk_req_extended (krb5_context context ,

krb5_auth_context ∗auth_context , const krb5_flags ap_req_options ,
krb5_data ∗in_data , krb5_creds ∗in_creds , krb5_data ∗outbuf);

krb5_error_code
krb5_rd_req (krb5_context context , krb5_auth_context ∗auth_context ,

const krb5_data ∗inbuf , krb5_const_principal server ,
krb5_keytab keytab , krb5_flags ∗ap_req_options , krb5_ticket ∗∗ticket);

krb5_error_code
krb5_build_ap_req (krb5_context context , krb5_enctype enctype ,

krb5_creds ∗cred , krb5_flags ap_options , krb5_data authenticator ,
krb5_data ∗retdata);

krb5_error_code
krb5_verify_ap_req (krb5_context context , krb5_auth_context ∗auth_context ,

krb5_ap_req ∗ap_req , krb5_const_principal server ,
krb5_keyblock ∗keyblock , krb5_flags flags , krb5_flags ∗ap_req_options ,
krb5_ticket ∗∗ticket);

DESCRIPTION
The functions documented in this manual page document the functions that facilitates the exchange between
a Kerberos client and server. They are the core functions used in the authentication exchange between the
client and the server.

Thekrb5_mk_req andkrb5_mk_req_extended creates the Kerberos messageKRB_AP_REQthat is
sent from the client to the server as the first packet in a client/server exchange. Theresult that should be sent
to server is stored inoutbuf .

auth_context should be allocated withkrb5_auth_con_init () or NULL passed in, in that case, it
will be allocated and freed internally.

The input datain_data will have a checksum calculated over it and checksum will be transported in the
message to the server.

ap_req_options can be set to one or more of the following flags:

NetBSD 3.0 August 27, 2005 1

KRB5_MK_REQ (3) NetBSD Library Functions Manual KRB5_MK_REQ (3)

AP_OPTS_USE_SESSION_KEY
Use the session key when creating the request, used for user to user authentication.

AP_OPTS_MUTUAL_REQUIRED
Mark the request as mutual authenticate required so that the receiver returns a mutual authentica-
tion packet.

The krb5_rd_req read the AP_REQ ininbuf and verify and extract the content.If server is speci-
fied, that server will be fetched from thekeytab and used unconditionally. If server is NULL, the
keytab will be search for a matching principal.

The keytab argument specifies what keytab to search for receiving principals. The arguments
ap_req_options andticket returns the content.

When the AS-REQ is a user to user request, neither ofkeytab or principal are used, instead
krb5_rd_req () expects the session key to be set inauth_context .

The krb5_verify_ap_req andkrb5_build_ap_req both constructs and verify the AP_REQ mes-
sage, should not be used by external code.

SEE ALSO
krb5 (3), krb5.conf (5)

NetBSD 3.0 August 27, 2005 2

KRB5_MK_SAFE (3) NetBSD Library Functions Manual KRB5_MK_SAFE (3)

NAME
krb5_mk_safe , krb5_mk_priv — generates integrity protected and/or encrypted messages

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_mk_priv (krb5_context context , krb5_auth_context auth_context ,

const krb5_data ∗userdata , krb5_data ∗outbuf ,
krb5_replay_data ∗outdata);

krb5_error_code
krb5_mk_safe (krb5_context context , krb5_auth_context auth_context ,

const krb5_data ∗userdata , krb5_data ∗outbuf ,
krb5_replay_data ∗outdata);

DESCRIPTION
krb5_mk_safe () andkrb5_mk_priv () formatsKRB-SAFE (integrity protected) andKRB-PRIV (also
encrypted) messages intooutbuf . The actual message data is taken fromuserdata . If the
KRB5_AUTH_CONTEXT_DO_SEQUENCEor KRB5_AUTH_CONTEXT_DO_TIMEflags are set in the
auth_context , sequence numbers and time stamps are generated.If the
KRB5_AUTH_CONTEXT_RET_SEQUENCEor KRB5_AUTH_CONTEXT_RET_TIMEflags are set they are
also returned in theoutdata parameter.

SEE ALSO
krb5_auth_con_init (3), krb5_rd_priv (3), krb5_rd_safe (3)

NetBSD 3.0 May 1, 2006 1

KRB5_OPENLOG (3) NetBSD Library Functions Manual KRB5_OPENLOG (3)

NAME
krb5_initlog , krb5_openlog , krb5_closelog , krb5_addlog_dest , krb5_addlog_func ,
krb5_log , krb5_vlog , krb5_log_msg , krb5_vlog_msg — Heimdal logging functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

typedef void
(∗krb5_log_log_func_t)(const char ∗time , const char ∗message , void ∗data);

typedef void
(∗krb5_log_close_func_t)(void ∗data);

krb5_error_code
krb5_addlog_dest (krb5_context context , krb5_log_facility ∗facility ,

const char ∗destination);

krb5_error_code
krb5_addlog_func (krb5_context context , krb5_log_facility ∗facility ,

int min , int max , krb5_log_log_func_t log ,
krb5_log_close_func_t close , void ∗data);

krb5_error_code
krb5_closelog (krb5_context context , krb5_log_facility ∗facility);

krb5_error_code
krb5_initlog (krb5_context context , const char ∗program ,

krb5_log_facility ∗∗facility);

krb5_error_code
krb5_log (krb5_context context , krb5_log_facility ∗facility , int level ,

const char ∗format , . . .);

krb5_error_code
krb5_log_msg (krb5_context context , krb5_log_facility ∗facility ,

char ∗∗reply , int level , const char ∗format , . . .);

krb5_error_code
krb5_openlog (krb5_context context , const char ∗program ,

krb5_log_facility ∗∗facility);

krb5_error_code
krb5_vlog (krb5_context context , krb5_log_facility ∗facility , int level ,

const char ∗format , va_list arglist);

krb5_error_code
krb5_vlog_msg (krb5_context context , krb5_log_facility ∗facility ,

char ∗∗reply , int level , const char ∗format , va_list arglist);

DESCRIPTION
These functions logs messages to one or more destinations.

Thekrb5_openlog () function creates a loggingfacility , that is used to log messages. A facility con-
sists of one or more destinations (which can be files or syslog or some other device). Theprogram parame-
ter should be the generic name of the program that is doing the logging. This name is used to lookup which

NetBSD 3.0 August 6, 1997 1

KRB5_OPENLOG (3) NetBSD Library Functions Manual KRB5_OPENLOG (3)

destinations to use. This information is contained in thelogging section of thekrb5.conf configuration
file. If no entry is found forprogram , the entry fordefault is used, or if that is missing too,SYSLOG
will be used as destination.

To close a logging facility, use thekrb5_closelog () function.

To log a message to a facility use one of the functionskrb5_log (), krb5_log_msg (), krb5_vlog (), or
krb5_vlog_msg (). Thefunctions ending in_msg return inreply a pointer to the message that just got
logged. This string is allocated, and should be freed withfree (). The format is a standardprintf ()
style format string (but see the BUGS section).

If you want better control of where things gets logged, you can instead of usingkrb5_openlog () call
krb5_initlog (), which just initializes a facility, but doesn’t define any actual logging destinations. You
can then add destinations with thekrb5_addlog_dest () andkrb5_addlog_func () functions. The
first of these takes a string specifying a logging destination, and adds this to the facility. If you want to do
some non-standard logging you can use thekrb5_addlog_func () function, which takes a function to use
when logging.The log function is called for each message withtime being a string specifying the current
time, andmessage the message to log.close is called when the facility is closed. You can pass applica-
tion specific data in thedata parameter. The min and max parameter are the same as in a destination
(defined below). To specify a max of infinity, pass -1.

krb5_openlog () calls krb5_initlog () and then callskrb5_addlog_dest () for each destination
found.

Destinations
The defined destinations (as specified inkrb5.conf) follows:

STDERR
This logs to the program’s stderr.

FILE:/file

FILE=/file
Log to the specified file. The form using a colon appends to the file, the form with an equal
truncates the file. The truncating form keeps the file open, while the appending form closes it
after each log message (which makes it possible to rotate logs). The truncating form is mainly
for compatibility with the MIT libkrb5.

DEVICE=/device
This logs to the specified device, at present this is the same asFILE:/device .

CONSOLE
Log to the console, this is the same asDEVICE=/dev/console .

SYSLOG[:priority [:facility]]
Send messages to the syslog system, using priority, and facility. To get the name for one of
these, you take the name of the macro passed tosyslog (3), and remove the leadingLOG_
(LOG_NOTICEbecomesNOTICE). Thedefault values (as well as the values used for unrecog-
nised values), areERR, and AUTH, respectively. See syslog (3) for a list of priorities and
facilities.

Each destination may optionally be prepended with a range of logging levels, specified asmin-max/ . If the
level parameter tokrb5_log () is within this range (inclusive) the message gets logged to this destina-
tion, otherwise not. Either of the min and max valued may be omitted, in this case min is assumed to be zero,
and max is assumed to be infinity. If you don’t include a dash, both min and max gets set to the specified
value. If no range is specified, all messages gets logged.

NetBSD 3.0 August 6, 1997 2

KRB5_OPENLOG (3) NetBSD Library Functions Manual KRB5_OPENLOG (3)

EXAMPLES
[logging]

kdc = 0/FILE:/var/log/kdc.log
kdc = 1-/SYSLOG:INFO:USER
default = STDERR

This will log all messages from thekdc program with level 0 to /var/log/kdc.log , other messages
will be logged to syslog with priorityLOG_INFO, and facility LOG_USER. All other programs will log all
messages to their stderr.

SEE ALSO
syslog (3), krb5.conf (5)

BUGS
These functions useasprintf () to format the message. If your operating system does not have a working
asprintf (), a replacement will be used. At present this replacement does not handle some correct conver-
sion specifications (like floating point numbers). Until this is fixed, the use of these conversions should be
avoided.

If logging is done to the syslog facility, these functions might not be thread-safe, depending on the imple-
mentation ofopenlog (), andsyslog ().

NetBSD 3.0 August 6, 1997 3

KRB5_PARSE_NAME (3) NetBSD Library Functions Manual KRB5_PARSE_NAME (3)

NAME
krb5_parse_name — string to principal conversion

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_parse_name (krb5_context context , const char ∗name,

krb5_principal ∗principal);

DESCRIPTION
krb5_parse_name () converts a string representation of a principal name tokrb5_principal . The
principal will point to allocated data that should be freed withkrb5_free_principal ().

The string should consist of one or more name components separated with slashes(“ /”) , optionally fol-
lowed with an “@” and a realm name. A slash or @ may be contained in a name component by quoting it
with a backslash(“ \”) . A realm should not contain slashes or colons.

SEE ALSO
krb5_425_conv_principal (3), krb5_build_principal (3), krb5_free_principal (3),
krb5_sname_to_principal (3), krb5_unparse_name (3)

NetBSD 3.0 May 1, 2006 1

KRB5_PRINCIPAL (3) NetBSD Library Functions Manual KRB5_PRINCIPAL (3)

NAME
krb5_get_default_principal , krb5_principal , krb5_build_principal ,
krb5_build_principal_ext , krb5_build_principal_va ,
krb5_build_principal_va_ext , krb5_copy_principal , krb5_free_principal ,
krb5_make_principal , krb5_parse_name , krb5_parse_name_flags ,
krb5_parse_nametype , krb5_princ_realm , krb5_princ_set_realm ,
krb5_principal_compare , krb5_principal_compare_any_realm ,
krb5_principal_get_comp_string , krb5_principal_get_realm ,
krb5_principal_get_type , krb5_principal_match , krb5_principal_set_type ,
krb5_realm_compare , krb5_sname_to_principal , krb5_sock_to_principal ,
krb5_unparse_name , krb5_unparse_name_flags , krb5_unparse_name_fixed ,
krb5_unparse_name_fixed_flags , krb5_unparse_name_fixed_short ,
krb5_unparse_name_short — Kerberos 5 principal handling functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_principal ;

void
krb5_free_principal (krb5_context context , krb5_principal principal);

krb5_error_code
krb5_parse_name (krb5_context context , const char ∗name,

krb5_principal ∗principal);

krb5_error_code
krb5_parse_name_flags (krb5_context context , const char ∗name, int flags ,

krb5_principal ∗principal);

krb5_error_code
krb5_unparse_name (krb5_context context , krb5_const_principal principal ,

char ∗∗name);

krb5_error_code
krb5_unparse_name_flags (krb5_context context ,

krb5_const_principal principal , int flags , char ∗∗name);

krb5_error_code
krb5_unparse_name_fixed (krb5_context context ,

krb5_const_principal principal , char ∗name, size_t len);

krb5_error_code
krb5_unparse_name_fixed_flags (krb5_context context ,

krb5_const_principal principal , int flags , char ∗name, size_t len);

krb5_error_code
krb5_unparse_name_short (krb5_context context ,

krb5_const_principal principal , char ∗∗name);

krb5_error_code
krb5_unparse_name_fixed_short (krb5_context context ,

krb5_const_principal principal , char ∗name, size_t len);

NetBSD 3.0 May 1, 2006 1

KRB5_PRINCIPAL (3) NetBSD Library Functions Manual KRB5_PRINCIPAL (3)

krb5_realm ∗
krb5_princ_realm (krb5_context context , krb5_principal principal);

void
krb5_princ_set_realm (krb5_context context , krb5_principal principal ,

krb5_realm ∗realm);

krb5_error_code
krb5_build_principal (krb5_context context , krb5_principal ∗principal ,

int rlen , krb5_const_realm realm , . . .);

krb5_error_code
krb5_build_principal_va (krb5_context context , krb5_principal ∗principal ,

int rlen , krb5_const_realm realm , va_list ap);

krb5_error_code
krb5_build_principal_ext (krb5_context context , krb5_principal ∗principal ,

int rlen , krb5_const_realm realm , . . .);

krb5_error_code
krb5_build_principal_va_ext (krb5_context context ,

krb5_principal ∗principal , int rlen , krb5_const_realm realm ,
va_list ap);

krb5_error_code
krb5_make_principal (krb5_context context , krb5_principal ∗principal ,

krb5_const_realm realm , . . .);

krb5_error_code
krb5_copy_principal (krb5_context context , krb5_const_principal inprinc ,

krb5_principal ∗outprinc);

krb5_boolean
krb5_principal_compare (krb5_context context , krb5_const_principal princ1 ,

krb5_const_principal princ2);

krb5_boolean
krb5_principal_compare_any_realm (krb5_context context ,

krb5_const_principal princ1 , krb5_const_principal princ2);

const char ∗
krb5_principal_get_comp_string (krb5_context context ,

krb5_const_principal principal , unsigned int component);

const char ∗
krb5_principal_get_realm (krb5_context context ,

krb5_const_principal principal);

int
krb5_principal_get_type (krb5_context context ,

krb5_const_principal principal);

krb5_boolean
krb5_principal_match (krb5_context context , krb5_const_principal principal ,

krb5_const_principal pattern);

void
krb5_principal_set_type (krb5_context context , krb5_principal principal ,

int type);

NetBSD 3.0 May 1, 2006 2

KRB5_PRINCIPAL (3) NetBSD Library Functions Manual KRB5_PRINCIPAL (3)

krb5_boolean
krb5_realm_compare (krb5_context context , krb5_const_principal princ1 ,

krb5_const_principal princ2);

krb5_error_code
krb5_sname_to_principal (krb5_context context , const char ∗hostname ,

const char ∗sname , int32_t type , krb5_principal ∗ret_princ);

krb5_error_code
krb5_sock_to_principal (krb5_context context , int socket , const char ∗sname ,

int32_t type , krb5_principal ∗principal);

krb5_error_code
krb5_get_default_principal (krb5_context context , krb5_principal ∗princ);

krb5_error_code
krb5_parse_nametype (krb5_context context , const char ∗str , int32_t ∗type);

DESCRIPTION
krb5_principal holds the name of a user or service in Kerberos.

A principal has two parts, aPrincipalName and arealm . The PrincipalName consists of one or more
components. In printed form, the components are separated by /. The PrincipalName also has a name-type.

Examples of a principal arenisse/root@EXAMPLE.COM and host/datan.kth.se@KTH.SE .
krb5_parse_name () andkrb5_parse_name_flags () passes a principal name inname to the ker-
beros principal structure.krb5_parse_name_flags () takes an extra flags argument the following
flags can be passed in

KRB5_PRINCIPAL_PARSE_NO_REALM
requries the input string to be without a realm, and no realm is stored in theprincipal return
argument.

KRB5_PRINCIPAL_PARSE_MUST_REALM
requries the input string to with a realm.

krb5_unparse_name () andkrb5_unparse_name_flags () prints the principalprinc to the string
name. name should be freed withfree (3). To theflags argument the following flags can be passed in

KRB5_PRINCIPAL_UNPARSE_SHORT
no realm if the realm is one of the local realms.

KRB5_PRINCIPAL_UNPARSE_NO_REALM
never include any realm in the principal name.

KRB5_PRINCIPAL_UNPARSE_DISPLAY
don’t quote

On failure name is set to NULL. krb5_unparse_name_fixed () and
krb5_unparse_name_fixed_flags () behaves just like krb5_unparse (), but instead unparses the
principal into a fixed size buffer.

krb5_unparse_name_short () just returns the principal without the realm if the principal is in the
default realm. If the principal isn’t, the full name is returned.krb5_unparse_name_fixed_short ()
works just likekrb5_unparse_name_short () but on a fixed size buffer.

krb5_build_principal () builds a principal from the realmrealm that has the lengthrlen . The fol-
lowing arguments form the components of the principal. The list of components is terminated withNULL.

NetBSD 3.0 May 1, 2006 3

KRB5_PRINCIPAL (3) NetBSD Library Functions Manual KRB5_PRINCIPAL (3)

krb5_build_principal_va () works likekrb5_build_principal () using vargs.

krb5_build_principal_ext () and krb5_build_principal_va_ext () take a list of length-
value pairs, the list is terminated with a zero length.

krb5_make_principal () works the same way askrb5_build_principal (), except it figures out
the length of the realm itself.

krb5_copy_principal () makes a copy of a principal. The copy needs to be freed with
krb5_free_principal ().

krb5_principal_compare () compares the two principals, including realm of the principals and returns
TRUEif they are the same andFALSE if not.

krb5_principal_compare_any_realm () works the same way askrb5_principal_compare ()
but doesn’t compare the realm component of the principal.

krb5_realm_compare () compares the realms of the two principals and returnsTRUE is they are the
same, andFALSE if not.

krb5_principal_match () matches aprincipal against apattern . The pattern is a globbing
expression, where each component (separated by /) is matched against the corresponding component of the
principal.

The krb5_principal_get_realm () and krb5_principal_get_comp_string () functions
return parts of theprincipal , either the realm or a specific component. Both functions return string
pointers to data inside the principal, so they are valid only as long as the principal exists.

Thecomponent argument tokrb5_principal_get_comp_string () is the index of the component
to return, from zero to the total number of components minus one. If the index is out of rangeNULL is
returned.

krb5_principal_get_realm () and krb5_principal_get_comp_string () are replacements
for krb5_princ_realm (), krb5_princ_component () and related macros, described as internal in
the MIT API specification.Unlike the macros, these functions return strings, notkrb5_data . A reason to
returnkrb5_data was that it was believed that principal components could contain binary data, but this
belief was unfounded, and it has been decided that principal components are infact UTF8, so it’s safe to use
zero terminated strings.

It’s generally not necessary to look at the components of a principal.

krb5_principal_get_type () andkrb5_principal_set_type () get and sets the name type for a
principal. Nametype handling is tricky and not often needed, don’t use this unless you know what you do.

krb5_princ_realm () returns the realm component of the principal.The caller must not free realm
unless krb5_princ_set_realm () is called to set a new realm after freeing the realm.
krb5_princ_set_realm () sets the realm component of a principal. The old realm is not freed.

krb5_sname_to_principal () andkrb5_sock_to_principal () are for easy creation of “service”
principals that can, for instance, be used to lookup a key in a keytab. For both functions thesname parame-
ter will be used for the first component of the created principal.If sname is NULL, “host” will be used
instead.

krb5_sname_to_principal () will use the passedhostname for the second component.If type is
KRB5_NT_SRV_HSTthis name will be looked up withgethostbyname (). If hostname is NULL, the
local hostname will be used.

krb5_sock_to_principal () will use the “sockname” of the passedsocket , which should be a bound
AF_INET or AF_INET6 socket. Theremust be a mapping between the address and “sockname”.The
function may try to resolve the name in DNS.

NetBSD 3.0 May 1, 2006 4

KRB5_PRINCIPAL (3) NetBSD Library Functions Manual KRB5_PRINCIPAL (3)

krb5_get_default_principal () tries to find out what’s a reasonable default principal by looking at
the environment it is running in.

krb5_parse_nametype () parses and returns the name type integer value intype . On failure the func-
tion returns an error code and set the error string.

SEE ALSO
krb5_425_conv_principal (3), krb5_config (3), krb5.conf (5)

BUGS
You can not have a NUL in a component in some of the variable argument functions above. Until someone
can give a good example of where it would be a good idea to have NUL’s in a component, this will not be
fixed.

NetBSD 3.0 May 1, 2006 5

KRB5_RCACHE (3) NetBSD Library Functions Manual KRB5_RCACHE (3)

NAME
krb5_rcache , krb5_rc_close , krb5_rc_default , krb5_rc_default_name ,
krb5_rc_default_type , krb5_rc_destroy , krb5_rc_expunge , krb5_rc_get_lifespan ,
krb5_rc_get_name , krb5_rc_get_type , krb5_rc_initialize , krb5_rc_recover ,
krb5_rc_resolve , krb5_rc_resolve_full , krb5_rc_resolve_type , krb5_rc_store ,
krb5_get_server_rcache — Kerberos 5 replay cache

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

struct krb5_rcache;

krb5_error_code
krb5_rc_close (krb5_context context , krb5_rcache id);

krb5_error_code
krb5_rc_default (krb5_context context , krb5_rcache ∗id);

const char ∗
krb5_rc_default_name (krb5_context context);

const char ∗
krb5_rc_default_type (krb5_context context);

krb5_error_code
krb5_rc_destroy (krb5_context context , krb5_rcache id);

krb5_error_code
krb5_rc_expunge (krb5_context context , krb5_rcache id);

krb5_error_code
krb5_rc_get_lifespan (krb5_context context , krb5_rcache id ,

krb5_deltat ∗auth_lifespan);

const char ∗
krb5_rc_get_name (krb5_context context , krb5_rcache id);

const char ∗
krb5_rc_get_type (krb5_context context , krb5_rcache id);

krb5_error_code
krb5_rc_initialize (krb5_context context , krb5_rcache id ,

krb5_deltat auth_lifespan);

krb5_error_code
krb5_rc_recover (krb5_context context , krb5_rcache id);

krb5_error_code
krb5_rc_resolve (krb5_context context , krb5_rcache id , const char ∗name);

krb5_error_code
krb5_rc_resolve_full (krb5_context context , krb5_rcache ∗id ,

const char ∗string_name);

krb5_error_code
krb5_rc_resolve_type (krb5_context context , krb5_rcache ∗id ,

NetBSD 3.0 May 1, 2006 1

KRB5_RCACHE (3) NetBSD Library Functions Manual KRB5_RCACHE (3)

const char ∗type);

krb5_error_code
krb5_rc_store (krb5_context context , krb5_rcache id , krb5_donot_replay ∗rep);

krb5_error_code
krb5_get_server_rcache (krb5_context context , const krb5_data ∗piece ,

krb5_rcache ∗id);

DESCRIPTION
Thekrb5_rcache structure holds a storage element that is used for data manipulation. The structure con-
tains no public accessible elements.

krb5_rc_initialize () Creates the reply cacheid and sets it lifespan toauth_lifespan . If the
cache already exists, the content is destroyed.

SEE ALSO
krb5 (3), krb5_data (3), kerberos (8)

NetBSD 3.0 May 1, 2006 2

KRB5_RD_ERROR (3) NetBSD Library Functions Manual KRB5_RD_ERROR (3)

NAME
krb5_rd_error , krb5_free_error , krb5_free_error_contents ,
krb5_error_from_rd_error — parse, free and read error from KRB-ERROR message

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_rd_error (krb5_context context , const krb5_data ∗msg,

KRB_ERROR∗result);

void
krb5_free_error (krb5_context context , krb5_error ∗error);

void
krb5_free_error_contents (krb5_context context , krb5_error ∗error);

krb5_error_code
krb5_error_from_rd_error (krb5_context context , const krb5_error ∗error ,

const krb5_creds ∗creds);

DESCRIPTION
Usually applications never needs to parse and understand Kerberos error messages since higher level func-
tions will parse and push up the error in the krb5_context. Thesefunctions are described for completeness.

krb5_rd_error () parses and returns the kerboeros error message, the structure should be freed with
krb5_free_error_contents () when the caller is done with the structure.

krb5_free_error () frees the content and the memory region holding the structure iself.

krb5_free_error_contents () free the content of the KRB-ERROR message.

krb5_error_from_rd_error () will parse the error message and set the error buffer in krb5_context to
the error string passed back or the matching error code in the KRB-ERROR message. Caller should pick up
the message withkrb5_get_error_string (3) (don’t forget to free the returned string with
krb5_free_error_string ()).

SEE ALSO
krb5 (3), krb5_set_error_string (3), krb5_get_error_string (3), krb5.conf (5)

NetBSD 3.0 July 26, 2004 1

KRB5_RD_SAFE (3) NetBSD Library Functions Manual KRB5_RD_SAFE (3)

NAME
krb5_rd_safe , krb5_rd_priv — verifies authenticity of messages

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_rd_priv (krb5_context context , krb5_auth_context auth_context ,

const krb5_data ∗inbuf , krb5_data ∗outbuf , krb5_replay_data ∗outdata);

krb5_error_code
krb5_rd_safe (krb5_context context , krb5_auth_context auth_context ,

const krb5_data ∗inbuf , krb5_data ∗outbuf , krb5_replay_data ∗outdata);

DESCRIPTION
krb5_rd_safe () andkrb5_rd_priv () parsesKRB-SAFEandKRB-PRIV messages (as generated by
krb5_mk_safe (3) andkrb5_mk_priv (3)) from inbuf and verifies its integrity. The user data part of
the message in put inoutbuf . The encryption state, including keyblocks and addresses, is taken from
auth_context . If the KRB5_AUTH_CONTEXT_RET_SEQUENCE or
KRB5_AUTH_CONTEXT_RET_TIMEflags are set in theauth_context the sequence number and time
are returned in theoutdata parameter.

SEE ALSO
krb5_auth_con_init (3), krb5_mk_priv (3), krb5_mk_safe (3)

NetBSD 3.0 May 1, 2006 1

KRB5_SET_DEFAULT_REALM (3) NetBSD Library Functions Manual KRB5_SET_DEFAULT_REALM (3)

NAME
krb5_copy_host_realm , krb5_free_host_realm , krb5_get_default_realm ,
krb5_get_default_realms , krb5_get_host_realm , krb5_set_default_realm — default
and host realm read and manipulation routines

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_copy_host_realm (krb5_context context , const krb5_realm ∗from ,

krb5_realm ∗∗to);

krb5_error_code
krb5_free_host_realm (krb5_context context , krb5_realm ∗realmlist);

krb5_error_code
krb5_get_default_realm (krb5_context context , krb5_realm ∗realm);

krb5_error_code
krb5_get_default_realms (krb5_context context , krb5_realm ∗∗realm);

krb5_error_code
krb5_get_host_realm (krb5_context context , const char ∗host ,

krb5_realm ∗∗realms);

krb5_error_code
krb5_set_default_realm (krb5_context context , const char ∗realm);

DESCRIPTION
krb5_copy_host_realm () copies the list of realms fromfrom to to . to should be freed by the caller
usingkrb5_free_host_realm .

krb5_free_host_realm () frees all memory allocated byrealmlist .

krb5_get_default_realm () returns the first default realm for this host.The realm returned should be
freed withfree ().

krb5_get_default_realms () returns aNULL terminated list of default realms for this context.
Realms returned by krb5_get_default_realms () should be freed with
krb5_free_host_realm ().

krb5_get_host_realm () returns aNULL terminated list of realms forhost by looking up the informa-
tion in the[domain_realm] in krb5.conf or in DNS. If the mapping in[domain_realm] results in
the stringdns_locate , DNS is used to lookup the realm.

When usingDNSto a resolve the domain for the host a.b.c, krb5_get_host_realm () looks for aTXT
resource record named_kerberos.a.b.c , and if not found, it strips off the first component and tries a
again (_kerberos.b.c) until it reaches the root.

If there is no configuration or DNS information found,krb5_get_host_realm () assumes it can use the
domain part of the host to form a realm. Caller must freerealmlist with
krb5_free_host_realm ().

krb5_set_default_realm () sets the default realm for thecontext . If NULL is used as arealm , the
[libdefaults]default_realm stanza inkrb5.conf is used. If there is no such stanza in the con-

NetBSD 3.0 April 24, 2005 1

KRB5_SET_DEFAULT_REALM (3) NetBSD Library Functions Manual KRB5_SET_DEFAULT_REALM (3)

figuration file, thekrb5_get_host_realm () function is used to form a default realm.

SEE ALSO
free (3), krb5.conf (5)

NetBSD 3.0 April 24, 2005 2

KRB5_SET_PASSWORD (3) NetBSD Library Functions Manual KRB5_SET_PASSWORD (3)

NAME
krb5_change_password , krb5_set_password , krb5_set_password_using_ccache ,
krb5_passwd_result_to_string — change password functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_change_password (krb5_context context , krb5_creds ∗creds , char ∗newpw,

int ∗result_code , krb5_data ∗result_code_string ,
krb5_data ∗result_string);

krb5_error_code
krb5_set_password (krb5_context context , krb5_creds ∗creds , char ∗newpw,

krb5_principal targprinc , int ∗result_code ,
krb5_data ∗result_code_string , krb5_data ∗result_string);

krb5_error_code
krb5_set_password_using_ccache (krb5_context context , krb5_ccache ccache ,

char ∗newpw, krb5_principal targprinc , int ∗result_code ,
krb5_data ∗result_code_string , krb5_data ∗result_string);

const char ∗
krb5_passwd_result_to_string (krb5_context context , int result);

DESCRIPTION
These functions change the password for a given principal.

krb5_set_password () and krb5_set_password_using_ccache () are the newer of the three
functions, and use a newer version of the protocol (and also fall back to the older set-password protocol if the
newer protocol doesn’t work).

krb5_change_password () sets the password newpasswd for the client principal increds . The
server principal of creds must bekadmin/changepw .

krb5_set_password () andkrb5_set_password_using_ccache () change the password for the
principaltargprinc .

krb5_set_password () requires that the credential forkadmin/changepw@REALM is in creds . If
the user caller isn’t an administrator, this credential needs to be an initial credential, see
krb5_get_init_creds (3) how to get such credentials.

krb5_set_password_using_ccache () will get the credential fromccache .

If targprinc is NULL, krb5_set_password_using_ccache () uses the the default principal in
ccache andkrb5_set_password () uses the global the default principal.

All three functions return an error inresult_code and maybe an error string to print in
result_string .

krb5_passwd_result_to_string () returns an human readable string describing the error code in
result_code from thekrb5_set_password () functions.

NetBSD 3.0 July 15, 2004 1

KRB5_SET_PASSWORD (3) NetBSD Library Functions Manual KRB5_SET_PASSWORD (3)

SEE ALSO
krb5_ccache (3), krb5_init_context (3)

NetBSD 3.0 July 15, 2004 2

KRB5_STORAGE (3) NetBSD Library Functions Manual KRB5_STORAGE (3)

NAME
krb5_storage , krb5_storage_emem , krb5_storage_from_data ,
krb5_storage_from_fd , krb5_storage_from_mem , krb5_storage_set_flags ,
krb5_storage_clear_flags , krb5_storage_is_flags ,
krb5_storage_set_byteorder , krb5_storage_get_byteorder ,
krb5_storage_set_eof_code , krb5_storage_seek , krb5_storage_read ,
krb5_storage_write , krb5_storage_free , krb5_storage_to_data ,
krb5_store_int32 , krb5_ret_int32 , krb5_store_uint32 , krb5_ret_uint32 ,
krb5_store_int16 , krb5_ret_int16 , krb5_store_uint16 , krb5_ret_uint16 ,
krb5_store_int8 , krb5_ret_int8 , krb5_store_uint8 , krb5_ret_uint8 ,
krb5_store_data , krb5_ret_data , krb5_store_string , krb5_ret_string ,
krb5_store_stringnl , krb5_ret_stringnl , krb5_store_stringz , krb5_ret_stringz ,
krb5_store_principal , krb5_ret_principal , krb5_store_keyblock ,
krb5_ret_keyblock , krb5_store_times , krb5_ret_times , krb5_store_address ,
krb5_ret_address , krb5_store_addrs , krb5_ret_addrs , krb5_store_authdata ,
krb5_ret_authdata , krb5_store_creds , krb5_ret_creds — operates on the Kerberos
datatype krb5_storage

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

struct krb5_storage;

krb5_storage ∗
krb5_storage_from_fd (int fd);

krb5_storage ∗
krb5_storage_emem (void);

krb5_storage ∗
krb5_storage_from_mem (void ∗buf , size_t len);

krb5_storage ∗
krb5_storage_from_data (krb5_data ∗data);

void
krb5_storage_set_flags (krb5_storage ∗sp , krb5_flags flags);

void
krb5_storage_clear_flags (krb5_storage ∗sp , krb5_flags flags);

krb5_boolean
krb5_storage_is_flags (krb5_storage ∗sp , krb5_flags flags);

void
krb5_storage_set_byteorder (krb5_storage ∗sp , krb5_flags byteorder);

krb5_flags
krb5_storage_get_byteorder (krb5_storage ∗sp , krb5_flags byteorder);

void
krb5_storage_set_eof_code (krb5_storage ∗sp , int code);

NetBSD 3.0 Aug 18, 2006 1

KRB5_STORAGE (3) NetBSD Library Functions Manual KRB5_STORAGE (3)

off_t
krb5_storage_seek (krb5_storage ∗sp , off_t offset , int whence);

krb5_ssize_t
krb5_storage_read (krb5_storage ∗sp , void ∗buf , size_t len);

krb5_ssize_t
krb5_storage_write (krb5_storage ∗sp , const void ∗buf , size_t len);

krb5_error_code
krb5_storage_free (krb5_storage ∗sp);

krb5_error_code
krb5_storage_to_data (krb5_storage ∗sp , krb5_data ∗data);

krb5_error_code
krb5_store_int32 (krb5_storage ∗sp , int32_t value);

krb5_error_code
krb5_ret_int32 (krb5_storage ∗sp , int32_t ∗value);

krb5_error_code
krb5_ret_uint32 (krb5_storage ∗sp , uint32_t ∗value);

krb5_error_code
krb5_store_uint32 (krb5_storage ∗sp , uint32_t value);

krb5_error_code
krb5_store_int16 (krb5_storage ∗sp , int16_t value);

krb5_error_code
krb5_ret_int16 (krb5_storage ∗sp , int16_t ∗value);

krb5_error_code
krb5_store_uint16 (krb5_storage ∗sp , uint16_t value);

krb5_error_code
krb5_ret_uint16 (krb5_storage ∗sp , u_int16_t ∗value);

krb5_error_code
krb5_store_int8 (krb5_storage ∗sp , int8_t value);

krb5_error_code
krb5_ret_int8 (krb5_storage ∗sp , int8_t ∗value);

krb5_error_code
krb5_store_uint8 (krb5_storage ∗sp , u_int8_t value);

krb5_error_code
krb5_ret_uint8 (krb5_storage ∗sp , u_int8_t ∗value);

krb5_error_code
krb5_store_data (krb5_storage ∗sp , krb5_data data);

krb5_error_code
krb5_ret_data (krb5_storage ∗sp , krb5_data ∗data);

krb5_error_code
krb5_store_string (krb5_storage ∗sp , const char ∗s);

NetBSD 3.0 Aug 18, 2006 2

KRB5_STORAGE (3) NetBSD Library Functions Manual KRB5_STORAGE (3)

krb5_error_code
krb5_ret_string (krb5_storage ∗sp , char ∗∗string);

krb5_error_code
krb5_store_stringnl (krb5_storage ∗sp , const char ∗s);

krb5_error_code
krb5_ret_stringnl (krb5_storage ∗sp , char ∗∗string);

krb5_error_code
krb5_store_stringz (krb5_storage ∗sp , const char ∗s);

krb5_error_code
krb5_ret_stringz (krb5_storage ∗sp , char ∗∗string);

krb5_error_code
krb5_store_principal (krb5_storage ∗sp , krb5_const_principal p);

krb5_error_code
krb5_ret_principal (krb5_storage ∗sp , krb5_principal ∗princ);

krb5_error_code
krb5_store_keyblock (krb5_storage ∗sp , krb5_keyblock p);

krb5_error_code
krb5_ret_keyblock (krb5_storage ∗sp , krb5_keyblock ∗p);

krb5_error_code
krb5_store_times (krb5_storage ∗sp , krb5_times times);

krb5_error_code
krb5_ret_times (krb5_storage ∗sp , krb5_times ∗times);

krb5_error_code
krb5_store_address (krb5_storage ∗sp , krb5_address p);

krb5_error_code
krb5_ret_address (krb5_storage ∗sp , krb5_address ∗adr);

krb5_error_code
krb5_store_addrs (krb5_storage ∗sp , krb5_addresses p);

krb5_error_code
krb5_ret_addrs (krb5_storage ∗sp , krb5_addresses ∗adr);

krb5_error_code
krb5_store_authdata (krb5_storage ∗sp , krb5_authdata auth);

krb5_error_code
krb5_ret_authdata (krb5_storage ∗sp , krb5_authdata ∗auth);

krb5_error_code
krb5_store_creds (krb5_storage ∗sp , krb5_creds ∗creds);

krb5_error_code
krb5_ret_creds (krb5_storage ∗sp , krb5_creds ∗creds);

DESCRIPTION
The krb5_storage structure holds a storage element that is used for data manipulation.The structure
contains no public accessible elements.

NetBSD 3.0 Aug 18, 2006 3

KRB5_STORAGE (3) NetBSD Library Functions Manual KRB5_STORAGE (3)

krb5_storage_emem () create a memory based krb5 storage unit that dynamicly resized to the ammount
of data stored in. The storage never returns errors, on memory allocation errorsexit (3) will be called.

krb5_storage_from_data () create a krb5 storage unit that will read is data from akrb5_data .
There is no copy made of thedata , so the caller must not freedata until the storage is freed.

krb5_storage_from_fd () create a krb5 storage unit that will read is data from a file descriptor. The
descriptor must be seekable ifkrb5_storage_seek () is used. Caller must not free the file descriptor
before the storage is freed.

krb5_storage_from_mem () create a krb5 storage unit that will read is data from a memory region.
There is no copy made of thedata , so the caller must not freedata until the storage is freed.

krb5_storage_set_flags () and krb5_storage_clear_flags () modifies the behavior of the
storage functions.krb5_storage_is_flags () tests if theflags are set on thekrb5_storage .
Valid flags to set, is and clear is are:

KRB5_STORAGE_PRINCIPAL_WRONG_NUM_COMPONENTS
Stores the number of principal componets one too many when storing principal
namees, used for compatibility with version 1 of file keytabs and version 1 of file cre-
dential caches.

KRB5_STORAGE_PRINCIPAL_NO_NAME_TYPE
Doesn’t store the name type in when storing a principal name, used for compatibility
with version 1 of file keytabs and version 1 of file credential caches.

KRB5_STORAGE_KEYBLOCK_KEYTYPE_TWICE
Stores the keyblock type twice storing a keyblock, used for compatibility version 3 of
file credential caches.

KRB5_STORAGE_BYTEORDER_MASK
bitmask that can be used to and out what type of byte order order is used.

KRB5_STORAGE_BYTEORDER_BE
Store integers in in big endian byte order, this is the default mode.

KRB5_STORAGE_BYTEORDER_LE
Store integers in in little endian byte order.

KRB5_STORAGE_BYTEORDER_HOST
Stores the integers in host byte order, used for compatibility with version 1 of file
keytabs and version 1 and 2 of file credential caches.

KRB5_STORAGE_CREDS_FLAGS_WRONG_BITORDER
Store the credential flags in a krb5_creds in the reverse bit order.

krb5_storage_set_byteorder () and krb5_storage_get_byteorder () modifies the byte
order used in the storage for integers. The flags used is same as above. The valid flags are
KRB5_STORAGE_BYTEORDER_BE, KRB5_STORAGE_BYTEORDER_LE and
KRB5_STORAGE_BYTEORDER_HOST.

krb5_storage_set_eof_code () sets the error code that will be returned on end of file condition to
code .

krb5_storage_seek () seeksoffset bytes in the storagesp . Thewhence argument is one of
SEEK_SET offset is from begining of storage.
SEEK_CUR

offset is relative from current offset.
SEEK_END

offset is from end of storage.

krb5_storage_read () readslen (or less bytes in case of end of file) intobuf from the current offset in
the storagesp .

NetBSD 3.0 Aug 18, 2006 4

KRB5_STORAGE (3) NetBSD Library Functions Manual KRB5_STORAGE (3)

krb5_storage_write () writes len or (less bytes in case of end of file) frombuf from the current off-
set in the storagesp .

krb5_storage_free () frees the storagesp .

krb5_storage_to_data () converts the data in storagesp into akrb5_data structure.data must be
freed withkrb5_data_free () by the caller when done with thedata .

All krb5_store andkrb5_ret functions move the current offset forward when the functions returns.

krb5_store_int32 (), krb5_ret_int32 (), krb5_store_uint32 (), krb5_ret_uint32 (),
krb5_store_int16 (), krb5_ret_int16 (), krb5_store_uint16 (), krb5_ret_uint16 (),
krb5_store_int8 (), krb5_ret_int8 () krb5_store_uint8 (), andkrb5_ret_uint8 () stores
and reads an integer fromsp in the byte order specified by the flags set on thesp .

krb5_store_data () and krb5_ret_data () store and reads a krb5_data.The length of the data is
stored withkrb5_store_int32 ().

krb5_store_string () andkrb5_ret_string () store and reads a string by storing the length of the
string withkrb5_store_int32 () followed by the string itself.

krb5_store_stringnl () andkrb5_ret_stringnl () store and reads a string by storing string fol-
lowed by a’0 .

krb5_store_stringz () andkrb5_ret_stringz () store and reads a string by storing string followed
by aNUL.

krb5_store_principal () andkrb5_ret_principal () store and reads a principal.

krb5_store_keyblock () andkrb5_ret_keyblock () store and reads akrb5_keyblock .

krb5_store_times () krb5_ret_times () store and readskrb5_times structure .

krb5_store_address () andkrb5_ret_address () store and reads akrb5_address .

krb5_store_addrs () andkrb5_ret_addrs () store and reads akrb5_addresses .

krb5_store_authdata () andkrb5_ret_authdata () store and reads akrb5_authdata .

krb5_store_creds () andkrb5_ret_creds () store and reads akrb5_creds .

SEE ALSO
krb5 (3), krb5_data (3), kerberos (8)

NetBSD 3.0 Aug 18, 2006 5

KRB5_STRING_TO_KEY (3) NetBSD Library Functions Manual KRB5_STRING_TO_KEY (3)

NAME
krb5_string_to_key , krb5_string_to_key_data , krb5_string_to_key_data_salt ,
krb5_string_to_key_data_salt_opaque , krb5_string_to_key_salt ,
krb5_string_to_key_salt_opaque , krb5_get_pw_salt , krb5_free_salt — turns a string
to a Kerberos key

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_string_to_key (krb5_context context , krb5_enctype enctype ,

const char ∗password , krb5_principal principal , krb5_keyblock ∗key);

krb5_error_code
krb5_string_to_key_data (krb5_context context , krb5_enctype enctype ,

krb5_data password , krb5_principal principal , krb5_keyblock ∗key);

krb5_error_code
krb5_string_to_key_data_salt (krb5_context context , krb5_enctype enctype ,

krb5_data password , krb5_salt salt , krb5_keyblock ∗key);

krb5_error_code
krb5_string_to_key_data_salt_opaque (krb5_context context ,

krb5_enctype enctype , krb5_data password , krb5_salt salt ,
krb5_data opaque , krb5_keyblock ∗key);

krb5_error_code
krb5_string_to_key_salt (krb5_context context , krb5_enctype enctype ,

const char ∗password , krb5_salt salt , krb5_keyblock ∗key);

krb5_error_code
krb5_string_to_key_salt_opaque (krb5_context context , krb5_enctype enctype ,

const char ∗password , krb5_salt salt , krb5_data opaque ,
krb5_keyblock ∗key);

krb5_error_code
krb5_get_pw_salt (krb5_context context , krb5_const_principal principal ,

krb5_salt ∗salt);

krb5_error_code
krb5_free_salt (krb5_context context , krb5_salt salt);

DESCRIPTION
The string to key functions convert a string to a kerberos key.

krb5_string_to_key_data_salt_opaque () is the function that does all the work, the rest of the
functions are just wrapers aroundkrb5_string_to_key_data_salt_opaque () that calls it with
default values.

krb5_string_to_key_data_salt_opaque () transforms thepassword with the given salt-string
salt and the opaque, encryption type specific parameteropaque to a encryption key key according to the
string to key function associated withenctype .

NetBSD 3.0 July 10, 2006 1

KRB5_STRING_TO_KEY (3) NetBSD Library Functions Manual KRB5_STRING_TO_KEY (3)

Thekey should be freed withkrb5_free_keyblock_contents ().

If one of the functions that doesn’t take akrb5_salt as it argumentkrb5_get_pw_salt () is used to
get the salt value.

krb5_get_pw_salt () get the default password salt for a principal, usekrb5_free_salt () to free the
salt when done.

krb5_free_salt () frees the content ofsalt .

SEE ALSO
krb5 (3), krb5_data (3), krb5_keyblock (3), kerberos (8)

NetBSD 3.0 July 10, 2006 2

KRB5_TICKET (3) NetBSD Library Functions Manual KRB5_TICKET (3)

NAME
krb5_ticket , krb5_free_ticket , krb5_copy_ticket ,
krb5_ticket_get_authorization_data_type , krb5_ticket_get_client ,
krb5_ticket_get_server , krb5_ticket_get_endtime — Kerberos 5 ticket access and han-
dling functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_ticket ;

krb5_error_code
krb5_free_ticket (krb5_context context , krb5_ticket ∗ticket);

krb5_error_code
krb5_copy_ticket (krb5_context context , const krb5_ticket ∗from ,

krb5_ticket ∗∗to);

krb5_error_code
krb5_ticket_get_authorization_data_type (krb5_context context ,

krb5_ticket ∗ticket , int type , krb5_data ∗data);

krb5_error_code
krb5_ticket_get_client (krb5_context context , const krb5_ticket ∗ticket ,

krb5_principal ∗client);

krb5_error_code
krb5_ticket_get_server (krb5_context context , const krb5_ticket ∗ticket ,

krb5_principal ∗server);

time_t
krb5_ticket_get_endtime (krb5_context context , const krb5_ticket ∗ticket);

DESCRIPTION
krb5_ticket holds a kerberos ticket. Theinternals of the structure should never be accessed directly,
functions exist for extracting information.

krb5_free_ticket () frees the ticket and its content. Used to free the result of
krb5_copy_ticket () andkrb5_recvauth ().

krb5_copy_ticket () copies the content of the ticket from to the ticket to . The resultto should be
freed withkrb5_free_ticket ().

krb5_ticket_get_authorization_data_type () fetches the authorization data of the typetype
from theticket . If there isn’t any authorization data of typetype , ENOENTis returned.data needs to
be freed withkrb5_data_free () on success.

krb5_ticket_get_client () andkrb5_ticket_get_server () returns a copy of the client/server
principal from the ticket. Theprincipal returned should be free usingkrb5_free_principal (3).

krb5_ticket_get_endtime () return the end time of the ticket.

NetBSD 3.0 May 1, 2006 1

KRB5_TICKET (3) NetBSD Library Functions Manual KRB5_TICKET (3)

SEE ALSO
krb5 (3)

NetBSD 3.0 May 1, 2006 2

KRB5_TIMEOFDAY (3) NetBSDLibrary Functions Manual KRB5_TIMEOFDAY (3)

NAME
krb5_timeofday , krb5_set_real_time , krb5_us_timeofday , krb5_format_time ,
krb5_string_to_deltat — Kerberos 5 time handling functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_timestamp ;

krb5_deltat ;

krb5_error_code
krb5_set_real_time (krb5_context context , krb5_timestamp sec , int32_t usec);

krb5_error_code
krb5_timeofday (krb5_context context , krb5_timestamp ∗timeret);

krb5_error_code
krb5_us_timeofday (krb5_context context , krb5_timestamp ∗sec , int32_t ∗usec);

krb5_error_code
krb5_format_time (krb5_context context , time_t t , char ∗s , size_t len ,

krb5_boolean include_time);

krb5_error_code
krb5_string_to_deltat (const char ∗string , krb5_deltat ∗deltat);

DESCRIPTION
krb5_set_real_time sets the absolute time that the caller knows the KDC has.With this the Kerberos
library can calculate the relative difference between the KDC time and the local system time and store it in
thecontext . With this information the Kerberos library can adjust all time stamps in Kerberos packages.

krb5_timeofday () returns the current time, but adjusted with the time difference between the local host
and the KDC.krb5_us_timeofday () also returns microseconds.

krb5_format_time formats the timet into the strings of length len . If include_time is set, the
time is set include_time.

krb5_string_to_deltat parses delta timestring into deltat .

SEE ALSO
gettimeofday (2), krb5 (3)

NetBSD 3.0 Sepember 16, 2006 1

KRB5_UNPARSE_NAME (3) NetBSD Library Functions Manual KRB5_UNPARSE_NAME (3)

NAME
krb5_unparse_name — principal to string conversion

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_unparse_name (krb5_context context , krb5_principal principal ,

char ∗∗name);

DESCRIPTION
This function takes aprincipal , and will convert in to a printable representation with the same syntax as
described inkrb5_parse_name (3). ∗name will point to allocated data and should be freed by the caller.

SEE ALSO
krb5_425_conv_principal (3), krb5_build_principal (3), krb5_free_principal (3),
krb5_parse_name (3), krb5_sname_to_principal (3)

NetBSD 3.0 August 8, 1997 1

KRB5_VERIFY_INIT_CREDS (3) NetBSD Library Functions Manual KRB5_VERIFY_INIT_CREDS (3)

NAME
krb5_verify_init_creds_opt_init ,
krb5_verify_init_creds_opt_set_ap_req_nofail , krb5_verify_init_creds — veri-
fies a credential cache is correct by using a local keytab

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

struct krb5_verify_init_creds_opt;

void
krb5_verify_init_creds_opt_init (krb5_verify_init_creds_opt ∗options);

void
krb5_verify_init_creds_opt_set_ap_req_nofail (krb5_verify_init_creds_opt ∗options ,

int ap_req_nofail);

krb5_error_code
krb5_verify_init_creds (krb5_context context , krb5_creds ∗creds ,

krb5_principal ap_req_server , krb5_ccache ∗ccache ,
krb5_verify_init_creds_opt ∗options);

DESCRIPTION
The krb5_verify_init_creds function verifies the initial tickets with the local keytab to make sure
the response of the KDC was spoof-ed.

krb5_verify_init_creds will use principalap_req_server from the local keytab, if NULL is
passed in, the code will guess the local hostname and use that to form host/hostname/GUESSED-REALM-
FOR-HOSTNAME. creds is the credential thatkrb5_verify_init_creds should verify. If
ccache is given krb5_verify_init_creds () stores all credentials it fetched from the KDC there,
otherwise it will use a memory credential cache that is destroyed when done.

krb5_verify_init_creds_opt_init () cleans the the structure, must be used before trying to pass it
in to krb5_verify_init_creds ().

krb5_verify_init_creds_opt_set_ap_req_nofail () controls controls the behavior if
ap_req_server doesn’t exists in the local keytab or in the KDC’s database, if it’s true, the error will be
ignored. Notethat this use is possible insecure.

SEE ALSO
krb5 (3), krb5_get_init_creds (3), krb5_verify_user (3), krb5.conf (5)

NetBSD 3.0 May 1, 2006 1

KRB5_VERIFY_USER (3) NetBSD Library Functions Manual KRB5_VERIFY_USER (3)

NAME
krb5_verify_user , krb5_verify_user_lrealm , krb5_verify_user_opt ,
krb5_verify_opt_init , krb5_verify_opt_alloc , krb5_verify_opt_free ,
krb5_verify_opt_set_ccache , krb5_verify_opt_set_flags ,
krb5_verify_opt_set_service , krb5_verify_opt_set_secure ,
krb5_verify_opt_set_keytab — Heimdal password verifying functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_verify_user (krb5_context context , krb5_principal principal ,

krb5_ccache ccache , const char ∗password , krb5_boolean secure ,
const char ∗service);

krb5_error_code
krb5_verify_user_lrealm (krb5_context context , krb5_principal principal ,

krb5_ccache ccache , const char ∗password , krb5_boolean secure ,
const char ∗service);

void
krb5_verify_opt_init (krb5_verify_opt ∗opt);

void
krb5_verify_opt_alloc (krb5_verify_opt ∗∗opt);

void
krb5_verify_opt_free (krb5_verify_opt ∗opt);

void
krb5_verify_opt_set_ccache (krb5_verify_opt ∗opt , krb5_ccache ccache);

void
krb5_verify_opt_set_keytab (krb5_verify_opt ∗opt , krb5_keytab keytab);

void
krb5_verify_opt_set_secure (krb5_verify_opt ∗opt , krb5_boolean secure);

void
krb5_verify_opt_set_service (krb5_verify_opt ∗opt , const char ∗service);

void
krb5_verify_opt_set_flags (krb5_verify_opt ∗opt , unsigned int flags);

krb5_error_code
krb5_verify_user_opt (krb5_context context , krb5_principal principal ,

const char ∗password , krb5_verify_opt ∗opt);

DESCRIPTION
The krb5_verify_user function verifies the password supplied by a user. The principal whose pass-
word will be verified is specified inprincipal . New tickets will be obtained as a side-effect and stored in
ccache (if NULL, the default ccache is used). krb5_verify_user () will call
krb5_cc_initialize () on the given ccache , so ccache must only initialized with
krb5_cc_resolve () or krb5_cc_gen_new (). If the password is not supplied inpassword (and is

NetBSD 3.0 May 1, 2006 1

KRB5_VERIFY_USER (3) NetBSD Library Functions Manual KRB5_VERIFY_USER (3)

given as NULL) the user will be prompted for it.If secure the ticket will be verified against the locally
stored service keyservice (by defaulthost if given as NULL).

The krb5_verify_user_lrealm () function does the same, except that it ignores the realm in
principal and tries all the local realms (seekrb5.conf (5)). After a successful return, the principal is
set to the authenticated realm. If the call fails, the principal will not be meaningful, and should only be freed
with krb5_free_principal (3).

krb5_verify_opt_alloc () and krb5_verify_opt_free () allocates and frees a
krb5_verify_opt . You should use the the alloc and free function instead of allocation the structure
yourself, this is because in a future release the structure wont be exported.

krb5_verify_opt_init () resets all opt to default values.

None of the krb5_verify_opt_set function makes a copy of the data structure that they are called with. It’s up
the caller to free them after thekrb5_verify_user_opt () is called.

krb5_verify_opt_set_ccache () sets theccache that user ofopt will use. If not set, the default
credential cache will be used.

krb5_verify_opt_set_keytab () sets thekeytab that user ofopt will use. If not set, the default
keytab will be used.

krb5_verify_opt_set_secure () if secure if true, the password verification will require that the
ticket will be verified against the locally stored service key. If not set, default value is true.

krb5_verify_opt_set_service () sets theservice principal that user ofopt will use. If not set,
thehost service will be used.

krb5_verify_opt_set_flags () sets flags that user of opt will use. If the flag
KRB5_VERIFY_LREALMS is used, the principal will be modified like
krb5_verify_user_lrealm () modifies it.

krb5_verify_user_opt () function verifies thepassword supplied by a user. The principal whose
password will be verified is specified inprincipal . Options the to the verification process is pass in in
opt .

EXAMPLES
Here is a example program that verifies a password. it uses thehost/‘hostname‘ service principal in
krb5.keytab .

#include <krb5/krb5.h>

int
main(int argc, char ∗∗argv)
{

char ∗user;
krb5_error_code error;
krb5_principal princ;
krb5_context context;

if (argc != 2)
errx(1, "usage: verify_passwd <principal-name>");

user = argv[1];

if (krb5_init_context(&context) < 0)

NetBSD 3.0 May 1, 2006 2

KRB5_VERIFY_USER (3) NetBSD Library Functions Manual KRB5_VERIFY_USER (3)

errx(1, "krb5_init_context");

if ((error = krb5_parse_name(context, user, &princ)) != 0)
krb5_err(context, 1, error, "krb5_parse_name");

error = krb5_verify_user(context, princ, NULL, NULL, TRUE, NULL);
if (error)

krb5_err(context, 1, error, "krb5_verify_user");

return 0;
}

SEE ALSO
krb5_cc_gen_new (3), krb5_cc_initialize (3), krb5_cc_resolve (3), krb5_err (3),
krb5_free_principal (3), krb5_init_context (3), krb5_kt_default (3), krb5.conf (5)

NetBSD 3.0 May 1, 2006 3

KRB5_WARN (3) NetBSD Library Functions Manual KRB5_WARN (3)

NAME
krb5_abort , krb5_abortx , krb5_clear_error_string , krb5_err , krb5_errx ,
krb5_free_error_string , krb5_get_err_text , krb5_get_error_message ,
krb5_get_error_string , krb5_have_error_string , krb5_set_error_string ,
krb5_set_warn_dest , krb5_get_warn_dest , krb5_vabort , krb5_vabortx , krb5_verr ,
krb5_verrx , krb5_vset_error_string , krb5_vwarn , krb5_vwarnx , krb5_warn ,
krb5_warnx — Heimdal warning and error functions

LIBRARY
Kerberos 5 Library (libkrb5, -lkrb5)

SYNOPSIS
#include <krb5/krb5.h>

krb5_error_code
krb5_abort (krb5_context context , krb5_error_code code , const char ∗fmt ,

. . .);

krb5_error_code
krb5_abortx (krb5_context context , krb5_error_code code , const char ∗fmt ,

. . .);

void
krb5_clear_error_string (krb5_context context);

krb5_error_code
krb5_err (krb5_context context , int eval , krb5_error_code code ,

const char ∗format , . . .);

krb5_error_code
krb5_errx (krb5_context context , int eval , const char ∗format , . . .);

void
krb5_free_error_string (krb5_context context , char ∗str);

krb5_error_code
krb5_verr (krb5_context context , int eval , krb5_error_code code ,

const char ∗format , va_list ap);

krb5_error_code
krb5_verrx (krb5_context context , int eval , const char ∗format , va_list ap);

krb5_error_code
krb5_vset_error_string (krb5_context context , const char ∗fmt ,

va_list args);

krb5_error_code
krb5_vwarn (krb5_context context , krb5_error_code code , const char ∗format ,

va_list ap);

krb5_error_code
krb5_vwarnx (krb5_context context , const char ∗format , va_list ap);

krb5_error_code
krb5_warn (krb5_context context , krb5_error_code code , const char ∗format ,

. . .);

NetBSD 3.0 May 1, 2006 1

KRB5_WARN (3) NetBSD Library Functions Manual KRB5_WARN (3)

krb5_error_code
krb5_warnx (krb5_context context , const char ∗format , . . .);

krb5_error_code
krb5_set_error_string (krb5_context context , const char ∗fmt , . . .);

krb5_error_code
krb5_set_warn_dest (krb5_context context , krb5_log_facility ∗facility);

char ∗

krb5_log_facility ∗
krb5_get_warn_dest (krb5_context context);

krb5_get_err_text (krb5_context context , krb5_error_code code);

char ∗
krb5_get_error_string (krb5_context context);

char ∗
krb5_get_error_message (krb5_context context, krb5_error_code code);

krb5_boolean
krb5_have_error_string (krb5_context context);

krb5_error_code
krb5_vabortx (krb5_context context , const char ∗fmt , va_list ap);

krb5_error_code
krb5_vabort (krb5_context context , const char ∗fmt , va_list ap);

DESCRIPTION
These functions print a warning message to some destination.format is a printf style format specifying the
message to print. The forms not ending in an “x” print the error string associated withcode along with the
message. The“err” functions exit with exit statuseval after printing the message.

Applications that want to get the error message to report it to a user or store it in a log want to use
krb5_get_error_message ().

The krb5_set_warn_func () function sets the destination for warning messages to the specified
facility . Messages logged with the “warn” functions have a log level of 1, while the “err” functions log
with level 0.

krb5_get_err_text () fetches the human readable strings describing the error-code.

krb5_abort () and krb5_abortx behaves like krb5_err and krb5_errx but instead of exiting
using theexit (3) call,abort (3) is used.

krb5_free_error_string () frees the error stringstr returned bykrb5_get_error_string ().

krb5_clear_error_string () clears the error string from thecontext .

krb5_set_error_string () and krb5_vset_error_string () sets an verbose error string in
context .

krb5_get_error_string () fetches the error string fromcontext . The error message in the context
is consumed and must be freed usingkrb5_free_error_string () by the caller. See also
krb5_get_error_message (), what is usually less verbose to use.

krb5_have_error_string () returnsTRUEif there is a verbose error message in thecontext .

NetBSD 3.0 May 1, 2006 2

KRB5_WARN (3) NetBSD Library Functions Manual KRB5_WARN (3)

krb5_get_error_message () fetches the error string from the context, or if there is no customized error
string in context , usescode to return a error string.In either case, the error message in the context is
consumed and must be freed usingkrb5_free_error_string () by the caller.

krb5_set_warn_dest () and krb5_get_warn_dest () sets and get the log context that is used by
krb5_warn () and friends.By using this the application can control where the output should go.For exam-
ple, this is imperative to inetd servers where logging status and error message will end up on the output
stream to the client.

EXAMPLES
Below is a simple example how to report error messages from the Kerberos library in an application.

#include <krb5/krb5.h>

krb5_error_code
function (krb5_context context)
{

krb5_error_code ret;

ret = krb5_function (context, arg1, arg2);
if (ret) {

char ∗s = k rb5_get_error_message(context, ret);
if (s == NULL)

errx(1, "kerberos error: %d (and out of memory)", ret);
application_logger("krb5_function failed: %s", s);
krb5_free_error_string(context, s);
return ret;

}
return 0;

}

SEE ALSO
krb5 (3), krb5_openlog (3)

NetBSD 3.0 May 1, 2006 3

KVM (3) NetBSD Library Functions Manual KVM (3)

NAME
kvm — kernel memory interface

LIBRARY
Kernel Data Access Library (libkvm, −lkvm)

DESCRIPTION
Thekvm library provides a uniform interface for accessing kernel virtual memory images, including live sys-
tems and crash dumps. Access to live systems is via/dev/mem while crash dumps can be examined via the
core file generated bysavecore (8). Theinterface behaves identically in both cases. Memory can be read
and written, kernel symbol addresses can be looked up efficiently, and information about user processes can
be gathered.

kvm_open () is first called to obtain a descriptor for all subsequent calls.

COMPATIBILITY
The kvm interface was first introduced in SunOS.A considerable number of programs have been developed
that use this interface, making backward compatibility highly desirable.In most respects, the Sun kvm inter-
face is consistent and clean.Accordingly, the generic portion of the interface (i.e., kvm_open (),
kvm_close (), kvm_read (), kvm_write (), and kvm_nlist ()) has been incorporated into theBSD
interface. Indeed,many kvm applications (i.e., debuggers and statistical monitors) use only this subset of the
interface.

The process interface was not kept. Thisis not a portability issue since any code that manipulates processes
is inherently machine dependent.

Finally, the Sun kvm error reporting semantics are poorly defined.The library can be configured either to
print errors to stderr automatically, or to print no error messages at all. In the latter case, the nature of the
error cannot be determined.To overcome this, theBSD interface includes a routine,kvm_geterr (3), to
return (not print out) the error message corresponding to the most recent error condition on the given descrip-
tor.

FILES
/dev/mem interface to physical memory

SEE ALSO
kvm_close (3), kvm_getargv (3), kvm_getenvv (3), kvm_geterr (3), kvm_getloadavg (3),
kvm_getlwps (3), kvm_getprocs (3), kvm_nlist (3), kvm_open (3), kvm_openfiles (3),
kvm_read (3), kvm_write (3)

NetBSD 3.0 August 18, 2002 1

KVM_DUMP (3) NetBSD Library Functions Manual KVM_DUMP (3)

NAME
kvm_dump_mkheader , kvm_dump_wrtheader , kvm_dump_inval — crash dump support functions

LIBRARY
Kernel Data Access Library (libkvm, −lkvm)

SYNOPSIS
#include <kvm.h>

int
kvm_dump_mkheader (kvm_t ∗kd , off_t dump_off);

int
kvm_dump_wrtheader (kvm_t ∗kd , FILE ∗fp , int dumpsize);

int
kvm_dump_inval (kvm_t ∗kd);

DESCRIPTION
First note that the functions described here were designed to be used bysavecore (8).

The functionkvm_dump_mkheader () checks if the physical memory file associated withkd contains a
valid crash dump header as generated by a dumping kernel. When a valid header is found,
kvm_dump_mkheader () initializes the internal kvm data structures as if a crash dump generated by the
savecore (8) program was opened. This has the intentional side effect of enabling the address translation
machinery.

A call to kvm_dump_mkheader () will most likely be followed by a call tokvm_dump_wrtheader ().
This function takes care of generating the generic header, the CORE_CPU section and the section header of
the CORE_DAT A section. Thedata is written to the file pointed at byfp . Thedumpsize argument is only
used to properly the set the segment size of the CORE_DAT A section. Notethat this function assumes that
fp is positioned at file location 0. This function will not seek and therefore allows fp to be a file pointer
obtained byzopen ().

Thekvm_dump_inval () function clears the magic number in the physical memory file associated withkd .
The address translations must be enabled for this to work (thus assuming thatkvm_dump_mkheader () was
called earlier in the sequence).

RETURN VALUES
All functions except kvm_dump_mkheader () return 0 on success, -1 on failure. The function
kvm_dump_mkheader () returns the size of the headers present before the actual dumpdata starts. If no
valid headers were found but no fatal errors occurred, 0 is returned. On fatal errors the return value is -1.

In the case of failure,kvm_geterr (3) can be used to retrieve the cause of the error.

SEE ALSO
kvm(3), kvm_open (3)

HISTORY
These functions first appeared inNetBSD 1.2.

NetBSD 3.0 March 17, 1996 1

KVM_GETERR (3) NetBSD Library Functions Manual KVM_GETERR (3)

NAME
kvm_geterr — get error message on kvm descriptor

LIBRARY
Kernel Data Access Library (libkvm, −lkvm)

SYNOPSIS
#include <kvm.h>

char ∗
kvm_geterr (kvm_t ∗kd);

DESCRIPTION
This function returns a string describing the most recent error condition on the descriptorkd . The results are
undefined if the most recentkvm(3) library call did not produce an error. The string returned is stored in
memory owned bykvm(3) so the message should be copied out and saved elsewhere if necessary.

SEE ALSO
kvm(3), kvm_close (3), kvm_getargv (3), kvm_getenvv (3), kvm_getprocs (3), kvm_nlist (3),
kvm_open (3), kvm_openfiles (3), kvm_read (3), kvm_write (3)

BUGS
This routine cannot be used to access error conditions due to a failedkvm_openfiles () call, since failure
is indicated by returning aNULL descriptor. Therefore, errors on open are output to the special error buffer
passed tokvm_openfiles (). Thisoption is not available tokvm_open ().

NetBSD 3.0 June 4, 1993 1

KVM_GETFILES (3) NetBSD Library Functions Manual KVM_GETFILES (3)

NAME
kvm_getfiles — survey open files

LIBRARY
Kernel Data Access Library (libkvm, −lkvm)

SYNOPSIS
#include <kvm.h>
#include <sys/kinfo.h>
#define _KERNEL
#include <sys/file.h>
#undef _KERNEL

char ∗
kvm_getfiles (kvm_t ∗kd , int op , int arg , int ∗cnt);

DESCRIPTION
kvm_getfiles () returns a (sub-)set of the open files in the kernel indicated bykd . Theop andarg argu-
ments constitute a predicate which limits the set of files returned. No predicates are currently defined.

The number of processes found is returned in the reference parametercnt . The files are returned as a con-
tiguous array of file structures, preceded by the address of the first file entry in the kernel. Thismemory is
owned by kvm and is not guaranteed to be persistent across subsequent kvm library calls. Data should be
copied out if it needs to be saved.

RETURN VALUES
kvm_getfiles () will returnNULLon failure.

SEE ALSO
kvm(3), kvm_close (3), kvm_geterr (3), kvm_nlist (3), kvm_open (3), kvm_openfiles (3),
kvm_read (3), kvm_write (3)

BUGS
This routine does not belong in the kvm interface.

NetBSD 3.0 April 19, 1994 1

KVM_GETLOADAV G (3) NetBSDLibrary Functions Manual KVM_GETLOADAV G (3)

NAME
kvm_getloadavg — get system load averages

LIBRARY
Kernel Data Access Library (libkvm, −lkvm)

SYNOPSIS
#include <sys/resource.h>
#include <kvm.h>

int
kvm_getloadavg (kvm_t ∗kd , double loadavg[] , int nelem);

DESCRIPTION
The kvm_getloadavg () function returns the number of processes in the system run queue of the kernel
indicated bykd , averaged over various periods of time.Up to nelem samples are retrieved and assigned to
successive elements ofloadavg [] . The system imposes a maximum of 3 samples, representing averages
over the last 1, 5, and 15 minutes, respectively.

RETURN VALUES
If the load average was unobtainable, −1 is returned; otherwise, the number of samples actually retrieved is
returned.

SEE ALSO
uptime (1), getloadavg (3), kvm(3), kvm_open (3), sysctl (3)

NetBSD 3.0 August 18, 2002 1

KVM_GETLWPS (3) NetBSD Library Functions Manual KVM_GETLWPS (3)

NAME
kvm_getlwps — access state of LWPs belonging to a user process

LIBRARY
Kernel Data Access Library (libkvm, −lkvm)

SYNOPSIS
#include <kvm.h>
#include <sys/param.h>
#include <sys/sysctl.h>

struct kinfo_lwp ∗
kvm_getlwps (kvm_t ∗kd , int pid , u_long procaddr , int ∗elemsize , int ∗cnt);

DESCRIPTION
kvm_getlwps () returns the set of LWPs belonging to the process specified bypid or procaddr in the
kernel indicated bykd . The number of LWPs found is returned in the reference parametercnt . The LWPs
are returned as a contiguous array ofkinfo_lwp structures. Thismemory is locally allocated, and subsequent
calls tokvm_getlwps () andkvm_close () will overwrite this storage.

Only the firstelemsize bytes of each array entry are returned. If the size of thekinfo_lwp structure
increases in size in a future release ofNetBSD the kernel will only return the requested amount of data for
each array entry and programs that usekvm_getlwps () will continue to function without the need for
recompilation.

If called against an active kernel, thekvm_getlwps () function will use thesysctl (3) interface and return
information about the process identified bypid ; otherwise the kernel memory device file or swap device
will be accessed and the process is identified by the location passed inpaddr .

RETURN VALUES
kvm_getlwps () returnsNULLon failure.

SEE ALSO
kvm(3), kvm_close (3), kvm_geterr (3), kvm_getproc2 (3), kvm_getprocs (3), kvm_nlist (3),
kvm_open (3), kvm_openfiles (3), kvm_read (3), kvm_write (3)

BUGS
These routines do not belong in the kvm interface.

NetBSD 3.0 February 10, 2004 1

KVM_GETPROCS (3) NetBSD Library Functions Manual KVM_GETPROCS (3)

NAME
kvm_getprocs , kvm_getargv , kvm_getenvv — access user process state

LIBRARY
Kernel Data Access Library (libkvm, −lkvm)

SYNOPSIS
#include <kvm.h>
#include <sys/param.h>
#include <sys/sysctl.h>

struct kinfo_proc ∗
kvm_getprocs (kvm_t ∗kd , int op , int arg , int ∗cnt);

char ∗∗
kvm_getargv (kvm_t ∗kd , const struct kinfo_proc ∗p , int nchr);

char ∗∗
kvm_getenvv (kvm_t ∗kd , const struct kinfo_proc ∗p , int nchr);

struct kinfo_proc2 ∗
kvm_getproc2 (kvm_t ∗kd , int op , int arg , int elemsize , int ∗cnt);

char ∗∗
kvm_getargv2 (kvm_t ∗kd , const struct kinfo_proc2 ∗p , int nchr);

char ∗∗
kvm_getenvv2 (kvm_t ∗kd , const struct kinfo_proc2 ∗p , int nchr);

DESCRIPTION
kvm_getprocs () returns a (sub-)set of active processes in the kernel indicated bykd . The op andarg
arguments constitute a predicate which limits the set of processes returned. The value ofop describes the fil-
tering predicate as follows:

KERN_PROC_ALL all processes
KERN_PROC_PID processes with process idarg
KERN_PROC_PGRP processes with process grouparg
KERN_PROC_SESSION

processes with session idarg
KERN_PROC_TTY processes with tty devicearg
KERN_PROC_UID processes with effective user idarg
KERN_PROC_RUID processes with real user idarg
KERN_PROC_GID processes with effective group idarg
KERN_PROC_RGID processes with real group idarg

The number of processes found is returned in the reference parametercnt . The processes are returned as a
contiguous array ofkinfo_proc structures. Thismemory is locally allocated, and subsequent calls to
kvm_getprocs () andkvm_close () will overwrite this storage.

If the op argument for kvm_getprocs () is KERN_PROC_TTY , arg can also be
KERN_PROC_TTY_NODEV to select processes with no controlling tty and
KERN_PROC_TTY_REVOKE to select processes which have had their controlling tty revoked.

kvm_getargv () returns a null-terminated argument vector that corresponds to the command line argu-
ments passed to process indicated byp. Most likely, these arguments correspond to the values passed to
exec (3) on process creation.This information is, however, deliberately under control of the process itself.
Note that the original command name can be found, unaltered, in the p_comm field of the process structure

NetBSD 3.0 February 10, 2004 1

KVM_GETPROCS (3) NetBSD Library Functions Manual KVM_GETPROCS (3)

returned bykvm_getprocs ().

The nchr argument indicates the maximum number of characters, including null bytes, to use in building
the strings. If this amount is exceeded, the string causing the overflow is truncated and the partial result is
returned. Thisis handy for programs like ps (1) andw(1) that print only a one line summary of a command
and should not copy out large amounts of text only to ignore it.If nchr is zero, no limit is imposed and all
argument strings are returned in their entirety.

The memory allocated to the argv pointers and string storage is owned by the kvm library. Subsequent
kvm_getprocs () andkvm_close (3) calls will clobber this storage.

Thekvm_getenvv () function is similar tokvm_getargv () but returns the vector of environment strings.
This data is also alterable by the process.

kvm_getproc2 () is similar tokvm_getprocs () but returns an array ofkinfo_proc2 structures. Addi-
tionally, only the firstelemsize bytes of each array entry are returned. If the size of thekinfo_proc2
structure increases in size in a future release ofNetBSD the kernel will only return the requested amount of
data for each array entry and programs that usekvm_getproc2 () will continue to function without the
need for recompilation.

The kvm_getargv2 () and kvm_getenvv2 () are equivalents to the kvm_getargv () and
kvm_getenvv () functions but use akinfo_proc2 structure to specify the process.

If called against an active kernel, thekvm_getproc2 (), kvm_getargv2 (), andkvm_getenvv2 () func-
tions will use thesysctl (3) interface and do not require access to the kernel memory device file or swap
device.

RETURN VALUES
kvm_getprocs (), kvm_getargv (), kvm_getenvv (), kvm_getproc2 (), kvm_getargv2 (), and
kvm_getenvv2 () all returnNULLon failure.

SEE ALSO
kvm(3), kvm_close (3), kvm_geterr (3), kvm_nlist (3), kvm_open (3), kvm_openfiles (3),
kvm_read (3), kvm_write (3)

BUGS
These routines do not belong in the kvm interface.

NetBSD 3.0 February 10, 2004 2

KVM_NLIST (3) NetBSD Library Functions Manual KVM_NLIST (3)

NAME
kvm_nlist — retrieve symbol table names from a kernel image

LIBRARY
Kernel Data Access Library (libkvm, −lkvm)

SYNOPSIS
#include <kvm.h>
#include <nlist.h>

int
kvm_nlist (kvm_t ∗kd , struct nlist ∗nl);

DESCRIPTION
kvm_nlist () retrieves the symbol table entries indicated by the name list argumentnl . This argument
points to an array of nlist structures, terminated by an entry whose n_name field isNULL (seenlist (3)).
Each symbol is looked up using the n_name field, and if found, the corresponding n_type and n_value fields
are filled in. These fields are set to 0 if the symbol is not found.

If kd was created by a call tokvm_open () with a NULL executable image name,kvm_nlist () will use
/dev/ksyms to retrieve the kernel symbol table.

RETURN VALUES
The kvm_nlist () function returns the number of invalid entries found. If the kernel symbol table was
unreadable, -1 is returned.

FILES
/dev/ksyms

SEE ALSO
kvm(3), kvm_close (3), kvm_getargv (3), kvm_getenvv (3), kvm_geterr (3), kvm_getprocs (3),
kvm_open (3), kvm_openfiles (3), kvm_read (3), kvm_write (3), ksyms (4)

NetBSD 3.0 May 11, 2003 1

KVM_OPEN (3) NetBSD Library Functions Manual KVM_OPEN (3)

NAME
kvm_open , kvm_openfiles , kvm_close — initialize kernel virtual memory access

LIBRARY
Kernel Data Access Library (libkvm, −lkvm)

SYNOPSIS
#include <fcntl.h>
#include <kvm.h>

kvm_t ∗
kvm_open (const char ∗execfile , const char ∗corefile , char ∗swapfile ,

int flags , const char ∗errstr);

kvm_t ∗
kvm_openfiles (const char ∗execfile , const char ∗corefile , char ∗swapfile ,

int flags , char ∗errbuf);

int
kvm_close (kvm_t ∗kd);

DESCRIPTION
The functionskvm_open () andkvm_openfiles () return a descriptor used to access kernel virtual mem-
ory via thekvm(3) library routines. Both active kernels and crash dumps are accessible through this inter-
face.

execfile is the executable image of the kernel being examined. Thisfile must contain a symbol table.If
this argument isNULL, the currently running system is assumed, which is indicated by_PATH_UNIX in
〈paths.h 〉.

corefile is the kernel memory device file. It can be either/dev/mem or a crash dump core generated by
savecore (8). If corefile is NULL, the default indicated by_PATH_MEMfrom 〈paths.h 〉 is used.

swapfile should indicate the swap device. If NULL, _PATH_DRUMfrom 〈paths.h 〉 is used.

The flags argument indicates read/write access as inopen (2) and applies only to the core file. The only
permitted flags fromopen (2) areO_RDONLY, O_WRONLY, andO_RDWR.

As a special case, aflags argument ofKVM_NO_FILESwill initialize the kvm(3) library for use on active
kernels only usingsysctl (3) for retrieving kernel data and ignores theexecfile , corefile and
swapfile arguments. Onlya small subset of thekvm(3) library functions are available using this method.
These are currentlykvm_getproc2 (3), kvm_getargv2 (3) andkvm_getenvv2 (3).

There are two open routines which differ only with respect to the error mechanism. One provides backward
compatibility with the SunOS kvm library, while the other provides an improved error reporting framework.

Thekvm_open () function is the Sun kvm compatible open call.Here, theerrstr argument indicates how
errors should be handled. If it isNULL, no errors are reported and the application cannot know the specific
nature of the failed kvm call. If it is notNULL, errors are printed to stderr witherrstr prepended to the
message, as inperror (3). Normally, the name of the program is used here. The string is assumed to per-
sist at least until the correspondingkvm_close () call.

The kvm_openfiles () function providesBSD style error reporting. Here, error messages are not printed
out by the library. Instead, the application obtains the error message corresponding to the most recent kvm
library call usingkvm_geterr () (seekvm_geterr (3)). Theresults are undefined if the most recent kvm
call did not produce an error. Sincekvm_geterr () requires a kvm descriptor, but the open routines return
NULL on failure, kvm_geterr () cannot be used to get the error message if open fails. Thus,

NetBSD 3.0 April 19, 1994 1

KVM_OPEN (3) NetBSD Library Functions Manual KVM_OPEN (3)

kvm_openfiles () will place any error message in theerrbuf argument. Thisbuffer should be
_POSIX2_LINE_MAX characters large (from〈limits.h 〉).

RETURN VALUES
The kvm_open () andkvm_openfiles () functions both return a descriptor to be used in all subsequent
kvm library calls. The library is fully re-entrant.On failure, NULL is returned, in which case
kvm_openfiles () writes the error message intoerrbuf .

Thekvm_close () function returns 0 on success and -1 on failure.

SEE ALSO
open (2), kvm(3), kvm_getargv (3), kvm_getenvv (3), kvm_geterr (3), kvm_getprocs (3),
kvm_nlist (3), kvm_read (3), kvm_write (3)

BUGS
There should not be two open calls. The ill-defined error semantics of the Sun library and the desire to have
a backward-compatible library forBSD left little choice.

NetBSD 3.0 April 19, 1994 2

KVM_READ (3) NetBSD Library Functions Manual KVM_READ (3)

NAME
kvm_read , kvm_write — read or write kernel virtual memory

LIBRARY
Kernel Data Access Library (libkvm, −lkvm)

SYNOPSIS
#include <kvm.h>

ssize_t
kvm_read (kvm_t ∗kd , u_long addr , void ∗buf , size_t nbytes);

ssize_t
kvm_write (kvm_t ∗kd , u_long addr , const void ∗buf , size_t nbytes);

DESCRIPTION
Thekvm_read () andkvm_write () functions are used to read and write kernel virtual memory (or a crash
dump file). Seekvm_open (3) or kvm_openfiles (3) for information regarding opening kernel virtual
memory and crash dumps.

The kvm_read () function transfersnbytes bytes of data from the kernel space addressaddr to buf .
Conversely,kvm_write () transfers data frombuf to addr . Unlike their SunOS counterparts, these func-
tions cannot be used to read or write process address spaces.

RETURN VALUES
Upon success, the number of bytes actually transferred is returned. Otherwise, -1 is returned.

SEE ALSO
kvm(3), kvm_close (3), kvm_getargv (3), kvm_getenvv (3), kvm_geterr (3), kvm_getprocs (3),
kvm_nlist (3), kvm_open (3), kvm_openfiles (3)

NetBSD 3.0 June 4, 1993 1

LABS (3) NetBSD Library Functions Manual LABS (3)

NAME
labs — return the absolute value of a long integer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

long int
labs (long int j);

DESCRIPTION
The labs () function returns the absolute value of the long integerj .

SEE ALSO
abs (3), cabs (3), floor (3), llabs (3), math (3)

STANDARDS
The labs () function conforms toANSI X3.159-1989 (“ANSI C89”).

BUGS
The absolute value of the most negative integer remains negative.

NetBSD 3.0 June 4, 1993 1

LBER_DECODE(3) LBER_DECODE(3)

NAME
ber_get_next, ber_skip_tag, ber_peek_tag, ber_scanf, ber_get_int, ber_get_enum, ber_get_stringb,
ber_get_stringa, ber_get_stringal, ber_get_stringbv, ber_get_null, ber_get_boolean, ber_get_bitstring,
ber_first_element, ber_next_element − OpenLDAP LBER simplified Basic Encoding Rules library routines
for decoding

LIBRARY
OpenLDAP LBER (liblber, -llber)

SYNOPSIS
#include <lber.h>

ber_tag_t ber_get_next(Sockbuf *sb, ber_len_t *len, BerElement *ber);

ber_tag_t ber_skip_tag(BerElement *ber, ber_len_t *len);

ber_tag_t ber_peek_tag(BerElement *ber, ber_len_t *len);

ber_tag_t ber_scanf(BerElement *ber, const char * fmt, ...);

ber_tag_t ber_get_int(BerElement *ber, ber_int_t * num);

ber_tag_t ber_get_enum(BerElement *ber, ber_int_t * num);

ber_tag_t ber_get_stringb(BerElement *ber, char *buf , ber_len_t *len);

ber_tag_t ber_get_stringa(BerElement *ber, char ** buf);

ber_tag_t ber_get_stringal(BerElement *ber, struct berval * *bv);

ber_tag_t ber_get_stringbv(BerElement *ber, struct berval * bv, int alloc);

ber_tag_t ber_get_null(BerElement *ber);

ber_tag_t ber_get_boolean(BerElement *ber, ber_int_t * bool);

ber_tag_t ber_get_bitstringa(BerElement *ber, char ** buf , ber_len_t *blen);

ber_tag_t ber_first_element(BerElement *ber, ber_len_t *len, char ** cookie);

ber_tag_t ber_next_element(BerElement *ber, ber_len_t *len, const char *cookie);

DESCRIPTION
These routines provide a subroutine interface to a simplified implementation of the Basic Encoding Rules
of ASN.1. The version of BER these routines support is the one defined for the LDAP protocol. The
encoding rules are the same as BER, except that only definite form lengths are used, and bitstrings and
octet strings are always encoded in primitive form. Thisman page describes the decoding routines in the
lber library. Seelber-encode(3) for details on the corresponding encoding routines.Consultlber-types(3)
for information about types, allocators, and deallocators.

Normally, the only routines that need to be called by an application areber_get_next() to get the next BER
element andber_scanf() to do the actual decoding. In some cases,ber_peek_tag() may also need to be
called in normal usage. The other routines are provided for those applications that need more control than
ber_scanf() provides. Ingeneral, these routines return the tag of the element decoded, or LBER_ERROR
if an error occurred.

Theber_get_next() routine is used to read the next BER element from the given Sockbuf,sb. It strips off
and returns the leading tag, strips off and returns the length of the entire element inlen, and sets upber for
subsequent calls tober_scanf() et al to decode the element. Seelber-sockbuf(3) for details of the Sockbuf
implementation of thesbparameter.

The ber_scanf() routine is used to decode a BER element in much the same way thatscanf(3) works. It
reads fromber, a pointer to a BerElement such as returned byber_get_next(), interprets the bytes accord-
ing to the format stringfmt, and stores the results in its additional arguments. Theformat string contains
conversion specifications which are used to direct the interpretation of the BER element. The format string
can contain the following characters.

OpenLDAP LDVERSION RELEASEDATE 1

LBER_DECODE(3) LBER_DECODE(3)

a Octet string.A char ** should be supplied.Memory is allocated, filled with the contents of
the octet string, null-terminated, and returned in the parameter. The caller should free the
returned string usingber_memfree().

A Octet string.A variant of "a". A char ** should be supplied. Memory is allocated, filled with
the contents of the octet string, null-terminated, and returned in the parameter, unless a zero-
length string would result; in that case, the arg is set to NULL. The caller should free the
returned string usingber_memfree().

s Octet string.A char * buffer should be supplied, followed by a pointer to a ber_len_t initial-
ized to the size of the buffer. Upon return, the null-terminated octet string is put into the
buffer, and the ber_len_t is set to the actual size of the octet string.

O Octet string. A struct ber_val ** should be supplied, which upon return points to a dynami-
cally allocated struct berval containing the octet string and its length.The caller should free
the returned structure usingber_bvfree().

o Octet string. A struct ber_val * should be supplied, which upon return contains the dynami-
cally allocated octet string and its length.The caller should free the returned octet string using
ber_memfree().

m Octet string.A struct ber_val * should be supplied, which upon return contains the octet string
and its length.The string resides in memory assigned to the BerElement, and must not be
freed by the caller.

b Boolean. Apointer to a ber_int_t should be supplied.

e Enumeration. Apointer to a ber_int_t should be supplied.

i Integer. A pointer to a ber_int_t should be supplied.

B Bitstring. A char ** should be supplied which will point to the dynamically allocated bits, fol-
lowed by a ber_len_t *, which will point to the length (in bits) of the bitstring returned.

n Null. No parameter is required. The element is simply skipped if it is recognized.

v Sequence of octet strings.A char *** should be supplied, which upon return points to a
dynamically allocated null-terminated array of char *’s containing the octet strings. NULL is
returned if the sequence is empty. The caller should free the returned array and octet strings
usingber_memvfree().

V Sequence of octet strings with lengths.A struct berval *** should be supplied, which upon
return points to a dynamically allocated null-terminated array of struct berval *’s containing
the octet strings and their lengths. NULL is returned if the sequence is empty. The caller
should free the returned structures usingber_bvecfree().

W Sequence of octet strings with lengths.A BerVarray * should be supplied, which upon return
points to a dynamically allocated array of struct berval’s containing the octet strings and their
lengths. The array is terminated by a struct berval with a NULL bv_val string pointer. NULL
is returned if the sequence is empty. The caller should free the returned structures using
ber_bvarray_free().

M Sequence of octet strings with lengths.This is a generalized form of the previous three for-
mats. Avoid ** (ptr) should be supplied, followed by a ber_len_t * (len) and a ber_len_t (off).
Upon return (ptr) will point to a dynamically allocated array whose elements are all of size
(*len). A struct berval will be filled starting at offset (off) in each element. The strings in each
struct berval reside in memory assigned to the BerElement and must not be freed by the caller.
The array is terminated by a struct berval with a NULL bv_val string pointer. NULL is
returned if the sequence is empty. The number of elements in the array is also stored in (*len)
on return. The caller should free the returned array usingber_memfree().

l Length of the next element.A pointer to a ber_len_t should be supplied.

OpenLDAP LDVERSION RELEASEDATE 2

LBER_DECODE(3) LBER_DECODE(3)

t Tag of the next element.A pointer to a ber_tag_t should be supplied.

T Skip element and return its tag.A pointer to a ber_tag_t should be supplied.

x Skip element. The next element is skipped.

{ Begin sequence. No parameter is required. The initial sequence tag and length are skipped.

} End sequence. No parameter is required and no action is taken.

[Begin set. No parameter is required. The initial set tag and length are skipped.

] End set. No parameter is required and no action is taken.

Theber_get_int() routine tries to interpret the next element as an integer, returning the result innum. The
tag of whatever it finds is returned on success, LBER_ERROR (−1) on failure.

Theber_get_stringb() routine is used to read an octet string into a preallocated buffer. The len parameter
should be initialized to the size of the buffer, and will contain the length of the octet string read upon return.
The buffer should be big enough to take the octet string value plus a terminating NULL byte.

Theber_get_stringa() routine is used to dynamically allocate space into which an octet string is read.The
caller should free the returned string usingber_memfree().

The ber_get_stringal() routine is used to dynamically allocate space into which an octet string and its
length are read.It takes a struct berval **, and returns the result in this parameter. The caller should free
the returned structure usingber_bvfree().

Theber_get_stringbv() routine is used to read an octet string and its length into the provided struct berval
*. If the alloc parameter is zero, the string will reside in memory assigned to the BerElement, and must not
be freed by the caller. If the alloc parameter is non-zero, the string will be copied into dynamically allo-
cated space which should be returned usingber_memfree().

Theber_get_null() routine is used to read a NULL element. It returns the tag of the element it skips over.

The ber_get_boolean() routine is used to read a boolean value. It is called the same way that
ber_get_int() is called.

The ber_get_enum() routine is used to read a enumeration value. It is called the same way that
ber_get_int() is called.

The ber_get_bitstringa() routine is used to read a bitstring value. It takes a char ** which will hold the
dynamically allocated bits, followed by an ber_len_t *, which will point to the length (in bits) of the bit-
string returned. The caller should free the returned string usingber_memfree().

The ber_first_element() routine is used to return the tag and length of the first element in a set or
sequence. Italso returns incookiea magic cookie parameter that should be passed to subsequent calls to
ber_next_element(), which returns similar information.

EXAMPLES
Assume the variablebercontains a lightweight BER encoding of the following ASN.1 object:

AlmostASearchRequest := SEQUENCE {
baseObject DistinguishedName,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2)

},
derefAliases ENUMERATED {

neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3)

},

OpenLDAP LDVERSION RELEASEDATE 3

LBER_DECODE(3) LBER_DECODE(3)

sizelimit INTEGER(0 .. 65535),
timelimit INTEGER(0 .. 65535),
attrsOnly BOOLEAN,
attributes SEQUENCE OF AttributeType

}

The element can be decoded usingber_scanf() as follows.

ber_int_t scope,deref, size, time, attrsonly;
char *dn,**attrs;
ber_tag_t tag;

tag = ber_scanf(ber, "{aeeiib{v}}",
&dn, &scope, &deref,
&size, &time, &attrsonly, &attrs);

if(tag == LBER_ERROR) {
/* error */

} else {
/* success */

}

ber_memfree(dn);
ber_memvfree(attrs);

ERRORS
If an error occurs during decoding, generally these routines return LBER_ERROR ((ber_tag_t)−1).

NOTES
The return values for all of these functions are declared in the<lber.h> header file.Some routines may
dynamically allocate memory which must be freed by the caller using supplied deallocation routines.

SEE ALSO
lber-encode(3), lber-memory(3), lber-sockbuf(3), lber-types(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 4

LBER_DECODE(3) LBER_DECODE(3)

NAME
ber_get_next, ber_skip_tag, ber_peek_tag, ber_scanf, ber_get_int, ber_get_enum, ber_get_stringb,
ber_get_stringa, ber_get_stringal, ber_get_stringbv, ber_get_null, ber_get_boolean, ber_get_bitstring,
ber_first_element, ber_next_element − OpenLDAP LBER simplified Basic Encoding Rules library routines
for decoding

LIBRARY
OpenLDAP LBER (liblber, -llber)

SYNOPSIS
#include <lber.h>

ber_tag_t ber_get_next(Sockbuf *sb, ber_len_t *len, BerElement *ber);

ber_tag_t ber_skip_tag(BerElement *ber, ber_len_t *len);

ber_tag_t ber_peek_tag(BerElement *ber, ber_len_t *len);

ber_tag_t ber_scanf(BerElement *ber, const char * fmt, ...);

ber_tag_t ber_get_int(BerElement *ber, ber_int_t * num);

ber_tag_t ber_get_enum(BerElement *ber, ber_int_t * num);

ber_tag_t ber_get_stringb(BerElement *ber, char *buf , ber_len_t *len);

ber_tag_t ber_get_stringa(BerElement *ber, char ** buf);

ber_tag_t ber_get_stringal(BerElement *ber, struct berval * *bv);

ber_tag_t ber_get_stringbv(BerElement *ber, struct berval * bv, int alloc);

ber_tag_t ber_get_null(BerElement *ber);

ber_tag_t ber_get_boolean(BerElement *ber, ber_int_t * bool);

ber_tag_t ber_get_bitstringa(BerElement *ber, char ** buf , ber_len_t *blen);

ber_tag_t ber_first_element(BerElement *ber, ber_len_t *len, char ** cookie);

ber_tag_t ber_next_element(BerElement *ber, ber_len_t *len, const char *cookie);

DESCRIPTION
These routines provide a subroutine interface to a simplified implementation of the Basic Encoding Rules
of ASN.1. The version of BER these routines support is the one defined for the LDAP protocol. The
encoding rules are the same as BER, except that only definite form lengths are used, and bitstrings and
octet strings are always encoded in primitive form. Thisman page describes the decoding routines in the
lber library. Seelber-encode(3) for details on the corresponding encoding routines.Consultlber-types(3)
for information about types, allocators, and deallocators.

Normally, the only routines that need to be called by an application areber_get_next() to get the next BER
element andber_scanf() to do the actual decoding. In some cases,ber_peek_tag() may also need to be
called in normal usage. The other routines are provided for those applications that need more control than
ber_scanf() provides. Ingeneral, these routines return the tag of the element decoded, or LBER_ERROR
if an error occurred.

Theber_get_next() routine is used to read the next BER element from the given Sockbuf,sb. It strips off
and returns the leading tag, strips off and returns the length of the entire element inlen, and sets upber for
subsequent calls tober_scanf() et al to decode the element. Seelber-sockbuf(3) for details of the Sockbuf
implementation of thesbparameter.

The ber_scanf() routine is used to decode a BER element in much the same way thatscanf(3) works. It
reads fromber, a pointer to a BerElement such as returned byber_get_next(), interprets the bytes accord-
ing to the format stringfmt, and stores the results in its additional arguments. Theformat string contains
conversion specifications which are used to direct the interpretation of the BER element. The format string
can contain the following characters.

OpenLDAP 2.4.9 2008/05/07 1

LBER_DECODE(3) LBER_DECODE(3)

a Octet string.A char ** should be supplied.Memory is allocated, filled with the contents of
the octet string, null-terminated, and returned in the parameter. The caller should free the
returned string usingber_memfree().

A Octet string.A variant of "a". A char ** should be supplied. Memory is allocated, filled with
the contents of the octet string, null-terminated, and returned in the parameter, unless a zero-
length string would result; in that case, the arg is set to NULL. The caller should free the
returned string usingber_memfree().

s Octet string.A char * buffer should be supplied, followed by a pointer to a ber_len_t initial-
ized to the size of the buffer. Upon return, the null-terminated octet string is put into the
buffer, and the ber_len_t is set to the actual size of the octet string.

O Octet string. A struct ber_val ** should be supplied, which upon return points to a dynami-
cally allocated struct berval containing the octet string and its length.The caller should free
the returned structure usingber_bvfree().

o Octet string. A struct ber_val * should be supplied, which upon return contains the dynami-
cally allocated octet string and its length.The caller should free the returned octet string using
ber_memfree().

m Octet string.A struct ber_val * should be supplied, which upon return contains the octet string
and its length.The string resides in memory assigned to the BerElement, and must not be
freed by the caller.

b Boolean. Apointer to a ber_int_t should be supplied.

e Enumeration. Apointer to a ber_int_t should be supplied.

i Integer. A pointer to a ber_int_t should be supplied.

B Bitstring. A char ** should be supplied which will point to the dynamically allocated bits, fol-
lowed by a ber_len_t *, which will point to the length (in bits) of the bitstring returned.

n Null. No parameter is required. The element is simply skipped if it is recognized.

v Sequence of octet strings.A char *** should be supplied, which upon return points to a
dynamically allocated null-terminated array of char *’s containing the octet strings. NULL is
returned if the sequence is empty. The caller should free the returned array and octet strings
usingber_memvfree().

V Sequence of octet strings with lengths.A struct berval *** should be supplied, which upon
return points to a dynamically allocated null-terminated array of struct berval *’s containing
the octet strings and their lengths. NULL is returned if the sequence is empty. The caller
should free the returned structures usingber_bvecfree().

W Sequence of octet strings with lengths.A BerVarray * should be supplied, which upon return
points to a dynamically allocated array of struct berval’s containing the octet strings and their
lengths. The array is terminated by a struct berval with a NULL bv_val string pointer. NULL
is returned if the sequence is empty. The caller should free the returned structures using
ber_bvarray_free().

M Sequence of octet strings with lengths.This is a generalized form of the previous three for-
mats. Avoid ** (ptr) should be supplied, followed by a ber_len_t * (len) and a ber_len_t (off).
Upon return (ptr) will point to a dynamically allocated array whose elements are all of size
(*len). A struct berval will be filled starting at offset (off) in each element. The strings in each
struct berval reside in memory assigned to the BerElement and must not be freed by the caller.
The array is terminated by a struct berval with a NULL bv_val string pointer. NULL is
returned if the sequence is empty. The number of elements in the array is also stored in (*len)
on return. The caller should free the returned array usingber_memfree().

l Length of the next element.A pointer to a ber_len_t should be supplied.

OpenLDAP 2.4.9 2008/05/07 2

LBER_DECODE(3) LBER_DECODE(3)

t Tag of the next element.A pointer to a ber_tag_t should be supplied.

T Skip element and return its tag.A pointer to a ber_tag_t should be supplied.

x Skip element. The next element is skipped.

{ Begin sequence. No parameter is required. The initial sequence tag and length are skipped.

} End sequence. No parameter is required and no action is taken.

[Begin set. No parameter is required. The initial set tag and length are skipped.

] End set. No parameter is required and no action is taken.

Theber_get_int() routine tries to interpret the next element as an integer, returning the result innum. The
tag of whatever it finds is returned on success, LBER_ERROR (−1) on failure.

Theber_get_stringb() routine is used to read an octet string into a preallocated buffer. The len parameter
should be initialized to the size of the buffer, and will contain the length of the octet string read upon return.
The buffer should be big enough to take the octet string value plus a terminating NULL byte.

Theber_get_stringa() routine is used to dynamically allocate space into which an octet string is read.The
caller should free the returned string usingber_memfree().

The ber_get_stringal() routine is used to dynamically allocate space into which an octet string and its
length are read.It takes a struct berval **, and returns the result in this parameter. The caller should free
the returned structure usingber_bvfree().

Theber_get_stringbv() routine is used to read an octet string and its length into the provided struct berval
*. If the alloc parameter is zero, the string will reside in memory assigned to the BerElement, and must not
be freed by the caller. If the alloc parameter is non-zero, the string will be copied into dynamically allo-
cated space which should be returned usingber_memfree().

Theber_get_null() routine is used to read a NULL element. It returns the tag of the element it skips over.

The ber_get_boolean() routine is used to read a boolean value. It is called the same way that
ber_get_int() is called.

The ber_get_enum() routine is used to read a enumeration value. It is called the same way that
ber_get_int() is called.

The ber_get_bitstringa() routine is used to read a bitstring value. It takes a char ** which will hold the
dynamically allocated bits, followed by an ber_len_t *, which will point to the length (in bits) of the bit-
string returned. The caller should free the returned string usingber_memfree().

The ber_first_element() routine is used to return the tag and length of the first element in a set or
sequence. Italso returns incookiea magic cookie parameter that should be passed to subsequent calls to
ber_next_element(), which returns similar information.

EXAMPLES
Assume the variablebercontains a lightweight BER encoding of the following ASN.1 object:

AlmostASearchRequest := SEQUENCE {
baseObject DistinguishedName,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2)

},
derefAliases ENUMERATED {

neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3)

},

OpenLDAP 2.4.9 2008/05/07 3

LBER_DECODE(3) LBER_DECODE(3)

sizelimit INTEGER(0 .. 65535),
timelimit INTEGER(0 .. 65535),
attrsOnly BOOLEAN,
attributes SEQUENCE OF AttributeType

}

The element can be decoded usingber_scanf() as follows.

ber_int_t scope,deref, size, time, attrsonly;
char *dn,**attrs;
ber_tag_t tag;

tag = ber_scanf(ber, "{aeeiib{v}}",
&dn, &scope, &deref,
&size, &time, &attrsonly, &attrs);

if(tag == LBER_ERROR) {
/* error */

} else {
/* success */

}

ber_memfree(dn);
ber_memvfree(attrs);

ERRORS
If an error occurs during decoding, generally these routines return LBER_ERROR ((ber_tag_t)−1).

NOTES
The return values for all of these functions are declared in the<lber.h> header file.Some routines may
dynamically allocate memory which must be freed by the caller using supplied deallocation routines.

SEE ALSO
lber-encode(3), lber-memory(3), lber-sockbuf(3), lber-types(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 4

LBER_ENCODE(3) LBER_ENCODE(3)

NAME
ber_alloc_t, ber_flush, ber_flush2, ber_printf, ber_put_int, ber_put_enum, ber_put_ostring, ber_put_string,
ber_put_null, ber_put_boolean, ber_put_bitstring, ber_start_seq, ber_start_set, ber_put_seq, ber_put_set −
OpenLDAP LBER simplified Basic Encoding Rules library routines for encoding

LIBRARY
OpenLDAP LBER (liblber, -llber)

SYNOPSIS
#include <lber.h>

BerElement *ber_alloc_t(int options);

int ber_flush(Sockbuf *sb, BerElement *ber, int freeit);

int ber_flush2(Sockbuf *sb, BerElement *ber, int freeit);

int ber_printf(BerElement * ber, const char * fmt, ...);

int ber_put_int(BerElement *ber, ber_int_t num, ber_tag_t tag);

int ber_put_enum(BerElement *ber, ber_int_t num, ber_tag_t tag);

int ber_put_ostring(BerElement *ber, const char *str, ber_len_t len, ber_tag_t tag);

int ber_put_string(BerElement *ber, const char *str, ber_tag_t tag);

int ber_put_null(BerElement *ber, ber_tag_t tag);

int ber_put_boolean(BerElement *ber, ber_int_t bool, ber_tag_t tag);

int ber_put_bitstring(BerElement * ber, const char *str, ber_len_t blen, ber_tag_t tag);

int ber_start_seq(BerElement *ber, ber_tag_t tag);

int ber_start_set(BerElement *ber, ber_tag_t tag);

int ber_put_seq(BerElement *ber);

int ber_put_set(BerElement *ber);

DESCRIPTION
These routines provide a subroutine interface to a simplified implementation of the Basic Encoding Rules
of ASN.1. The version of BER these routines support is the one defined for the LDAP protocol.The
encoding rules are the same as BER, except that only definite form lengths are used, and bitstrings and
octet strings are always encoded in primitive form. Thisman page describes the encoding routines in the
lber library. Seelber-decode(3) for details on the corresponding decoding routines.Consultlber-types(3)
for information about types, allocators, and deallocators.

Normally, the only routines that need to be called by an application areber_alloc_t() to allocate a BER ele-
ment for encoding,ber_printf () to do the actual encoding, andber_flush2() to actually write the element.
The other routines are provided for those applications that need more control thanber_printf () provides.
In general, these routines return the length of the element encoded, or -1 if an error occurred.

Theber_alloc_t() routine is used to allocate a new BER element. It should be called with an argument of
LBER_USE_DER.

The ber_flush2() routine is used to actually write the element to a socket (or file) descriptor, once it has
been fully encoded (usingber_printf () and friends).Seelber-sockbuf(3) for more details on the Sockbuf
implementation of thesb parameter. If the freeit parameter is non-zero, the suppliedber will be freed. If
LBER_FLUSH_FREE_ON_SUCCESSis used, theber is only freed when successfully flushed, otherwise it
is left intact; ifLBER_FLUSH_FREE_ON_ERRORis used, theber is only freed when an error occurs, oth-
erwise it is left intact; ifLBER_FLUSH_FREE_ALWA YS is used, theber is freed anyway. This function
differs from the originalber_flush(3) function, whose behavior corresponds to that indicated for
LBER_FLUSH_FREE_ON_SUCCESS. Note that in the future, the behavior ofber_flush(3) with freeit
non-zero might change into that ofber_flush2(3) with freeitset toLBER_FLUSH_FREE_ALWA YS.

The ber_printf () routine is used to encode a BER element in much the same way thatsprintf (3) works.

OpenLDAP LDVERSION RELEASEDATE 1

LBER_ENCODE(3) LBER_ENCODE(3)

One important difference, though, is that some state information is kept with theber parameter so that mul-
tiple calls can be made tober_printf () to append things to the end of the BER element.Ber_printf ()
writes tober, a pointer to a BerElement such as returned byber_alloc_t(). It interprets and formats its
arguments according to the format stringfmt. The format string can contain the following characters:

b Boolean. Anber_int_t parameter should be supplied.A boolean element is output.

e Enumeration. Anber_int_t parameter should be supplied. An enumeration element is output.

i Integer. An ber_int_t parameter should be supplied. An integer element is output.

B Bitstring. A char * pointer to the start of the bitstring is supplied, followed by the number of
bits in the bitstring.A bitstring element is output.

n Null. No parameter is required.A null element is output.

o Octet string. A char * is supplied, followed by the length of the string pointed to. An octet
string element is output.

O Octet string.A struct berval * is supplied. An octet string element is output.

s Octet string. A null-terminated string is supplied.An octet string element is output, not
including the trailing NULL octet.

t Tag. A ber_tag_t specifying the tag to give the next element is provided. Thisworks across
calls.

v Several octet strings.A null-terminated array of char *’s is supplied. Notethat a construct like
’{v}’ is required to get an actual SEQUENCE OF octet strings.

V Several octet strings.A null-terminated array of struct berval *’s is supplied. Notethat a con-
struct like ’{V}’ is required to get an actual SEQUENCE OF octet strings.

W Several octet strings. An array of struct berval’s is supplied. Thearray is terminated by a
struct berval with a NULL bv_val. Notethat a construct like ’{W}’ is required to get an actual
SEQUENCE OF octet strings.

{ Begin sequence. No parameter is required.

} End sequence. No parameter is required.

[Begin set. No parameter is required.

] End set. No parameter is required.

Theber_put_int() routine writes the integer elementnumto the BER elementber.

Theber_put_enum() routine writes the enumeration elementnumto the BER elementber.

Theber_put_boolean() routine writes the boolean value given by bool to the BER element.

The ber_put_bitstring () routine writesblen bits starting atstr as a bitstring value to the given BER ele-
ment. Notethatblen is the lengthin bitsof the bitstring.

Theber_put_ostring() routine writeslenbytes starting atstr to the BER element as an octet string.

Theber_put_string() routine writes the null-terminated string (minus the terminating ’’) to the BER ele-
ment as an octet string.

Theber_put_null() routine writes a NULL element to the BER element.

The ber_start_seq() routine is used to start a sequence in the BER element.The ber_start_set() routine
works similarly. The end of the sequence or set is marked by the nearest matching call tober_put_seq() or
ber_put_set(), respectively.

EXAMPLES
Assuming the following variable declarations, and that the variables have been assigned appropriately, an
lber encoding of the following ASN.1 object:

AlmostASearchRequest := SEQUENCE {

OpenLDAP LDVERSION RELEASEDATE 2

LBER_ENCODE(3) LBER_ENCODE(3)

baseObject DistinguishedName,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2)

},
derefAliases ENUMERATED {

neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3)

},
sizelimit INTEGER(0 .. 65535),
timelimit INTEGER(0 .. 65535),
attrsOnly BOOLEAN,
attributes SEQUENCE OF AttributeType

}

can be achieved like so:

int rc;
ber_int_t scope,ali, size, time, attrsonly;
char *dn,**attrs;
BerElement *ber;

/* ... fill in values ... */

ber = ber_alloc_t(LBER_USE_DER);

if (ber == NULL) {
/* error */

}

rc = ber_printf(ber, "{siiiib{v}}", dn, scope, ali,
size, time, attrsonly, attrs);

if(rc == -1) {
/* error */

} else {
/* success */

}

ERRORS
If an error occurs during encoding, generally these routines return -1.

NOTES
The return values for all of these functions are declared in the <lber.h> header file.

SEE ALSO
lber-decode(3), lber-memory(3), lber-sockbuf(3), lber-types(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 3

LBER_ENCODE(3) LBER_ENCODE(3)

NAME
ber_alloc_t, ber_flush, ber_flush2, ber_printf, ber_put_int, ber_put_enum, ber_put_ostring, ber_put_string,
ber_put_null, ber_put_boolean, ber_put_bitstring, ber_start_seq, ber_start_set, ber_put_seq, ber_put_set −
OpenLDAP LBER simplified Basic Encoding Rules library routines for encoding

LIBRARY
OpenLDAP LBER (liblber, -llber)

SYNOPSIS
#include <lber.h>

BerElement *ber_alloc_t(int options);

int ber_flush(Sockbuf *sb, BerElement *ber, int freeit);

int ber_flush2(Sockbuf *sb, BerElement *ber, int freeit);

int ber_printf(BerElement * ber, const char * fmt, ...);

int ber_put_int(BerElement *ber, ber_int_t num, ber_tag_t tag);

int ber_put_enum(BerElement *ber, ber_int_t num, ber_tag_t tag);

int ber_put_ostring(BerElement *ber, const char *str, ber_len_t len, ber_tag_t tag);

int ber_put_string(BerElement *ber, const char *str, ber_tag_t tag);

int ber_put_null(BerElement *ber, ber_tag_t tag);

int ber_put_boolean(BerElement *ber, ber_int_t bool, ber_tag_t tag);

int ber_put_bitstring(BerElement * ber, const char *str, ber_len_t blen, ber_tag_t tag);

int ber_start_seq(BerElement *ber, ber_tag_t tag);

int ber_start_set(BerElement *ber, ber_tag_t tag);

int ber_put_seq(BerElement *ber);

int ber_put_set(BerElement *ber);

DESCRIPTION
These routines provide a subroutine interface to a simplified implementation of the Basic Encoding Rules
of ASN.1. The version of BER these routines support is the one defined for the LDAP protocol.The
encoding rules are the same as BER, except that only definite form lengths are used, and bitstrings and
octet strings are always encoded in primitive form. Thisman page describes the encoding routines in the
lber library. Seelber-decode(3) for details on the corresponding decoding routines.Consultlber-types(3)
for information about types, allocators, and deallocators.

Normally, the only routines that need to be called by an application areber_alloc_t() to allocate a BER ele-
ment for encoding,ber_printf () to do the actual encoding, andber_flush2() to actually write the element.
The other routines are provided for those applications that need more control thanber_printf () provides.
In general, these routines return the length of the element encoded, or -1 if an error occurred.

Theber_alloc_t() routine is used to allocate a new BER element. It should be called with an argument of
LBER_USE_DER.

The ber_flush2() routine is used to actually write the element to a socket (or file) descriptor, once it has
been fully encoded (usingber_printf () and friends).Seelber-sockbuf(3) for more details on the Sockbuf
implementation of thesb parameter. If the freeit parameter is non-zero, the suppliedber will be freed. If
LBER_FLUSH_FREE_ON_SUCCESSis used, theber is only freed when successfully flushed, otherwise it
is left intact; ifLBER_FLUSH_FREE_ON_ERRORis used, theber is only freed when an error occurs, oth-
erwise it is left intact; ifLBER_FLUSH_FREE_ALWA YS is used, theber is freed anyway. This function
differs from the originalber_flush(3) function, whose behavior corresponds to that indicated for
LBER_FLUSH_FREE_ON_SUCCESS. Note that in the future, the behavior ofber_flush(3) with freeit
non-zero might change into that ofber_flush2(3) with freeitset toLBER_FLUSH_FREE_ALWA YS.

The ber_printf () routine is used to encode a BER element in much the same way thatsprintf (3) works.

OpenLDAP 2.4.9 2008/05/07 1

LBER_ENCODE(3) LBER_ENCODE(3)

One important difference, though, is that some state information is kept with theber parameter so that mul-
tiple calls can be made tober_printf () to append things to the end of the BER element.Ber_printf ()
writes tober, a pointer to a BerElement such as returned byber_alloc_t(). It interprets and formats its
arguments according to the format stringfmt. The format string can contain the following characters:

b Boolean. Anber_int_t parameter should be supplied.A boolean element is output.

e Enumeration. Anber_int_t parameter should be supplied. An enumeration element is output.

i Integer. An ber_int_t parameter should be supplied. An integer element is output.

B Bitstring. A char * pointer to the start of the bitstring is supplied, followed by the number of
bits in the bitstring.A bitstring element is output.

n Null. No parameter is required.A null element is output.

o Octet string. A char * is supplied, followed by the length of the string pointed to. An octet
string element is output.

O Octet string.A struct berval * is supplied. An octet string element is output.

s Octet string. A null-terminated string is supplied.An octet string element is output, not
including the trailing NULL octet.

t Tag. A ber_tag_t specifying the tag to give the next element is provided. Thisworks across
calls.

v Several octet strings.A null-terminated array of char *’s is supplied. Notethat a construct like
’{v}’ is required to get an actual SEQUENCE OF octet strings.

V Several octet strings.A null-terminated array of struct berval *’s is supplied. Notethat a con-
struct like ’{V}’ is required to get an actual SEQUENCE OF octet strings.

W Several octet strings. An array of struct berval’s is supplied. Thearray is terminated by a
struct berval with a NULL bv_val. Notethat a construct like ’{W}’ is required to get an actual
SEQUENCE OF octet strings.

{ Begin sequence. No parameter is required.

} End sequence. No parameter is required.

[Begin set. No parameter is required.

] End set. No parameter is required.

Theber_put_int() routine writes the integer elementnumto the BER elementber.

Theber_put_enum() routine writes the enumeration elementnumto the BER elementber.

Theber_put_boolean() routine writes the boolean value given by bool to the BER element.

The ber_put_bitstring () routine writesblen bits starting atstr as a bitstring value to the given BER ele-
ment. Notethatblen is the lengthin bitsof the bitstring.

Theber_put_ostring() routine writeslenbytes starting atstr to the BER element as an octet string.

Theber_put_string() routine writes the null-terminated string (minus the terminating ’’) to the BER ele-
ment as an octet string.

Theber_put_null() routine writes a NULL element to the BER element.

The ber_start_seq() routine is used to start a sequence in the BER element.The ber_start_set() routine
works similarly. The end of the sequence or set is marked by the nearest matching call tober_put_seq() or
ber_put_set(), respectively.

EXAMPLES
Assuming the following variable declarations, and that the variables have been assigned appropriately, an
lber encoding of the following ASN.1 object:

AlmostASearchRequest := SEQUENCE {

OpenLDAP 2.4.9 2008/05/07 2

LBER_ENCODE(3) LBER_ENCODE(3)

baseObject DistinguishedName,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2)

},
derefAliases ENUMERATED {

neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3)

},
sizelimit INTEGER(0 .. 65535),
timelimit INTEGER(0 .. 65535),
attrsOnly BOOLEAN,
attributes SEQUENCE OF AttributeType

}

can be achieved like so:

int rc;
ber_int_t scope,ali, size, time, attrsonly;
char *dn,**attrs;
BerElement *ber;

/* ... fill in values ... */

ber = ber_alloc_t(LBER_USE_DER);

if (ber == NULL) {
/* error */

}

rc = ber_printf(ber, "{siiiib{v}}", dn, scope, ali,
size, time, attrsonly, attrs);

if(rc == -1) {
/* error */

} else {
/* success */

}

ERRORS
If an error occurs during encoding, generally these routines return -1.

NOTES
The return values for all of these functions are declared in the <lber.h> header file.

SEE ALSO
lber-decode(3), lber-memory(3), lber-sockbuf(3), lber-types(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 3

LBER_MEMORY(3) LBER_MEMORY(3)

NAME
ber_memalloc, ber_memcalloc, ber_memrealloc, ber_memfree, ber_memvfree − OpenLDAP LBER mem-
ory allocators

LIBRARY
OpenLDAP LBER (liblber, -llber)

SYNOPSIS
#include <lber.h>

void *ber_memalloc(ber_len_tbytes);

void *ber_memcalloc(ber_len_tnelems, ber_len_t bytes);

void *ber_memrealloc(void *ptr, ber_len_t bytes);

void ber_memfree(void *ptr);

void ber_memvfree(void **vec);

DESCRIPTION
These routines are used to allocate/deallocate memory used/returned by the Lightweight BER library as
required bylber-encode(3) andlber-decode(3). ber_memalloc(), ber_memcalloc(), ber_memrealloc(),
and ber_memfree() are used exactly like the standardmalloc(3), calloc(3), realloc(3), andfree(3) rou-
tines, respectively. Theber_memvfree() routine is used to free a dynamically allocated array of pointers to
arbitrary dynamically allocated objects.

SEE ALSO
lber-decode(3), lber-encode(3), lber-types(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LBER_MEMORY(3) LBER_MEMORY(3)

NAME
ber_memalloc, ber_memcalloc, ber_memrealloc, ber_memfree, ber_memvfree − OpenLDAP LBER mem-
ory allocators

LIBRARY
OpenLDAP LBER (liblber, -llber)

SYNOPSIS
#include <lber.h>

void *ber_memalloc(ber_len_tbytes);

void *ber_memcalloc(ber_len_tnelems, ber_len_t bytes);

void *ber_memrealloc(void *ptr, ber_len_t bytes);

void ber_memfree(void *ptr);

void ber_memvfree(void **vec);

DESCRIPTION
These routines are used to allocate/deallocate memory used/returned by the Lightweight BER library as
required bylber-encode(3) andlber-decode(3). ber_memalloc(), ber_memcalloc(), ber_memrealloc(),
and ber_memfree() are used exactly like the standardmalloc(3), calloc(3), realloc(3), andfree(3) rou-
tines, respectively. Theber_memvfree() routine is used to free a dynamically allocated array of pointers to
arbitrary dynamically allocated objects.

SEE ALSO
lber-decode(3), lber-encode(3), lber-types(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LBER_SOCKBUF(3) LBER_SOCKBUF(3)

NAME
ber_sockbuf_alloc, ber_sockbuf_free, ber_sockbuf_ctrl, ber_sockbuf_add_io, ber_sockbuf_remove_io,
Sockbuf_IO − OpenLDAP LBER I/O infrastructure

LIBRARY
OpenLDAP LBER (liblber, -llber)

SYNOPSIS
#include <lber.h>

Sockbuf *ber_sockbuf_alloc(void);

void ber_sockbuf_free(Sockbuf *sb);

int ber_sockbuf_ctrl(Sockbuf *sb, int opt, void *arg);

int ber_sockbuf_add_io(Sockbuf *sb, Sockbuf_IO * sbio, int layer, void *arg);

int ber_sockbuf_remove_io(Sockbuf *sb, Sockbuf_IO * sbio, int layer);

typedef struct sockbuf_io_desc {
int sbiod_level;
Sockbuf *sbiod_sb;
Sockbuf_IO *sbiod_io;
void * sbiod_pvt;
struct sockbuf_io_desc *sbiod_next;
} Sockbuf_IO_Desc;

typedef struct sockbuf_io {
int (* sbi_setup)(Sockbuf_IO_Desc *sbiod, void *arg);
int (* sbi_remove)(Sockbuf_IO_Desc *sbiod);
int (* sbi_ctrl)(Sockbuf_IO_Desc *sbiod, int opt, void *arg);
ber_slen_t (*sbi_read)(Sockbuf_IO_Desc *sbiod, void *buf , ber_len_t len);
ber_slen_t (*sbi_write)(Sockbuf_IO_Desc *sbiod, void *buf , ber_len_t len);
int (* sbi_close)(Sockbuf_IO_Desc *sbiod);
} Sockbuf_IO;

DESCRIPTION
These routines are used to manage the low lev el I /O operations performed by the Lightweight BER library.
They are called implicitly by the other libraries and usually do not need to be called directly from applica-
tions. TheI/O framework is modularized and new transport layers can be supported by appropriately defin-
ing a Sockbuf_IO structure and installing it onto an existing Sockbuf. Sockbuf structures are allocated
and freed byber_sockbuf_alloc() andber_sockbuf_free(), respectively. Theber_sockbuf_ctrl() function
is used to get and set options related to aSockbuf or to a specific I/O layer of theSockbuf. Theber_sock-
buf_add_io() andber_sockbuf_remove_io() functions are used to add and remove specific I/O layers on a
Sockbuf.

Options forber_sockbuf_ctrl() include:

LBER_SB_OPT_HAS_IO
Takes aSockbuf_IO * argument and returns 1 if the given handler is installed on theSockbuf,
otherwise returns 0.

LBER_SB_OPT_GET_FD
Retrieves the file descriptor associated to theSockbuf; arg must be aber_socket_t *. The return
value will be 1 if a valid descriptor was present, -1 otherwise.

LBER_SB_OPT_SET_FD
Sets the file descriptor of theSockbuf to the descriptor pointed to byarg; arg must be a
ber_socket_t *. The return value will always be 1.

OpenLDAP LDVERSION RELEASEDATE 1

LBER_SOCKBUF(3) LBER_SOCKBUF(3)

LBER_SB_OPT_SET_NONBLOCK
Toggles the non-blocking state of the file descriptor associated to theSockbuf. arg should be
NULL to disable and non-NULL to enable the non-blocking state. The return value will be 1 for
success, -1 otherwise.

LBER_SB_OPT_DRAIN
Flush (read and discard) all available input on theSockbuf. The return value will be 1.

LBER_SB_OPT_NEEDS_READ
Returns non-zero if input is waiting to be read.

LBER_SB_OPT_NEEDS_WRITE
Returns non-zero if theSockbuf is ready to be written.

LBER_SB_OPT_GET_MAX_INCOMING
Returns the maximum allowed size of an incoming message;arg must be aber_len_t *. The
return value will be 1.

LBER_SB_OPT_SET_MAX_INCOMING
Sets the maximum allowed size of an incoming message;arg must be aber_len_t *. The return
value will be 1.

Options not in this list will be passed down to eachSockbuf_IO handler in turn until one of them processes
it. If the option is not handledber_sockbuf_ctrl() will return 0.

Multiple Sockbuf_IO handlers can be stacked in multiple layers to provide various functionality. Currently
defined layers include

LBER_SBIOD_LEVEL_PROVIDER
the lowest layer, talking directly to a network

LBER_SBIOD_LEVEL_TRANSPORT
an intermediate layer

LBER_SBIOD_LEVEL_APPLICATION
a higher layer

Currently definedSockbuf_IO handlers in liblber include

ber_sockbuf_io_tcp
The default stream-oriented provider

ber_sockbuf_io_fd
A stream-oriented provider for local IPC sockets

ber_sockbuf_io_dgram
A datagram-oriented provider. This handler is only present if the liblber library was built with
LDAP_CONNECTIONLESS defined.

ber_sockbuf_io_readahead
A buffering layer, usually used with a datagram provider to hide the datagram semantics from
upper layers.

ber_sockbuf_io_debug
A generic handler that outputs hex dumps of all traffic. This handler may be inserted multiple
times at arbitrary layers to show the flow of data between other handlers.

Additional handlers may be present in libldap if support for them was enabled:

ldap_pvt_sockbuf_io_sasl
An application layer handler for SASL encoding/decoding.

OpenLDAP LDVERSION RELEASEDATE 2

LBER_SOCKBUF(3) LBER_SOCKBUF(3)

sb_tls_sbio
A transport layer handler for SSL/TLS encoding/decoding. Note that this handler is private to the
library and is not exposed in the API.

The provided handlers are all instantiated implicitly by libldap, and applications generally will not need to
directly manipulate them.

SEE ALSO
lber-decode(3), lber-encode(3), lber-types(3), ldap_get_option(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 3

LBER_SOCKBUF(3) LBER_SOCKBUF(3)

NAME
ber_sockbuf_alloc, ber_sockbuf_free, ber_sockbuf_ctrl, ber_sockbuf_add_io, ber_sockbuf_remove_io,
Sockbuf_IO − OpenLDAP LBER I/O infrastructure

LIBRARY
OpenLDAP LBER (liblber, -llber)

SYNOPSIS
#include <lber.h>

Sockbuf *ber_sockbuf_alloc(void);

void ber_sockbuf_free(Sockbuf *sb);

int ber_sockbuf_ctrl(Sockbuf *sb, int opt, void *arg);

int ber_sockbuf_add_io(Sockbuf *sb, Sockbuf_IO * sbio, int layer, void *arg);

int ber_sockbuf_remove_io(Sockbuf *sb, Sockbuf_IO * sbio, int layer);

typedef struct sockbuf_io_desc {
int sbiod_level;
Sockbuf *sbiod_sb;
Sockbuf_IO *sbiod_io;
void * sbiod_pvt;
struct sockbuf_io_desc *sbiod_next;
} Sockbuf_IO_Desc;

typedef struct sockbuf_io {
int (* sbi_setup)(Sockbuf_IO_Desc *sbiod, void *arg);
int (* sbi_remove)(Sockbuf_IO_Desc *sbiod);
int (* sbi_ctrl)(Sockbuf_IO_Desc *sbiod, int opt, void *arg);
ber_slen_t (*sbi_read)(Sockbuf_IO_Desc *sbiod, void *buf , ber_len_t len);
ber_slen_t (*sbi_write)(Sockbuf_IO_Desc *sbiod, void *buf , ber_len_t len);
int (* sbi_close)(Sockbuf_IO_Desc *sbiod);
} Sockbuf_IO;

DESCRIPTION
These routines are used to manage the low lev el I /O operations performed by the Lightweight BER library.
They are called implicitly by the other libraries and usually do not need to be called directly from applica-
tions. TheI/O framework is modularized and new transport layers can be supported by appropriately defin-
ing a Sockbuf_IO structure and installing it onto an existing Sockbuf. Sockbuf structures are allocated
and freed byber_sockbuf_alloc() andber_sockbuf_free(), respectively. Theber_sockbuf_ctrl() function
is used to get and set options related to aSockbuf or to a specific I/O layer of theSockbuf. Theber_sock-
buf_add_io() andber_sockbuf_remove_io() functions are used to add and remove specific I/O layers on a
Sockbuf.

Options forber_sockbuf_ctrl() include:

LBER_SB_OPT_HAS_IO
Takes aSockbuf_IO * argument and returns 1 if the given handler is installed on theSockbuf,
otherwise returns 0.

LBER_SB_OPT_GET_FD
Retrieves the file descriptor associated to theSockbuf; arg must be aber_socket_t *. The return
value will be 1 if a valid descriptor was present, -1 otherwise.

LBER_SB_OPT_SET_FD
Sets the file descriptor of theSockbuf to the descriptor pointed to byarg; arg must be a
ber_socket_t *. The return value will always be 1.

OpenLDAP 2.4.9 2008/05/07 1

LBER_SOCKBUF(3) LBER_SOCKBUF(3)

LBER_SB_OPT_SET_NONBLOCK
Toggles the non-blocking state of the file descriptor associated to theSockbuf. arg should be
NULL to disable and non-NULL to enable the non-blocking state. The return value will be 1 for
success, -1 otherwise.

LBER_SB_OPT_DRAIN
Flush (read and discard) all available input on theSockbuf. The return value will be 1.

LBER_SB_OPT_NEEDS_READ
Returns non-zero if input is waiting to be read.

LBER_SB_OPT_NEEDS_WRITE
Returns non-zero if theSockbuf is ready to be written.

LBER_SB_OPT_GET_MAX_INCOMING
Returns the maximum allowed size of an incoming message;arg must be aber_len_t *. The
return value will be 1.

LBER_SB_OPT_SET_MAX_INCOMING
Sets the maximum allowed size of an incoming message;arg must be aber_len_t *. The return
value will be 1.

Options not in this list will be passed down to eachSockbuf_IO handler in turn until one of them processes
it. If the option is not handledber_sockbuf_ctrl() will return 0.

Multiple Sockbuf_IO handlers can be stacked in multiple layers to provide various functionality. Currently
defined layers include

LBER_SBIOD_LEVEL_PROVIDER
the lowest layer, talking directly to a network

LBER_SBIOD_LEVEL_TRANSPORT
an intermediate layer

LBER_SBIOD_LEVEL_APPLICATION
a higher layer

Currently definedSockbuf_IO handlers in liblber include

ber_sockbuf_io_tcp
The default stream-oriented provider

ber_sockbuf_io_fd
A stream-oriented provider for local IPC sockets

ber_sockbuf_io_dgram
A datagram-oriented provider. This handler is only present if the liblber library was built with
LDAP_CONNECTIONLESS defined.

ber_sockbuf_io_readahead
A buffering layer, usually used with a datagram provider to hide the datagram semantics from
upper layers.

ber_sockbuf_io_debug
A generic handler that outputs hex dumps of all traffic. This handler may be inserted multiple
times at arbitrary layers to show the flow of data between other handlers.

Additional handlers may be present in libldap if support for them was enabled:

ldap_pvt_sockbuf_io_sasl
An application layer handler for SASL encoding/decoding.

OpenLDAP 2.4.9 2008/05/07 2

LBER_SOCKBUF(3) LBER_SOCKBUF(3)

sb_tls_sbio
A transport layer handler for SSL/TLS encoding/decoding. Note that this handler is private to the
library and is not exposed in the API.

The provided handlers are all instantiated implicitly by libldap, and applications generally will not need to
directly manipulate them.

SEE ALSO
lber-decode(3), lber-encode(3), lber-types(3), ldap_get_option(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 3

LBER_TYPES(3) LBER_TYPES(3)

NAME
ber_int_t, ber_uint_t, ber_len_t, ber_slen_t, ber_tag_t, struct berval, BerValue, BerVarray, BerElement,
ber_bvfree, ber_bvecfree, ber_bvecadd, ber_bvarray_free, ber_bvarray_add, ber_bvdup, ber_dupbv,
ber_bvstr, ber_bvstrdup, ber_str2bv, ber_alloc_t, ber_init, ber_init2, ber_free − OpenLDAP LBER types
and allocation functions

LIBRARY
OpenLDAP LBER (liblber, -llber)

SYNOPSIS
#include <lber.h>

typedef impl_tag_t ber_tag_t;
typedef impl_int_t ber_int_t;
typedef impl_uint_t ber_uint_t;
typedef impl_len_t ber_len_t;
typedef impl_slen_t ber_slen_t;

typedef struct berval {
ber_len_t bv_len;
char *bv_val;

} BerValue, *BerVarray;

typedef struct berelement BerElement;

void ber_bvfree(struct berval * bv);

void ber_bvecfree(struct berval * *bvec);

void ber_bvecadd(struct berval * ** bvec, struct berval * bv);

void ber_bvarray_free(struct berval * bvarray);

void ber_bvarray_add(BerVarray * bvarray, BerValue *bv);

struct berval * ber_bvdup(const struct berval * bv);

struct berval * ber_dupbv(const struct berval * dst, struct berval * src);

struct berval * ber_bvstr(const char *str);

struct berval * ber_bvstrdup(const char *str);

struct berval * ber_str2bv(const char *str, ber_len_t len, int dup, struct berval * bv);

BerElement *ber_alloc_t(int options);

BerElement *ber_init(struct berval * bv);

void ber_init2(BerElement *ber, struct berval * bv, int options);

void ber_free(BerElement *ber, int freebuf);

DESCRIPTION
The following are the basic types and structures defined for use with the Lightweight BER library.

ber_int_t is a signed integer of at least 32 bits. It is commonly equivalent to int . ber_uint_t is the
unsigned variant ofber_int_t.

ber_len_t is an unsigned integer of at least 32 bits used to represent a length.It is commonly equivalent to
asize_t. ber_slen_tis the signed variant tober_len_t.

ber_tag_t is an unsigned integer of at least 32 bits used to represent a BER tag.It is commonly equivalent
to aunsigned long.

The actual definitions of the integral impl_TYPE_t types are platform specific.

BerValue, commonly used asstruct berval, is used to hold an arbitrary sequence of octets.bv_val points

OpenLDAP LDVERSION RELEASEDATE 1

LBER_TYPES(3) LBER_TYPES(3)

to bv_len octets. bv_val is not necessarily terminated by a NULL (zero) octet.ber_bvfree() frees a
BerValue, pointed to bybv, returned from this API. Ifbv is NULL, the routine does nothing.

ber_bvecfree() frees an array of BerValues (and the array), pointed to bybvec, returned from this API.If
bvecis NULL, the routine does nothing.ber_bvecadd() appends thebv pointer to thebvecarray. Space
for the array is allocated as needed. The end of the array is marked by a NULL pointer.

ber_bvarray_free() frees an array of BerValues (and the array), pointed to bybvarray, returned from this
API. If bvarray is NULL, the routine does nothing.ber_bvarray_add() appends the contents of the
BerValue pointed to bybv to thebvarrayarray. Space for the new element is allocated as needed. The end
of the array is marked by a BerValue with a NULL bv_val field.

ber_bvdup() returns a copy of a BerValue. Theroutine returns NULL upon error (e.g. out of memory).
The caller should useber_bvfree() to deallocate the resulting BerValue. ber_dupbv() copies a BerValue
from src to dst. If dst is NULL a new BerValue will be allocated to hold the copy. The routine returns
NULL upon error, otherwise it returns a pointer to the copy. If dst is NULL the caller should use
ber_bvfree() to deallocate the resulting BerValue, otherwiseber_memfree() should be used to deallocate
the dst->bv_val. (The ber_bvdup() function is internally implemented as ber_dupbv(NULL, bv).
ber_bvdup() is provided only for compatibility with an expired draft of the LDAP C API;ber_dupbv() is
the preferred interface.)

ber_bvstr() returns a BerValue containing the string pointed to bystr. ber_bvstrdup() returns a BerValue
containing a copy of the string pointed to bystr. ber_str2bv() returns a BerValue containing the string
pointed to bystr, whose length may be optionally specified inlen. If dup is non-zero, the BerValue will
contain a copy of str. If len is zero, the number of bytes to copy will be determined bystrlen(3), otherwise
len bytes will be copied.If bv is non-NULL, the result will be stored in the given BerValue, otherwise a
new BerValue will be allocated to store the result.NOTE: Both ber_bvstr() and ber_bvstrdup() are
implemented as macros usingber_str2bv() in this version of the library.

BerElement is an opaque structure used to maintain state information used in encoding and decoding.
ber_alloc_t() is used to create an empty BerElement structure. IfLBER_USE_DER is specified for the
options parameter then data lengths for data written to the BerElement will be encoded in the minimal
number of octets required, otherwise they will always be written as four byte values. ber_init () creates a
BerElement structure that is initialized with a copy of the data in itsbv parameter.ber_init2() initializes an
existing BerElementber using the data in thebv parameter. The data is referenced directly, not copied. The
optionsparameter is the same as forber_alloc_t(). ber_free() frees a BerElement pointed to byber. If ber
is NULL, the routine does nothing. Iffreebufis zero, the internal buffer is not freed.

SEE ALSO
lber-encode(3), lber-decode(3), lber-memory(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 2

LBER_TYPES(3) LBER_TYPES(3)

NAME
ber_int_t, ber_uint_t, ber_len_t, ber_slen_t, ber_tag_t, struct berval, BerValue, BerVarray, BerElement,
ber_bvfree, ber_bvecfree, ber_bvecadd, ber_bvarray_free, ber_bvarray_add, ber_bvdup, ber_dupbv,
ber_bvstr, ber_bvstrdup, ber_str2bv, ber_alloc_t, ber_init, ber_init2, ber_free − OpenLDAP LBER types
and allocation functions

LIBRARY
OpenLDAP LBER (liblber, -llber)

SYNOPSIS
#include <lber.h>

typedef impl_tag_t ber_tag_t;
typedef impl_int_t ber_int_t;
typedef impl_uint_t ber_uint_t;
typedef impl_len_t ber_len_t;
typedef impl_slen_t ber_slen_t;

typedef struct berval {
ber_len_t bv_len;
char *bv_val;

} BerValue, *BerVarray;

typedef struct berelement BerElement;

void ber_bvfree(struct berval * bv);

void ber_bvecfree(struct berval * *bvec);

void ber_bvecadd(struct berval * ** bvec, struct berval * bv);

void ber_bvarray_free(struct berval * bvarray);

void ber_bvarray_add(BerVarray * bvarray, BerValue *bv);

struct berval * ber_bvdup(const struct berval * bv);

struct berval * ber_dupbv(const struct berval * dst, struct berval * src);

struct berval * ber_bvstr(const char *str);

struct berval * ber_bvstrdup(const char *str);

struct berval * ber_str2bv(const char *str, ber_len_t len, int dup, struct berval * bv);

BerElement *ber_alloc_t(int options);

BerElement *ber_init(struct berval * bv);

void ber_init2(BerElement *ber, struct berval * bv, int options);

void ber_free(BerElement *ber, int freebuf);

DESCRIPTION
The following are the basic types and structures defined for use with the Lightweight BER library.

ber_int_t is a signed integer of at least 32 bits. It is commonly equivalent to int . ber_uint_t is the
unsigned variant ofber_int_t.

ber_len_t is an unsigned integer of at least 32 bits used to represent a length.It is commonly equivalent to
asize_t. ber_slen_tis the signed variant tober_len_t.

ber_tag_t is an unsigned integer of at least 32 bits used to represent a BER tag.It is commonly equivalent
to aunsigned long.

The actual definitions of the integral impl_TYPE_t types are platform specific.

BerValue, commonly used asstruct berval, is used to hold an arbitrary sequence of octets.bv_val points

OpenLDAP 2.4.9 2008/05/07 1

LBER_TYPES(3) LBER_TYPES(3)

to bv_len octets. bv_val is not necessarily terminated by a NULL (zero) octet.ber_bvfree() frees a
BerValue, pointed to bybv, returned from this API. Ifbv is NULL, the routine does nothing.

ber_bvecfree() frees an array of BerValues (and the array), pointed to bybvec, returned from this API.If
bvecis NULL, the routine does nothing.ber_bvecadd() appends thebv pointer to thebvecarray. Space
for the array is allocated as needed. The end of the array is marked by a NULL pointer.

ber_bvarray_free() frees an array of BerValues (and the array), pointed to bybvarray, returned from this
API. If bvarray is NULL, the routine does nothing.ber_bvarray_add() appends the contents of the
BerValue pointed to bybv to thebvarrayarray. Space for the new element is allocated as needed. The end
of the array is marked by a BerValue with a NULL bv_val field.

ber_bvdup() returns a copy of a BerValue. Theroutine returns NULL upon error (e.g. out of memory).
The caller should useber_bvfree() to deallocate the resulting BerValue. ber_dupbv() copies a BerValue
from src to dst. If dst is NULL a new BerValue will be allocated to hold the copy. The routine returns
NULL upon error, otherwise it returns a pointer to the copy. If dst is NULL the caller should use
ber_bvfree() to deallocate the resulting BerValue, otherwiseber_memfree() should be used to deallocate
the dst->bv_val. (The ber_bvdup() function is internally implemented as ber_dupbv(NULL, bv).
ber_bvdup() is provided only for compatibility with an expired draft of the LDAP C API;ber_dupbv() is
the preferred interface.)

ber_bvstr() returns a BerValue containing the string pointed to bystr. ber_bvstrdup() returns a BerValue
containing a copy of the string pointed to bystr. ber_str2bv() returns a BerValue containing the string
pointed to bystr, whose length may be optionally specified inlen. If dup is non-zero, the BerValue will
contain a copy of str. If len is zero, the number of bytes to copy will be determined bystrlen(3), otherwise
len bytes will be copied.If bv is non-NULL, the result will be stored in the given BerValue, otherwise a
new BerValue will be allocated to store the result.NOTE: Both ber_bvstr() and ber_bvstrdup() are
implemented as macros usingber_str2bv() in this version of the library.

BerElement is an opaque structure used to maintain state information used in encoding and decoding.
ber_alloc_t() is used to create an empty BerElement structure. IfLBER_USE_DER is specified for the
options parameter then data lengths for data written to the BerElement will be encoded in the minimal
number of octets required, otherwise they will always be written as four byte values. ber_init () creates a
BerElement structure that is initialized with a copy of the data in itsbv parameter.ber_init2() initializes an
existing BerElementber using the data in thebv parameter. The data is referenced directly, not copied. The
optionsparameter is the same as forber_alloc_t(). ber_free() frees a BerElement pointed to byber. If ber
is NULL, the routine does nothing. Iffreebufis zero, the internal buffer is not freed.

SEE ALSO
lber-encode(3), lber-decode(3), lber-memory(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 2

LDAP(3) LDAP(3)

NAME
ldap − OpenLDAP Lightweight Directory Access Protocol API

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

DESCRIPTION
The Lightweight Directory Access Protocol (LDAP) (RFC 4510) provides access to X.500 directory ser-
vices. Theseservices may be stand−alone or part of a distributed directory service. This client API sup-
ports LDAP over TCP (RFC 4511), LDAP over TLS/SSL, and LDAP over IPC (UNIX domain sockets).
This API supports SASL (RFC 4513) and Start TLS (RFC 4513) as well as a number of protocol exten-
sions. ThisAPI is loosely based upon IETF/LDAPEXT C LDAP API draft specification, a (orphaned)
work in progress.

The OpenLDAP Software package includes a stand−alone server inslapd(8), various LDAP clients, and an
LDAP client library used to provide programmatic access to the LDAP protocol. This man page gives an
overview of the LDAP library routines.

Both synchronous and asynchronous APIs are provided. Alsoincluded are various routines to parse the
results returned from these routines. These routines are found in the −lldap library.

The basic interaction is as follows. Asession handle is created usingldap_initialize(3) and set the protocol
version to 3 by callingldap_set_option(3). Theunderlying session is established first operation is issued.
This would generally be a Start TLS or Bind operation, or a Search operation to read attributes of the Root
DSE. AStart TLS operation is performed by callingldap_start_tls_s(3). A LDAP bind operation is per-
formed by callingldap_sasl_bind(3) or one of its friends.A Search operation is performed by calling
ldap_search_ext_s(3) or one of its friends.

Subsequently, additional operations are performed by calling one of the synchronous or asynchronous rou-
tines (e.g., ldap_compare_ext_s(3) or ldap_compare_ext(3) followed by ldap_result(3)). Results
returned from these routines are interpreted by calling the LDAP parsing routines such as
ldap_parse_result(3). The LDAP association and underlying connection is terminated by calling
ldap_unbind_ext(3). Errorscan be interpreted by callingldap_err2string(3).

LDAP versions
This library supports version 3 of the Lightweight Directory Access Protocol (LDAPv3) as defined in RFC
4510. Italso supports a variant of version 2 of LDAP as defined by U-Mich LDAP and, to some degree,
RFC 1777.Version 2 (all variants) are considered obsolete.Version 3 should be used instead.

For backwards compatibility reasons, the library defaults to version 2. Hence, all new applications (and all
actively maintained applications) should useldap_set_option(3) to select version 3. The library manual
pages assume version 3 has been selected.

INPUT and OUTPUT PARAMETERS
All character string input/output is expected to be/is UTF−8 encoded Unicode (version 3.2).

Distinguished names (DN) (and relative distinguished names (RDN) to be passed to the LDAP routines
should conform to RFC 4514 UTF−8 string representation.

Search filters to be passed to the search routines are to be constructed by hand and should conform to RFC
4515 UTF−8 string representation.

LDAP URLs to be passed to routines are expected to conform to RFC 4516 format.The ldap_url (3) rou-
tines can be used to work with LDAP URLs.

LDAP controls to be passed to routines can be manipulated using theldap_controls(3) routines.

DISPLAYING RESULTS
Results obtained from the search routines can be output by hand, by callingldap_first_entry(3) and
ldap_next_entry(3) to step through the entries returned,ldap_first_attribute (3) and

OpenLDAP LDVERSION RELEASEDATE 1

LDAP(3) LDAP(3)

ldap_next_attribute(3) to step through an entry’s attributes, andldap_get_values(3) to retrieve a giv en
attribute’s values. Attribute values may or may not be displayable.

UTILITY ROUTINES
Also provided are various utility routines.The ldap_sort(3) routines are used to sort the entries and values
returned via the ldap search routines.

DEPRECATED INTERFACES
A number of interfaces are now considered deprecated.For instance, ldap_add(3) is deprecated in favor of
ldap_add_ext(3).

BER LIBRARY
Also included in the distribution is a set of lightweight Basic Encoding Rules routines.These routines are
used by the LDAP library routines to encode and decode LDAP protocol elements using the (slightly sim-
plified) Basic Encoding Rules defined by LDAP. They are not normally used directly by an LDAP applica-
tion program except in the handling of controls and extended operations. The routines provide a printf and
scanf−like interface, as well as lower−level access. Theseroutines are discussed inlber−decode(3),
lber−encode(3), lber−memory(3), andlber−types(3).

INDEX
ldap_initialize(3) initialize the LDAP library without opening a connection to a server

ldap_result(3) wait for the result from an asynchronous operation

ldap_abandon_ext(3) abandon (abort) an asynchronous operation

ldap_add_ext(3) asynchronously add an entry

ldap_add_ext_s(3) synchronously add an entry

ldap_sasl_bind(3) asynchronously bind to the directory

ldap_sasl_bind_s(3) synchronously bind to the directory

ldap_unbind_ext(3) synchronously unbind from the LDAP server and close the connection

ldap_unbind(3) and ldap_unbind_s(3) are
equivalent toldap_unbind_ext(3)

ldap_memfree(3) dispose of memory allocated by LDAP routines.

ldap_compare_ext(3) asynchronously compare to a directory entry

ldap_compare_ext_s(3) synchronously compare to a directory entry

ldap_delete_ext(3) asynchronously delete an entry

ldap_delete_ext_s(3) synchronously delete an entry

ld_errno(3) LDAP error indication

ldap_errlist(3) list of LDAP errors and their meanings

ldap_err2string(3) convert LDAP error indication to a string

ldap_extended_operation(3)
asynchronously perform an arbitrary extended operation

ldap_extended_operation_s(3)
synchronously perform an arbitrary extended operation

ldap_first_attribute(3) return first attribute name in an entry

ldap_next_attribute(3) return next attribute name in an entry

ldap_first_entry(3) return first entry in a chain of search results

ldap_next_entry(3) return next entry in a chain of search results

ldap_count_entries(3) return number of entries in a search result

OpenLDAP LDVERSION RELEASEDATE 2

LDAP(3) LDAP(3)

ldap_get_dn(3) extract the DN from an entry

ldap_get_values_len(3) return an attribute’s values with lengths

ldap_value_free_len(3) free memory allocated by ldap_get_values_len(3)

ldap_count_values_len(3)return number of values

ldap_modify_ext(3) asynchronously modify an entry

ldap_modify_ext_s(3) synchronously modify an entry

ldap_mods_free(3) free array of pointers to mod structures used by ldap_modify_ext(3)

ldap_rename(3) asynchronously rename an entry

ldap_rename_s(3) synchronously rename an entry

ldap_msgfree(3) free results allocated by ldap_result(3)

ldap_msgtype(3) return the message type of a message from ldap_result(3)

ldap_msgid(3) return the message id of a message from ldap_result(3)

ldap_search_ext(3) asynchronously search the directory

ldap_search_ext_s(3) synchronously search the directory

ldap_is_ldap_url(3) check a URL string to see if it is an LDAP URL

ldap_url_parse(3) break up an LDAP URL string into its components

ldap_sort_entries(3) sort a list of search results

ldap_sort_values(3) sort a list of attribute values

ldap_sort_strcasecmp(3)case insensitive string comparison

SEE ALSO
ldap.conf(5), slapd(8), draft-ietf-ldapext-ldap-c-api-xx.txt <http://www.ietf.org>

ACKNOWLEDGEMENTS
These API manual pages are loosely based upon descriptions provided in the IETF/LDAPEXT C LDAP
API Internet Draft, a (orphaned) work in progress.

OpenLDAP LDVERSION RELEASEDATE 3

LDAP(3) LDAP(3)

NAME
ldap − OpenLDAP Lightweight Directory Access Protocol API

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

DESCRIPTION
The Lightweight Directory Access Protocol (LDAP) (RFC 4510) provides access to X.500 directory ser-
vices. Theseservices may be stand−alone or part of a distributed directory service. This client API sup-
ports LDAP over TCP (RFC 4511), LDAP over TLS/SSL, and LDAP over IPC (UNIX domain sockets).
This API supports SASL (RFC 4513) and Start TLS (RFC 4513) as well as a number of protocol exten-
sions. ThisAPI is loosely based upon IETF/LDAPEXT C LDAP API draft specification, a (orphaned)
work in progress.

The OpenLDAP Software package includes a stand−alone server inslapd(8), various LDAP clients, and an
LDAP client library used to provide programmatic access to the LDAP protocol. This man page gives an
overview of the LDAP library routines.

Both synchronous and asynchronous APIs are provided. Alsoincluded are various routines to parse the
results returned from these routines. These routines are found in the −lldap library.

The basic interaction is as follows. Asession handle is created usingldap_initialize(3) and set the protocol
version to 3 by callingldap_set_option(3). Theunderlying session is established first operation is issued.
This would generally be a Start TLS or Bind operation, or a Search operation to read attributes of the Root
DSE. AStart TLS operation is performed by callingldap_start_tls_s(3). A LDAP bind operation is per-
formed by callingldap_sasl_bind(3) or one of its friends.A Search operation is performed by calling
ldap_search_ext_s(3) or one of its friends.

Subsequently, additional operations are performed by calling one of the synchronous or asynchronous rou-
tines (e.g., ldap_compare_ext_s(3) or ldap_compare_ext(3) followed by ldap_result(3)). Results
returned from these routines are interpreted by calling the LDAP parsing routines such as
ldap_parse_result(3). The LDAP association and underlying connection is terminated by calling
ldap_unbind_ext(3). Errorscan be interpreted by callingldap_err2string(3).

LDAP versions
This library supports version 3 of the Lightweight Directory Access Protocol (LDAPv3) as defined in RFC
4510. Italso supports a variant of version 2 of LDAP as defined by U-Mich LDAP and, to some degree,
RFC 1777.Version 2 (all variants) are considered obsolete.Version 3 should be used instead.

For backwards compatibility reasons, the library defaults to version 2. Hence, all new applications (and all
actively maintained applications) should useldap_set_option(3) to select version 3. The library manual
pages assume version 3 has been selected.

INPUT and OUTPUT PARAMETERS
All character string input/output is expected to be/is UTF−8 encoded Unicode (version 3.2).

Distinguished names (DN) (and relative distinguished names (RDN) to be passed to the LDAP routines
should conform to RFC 4514 UTF−8 string representation.

Search filters to be passed to the search routines are to be constructed by hand and should conform to RFC
4515 UTF−8 string representation.

LDAP URLs to be passed to routines are expected to conform to RFC 4516 format.The ldap_url (3) rou-
tines can be used to work with LDAP URLs.

LDAP controls to be passed to routines can be manipulated using theldap_controls(3) routines.

DISPLAYING RESULTS
Results obtained from the search routines can be output by hand, by callingldap_first_entry(3) and
ldap_next_entry(3) to step through the entries returned,ldap_first_attribute (3) and

OpenLDAP 2.4.9 2008/05/07 1

LDAP(3) LDAP(3)

ldap_next_attribute(3) to step through an entry’s attributes, andldap_get_values(3) to retrieve a giv en
attribute’s values. Attribute values may or may not be displayable.

UTILITY ROUTINES
Also provided are various utility routines.The ldap_sort(3) routines are used to sort the entries and values
returned via the ldap search routines.

DEPRECATED INTERFACES
A number of interfaces are now considered deprecated.For instance, ldap_add(3) is deprecated in favor of
ldap_add_ext(3). Deprecatedinterfaces generally remain in the library. The macro LDAP_DEPRECATED
can be defined to a non-zero value (e.g., -DLDAP_DEPRECATED=1) when compiling program designed
to use deprecated interfaces. Itis recommended that developers writing new programs, or updating old pro-
grams, avoid use of deprecated interfaces. Over time, it is expected that documentation (and, eventually,
support) for deprecated interfaces to be eliminated.

BER LIBRARY
Also included in the distribution is a set of lightweight Basic Encoding Rules routines.These routines are
used by the LDAP library routines to encode and decode LDAP protocol elements using the (slightly sim-
plified) Basic Encoding Rules defined by LDAP. They are not normally used directly by an LDAP applica-
tion program except in the handling of controls and extended operations. The routines provide a printf and
scanf−like interface, as well as lower−level access. Theseroutines are discussed inlber−decode(3),
lber−encode(3), lber−memory(3), andlber−types(3).

INDEX
ldap_initialize(3) initialize the LDAP library without opening a connection to a server

ldap_result(3) wait for the result from an asynchronous operation

ldap_abandon_ext(3) abandon (abort) an asynchronous operation

ldap_add_ext(3) asynchronously add an entry

ldap_add_ext_s(3) synchronously add an entry

ldap_sasl_bind(3) asynchronously bind to the directory

ldap_sasl_bind_s(3) synchronously bind to the directory

ldap_unbind_ext(3) synchronously unbind from the LDAP server and close the connection

ldap_unbind(3) and ldap_unbind_s(3) are
equivalent toldap_unbind_ext(3)

ldap_memfree(3) dispose of memory allocated by LDAP routines.

ldap_compare_ext(3) asynchronously compare to a directory entry

ldap_compare_ext_s(3) synchronously compare to a directory entry

ldap_delete_ext(3) asynchronously delete an entry

ldap_delete_ext_s(3) synchronously delete an entry

ld_errno(3) LDAP error indication

ldap_errlist(3) list of LDAP errors and their meanings

ldap_err2string(3) convert LDAP error indication to a string

ldap_extended_operation(3)
asynchronously perform an arbitrary extended operation

ldap_extended_operation_s(3)
synchronously perform an arbitrary extended operation

ldap_first_attribute(3) return first attribute name in an entry

ldap_next_attribute(3) return next attribute name in an entry

OpenLDAP 2.4.9 2008/05/07 2

LDAP(3) LDAP(3)

ldap_first_entry(3) return first entry in a chain of search results

ldap_next_entry(3) return next entry in a chain of search results

ldap_count_entries(3) return number of entries in a search result

ldap_get_dn(3) extract the DN from an entry

ldap_get_values_len(3) return an attribute’s values with lengths

ldap_value_free_len(3) free memory allocated by ldap_get_values_len(3)

ldap_count_values_len(3)return number of values

ldap_modify_ext(3) asynchronously modify an entry

ldap_modify_ext_s(3) synchronously modify an entry

ldap_mods_free(3) free array of pointers to mod structures used by ldap_modify_ext(3)

ldap_rename(3) asynchronously rename an entry

ldap_rename_s(3) synchronously rename an entry

ldap_msgfree(3) free results allocated by ldap_result(3)

ldap_msgtype(3) return the message type of a message from ldap_result(3)

ldap_msgid(3) return the message id of a message from ldap_result(3)

ldap_search_ext(3) asynchronously search the directory

ldap_search_ext_s(3) synchronously search the directory

ldap_is_ldap_url(3) check a URL string to see if it is an LDAP URL

ldap_url_parse(3) break up an LDAP URL string into its components

ldap_sort_entries(3) sort a list of search results

ldap_sort_values(3) sort a list of attribute values

ldap_sort_strcasecmp(3)case insensitive string comparison

SEE ALSO
ldap.conf(5), slapd(8), draft-ietf-ldapext-ldap-c-api-xx.txt <http://www.ietf.org>

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

These API manual pages are loosely based upon descriptions provided in the IETF/LDAPEXT C LDAP
API Internet Draft, a (orphaned) work in progress.

OpenLDAP 2.4.9 2008/05/07 3

LDAP_ABANDON(3) LDAP_ABANDON(3)

NAME
ldap_abandon_ext − Abandon an LDAP operation in progress

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_abandon_ext(
LDAP * ld,
Bint msgid,
LDAPControl ** sctrls,
LDAPControl ** cctrls);

DESCRIPTION
The ldap_abandon_ext()routine is used to send a LDAP Abandon request for an operation in progress.
The msgid passed should be the message id of an outstanding LDAP operation, such as returned by
ldap_search_ext(3).

ldap_abandon_ext() checks to see if the result of the operation has already come in.If it has, it deletes it
from the queue of pending messages. If not, it sends an LDAP abandon request to the LDAP server.

The caller can expect that the result of an abandoned operation will not be returned from a future call to
ldap_result(3).

ldap_abandon_ext()allows server and client controls to be passed in via thesctrls andcctrls parameters,
respectively.

ldap_abandon_ext()returns a code indicating success or, in the case of failure, the nature of the failure.
Seeldap_error (3) for details.

DEPRECATED INTERFACES
The ldap_abandon()routine is deprecated in favor of the ldap_abandon_ext()routine.

SEE ALSO
ldap(3), ldap_error (3), ldap_result(3), ldap_search_ext(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_ABANDON(3) LDAP_ABANDON(3)

NAME
ldap_abandon_ext − Abandon an LDAP operation in progress

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_abandon_ext(
LDAP * ld,
Bint msgid,
LDAPControl ** sctrls,
LDAPControl ** cctrls);

DESCRIPTION
The ldap_abandon_ext()routine is used to send a LDAP Abandon request for an operation in progress.
The msgid passed should be the message id of an outstanding LDAP operation, such as returned by
ldap_search_ext(3).

ldap_abandon_ext() checks to see if the result of the operation has already come in.If it has, it deletes it
from the queue of pending messages. If not, it sends an LDAP abandon request to the LDAP server.

The caller can expect that the result of an abandoned operation will not be returned from a future call to
ldap_result(3).

ldap_abandon_ext()allows server and client controls to be passed in via thesctrls andcctrls parameters,
respectively.

ldap_abandon_ext()returns a code indicating success or, in the case of failure, the nature of the failure.
Seeldap_error (3) for details.

DEPRECATED INTERFACES
The ldap_abandon()routine is deprecated in favor of the ldap_abandon_ext()routine.

Deprecated interfaces generally remain in the library. The macro LDAP_DEPRECATED can be defined to
a non-zero value (e.g., -DLDAP_DEPRECATED=1) when compiling program designed to use deprecated
interfaces. Itis recommended that developers writing new programs, or updating old programs, avoid use
of deprecated interfaces. Over time, it is expected that documentation (and, eventually, support) for depre-
cated interfaces to be eliminated.

SEE ALSO
ldap(3), ldap_error (3), ldap_result(3), ldap_search_ext(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_ADD(3) LDAP_ADD(3)

NAME
ldap_add_ext, ldap_add_ext_s − Perform an LDAP add operation

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_add_ext(
LDAP * ld,
const char *dn,
LDAPMod ** attrs,
LDAPControl ** sctrls,
LDAPControl ** cctrls,
int * msgidp);

int ldap_add_ext_s(
LDAP * ld,
const char *dn,
LDAPMod ** attrs,
LDAPControl * sctrls,
LDAPControl * cctrls);

DESCRIPTION
The ldap_add_ext_s()routine is used to perform an LDAP add operation. It takesdn, the DN of the entry
to add, andattrs, a null-terminated array of the entry’s attributes. TheLDAPMod structure is used to repre-
sent attributes, with themod_typeand mod_valuesfields being used as described underldap_mod-
ify_ext(3), and theldap_op field being used only if you need to specify the LDAP_MOD_BVALUES
option. Otherwise, it should be set to zero.

Note that all entries except that specified by the last component in the given DN must already exist.
ldap_add_ext_s()returns an code indicating success or, in the case of failure, indicating the nature of fail-
ure of the operation. Seeldap_error (3) for more details.

The ldap_add_ext()routine works just like ldap_add_ext_s(), but it is asynchronous. It returns the mes-
sage id of the request it initiated. The result of this operation can be obtained by callingldap_result(3).

DEPRECATED INTERFACES
The ldap_add() and ldap_add_s() routines are deprecated in favor of the ldap_add_ext() and
ldap_add_ext_s() routines, respectively.

SEE ALSO
ldap(3), ldap_error (3), ldap_modify(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_ADD(3) LDAP_ADD(3)

NAME
ldap_add_ext, ldap_add_ext_s − Perform an LDAP add operation

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_add_ext(
LDAP * ld,
const char *dn,
LDAPMod ** attrs,
LDAPControl ** sctrls,
LDAPControl ** cctrls,
int * msgidp);

int ldap_add_ext_s(
LDAP * ld,
const char *dn,
LDAPMod ** attrs,
LDAPControl * sctrls,
LDAPControl * cctrls);

DESCRIPTION
The ldap_add_ext_s()routine is used to perform an LDAP add operation. It takesdn, the DN of the entry
to add, andattrs, a null-terminated array of the entry’s attributes. TheLDAPMod structure is used to repre-
sent attributes, with themod_typeand mod_valuesfields being used as described underldap_mod-
ify_ext(3), and theldap_op field being used only if you need to specify the LDAP_MOD_BVALUES
option. Otherwise, it should be set to zero.

Note that all entries except that specified by the last component in the given DN must already exist.
ldap_add_ext_s()returns an code indicating success or, in the case of failure, indicating the nature of fail-
ure of the operation. Seeldap_error (3) for more details.

The ldap_add_ext()routine works just like ldap_add_ext_s(), but it is asynchronous. It returns the mes-
sage id of the request it initiated. The result of this operation can be obtained by callingldap_result(3).

DEPRECATED INTERFACES
The ldap_add() and ldap_add_s() routines are deprecated in favor of the ldap_add_ext() and
ldap_add_ext_s() routines, respectively.

Deprecated interfaces generally remain in the library. The macro LDAP_DEPRECATED can be defined to
a non-zero value (e.g., -DLDAP_DEPRECATED=1) when compiling program designed to use deprecated
interfaces. Itis recommended that developers writing new programs, or updating old programs, avoid use
of deprecated interfaces. Over time, it is expected that documentation (and, eventually, support) for depre-
cated interfaces to be eliminated.

SEE ALSO
ldap(3), ldap_error (3), ldap_modify(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_BIND(3) LDAP_BIND(3)

NAME
ldap_bind, ldap_bind_s, ldap_simple_bind, ldap_simple_bind_s, ldap_sasl_bind, ldap_sasl_bind_s,
ldap_sasl_interactive_bind_s, ldap_parse_sasl_bind_result, ldap_unbind, ldap_unbind_s, ldap_unbind_ext,
ldap_unbind_ext_s, ldap_set_rebind_proc − LDAP bind routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_bind(LDAP * ld, const char *who, const char *cred,
int method);

int ldap_bind_s(LDAP * ld, const char *who, const char *cred,
int method);

int ldap_simple_bind(LDAP * ld, const char *who, const char *passwd);

int ldap_simple_bind_s(LDAP *ld, const char *who, const char *passwd);

int ldap_sasl_bind(LDAP *ld, const char *dn, const char *mechanism,
struct berval * cred, LDAPControl * sctrls[],
LDAPControl * cctrls[], int * msgidp);

int ldap_sasl_bind_s(LDAP *ld, const char *dn, const char *mechanism,
struct berval * cred, LDAPControl * sctrls[],
LDAPControl * cctrls[], struct berval * * servercredp);

int ldap_parse_sasl_bind_result(LDAP *ld, LDAPMessage *res,
struct berval * * servercredp, int freeit);

int ldap_sasl_interactive_bind_s(LDAP *ld, const char *dn,
const char *mechs,
LDAPControl * sctrls[], LDAPControl * cctrls[],
unsigned flags, LDAP_SASL_INTERACT_PROC *interact,
void * defaults);

int (LDAP_SASL_INTERACT_PROC)(LDAP * ld, unsigned flags, void *defaults, void *sasl_interact);

int ldap_unbind(LDAP * ld);

int ldap_unbind_s(LDAP * ld);

int ldap_unbind_ext(LDAP * ld, LDAPControl * sctrls[],
LDAPControl * cctrls[]);

int ldap_unbind_ext_s(LDAP *ld, LDAPControl * sctrls[],
LDAPControl * cctrls[]);

int ldap_set_rebind_proc (LDAP *ld, LDAP_REBIND_PROC *ldap_proc, void * params);

int (LDAP_REBIND_PROC)(LDAP * ld, LDAP_CONST char *url , ber_tag_t request, ber_int_t msgid, void * params);

DESCRIPTION
These routines provide various interfaces to the LDAP bind operation. After an association with an LDAP
server is made usingldap_init (3), an LDAP bind operation should be performed before other operations
are attempted over the connection. An LDAP bind is required when using Version 2 of the LDAP protocol;
it is optional for Version 3 but is usually needed due to security considerations.

There are three types of bind calls, ones providing simple authentication, ones providing SASL authentica-
tion, and general routines capable of doing either simple or SASL authentication.

SASL (Simple Authentication and Security Layer) that can negotiate one of many different kinds of
authentication. Bothsynchronous and asynchronous versions of each variant of the bind call are provided.
All routines takeld as their first parameter, as returned fromldap_init (3).

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_BIND(3) LDAP_BIND(3)

SIMPLE AUTHENTICATION
The simplest form of the bind call isldap_simple_bind_s(). It takes the DN to bind as inwho, and the
userPassword associated with the entry inpasswd. It returns an LDAP error indication (see
ldap_error (3)). Theldap_simple_bind() call is asynchronous, taking the same parameters but only initi-
ating the bind operation and returning the message id of the request it sent. The result of the operation can
be obtained by a subsequent call toldap_result(3).

GENERAL AUTHENTICATION
The ldap_bind() and ldap_bind_s() routines can be used when the authentication method to use needs to
be selected at runtime.They both take an extra methodparameter selecting the authentication method to
use. Itshould be set to LDAP_AUTH_SIMPLE to select simple authentication.ldap_bind() returns the
message id of the request it initiates.ldap_bind_s()returns an LDAP error indication.

SASL AUTHENTICATION
For SASL binds the server always ignores any provided DN, so thedn parameter should always be NULL.
ldap_sasl_bind_s() sends a single SASL bind request with the given SASL mechanismand credentials in
the cred parameter. The format of the credentials depends on the particular SASL mechanism in use. For
mechanisms that provide mutual authentication the server’s credentials will be returned in theservercredp
parameter. The routine returns an LDAP error indication (seeldap_error (3)). Theldap_sasl_bind() call
is asynchronous, taking the same parameters but only sending the request and returning the message id of
the request it sent. The result of the operation can be obtained by a subsequent call toldap_result(3). The
result must be additionally parsed byldap_parse_sasl_bind_result() to obtain any server credentials sent
from the server.

Many SASL mechanisms require multiple message exchanges to perform a complete authentication. Appli-
cations should generally useldap_sasl_interactive_bind_s() rather than calling the basicldap_sasl_bind()
functions directly. The mechsparameter should contain a space-separated list of candidate mechanisms to
use. If this parameter is NULL or empty the library will query the supportedSASLMechanisms attribute
from the server’s rootDSE for the list of SASL mechanisms the server supports. Theflagsparameter con-
trols the interaction used to retrieve any necessary SASL authentication parameters and should be one of:

LDAP_SASL_AUTOMATIC
use defaults if available, prompt otherwise

LDAP_SASL_INTERACTIVE
always prompt

LDAP_SASL_QUIET
never prompt

The interact function uses the provided defaultsto handle requests from the SASL library for particular
authentication parameters. There is no defined format for thedefaultsinformation; it is up to the caller to
use whatever format is appropriate for the suppliedinteract function. Thesasl_interactparameter comes
from the underlying SASL library. When used with Cyrus SASL this is an array ofsasl_interact_tstruc-
tures. The Cyrus SASL library will prompt for a variety of inputs, including:

SASL_CB_GETREALM
the realm for the authentication attempt

SASL_CB_AUTHNAME
the username to authenticate

SASL_CB_PASS
the password for the provided username

SASL_CB_USER
the username to use for proxy authorization

SASL_CB_NOECHOPROMPT
generic prompt for input with input echoing disabled

OpenLDAP LDVERSION RELEASEDATE 2

LDAP_BIND(3) LDAP_BIND(3)

SASL_CB_ECHOPROMPT
generic prompt for input with input echoing enabled

SASL_CB_LIST_END
indicates the end of the array of prompts

See the Cyrus SASL documentation for more details.

REBINDING
The ldap_set_rebind_procfunction() sets the process to use for binding when an operation returns a refer-
ral. This function is used when an application needs to bind to another server in order to follow a referral or
search continuation reference.

The function takes ld, the rebind function, and theparams, the arbitrary data like state information which
the client might need to properly rebind.The LDAP_OPT_REFERRALS option in theld must be set to
ON for the libraries to use the rebind function. Use theldap_set_optionfunction to set the value.

The rebind function parameters are as follows:

The ld parameter must be used by the application when binding to the referred server if the application
wants the libraries to follow the referral.

Theurl parameter points to the URL referral string received from the LDAP server. The LDAP application
can use theldap_url_parse(3) function to parse the string into its components.

Therequestparameter specifies the type of request that generated the referral.

Themsgidparameter specifies the message ID of the request generating the referral.

Theparamsparameter is the same value as passed originally to theldap_set_rebind_proc() function.

The LDAP libraries set all the parameters when they call the rebind function. The application should not
attempt to free either the ld or the url structures in the rebind function.

The application must supply to the rebind function the required authentication information such as, user
name, password, and certificates. The rebind function must use a synchronous bind method.

UNBINDING
The ldap_unbind() call is used to unbind from the directory, terminate the current association, and free the
resources contained in theld structure. Onceit is called, the connection to the LDAP server is closed, and
the ld structure is invalid. The ldap_unbind_s()call is just another name forldap_unbind(); both of these
calls are synchronous in nature.

The ldap_unbind_ext()andldap_unbind_ext_s()allows the operations to specify controls.

ERRORS
Asynchronous routines will return -1 in case of error, setting theld_errno parameter of theld structure.
Synchronous routines return whatever ld_errno is set to. Seeldap_error (3) for more information.

NOTES
If an anonymous bind is sufficient for the application, the rebind process need not be provided. The LDAP
libraries with the LDAP_OPT_REFERRALS option set to ON (default value) will automatically follow
referrals using an anonymous bind.

If the application needs stronger authentication than an anonymous bind, you need to provide a rebind
process for that authentication method. The bind method must be synchronous.

SEE ALSO
ldap(3), ldap_error (3), ldap_open(3), ldap_set_option(3), ldap_url_parse(3) RFC 4422
(http://www.rfc-editor.org),Cyrus SASL (http://asg.web.cmu.edu/sasl/)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 3

LDAP_BIND(3) LDAP_BIND(3)

NAME
ldap_bind, ldap_bind_s, ldap_simple_bind, ldap_simple_bind_s, ldap_sasl_bind, ldap_sasl_bind_s,
ldap_sasl_interactive_bind_s, ldap_parse_sasl_bind_result, ldap_unbind, ldap_unbind_s, ldap_unbind_ext,
ldap_unbind_ext_s, ldap_set_rebind_proc − LDAP bind routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_bind(LDAP * ld, const char *who, const char *cred,
int method);

int ldap_bind_s(LDAP * ld, const char *who, const char *cred,
int method);

int ldap_simple_bind(LDAP * ld, const char *who, const char *passwd);

int ldap_simple_bind_s(LDAP *ld, const char *who, const char *passwd);

int ldap_sasl_bind(LDAP *ld, const char *dn, const char *mechanism,
struct berval * cred, LDAPControl * sctrls[],
LDAPControl * cctrls[], int * msgidp);

int ldap_sasl_bind_s(LDAP *ld, const char *dn, const char *mechanism,
struct berval * cred, LDAPControl * sctrls[],
LDAPControl * cctrls[], struct berval * * servercredp);

int ldap_parse_sasl_bind_result(LDAP *ld, LDAPMessage *res,
struct berval * * servercredp, int freeit);

int ldap_sasl_interactive_bind_s(LDAP *ld, const char *dn,
const char *mechs,
LDAPControl * sctrls[], LDAPControl * cctrls[],
unsigned flags, LDAP_SASL_INTERACT_PROC *interact,
void * defaults);

int (LDAP_SASL_INTERACT_PROC)(LDAP * ld, unsigned flags, void *defaults, void *sasl_interact);

int ldap_unbind(LDAP * ld);

int ldap_unbind_s(LDAP * ld);

int ldap_unbind_ext(LDAP * ld, LDAPControl * sctrls[],
LDAPControl * cctrls[]);

int ldap_unbind_ext_s(LDAP *ld, LDAPControl * sctrls[],
LDAPControl * cctrls[]);

int ldap_set_rebind_proc (LDAP *ld, LDAP_REBIND_PROC *ldap_proc, void * params);

int (LDAP_REBIND_PROC)(LDAP * ld, LDAP_CONST char *url , ber_tag_t request, ber_int_t msgid, void * params);

DESCRIPTION
These routines provide various interfaces to the LDAP bind operation. After an association with an LDAP
server is made usingldap_init (3), an LDAP bind operation should be performed before other operations
are attempted over the connection. An LDAP bind is required when using Version 2 of the LDAP protocol;
it is optional for Version 3 but is usually needed due to security considerations.

There are three types of bind calls, ones providing simple authentication, ones providing SASL authentica-
tion, and general routines capable of doing either simple or SASL authentication.

SASL (Simple Authentication and Security Layer) that can negotiate one of many different kinds of
authentication. Bothsynchronous and asynchronous versions of each variant of the bind call are provided.
All routines takeld as their first parameter, as returned fromldap_init (3).

OpenLDAP 2.4.9 2008/05/07 1

LDAP_BIND(3) LDAP_BIND(3)

SIMPLE AUTHENTICATION
The simplest form of the bind call isldap_simple_bind_s(). It takes the DN to bind as inwho, and the
userPassword associated with the entry inpasswd. It returns an LDAP error indication (see
ldap_error (3)). Theldap_simple_bind() call is asynchronous, taking the same parameters but only initi-
ating the bind operation and returning the message id of the request it sent. The result of the operation can
be obtained by a subsequent call toldap_result(3).

GENERAL AUTHENTICATION
The ldap_bind() and ldap_bind_s() routines can be used when the authentication method to use needs to
be selected at runtime.They both take an extra methodparameter selecting the authentication method to
use. Itshould be set to LDAP_AUTH_SIMPLE to select simple authentication.ldap_bind() returns the
message id of the request it initiates.ldap_bind_s()returns an LDAP error indication.

SASL AUTHENTICATION
For SASL binds the server always ignores any provided DN, so thedn parameter should always be NULL.
ldap_sasl_bind_s() sends a single SASL bind request with the given SASL mechanismand credentials in
the cred parameter. The format of the credentials depends on the particular SASL mechanism in use. For
mechanisms that provide mutual authentication the server’s credentials will be returned in theservercredp
parameter. The routine returns an LDAP error indication (seeldap_error (3)). Theldap_sasl_bind() call
is asynchronous, taking the same parameters but only sending the request and returning the message id of
the request it sent. The result of the operation can be obtained by a subsequent call toldap_result(3). The
result must be additionally parsed byldap_parse_sasl_bind_result() to obtain any server credentials sent
from the server.

Many SASL mechanisms require multiple message exchanges to perform a complete authentication. Appli-
cations should generally useldap_sasl_interactive_bind_s() rather than calling the basicldap_sasl_bind()
functions directly. The mechsparameter should contain a space-separated list of candidate mechanisms to
use. If this parameter is NULL or empty the library will query the supportedSASLMechanisms attribute
from the server’s rootDSE for the list of SASL mechanisms the server supports. Theflagsparameter con-
trols the interaction used to retrieve any necessary SASL authentication parameters and should be one of:

LDAP_SASL_AUTOMATIC
use defaults if available, prompt otherwise

LDAP_SASL_INTERACTIVE
always prompt

LDAP_SASL_QUIET
never prompt

The interact function uses the provided defaultsto handle requests from the SASL library for particular
authentication parameters. There is no defined format for thedefaultsinformation; it is up to the caller to
use whatever format is appropriate for the suppliedinteract function. Thesasl_interactparameter comes
from the underlying SASL library. When used with Cyrus SASL this is an array ofsasl_interact_tstruc-
tures. The Cyrus SASL library will prompt for a variety of inputs, including:

SASL_CB_GETREALM
the realm for the authentication attempt

SASL_CB_AUTHNAME
the username to authenticate

SASL_CB_PASS
the password for the provided username

SASL_CB_USER
the username to use for proxy authorization

SASL_CB_NOECHOPROMPT
generic prompt for input with input echoing disabled

OpenLDAP 2.4.9 2008/05/07 2

LDAP_BIND(3) LDAP_BIND(3)

SASL_CB_ECHOPROMPT
generic prompt for input with input echoing enabled

SASL_CB_LIST_END
indicates the end of the array of prompts

See the Cyrus SASL documentation for more details.

REBINDING
The ldap_set_rebind_procfunction() sets the process to use for binding when an operation returns a refer-
ral. This function is used when an application needs to bind to another server in order to follow a referral or
search continuation reference.

The function takes ld, the rebind function, and theparams, the arbitrary data like state information which
the client might need to properly rebind.The LDAP_OPT_REFERRALS option in theld must be set to
ON for the libraries to use the rebind function. Use theldap_set_optionfunction to set the value.

The rebind function parameters are as follows:

The ld parameter must be used by the application when binding to the referred server if the application
wants the libraries to follow the referral.

Theurl parameter points to the URL referral string received from the LDAP server. The LDAP application
can use theldap_url_parse(3) function to parse the string into its components.

Therequestparameter specifies the type of request that generated the referral.

Themsgidparameter specifies the message ID of the request generating the referral.

Theparamsparameter is the same value as passed originally to theldap_set_rebind_proc() function.

The LDAP libraries set all the parameters when they call the rebind function. The application should not
attempt to free either the ld or the url structures in the rebind function.

The application must supply to the rebind function the required authentication information such as, user
name, password, and certificates. The rebind function must use a synchronous bind method.

UNBINDING
The ldap_unbind() call is used to unbind from the directory, terminate the current association, and free the
resources contained in theld structure. Onceit is called, the connection to the LDAP server is closed, and
the ld structure is invalid. The ldap_unbind_s()call is just another name forldap_unbind(); both of these
calls are synchronous in nature.

The ldap_unbind_ext()andldap_unbind_ext_s()allows the operations to specify controls.

ERRORS
Asynchronous routines will return -1 in case of error, setting theld_errno parameter of theld structure.
Synchronous routines return whatever ld_errno is set to. Seeldap_error (3) for more information.

NOTES
If an anonymous bind is sufficient for the application, the rebind process need not be provided. The LDAP
libraries with the LDAP_OPT_REFERRALS option set to ON (default value) will automatically follow
referrals using an anonymous bind.

If the application needs stronger authentication than an anonymous bind, you need to provide a rebind
process for that authentication method. The bind method must be synchronous.

SEE ALSO
ldap(3), ldap_error (3), ldap_open(3), ldap_set_option(3), ldap_url_parse(3) RFC 4422
(http://www.rfc-editor.org),Cyrus SASL (http://asg.web.cmu.edu/sasl/)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 3

LDAP_COMPARE(3) LDAP_COMPARE(3)

NAME
ldap_compare, ldap_compare_s, ldap_compare_ext, ldap_compare_ext_s − Perform an LDAP compare
operation.

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_compare_ext(
LDAP * ld,
char *dn,
char *attr,
const struct berval * bvalue,
LDAPControl ** serverctrls,
LDAPControl ** clientctrls,
int * msgidp);

int ldap_compare_ext_s(
LDAP * ld,
char *dn,
char *attr,
const struct berval * bvalue,
LDAPControl ** serverctrls,
LDAPControl ** clientctrls);

DESCRIPTION
The ldap_compare_ext_s()routine is used to perform an LDAP compare operation synchronously. It
takesdn, the DN of the entry upon which to perform the compare, andattr andvalue, the attribute descrip-
tion and value to compare to those found in the entry. It returns a code, which will be LDAP_COM-
PARE_TRUE if the entry contains the attribute value and LDAP_COMPARE_FALSE if it does not.Other-
wise, an error code is returned that indicates the nature of the problem. Seeldap(3) for details.

The ldap_compare_ext()routine is used to perform an LDAP compare operation asynchronously. It takes
the same parameters asldap_compare_ext_s(), but provides the message id of the request it initiated in the
integer pointed tomsgidp. The result of the compare can be obtained by a subsequent call to
ldap_result(3).

Both routines allow server and client controls to be specified to extend the compare request.

DEPRECATED INTERFACES
The routinesldap_compare() andldap_compare_s() are deprecated in favor of ldap_compare_ext() and
ldap_compare_ext_s(), respectively.

SEE ALSO
ldap(3), ldap_error (3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_COMPARE(3) LDAP_COMPARE(3)

NAME
ldap_compare, ldap_compare_s, ldap_compare_ext, ldap_compare_ext_s − Perform an LDAP compare
operation.

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_compare_ext(
LDAP * ld,
char *dn,
char *attr,
const struct berval * bvalue,
LDAPControl ** serverctrls,
LDAPControl ** clientctrls,
int * msgidp);

int ldap_compare_ext_s(
LDAP * ld,
char *dn,
char *attr,
const struct berval * bvalue,
LDAPControl ** serverctrls,
LDAPControl ** clientctrls);

DESCRIPTION
The ldap_compare_ext_s()routine is used to perform an LDAP compare operation synchronously. It
takesdn, the DN of the entry upon which to perform the compare, andattr andvalue, the attribute descrip-
tion and value to compare to those found in the entry. It returns a code, which will be LDAP_COM-
PARE_TRUE if the entry contains the attribute value and LDAP_COMPARE_FALSE if it does not.Other-
wise, an error code is returned that indicates the nature of the problem. Seeldap(3) for details.

The ldap_compare_ext()routine is used to perform an LDAP compare operation asynchronously. It takes
the same parameters asldap_compare_ext_s(), but provides the message id of the request it initiated in the
integer pointed tomsgidp. The result of the compare can be obtained by a subsequent call to
ldap_result(3).

Both routines allow server and client controls to be specified to extend the compare request.

DEPRECATED INTERFACES
The routinesldap_compare() andldap_compare_s() are deprecated in favor of ldap_compare_ext() and
ldap_compare_ext_s(), respectively.

Deprecated interfaces generally remain in the library. The macro LDAP_DEPRECATED can be defined to
a non-zero value (e.g., -DLDAP_DEPRECATED=1) when compiling program designed to use deprecated
interfaces. Itis recommended that developers writing new programs, or updating old programs, avoid use
of deprecated interfaces. Over time, it is expected that documentation (and, eventually, support) for depre-
cated interfaces to be eliminated.

SEE ALSO
ldap(3), ldap_error (3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_CONTROLS(3) LDAP_CONTROLS(3)

NAME
ldap_control_create, ldap_control_find, ldap_control_dup, ldap_controls_dup, ldap_control_free, ldap_con-
trols_free − LDAP control manipulation routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_control_create(const char *oid, int iscritical, struct berval * value, int dupval, LDAPControl
** ctrlp);

LDAPContr ol *ldap_control_find(const char *oid, LDAPControl ** ctrls, LDAPControl *** nextc-
trlp);

LDAPControl *ldap_control_dup(LDAPControl * ctrl);

LDAPControl **ldap_controls_dup(LDAPControl ** ctrls);

void ldap_control_free(LDAPControl * ctrl);

void ldap_controls_free(LDAPControl ** ctrls);

DESCRIPTION
These routines are used to manipulate structures used for LDAP controls.

ldap_control_create() creates a control with the specifiedOID using the contents of thevalueparameter
for the control value, if any. The content ofvalueis duplicated ifdupval is non-zero.The iscritical param-
eter must be non-zero for a critical control. The created control is returned in thectrlp parameter. The rou-
tine returnsLDAP_SUCCESSon success or some other error code on failure. Thecontent ofvalue, for
supported control types, can be prepared using helpers provided by this implementation of libldap, usually
in the formldap_create_<control name>_control_value(). Otherwise,it can be BER-encoded using the
functionalities of liblber.

ldap_control_find() searches the NULL-terminatedctrls array for a control whose OID matches theoid
parameter. The routine returns a pointer to the control if found, NULL otherwise.If the parameternextc-
trlp is not NULL, on return it will point to the next control in the array, and can be passed to theldap_con-
trol_find () routine for subsequent calls, to find further occurrences of the same control type.The use of
this function is discouraged; the recommended way of handling controls in responses consists in going
through the array of controls, dealing with each of them in the returned order, since it could matter.

ldap_control_dup() duplicates an individual control structure, andldap_controls_dup() duplicates a
NULL-terminated array of controls.

ldap_control_free() frees an individual control structure, andldap_controls_free() frees a NULL-termi-
nated array of controls.

SEE ALSO
ldap(3), ldap_error (3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_CONTROLS(3) LDAP_CONTROLS(3)

NAME
ldap_control_create, ldap_control_find, ldap_control_dup, ldap_controls_dup, ldap_control_free, ldap_con-
trols_free − LDAP control manipulation routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_control_create(const char *oid, int iscritical, struct berval * value, int dupval, LDAPControl
** ctrlp);

LDAPContr ol *ldap_control_find(const char *oid, LDAPControl ** ctrls, LDAPControl *** nextc-
trlp);

LDAPControl *ldap_control_dup(LDAPControl * ctrl);

LDAPControl **ldap_controls_dup(LDAPControl ** ctrls);

void ldap_control_free(LDAPControl * ctrl);

void ldap_controls_free(LDAPControl ** ctrls);

DESCRIPTION
These routines are used to manipulate structures used for LDAP controls.

ldap_control_create() creates a control with the specifiedOID using the contents of thevalueparameter
for the control value, if any. The content ofvalueis duplicated ifdupval is non-zero.The iscritical param-
eter must be non-zero for a critical control. The created control is returned in thectrlp parameter. The rou-
tine returnsLDAP_SUCCESSon success or some other error code on failure. Thecontent ofvalue, for
supported control types, can be prepared using helpers provided by this implementation of libldap, usually
in the formldap_create_<control name>_control_value(). Otherwise,it can be BER-encoded using the
functionalities of liblber.

ldap_control_find() searches the NULL-terminatedctrls array for a control whose OID matches theoid
parameter. The routine returns a pointer to the control if found, NULL otherwise.If the parameternextc-
trlp is not NULL, on return it will point to the next control in the array, and can be passed to theldap_con-
trol_find () routine for subsequent calls, to find further occurrences of the same control type.The use of
this function is discouraged; the recommended way of handling controls in responses consists in going
through the array of controls, dealing with each of them in the returned order, since it could matter.

ldap_control_dup() duplicates an individual control structure, andldap_controls_dup() duplicates a
NULL-terminated array of controls.

ldap_control_free() frees an individual control structure, andldap_controls_free() frees a NULL-termi-
nated array of controls.

SEE ALSO
ldap(3), ldap_error (3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_DELETE(3) LDAP_DELETE(3)

NAME
ldap_delete, ldap_delete_s, ldap_delete_ext, ldap_delete_ext_s − Perform an LDAP delete operation.

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_delete_s(ld, dn)
LDAP *ld;
char *dn;

int ldap_delete(ld, dn)
LDAP *ld;
char *dn;

int ldap_delete_ext(ld, dn, serverctrls, clientctrls, msgidp)
LDAP *ld;
char *dn;
LDAPControl **serverctrls, **clientctrls;
int *msgidp;

int ldap_delete_ext_s(ld, dn, serverctrls, clientctrls)
LDAP *ld;
char *dn;
LDAPControl **serverctrls, **clientctrls;

DESCRIPTION
The ldap_delete_s()routine is used to perform an LDAP delete operation synchronously. It takesdn, the
DN of the entry to be deleted. It returns an LDAP error code, indicating the success or failure of the opera-
tion.

The ldap_delete()routine is used to perform an LDAP delete operation asynchronously. It takes the same
parameters asldap_delete_s(),but returns the message id of the request it initiated. The result of the delete
can be obtained by a subsequent call toldap_result(3).

The ldap_delete_ext()routine allows server andclient controls to be specified to extend the delete
request. This routine is asynchronous like ldap_delete(), but its return value is an LDAP error code. It stores
the message id of the request in the integer pointed to by msgidp.

The ldap_delete_ext_s()routine is the synchronous version ofldap_delete_ext(). It also returns an LDAP
error code indicating success or failure of the operation.

ERRORS
ldap_delete_s()returns an LDAP error code which can be interpreted by calling one ofldap_perror (3)
and friends.ldap_delete()returns -1 if something went wrong initiating the request. It returns the non-neg-
ative message id of the request if things went ok.

ldap_delete_ext()and ldap_delete_ext_s()return some Non-zero value if somethingwent wrong initiat-
ing the request, else return 0.

SEE ALSO
ldap(3), ldap_error (3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_DELETE(3) LDAP_DELETE(3)

NAME
ldap_delete, ldap_delete_s, ldap_delete_ext, ldap_delete_ext_s − Perform an LDAP delete operation.

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_delete_s(ld, dn)
LDAP *ld;
char *dn;

int ldap_delete(ld, dn)
LDAP *ld;
char *dn;

int ldap_delete_ext(ld, dn, serverctrls, clientctrls, msgidp)
LDAP *ld;
char *dn;
LDAPControl **serverctrls, **clientctrls;
int *msgidp;

int ldap_delete_ext_s(ld, dn, serverctrls, clientctrls)
LDAP *ld;
char *dn;
LDAPControl **serverctrls, **clientctrls;

DESCRIPTION
The ldap_delete_s()routine is used to perform an LDAP delete operation synchronously. It takesdn, the
DN of the entry to be deleted. It returns an LDAP error code, indicating the success or failure of the opera-
tion.

The ldap_delete()routine is used to perform an LDAP delete operation asynchronously. It takes the same
parameters asldap_delete_s(),but returns the message id of the request it initiated. The result of the delete
can be obtained by a subsequent call toldap_result(3).

The ldap_delete_ext()routine allows server andclient controls to be specified to extend the delete
request. This routine is asynchronous like ldap_delete(), but its return value is an LDAP error code. It stores
the message id of the request in the integer pointed to by msgidp.

The ldap_delete_ext_s()routine is the synchronous version ofldap_delete_ext(). It also returns an LDAP
error code indicating success or failure of the operation.

ERRORS
ldap_delete_s()returns an LDAP error code which can be interpreted by calling one ofldap_perror (3)
and friends.ldap_delete()returns -1 if something went wrong initiating the request. It returns the non-neg-
ative message id of the request if things went ok.

ldap_delete_ext()and ldap_delete_ext_s()return some Non-zero value if somethingwent wrong initiat-
ing the request, else return 0.

SEE ALSO
ldap(3), ldap_error (3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_ERROR(3) LDAP_ERROR(3)

NAME
ldap_perror, ld_errno, ldap_result2error, ldap_errlist, ldap_err2string − LDAP protocol error handling rou-
tines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

char *ldap_err2string(int err);

DESCRIPTION
The ldap_err2string() routine provides short description of the various codes returned by routines in this
library. The returned string is a pointer to a static area that should not be modified.

These codes are either negative, indicating an API error code; positive, indicating an LDAP resultCode
other than ´success’ (0), or - zero, indicating both successful use of the API and the LDAP resultCode ´suc-
cess’ (0).

The code associated with an LDAP session is accessible usingldap_get_option(3) andldap_set_option(3)
with theLDAP_OPT_RESULT_CODE option (previously calledLDAP_OPT_ERROR_NUMBER).

PROT OCOL RESULT CODES
This section provides a partial list of protocol codes recognized by the library. As LDAP is extensible,
additional values may be returned.A complete listing ofregisteredLDAP result codes can be obtained
from theInternet Assigned Numbers Authority<http://www.iana.org>.

LDAP_SUCCESS The request was successful.

LDAP_OPERATIONS_ERROR
An operations error occurred.

LDAP_PROT OCOL_ERROR
A protocol violation was detected.

LDAP_TIMELIMIT_EXCEEDED
An LDAP time limit was exceeded.

LDAP_SIZELIMIT_EXCEEDED
An LDAP size limit was exceeded.

LDAP_COMPARE_FALSE
A compare operation returned false.

LDAP_COMPARE_TRUE
A compare operation returned true.

LDAP_STRONG_AUTH_NOT_SUPPORTED
The LDAP server does not support strong authentication.

LDAP_STRONG_AUTH_REQUIRED
Strong authentication is required for the operation.

LDAP_PARTIAL_RESULTS
Partial results only returned.

LDAP_NO_SUCH_ATTRIBUTE
The attribute type specified does not exist in the entry.

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_ERROR(3) LDAP_ERROR(3)

LDAP_UNDEFINED_TYPE
The attribute type specified is invalid.

LDAP_INAPPROPRIATE_MATCHING
Filter type not supported for the specified attribute.

LDAP_CONSTRAINT_VIOLATION
An attribute value specified violates some constraint (e.g., a postalAddress has too
many lines, or a line that is too long).

LDAP_TYPE_OR_VALUE_EXISTS
An attribute type or attribute value specified already exists in the entry.

LDAP_INVALID_SYNTAX
An invalid attribute value was specified.

LDAP_NO_SUCH_OBJECT
The specified object does not exist in The Directory.

LDAP_ALIAS_PROBLEM
An alias in The Directory points to a nonexistent entry.

LDAP_INVALID_DN_SYNTAX
A syntactically invalid DN was specified.

LDAP_IS_LEAF The object specified is a leaf.

LDAP_ALIAS_DEREF_PROBLEM
A problem was encountered when dereferencing an alias.

LDAP_INAPPROPRIATE_AUTH
Inappropriate authentication was specified (e.g., LDAP_AUTH_SIMPLE was
specified and the entry does not have a userPassword attribute).

LDAP_INVALID_CREDENTIALS
Invalid credentials were presented (e.g., the wrong password).

LDAP_INSUFFICIENT_ACCESS
The user has insufficient access to perform the operation.

LDAP_BUSY The DSA is busy.

LDAP_UNAVA ILABLE The DSA is unavailable.

LDAP_UNWILLING_TO_PERFORM
The DSA is unwilling to perform the operation.

LDAP_LOOP_DETECT A loop was detected.

LDAP_NAMING_VIOLATION
A naming violation occurred.

LDAP_OBJECT_CLASS_VIOLATION
An object class violation occurred (e.g., a "must" attribute was missing from the
entry).

LDAP_NOT_ALLOWED_ON_NONLEAF
The operation is not allowed on a nonleaf object.

LDAP_NOT_ALLOWED_ON_RDN
The operation is not allowed on an RDN.

LDAP_ALREADY_EXISTS
The entry already exists.

LDAP_NO_OBJECT_CLASS_MODS
Object class modifications are not allowed.

OpenLDAP LDVERSION RELEASEDATE 2

LDAP_ERROR(3) LDAP_ERROR(3)

LDAP_OTHER An unknown error occurred.

API ERROR CODES
This section provides a complete list of API error codes recognized by the library. Note that LDAP_SUC-
CESS indicates success of an API call in addition to representing the return of the LDAP ´success’ result-
Code.

LDAP_SERVER_DOWN The LDAP library can’t contact the LDAP server.

LDAP_LOCAL_ERROR Some local error occurred. This is usually a failed dynamic memory allocation.

LDAP_ENCODING_ERROR
An error was encountered encoding parameters to send to the LDAP server.

LDAP_DECODING_ERROR
An error was encountered decoding a result from the LDAP server.

LDAP_TIMEOUT A timelimit was exceeded while waiting for a result.

LDAP_AUTH_UNKNOWN
The authentication method specified to ldap_bind() is not known.

LDAP_FILTER_ERROR An invalid filter was supplied to ldap_search() (e.g., unbalanced parentheses).

LDAP_PARAM_ERROR An ldap routine was called with a bad parameter.

LDAP_NO_MEMORY An memory allocation (e.g., malloc(3) or other dynamic memory allocator) call
failed in an ldap library routine.

LDAP_USER_CANCELED
Indicates the user cancelled the operation.

LDAP_CONNECT_ERROR
Indicates a connection problem.

LDAP_NOT_SUPPORTED
Indicates the routine was called in a manner not supported by the library.

LDAP_CONTROL_NOT_FOUND
Indicates the control provided is unknown to the client library.

LDAP_NO_RESULTS_RETURNED
Indicates no results returned.

LDAP_MORE_RESULTS_TO_RETURN
Indicates more results could be returned.

LDAP_CLIENT_LOOP Indicates the library has detected a loop in its processing.

LDAP_REFERRAL_LIMIT_EXCEEDED
Indicates the referral limit has been exceeded.

DEPRECATED
SEE ALSO

ldap(3),

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 3

LDAP_ERROR(3) LDAP_ERROR(3)

NAME
ldap_perror, ld_errno, ldap_result2error, ldap_errlist, ldap_err2string − LDAP protocol error handling rou-
tines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

char *ldap_err2string(int err);

DESCRIPTION
The ldap_err2string() routine provides short description of the various codes returned by routines in this
library. The returned string is a pointer to a static area that should not be modified.

These codes are either negative, indicating an API error code; positive, indicating an LDAP resultCode
other than ´success’ (0), or - zero, indicating both successful use of the API and the LDAP resultCode ´suc-
cess’ (0).

The code associated with an LDAP session is accessible usingldap_get_option(3) andldap_set_option(3)
with theLDAP_OPT_RESULT_CODE option (previously calledLDAP_OPT_ERROR_NUMBER).

PROT OCOL RESULT CODES
This section provides a partial list of protocol codes recognized by the library. As LDAP is extensible,
additional values may be returned.A complete listing ofregisteredLDAP result codes can be obtained
from theInternet Assigned Numbers Authority<http://www.iana.org>.

LDAP_SUCCESS The request was successful.

LDAP_OPERATIONS_ERROR
An operations error occurred.

LDAP_PROT OCOL_ERROR
A protocol violation was detected.

LDAP_TIMELIMIT_EXCEEDED
An LDAP time limit was exceeded.

LDAP_SIZELIMIT_EXCEEDED
An LDAP size limit was exceeded.

LDAP_COMPARE_FALSE
A compare operation returned false.

LDAP_COMPARE_TRUE
A compare operation returned true.

LDAP_STRONG_AUTH_NOT_SUPPORTED
The LDAP server does not support strong authentication.

LDAP_STRONG_AUTH_REQUIRED
Strong authentication is required for the operation.

LDAP_PARTIAL_RESULTS
Partial results only returned.

LDAP_NO_SUCH_ATTRIBUTE
The attribute type specified does not exist in the entry.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_ERROR(3) LDAP_ERROR(3)

LDAP_UNDEFINED_TYPE
The attribute type specified is invalid.

LDAP_INAPPROPRIATE_MATCHING
Filter type not supported for the specified attribute.

LDAP_CONSTRAINT_VIOLATION
An attribute value specified violates some constraint (e.g., a postalAddress has too
many lines, or a line that is too long).

LDAP_TYPE_OR_VALUE_EXISTS
An attribute type or attribute value specified already exists in the entry.

LDAP_INVALID_SYNTAX
An invalid attribute value was specified.

LDAP_NO_SUCH_OBJECT
The specified object does not exist in The Directory.

LDAP_ALIAS_PROBLEM
An alias in The Directory points to a nonexistent entry.

LDAP_INVALID_DN_SYNTAX
A syntactically invalid DN was specified.

LDAP_IS_LEAF The object specified is a leaf.

LDAP_ALIAS_DEREF_PROBLEM
A problem was encountered when dereferencing an alias.

LDAP_INAPPROPRIATE_AUTH
Inappropriate authentication was specified (e.g., LDAP_AUTH_SIMPLE was
specified and the entry does not have a userPassword attribute).

LDAP_INVALID_CREDENTIALS
Invalid credentials were presented (e.g., the wrong password).

LDAP_INSUFFICIENT_ACCESS
The user has insufficient access to perform the operation.

LDAP_BUSY The DSA is busy.

LDAP_UNAVA ILABLE The DSA is unavailable.

LDAP_UNWILLING_TO_PERFORM
The DSA is unwilling to perform the operation.

LDAP_LOOP_DETECT A loop was detected.

LDAP_NAMING_VIOLATION
A naming violation occurred.

LDAP_OBJECT_CLASS_VIOLATION
An object class violation occurred (e.g., a "must" attribute was missing from the
entry).

LDAP_NOT_ALLOWED_ON_NONLEAF
The operation is not allowed on a nonleaf object.

LDAP_NOT_ALLOWED_ON_RDN
The operation is not allowed on an RDN.

LDAP_ALREADY_EXISTS
The entry already exists.

LDAP_NO_OBJECT_CLASS_MODS
Object class modifications are not allowed.

OpenLDAP 2.4.9 2008/05/07 2

LDAP_ERROR(3) LDAP_ERROR(3)

LDAP_OTHER An unknown error occurred.

API ERROR CODES
This section provides a complete list of API error codes recognized by the library. Note that LDAP_SUC-
CESS indicates success of an API call in addition to representing the return of the LDAP ´success’ result-
Code.

LDAP_SERVER_DOWN The LDAP library can’t contact the LDAP server.

LDAP_LOCAL_ERROR Some local error occurred. This is usually a failed dynamic memory allocation.

LDAP_ENCODING_ERROR
An error was encountered encoding parameters to send to the LDAP server.

LDAP_DECODING_ERROR
An error was encountered decoding a result from the LDAP server.

LDAP_TIMEOUT A timelimit was exceeded while waiting for a result.

LDAP_AUTH_UNKNOWN
The authentication method specified to ldap_bind() is not known.

LDAP_FILTER_ERROR An invalid filter was supplied to ldap_search() (e.g., unbalanced parentheses).

LDAP_PARAM_ERROR An ldap routine was called with a bad parameter.

LDAP_NO_MEMORY An memory allocation (e.g., malloc(3) or other dynamic memory allocator) call
failed in an ldap library routine.

LDAP_USER_CANCELED
Indicates the user cancelled the operation.

LDAP_CONNECT_ERROR
Indicates a connection problem.

LDAP_NOT_SUPPORTED
Indicates the routine was called in a manner not supported by the library.

LDAP_CONTROL_NOT_FOUND
Indicates the control provided is unknown to the client library.

LDAP_NO_RESULTS_RETURNED
Indicates no results returned.

LDAP_MORE_RESULTS_TO_RETURN
Indicates more results could be returned.

LDAP_CLIENT_LOOP Indicates the library has detected a loop in its processing.

LDAP_REFERRAL_LIMIT_EXCEEDED
Indicates the referral limit has been exceeded.

DEPRECATED
Deprecated interfaces generally remain in the library. The macro LDAP_DEPRECATED can be defined to
a non-zero value (e.g., -DLDAP_DEPRECATED=1) when compiling program designed to use deprecated
interfaces. Itis recommended that developers writing new programs, or updating old programs, avoid use
of deprecated interfaces. Over time, it is expected that documentation (and, eventually, support) for depre-
cated interfaces to be eliminated.

OpenLDAP 2.4.9 2008/05/07 3

LDAP_ERROR(3) LDAP_ERROR(3)

SEE ALSO
ldap(3),

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 4

LDAP_EXTENDED_OPERATION(3) LDAP_EXTENDED_OPERATION(3)

NAME
ldap_extended_operation, ldap_extended_operation_s − Extends the LDAP operations to the LDAP server.

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_extended_operation(
LDAP * ld,
const char *requestoid,
const struct berval * requestdata,
LDAPControl ** sctrls,
LDAPControl ** cctrls,
int * msgidp);

int ldap_extended_operation_s(
LDAP * ld,
const char *requestoid,
const struct berval * requestdata,
LDAPControl ** sctrls,
LDAPControl ** cctrls,
char ** retoidp,
struct berval * * retdatap);

DESCRIPTION
The ldap_extended_operation_s()routine is used to synchronously perform an LDAP extended operation.
It takesrequestoid, which points to a dotted-decimal OID string identifying the extended operation to per-
form. requestdatais the data required for the request,sctrls is an array of LDAPControl structures to use
with this extended operation,cctrls is an array of LDAPControl structures that list the client controls to use
with this extended operation.

The output parameterretoidp points to a dotted-decimal OID string returned by the LDAP server. The
memory used by the string should be freed with theldap_memfree(3) function. The output parameterret-
datappoints to a pointer to a berval structure that contains the returned data.If no data is returned by the
server, the pointer is set this to NULL. The memory used by this structure should be freed with the
ber_bvfree(3) function.

The ldap_extended_operation()works just like ldap_extended_operation_s(), but the operation is asyn-
chronous. Itprovides the message id of the request it initiated in the integer pointed to bemsgidp. The
result of this operation can be obtained by callingldap_result(3).

SEE ALSO
ber_bvfree(3), ldap_memfree(3), ldap_parse_extended_result(3), ldap_result(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_EXTENDED_OPERATION(3) LDAP_EXTENDED_OPERATION(3)

NAME
ldap_extended_operation, ldap_extended_operation_s − Extends the LDAP operations to the LDAP server.

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_extended_operation(
LDAP * ld,
const char *requestoid,
const struct berval * requestdata,
LDAPControl ** sctrls,
LDAPControl ** cctrls,
int * msgidp);

int ldap_extended_operation_s(
LDAP * ld,
const char *requestoid,
const struct berval * requestdata,
LDAPControl ** sctrls,
LDAPControl ** cctrls,
char ** retoidp,
struct berval * * retdatap);

DESCRIPTION
The ldap_extended_operation_s()routine is used to synchronously perform an LDAP extended operation.
It takesrequestoid, which points to a dotted-decimal OID string identifying the extended operation to per-
form. requestdatais the data required for the request,sctrls is an array of LDAPControl structures to use
with this extended operation,cctrls is an array of LDAPControl structures that list the client controls to use
with this extended operation.

The output parameterretoidp points to a dotted-decimal OID string returned by the LDAP server. The
memory used by the string should be freed with theldap_memfree(3) function. The output parameterret-
datappoints to a pointer to a berval structure that contains the returned data.If no data is returned by the
server, the pointer is set this to NULL. The memory used by this structure should be freed with the
ber_bvfree(3) function.

The ldap_extended_operation()works just like ldap_extended_operation_s(), but the operation is asyn-
chronous. Itprovides the message id of the request it initiated in the integer pointed to bemsgidp. The
result of this operation can be obtained by callingldap_result(3).

SEE ALSO
ber_bvfree(3), ldap_memfree(3), ldap_parse_extended_result(3), ldap_result(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_FIRST_ATTRIBUTE(3) LDAP_FIRST_ATTRIBUTE(3)

NAME
ldap_first_attribute, ldap_next_attribute − step through LDAP entry attributes

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

char *ldap_first_attribute(
LDAP *ld, LDAPMessage *entry, BerElement **berptr)

char *ldap_next_attribute(
LDAP *ld, LDAPMessage *entry, BerElement *ber)

DESCRIPTION
The ldap_first_attribute() andldap_next_attribute() routines are used to step through the attributes in an
LDAP entry. ldap_first_attribute() takes an entry as returned by ldap_first_entry(3) or
ldap_next_entry(3) and returns a pointer to character string containing the first attribute description in the
entry. ldap_next_attribute() returns the next attribute description in the entry.

It also returns, inberptr, a pointer to a BerElement it has allocated to keep track of its current position.
This pointer should be passed to subsequent calls toldap_next_attribute() and is used to effectively step
through the entry’s attributes. Thecaller is solely responsible for freeing the BerElement pointed to by
berptr when it is no longer needed by callingber_free(3). Whencalling ber_free(3) in this instance, be
sure the second argument is 0.

The attribute names returned are suitable for inclusion in a call toldap_get_values(3) to retrieve the
attribute’s values.

ERRORS
If an error occurs, NULL is returned and the ld_errno field in theld parameter is set to indicate the error.
Seeldap_error (3) for a description of possible error codes.

NOTES
The ldap_first_attribute() and ldap_next_attribute() return dynamically allocated memory that must be
freed by the caller vialdap_memfree(3).

SEE ALSO
ldap(3), ldap_first_entry(3), ldap_get_values(3), ldap_error (3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_FIRST_ATTRIBUTE(3) LDAP_FIRST_ATTRIBUTE(3)

NAME
ldap_first_attribute, ldap_next_attribute − step through LDAP entry attributes

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

char *ldap_first_attribute(
LDAP *ld, LDAPMessage *entry, BerElement **berptr)

char *ldap_next_attribute(
LDAP *ld, LDAPMessage *entry, BerElement *ber)

DESCRIPTION
The ldap_first_attribute() andldap_next_attribute() routines are used to step through the attributes in an
LDAP entry. ldap_first_attribute() takes an entry as returned by ldap_first_entry(3) or
ldap_next_entry(3) and returns a pointer to character string containing the first attribute description in the
entry. ldap_next_attribute() returns the next attribute description in the entry.

It also returns, inberptr, a pointer to a BerElement it has allocated to keep track of its current position.
This pointer should be passed to subsequent calls toldap_next_attribute() and is used to effectively step
through the entry’s attributes. Thecaller is solely responsible for freeing the BerElement pointed to by
berptr when it is no longer needed by callingber_free(3). Whencalling ber_free(3) in this instance, be
sure the second argument is 0.

The attribute names returned are suitable for inclusion in a call toldap_get_values(3) to retrieve the
attribute’s values.

ERRORS
If an error occurs, NULL is returned and the ld_errno field in theld parameter is set to indicate the error.
Seeldap_error (3) for a description of possible error codes.

NOTES
The ldap_first_attribute() and ldap_next_attribute() return dynamically allocated memory that must be
freed by the caller vialdap_memfree(3).

SEE ALSO
ldap(3), ldap_first_entry(3), ldap_get_values(3), ldap_error (3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_FIRST_ENTRY(3) LDAP_FIRST_ENTRY(3)

NAME
ldap_first_entry, ldap_next_entry, ldap_count_entries − LDAP result entry parsing and counting routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_count_entries(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_first_entry(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_next_entry(LDAP *ld, LDAPMessage *entry)

DESCRIPTION
These routines are used to parse results received from ldap_result(3) or the synchronous LDAP search
operation routinesldap_search_s(3) andldap_search_st(3).

The ldap_first_entry() routine is used to retrieve the first entry in a chain of search results. It takes the
result as returned by a call toldap_result(3) or ldap_search_s(3) or ldap_search_st(3) and returns a
pointer to the first entry in the result.

This pointer should be supplied on a subsequent call toldap_next_entry() to get the next entry, the result
of which should be supplied to the next call to ldap_next_entry(), etc. ldap_next_entry() will return
NULL when there are no more entries. The entries returned from these calls are used in calls to the rou-
tines described inldap_get_dn(3), ldap_first_attribute (3), ldap_get_values(3), etc.

A count of the number of entries in the search result can be obtained by callingldap_count_entries().

ERRORS
If an error occurs inldap_first_entry() or ldap_next_entry(), NULL is returned and the ld_errno field in
the ld parameter is set to indicate the error. If an error occurs inldap_count_entries(), -1 is returned, and
ld_errno is set appropriately. Seeldap_error (3) for a description of possible error codes.

SEE ALSO
ldap(3), ldap_result(3), ldap_search(3), ldap_first_attribute (3), ldap_get_values(3), ldap_get_dn(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_FIRST_ENTRY(3) LDAP_FIRST_ENTRY(3)

NAME
ldap_first_entry, ldap_next_entry, ldap_count_entries − LDAP result entry parsing and counting routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_count_entries(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_first_entry(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_next_entry(LDAP *ld, LDAPMessage *entry)

DESCRIPTION
These routines are used to parse results received from ldap_result(3) or the synchronous LDAP search
operation routinesldap_search_s(3) andldap_search_st(3).

The ldap_first_entry() routine is used to retrieve the first entry in a chain of search results. It takes the
result as returned by a call toldap_result(3) or ldap_search_s(3) or ldap_search_st(3) and returns a
pointer to the first entry in the result.

This pointer should be supplied on a subsequent call toldap_next_entry() to get the next entry, the result
of which should be supplied to the next call to ldap_next_entry(), etc. ldap_next_entry() will return
NULL when there are no more entries. The entries returned from these calls are used in calls to the rou-
tines described inldap_get_dn(3), ldap_first_attribute (3), ldap_get_values(3), etc.

A count of the number of entries in the search result can be obtained by callingldap_count_entries().

ERRORS
If an error occurs inldap_first_entry() or ldap_next_entry(), NULL is returned and the ld_errno field in
the ld parameter is set to indicate the error. If an error occurs inldap_count_entries(), -1 is returned, and
ld_errno is set appropriately. Seeldap_error (3) for a description of possible error codes.

SEE ALSO
ldap(3), ldap_result(3), ldap_search(3), ldap_first_attribute (3), ldap_get_values(3), ldap_get_dn(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_FIRST_MESSAGE(3) LDAP_FIRST_MESSAGE(3)

NAME
ldap_first_message, ldap_next_message, ldap_count_messages − Stepping through messages in a result
chain

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_count_messages(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_first_message(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_next_message(LDAP *ld, LDAPMessage *message)

DESCRIPTION
These routines are used to step through the messages in a result chain received from ldap_result(3). For
search operations, the result chain can contain referral, entry and result messages. Theldap_msgtype(3)
function can be used to distinguish between the different message types.

The ldap_first_message()routine is used to retrieve the first message in a result chain.It takes theresult as
returned by a call toldap_result(3), ldap_search_s(3) or ldap_search_st(3) and returns a pointer to the
first message in the result chain.

This pointer should be supplied on a subsequent call toldap_next_message()to get the next message, the
result of which should be supplied to the next call toldap_next_message(), etc. ldap_next_message()will
return NULL when there are no more messages.

These functions are useful when using routines like ldap_parse_result(3) that only operate on the first
result in the chain.

A count of the number of messages in the result chain can be obtained by callingldap_count_messages().
It can also be used to count the number of remaining messages in a chain if called with a message, entry or
reference returned by ldap_first_message() , ldap_next_message() , ldap_first_entry(3),
ldap_next_entry(3), ldap_first_reference(3), ldap_next_reference(3).

ERRORS
If an error occurs inldap_first_message()or ldap_next_message(), NULL is returned. If an error occurs
in ldap_count_messages(), -1 is returned.

SEE ALSO
ldap(3), ldap_search(3), ldap_result(3), ldap_parse_result(3), ldap_first_entry(3), ldap_first_refer-
ence(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_FIRST_MESSAGE(3) LDAP_FIRST_MESSAGE(3)

NAME
ldap_first_message, ldap_next_message, ldap_count_messages − Stepping through messages in a result
chain

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_count_messages(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_first_message(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_next_message(LDAP *ld, LDAPMessage *message)

DESCRIPTION
These routines are used to step through the messages in a result chain received from ldap_result(3). For
search operations, the result chain can contain referral, entry and result messages. Theldap_msgtype(3)
function can be used to distinguish between the different message types.

The ldap_first_message()routine is used to retrieve the first message in a result chain.It takes theresult as
returned by a call toldap_result(3), ldap_search_s(3) or ldap_search_st(3) and returns a pointer to the
first message in the result chain.

This pointer should be supplied on a subsequent call toldap_next_message()to get the next message, the
result of which should be supplied to the next call toldap_next_message(), etc. ldap_next_message()will
return NULL when there are no more messages.

These functions are useful when using routines like ldap_parse_result(3) that only operate on the first
result in the chain.

A count of the number of messages in the result chain can be obtained by callingldap_count_messages().
It can also be used to count the number of remaining messages in a chain if called with a message, entry or
reference returned by ldap_first_message() , ldap_next_message() , ldap_first_entry(3),
ldap_next_entry(3), ldap_first_reference(3), ldap_next_reference(3).

ERRORS
If an error occurs inldap_first_message()or ldap_next_message(), NULL is returned. If an error occurs
in ldap_count_messages(), -1 is returned.

SEE ALSO
ldap(3), ldap_search(3), ldap_result(3), ldap_parse_result(3), ldap_first_entry(3), ldap_first_refer-
ence(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_FIRST_REFERENCE(3) LDAP_FIRST_REFERENCE(3)

NAME
ldap_first_reference, ldap_next_reference, ldap_count_references − Stepping through continuation refer-
ences in a result chain

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_count_references(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_first_reference(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_next_reference(LDAP *ld, LDAPMessage *reference)

DESCRIPTION
These routines are used to step through the continuation references in a result chain received from
ldap_result(3) or the synchronous LDAP search operation routines.

The ldap_first_reference()routine is used to retrieve the first reference message in a result chain.It takes
the result as returned by a call toldap_result(3), ldap_search_s(3) or ldap_search_st(3) and returns a
pointer to the first reference message in the result chain.

This pointer should be supplied on a subsequent call toldap_next_reference()to get the next reference
message, the result of which should be supplied to the next call to ldap_next_reference(), etc.
ldap_next_reference()will return NULL when there are no more reference messages.The reference mes-
sages returned from these calls are used byldap_parse_reference(3) to extract referrals and controls.

A count of the number of reference messages in the search result can be obtained by calling
ldap_count_references(). It can also be used to count the number of reference messages remaining in a
result chain.

ERRORS
If an error occurs inldap_first_reference() or ldap_next_reference(), NULL is returned. If an error
occurs inldap_count_references(), -1 is returned.

SEE ALSO
ldap(3), ldap_result(3), ldap_search(3), ldap_parse_reference(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_FIRST_REFERENCE(3) LDAP_FIRST_REFERENCE(3)

NAME
ldap_first_reference, ldap_next_reference, ldap_count_references − Stepping through continuation refer-
ences in a result chain

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_count_references(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_first_reference(LDAP *ld, LDAPMessage *result)

LDAPMessage *ldap_next_reference(LDAP *ld, LDAPMessage *reference)

DESCRIPTION
These routines are used to step through the continuation references in a result chain received from
ldap_result(3) or the synchronous LDAP search operation routines.

The ldap_first_reference()routine is used to retrieve the first reference message in a result chain.It takes
the result as returned by a call toldap_result(3), ldap_search_s(3) or ldap_search_st(3) and returns a
pointer to the first reference message in the result chain.

This pointer should be supplied on a subsequent call toldap_next_reference()to get the next reference
message, the result of which should be supplied to the next call to ldap_next_reference(), etc.
ldap_next_reference()will return NULL when there are no more reference messages.The reference mes-
sages returned from these calls are used byldap_parse_reference(3) to extract referrals and controls.

A count of the number of reference messages in the search result can be obtained by calling
ldap_count_references(). It can also be used to count the number of reference messages remaining in a
result chain.

ERRORS
If an error occurs inldap_first_reference() or ldap_next_reference(), NULL is returned. If an error
occurs inldap_count_references(), -1 is returned.

SEE ALSO
ldap(3), ldap_result(3), ldap_search(3), ldap_parse_reference(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_GET_DN(3) LDAP_GET_DN(3)

NAME
ldap_get_dn, ldap_explode_dn, ldap_explode_rdn, ldap_dn2ufn − LDAP DN handling routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

char *ldap_get_dn(LDAP *ld, LDAPMessage *entry)

int ldap_str2dn(const char *str, LDAPDN **dn, unsigned flags)

int ldap_dn2str(LDAPDN *dn, char **str , unsigned flags)

char **ldap_explode_dn(const char *dn, int notypes)

char **ldap_explode_rdn(const char *rdn, int notypes)

char *ldap_dn2ufn(const char * dn)

char *ldap_dn2dcedn(const char * dn)

char *ldap_dcedn2dn(const char * dn)

char *ldap_dn2ad_canonical(const char * dn)

DESCRIPTION
These routines allow LDAP entry names (Distinguished Names, or DNs) to be obtained, parsed, converted
to a user-friendly form, and tested.A DN has the form described in RFC 4414 "Lightweight Directory
Access Protocol (LDAP): String Representation of Distinguished Names".

The ldap_get_dn() routine takes anentry as returned byldap_first_entry(3) or ldap_next_entry(3) and
returns a copy of the entry’s DN. Spacefor the DN will be obtained dynamically and should be freed by
the caller usingldap_memfree(3).

ldap_str2dn() parses a string representation of a distinguished name contained instr into its components,
which are stored indn as ldap_ava structures, arranged inLDAPAV A , LDAPRDN, andLDAPDN terms,
defined as:

typedef struct ldap_ava {
char *la_attr;
struct berval * la_value;
unsigned la_flags;

} L DAPAVA;

typedef LDAPAV A** LDAPRDN;
typedef LDAPRDN** LDAPDN;

The attribute types and the attribute values are not normalized.The la_flags can be either
LDAP_AVA_STRING or LDAP_AVA_BINARY, the latter meaning that the value is BER/DER encoded
and thus must be represented as, quoting from RFC 4514, " ... an octothorpe character (’#’ ASCII 35) fol-
lowed by the hexadecimal representation of each of the bytes of the BER encoding of the X.500 Attribute-
Value." Theflagsparameter toldap_str2dn() can be

LDAP_DN_FORMAT_LDAPV3
LDAP_DN_FORMAT_LDAPV2
LDAP_DN_FORMAT_DCE

which defines what DN syntax is expected (according to RFC 4514, RFC 1779 and DCE, respectively).
The format can beORed to the flags

LDAP_DN_P_NO_SPACES
LDAP_DN_P_NO_SPACE_AFTER_RDN

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_GET_DN(3) LDAP_GET_DN(3)

...
LDAP_DN_PEDANTIC

The latter is a shortcut for all the previous limitations.

LDAP_DN_P_NO_SPACES does not allow extra spaces in the dn; the default is to silently eliminate spa-
ces around AVA separators (’=’), RDN component separators (’+’ for LDAPv3/LDAPv2 or ’,’ f or DCE)
and RDN separators (’,’ L DAPv3/LDAPv2 or ’/’ for DCE).

LDAP_DN_P_NO_SPACE_AFTER_RDN does not allow a single space after RDN separators.

ldap_dn2str() performs the inverse operation, yielding instr a string representation ofdn. It allows the
same values forflagsasldap_str2dn(), plus

LDAP_DN_FORMAT_UFN
LDAP_DN_FORMAT_AD_CANONICAL

for user-friendly naming (RFC 1781) and AD canonical.

The following routines are viewed as deprecated in favor of ldap_str2dn() and ldap_dn2str(). They are
provided to support legacy applications.

The ldap_explode_dn()routine takes a DN as returned byldap_get_dn()and breaks it up into its compo-
nent parts. Each part is known as a Relative Distinguished Name, or RDN.ldap_explode_dn()returns a
NULL-terminated array, each component of which contains an RDN from the DN.Thenotypesparameter
is used to request that only the RDN values be returned, not their types.For example, the DN "cn=Bob,
c=US" would return as either { "cn=Bob", "c=US", NULL } or { "Bob", "US", NULL }, depending on
whether notypes was 0 or 1, respectively. Assertion values in RDN strings may included escaped charac-
ters. Theresult can be freed by callingldap_value_free(3).

Similarly, the ldap_explode_rdn() routine takes an RDN as returned byldap_explode_dn(dn,0)and
breaks it up into its "type=value" component parts (or just "value", if thenotypesparameter is set).Note
the value is not unescaped. The result can be freed by callingldap_value_free(3).

ldap_dn2ufn() is used to turn a DN as returned byldap_get_dn(3) into a more user-friendly form, strip-
ping off all type names. See "Using the Directory to Achieve User Friendly Naming" (RFC 1781) for more
details on the UFN format. Due to the ambiguous nature of the format, it is generally only used for display
purposes. Thespace for the UFN returned is obtained dynamically and the user is responsible for freeing it
via a call toldap_memfree(3).

ldap_dn2dcedn()is used to turn a DN as returned byldap_get_dn(3) into a DCE-style DN, e.g. a string
with most-significant to least significant rdns separated by slashes (’/’); rdn components are separated by
commas (’,’). Only printable chars (e.g. LDAPv2 printable string) are allowed, at least in this implementa-
tion. ldap_dcedn2dn()performs the opposite operation.ldap_dn2ad_canonical()turns a DN into a AD
canonical name, which is basically a DCE dn with attribute types omitted. The trailing domain, if present,
is turned in a DNS-like domain. Thespace for the returned value is obtained dynamically and the user is
responsible for freeing it via a call toldap_memfree(3).

ERRORS
If an error occurs inldap_get_dn(), NULL is returned and theld_errno field in theld parameter is set to
indicate the error. See ldap_error (3) for a description of possible error codes.ldap_explode_dn(),
ldap_explode_rdn(), ldap_dn2ufn(), ldap_dn2dcedn(), ldap_dcedn2dn(),and ldap_dn2ad_canonical()
will return NULL with errno(3) set appropriately in case of trouble.

NOTES
These routines dynamically allocate memory that the caller must free.

SEE ALSO
ldap(3), ldap_error (3), ldap_first_entry(3), ldap_memfree(3), ldap_value_free(3)

OpenLDAP LDVERSION RELEASEDATE 2

LDAP_GET_DN(3) LDAP_GET_DN(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 3

LDAP_GET_DN(3) LDAP_GET_DN(3)

NAME
ldap_get_dn, ldap_explode_dn, ldap_explode_rdn, ldap_dn2ufn − LDAP DN handling routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

char *ldap_get_dn(LDAP *ld, LDAPMessage *entry)

int ldap_str2dn(const char *str, LDAPDN **dn, unsigned flags)

int ldap_dn2str(LDAPDN *dn, char **str , unsigned flags)

char **ldap_explode_dn(const char *dn, int notypes)

char **ldap_explode_rdn(const char *rdn, int notypes)

char *ldap_dn2ufn(const char * dn)

char *ldap_dn2dcedn(const char * dn)

char *ldap_dcedn2dn(const char * dn)

char *ldap_dn2ad_canonical(const char * dn)

DESCRIPTION
These routines allow LDAP entry names (Distinguished Names, or DNs) to be obtained, parsed, converted
to a user-friendly form, and tested.A DN has the form described in RFC 4414 "Lightweight Directory
Access Protocol (LDAP): String Representation of Distinguished Names".

The ldap_get_dn() routine takes anentry as returned byldap_first_entry(3) or ldap_next_entry(3) and
returns a copy of the entry’s DN. Spacefor the DN will be obtained dynamically and should be freed by
the caller usingldap_memfree(3).

ldap_str2dn() parses a string representation of a distinguished name contained instr into its components,
which are stored indn as ldap_ava structures, arranged inLDAPAV A , LDAPRDN, andLDAPDN terms,
defined as:

typedef struct ldap_ava {
char *la_attr;
struct berval * la_value;
unsigned la_flags;

} L DAPAVA;

typedef LDAPAV A** LDAPRDN;
typedef LDAPRDN** LDAPDN;

The attribute types and the attribute values are not normalized.The la_flags can be either
LDAP_AVA_STRING or LDAP_AVA_BINARY, the latter meaning that the value is BER/DER encoded
and thus must be represented as, quoting from RFC 4514, " ... an octothorpe character (’#’ ASCII 35) fol-
lowed by the hexadecimal representation of each of the bytes of the BER encoding of the X.500 Attribute-
Value." Theflagsparameter toldap_str2dn() can be

LDAP_DN_FORMAT_LDAPV3
LDAP_DN_FORMAT_LDAPV2
LDAP_DN_FORMAT_DCE

which defines what DN syntax is expected (according to RFC 4514, RFC 1779 and DCE, respectively).
The format can beORed to the flags

LDAP_DN_P_NO_SPACES
LDAP_DN_P_NO_SPACE_AFTER_RDN

OpenLDAP 2.4.9 2008/05/07 1

LDAP_GET_DN(3) LDAP_GET_DN(3)

...
LDAP_DN_PEDANTIC

The latter is a shortcut for all the previous limitations.

LDAP_DN_P_NO_SPACES does not allow extra spaces in the dn; the default is to silently eliminate spa-
ces around AVA separators (’=’), RDN component separators (’+’ for LDAPv3/LDAPv2 or ’,’ f or DCE)
and RDN separators (’,’ L DAPv3/LDAPv2 or ’/’ for DCE).

LDAP_DN_P_NO_SPACE_AFTER_RDN does not allow a single space after RDN separators.

ldap_dn2str() performs the inverse operation, yielding instr a string representation ofdn. It allows the
same values forflagsasldap_str2dn(), plus

LDAP_DN_FORMAT_UFN
LDAP_DN_FORMAT_AD_CANONICAL

for user-friendly naming (RFC 1781) and AD canonical.

The following routines are viewed as deprecated in favor of ldap_str2dn() and ldap_dn2str(). They are
provided to support legacy applications.

The ldap_explode_dn()routine takes a DN as returned byldap_get_dn()and breaks it up into its compo-
nent parts. Each part is known as a Relative Distinguished Name, or RDN.ldap_explode_dn()returns a
NULL-terminated array, each component of which contains an RDN from the DN.Thenotypesparameter
is used to request that only the RDN values be returned, not their types.For example, the DN "cn=Bob,
c=US" would return as either { "cn=Bob", "c=US", NULL } or { "Bob", "US", NULL }, depending on
whether notypes was 0 or 1, respectively. Assertion values in RDN strings may included escaped charac-
ters. Theresult can be freed by callingldap_value_free(3).

Similarly, the ldap_explode_rdn() routine takes an RDN as returned byldap_explode_dn(dn,0)and
breaks it up into its "type=value" component parts (or just "value", if thenotypesparameter is set).Note
the value is not unescaped. The result can be freed by callingldap_value_free(3).

ldap_dn2ufn() is used to turn a DN as returned byldap_get_dn(3) into a more user-friendly form, strip-
ping off all type names. See "Using the Directory to Achieve User Friendly Naming" (RFC 1781) for more
details on the UFN format. Due to the ambiguous nature of the format, it is generally only used for display
purposes. Thespace for the UFN returned is obtained dynamically and the user is responsible for freeing it
via a call toldap_memfree(3).

ldap_dn2dcedn()is used to turn a DN as returned byldap_get_dn(3) into a DCE-style DN, e.g. a string
with most-significant to least significant rdns separated by slashes (’/’); rdn components are separated by
commas (’,’). Only printable chars (e.g. LDAPv2 printable string) are allowed, at least in this implementa-
tion. ldap_dcedn2dn()performs the opposite operation.ldap_dn2ad_canonical()turns a DN into a AD
canonical name, which is basically a DCE dn with attribute types omitted. The trailing domain, if present,
is turned in a DNS-like domain. Thespace for the returned value is obtained dynamically and the user is
responsible for freeing it via a call toldap_memfree(3).

ERRORS
If an error occurs inldap_get_dn(), NULL is returned and theld_errno field in theld parameter is set to
indicate the error. See ldap_error (3) for a description of possible error codes.ldap_explode_dn(),
ldap_explode_rdn(), ldap_dn2ufn(), ldap_dn2dcedn(), ldap_dcedn2dn(),and ldap_dn2ad_canonical()
will return NULL with errno(3) set appropriately in case of trouble.

NOTES
These routines dynamically allocate memory that the caller must free.

SEE ALSO
ldap(3), ldap_error (3), ldap_first_entry(3), ldap_memfree(3), ldap_value_free(3)

OpenLDAP 2.4.9 2008/05/07 2

LDAP_GET_DN(3) LDAP_GET_DN(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 3

LDAP_GET_OPTION(3) LDAP_GET_OPTION(3)

NAME
ldap_get_option, ldap_set_option − LDAP option handling routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_get_option(LDAP *ld, int option, void *outvalue);

int ldap_set_option(LDAP *ld, int option, const void *invalue);

DESCRIPTION
These routines provide access to options stored either in a LDAP handle or as global options, where appli-
cable. They make use of a neutral interface, where the type of the value either retrieved by
ldap_get_option(3) or set byldap_set_option(3) is cast tovoid * . The actual type is determined based on
the value of theoption argument. Globaloptions are set/retrieved by passing a NULL LDAP handle.

LDAP_OPT_API_INFO
Fills-in a struct ldapapiinfo; outvalue must be astruct ldapapiinfo *, pointing to an already
allocated struct. This is a read-only option.

LDAP_OPT_DESC
Returns the file descriptor associated to the socket buffer of the LDAP handle passed in asld; out-
value must be aint * . This is a read-only, handler-specific option.

LDAP_OPT_SOCKBUF
Returns a pointer to the socket buffer of the LDAP handle passed in asld; outvalue must be a
Sockbuf **. This is a read-only, handler-specific option.

LDAP_OPT_TIMEOUT
Sets/gets a timeout value for the synchronous API calls.outvalue must be astruct timeval * *
(the caller has to free*outvalue), and invalue must be astruct timeval * , and they cannot be
NULL. Using a struct with seconds set to -1 results in an infinite timeout, which is the default.

LDAP_OPT_NETWORK_TIMEOUT
Sets/gets the network timeout value after whichpoll(2)/select(2) following aconnect(2) returns in
case of no activity. outvalue must be astruct timeval * * (the caller has to free*outvalue), and
invalue must be astruct timeval * , and they cannot be NULL. Using a struct with seconds set to
-1 results in an infinite timeout, which is the default.

LDAP_OPT_DEREF
Sets/gets the value that defines when alias dereferencing must occur. outvalue and invalue must
be int * , and they cannot be NULL.

LDAP_OPT_SIZELIMIT
Sets/gets the value that defines the maximum number of entries to be returned by a search opera-
tion. outvalueandinvalue must beint * , and they cannot be NULL.

LDAP_OPT_TIMELIMIT
Sets/gets the value that defines the time limit after which a search operation should be terminated
by the server.outvalueandinvalue must beint * , and they cannot be NULL.

LDAP_OPT_REFERRALS
Determines whether the library should implicitly chase referrals or not.outvalue and invalue
must beint * ; their value should either beLDAP_OPT_OFF or LDAP_OPT_ON.

LDAP_OPT_RESTART
Determines whether the library should implicitly restart connections (FIXME).outvalue and
invalue must beint * ; their value should either beLDAP_OPT_OFF or LDAP_OPT_ON.

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_GET_OPTION(3) LDAP_GET_OPTION(3)

LDAP_OPT_PROT OCOL_VERSION
Sets/gets the protocol version.outvalueandinvalue must beint * .

LDAP_OPT_SERVER_CONTROLS
Sets/gets the server-side controls to be used for all operations. This is now deprecated as modern
LDAP C API provides replacements for all main operations which accepts server-side controls as
explicit arguments; see for example ldap_search_ext(3), ldap_add_ext(3), ldap_modify_ext(3)
and so on.outvalue must beLDAPContr ol *** , and the caller is responsible of freeing the
returned controls, if any, by calling ldap_controls_free(3), while invalue must beLDAPControl
** ; the library duplicates the controls passed viainvalue.

LDAP_OPT_CLIENT_CONTROLS
Sets/gets the client-side controls to be used for all operations. This is now deprecated as modern
LDAP C API provides replacements for all main operations which accepts client-side controls as
explicit arguments; see for example ldap_search_ext(3), ldap_add_ext(3), ldap_modify_ext(3)
and so on.outvalue must beLDAPContr ol *** , and the caller is responsible of freeing the
returned controls, if any, by calling ldap_controls_free(3), while invalue must beLDAPControl
** ; the library duplicates the controls passed viainvalue.

LDAP_OPT_HOST_NAME
Sets/gets a space-separated list of hosts to be contacted by the library when trying to establish a
connection. Thisis now deprecated in favor of LDAP_OPT_URI . outvalue must be achar ** ,
and the caller is responsible of freeing the resulting string by callingldap_memfree(3), while
invalue must be achar *; the library duplicates the corresponding string.

LDAP_OPT_URI
Sets/gets a space-separated list of URIs to be contacted by the library when trying to establish a
connection. outvalue must be achar ** , and the caller is responsible of freeing the resulting
string by callingldap_memfree(3), while invalue must be achar *; the library parses the string
into a list ofLDAPURLDesc structures, so the invocation ofldap_set_option(3) may fail if URL
parsing fails.

LDAP_OPT_DEFBASE
Sets/gets a string containing the DN to be used as default base for search operations.outvalue
must be achar ** , and the caller is responsible of freeing the returned string by calling
ldap_memfree(3), while invalue must be achar *; the library duplicates the corresponding string.

LDAP_OPT_RESULT_CODE
Sets/gets the LDAP result code associated to the handle. This option was formerly known as
LDAP_OPT_ERROR_NUMBER. Bothoutvalueandinvalue must be aint * .

LDAP_OPT_DIAGNOSTIC_MESSAGE
Sets/gets a string containing the error string associated to the LDAP handle. This option was for-
merly known asLDAP_OPT_ERROR_STRING. outvalue must be achar ** , and the caller is
responsible of freeing the returned string by callingldap_memfree(3), while invalue must be a
char *; the library duplicates the corresponding string.

LDAP_OPT_MATCHED_DN
Sets/gets a string containing the matched DN associated to the LDAP handle.outvalue must be a
char ** , and the caller is responsible of freeing the returned string by callingldap_memfree(3),
while invalue must be achar *; the library duplicates the corresponding string.

LDAP_OPT_REFERRAL_URLS
Sets/gets an array containing the referral URIs associated to the LDAP handle.outvalue must be
a char *** , and the caller is responsible of freeing the returned string by calling
ber_memvfree(3), while invalue must be a NULL-terminatedchar ** ; the library duplicates the
corresponding string.

OpenLDAP LDVERSION RELEASEDATE 2

LDAP_GET_OPTION(3) LDAP_GET_OPTION(3)

LDAP_OPT_API_FEATURE_INFO
Fills-in a LDAPAPIFeatureInfo ; outvalue must be aLDAPAPIFeatureInf o *, pointing to an
already allocated struct. This is a read-only option.

LDAP_OPT_DEBUG_LEVEL
Sets/gets the debug level of the client library. Bothoutvalueandinvalue must be aint * .

ERRORS
On success, the functions returnLDAP_OPT_SUCCESS, while they may returnLDAP_OPT_ERROR to
indicate a generic option handling error. Occasionally, more specific errors can be returned, like
LDAP_NO_MEMORY to indicate a failure in memory allocation.

NOTES
The LDAP libraries with theLDAP_OPT_REFERRALS option set toLDAP_OPT_ON (default value)
automatically follow referrals using an anonymous bind. Application developers are encouraged to either
implement consistent referral chasing features, or explicitly disable referral chasing by setting that option to
LDAP_OPT_OFF.

SEE ALSO
ldap(3), ldap_error (3), RFC 4422(http://www.rfc-editor.org),

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 3

LDAP_GET_OPTION(3) LDAP_GET_OPTION(3)

NAME
ldap_get_option, ldap_set_option − LDAP option handling routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_get_option(LDAP *ld, int option, void *outvalue);

int ldap_set_option(LDAP *ld, int option, const void *invalue);

DESCRIPTION
These routines provide access to options stored either in a LDAP handle or as global options, where appli-
cable. They make use of a neutral interface, where the type of the value either retrieved by
ldap_get_option(3) or set byldap_set_option(3) is cast tovoid * . The actual type is determined based on
the value of theoption argument. Globaloptions are set/retrieved by passing a NULL LDAP handle.

LDAP_OPT_API_INFO
Fills-in a struct ldapapiinfo; outvalue must be astruct ldapapiinfo *, pointing to an already
allocated struct. This is a read-only option.

LDAP_OPT_DESC
Returns the file descriptor associated to the socket buffer of the LDAP handle passed in asld; out-
value must be aint * . This is a read-only, handler-specific option.

LDAP_OPT_SOCKBUF
Returns a pointer to the socket buffer of the LDAP handle passed in asld; outvalue must be a
Sockbuf **. This is a read-only, handler-specific option.

LDAP_OPT_TIMEOUT
Sets/gets a timeout value for the synchronous API calls.outvalue must be astruct timeval * *
(the caller has to free*outvalue), and invalue must be astruct timeval * , and they cannot be
NULL. Using a struct with seconds set to -1 results in an infinite timeout, which is the default.

LDAP_OPT_NETWORK_TIMEOUT
Sets/gets the network timeout value after whichpoll(2)/select(2) following aconnect(2) returns in
case of no activity. outvalue must be astruct timeval * * (the caller has to free*outvalue), and
invalue must be astruct timeval * , and they cannot be NULL. Using a struct with seconds set to
-1 results in an infinite timeout, which is the default.

LDAP_OPT_DEREF
Sets/gets the value that defines when alias dereferencing must occur. outvalue and invalue must
be int * , and they cannot be NULL.

LDAP_OPT_SIZELIMIT
Sets/gets the value that defines the maximum number of entries to be returned by a search opera-
tion. outvalueandinvalue must beint * , and they cannot be NULL.

LDAP_OPT_TIMELIMIT
Sets/gets the value that defines the time limit after which a search operation should be terminated
by the server.outvalueandinvalue must beint * , and they cannot be NULL.

LDAP_OPT_REFERRALS
Determines whether the library should implicitly chase referrals or not.outvalue and invalue
must beint * ; their value should either beLDAP_OPT_OFF or LDAP_OPT_ON.

LDAP_OPT_RESTART
Determines whether the library should implicitly restart connections (FIXME).outvalue and
invalue must beint * ; their value should either beLDAP_OPT_OFF or LDAP_OPT_ON.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_GET_OPTION(3) LDAP_GET_OPTION(3)

LDAP_OPT_PROT OCOL_VERSION
Sets/gets the protocol version.outvalueandinvalue must beint * .

LDAP_OPT_SERVER_CONTROLS
Sets/gets the server-side controls to be used for all operations. This is now deprecated as modern
LDAP C API provides replacements for all main operations which accepts server-side controls as
explicit arguments; see for example ldap_search_ext(3), ldap_add_ext(3), ldap_modify_ext(3)
and so on.outvalue must beLDAPContr ol *** , and the caller is responsible of freeing the
returned controls, if any, by calling ldap_controls_free(3), while invalue must beLDAPControl
** ; the library duplicates the controls passed viainvalue.

LDAP_OPT_CLIENT_CONTROLS
Sets/gets the client-side controls to be used for all operations. This is now deprecated as modern
LDAP C API provides replacements for all main operations which accepts client-side controls as
explicit arguments; see for example ldap_search_ext(3), ldap_add_ext(3), ldap_modify_ext(3)
and so on.outvalue must beLDAPContr ol *** , and the caller is responsible of freeing the
returned controls, if any, by calling ldap_controls_free(3), while invalue must beLDAPControl
** ; the library duplicates the controls passed viainvalue.

LDAP_OPT_HOST_NAME
Sets/gets a space-separated list of hosts to be contacted by the library when trying to establish a
connection. Thisis now deprecated in favor of LDAP_OPT_URI . outvalue must be achar ** ,
and the caller is responsible of freeing the resulting string by callingldap_memfree(3), while
invalue must be achar *; the library duplicates the corresponding string.

LDAP_OPT_URI
Sets/gets a space-separated list of URIs to be contacted by the library when trying to establish a
connection. outvalue must be achar ** , and the caller is responsible of freeing the resulting
string by callingldap_memfree(3), while invalue must be achar *; the library parses the string
into a list ofLDAPURLDesc structures, so the invocation ofldap_set_option(3) may fail if URL
parsing fails.

LDAP_OPT_DEFBASE
Sets/gets a string containing the DN to be used as default base for search operations.outvalue
must be achar ** , and the caller is responsible of freeing the returned string by calling
ldap_memfree(3), while invalue must be achar *; the library duplicates the corresponding string.

LDAP_OPT_RESULT_CODE
Sets/gets the LDAP result code associated to the handle. This option was formerly known as
LDAP_OPT_ERROR_NUMBER. Bothoutvalueandinvalue must be aint * .

LDAP_OPT_DIAGNOSTIC_MESSAGE
Sets/gets a string containing the error string associated to the LDAP handle. This option was for-
merly known asLDAP_OPT_ERROR_STRING. outvalue must be achar ** , and the caller is
responsible of freeing the returned string by callingldap_memfree(3), while invalue must be a
char *; the library duplicates the corresponding string.

LDAP_OPT_MATCHED_DN
Sets/gets a string containing the matched DN associated to the LDAP handle.outvalue must be a
char ** , and the caller is responsible of freeing the returned string by callingldap_memfree(3),
while invalue must be achar *; the library duplicates the corresponding string.

LDAP_OPT_REFERRAL_URLS
Sets/gets an array containing the referral URIs associated to the LDAP handle.outvalue must be
a char *** , and the caller is responsible of freeing the returned string by calling
ber_memvfree(3), while invalue must be a NULL-terminatedchar ** ; the library duplicates the
corresponding string.

OpenLDAP 2.4.9 2008/05/07 2

LDAP_GET_OPTION(3) LDAP_GET_OPTION(3)

LDAP_OPT_API_FEATURE_INFO
Fills-in a LDAPAPIFeatureInfo ; outvalue must be aLDAPAPIFeatureInf o *, pointing to an
already allocated struct. This is a read-only option.

LDAP_OPT_DEBUG_LEVEL
Sets/gets the debug level of the client library. Bothoutvalueandinvalue must be aint * .

ERRORS
On success, the functions returnLDAP_OPT_SUCCESS, while they may returnLDAP_OPT_ERROR to
indicate a generic option handling error. Occasionally, more specific errors can be returned, like
LDAP_NO_MEMORY to indicate a failure in memory allocation.

NOTES
The LDAP libraries with theLDAP_OPT_REFERRALS option set toLDAP_OPT_ON (default value)
automatically follow referrals using an anonymous bind. Application developers are encouraged to either
implement consistent referral chasing features, or explicitly disable referral chasing by setting that option to
LDAP_OPT_OFF.

SEE ALSO
ldap(3), ldap_error (3), RFC 4422(http://www.rfc-editor.org),

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 3

LDAP_GET_VALUES(3) LDAP_GET_VALUES(3)

NAME
ldap_get_values, ldap_get_values_len, ldap_count_values − LDAP attribute value handling routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

char **ldap_get_values(ld, entry, attr)
LDAP *ld;
LDAPMessage *entry;
char *attr;

struct berval * *ldap_get_values_len(ld, entry, attr)
LDAP *ld;
LDAPMessage *entry;
char *attr;

int ldap_count_values(vals)
char **vals;

int ldap_count_values_len(vals)
struct berval **vals;

void ldap_value_free(vals)
char **vals;

void ldap_value_free_len(vals)
struct berval **vals;

DESCRIPTION
These routines are used to retrieve and manipulate attribute values from an LDAP entry as returned by
ldap_first_entry(3) or ldap_next_entry(3). ldap_get_values()takes theentryand the attributeattr whose
values are desired and returns a NULL-terminated array of the attribute’s values. attr may be an attribute
type as returned fromldap_first_attribute (3) or ldap_next_attribute(3), or if the attribute type is known
it can simply be given.

The number of values in the array can be counted by callingldap_count_values(). The array of values
returned can be freed by callingldap_value_free().

If the attribute values are binary in nature, and thus not suitable to be returned as an array of char *’s, the
ldap_get_values_len()routine can be used instead. It takes the same parameters asldap_get_values(), but
returns a NULL-terminated array of pointers to berval structures, each containing the length of and a
pointer to a value.

The number of values in the array can be counted by callingldap_count_values_len(). The array of values
returned can be freed by callingldap_value_free_len().

ERRORS
If an error occurs inldap_get_values()or ldap_get_values_len(), NULL is returned and theld_errno field
in theld parameter is set to indicate the error. Seeldap_error (3) for a description of possible error codes.

NOTES
These routines dynamically allocate memory which the caller must free using the supplied routines.

SEE ALSO
ldap(3), ldap_first_entry(3), ldap_first_attribute (3), ldap_error (3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_GET_VALUES(3) LDAP_GET_VALUES(3)

NAME
ldap_get_values, ldap_get_values_len, ldap_count_values − LDAP attribute value handling routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

char **ldap_get_values(ld, entry, attr)
LDAP *ld;
LDAPMessage *entry;
char *attr;

struct berval * *ldap_get_values_len(ld, entry, attr)
LDAP *ld;
LDAPMessage *entry;
char *attr;

int ldap_count_values(vals)
char **vals;

int ldap_count_values_len(vals)
struct berval **vals;

void ldap_value_free(vals)
char **vals;

void ldap_value_free_len(vals)
struct berval **vals;

DESCRIPTION
These routines are used to retrieve and manipulate attribute values from an LDAP entry as returned by
ldap_first_entry(3) or ldap_next_entry(3). ldap_get_values()takes theentryand the attributeattr whose
values are desired and returns a NULL-terminated array of the attribute’s values. attr may be an attribute
type as returned fromldap_first_attribute (3) or ldap_next_attribute(3), or if the attribute type is known
it can simply be given.

The number of values in the array can be counted by callingldap_count_values(). The array of values
returned can be freed by callingldap_value_free().

If the attribute values are binary in nature, and thus not suitable to be returned as an array of char *’s, the
ldap_get_values_len()routine can be used instead. It takes the same parameters asldap_get_values(), but
returns a NULL-terminated array of pointers to berval structures, each containing the length of and a
pointer to a value.

The number of values in the array can be counted by callingldap_count_values_len(). The array of values
returned can be freed by callingldap_value_free_len().

ERRORS
If an error occurs inldap_get_values()or ldap_get_values_len(), NULL is returned and theld_errno field
in theld parameter is set to indicate the error. Seeldap_error (3) for a description of possible error codes.

NOTES
These routines dynamically allocate memory which the caller must free using the supplied routines.

SEE ALSO
ldap(3), ldap_first_entry(3), ldap_first_attribute (3), ldap_error (3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_MEMORY(3) LDAP_MEMORY(3)

NAME
ldap_memfree, ldap_memvfree, ldap_memalloc, ldap_memcalloc, ldap_memrealloc, ldap_strdup − LDAP
memory allocation routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

void ldap_memfree(void *p);

void ldap_memvfree(void **v);

void *ldap_memalloc(ber_len_ts);

void *ldap_memcalloc(ber_len_tn, ber_len_t s);

void *ldap_memrealloc(void *p, ber_len_t s);

char *ldap_strdup(LDAP_CONST char * p);

DESCRIPTION
These routines are used to allocate/deallocate memory used/returned by the LDAP library. ldap_memal-
loc(), ldap_memcalloc(), ldap_memrealloc(), and ldap_memfree() are used exactly like the standard
malloc(3), calloc(3), realloc(3), andfree(3) routines, respectively. The ldap_memvfree() routine is used
to free a dynamically allocated array of pointers to arbitrary dynamically allocated objects.The
ldap_strdup() routine is used exactly like the standardstrdup(3) routine.

SEE ALSO
ldap(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_MEMORY(3) LDAP_MEMORY(3)

NAME
ldap_memfree, ldap_memvfree, ldap_memalloc, ldap_memcalloc, ldap_memrealloc, ldap_strdup − LDAP
memory allocation routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

void ldap_memfree(void *p);

void ldap_memvfree(void **v);

void *ldap_memalloc(ber_len_ts);

void *ldap_memcalloc(ber_len_tn, ber_len_t s);

void *ldap_memrealloc(void *p, ber_len_t s);

char *ldap_strdup(LDAP_CONST char * p);

DESCRIPTION
These routines are used to allocate/deallocate memory used/returned by the LDAP library. ldap_memal-
loc(), ldap_memcalloc(), ldap_memrealloc(), and ldap_memfree() are used exactly like the standard
malloc(3), calloc(3), realloc(3), andfree(3) routines, respectively. The ldap_memvfree() routine is used
to free a dynamically allocated array of pointers to arbitrary dynamically allocated objects.The
ldap_strdup() routine is used exactly like the standardstrdup(3) routine.

SEE ALSO
ldap(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_MODIFY(3) LDAP_MODIFY(3)

NAME
ldap_modify_ext, ldap_modify_ext_s − Perform an LDAP modify operation

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_modify_ext(
LDAP * ld,
char *dn,
LDAPMod * mods[],
LDAPControl ** sctrls,
LDAPControl ** cctrls,
int ** msgidp);

int ldap_modify_ext_s(
LDAP * ld,
char *dn,
LDAPMod * mods[],
LDAPControl ** sctrls,
LDAPControl ** cctrls);

void ldap_mods_free(
LDAPMod ** mods,
int freemods);

DESCRIPTION
The routineldap_modify_ext_s()is used to perform an LDAP modify operation.dn is the DN of the entry
to modify, and modsis a null-terminated array of modifications to make to the entry. Each element of the
modsarray is a pointer to an LDAPMod structure, which is defined below.

typedef struct ldapmod {
int mod_op;
char *mod_type;
union {

char **modv_strvals;
struct berval **modv_bvals;

} mod_vals;
struct ldapmod *mod_next;

} L DAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

The mod_op field is used to specify the type of modification to perform and should be one of
LDAP_MOD_ADD, LDAP_MOD_DELETE, or LDAP_MOD_REPLACE. Themod_typeand mod_val-
uesfields specify the attribute type to modify and a null-terminated array of values to add, delete, or replace
respectively. Themod_nextfield is used only by the LDAP server and may be ignored by the client.

If you need to specify a non-string value (e.g., to add a photo or audio attribute value), you should set
mod_opto the logical OR of the operation as above (e.g., LDAP_MOD_REPLACE) and the constant
LDAP_MOD_BVALUES. In this case,mod_bvaluesshould be used instead ofmod_values, and it should
point to a null-terminated array of struct bervals, as defined in <lber.h>.

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating the attribute if nec-
essary. For LDAP_MOD_DELETE modifications, the given values are deleted from the entry, removing
the attribute if no values remain. If the entire attribute is to be deleted, themod_valuesfield should be set
to NULL. For LDAP_MOD_REPLACE modifications, the attribute will have the listed values after the
modification, having been created if necessary. All modifications are performed in the order in which they

OpenLDAP 2.4.9 2008/05/07 1

LDAP_MODIFY(3) LDAP_MODIFY(3)

are listed.

ldap_mods_free()can be used to free each element of a NULL-terminated array of mod structures.If
freemodsis non-zero, themodspointer itself is freed as well.

ldap_modify_ext_s()returns a code indicating success or, in the case of failure, indicating the nature of the
failure. Seeldap_error (3) for details

The ldap_modify_ext() operation works the same way asldap_modify_ext_s(), except that it is asynchro-
nous. The integer thatmsgidppoints to is set to the message id of the modify request. The result of the
operation can be obtained by callingldap_result(3).

Both ldap_modify_ext() andldap_modify_ext_s()allows server and client controls to be passed in via the
sctrls and cctrls parameters, respectively.

DEPRECATED INTERFACES
The ldap_modify() and ldap_modify_s() routines are deprecated in favor of the ldap_modify_ext() and
ldap_modify_ext_s()routines, respectively.

Deprecated interfaces generally remain in the library. The macro LDAP_DEPRECATED can be defined to
a non-zero value (e.g., -DLDAP_DEPRECATED=1) when compiling program designed to use deprecated
interfaces. Itis recommended that developers writing new programs, or updating old programs, avoid use
of deprecated interfaces. Over time, it is expected that documentation (and, eventually, support) for depre-
cated interfaces to be eliminated.

SEE ALSO
ldap(3), ldap_error (3),

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 2

LDAP_MODRDN(3) LDAP_MODRDN(3)

NAME
ldap_modrdn, ldap_modrdn_s, ldap_modrdn2, ldap_modrdn2_s − Perform an LDAP modify RDN opera-
tion

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_modrdn(ld, dn, newrdn)
LDAP ∗ld;
char∗dn,∗newrdn;

int ldap_modrdn_s(ld, dn, newrdn)
LDAP ∗ld;
char∗dn,∗newrdn;

int ldap_modrdn2(ld, dn, newrdn, deleteoldrdn)
LDAP ∗ld;
char∗dn,∗newrdn;
int deleteoldrdn;

int ldap_modrdn2_s(ld, dn, newrdn, deleteoldrdn)
LDAP ∗ld;
char∗dn,∗newrdn;
int deleteoldrdn;

DESCRIPTION
The ldap_modrdn() andldap_modrdn_s() routines perform an LDAP modify RDN operation.They both
takedn, the DN of the entry whose RDN is to be changed, andnewrdn, the new RDN to give the entry. The
old RDN of the entry is never kept as an attribute of the entry. ldap_modrdn() is asynchronous, returning
the message id of the operation it initiates.ldap_modrdn_s() is synchronous, returning the LDAP error
code indicating the success or failure of the operation. Use of these routines is deprecated.Use the ver-
sions described below instead.

The ldap_modrdn2() andldap_modrdn2_s()routines also perform an LDAP modify RDN operation, tak-
ing the same parameters as above. In addition, they both take thedeleteoldrdnparameter which is used as a
boolean value to indicate whether the old RDN values should be deleted from the entry or not.

ERRORS
The synchronous (_s) versions of these routines return an LDAP error code, either LDAP_SUCCESS or an
error if there was trouble. The asynchronous versions return -1 in case of trouble, setting theld_errno field
of ld. Seeldap_error (3) for more details.

SEE ALSO
ldap(3), ldap_error (3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_MODRDN(3) LDAP_MODRDN(3)

NAME
ldap_modrdn, ldap_modrdn_s, ldap_modrdn2, ldap_modrdn2_s − Perform an LDAP modify RDN opera-
tion

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_modrdn(ld, dn, newrdn)
LDAP ∗ld;
char∗dn,∗newrdn;

int ldap_modrdn_s(ld, dn, newrdn)
LDAP ∗ld;
char∗dn,∗newrdn;

int ldap_modrdn2(ld, dn, newrdn, deleteoldrdn)
LDAP ∗ld;
char∗dn,∗newrdn;
int deleteoldrdn;

int ldap_modrdn2_s(ld, dn, newrdn, deleteoldrdn)
LDAP ∗ld;
char∗dn,∗newrdn;
int deleteoldrdn;

DESCRIPTION
The ldap_modrdn() andldap_modrdn_s() routines perform an LDAP modify RDN operation.They both
takedn, the DN of the entry whose RDN is to be changed, andnewrdn, the new RDN to give the entry. The
old RDN of the entry is never kept as an attribute of the entry. ldap_modrdn() is asynchronous, returning
the message id of the operation it initiates.ldap_modrdn_s() is synchronous, returning the LDAP error
code indicating the success or failure of the operation. Use of these routines is deprecated.Use the ver-
sions described below instead.

The ldap_modrdn2() andldap_modrdn2_s()routines also perform an LDAP modify RDN operation, tak-
ing the same parameters as above. In addition, they both take thedeleteoldrdnparameter which is used as a
boolean value to indicate whether the old RDN values should be deleted from the entry or not.

ERRORS
The synchronous (_s) versions of these routines return an LDAP error code, either LDAP_SUCCESS or an
error if there was trouble. The asynchronous versions return -1 in case of trouble, setting theld_errno field
of ld. Seeldap_error (3) for more details.

SEE ALSO
ldap(3), ldap_error (3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_OPEN(3) LDAP_OPEN(3)

NAME
ldap_init, ldap_initialize, ldap_open − Initialize the LDAP library and open a connection to an LDAP
server

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

LDAP *ldap_open(host, port)
char *host;
int port;

LDAP *ldap_init(host, port)
char *host;
int port;

int ldap_initialize(ldp, uri)
LDAP **ldp;
char *uri;

#include <ldap_pvt.h>

int ldap_init_fd(fd, proto, uri, ldp)
ber_socket_t fd;
int proto;
char *uri;
LDAP **ldp;

DESCRIPTION
ldap_open()opens a connection to an LDAP server and allocates an LDAP structure which is used to iden-
tify the connection and to maintain per-connection information.ldap_init() allocates an LDAP structure
but does not open an initial connection.ldap_initialize() allocates an LDAP structure but does not open an
initial connection. ldap_init_fd() allocates an LDAP structure using an existing connection on the pro-
vided socket. Oneof these routines must be called before any operations are attempted.

ldap_open() takeshost, the hostname on which the LDAP server is running, andport, the port number to
which to connect. If the default IANA-assigned port of 389 is desired, LDAP_PORT should be specified
for port. Thehostparameter may contain a blank-separated list of hosts to try to connect to, and each host
may optionally by of the formhost:port. If present, the:port overrides theport parameter toldap_open().
Upon successfully making a connection to an LDAP server, ldap_open() returns a pointer to an opaque
LDAP structure, which should be passed to subsequent calls toldap_bind(), ldap_search(), etc. Certain
fields in the LDAP structure can be set to indicate size limit, time limit, and how aliases are handled during
operations; read and write access to those fields must occur by callingldap_get_option(3) and
ldap_set_option(3) respectively, whenever possible.

ldap_init() acts just like ldap_open(), but does not open a connection to the LDAP server. The actual con-
nection open will occur when the first operation is attempted.

ldap_initialize() acts like ldap_init() , but it returns an integer indicating either success or the failure rea-
son, and it allows to specify details for the connection in the schema portion of the URI.

At this time,ldap_open()and ldap_init() are deprecated in favor of ldap_initialize(), essentially because
the latter allows to specify a schema in the URI and it explicitly returns an error code.

ldap_init_fd() allows an LDAP structure to be initialized using an already-opened connection. Theproto
parameter should be one of LDAP_PROT O_TCP, LDAP_PROT O_UDP, or LDAP_PROT O_IPC for a con-
nection using TCP, UDP, or IPC, respectively. The value LDAP_PROT O_EXT may also be specified if
user-supplied sockbuf handlers are going to be used. Note that support for UDP is not implemented unless
libldap was built with LDAP_CONNECTIONLESS defined.The uri parameter may optionally be pro-
vided for informational purposes.

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_OPEN(3) LDAP_OPEN(3)

Note: the first call into the LDAP library also initializes the global options for the library. As such the first
call should be single-threaded or otherwise protected to insure that only one call is active. It is recom-
mended thatldap_get_option() or ldap_set_option() be used in the program’s main thread before any
additional threads are created. Seeldap_get_option(3).

ERRORS
If an error occurs,ldap_open()and ldap_init() will return NULL and errno should be set appropriately.
ldap_initialize() and ldap_init_fd() will directly return the LDAP code associated to the error (or
LDAP_SUCCESSin case of success); errno should be set as well whenever appropriate.

SEE ALSO
ldap(3), ldap_bind(3), ldap_get_option(3), ldap_set_option(3), lber-sockbuf(3), errno(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 2

LDAP_OPEN(3) LDAP_OPEN(3)

NAME
ldap_init, ldap_initialize, ldap_open − Initialize the LDAP library and open a connection to an LDAP
server

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

LDAP *ldap_open(host, port)
char *host;
int port;

LDAP *ldap_init(host, port)
char *host;
int port;

int ldap_initialize(ldp, uri)
LDAP **ldp;
char *uri;

#include <ldap_pvt.h>

int ldap_init_fd(fd, proto, uri, ldp)
ber_socket_t fd;
int proto;
char *uri;
LDAP **ldp;

DESCRIPTION
ldap_open()opens a connection to an LDAP server and allocates an LDAP structure which is used to iden-
tify the connection and to maintain per-connection information.ldap_init() allocates an LDAP structure
but does not open an initial connection.ldap_initialize() allocates an LDAP structure but does not open an
initial connection. ldap_init_fd() allocates an LDAP structure using an existing connection on the pro-
vided socket. Oneof these routines must be called before any operations are attempted.

ldap_open() takeshost, the hostname on which the LDAP server is running, andport, the port number to
which to connect. If the default IANA-assigned port of 389 is desired, LDAP_PORT should be specified
for port. Thehostparameter may contain a blank-separated list of hosts to try to connect to, and each host
may optionally by of the formhost:port. If present, the:port overrides theport parameter toldap_open().
Upon successfully making a connection to an LDAP server, ldap_open() returns a pointer to an opaque
LDAP structure, which should be passed to subsequent calls toldap_bind(), ldap_search(), etc. Certain
fields in the LDAP structure can be set to indicate size limit, time limit, and how aliases are handled during
operations; read and write access to those fields must occur by callingldap_get_option(3) and
ldap_set_option(3) respectively, whenever possible.

ldap_init() acts just like ldap_open(), but does not open a connection to the LDAP server. The actual con-
nection open will occur when the first operation is attempted.

ldap_initialize() acts like ldap_init() , but it returns an integer indicating either success or the failure rea-
son, and it allows to specify details for the connection in the schema portion of the URI.

At this time,ldap_open()and ldap_init() are deprecated in favor of ldap_initialize(), essentially because
the latter allows to specify a schema in the URI and it explicitly returns an error code.

ldap_init_fd() allows an LDAP structure to be initialized using an already-opened connection. Theproto
parameter should be one of LDAP_PROT O_TCP, LDAP_PROT O_UDP, or LDAP_PROT O_IPC for a con-
nection using TCP, UDP, or IPC, respectively. The value LDAP_PROT O_EXT may also be specified if
user-supplied sockbuf handlers are going to be used. Note that support for UDP is not implemented unless
libldap was built with LDAP_CONNECTIONLESS defined.The uri parameter may optionally be pro-
vided for informational purposes.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_OPEN(3) LDAP_OPEN(3)

Note: the first call into the LDAP library also initializes the global options for the library. As such the first
call should be single-threaded or otherwise protected to insure that only one call is active. It is recom-
mended thatldap_get_option() or ldap_set_option() be used in the program’s main thread before any
additional threads are created. Seeldap_get_option(3).

ERRORS
If an error occurs,ldap_open()and ldap_init() will return NULL and errno should be set appropriately.
ldap_initialize() and ldap_init_fd() will directly return the LDAP code associated to the error (or
LDAP_SUCCESSin case of success); errno should be set as well whenever appropriate.

SEE ALSO
ldap(3), ldap_bind(3), ldap_get_option(3), ldap_set_option(3), lber-sockbuf(3), errno(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 2

LDAP_PARSE_REFERENCE(3) LDAP_PARSE_REFERENCE(3)

NAME
ldap_parse_reference − Extract referrals and controls from a reference message

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_parse_reference(LDAP *ld, LDAPMessage *reference,
char ***referralsp, LDAPControl ***ser verctrlsp,
int freeit)

DESCRIPTION
The ldap_parse_reference()routine is used to extract referrals and controls from a reference message.
The reference parameter is a reference message as returned by a call toldap_first_reference(3),
ldap_next_reference(3), ldap_first_message(3), ldap_next_message(3), or ldap_result(3).

The referralspparameter will be filled in with an allocated array of character strings. The strings are copies
of the referrals contained in the parsed message. The array should be freed by callingldap_value_free(3).
If referralsp is NULL, no referrals are returned. If no referrals were returned,*referralsp is set to NULL.

Theserverctrlspparameter will be filled in with an allocated array of controls copied from the parsed mes-
sage. The array should be freed by callingldap_controls_free(3). If serverctrlspis NULL, no controls are
returned. Ifno controls were returned,*serverctrlspis set to NULL.

The freeit parameter determines whether the parsed message is freed or not after the extraction. Any non-
zero value will make it free the message. Theldap_msgfree(3) routine can also be used to free the message
later.

ERRORS
Upon success LDAP_SUCCESS is returned. Otherwise the values of thereferralspandserverctrlspparam-
eters are undefined.

SEE ALSO
ldap(3), ldap_first_reference(3), ldap_first_message(3), ldap_result(3), ldap_get_values(3), ldap_con-
trols_free(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_PARSE_RESULT(3) LDAP_PARSE_RESULT(3)

NAME
ldap_parse_result − Parsing results

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_parse_result(LDAP *ld, LDAPMessage *result,
int *errcodep, char **matcheddnp, char **errmsgp,
char ***referralsp, LDAPControl ***ser verctrlsp,
int freeit)

int ldap_parse_sasl_bind_result(LDAP *ld, LDAPMessage *result,
struct berval * *servercredp, int freeit)

int ldap_parse_extended_result(LDAP *ld, LDAPMessage *result,
char **retoidp, struct ber val * *retdatap, int freeit)

DESCRIPTION
These routines are used to extract information from a result message.They will operate on the first result
message in a chain of search results (skipping past other message types). They take theresult as returned by
a call to ldap_result(3), ldap_search_s(3) or ldap_search_st(3). In addition toldap_parse_result(), the
routinesldap_parse_sasl_bind_result()and ldap_parse_extended_result()are used to get all the result
information from SASL bind and extended operations.

Theerrcodepparameter will be filled in with the result code from the result message.

The server might supply a matched DN string in the message indicating how much of a name in a request
was recognized. Thematcheddnpparameter will be filled in with this string if supplied, else it will be
NULL. If a string is returned, it should be freed usingldap_memfree(3).

The errmsgpparameter will be filled in with the error message field from the parsed message. This string
should be freed usingldap_memfree(3).

The referralsp parameter will be filled in with an allocated array of referral strings from the parsed mes-
sage. This array should be freed usingldap_memvfree(3). If no referrals were returned,*referralsp is set
to NULL.

Theserverctrlspparameter will be filled in with an allocated array of controls copied from the parsed mes-
sage. The array should be freed usingldap_controls_free(3). If no controls were returned,*serverctrlspis
set to NULL.

The freeit parameter determines whether the parsed message is freed or not after the extraction. Any non-
zero value will make it free the message. Theldap_msgfree(3) routine can also be used to free the message
later.

For SASL bind results, theservercredpparameter will be filled in with an allocated berval structure con-
taining the credentials from the server if present. The structure should be freed usingber_bvfree(3).

For extended results, theretoidp parameter will be filled in with the dotted-OID text representation of the
name of the extended operation response. The string should be freed usingldap_memfree(3). If no OID
was returned,*retoidp is set to NULL.

For extended results, theretdatapparameter will be filled in with a pointer to a berval structure containing
the data from the extended operation response. The structure should be freed usingber_bvfree(3). If no
data were returned,*retdatap is set to NULL.

For all the above result parameters, NULL values can be used in calls in order to ignore certain fields.

ERRORS
Upon success LDAP_SUCCESS is returned. Otherwise the values of the result parameters are undefined.

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_PARSE_RESULT(3) LDAP_PARSE_RESULT(3)

SEE ALSO
ldap(3), ldap_result(3), ldap_search(3), ldap_memfree(3), ldap_memvfree(3), ldap_get_values(3),
ldap_controls_free(3), lber-types(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 2

LDAP_PARSE_RESULT(3) LDAP_PARSE_RESULT(3)

NAME
ldap_parse_result − Parsing results

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_parse_result(LDAP *ld, LDAPMessage *result,
int *errcodep, char **matcheddnp, char **errmsgp,
char ***referralsp, LDAPControl ***ser verctrlsp,
int freeit)

int ldap_parse_sasl_bind_result(LDAP *ld, LDAPMessage *result,
struct berval * *servercredp, int freeit)

int ldap_parse_extended_result(LDAP *ld, LDAPMessage *result,
char **retoidp, struct ber val * *retdatap, int freeit)

DESCRIPTION
These routines are used to extract information from a result message.They will operate on the first result
message in a chain of search results (skipping past other message types). They take theresult as returned by
a call to ldap_result(3), ldap_search_s(3) or ldap_search_st(3). In addition toldap_parse_result(), the
routinesldap_parse_sasl_bind_result()and ldap_parse_extended_result()are used to get all the result
information from SASL bind and extended operations.

Theerrcodepparameter will be filled in with the result code from the result message.

The server might supply a matched DN string in the message indicating how much of a name in a request
was recognized. Thematcheddnpparameter will be filled in with this string if supplied, else it will be
NULL. If a string is returned, it should be freed usingldap_memfree(3).

The errmsgpparameter will be filled in with the error message field from the parsed message. This string
should be freed usingldap_memfree(3).

The referralsp parameter will be filled in with an allocated array of referral strings from the parsed mes-
sage. This array should be freed usingldap_memvfree(3). If no referrals were returned,*referralsp is set
to NULL.

Theserverctrlspparameter will be filled in with an allocated array of controls copied from the parsed mes-
sage. The array should be freed usingldap_controls_free(3). If no controls were returned,*serverctrlspis
set to NULL.

The freeit parameter determines whether the parsed message is freed or not after the extraction. Any non-
zero value will make it free the message. Theldap_msgfree(3) routine can also be used to free the message
later.

For SASL bind results, theservercredpparameter will be filled in with an allocated berval structure con-
taining the credentials from the server if present. The structure should be freed usingber_bvfree(3).

For extended results, theretoidp parameter will be filled in with the dotted-OID text representation of the
name of the extended operation response. The string should be freed usingldap_memfree(3). If no OID
was returned,*retoidp is set to NULL.

For extended results, theretdatapparameter will be filled in with a pointer to a berval structure containing
the data from the extended operation response. The structure should be freed usingber_bvfree(3). If no
data were returned,*retdatap is set to NULL.

For all the above result parameters, NULL values can be used in calls in order to ignore certain fields.

ERRORS
Upon success LDAP_SUCCESS is returned. Otherwise the values of the result parameters are undefined.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_PARSE_RESULT(3) LDAP_PARSE_RESULT(3)

SEE ALSO
ldap(3), ldap_result(3), ldap_search(3), ldap_memfree(3), ldap_memvfree(3), ldap_get_values(3),
ldap_controls_free(3), lber-types(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 2

LDAP_PARSE_SORT-CONTROL(3) LDAP_PARSE_SORT-CONTROL(3)

NAME
ldap_parse_sort_control − Decode the information returned from a search operation that used a server-side
sort control

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_parse_sort_control(ld, ctrls, returnCode, attribute)
LDAP *ld;
LDAPControl **ctrls;
unsigned long *returnCode;
char **attribute;

DESCRIPTION
This function is used to parse the results returned in a search operation that uses a server-side sort control.

It takes a null terminated array of LDAPControl structures usually obtained by a call to the
ldap_parse_result function. A returncode which points to the sort control result code,and an array of
LDAPControl structures that list the client controls to use with the search. The function also takes an out
parameterattribute and if the sort operation fails, the server may return a string that indicates the first
attribute in the sortKey list that caused the failure. If this parameter is NULL, no string is returned. If a
string is returned, the memory should be freed by calling the ldap_memfree function.

NOTES
SEE ALSO

ldap_result(3), ldap_controls_free(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_PARSE_SORT-CONTROL(3) LDAP_PARSE_SORT-CONTROL(3)

NAME
ldap_parse_sort_control − Decode the information returned from a search operation that used a server-side
sort control

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_parse_sort_control(ld, ctrls, returnCode, attribute)
LDAP *ld;
LDAPControl **ctrls;
unsigned long *returnCode;
char **attribute;

DESCRIPTION
This function is used to parse the results returned in a search operation that uses a server-side sort control.

It takes a null terminated array of LDAPControl structures usually obtained by a call to the
ldap_parse_result function. A returncode which points to the sort control result code,and an array of
LDAPControl structures that list the client controls to use with the search. The function also takes an out
parameterattribute and if the sort operation fails, the server may return a string that indicates the first
attribute in the sortKey list that caused the failure. If this parameter is NULL, no string is returned. If a
string is returned, the memory should be freed by calling the ldap_memfree function.

NOTES
SEE ALSO

ldap_result(3), ldap_controls_free(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_PARSE_VLV_CONTROL(3) LDAP_PARSE_VLV_CONTROL(3)

NAME
ldap_parse_vlv_control − Decode the information returned from a search operation that used a VLV (vir-
tual list view) control

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_parse_vlv_control(ld, ctrlp, target_posp, list_countp, contextp, errcodep)
LDAP *ld;
LDAPControl **ctrlp;
unsigned long *target_posp, *list_countp;
struct berval **contextp;
int *errcodep;

DESCRIPTION
The ldap_parse_vlv_control is used to decode the information returned from a search operation that used
a VLV (virtual list view)control. It takes a null terminated array of LDAPControl structures, usually
obtained by a call to theldap_parse_resultfunction, atarget_poswhich points to the list index of the target
entry. If this parameter is NULL, the target position is not returned. The index returned is an approximation
of the position of the target entry. It is not guaranteed to be exact. The parameterlist_countppoints to the
server’s estimate of the size of the list. If this parameter is NULL, the size is not returned.contextpis a
pointer to the address of a berval structure that contains a server-generated context identifier if server
returns one. If server does not return a context identifier, the server returns a NULL in this parameter. If this
parameter is set to NULL, the context identifier is not returned. You should use this returned context in the
next call to create a VLV control. When the berval structure is no longer needed, you should free the mem-
ory by calling theber_bvfree function.e errcodepis an output parameter, which points to the result code
returned by the server. If this parameter is NULL, the result code is not returned.

See ldap.h for a list of possible return codes.

SEE ALSO
ldap_search(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_PARSE_VLV_CONTROL(3) LDAP_PARSE_VLV_CONTROL(3)

NAME
ldap_parse_vlv_control − Decode the information returned from a search operation that used a VLV (vir-
tual list view) control

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_parse_vlv_control(ld, ctrlp, target_posp, list_countp, contextp, errcodep)
LDAP *ld;
LDAPControl **ctrlp;
unsigned long *target_posp, *list_countp;
struct berval **contextp;
int *errcodep;

DESCRIPTION
The ldap_parse_vlv_control is used to decode the information returned from a search operation that used
a VLV (virtual list view)control. It takes a null terminated array of LDAPControl structures, usually
obtained by a call to theldap_parse_resultfunction, atarget_poswhich points to the list index of the target
entry. If this parameter is NULL, the target position is not returned. The index returned is an approximation
of the position of the target entry. It is not guaranteed to be exact. The parameterlist_countppoints to the
server’s estimate of the size of the list. If this parameter is NULL, the size is not returned.contextpis a
pointer to the address of a berval structure that contains a server-generated context identifier if server
returns one. If server does not return a context identifier, the server returns a NULL in this parameter. If this
parameter is set to NULL, the context identifier is not returned. You should use this returned context in the
next call to create a VLV control. When the berval structure is no longer needed, you should free the mem-
ory by calling theber_bvfree function.e errcodepis an output parameter, which points to the result code
returned by the server. If this parameter is NULL, the result code is not returned.

See ldap.h for a list of possible return codes.

SEE ALSO
ldap_search(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_RENAME(3) LDAP_RENAME(3)

NAME
ldap_rename, ldap_rename_s − Renames the specified entry.

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_rename(ld, dn, newrdn, newparent, deleteoldrdn, sctrls[], cctrls[], msgidp);
LDAP *ld;
const char *dn, *newrdn, *newparent;
int deleteoldrdn;
LDAPControl *sctrls[], *cctrls[];
int *msgidp);

int ldap_rename_s(ld, dn, newrdn, newparent, deleteoldrdn, sctrls[], cctrls[]);
LDAP *ld;
const char *dn, *newrdn, *newparent;
int deleteoldrdn;
LDAPControl *sctrls[], *cctrls[];

DESCRIPTION
These routines are used to perform a LDAP rename operation. The function changes the leaf component of
an entry’s distinguished name and optionally moves the entry to a new parent container. The
ldap_rename_sperforms a rename operation synchronously. The method takes dn, which points to the
distinguished name of the entry whose attribute is being compared,newparent,the distinguished name of
the entry’s new parent. If this parameter is NULL, only the RDN is changed.The root DN is specified by
passing a zero length string, "".deleteoldrdnspecifies whether the old RDN should be retained or deleted.
Zero indicates that the old RDN should be retained. If you choose this option, the attribute will contain both
names (the old and the new). Non-zeroindicates that the old RDN should be deleted.serverctrlspoints to
an array of LDAPControl structures that list the client controls to use with this extended operation. Use
NULL to specify no client controls.clientctrls points to an array of LDAPControl structures that list the
client controls to use with the search.

ldap_renameworks just like ldap_rename_s,but the operation is asynchronous. It returns the message id
of the request it initiated. The result of this operation can be obtained by callingldap_result(3).

ERRORS
ldap_rename() returns -1 in case of error initiating the request, and will set theld_errno field in the ld
parameter to indicate the error. ldap_rename_s()returns the LDAP error code resulting from the rename
operation.

SEE ALSO
ldap(3), ldap_modify(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_RENAME(3) LDAP_RENAME(3)

NAME
ldap_rename, ldap_rename_s − Renames the specified entry.

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_rename(ld, dn, newrdn, newparent, deleteoldrdn, sctrls[], cctrls[], msgidp);
LDAP *ld;
const char *dn, *newrdn, *newparent;
int deleteoldrdn;
LDAPControl *sctrls[], *cctrls[];
int *msgidp);

int ldap_rename_s(ld, dn, newrdn, newparent, deleteoldrdn, sctrls[], cctrls[]);
LDAP *ld;
const char *dn, *newrdn, *newparent;
int deleteoldrdn;
LDAPControl *sctrls[], *cctrls[];

DESCRIPTION
These routines are used to perform a LDAP rename operation. The function changes the leaf component of
an entry’s distinguished name and optionally moves the entry to a new parent container. The
ldap_rename_sperforms a rename operation synchronously. The method takes dn, which points to the
distinguished name of the entry whose attribute is being compared,newparent,the distinguished name of
the entry’s new parent. If this parameter is NULL, only the RDN is changed.The root DN is specified by
passing a zero length string, "".deleteoldrdnspecifies whether the old RDN should be retained or deleted.
Zero indicates that the old RDN should be retained. If you choose this option, the attribute will contain both
names (the old and the new). Non-zeroindicates that the old RDN should be deleted.serverctrlspoints to
an array of LDAPControl structures that list the client controls to use with this extended operation. Use
NULL to specify no client controls.clientctrls points to an array of LDAPControl structures that list the
client controls to use with the search.

ldap_renameworks just like ldap_rename_s,but the operation is asynchronous. It returns the message id
of the request it initiated. The result of this operation can be obtained by callingldap_result(3).

ERRORS
ldap_rename() returns -1 in case of error initiating the request, and will set theld_errno field in the ld
parameter to indicate the error. ldap_rename_s()returns the LDAP error code resulting from the rename
operation.

SEE ALSO
ldap(3), ldap_modify(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_RESULT(3) LDAP_RESULT(3)

NAME
ldap_result − Wait for the result of an LDAP operation

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_result(LDAP *ld, int msgid, int all,
struct timeval * timeout, LDAPMessage **result);

int ldap_msgfree(LDAPMessage *msg);

int ldap_msgtype(LDAPMessage *msg);

int ldap_msgid(LDAPMessage *msg);

DESCRIPTION
The ldap_result() routine is used to wait for and return the result of an operation previously initiated by
one of the LDAP asynchronous operation routines (e.g.,ldap_search_ext(3), ldap_modify_ext(3), etc.).
Those routines all return -1 in case of error, and an invocation identifier upon successful initiation of the
operation. The invocation identifier is picked by the library and is guaranteed to be unique across the LDAP
session. Itcan be used to request the result of a specific operation fromldap_result() through themsgid
parameter.

The ldap_result() routine will block or not, depending upon the setting of thetimeoutparameter. If time-
out is not a NULL pointer, it specifies a maximuminterval towait for the selection to complete. If time-
out is a NULL pointer, the LDAP_OPT_TIMEOUT value set byldap_set_option(3) is used. With the
default setting, theselect blocks indefinitely. To effect a poll, the timeoutargument should be a non-
NULL pointer, pointing to a zero-valued timeval structure. Seeselect(2) for further details.

If the result of a specific operation is required,msgidshould be set to the invocation identifier returned
when the operation was initiated, otherwise LDAP_RES_ANY or LDAP_RES_UNSOLICITED should be
supplied to wait for any or unsolicited response.

Theall parameter, if non-zero, causesldap_result() to return all responses with msgid, otherwise only the
next response is returned. This is commonly used to obtain all the responses of a search operation.

A search response is made up of zero or more search entries, zero or more search references, and zero or
more extended partial responses followed by a search result.If all is set to 0, search entries will be returned
one at a time as they come in, via separate calls toldap_result(). If i t’s set to 1, the search response will
only be returned in its entirety, i.e., after all entries, all references, all extended partial responses, and the
final search result have been received.

Upon success, the type of the result received is returned and theresult parameter will contain the result of
the operation; otherwise, theresult parameter is undefined. This result should be passed to the LDAP pars-
ing routines,ldap_first_message(3) and friends, for interpretation.

The possible result types returned are:

LDAP_RES_BIND (0x61)
LDAP_RES_SEARCH_ENTRY (0x64)
LDAP_RES_SEARCH_REFERENCE (0x73)
LDAP_RES_SEARCH_RESULT (0x65)
LDAP_RES_MODIFY (0x67)
LDAP_RES_ADD (0x69)
LDAP_RES_DELETE (0x6b)
LDAP_RES_MODDN (0x6d)
LDAP_RES_COMPARE (0x6f)
LDAP_RES_EXTENDED (0x78)

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_RESULT(3) LDAP_RESULT(3)

LDAP_RES_INTERMEDIATE (0x79)

The ldap_msgfree() routine is used to free the memory allocated for result(s) byldap_result() or
ldap_search_ext_s(3) and friends.It takes a pointer to the result or result chain to be freed and returns the
type of the last message in the chain. If the parameter is NULL, the function does nothing and returns zero.

The ldap_msgtype()routine returns the type of a message.

The ldap_msgid()routine returns the message id of a message.

ERRORS
ldap_result() returns -1 if something bad happens, and zero if the timeout specified was exceeded.
ldap_msgtype()andldap_msgid()return -1 on error.

SEE ALSO
ldap(3), ldap_first_message(3), select(2)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 2

LDAP_RESULT(3) LDAP_RESULT(3)

NAME
ldap_result − Wait for the result of an LDAP operation

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_result(LDAP *ld, int msgid, int all,
struct timeval * timeout, LDAPMessage **result);

int ldap_msgfree(LDAPMessage *msg);

int ldap_msgtype(LDAPMessage *msg);

int ldap_msgid(LDAPMessage *msg);

DESCRIPTION
The ldap_result() routine is used to wait for and return the result of an operation previously initiated by
one of the LDAP asynchronous operation routines (e.g.,ldap_search_ext(3), ldap_modify_ext(3), etc.).
Those routines all return -1 in case of error, and an invocation identifier upon successful initiation of the
operation. The invocation identifier is picked by the library and is guaranteed to be unique across the LDAP
session. Itcan be used to request the result of a specific operation fromldap_result() through themsgid
parameter.

The ldap_result() routine will block or not, depending upon the setting of thetimeoutparameter. If time-
out is not a NULL pointer, it specifies a maximuminterval towait for the selection to complete. If time-
out is a NULL pointer, the LDAP_OPT_TIMEOUT value set byldap_set_option(3) is used. With the
default setting, theselect blocks indefinitely. To effect a poll, the timeoutargument should be a non-
NULL pointer, pointing to a zero-valued timeval structure. Seeselect(2) for further details.

If the result of a specific operation is required,msgidshould be set to the invocation identifier returned
when the operation was initiated, otherwise LDAP_RES_ANY or LDAP_RES_UNSOLICITED should be
supplied to wait for any or unsolicited response.

Theall parameter, if non-zero, causesldap_result() to return all responses with msgid, otherwise only the
next response is returned. This is commonly used to obtain all the responses of a search operation.

A search response is made up of zero or more search entries, zero or more search references, and zero or
more extended partial responses followed by a search result.If all is set to 0, search entries will be returned
one at a time as they come in, via separate calls toldap_result(). If i t’s set to 1, the search response will
only be returned in its entirety, i.e., after all entries, all references, all extended partial responses, and the
final search result have been received.

Upon success, the type of the result received is returned and theresult parameter will contain the result of
the operation; otherwise, theresult parameter is undefined. This result should be passed to the LDAP pars-
ing routines,ldap_first_message(3) and friends, for interpretation.

The possible result types returned are:

LDAP_RES_BIND (0x61)
LDAP_RES_SEARCH_ENTRY (0x64)
LDAP_RES_SEARCH_REFERENCE (0x73)
LDAP_RES_SEARCH_RESULT (0x65)
LDAP_RES_MODIFY (0x67)
LDAP_RES_ADD (0x69)
LDAP_RES_DELETE (0x6b)
LDAP_RES_MODDN (0x6d)
LDAP_RES_COMPARE (0x6f)
LDAP_RES_EXTENDED (0x78)

OpenLDAP 2.4.9 2008/05/07 1

LDAP_RESULT(3) LDAP_RESULT(3)

LDAP_RES_INTERMEDIATE (0x79)

The ldap_msgfree() routine is used to free the memory allocated for result(s) byldap_result() or
ldap_search_ext_s(3) and friends.It takes a pointer to the result or result chain to be freed and returns the
type of the last message in the chain. If the parameter is NULL, the function does nothing and returns zero.

The ldap_msgtype()routine returns the type of a message.

The ldap_msgid()routine returns the message id of a message.

ERRORS
ldap_result() returns -1 if something bad happens, and zero if the timeout specified was exceeded.
ldap_msgtype()andldap_msgid()return -1 on error.

SEE ALSO
ldap(3), ldap_first_message(3), select(2)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 2

LDAP_SCHEMA(3) LDAP_SCHEMA(3)

NAME
ldap_str2syntax, ldap_syntax2str, ldap_syntax2name, ldap_syntax_free, ldap_str2matchingrule,
ldap_matchingrule2str, ldap_matchingrule2name, ldap_matchingrule_free, ldap_str2attributetype,
ldap_attributetype2str, ldap_attributetype2name, ldap_attributetype_free, ldap_str2objectclass, ldap_object-
class2str, ldap_objectclass2name, ldap_objectclass_free, ldap_scherr2str − Schema definition handling rou-
tines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>
#include <ldap_schema.h>

LDAPSyntax * ldap_str2syntax(s, code, errp, flags)
const char * s;
int * code;
const char ** errp;
const int flags;

char * ldap_syntax2str(syn)
const LDAPSyntax * syn;

const char * ldap_syntax2name(syn)
LDAPSyntax * syn;

ldap_syntax_free(syn)
LDAPSyntax * syn;

LDAPMatchingRule * ldap_str2matchingrule(s, code, errp, flags)
const char * s;
int * code;
const char ** errp;
const int flags;

char * ldap_matchingrule2str(mr);
const LDAPMatchingRule * mr;

const char * ldap_matchingrule2name(mr)
LDAPMatchingRule * mr;

ldap_matchingrule_free(mr)
LDAPMatchingRule * mr;

LDAPAttributeType * ldap_str2attributetype(s, code, errp, flags)
const char * s;
int * code;
const char ** errp;
const int flags;

char * ldap_attributetype2str(at)
const LDAPAttributeType * at;

const char * ldap_attributetype2name(at)
LDAPAttributeType * at;

ldap_attributetype_free(at)
LDAPAttributeType * at;

LDAPObjectClass * ldap_str2objectclass(s, code, errp, flags)
const char * s;
int * code;
const char ** errp;

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_SCHEMA(3) LDAP_SCHEMA(3)

const int flags;

char * ldap_objectclass2str(oc)
const LDAPObjectClass * oc;

const char * ldap_objectclass2name(oc)
LDAPObjectClass * oc;

ldap_objectclass_free(oc)
LDAPObjectClass * oc;

char * ldap_scherr2str(code)
int code;

DESCRIPTION
These routines are used to parse schema definitions in the syntax defined in RFC 4512 into structs and han-
dle these structs. These routines handle four kinds of definitions: syntaxes, matching rules, attribute types
and object classes.For each definition kind, four routines are provided.

ldap_str2xxx() takes a definition in RFC 4512 format in arguments as a NUL-terminated string and
returns, if possible, a pointer to a newly allocated struct of the appropriate kind. The caller is responsible
for freeing the struct by callingldap_xxx_free()when not needed any longer. The routine returns NULL if
some problem happened. In this case, the integer pointed at by argumentcodewill receive an error code
(see below the description ofldap_scherr2str() for an explanation of the values) and a pointer to a NUL-
terminated string will be placed where requested by argumenterrp , indicating where in arguments the
error happened, so it must not be freed by the caller. Argumentflags is a bit mask of parsing options con-
trolling the relaxation of the syntax recognized. The following values are defined:

LDAP_SCHEMA_ALLOW_NONE
strict parsing according to RFC 4512.

LDAP_SCHEMA_ALLOW_NO_OID
permit definitions that do not contain an initial OID.

LDAP_SCHEMA_ALLOW_QUOTED
permit quotes around some items that should not have them.

LDAP_SCHEMA_ALLOW_DESCR
permit adescr instead of a numeric OID in places where the syntax expect the latter.

LDAP_SCHEMA_ALLOW_DESCR_PREFIX
permit that the initial numeric OID contains a prefix indescrformat.

LDAP_SCHEMA_ALLOW_ALL
be very liberal, include all options.

The structures returned are as follows:

typedef struct ldap_schema_extension_item {
char *lsei_name; /* Extension name */
char **lsei_values; /*Extension values */

} L DAPSchemaExtensionItem;

typedef struct ldap_syntax {
char *syn_oid; /* OID */
char **syn_names; /* Names */
char *syn_desc; /* Description */
LDAPSchemaExtensionItem **syn_extensions; /* Extension */

} L DAPSyntax;

typedef struct ldap_matchingrule {
char *mr_oid; /* OID */

OpenLDAP LDVERSION RELEASEDATE 2

LDAP_SCHEMA(3) LDAP_SCHEMA(3)

char **mr_names; /* Names */
char *mr_desc; /* Description */
int mr_obsolete; /* Is obsolete? */
char *mr_syntax_oid; /* Syntax of asserted values */
LDAPSchemaExtensionItem **mr_extensions; /* Extensions */

} L DAPMatchingRule;

typedef struct ldap_attributetype {
char *at_oid; /* OID */
char **at_names; /* Names */
char *at_desc; /* Description */
int at_obsolete; /* Is obsolete? */
char *at_sup_oid; /* OID of superior type */
char *at_equality_oid; /* OID of equality matching rule */
char *at_ordering_oid; /* OID of ordering matching rule */
char *at_substr_oid; /* OID of substrings matching rule */
char *at_syntax_oid; /* OID of syntax of values */
int at_syntax_len; /* Suggested minimum maximum length */
int at_single_value; /* Is single-valued? */
int at_collective; /* Is collective? */
int at_no_user_mod; /* Are changes forbidden through LDAP? */
int at_usage; /* Usage, see below */
LDAPSchemaExtensionItem **at_extensions; /* Extensions */

} L DAPAttributeType;

typedef struct ldap_objectclass {
char *oc_oid; /* OID */
char **oc_names; /* Names */
char *oc_desc; /* Description */
int oc_obsolete; /* Is obsolete? */
char **oc_sup_oids; /* OIDs of superior classes */
int oc_kind; /* Kind, see below */
char **oc_at_oids_must; /* OIDs of required attribute types */
char **oc_at_oids_may; /* OIDs of optional attribute types */
LDAPSchemaExtensionItem **oc_extensions; /* Extensions */

} L DAPObjectClass;

Some integer fields (those described with a question mark) have a truth value, for these fields the possible
values are:

LDAP_SCHEMA_NO
The answer to the question is no.

LDAP_SCHEMA_YES
The answer to the question is yes.

For attribute types, the following usages are possible:

LDAP_SCHEMA_USER_APPLICATIONS
the attribute type is non-operational.

LDAP_SCHEMA_DIRECTORY_OPERATION
the attribute type is operational and is pertinent to the directory itself, i.e. it has the same value on
all servers that master the entry containing this attribute type.

LDAP_SCHEMA_DISTRIBUTED_OPERATION
the attribute type is operational and is pertinent to replication, shadowing or other distributed
directory aspect. TBC.

OpenLDAP LDVERSION RELEASEDATE 3

LDAP_SCHEMA(3) LDAP_SCHEMA(3)

LDAP_SCHEMA_DSA_OPERATION
the attribute type is operational and is pertinent to the directory server itself, i.e. it may have differ-
ent values for the same entry when retrieved from different servers that master the entry.

Object classes can be of three kinds:

LDAP_SCHEMA_ABSTRACT
the object class is abstract, i.e. there cannot be entries of this class alone.

LDAP_SCHEMA_STRUCTURAL
the object class is structural, i.e. it describes the main role of the entry. On some servers, once the
entry is created the set of structural object classes assigned cannot be changed: none of those
present can be removed and none other can be added.

LDAP_SCHEMA_AUXILIARY
the object class is auxiliary, i.e. it is intended to go with other, structural, object classes. These can
be added or removed at any time if attribute types are added or removed at the same time as
needed by the set of object classes resulting from the operation.

Routinesldap_xxx2name()return a canonical name for the definition.

Routinesldap_xxx2str() return a string representation in the format described by RFC 4512 of the struct
passed in the argument. Thestring is a newly allocated string that must be freed by the caller. These rou-
tines may return NULL if no memory can be allocated for the string.

ldap_scherr2str() returns a NUL-terminated string with a text description of the error found. This is a
pointer to a static area, so it must not be freed by the caller. The argumentcodecomes from one of the
parsing routines and can adopt the following values:

LDAP_SCHERR_OUTOFMEM
Out of memory.

LDAP_SCHERR_UNEXPTOKEN
Unexpected token.

LDAP_SCHERR_NOLEFTPAREN
Missing opening parenthesis.

LDAP_SCHERR_NORIGHTPAREN
Missing closing parenthesis.

LDAP_SCHERR_NODIGIT
Expecting digit.

LDAP_SCHERR_BADNAME
Expecting a name.

LDAP_SCHERR_BADDESC
Bad description.

LDAP_SCHERR_BADSUP
Bad superiors.

LDAP_SCHERR_DUPOPT
Duplicate option.

LDAP_SCHERR_EMPTY
Unexpected end of data.

SEE ALSO
ldap(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 4

LDAP_SCHEMA(3) LDAP_SCHEMA(3)

NAME
ldap_str2syntax, ldap_syntax2str, ldap_syntax2name, ldap_syntax_free, ldap_str2matchingrule,
ldap_matchingrule2str, ldap_matchingrule2name, ldap_matchingrule_free, ldap_str2attributetype,
ldap_attributetype2str, ldap_attributetype2name, ldap_attributetype_free, ldap_str2objectclass, ldap_object-
class2str, ldap_objectclass2name, ldap_objectclass_free, ldap_scherr2str − Schema definition handling rou-
tines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>
#include <ldap_schema.h>

LDAPSyntax * ldap_str2syntax(s, code, errp, flags)
const char * s;
int * code;
const char ** errp;
const int flags;

char * ldap_syntax2str(syn)
const LDAPSyntax * syn;

const char * ldap_syntax2name(syn)
LDAPSyntax * syn;

ldap_syntax_free(syn)
LDAPSyntax * syn;

LDAPMatchingRule * ldap_str2matchingrule(s, code, errp, flags)
const char * s;
int * code;
const char ** errp;
const int flags;

char * ldap_matchingrule2str(mr);
const LDAPMatchingRule * mr;

const char * ldap_matchingrule2name(mr)
LDAPMatchingRule * mr;

ldap_matchingrule_free(mr)
LDAPMatchingRule * mr;

LDAPAttributeType * ldap_str2attributetype(s, code, errp, flags)
const char * s;
int * code;
const char ** errp;
const int flags;

char * ldap_attributetype2str(at)
const LDAPAttributeType * at;

const char * ldap_attributetype2name(at)
LDAPAttributeType * at;

ldap_attributetype_free(at)
LDAPAttributeType * at;

LDAPObjectClass * ldap_str2objectclass(s, code, errp, flags)
const char * s;
int * code;
const char ** errp;

OpenLDAP 2.4.9 2008/05/07 1

LDAP_SCHEMA(3) LDAP_SCHEMA(3)

const int flags;

char * ldap_objectclass2str(oc)
const LDAPObjectClass * oc;

const char * ldap_objectclass2name(oc)
LDAPObjectClass * oc;

ldap_objectclass_free(oc)
LDAPObjectClass * oc;

char * ldap_scherr2str(code)
int code;

DESCRIPTION
These routines are used to parse schema definitions in the syntax defined in RFC 4512 into structs and han-
dle these structs. These routines handle four kinds of definitions: syntaxes, matching rules, attribute types
and object classes.For each definition kind, four routines are provided.

ldap_str2xxx() takes a definition in RFC 4512 format in arguments as a NUL-terminated string and
returns, if possible, a pointer to a newly allocated struct of the appropriate kind. The caller is responsible
for freeing the struct by callingldap_xxx_free()when not needed any longer. The routine returns NULL if
some problem happened. In this case, the integer pointed at by argumentcodewill receive an error code
(see below the description ofldap_scherr2str() for an explanation of the values) and a pointer to a NUL-
terminated string will be placed where requested by argumenterrp , indicating where in arguments the
error happened, so it must not be freed by the caller. Argumentflags is a bit mask of parsing options con-
trolling the relaxation of the syntax recognized. The following values are defined:

LDAP_SCHEMA_ALLOW_NONE
strict parsing according to RFC 4512.

LDAP_SCHEMA_ALLOW_NO_OID
permit definitions that do not contain an initial OID.

LDAP_SCHEMA_ALLOW_QUOTED
permit quotes around some items that should not have them.

LDAP_SCHEMA_ALLOW_DESCR
permit adescr instead of a numeric OID in places where the syntax expect the latter.

LDAP_SCHEMA_ALLOW_DESCR_PREFIX
permit that the initial numeric OID contains a prefix indescrformat.

LDAP_SCHEMA_ALLOW_ALL
be very liberal, include all options.

The structures returned are as follows:

typedef struct ldap_schema_extension_item {
char *lsei_name; /* Extension name */
char **lsei_values; /*Extension values */

} L DAPSchemaExtensionItem;

typedef struct ldap_syntax {
char *syn_oid; /* OID */
char **syn_names; /* Names */
char *syn_desc; /* Description */
LDAPSchemaExtensionItem **syn_extensions; /* Extension */

} L DAPSyntax;

typedef struct ldap_matchingrule {
char *mr_oid; /* OID */

OpenLDAP 2.4.9 2008/05/07 2

LDAP_SCHEMA(3) LDAP_SCHEMA(3)

char **mr_names; /* Names */
char *mr_desc; /* Description */
int mr_obsolete; /* Is obsolete? */
char *mr_syntax_oid; /* Syntax of asserted values */
LDAPSchemaExtensionItem **mr_extensions; /* Extensions */

} L DAPMatchingRule;

typedef struct ldap_attributetype {
char *at_oid; /* OID */
char **at_names; /* Names */
char *at_desc; /* Description */
int at_obsolete; /* Is obsolete? */
char *at_sup_oid; /* OID of superior type */
char *at_equality_oid; /* OID of equality matching rule */
char *at_ordering_oid; /* OID of ordering matching rule */
char *at_substr_oid; /* OID of substrings matching rule */
char *at_syntax_oid; /* OID of syntax of values */
int at_syntax_len; /* Suggested minimum maximum length */
int at_single_value; /* Is single-valued? */
int at_collective; /* Is collective? */
int at_no_user_mod; /* Are changes forbidden through LDAP? */
int at_usage; /* Usage, see below */
LDAPSchemaExtensionItem **at_extensions; /* Extensions */

} L DAPAttributeType;

typedef struct ldap_objectclass {
char *oc_oid; /* OID */
char **oc_names; /* Names */
char *oc_desc; /* Description */
int oc_obsolete; /* Is obsolete? */
char **oc_sup_oids; /* OIDs of superior classes */
int oc_kind; /* Kind, see below */
char **oc_at_oids_must; /* OIDs of required attribute types */
char **oc_at_oids_may; /* OIDs of optional attribute types */
LDAPSchemaExtensionItem **oc_extensions; /* Extensions */

} L DAPObjectClass;

Some integer fields (those described with a question mark) have a truth value, for these fields the possible
values are:

LDAP_SCHEMA_NO
The answer to the question is no.

LDAP_SCHEMA_YES
The answer to the question is yes.

For attribute types, the following usages are possible:

LDAP_SCHEMA_USER_APPLICATIONS
the attribute type is non-operational.

LDAP_SCHEMA_DIRECTORY_OPERATION
the attribute type is operational and is pertinent to the directory itself, i.e. it has the same value on
all servers that master the entry containing this attribute type.

LDAP_SCHEMA_DISTRIBUTED_OPERATION
the attribute type is operational and is pertinent to replication, shadowing or other distributed
directory aspect. TBC.

OpenLDAP 2.4.9 2008/05/07 3

LDAP_SCHEMA(3) LDAP_SCHEMA(3)

LDAP_SCHEMA_DSA_OPERATION
the attribute type is operational and is pertinent to the directory server itself, i.e. it may have differ-
ent values for the same entry when retrieved from different servers that master the entry.

Object classes can be of three kinds:

LDAP_SCHEMA_ABSTRACT
the object class is abstract, i.e. there cannot be entries of this class alone.

LDAP_SCHEMA_STRUCTURAL
the object class is structural, i.e. it describes the main role of the entry. On some servers, once the
entry is created the set of structural object classes assigned cannot be changed: none of those
present can be removed and none other can be added.

LDAP_SCHEMA_AUXILIARY
the object class is auxiliary, i.e. it is intended to go with other, structural, object classes. These can
be added or removed at any time if attribute types are added or removed at the same time as
needed by the set of object classes resulting from the operation.

Routinesldap_xxx2name()return a canonical name for the definition.

Routinesldap_xxx2str() return a string representation in the format described by RFC 4512 of the struct
passed in the argument. Thestring is a newly allocated string that must be freed by the caller. These rou-
tines may return NULL if no memory can be allocated for the string.

ldap_scherr2str() returns a NUL-terminated string with a text description of the error found. This is a
pointer to a static area, so it must not be freed by the caller. The argumentcodecomes from one of the
parsing routines and can adopt the following values:

LDAP_SCHERR_OUTOFMEM
Out of memory.

LDAP_SCHERR_UNEXPTOKEN
Unexpected token.

LDAP_SCHERR_NOLEFTPAREN
Missing opening parenthesis.

LDAP_SCHERR_NORIGHTPAREN
Missing closing parenthesis.

LDAP_SCHERR_NODIGIT
Expecting digit.

LDAP_SCHERR_BADNAME
Expecting a name.

LDAP_SCHERR_BADDESC
Bad description.

LDAP_SCHERR_BADSUP
Bad superiors.

LDAP_SCHERR_DUPOPT
Duplicate option.

LDAP_SCHERR_EMPTY
Unexpected end of data.

SEE ALSO
ldap(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 4

LDAP_SEARCH(3) LDAP_SEARCH(3)

NAME
ldap_search, ldap_search_s, ldap_search_st, ldap_search_ext, ldap_search_ext_s − Perform an LDAP
search operation

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <sys/types.h>
#include <ldap.h>

int ldap_search_ext(
LDAP * ld,
char *base,
int scope,
char *filter,
char *attrs[],
int attrsonly,
LDAPControl ** serverctrls,
LDAPControl ** clientctrls,
struct timeval * timeout,
int sizelimit,
int * msgidp);

int ldap_search_ext_s(
LDAP * ld,
char *base,
int scope,
char *filter,
char *attrs[],
int attrsonly,
LDAPControl ** serverctrls,
LDAPControl ** clientctrls,
struct timeval * timeout,
int sizelimit,
LDAPMessage **res);

DESCRIPTION
These routines are used to perform LDAP search operations.The ldap_search_ext_s()routine does the
search synchronously (i.e., not returning until the operation completes), providing a pointer to the resulting
LDAP messages at the location pointed to by theres parameter.

The ldap_search_ext()routine is the asynchronous version, initiating the search and returning the message
id of the operation it initiated in the integer pointed to by themsgidpparameter.

Thebaseparameter is the DN of the entry at which to start the search.

The scopeparameter is the scope of the search and should be one of LDAP_SCOPE_BASE, to search the
object itself, LDAP_SCOPE_ONELEVEL, to search the object’s immediate children,
LDAP_SCOPE_SUBTREE, to search the object and all its descendants, or LDAP_SCOPE_CHILDREN, to
search all of the descendants. Note that the latter requires the server support the LDAP Subordinates
Search Scope extension.

Thefilter is a string representation of the filter to apply in the search.The string should conform to the for-
mat specified in RFC 4515 as extended by RFC 4526.For instance, "(cn=Jane Doe)". Note that use of the
extension requires the server to support the LDAP Absolute True/False Filter extension. NULLmay be
specified to indicate the library should send the filter (objectClass=*).

The attrs parameter is a null-terminated array of attribute descriptions to return from matching entries.If
NULL is specified, the return of all user attributes is requested. The description "*"

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_SEARCH(3) LDAP_SEARCH(3)

(LDAP_ALL_USER_ATTRIBUTES) may be used to request all user attributes to be returned.The
description "+"(LDAP_ALL_OPERATIONAL_ATTRIBUTES) may be used to request all operational
attributes to be returned. Note that this requires the server to support the LDAP All Operational Attribute
extension. To request no attributes, the description "1.1" (LDAP_NO_ATTRS) should be listed by itself.

The attrsonly parameter should be set to a non-zero value if only attribute descriptions are wanted. It
should be set to zero (0) if both attributes descriptions and attribute values are wanted.

Theserverctrlsandclientctrlsparameters may be used to specify server and client controls, respectively.

The ldap_search_ext_s()routine is the synchronous version ofldap_search_ext().

It also returns a code indicating success or, in the case of failure, indicating the nature of the failure of the
operation. Seeldap_error (3) for details.

NOTES
Note that both read and list functionality are subsumed by these routines, by using a filter like "(object-
class=*)" and a scope of LDAP_SCOPE_BASE (to emulate read) or LDAP_SCOPE_ONELEVEL (to emu-
late list).

These routines may dynamically allocate memory. The caller is responsible for freeing such memory using
supplied deallocation routines. Return values are contained in <ldap.h>.

DEPRECATED INTERFACES
The ldap_search()routine is deprecated in favor of the ldap_search_ext()routine. Theldap_search_s()
andldap_search_st()routines are deprecated in favor of the ldap_search_ext_s()routine.

SEE ALSO
ldap(3), ldap_result(3), ldap_error (3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 2

LDAP_SEARCH(3) LDAP_SEARCH(3)

NAME
ldap_search, ldap_search_s, ldap_search_st, ldap_search_ext, ldap_search_ext_s − Perform an LDAP
search operation

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <sys/types.h>
#include <ldap.h>

int ldap_search_ext(
LDAP * ld,
char *base,
int scope,
char *filter,
char *attrs[],
int attrsonly,
LDAPControl ** serverctrls,
LDAPControl ** clientctrls,
struct timeval * timeout,
int sizelimit,
int * msgidp);

int ldap_search_ext_s(
LDAP * ld,
char *base,
int scope,
char *filter,
char *attrs[],
int attrsonly,
LDAPControl ** serverctrls,
LDAPControl ** clientctrls,
struct timeval * timeout,
int sizelimit,
LDAPMessage **res);

DESCRIPTION
These routines are used to perform LDAP search operations.The ldap_search_ext_s()routine does the
search synchronously (i.e., not returning until the operation completes), providing a pointer to the resulting
LDAP messages at the location pointed to by theres parameter.

The ldap_search_ext()routine is the asynchronous version, initiating the search and returning the message
id of the operation it initiated in the integer pointed to by themsgidpparameter.

Thebaseparameter is the DN of the entry at which to start the search.

The scopeparameter is the scope of the search and should be one of LDAP_SCOPE_BASE, to search the
object itself, LDAP_SCOPE_ONELEVEL, to search the object’s immediate children,
LDAP_SCOPE_SUBTREE, to search the object and all its descendants, or LDAP_SCOPE_CHILDREN, to
search all of the descendants. Note that the latter requires the server support the LDAP Subordinates
Search Scope extension.

Thefilter is a string representation of the filter to apply in the search.The string should conform to the for-
mat specified in RFC 4515 as extended by RFC 4526.For instance, "(cn=Jane Doe)". Note that use of the
extension requires the server to support the LDAP Absolute True/False Filter extension. NULLmay be
specified to indicate the library should send the filter (objectClass=*).

The attrs parameter is a null-terminated array of attribute descriptions to return from matching entries.If
NULL is specified, the return of all user attributes is requested. The description "*"

OpenLDAP 2.4.9 2008/05/07 1

LDAP_SEARCH(3) LDAP_SEARCH(3)

(LDAP_ALL_USER_ATTRIBUTES) may be used to request all user attributes to be returned.The
description "+"(LDAP_ALL_OPERATIONAL_ATTRIBUTES) may be used to request all operational
attributes to be returned. Note that this requires the server to support the LDAP All Operational Attribute
extension. To request no attributes, the description "1.1" (LDAP_NO_ATTRS) should be listed by itself.

The attrsonly parameter should be set to a non-zero value if only attribute descriptions are wanted. It
should be set to zero (0) if both attributes descriptions and attribute values are wanted.

Theserverctrlsandclientctrlsparameters may be used to specify server and client controls, respectively.

The ldap_search_ext_s()routine is the synchronous version ofldap_search_ext().

It also returns a code indicating success or, in the case of failure, indicating the nature of the failure of the
operation. Seeldap_error (3) for details.

NOTES
Note that both read and list functionality are subsumed by these routines, by using a filter like "(object-
class=*)" and a scope of LDAP_SCOPE_BASE (to emulate read) or LDAP_SCOPE_ONELEVEL (to emu-
late list).

These routines may dynamically allocate memory. The caller is responsible for freeing such memory using
supplied deallocation routines. Return values are contained in <ldap.h>.

DEPRECATED INTERFACES
The ldap_search()routine is deprecated in favor of the ldap_search_ext()routine. Theldap_search_s()
andldap_search_st()routines are deprecated in favor of the ldap_search_ext_s()routine.

Deprecated interfaces generally remain in the library. The macro LDAP_DEPRECATED can be defined to
a non-zero value (e.g., -DLDAP_DEPRECATED=1) when compiling program designed to use deprecated
interfaces. Itis recommended that developers writing new programs, or updating old programs, avoid use
of deprecated interfaces. Over time, it is expected that documentation (and, eventually, support) for depre-
cated interfaces to be eliminated.

SEE ALSO
ldap(3), ldap_result(3), ldap_error (3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 2

LDAP_SORT(3) LDAP_SORT(3)

NAME
ldap_sort_entries, ldap_sort_values, ldap_sort_strcasecmp − LDAP sorting routines (deprecated)

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

DESCRIPTION
The ldap_sort_entries(), ldap_sort_values(), andldap_sort_strcasecmp() are deprecated.

SEE ALSO
ldap(3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_SORT(3) LDAP_SORT(3)

NAME
ldap_sort_entries, ldap_sort_values, ldap_sort_strcasecmp − LDAP sorting routines (deprecated)

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

DESCRIPTION
The ldap_sort_entries(), ldap_sort_values(), andldap_sort_strcasecmp() are deprecated.

Deprecated interfaces generally remain in the library. The macro LDAP_DEPRECATED can be defined to
a non-zero value (e.g., -DLDAP_DEPRECATED=1) when compiling program designed to use deprecated
interfaces. Itis recommended that developers writing new programs, or updating old programs, avoid use
of deprecated interfaces. Over time, it is expected that documentation (and, eventually, support) for depre-
cated interfaces to be eliminated.

SEE ALSO
ldap(3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_SYNC(3) LDAP_SYNC(3)

NAME
ldap_sync_init, ldap_sync_init_refresh_only, ldap_sync_init_refresh_and_persist, ldap_sync_poll − LDAP
sync routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap_sync.h>

int ldap_sync_init(ldap_sync_t *ls, int mode);

int ldap_sync_init_refresh_only(ldap_sync_t *ls);

int ldap_sync_init_refresh_and_persist(ldap_sync_t *ls);

int ldap_sync_poll(ldap_sync_t *ls);

ldap_sync_t * ldap_sync_initialize(ldap_sync_t *ls);

int ldap_sync_destroy(ldap_sync_t *ls, int freeit);

typedef int (*ldap_sync_search_entry_f)(ldap_sync_t *ls,
LDAPMessage *msg, struct berval * entryUUID,
ldap_sync_refresh_tphase);

typedef int (*ldap_sync_search_reference_f)(ldap_sync_t *ls,
LDAPMessage *msg);

typedef int (*ldap_sync_intermediate_f)(ldap_sync_t *ls,
LDAPMessage *msg, BerVarray syncUUIDs,
ldap_sync_refresh_tphase);

typedef int (*ldap_sync_search_result_f)(ldap_sync_t *ls,
LDAPMessage *msg, int refreshDeletes);

DESCRIPTION
These routines provide an interface to the LDAP Content Synchronization operation (RFC 4533).They
require anldap_sync_tstructure to be set up with parameters required for various phases of the operation;
this includes setting some handlers for special events. All handlers take a pointer to theldap_sync_tstruc-
ture as the first argument, and a pointer to theLDAPMessagestructure as received from the server by the
client library, plus, occasionally, other specific arguments.

The members of theldap_sync_tstructure are:

char * ls_base
The search base; by default, theBASE option inldap.conf(5).

int ls_scope
The search scope (one ofLDAP_SCOPE_BASE, LDAP_SCOPE_ONELEVEL ,
LDAP_SCOPE_SUBORDINATE or LDAP_SCOPE_SUBTREE; seeldap.h for details).

char * ls_filter
The filter (RFC 4515); by default,(objectClass=*).

char ** ls_attrs
The requested attributes; by defaultNULL , indicating all user attributes.

int ls_timelimit
The requested time limit (in seconds); by default0, to indicate no limit.

int ls_sizelimit
The requested size limit (in entries); by default0, to indicate no limit.

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_SYNC(3) LDAP_SYNC(3)

int ls_timeout
The desired timeout during polling withldap_sync_poll(3). A value of -1 means that polling is
blocking, soldap_sync_poll(3) will not return until a message is received; a value of0 means that
polling returns immediately, no matter if any response is available or not; a positive value repre-
sents the timeout theldap_sync_poll(3) function will wait for response before returning, unless a
message is received; in that case,ldap_sync_poll(3) returns as soon as the message is available.

ldap_sync_search_entry_fls_search_entry
A function that is called whenever an entry is returned.Themsgargument is theLDAPMessage
that contains the searchResultEntry; it can be parsed using the regular client API routines, like
ldap_get_dn(3), ldap_first_attribute (3), and so on.The entryUUID argument contains the
entryUUID of the entry. The phase argument indicates the type of operation: one of
LDAP_SYNC_CAPI_PRESENT, LDAP_SYNC_CAPI_ADD, LDAP_SYNC_CAPI_MOD-
IFY , LDAP_SYNC_CAPI_DELETE ; in case of LDAP_SYNC_CAPI_PRESENT or
LDAP_SYNC_CAPI_DELETE , only the DN is contained in theLDAPMessage; in case of
LDAP_SYNC_CAPI_MODIFY , the whole entry is contained in theLDAPMessage, and the
application is responsible of determining the differences between the new view of the entry pro-
vided by the caller and the data already known.

ldap_sync_search_reference_fls_search_reference
A function that is called whenever a search reference is returned.The msg argument is the
LDAPMessagethat contains the searchResultReference; it can be parsed using the regular client
API routines, likeldap_parse_reference(3).

ldap_sync_intermediate_fls_intermediate
A function that is called whenever something relevant occurs during the refresh phase of the
search, which is marked by anintermediateResponsemessage type.The msg argument is the
LDAPMessagethat contains the intermediate response; it can be parsed using the regular client
API routines, like ldap_parse_intermediate(3). ThesyncUUIDs argument contains an array of
UUIDs of the entries that depends on the value of the phase argument. In case of
LDAP_SYNC_CAPI_PRESENTS, the "present" phase is being entered; this means that the fol-
lowing sequence of results will consist in entries in "present" sync state.In case of
LDAP_SYNC_CAPI_DELETES, the "deletes" phase is being entered; this means that the fol-
lowing sequence of results will consist in entries in "delete" sync state.In case of
LDAP_SYNC_CAPI_PRESENTS_IDSET, the message contains a set of UUIDs of entries that
are present; it replaces a "presents" phase. In case ofLDAP_SYNC_CAPI_DELETES_IDSET,
the message contains a set of UUIDs of entries that have been deleted; it replaces a "deletes"
phase. Incase ofLDAP_SYNC_CAPI_DONE, a "presents" phase with "refreshDone" set to
"TRUE" has been returned to indicate that the refresh phase of refreshAndPersist is over, and the
client should start polling. Except for theLDAP_SYNC_CAPI_PRESENTS_IDSET and
LDAP_SYNC_CAPI_DELETES_IDSET cases,syncUUIDs is NULL.

ldap_sync_search_result_fls_search_result
A function that is called whenever a searchResultDone is returned. In refreshAndPersist this can
only occur when the server decides that the search must be interrupted.Themsgargument is the
LDAPMessagethat contains the response; it can be parsed using the regular client API routines,
like ldap_parse_result(3). The refreshDeletesargument is not relevant in this case; it should
always be -1.

void * ls_private
A pointer to private data. The client may register here a pointer to data the handlers above may
need.

LDAP * ls_ld
A pointer to a LDAP structure that is used to connect to the server. It is the responsibility of the
client to initialize the structure and to provide appropriate authentication and security in place.

OpenLDAP LDVERSION RELEASEDATE 2

LDAP_SYNC(3) LDAP_SYNC(3)

GENERAL USE
A ldap_sync_tstructure is initialized by callingldap_sync_initialize(3). This simply clears out the con-
tents of an already existing ldap_sync_tstructure, and sets appropriate values for some members.After
that, the caller is responsible for setting up the connection (memberls_ld), eventually setting up transport
security (TLS), for binding and any other initialization. The caller must also fill all the documented search-
related fields of theldap_sync_tstructure.

At the end of a session, the structure can be cleaned up by callingldap_sync_destroy(3), which takes care
of freeing all data assuming it was allocated byldap_mem*(3) routines. Otherwise, the caller should take
care of destroying and zeroing out the documented search-related fields, and callldap_sync_destroy(3) to
free undocumented members set by the API.

REFRESH ONLY
The refreshOnly functionality is obtained by periodically callingldap_sync_init(3) with mode set to
LDAP_SYNC_REFRESH_ONLY, or, which is equivalent, by directly calling
ldap_sync_init_refresh_only(3). Thestate of the search, and the consistency of the search parameters, is
preserved across calls by passing theldap_sync_tstructure as left by the previous call.

REFRESH AND PERSIST
The refreshAndPersist functionality is obtained by callingldap_sync_init(3) with mode set to
LDAP_SYNC_REFRESH_AND_PERSIST, or, which is equivalent, by directly calling
ldap_sync_init_refresh_and_persist(3) and, after a successful return, by repeatedly polling with
ldap_sync_poll(3) according to the desired pattern.

A client may insert a call toldap_sync_poll(3) into an external loop to check if any modification was
returned; in this case, it might be appropriate to setls_timeout to 0, or to set it to a finite, small value. Oth-
erwise, if the client’s main purpose consists in waiting for responses, a timeout of -1 is most suitable, so
that the function only returns after some data has been received and handled.

ERRORS
All routines return any LDAP error resulting from a lower-level error in the API calls they are based on, or
LDAP_SUCCESS in case of success. ldap_sync_poll(3) may return
LDAP_SYNC_REFRESH_REQUIRED if a full refresh is requested by the server. In this case, it is
appropriate to callldap_sync_init(3) again, passing the sameldap_sync_tstructure as resulted from any
previous call.

NOTES
SEE ALSO

ldap(3), ldap_search_ext(3), ldap_result(3); RFC 4533(http://www.rfc-editor.org),

AUTHOR
Designed and implemented by Pierangelo Masarati, based on RFC 4533 and loosely inspired by syncrepl
code inslapd(8).

ACKNOWLEDGEMENTS
Initially developed bySysNet s.n.c.OpenLDAP is developed and maintained by The OpenLDAP Project
(http://www.openldap.org/).OpenLDAP is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP LDVERSION RELEASEDATE 3

LDAP_SYNC(3) LDAP_SYNC(3)

NAME
ldap_sync_init, ldap_sync_init_refresh_only, ldap_sync_init_refresh_and_persist, ldap_sync_poll − LDAP
sync routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap_sync.h>

int ldap_sync_init(ldap_sync_t *ls, int mode);

int ldap_sync_init_refresh_only(ldap_sync_t *ls);

int ldap_sync_init_refresh_and_persist(ldap_sync_t *ls);

int ldap_sync_poll(ldap_sync_t *ls);

ldap_sync_t * ldap_sync_initialize(ldap_sync_t *ls);

int ldap_sync_destroy(ldap_sync_t *ls, int freeit);

typedef int (*ldap_sync_search_entry_f)(ldap_sync_t *ls,
LDAPMessage *msg, struct berval * entryUUID,
ldap_sync_refresh_tphase);

typedef int (*ldap_sync_search_reference_f)(ldap_sync_t *ls,
LDAPMessage *msg);

typedef int (*ldap_sync_intermediate_f)(ldap_sync_t *ls,
LDAPMessage *msg, BerVarray syncUUIDs,
ldap_sync_refresh_tphase);

typedef int (*ldap_sync_search_result_f)(ldap_sync_t *ls,
LDAPMessage *msg, int refreshDeletes);

DESCRIPTION
These routines provide an interface to the LDAP Content Synchronization operation (RFC 4533).They
require anldap_sync_tstructure to be set up with parameters required for various phases of the operation;
this includes setting some handlers for special events. All handlers take a pointer to theldap_sync_tstruc-
ture as the first argument, and a pointer to theLDAPMessagestructure as received from the server by the
client library, plus, occasionally, other specific arguments.

The members of theldap_sync_tstructure are:

char * ls_base
The search base; by default, theBASE option inldap.conf(5).

int ls_scope
The search scope (one ofLDAP_SCOPE_BASE, LDAP_SCOPE_ONELEVEL ,
LDAP_SCOPE_SUBORDINATE or LDAP_SCOPE_SUBTREE; seeldap.h for details).

char * ls_filter
The filter (RFC 4515); by default,(objectClass=*).

char ** ls_attrs
The requested attributes; by defaultNULL , indicating all user attributes.

int ls_timelimit
The requested time limit (in seconds); by default0, to indicate no limit.

int ls_sizelimit
The requested size limit (in entries); by default0, to indicate no limit.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_SYNC(3) LDAP_SYNC(3)

int ls_timeout
The desired timeout during polling withldap_sync_poll(3). A value of -1 means that polling is
blocking, soldap_sync_poll(3) will not return until a message is received; a value of0 means that
polling returns immediately, no matter if any response is available or not; a positive value repre-
sents the timeout theldap_sync_poll(3) function will wait for response before returning, unless a
message is received; in that case,ldap_sync_poll(3) returns as soon as the message is available.

ldap_sync_search_entry_fls_search_entry
A function that is called whenever an entry is returned.Themsgargument is theLDAPMessage
that contains the searchResultEntry; it can be parsed using the regular client API routines, like
ldap_get_dn(3), ldap_first_attribute (3), and so on.The entryUUID argument contains the
entryUUID of the entry. The phase argument indicates the type of operation: one of
LDAP_SYNC_CAPI_PRESENT, LDAP_SYNC_CAPI_ADD, LDAP_SYNC_CAPI_MOD-
IFY , LDAP_SYNC_CAPI_DELETE ; in case of LDAP_SYNC_CAPI_PRESENT or
LDAP_SYNC_CAPI_DELETE , only the DN is contained in theLDAPMessage; in case of
LDAP_SYNC_CAPI_MODIFY , the whole entry is contained in theLDAPMessage, and the
application is responsible of determining the differences between the new view of the entry pro-
vided by the caller and the data already known.

ldap_sync_search_reference_fls_search_reference
A function that is called whenever a search reference is returned.The msg argument is the
LDAPMessagethat contains the searchResultReference; it can be parsed using the regular client
API routines, likeldap_parse_reference(3).

ldap_sync_intermediate_fls_intermediate
A function that is called whenever something relevant occurs during the refresh phase of the
search, which is marked by anintermediateResponsemessage type.The msg argument is the
LDAPMessagethat contains the intermediate response; it can be parsed using the regular client
API routines, like ldap_parse_intermediate(3). ThesyncUUIDs argument contains an array of
UUIDs of the entries that depends on the value of the phase argument. In case of
LDAP_SYNC_CAPI_PRESENTS, the "present" phase is being entered; this means that the fol-
lowing sequence of results will consist in entries in "present" sync state.In case of
LDAP_SYNC_CAPI_DELETES, the "deletes" phase is being entered; this means that the fol-
lowing sequence of results will consist in entries in "delete" sync state.In case of
LDAP_SYNC_CAPI_PRESENTS_IDSET, the message contains a set of UUIDs of entries that
are present; it replaces a "presents" phase. In case ofLDAP_SYNC_CAPI_DELETES_IDSET,
the message contains a set of UUIDs of entries that have been deleted; it replaces a "deletes"
phase. Incase ofLDAP_SYNC_CAPI_DONE, a "presents" phase with "refreshDone" set to
"TRUE" has been returned to indicate that the refresh phase of refreshAndPersist is over, and the
client should start polling. Except for theLDAP_SYNC_CAPI_PRESENTS_IDSET and
LDAP_SYNC_CAPI_DELETES_IDSET cases,syncUUIDs is NULL.

ldap_sync_search_result_fls_search_result
A function that is called whenever a searchResultDone is returned. In refreshAndPersist this can
only occur when the server decides that the search must be interrupted.Themsgargument is the
LDAPMessagethat contains the response; it can be parsed using the regular client API routines,
like ldap_parse_result(3). The refreshDeletesargument is not relevant in this case; it should
always be -1.

void * ls_private
A pointer to private data. The client may register here a pointer to data the handlers above may
need.

LDAP * ls_ld
A pointer to a LDAP structure that is used to connect to the server. It is the responsibility of the
client to initialize the structure and to provide appropriate authentication and security in place.

OpenLDAP 2.4.9 2008/05/07 2

LDAP_SYNC(3) LDAP_SYNC(3)

GENERAL USE
A ldap_sync_tstructure is initialized by callingldap_sync_initialize(3). This simply clears out the con-
tents of an already existing ldap_sync_tstructure, and sets appropriate values for some members.After
that, the caller is responsible for setting up the connection (memberls_ld), eventually setting up transport
security (TLS), for binding and any other initialization. The caller must also fill all the documented search-
related fields of theldap_sync_tstructure.

At the end of a session, the structure can be cleaned up by callingldap_sync_destroy(3), which takes care
of freeing all data assuming it was allocated byldap_mem*(3) routines. Otherwise, the caller should take
care of destroying and zeroing out the documented search-related fields, and callldap_sync_destroy(3) to
free undocumented members set by the API.

REFRESH ONLY
The refreshOnly functionality is obtained by periodically callingldap_sync_init(3) with mode set to
LDAP_SYNC_REFRESH_ONLY, or, which is equivalent, by directly calling
ldap_sync_init_refresh_only(3). Thestate of the search, and the consistency of the search parameters, is
preserved across calls by passing theldap_sync_tstructure as left by the previous call.

REFRESH AND PERSIST
The refreshAndPersist functionality is obtained by callingldap_sync_init(3) with mode set to
LDAP_SYNC_REFRESH_AND_PERSIST, or, which is equivalent, by directly calling
ldap_sync_init_refresh_and_persist(3) and, after a successful return, by repeatedly polling with
ldap_sync_poll(3) according to the desired pattern.

A client may insert a call toldap_sync_poll(3) into an external loop to check if any modification was
returned; in this case, it might be appropriate to setls_timeout to 0, or to set it to a finite, small value. Oth-
erwise, if the client’s main purpose consists in waiting for responses, a timeout of -1 is most suitable, so
that the function only returns after some data has been received and handled.

ERRORS
All routines return any LDAP error resulting from a lower-level error in the API calls they are based on, or
LDAP_SUCCESS in case of success. ldap_sync_poll(3) may return
LDAP_SYNC_REFRESH_REQUIRED if a full refresh is requested by the server. In this case, it is
appropriate to callldap_sync_init(3) again, passing the sameldap_sync_tstructure as resulted from any
previous call.

NOTES
SEE ALSO

ldap(3), ldap_search_ext(3), ldap_result(3); RFC 4533(http://www.rfc-editor.org),

AUTHOR
Designed and implemented by Pierangelo Masarati, based on RFC 4533 and loosely inspired by syncrepl
code inslapd(8).

ACKNOWLEDGEMENTS
Initially developed bySysNet s.n.c.OpenLDAP is developed and maintained by The OpenLDAP Project
(http://www.openldap.org/).OpenLDAP is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 3

LDAP_TLS(3) LDAP_TLS(3)

NAME
ldap_start_tls, ldap_start_tls_s, ldap_tls_inplace, ldap_install_tls − LDAP TLS initialization routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_start_tls(LDAP * ld);

int ldap_start_tls_s(LDAP *ld, LDAPControl ** serverctrls, LDAPControl ** clientctrls);

int ldap_tls_inplace(LDAP *ld);

int ldap_install_tls(LDAP * ld);

DESCRIPTION
These routines are used to initiate TLS processing on an LDAP session.ldap_start_tls_s() sends a Start-
TLS request to a server, waits for the reply, and then installs TLS handlers on the session if the request suc-
ceeded. The routine returnsLDAP_SUCCESSif everything succeeded, otherwise it returns an LDAP error
code. ldap_start_tls() sends a StartTLS request to a server and does nothing else. It returnsLDAP_SUC-
CESS if the request was sent successfully. ldap_tls_inplace() returns 1 if TLS handlers have been
installed on the specified session, 0 otherwise.ldap_install_tls() installs the TLS handlers on the given
session. It returnsLDAP_LOCAL_ERROR if TLS is already installed.

SEE ALSO
ldap(3), ldap_error (3)

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_TLS(3) LDAP_TLS(3)

NAME
ldap_start_tls, ldap_start_tls_s, ldap_tls_inplace, ldap_install_tls − LDAP TLS initialization routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_start_tls(LDAP * ld);

int ldap_start_tls_s(LDAP *ld, LDAPControl ** serverctrls, LDAPControl ** clientctrls);

int ldap_tls_inplace(LDAP *ld);

int ldap_install_tls(LDAP * ld);

DESCRIPTION
These routines are used to initiate TLS processing on an LDAP session.ldap_start_tls_s() sends a Start-
TLS request to a server, waits for the reply, and then installs TLS handlers on the session if the request suc-
ceeded. The routine returnsLDAP_SUCCESSif everything succeeded, otherwise it returns an LDAP error
code. ldap_start_tls() sends a StartTLS request to a server and does nothing else. It returnsLDAP_SUC-
CESS if the request was sent successfully. ldap_tls_inplace() returns 1 if TLS handlers have been
installed on the specified session, 0 otherwise.ldap_install_tls() installs the TLS handlers on the given
session. It returnsLDAP_LOCAL_ERROR if TLS is already installed.

SEE ALSO
ldap(3), ldap_error (3)

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 1

LDAP_URL(3) LDAP_URL(3)

NAME
ldap_is_ldap_url, ldap_url_parse, ldap_free_urldesc − LDAP Uniform Resource Locator routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_is_ldap_url(const char *url)

int ldap_url_parse(const char *url, LDAPURLDesc **ludpp)

typedef struct ldap_url_desc {
char * lud_scheme; /*URI scheme */
char * lud_host; /*LDAP host to contact */
int lud_port; /* port on host */
char * lud_dn; /*base for search */
char ** lud_attrs; /*list of attributes */
int lud_scope; /* a LDAP_SCOPE_... value */
char * lud_filter; /* LDAP search filter */
char ** lud_exts; /* LDAP extensions */
int lud_crit_exts; /* true if any extension is critical */
/* may contain additional fields for internal use */

} L DAPURLDesc;

void ldap_free_urldesc(LDAPURLDesc *ludp);

DESCRIPTION
These routines support the use of LDAP URLs (Uniform Resource Locators) as detailed in RFC 4516.
LDAP URLs look like this:

ldap://hostport/dn[?attrs[?scope[?filter[?exts]]]]

where:
hostportis a host name with an optional ":portnumber"
dn is the search base
attrs is a comma separated list of attributes to request
scopeis one of these three strings:
base one sub (default=base)

filter is filter
exts are recognized set of LDAP and/or API extensions.

Example:
ldap://ldap.example.net/dc=example,dc=net?cn,sn?sub?(cn=*)

URLs that are wrapped in angle-brackets and/or preceded by "URL:" are also tolerated.Alternative LDAP
schemes such as ldaps:// and ldapi:// may be parsed using the below routines as well.

ldap_is_ldap_url() returns a non-zero value ifurl looks like an LDAP URL (as opposed to some other
kind of URL). It can be used as a quick check for an LDAP URL; theldap_url_parse() routine should be
used if a more thorough check is needed.

ldap_url_parse() breaks down an LDAP URL passed inurl into its component pieces. If successful, zero
is returned, an LDAP URL description is allocated, filled in, andludpp is set to point to it. If an error
occurs, a non-zero URL error code is returned.

ldap_free_urldesc()should be called to free an LDAP URL description that was obtained from a call to
ldap_url_parse().

OpenLDAP LDVERSION RELEASEDATE 1

LDAP_URL(3) LDAP_URL(3)

SEE ALSO
ldap(3)
RFC 4516<http://www.rfc-editor.org/rfc/rfc4516.txt>

ACKNOWLEDGEMENTS

OpenLDAP LDVERSION RELEASEDATE 2

LDAP_URL(3) LDAP_URL(3)

NAME
ldap_is_ldap_url, ldap_url_parse, ldap_free_urldesc − LDAP Uniform Resource Locator routines

LIBRARY
OpenLDAP LDAP (libldap, -lldap)

SYNOPSIS
#include <ldap.h>

int ldap_is_ldap_url(const char *url)

int ldap_url_parse(const char *url, LDAPURLDesc **ludpp)

typedef struct ldap_url_desc {
char * lud_scheme; /*URI scheme */
char * lud_host; /*LDAP host to contact */
int lud_port; /* port on host */
char * lud_dn; /*base for search */
char ** lud_attrs; /*list of attributes */
int lud_scope; /* a LDAP_SCOPE_... value */
char * lud_filter; /* LDAP search filter */
char ** lud_exts; /* LDAP extensions */
int lud_crit_exts; /* true if any extension is critical */
/* may contain additional fields for internal use */

} L DAPURLDesc;

void ldap_free_urldesc(LDAPURLDesc *ludp);

DESCRIPTION
These routines support the use of LDAP URLs (Uniform Resource Locators) as detailed in RFC 4516.
LDAP URLs look like this:

ldap://hostport/dn[?attrs[?scope[?filter[?exts]]]]

where:
hostportis a host name with an optional ":portnumber"
dn is the search base
attrs is a comma separated list of attributes to request
scopeis one of these three strings:
base one sub (default=base)

filter is filter
exts are recognized set of LDAP and/or API extensions.

Example:
ldap://ldap.example.net/dc=example,dc=net?cn,sn?sub?(cn=*)

URLs that are wrapped in angle-brackets and/or preceded by "URL:" are also tolerated.Alternative LDAP
schemes such as ldaps:// and ldapi:// may be parsed using the below routines as well.

ldap_is_ldap_url() returns a non-zero value ifurl looks like an LDAP URL (as opposed to some other
kind of URL). It can be used as a quick check for an LDAP URL; theldap_url_parse() routine should be
used if a more thorough check is needed.

ldap_url_parse() breaks down an LDAP URL passed inurl into its component pieces. If successful, zero
is returned, an LDAP URL description is allocated, filled in, andludpp is set to point to it. If an error
occurs, a non-zero URL error code is returned.

ldap_free_urldesc()should be called to free an LDAP URL description that was obtained from a call to
ldap_url_parse().

OpenLDAP 2.4.9 2008/05/07 1

LDAP_URL(3) LDAP_URL(3)

SEE ALSO
ldap(3)
RFC 4516<http://www.rfc-editor.org/rfc/rfc4516.txt>

ACKNOWLEDGEMENTS
OpenLDAP Software is developed and maintained by The OpenLDAP Project <http://www.openl-
dap.org/>.OpenLDAP Software is derived from University of Michigan LDAP 3.3 Release.

OpenLDAP 2.4.9 2008/05/07 2

LDEXP (3) NetBSD Library Functions Manual LDEXP (3)

NAME
ldexp — multiply floating-point number by integral power of 2

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
ldexp (double x , int exp);

float
ldexpf (float x , int exp);

DESCRIPTION
The ldexp () function multiplies a floating-point number by an integral power of 2.

RETURN VALUES
The ldexp () function returns the value ofx times 2 raised to the powerexp .

If the inputx is a NaN, infinity, or 0.0, it is returned unchanged.

If the result would cause an overflow, the global variableerrno is set toERANGEand infinity is returned,
with the same sign asx .

If the result would cause underflow to 0.0, the global variableerrno is set toERANGEand the value 0.0 is
returned.

SEE ALSO
frexp (3), math (3), modf (3)

STANDARDS
The ldexp () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 March 21, 2006 1

LDIV (3) NetBSD Library Functions Manual LDIV (3)

NAME
ldiv — return quotient and remainder from division

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

ldiv_t
ldiv (long int num , long int denom);

DESCRIPTION
The ldiv () function computes the valuenum/denom and returns the quotient and remainder in a structure
namedldiv_t that contains twolong integer members namedquot andrem.

SEE ALSO
div (3), lldiv (3), math (3), qdiv (3)

STANDARDS
The ldiv () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

LGAMMA (3) NetBSD Library Functions Manual LGAMMA (3)

NAME
lgamma, lgammaf , lgamma_r , lgammaf_r , gamma, gammaf, gamma_r, gammaf_r — log gamma
function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

extern int signgam ;

double
lgamma(double x);

float
lgammaf (float x);

double
lgamma_r (double x , int ∗sign);

float
lgammaf_r (float x , int ∗sign);

double
gamma(double x);

float
gammaf(float x);

double
gamma_r(double x , int ∗sign);

float
gammaf_r (float x , int ∗sign);

DESCRIPTION
lgamma(x) returns ln |Γ(x)| where

Γ(x) = ∫
0
∞ tx−1 e−t dt for x > 0 and

Γ(x) = π/(Γ(1−x) sin(πx)) for x < 1.

The external integersigngam returns the sign ofΓ(x).

lgamma_r () is a reentrant interface that performs identically tolgamma(), differing in that the sign ofΓ(x)
is stored in the location pointed to by thesign argument andsigngam is not modified.

IDIOSYNCRASIES
Do not use the expression “signgam ∗exp(lgamma(x)) ” to compute g :=Γ(x). Insteaduse a program
like this (in C):

lg = lgamma(x); g = signgam ∗exp(lg);

Only afterlgamma() has returned can signgam be correct.

RETURN VALUES
lgamma() returns appropriate values unless an argument is out of range.Overflow will occur for sufficiently
large positive values, and non-positive integers. Onthe VAX, the reserved operator is returned, anderrno is

NetBSD 3.0 December 3, 1992 1

LGAMMA (3) NetBSD Library Functions Manual LGAMMA (3)

set toERANGE.

SEE ALSO
math (3)

HISTORY
The lgamma function appeared in 4.3BSD.

NetBSD 3.0 December 3, 1992 2

lh_stats(3) OpenSSL lh_stats(3)

NAME
lh_stats, lh_node_stats, lh_node_usage_stats, lh_stats_bio, lh_node_stats_bio, lh_node_usage_stats_bio −
LHASH statistics

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/lhash.h>

void lh_stats(LHASH *table, FILE *out);
void lh_node_stats(LHASH *table, FILE *out);
void lh_node_usage_stats(LHASH *table, FILE *out);

void lh_stats_bio(LHASH *table, BIO *out);
void lh_node_stats_bio(LHASH *table, BIO *out);
void lh_node_usage_stats_bio(LHASH *table, BIO *out);

DESCRIPTION
The LHASH structure records statistics about most aspects of accessing the hash table. This is mostly a
legacy of Eric Young writing this library for the reasons of implementing what looked like a nice algorithm
rather than for a particular software product.

lh_stats()prints out statistics on the size of the hash table, how many entries are in it, and the number and
result of calls to the routines in this library.

lh_node_stats()prints the number of entries for each ’bucket’ in the hash table.

lh_node_usage_stats()prints out a short summary of the state of the hash table.It prints the ’load’ and the
’actual load’. The load is the average number of data items per ’bucket’ in the hash table. The ’actual load’
is the average number of items per ’bucket’, but only for buckets which contain entries. So the ’actual load’
is the average number of searches that will need to find an item in the hash table, while the ’load’ is the
av erage number that will be done to record a miss.

lh_stats_bio(), lh_node_stats_bio()and lh_node_usage_stats_bio()are the same as the above, except that
the output goes to aBIO .

RETURN VALUES
These functions do not return values.

SEE ALSO
openssl_bio(3), openssl_lhash(3)

HISTORY
These functions are available in all versions of SSLeay and OpenSSL.

This manpage is derived from the SSLeay documentation.

0.9.9-dev 2000-07-16 1

LIBARCHIVE (3) NetBSD Library Functions Manual LIBARCHIVE (3)

NAME
libarchive — functions for reading and writing streaming archives

LIBRARY
library “libarchive”

OVERVIEW
The libarchive library provides a flexible interface for reading and writing streaming archive files such
as tar and cpio.The library is inherently stream-oriented; readers serially iterate through the archive, writers
serially add things to the archive. In particular, note that there is no built-in support for random access nor
for in-place modification.

When reading an archive, the library automatically detects the format and the compression. The library cur-
rently has read support for:
• old-style tar archives,
• most variants of the POSIX “ustar” format,
• the POSIX “pax interchange” format,
• GNU-format tar archives,
• most common cpio archive formats,
• ISO9660 CD images (with or without RockRidge extensions),
• Zip archives.
The library automatically detects archives compressed withgzip (1), bzip2 (1), or compress (1) and
decompresses them transparently.

When writing an archive, you can specify the compression to be used and the format to use. The library can
write
• POSIX-standard “ustar” archives,
• POSIX “pax interchange format” archives,
• POSIX octet-oriented cpio archives,
• two different variants of shar archives.
Pax interchange format is an extension of the tar archive format that eliminates essentially all of the limita-
tions of historic tar formats in a standard fashion that is supported by POSIX-compliantpax (1) implementa-
tions on many systems as well as several newer implementations oftar (1). Notethat the default write for-
mat will suppress the pax extended attributes for most entries; explicitly requesting pax format will enable
those attributes for all entries.

The read and write APIs are accessed through thearchive_read_XXX () functions and the
archive_write_XXX () functions, respectively, and either can be used independently of the other.

The rest of this manual page provides an overview of the library operation. More detailed information can be
found in the individual manual pages for each API or utility function.

READING AN ARCHIVE
To read an archive, you must first obtain an initializedstruct archive object fromarchive_read_new ().
You can then modify this object for the desired operations with the variousarchive_read_set_XXX ()
and archive_read_support_XXX () functions. In particular, you will need to invoke appropriate
archive_read_support_XXX () functions to enable the corresponding compression and format support.
Note that these latter functions perform two distinct operations: they cause the corresponding support code to
be linked into your program, and they enable the corresponding auto-detect code. Unless you have specific
constraints, you will generally want to invoke archive_read_support_compression_all () and
archive_read_support_format_all () to enable auto-detect for all formats and compression types
currently supported by the library.

NetBSD 3.0 August 19, 2006 1

LIBARCHIVE (3) NetBSD Library Functions Manual LIBARCHIVE (3)

Once you have prepared thestruct archive object, you callarchive_read_open () to actually open the ar-
chive and prepare it for reading.There are several variants of this function; the most basic expects you to
provide pointers to several functions that can provide blocks of bytes from the archive. There are con-
venience forms that allow you to specify a filename, file descriptor, FILE ∗ object, or a block of memory
from which to read the archive data. Notethat the core library makes no assumptions about the size of the
blocks read; callback functions are free to read whatever block size is most appropriate for the medium.

Each archive entry consists of a header followed by a certain amount of data.You can obtain the next header
with archive_read_next_header (), which returns a pointer to anstruct archive_entry structure with
information about the current archive element. Ifthe entry is a regular file, then the header will be followed
by the file data.You can usearchive_read_data () (which works much like the read (2) system call)
to read this data from the archive. You may prefer to use the higher-level archive_read_data_skip (),
which reads and discards the data for this entry, archive_read_data_to_buffer (), which reads the
data into an in-memory buffer, archive_read_data_to_file (), which copies the data to the provided
file descriptor, or archive_read_extract (), which recreates the specified entry on disk and copies data
from the archive. In particular, note thatarchive_read_extract () uses thestruct archive_entrystructure
that you provide it, which may differ from the entry just read from the archive. In particular, many applica-
tions will want to override the pathname, file permissions, or ownership.

Once you have finished reading data from the archive, you should callarchive_read_close () to close
the archive, then callarchive_read_finish () to release all resources, including all memory allocated
by the library.

Thearchive_read (3) manual page provides more detailed calling information for this API.

WRITING AN ARCHIVE
You use a similar process to write an archive. The archive_write_new () function creates an archive
object useful for writing, the variousarchive_write_set_XXX () functions are used to set parameters
for writing the archive, and archive_write_open () completes the setup and opens the archive for writ-
ing.

Individual archive entries are written in a three-step process: You first initialize astruct archive_entrystructure
with information about the new entry. At a minimum, you should set the pathname of the entry and provide
a struct statwith a valid st_modefield, which specifies the type of object andst_sizefield, which specifies
the size of the data portion of the object.The archive_write_header () function actually writes the
header data to the archive. You can then usearchive_write_data () to write the actual data.

After all entries have been written, use thearchive_write_finish () function to release all resources.

Thearchive_write (3) manual page provides more detailed calling information for this API.

DESCRIPTION
Detailed descriptions of each function are provided by the corresponding manual pages.

All of the functions utilize an opaquestruct archive datatype that provides access to the archive contents.

Thestruct archive_entrystructure contains a complete description of a single archive entry. It uses an opaque
interface that is fully documented inarchive_entry (3).

Users familiar with historic formats should be aware that the newer variants have eliminated most restrictions
on the length of textual fields. Clients should not assume that filenames, link names, user names, or group
names are limited in length. In particular, pax interchange format can easily accommodate pathnames in
arbitrary character sets that exceedPA TH_MAX.

NetBSD 3.0 August 19, 2006 2

LIBARCHIVE (3) NetBSD Library Functions Manual LIBARCHIVE (3)

RETURN VALUES
Most functions return zero on success, non-zero on error. The return value indicates the general severity of
the error, ranging fromARCHIVE_WARN, which indicates a minor problem that should probably be reported
to the user, to ARCHIVE_FATAL, which indicates a serious problem that will prevent any further operations
on this archive. On error, thearchive_errno () function can be used to retrieve a numeric error code (see
errno (2)). Thearchive_error_string () returns a textual error message suitable for display.

archive_read_new () andarchive_write_new () return pointers to an allocated and initializedstruct
archive object.

archive_read_data () andarchive_write_data () return a count of the number of bytes actually
read or written.A value of zero indicates the end of the data for this entry. A negative value indicates an
error, in which case thearchive_errno () andarchive_error_string () functions can be used to
obtain more information.

ENVIRONMENT
There are character set conversions within thearchive_entry (3) functions that are impacted by the cur-
rently-selected locale.

SEE ALSO
tar (1), archive_entry (3), archive_read (3), archive_util (3), archive_write (3), tar (5)

HISTORY
The libarchive library first appeared inFreeBSD5.3.

AUTHORS
The libarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

BUGS
Some archive formats support information that is not supported bystruct archive_entry. Such information can-
not be fully archived or restored using this library. This includes, for example, comments, character sets, or
the arbitrary key/value pairs that can appear in pax interchange format archives.

Conversely, of course, not all of the information that can be stored in anstruct archive_entryis supported by all
formats. For example, cpio formats do not support nanosecond timestamps; old tar formats do not support
large device numbers.

NetBSD 3.0 August 19, 2006 3

LIBARCHIVE (3) NetBSD Library Functions Manual LIBARCHIVE (3)

NAME
libarchive_internals — description of libarchive internal interfaces

OVERVIEW
The libarchive library provides a flexible interface for reading and writing streaming archive files such
as tar and cpio.Internally, it follows a modular layered design that should make it easy to add new archive
and compression formats.

GENERAL ARCHITECTURE
Externally, libarchive exposes most operations through an opaque, object-style interface. The
archive_entry (1) objects store information about a single filesystem object.The rest of the library pro-
vides facilities to writearchive_entry (1) objects to archive files, read them from archive files, and write
them to disk. (There are plans to add a facility to readarchive_entry (1) objects from disk as well.)

The read and write APIs each have four layers: a public API layer, a format layer that understands the ar-
chive file format, a compression layer, and an I/O layer. The I/O layer is completely exposed to clients who
can replace it entirely with their own functions.

In order to provide as much consistency as possible for clients, some public functions are virtualized.Even-
tually, it should be possible for clients to open an archive or disk writer, and then use a single set of code to
select and write entries, regardless of the target.

READ ARCHITECTURE
From the outside, clients use thearchive_read (3) API to manipulate anarchive object to read entries
and bodies from an archive stream. Internally, the archive object is cast to anarchive_read object,
which holds all read-specific data. The API has four layers: The lowest layer is the I/O layer. This layer can
be overridden by clients, but most clients use the packaged I/O callbacks provided, for example, by
archive_read_open_memory (3), andarchive_read_open_fd (3). Thecompression layer calls
the I/O layer to read bytes and decompresses them for the format layer. The format layer unpacks a stream
of uncompressed bytes and createsarchive_entry objects from the incoming data. The API layer tracks
overall state (for example, it prevents clients from reading data before reading a header) and invokes the for-
mat and compression layer operations through registered function pointers.In particular, the API layer
drives the format-detection process: When opening the archive, it reads an initial block of data and offers it
to each registered compression handler. The one with the highest bid is initialized with the first block.Simi-
larly, the format handlers are polled to see which handler is the best for each archive. (Prior to 2.4.0, the for-
mat bidders were invoked for each entry, but this design hindered error recovery.)

I/O Layer and Client Callbacks
The read API goes to some lengths to be nice to clients. As a result, there are few restrictions on the behav-
ior of the client callbacks.

The client read callback is expected to provide a block of data on each call.A zero-length return does indi-
cate end of file, but otherwise blocks may be as small as one byte or as large as the entire file. In particular,
blocks may be of different sizes.

The client skip callback returns the number of bytes actually skipped, which may be much smaller than the
skip requested. The only requirement is that the skip not be larger. In particular, clients are allowed to return
zero for any skip that they don’t want to handle. The skip callback must never be inv oked with a negative
value.

Keep in mind that not all clients are reading from disk: clients reading from networks may provide different-
sized blocks on every request and cannot skip at all; advanced clients may usemmap(2) to read the entire file
into memory at once and return the entire file to libarchive as a single block; other clients may begin asyn-
chronous I/O operations for the next block on each request.

NetBSD 3.0 April 16, 2007 1

LIBARCHIVE (3) NetBSD Library Functions Manual LIBARCHIVE (3)

Decompresssion Layer
The decompression layer not only handles decompression, it also buffers data so that the format handlers see
a much nicer I/O model.The decompression API is a two stage peek/consume model.A read_ahead request
specifies a minimum read amount; the decompression layer must provide a pointer to at least that much data.
If more data is immediately available, it should return more: the format layer handles bulk data reads by ask-
ing for a minimum of one byte and then copying as much data as is available.

A subsequent call to theconsume () function advances the read pointer. Note that data returned from a
read_ahead () call is guaranteed to remain in place until the next call toread_ahead (). Intervening
calls toconsume () should not cause the data to move.

Skip requests must always be handled exactly. Decompression handlers that cannot seek forward should not
register a skip handler; the API layer fills in a generic skip handler that reads and discards data.

A decompression handler has a specific lifecycle:
Registration/Configuration

When the client invokes the public support function, the decompression handler invokes the inter-
nal __archive_read_register_compression () function to provide bid and initialization
functions. This function returns NULL on error or else a pointer to astruct
decompressor_t . This structure contains avoid ∗ configslot that can be used for storing any
customization information.

Bid The bid function is invoked with a pointer and size of a block of data.The decompressor can
access its config data through thedecompressorelement of thearchive_read object. Thebid
function is otherwise stateless. In particular, it must not perform any I/O operations.

The value returned by the bid function indicates its suitability for handling this data stream.A bid
of zero will ensure that this decompressor is never inv oked. Returnzero if magic number checks
fail. Otherwise,your initial implementation should return the number of bits actually checked.
For example, if you verify two full bytes and three bits of another byte, bid 19.Note that the initial
block may be very short; be careful to only inspect the data you are given. (Thecurrent decom-
pressors require two bytes for correct bidding.)

Initialize The winning bidder will have its init function called.This function should initialize the remaining
slots of the struct decompressor_t object pointed to by thedecompressorelement of the
archive_readobject. Inparticular, it should allocate any working data it needs in thedata slot of
that structure.The init function is called with the block of data that was used for tasting. At this
point, the decompressor is responsible for all I/O requests to the client callbacks.The decompres-
sor is free to read more data as and when necessary.

Satisfy I/O requests
The format handler will invoke theread_ahead, consume, andskipfunctions as needed.

Finish The finish method is called only once when the archive is closed. Itshould release anything stored
in thedataandconfigslots of thedecompressorobject. Itshould not invoke the client close call-
back.

Format Layer
The read formats have a similar lifecycle to the decompression handlers:
Registration

Allocate your private data and initialize your pointers.
Bid Formats bid by invoking the read_ahead () decompression method but not calling the

consume () method. This allows each bidder to look ahead in the input stream.Bidders should
not look further ahead than necessary, as long look aheads put pressure on the decompression layer
to buffer lots of data. Most formats only require a few hundred bytes of look ahead; look aheads of
a few kilobytes are reasonable.(The ISO9660 reader sometimes looks ahead by 48k, which
should be considered an upper limit.)

NetBSD 3.0 April 16, 2007 2

LIBARCHIVE (3) NetBSD Library Functions Manual LIBARCHIVE (3)

Read header
The header read is usually the most complex part of any format. Thereare a few strategies worth
mentioning: For formats such as tar or cpio, reading and parsing the header is straightforward since
headers alternate with data.For formats that store all header data at the beginning of the file, the
first header read request may have to read all headers into memory and store that data, sorted by
the location of the file data.Subsequent header read requests will skip forward to the beginning of
the file data and return the corresponding header.

Read Data
The read data interface supports sparse files; this requires that each call return a block of data spec-
ifying the file offset and size.This may require you to carefully track the location so that you can
return accurate file offsets for each read. Remember that the decompressor will return as much
data as it has.Generally, you will want to request one byte, examine the return value to see how
much data is available, and possibly trim that to the amount you can use.You should invoke con-
sume for each block just before you return it.

Skip All Data
The skip data call should skip over all file data and trailing padding.This is called automatically
by the API layer just before each header read.It is also called in response to the client calling the
publicdata_skip () function.

Cleanup On cleanup, the format should release all of its allocated memory.

API Layer
XXX to do XXX

WRITE ARCHITECTURE
The write API has a similar set of four layers: an API layer, a format layer, a compression layer, and an I/O
layer. The registration here is much simpler because only one format and one compression can be registered
at a time.

I/O Layer and Client Callbacks
XXX To be written XXX

Compression Layer
XXX To be written XXX

Format Layer
XXX To be written XXX

API Layer
XXX To be written XXX

WRITE_DISK ARCHITECTURE
The write_disk API is intended to look just like the write API to clients.Since it does not handle multiple
formats or compression, it is not layered internally.

GENERAL SERVICES
The archive_read , archive_write , and archive_write_disk objects all contain an initial
archive object which provides common support for a set of standard services. (Recall that ANSI/ISO C90
guarantees that you can cast freely between a pointer to a structure and a pointer to the first element of that
structure.) Thearchive object has a magic value that indicates which API this object is associated with,
slots for storing error information, and function pointers for virtualized API functions.

NetBSD 3.0 April 16, 2007 3

LIBARCHIVE (3) NetBSD Library Functions Manual LIBARCHIVE (3)

MISCELLANEOUS NO TES
Connecting existing archiving libraries into libarchive is generally quite difficult. In particular, many exist-
ing libraries strongly assume that you are reading from a file; they seek forwards and backwards as necessary
to locate various pieces of information. In contrast, libarchive nev er seeks backwards in its input, which
sometimes requires very different approaches.

For example, libarchive’s ISO9660 support operates very differently from most ISO9660 readers.The
libarchive support utilizes a work-queue design that keeps a list of known entries sorted by their location in
the input. Whenever libarchive’s ISO9660 implementation is asked for the next header, checks this list to
find the next item on the disk. Directories are parsed when they are encountered and new items are added to
the list. This design relies heavily on the ISO9660 image being optimized so that directories always occur
earlier on the disk than the files they describe.

Depending on the specific format, such approaches may not be possible. The ZIP format specification, for
example, allows archivers to store key information only at the end of the file. In theory, it is possible to cre-
ate ZIP archives that cannot be read without seeking.Fortunately, such archives are very rare, and libarchive
can read most ZIP archives, though it cannot always extract as much information as a dedicated ZIP pro-
gram.

SEE ALSO
archive (3), archive_entry (3), archive_read (3), archive_write (3),
archive_write_disk (3)

HISTORY
The libarchive library first appeared inFreeBSD5.3.

AUTHORS
The libarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

BUGS

NetBSD 3.0 April 16, 2007 4

efence(3) efence(3)

NAME
efence − Electric Fence Malloc Debugger

SYNOPSIS
#include <stdlib.h>

void * malloc (size_t size);

void free (void *ptr);

void * realloc (void *ptr , size_t size);

void * calloc (size_t nelem, size_t elsize);

void * memalign (size_t alignment, size_t size);

void * valloc (size_t size);

extern int EF_ALIGNMENT;

extern int EF_PROTECT_BELOW;

extern int EF_PROTECT_FREE;

DESCRIPTION
Electric Fencehelps you detect two common programming bugs: software that overruns the boundaries of
a malloc() memory allocation, and software that touches a memory allocation that has been released by
free(). Unlike other malloc() debuggers, Electric Fence will detectread accesses as well as writes, and it
will pinpoint the exact instruction that causes an error. It has been in use at Pixar since 1987, and at many
other sites for years.

Electric Fence uses the virtual memory hardware of your computer to place an inaccessible memory page
immediately after (or before, at the user’s option) each memory allocation. When software reads or writes
this inaccessible page, the hardware issues a segmentation fault, stopping the program at the offending
instruction. It is then trivial to find the erroneous statement using your favorite debugger. In a similar man-
ner, memory that has been released by free() is made inaccessible, and any code that touches it will get a
segmentation fault.

Simply linking your application with libefence.a will allow you to detect most, but not all, malloc buffer
overruns and accesses of free memory. If you want to be reasonably sure that you’ve foundall bugs of this
type, you’ll have to read and understand the rest of this man page.

USAGE
Link your program with the librarylibefence.a . Make sure you arenot linking with -lmalloc, -lmallocde-
bug, or with other malloc-debugger or malloc-enhancer libraries.You can only use one at a time. If your
system administrator has installed Electric Fence for public use, you’ll be able to use the-lefenceargument
to the linker, otherwise you’ll have to put the path-name forlibefence.a in the linker’s command line.
Some systems will require special arguments to the linker to assure that you are using the Electric Fence
malloc() and not the one from your C library. On AIX systems, you may have to use the flags
-bnso -bnodelcsect -bI:/lib/syscalls.exp
On Sun systems running SunOS 4.X, you’ll probably have to use-Bstatic.

Run your programusing a debugger. It’s easier to work this way than to create acore file and post-mortem
debug it. Electric Fence can createhugecore files, and some operating systems will thus take minutes sim-
ply to dump core! Some operating systems will not create usable core files from programs that are linked
with Electric Fence. If your program has one of the errors detected by Electric Fence, it will get a segmen-
tation fault (SIGSEGV) at the offending instruction. Use the debugger to locate the erroneous statement,
and repair it.

GLOBAL AND ENVIRONMENT VARIABLES
Electric Fence has four configuration switches that can be enabled via the shell environment, or by setting
the value of global integer variables using a debugger. These switches change what bugs Electric Fence will
detect, so it’s important that you know how to use them.

27-April-1993 1

efence(3) efence(3)

EF_ALIGNMENT
This is an integer that specifies the alignment for any memory allocations that will be returned by
malloc(), calloc(), and realloc().The value is specified in bytes, thus a value of 4 will cause mem-
ory to be aligned to 32-bit boundaries unless your system doesn’t hav e a 8-bit characters.
EF_ALIGNMENT is set to sizeof(int) by default, since that is generally the word-size of your
CPU. If your program requires that allocations be aligned to 64-bit boundaries and you have a
32-bit int you’ll have to set this value to 8. This is the case when compiling with the-mips2 flag
on MIPS-based systems such as those from SGI.The memory allocation that is returned by Elec-
tric Fence malloc() is aligned using the value in EF_ALIGNMENT, and its size the multiple of
that valuethat is greater than or equal to the requested size.For this reason, you will sometimes
want to set EF_ALIGNMENT to 0 (no alignment), so that you can detect overruns of less than
your CPU’s word size. Be sure to read the sectionWORD-ALIGNMENT AND OVERRUN DETEC-
TION in this manual page before you try this.To change this value, set EF_ALIGNMENT in the
shell environment to an integer value, or assign to the global integer variable EF_ALIGNMENT
using a debugger.

EF_PROTECT_BELOW
Electric Fence usually places an inaccessible page immediately after each memory allocation, so
that software that runs past the end of the allocation will be detected. Setting EF_PRO-
TECT_BELOW to 1 causes Electric Fence to place the inaccessible pagebeforethe allocation in
the address space, so that under-runs will be detected instead of over-runs. WhenEF_PRO-
TECT_BELOW is set, the EF_ALIGNMENT parameter is ignored.All allocations will be
aligned to virtual-memory-page boundaries, and their size will be the exact size that was
requested. To change this value, set EF_PROTECT_BELOW in the shell environment to an inte-
ger value, or assign to the global integer variable EF_PROTECT_BELOW using a debugger.

EF_PROTECT_FREE
Electric Fence usually returns free memory to a pool from which it may be re-allocated. If you
suspect that a program may be touching free memory, set EF_PROTECT_FREE to 1. This will
cause Electric Fence to never re-allocate memory once it has been freed, so that any access to free
memory will be detected. Some programs will use tremendous amounts of memory when this
parameter is set.To change this value, set EF_PROTECT_FREE in the shell environment to an
integer value, or assign to the global integer variable EF_PROTECT_FREE using a debugger.

EF_ALLOW_MALLOC_0
By default, Electric Fence traps calls to malloc() with a size of zero, because they are often the
result of a software bug. If EF_ALLOW_MALLOC_0 is non-zero, the software will not trap calls
to malloc() with a size of zero.To change this value, set EF_ALLOC_MALLOC_0 in the shell
environment to an integer value, or assign to the global integer variable EF_ALLOC_MALLOC_0
using a debugger.

WORD-ALIGNMENT AND OVERRUN DETECTION
There is a conflict between the alignment restrictions that malloc() operates under and the debugging strat-
egy used by Electric Fence. When detecting overruns, Electric Fence malloc() allocates two or more virtual
memory pages for each allocation. The last page is made inaccessible in such a way that any read, write, or
execute access will cause a segmentation fault. Then,Electric Fence malloc() will return an address such
that the first byte after the end of the allocation is on the inaccessible page.Thus, any overrun of the alloca-
tion will cause a segmentation fault.

It follows that the address returned by malloc() is the address of the inaccessible page minus the size of the
memory allocation.Unfortunately, malloc() is required to returnword-aligned allocations, since many
CPUs can only access a word when its address is aligned. The conflict happens when software makes a
memory allocation using a size that is not a multiple of the word size, and expects to do word accesses to
that allocation. The location of the inaccessible page is fixed by hardware at a word-aligned address. If
Electric Fence malloc() is to return an aligned address, it must increase the size of the allocation to a multi-
ple of the word size. In addition, the functions memalign() and valloc() must honor explicit specifications
on the alignment of the memory allocation, and this, as well can only be implemented by increasing the

27-April-1993 2

efence(3) efence(3)

size of the allocation. Thus, there will be situations in which the end of a memory allocation contains some
padding space, and accesses of that padding space will not be detected, even if they are overruns.

Electric Fence provides the variable EF_ALIGNMENT so that the user can control the default alignment
used by malloc(), calloc(), and realloc().To debug overruns as small as a single byte, you can set
EF_ALIGNMENT to zero. This will result in Electric Fence malloc() returning unaligned addresses for
allocations with sizes that are not a multiple of the word size. This is not a problem in most cases, because
compilers must pad the size of objects so that alignment restrictions are honored when storing those objects
in arrays. The problem surfaces when software allocates odd-sized buffers for objects that must be word-
aligned. One case of this is software that allocates a buffer to contain a structure and a string, and the string
has an odd size (this example was in a popular TIFF library). If word references are made to un-aligned
buffers, you will see a bus error (SIGBUS) instead of a segmentation fault. The only way to fix this is to re-
write the offending code to make byte references or not make odd-sized allocations, or to set EF_ALIGN-
MENT to the word size.

Another example of software incompatible with EF_ALIGNMENT < word-size is the strcmp() function
and other string functions on SunOS (and probably Solaris), which make word-sized accesses to character
strings, and may attempt to access up to three bytes beyond the end of a string. These result in a segmenta-
tion fault (SIGSEGV). The only way around this is to use versions of the string functions that perform byte
references instead of word references.

INSTRUCTIONS FOR DEBUGGING YOUR PROGRAM
1. Link with libefence.a as explained above.

2. Runyour program in a debugger and fix any overruns or accesses to free memory.

3. Quitthe debugger.

4. SetEF_PROTECT_BELOW = 1 in the shell environment.

5. Repeatstep 2, this time repairing underruns if they occur.

6. Quitthe debugger.

7. Readthe restrictions in the section onWORD-ALIGNMENT AND OVERRUN DETECTION.See
if you can set EF_ALIGNMENT to 0 and repeat step 2. Sometimes this will be too much work, or
there will be problems with library routines for which you don’t hav ethe source, that will prevent
you from doing this.

MEMOR Y USAGE AND EXECUTION SPEED
Since Electric Fence uses at least two virtual memory pages for each of its allocations, it’s a terrible mem-
ory hog. I’ve sometimes found it necessary to add a swap file using swapon(8) so that the system would
have enough virtual memory to debug my program. Also, the way we manipulate memory results in various
cache and translation buffer entries being flushed with each call to malloc or free. The end result is that
your program will be much slower and use more resources while you are debugging it with Electric Fence.

Don’t leave libefence.a linked into production software! Use it only for debugging.

PORTING
Electric Fence is written for ANSI C. You should be able to port it with simple changes to the Makefile and
to page.c, which contains the memory management primitives . Many POSIX platforms will require only a
re-compile. Theoperating system facilities required to port Electric Fence are:

A way to allocate memory pages
A way to make selected pages inaccessible.
A way to make the pages accessible again.
A way to detect when a program touches an inaccessible page.
A way to print messages.

Please e-mail me a copy of any changes you have to make, so that I can merge them into the distribution.

27-April-1993 3

efence(3) efence(3)

AUTHOR
Bruce Perens

WARNINGS
I hav etried to do as good a job as I can on this software, but I doubt that it is even theoretically possible to
make it bug-free. Thissoftware has no warranty. It will not detect some bugs that you might expect it to
detect, and will indicate that some non-bugs are bugs. BrucePerens and/or Pixar will not be liable to any
claims resulting from the use of this software or the ideas within it.The entire responsibility for its use
must be assumed by the user. If you use it and it results in loss of life and/or property, tough. If it leads you
on a wild goose chase and you waste two weeks debugging something, too bad. If you can’t deal with the
above, please don’t use the software! I’ve written this in an attempt to help other people, not to get myself
sued or prosecuted.

LICENSE
Copyright 1987-1995 Bruce Perens. All rights reserved.
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License, Version 2, as published by the Free Software Foundation. A copy of this license is distrib-
uted with this software in the file "COPYING".

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Read the file "COPYING" for more details.

CONTACTING THE AUTHOR
Bruce Perens
c/o Pixar
1001 West Cutting Blvd., Suite 200
Richmond, CA 94804

Telephone: 510-215-3502
Fax: 510-236-0388
Internet: Bruce@Pixar.com

FILES
/dev/zero: Source of memory pages (via mmap(2)).

SEE ALSO
malloc(3), mmap(2), mprotect(2), swapon(8)

DIAGNOSTICS
Segmentation Fault: Examine the offending statement for violation of the boundaries of a memory alloca-
tion.
Bus Error: See the section onWORD-ALIGNMENT AND OVERRUN DETECTION.in this manual page.

BUGS
My explanation of the alignment issue could be improved.

Some Sun systems running SunOS 4.1 are reported to signal an access to a protected page withSIGBUS
rather thanSIGSEGV, I suspect this is an undocumented feature of a particular Sun hardware version, not
just the operating system. On these systems, eftest will fail with a bus error until you modify the Makefile
to definePA GE_PROTECTION_VIOLATED_SIGNAL asSIGBUS.

There are, without doubt, other bugs and porting issues. Please contact me via e-mail if you have any bug
reports, ideas, etc.

WHAT’S BETTER
PURIFY, from Purify Systems, does a much better job than Electric Fence, and does much more. It’s avail-
able at this writing on SPARC and HP. I’m not affiliated with Purify, I just think it’s a wonderful product
and you should check it out.

27-April-1993 4

MAGIC (3) NetBSD Library Functions Manual MAGIC (3)

NAME
magic_open , magic_close , magic_error , magic_file , magic_buffer , magic_setflags ,
magic_check , magic_compile , magic_load — Magic number recognition library.

LIBRARY
Magic Number Recognition Library (libmagic, −lmagic)

SYNOPSIS
#include <magic.h>

magic_t
magic_open (int flags);

void
magic_close (magic_t cookie);

const char ∗
magic_error (magic_t cookie);

int
magic_errno (magic_t cookie);

const char ∗
magic_file (magic_t cookie, const char ∗filename);

const char ∗
magic_buffer (magic_t cookie, const void ∗buffer, size_t length);

int
magic_setflags (magic_t cookie, int flags);

int
magic_check (magic_t cookie, const char ∗filename);

int
magic_compile (magic_t cookie, const char ∗filename);

int
magic_load (magic_t cookie, const char ∗filename);

DESCRIPTION
These functions operate on the magic database file which is described inmagic (5).

The functionmagic_open () creates a magic cookie pointer and returns it. It returns NULL if there was an
error allocating the magic cookie. Theflags argument specifies how the other magic functions should
behave:

MAGIC_NONE No special handling.

MAGIC_DEBUG Print debugging messages to stderr.

MAGIC_SYMLINK If the file queried is a symlink, follow it.

MAGIC_COMPRESSIf the file is compressed, unpack it and look at the contents.

MAGIC_DEVICES If the file is a block or character special device, then open the device and try to look in
its contents.

NetBSD 3.0 November 15, 2006 1

MAGIC (3) NetBSD Library Functions Manual MAGIC (3)

MAGIC_MIME Return a mime string, instead of a textual description.

MAGIC_CONTINUEReturn all matches, not just the first.

MAGIC_CHECK Check the magic database for consistency and print warnings to stderr.

MAGIC_PRESERVE_ATIME
On systems that supportutime (2) orutimes (2), attempt to preserve the access time
of files analyzed.

MAGIC_RAW Don’t translate unprintable characters to a \ooo octal representation.

MAGIC_ERROR Treat operating system errors while trying to open files and follow symlinks as real
errors, instead of printing them in the magic buffer.

MAGIC_NO_CHECK_APPTYPE
Check forEMXapplication type (only on EMX).

MAGIC_NO_CHECK_ASCII
Check for various types of ascii files.

MAGIC_NO_CHECK_COMPRESS
Don’t look for, or inside compressed files.

MAGIC_NO_CHECK_ELF
Don’t print elf details.

MAGIC_NO_CHECK_FORTRAN
Don’t look for fortran sequences inside ascii files.

MAGIC_NO_CHECK_SOFT
Don’t consult magic files.

MAGIC_NO_CHECK_TAR
Don’t examine tar files.

MAGIC_NO_CHECK_TOKENS
Don’t look for known tokens inside ascii files.

MAGIC_NO_CHECK_TROFF
Don’t look for troff sequences inside ascii files.

Themagic_close () function closes themagic (5) database and deallocates any resources used.

Themagic_error () function returns a textual explanation of the last error, or NULL if there was no error.

The magic_errno () function returns the last operating system error number(errno (2)) that was
encountered by a system call.

The magic_file () function returns a textual description of the contents of thefilename argument, or
NULL if an error occurred. If thefilename is NULL, then stdin is used.

Themagic_buffer () function returns a textual description of the contents of thebuffer argument with
length bytes size.

Themagic_setflags () function, sets theflags described above.

The magic_check () function can be used to check the validity of entries in the colon separated database
files passed in asfilename , or NULL for the default database. It returns 0 on success and -1 on failure.

Themagic_compile () function can be used to compile the the colon separated list of database files passed
in asfilename , or NULL for the default database. It returns 0 on success and -1 on failure. The compiled
files created are named from thebasename (1) of each file argument with ".mgc" appended to it.

NetBSD 3.0 November 15, 2006 2

MAGIC (3) NetBSD Library Functions Manual MAGIC (3)

Themagic_load () function must be used to load the the colon separated list of database files passed in as
filename , or NULL for the default database file before any magic queries can performed.

The default database file is named by the MAGIC environment variable. Ifthat variable is not set, the default
database file name is /usr/share/misc/magic.

magic_load () adds ".mime" and/or ".mgc" to the database filename as appropriate.

RETURN VALUES
The functionmagic_open () returns a magic cookie on success and NULL on failure setting errno to an
appropriate value. It will set errno to EINVAL if an unsupported value for flags was given. The
magic_load (), magic_compile (), andmagic_check () functions return 0 on success and -1 on fail-
ure. Themagic_file (), andmagic_buffer () functions return a string on success and NULL on fail-
ure. Themagic_error () function returns a textual description of the errors of the above functions, or
NULL if there was no error. Finally, magic_setflags () returns -1 on systems that don’t support
utime (2), orutimes (2) whenMAGIC_PRESERVE_ATIMEis set.

FILES
/usr/share/misc/magic.mime The non-compiled default magic mime database.
/usr/share/misc/magic.mime.mgc The compiled default magic mime database.
/usr/share/misc/magic The non-compiled default magic database.
/usr/share/misc/magic.mgc The compiled default magic database.

SEE ALSO
file (1), magic (5)

AUTHORS
Måns Rullgård Initial libmagic implementation, and configuration.Christos Zoulas API cleanup, error code
and allocation handling.

NetBSD 3.0 November 15, 2006 3

LIBRADIUS (3) NetBSD Library Functions Manual LIBRADIUS (3)

NAME
libradius — RADIUS client library

SYNOPSIS
#include <radlib.h>

struct rad_handle ∗
rad_acct_open (void);

int
rad_add_server (struct rad_handle ∗h , const char ∗host , int port ,

const char ∗secret , int timeout , int max_tries);

struct rad_handle ∗
rad_auth_open (void);

void
rad_close (struct rad_handle ∗h);

int
rad_config (struct rad_handle ∗h , const char ∗file);

int
rad_continue_send_request (struct rad_handle ∗h , int selected , int ∗fd ,

struct timeval ∗tv);

int
rad_create_request (struct rad_handle ∗h , int code);

struct in_addr
rad_cvt_addr (const void ∗data);

uint32_t
rad_cvt_int (const void ∗data);

char ∗
rad_cvt_string (const void ∗data , size_t len);

int
rad_get_attr (struct rad_handle ∗h , const void ∗∗data , size_t ∗len);

int
rad_get_vendor_attr (uint32_t ∗vendor , const void ∗∗data , size_t ∗len);

int
rad_init_send_request (struct rad_handle ∗h , int ∗fd , struct timeval ∗tv);

int
rad_put_addr (struct rad_handle ∗h , int type , struct in_addr addr);

int
rad_put_attr (struct rad_handle ∗h , int type , const void ∗data , size_t len);

int
rad_put_int (struct rad_handle ∗h , int type , uint32_t value);

int
rad_put_string (struct rad_handle ∗h , int type , const char ∗str);

NetBSD 3.0 April 27, 2004 1

LIBRADIUS (3) NetBSD Library Functions Manual LIBRADIUS (3)

int
rad_put_message_authentic (struct rad_handle ∗h);

int
rad_put_vendor_addr (struct rad_handle ∗h , int vendor , int type ,

struct in_addr addr);

int
rad_put_vendor_attr (struct rad_handle ∗h , int vendor , int type ,

const void ∗data , size_t len);

int
rad_put_vendor_int (struct rad_handle ∗h , int vendor , int type ,

uint32_t value);

int
rad_put_vendor_string (struct rad_handle ∗h , int vendor , int type ,

const char ∗str);

ssize_t
rad_request_authenticator (struct rad_handle ∗h , char ∗buf , size_t len);

int
rad_send_request (struct rad_handle ∗h);

const char ∗
rad_server_secret (struct rad_handle ∗h);

u_char ∗
rad_demangle (struct rad_handle ∗h , const void ∗mangled , size_t mlen);

u_char ∗
rad_demangle_mppe_key (struct rad_handle ∗h , const void ∗mangled ,

size_t mlen , size_t ∗len);

const char ∗
rad_strerror (struct rad_handle ∗h);

DESCRIPTION
The libradius library implements the client side of the Remote Authentication Dial In User Service
(RADIUS). RADIUS, defined in RFCs 2865 and 2866, allows clients to perform authentication and
accounting by means of network requests to remote servers.

Initialization
To use the library, an application must first callrad_auth_open () or rad_acct_open () to obtain a
struct rad_handle ∗, which provides the context for subsequent operations.The former function is
used for RADIUS authentication and the latter is used for RADIUS accounting.Calls to
rad_auth_open () and rad_acct_open () always succeed unless insufficient virtual memory is avail-
able. Ifthe necessary memory cannot be allocated, the functions returnNULL. For compatibility with earlier
versions of this library,rad_open () is provided as a synonym forrad_auth_open ().

Before issuing any RADIUS requests, the library must be made aware of the servers it can contact.The easi-
est way to configure the library is to callrad_config (). rad_config () causes the library to read a con-
figuration file whose format is described inradius.conf (5). Thepathname of the configuration file is
passed as thefile argument torad_config (). Thisargument may also be given as NULL, in which case
the standard configuration file/etc/radius.conf is used. rad_config () returns 0 on success, or −1
if an error occurs.

NetBSD 3.0 April 27, 2004 2

LIBRADIUS (3) NetBSD Library Functions Manual LIBRADIUS (3)

The library can also be configured programmatically by calls torad_add_server (). Thehost parame-
ter specifies the server host, either as a fully qualified domain name or as a dotted-quad IP address in text
form. Theport parameter specifies the UDP port to contact on the server. If port is given as 0, the
library looks up theradius/udp or radacct/udp service in the network services (5) database, and
uses the port found there. If no entry is found, the library uses the standard RADIUS ports, 1812 for authen-
tication and 1813 for accounting. The shared secret for the server host is passed to thesecret parameter.
It may be any NUL-terminated string of bytes. The RADIUS protocol ignores all but the leading 128 bytes of
the shared secret. The timeout for receiving replies from the server is passed to thetimeout parameter, in
units of seconds. The maximum number of repeated requests to make before giving up is passed into the
max_tries parameter.rad_add_server () returns 0 on success, or −1 if an error occurs.

rad_add_server () may be called multiple times, and it may be used together withrad_config (). At
most 10 servers may be specified. When multiple servers are given, they are tried in round-robin fashion
until a valid response is received, or until each server’smax_tries limit has been reached.

Creating a RADIUS Request
A RADIUS request consists of a code specifying the kind of request, and zero or more attributes which pro-
vide additional information.To begin constructing a new request, callrad_create_request (). In addi-
tion to the usualstruct rad_handle ∗, this function takes acode parameter which specifies the type
of the request. Most often this will beRAD_ACCESS_REQUEST. rad_create_request () returns 0 on
success, or −1 on if an error occurs.

After the request has been created withrad_create_request (), attributes can be attached to it. This is
done through calls torad_put_addr (), rad_put_int (), and rad_put_string (). Eachaccepts a
type parameter identifying the attribute, and a value which may be an Internet address, an integer, or a
NUL-terminated string, respectively. Alternatively, rad_put_vendor_addr (),
rad_put_vendor_int () or rad_put_vendor_string () may be used to specify vendor specific
attributes. Vendor specific definitions may be found in <radlib_vs.h >

The library also provides a functionrad_put_attr () which can be used to supply a raw, uninterpreted
attribute. Thedata argument points to an array of bytes, and thelen argument specifies its length.

It is possible adding the Message-Authenticator to the request.This is an HMAC-MD5 hash of the entire
Access-Request packet (see RFC 3579).This attribute must be present in any packet that includes an EAP-
Message attribute. It can be added by using therad_put_message_authentic () function. The
libradius library calculates the HMAC-MD5 hash implicitly before sending the request. If the Message-
Authenticator was found inside the response packet, then the packet is silently dropped, if the validation
failed. Inorder to get this feature, the library should be compiled with OpenSSL support.

Therad_put_X () functions return 0 on success, or −1 if an error occurs.

Sending the Request and Receiving the Response
After the RADIUS request has been constructed, it is sent either by means ofrad_send_request () or by
a combination of calls torad_init_send_request () andrad_continue_send_request ().

The rad_send_request () function sends the request and waits for a valid reply, retrying the defined
servers in round-robin fashion as necessary. If a valid response is received, rad_send_request () returns
the RADIUS code which specifies the type of the response. This will typically beRAD_ACCESS_ACCEPT,
RAD_ACCESS_REJECT, or RAD_ACCESS_CHALLENGE. If no valid response is received,
rad_send_request () returns −1.

As an alternative, if you do not wish to block waiting for a response,rad_init_send_request () and
rad_continue_send_request () may be used instead. If a reply is received from the RADIUS server
or a timeout occurs, these functions return a value as described forrad_send_request (). Otherwise,a
value of zero is returned and the values pointed to byfd and tv are set to the descriptor and timeout that

NetBSD 3.0 April 27, 2004 3

LIBRADIUS (3) NetBSD Library Functions Manual LIBRADIUS (3)

should be passed toselect (2).

rad_init_send_request () must be called first, followed by repeated calls to
rad_continue_send_request () as long as a return value of zero is given. Betweeneach call, the
application should callselect (2), passing∗fd as a read descriptor and timing out after the interval speci-
fied by tv . When select (2) returns, rad_continue_send_request () should be called with
selected set to a non-zero value ifselect (2) indicated that the descriptor is readable.

Like RADIUS requests, each response may contain zero or more attributes. Aftera response has been
received successfully byrad_send_request () or rad_continue_send_request (), its attributes
can be extracted one by one usingrad_get_attr (). Eachtime rad_get_attr () is called, it gets the
next attribute from the current response, and stores a pointer to the data and the length of the data via the ref-
erence parametersdata and len , respectively. Note that the data resides in the response itself, and must
not be modified.A successful call torad_get_attr () returns the RADIUS attribute type. If no more
attributes remain in the current response,rad_get_attr () returns 0. If an error such as a malformed
attribute is detected, −1 is returned.

If rad_get_attr () returnsRAD_VENDOR_SPECIFIC, rad_get_vendor_attr () may be called to
determine the vendor. The vendor specific RADIUS attribute type is returned. The reference parameters
data and len (as returned fromrad_get_attr ()) are passed torad_get_vendor_attr (), and are
adjusted to point to the vendor specific attribute data.

The common types of attributes can be decoded usingrad_cvt_addr (), rad_cvt_int (), and
rad_cvt_string (). Thesefunctions accept a pointer to the attribute data, which should have been
obtained using rad_get_attr () and optionally rad_get_vendor_attr (). In the case of
rad_cvt_string (), the lengthlen must also be given. Thesefunctions interpret the attribute as an Inter-
net address, an integer, or a string, respectively, and return its value. rad_cvt_string () returns its value
as aNUL-terminated string in dynamically allocated memory. The application should free the string using
free (3) when it is no longer needed.

If insufficient virtual memory is available, rad_cvt_string () returnsNULL. rad_cvt_addr () and
rad_cvt_int () cannot fail.

The rad_request_authenticator () function may be used to obtain the Request-Authenticator
attribute value associated with the current RADIUS server according to the supplied rad_handle. The target
buffer buf of lengthlen must be supplied and should be at least 16 bytes. The return value is the number
of bytes written tobuf or −1 to indicate thatlen was not large enough.

The rad_server_secret () returns the secret shared with the current RADIUS server according to the
supplied rad_handle.

The rad_demangle () function demangles attributes containing passwords and MS-CHAPv1 MPPE-Keys.
The return value isNULL on failure, or the plaintext attribute. Thisvalue should be freed usingfree (3)
when it is no longer needed.

The rad_demangle_mppe_key () function demangles the send- and recv-keys when using MPPE (see
RFC 2548). The return value isNULLon failure, or the plaintext attribute. Thisvalue should be freed using
free (3) when it is no longer needed.

Obtaining Error Messages
Those functions which accept astruct rad_handle ∗ argument record an error message if they fail.
The error message can be retrieved by calling rad_strerror (). Themessage text is overwritten on each
new error for the given struct rad_handle ∗. Thus the message must be copied if it is to be preserved
through subsequent library calls using the same handle.

NetBSD 3.0 April 27, 2004 4

LIBRADIUS (3) NetBSD Library Functions Manual LIBRADIUS (3)

Cleanup
To free the resources used by the RADIUS library, call rad_close ().

RETURN VALUES
The following functions return a non-negative value on success.If they detect an error, they return −1 and
record an error message which can be retrieved usingrad_strerror ().

rad_add_server ()
rad_config ()
rad_create_request ()
rad_get_attr ()
rad_put_addr ()
rad_put_attr ()
rad_put_int ()
rad_put_string ()
rad_put_message_authentic ()
rad_init_send_request ()
rad_continue_send_request ()
rad_send_request ()

The following functions return a non-NULL pointer on success. If they are unable to allocate sufficient vir-
tual memory, they returnNULL, without recording an error message.

rad_acct_open ()
rad_auth_open ()
rad_cvt_string ()

The following functions return a non-NULL pointer on success. If they fail, they returnNULL, with record-
ing an error message.

rad_demangle ()
rad_demangle_mppe_key ()

FILES
/etc/radius.conf

SEE ALSO
radius.conf (5)

C. Rigney, et al, Remote Authentication Dial In User Service (RADIUS), RFC 2865.

C. Rigney,RADIUS Accounting, RFC 2866.

G. Zorn,Microsoft Vendor-specific RADIUS attributes, RFC 2548.

C. Rigney, et al, RADIUS extensions, RFC 2869.

AUTHORS
This software was originally written by John Polstra, and donated to theFreeBSDproject by Juniper Net-
works, Inc. Oleg Semyonov subsequently added the ability to perform RADIUS accounting.Later additions
and changes by Michael Bretterklieber.

NetBSD 3.0 April 27, 2004 5

LINK_ADDR (3) NetBSD Library Functions Manual LINK_ADDR (3)

NAME
link_addr , link_ntoa — elementary address specification routines for link level access

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if_dl.h>

void
link_addr (const char ∗addr , struct sockaddr_dl ∗sdl);

char ∗
link_ntoa (const struct sockaddr_dl ∗sdl);

DESCRIPTION
The routinelink_addr () interprets character strings representing link-level addresses, returning binary
information suitable for use in system calls. The routinelink_ntoa () takes a link-level address and
returns anASCII string representing some of the information present, including the link level address itself,
and the interface name or number, if present. Thisfacility is experimental and is still subject to change.

Prior to a call tolink_addr (), sdl->sdl_len must be initialized to the size of the link-level socket
structure, typicallysizeof(struct sockaddr_dl) .

For link_addr (), the stringaddr may contain an optional network interface identifier of the form “name
unit-number”, suitable for the first argument toifconfig (8), followed in all cases by a colon and an inter-
face address in the form of groups of hexadecimal digits separated by periods.Each group represents a byte
of address; address bytes are filled left to right from low order bytes through high order bytes.

Thus le0:8.0.9.13.d.30 represents an ethernet address to be transmitted on the first Lance ethernet
interface.

RETURN VALUES
link_ntoa () always returns a null terminated string.link_addr () has no return value (SeeBUGS).

SEE ALSO
ethers (3), iso (4)

HISTORY
The link_addr () andlink_ntoa () functions appeared in 4.3BSD−Reno.

BUGS
The returned values forlink_ntoa () reside in a static memory area.

The functionlink_addr () should diagnose improperly formed input, and there should be an unambiguous
way to recognize this.

If the sdl_lenfield of the link socket addresssdl is 0, link_ntoa () will not insert a colon before the inter-
face address bytes. If this translated address is given to link_addr () without inserting an initial colon, the
latter will not interpret it correctly.

NetBSD 3.0 July 28, 1993 1

LIO_LISTIO (3) NetBSD Library Functions Manual LIO_LISTIO (3)

NAME
lio_listio — list directed I/O (REALTIME)

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <aio.h>

int
lio_listio (int mode , struct aiocb ∗ const list[] , int nent ,

struct sigevent ∗sig);

DESCRIPTION
The lio_listio () function initiates a list of I/O requests with a single function call.The list argument
is an array of pointers toaiocb structures describing each operation to perform, withnent elements.
NULLelements are ignored.

Theaio_lio_opcodefield of eachaiocb specifies the operation to be performed. The following operations
are supported:

LIO_READ Read data as if by a call toaio_read (3).

LIO_NOP No operation.

LIO_WRITE Write data as if by a call toaio_write (3).

If the mode argument isLIO_WAIT , lio_listio () does not return until all the requested operations have
been completed.If mode is LIO_NOWAIT, the requests are processed asynchronously, and the signal speci-
fied bysig is sent when all operations have completed. Ifsig is NULL, the calling process is not notified
of I/O completion.

The order in which the requests are carried out is not specified, and there is no guarantee that they will be
executed sequentially.

RETURN VALUES
If mode is LIO_WAIT , the lio_listio () function returns 0 if the operations completed successfully, oth-
erwise −1.

If mode is LIO_NOWAIT, the lio_listio () function returns 0 if the operations are successfully queued,
otherwise −1.

ERRORS
The lio_listio () function will fail if:

[EAGAIN] There are not enough resources to enqueue the requests.

[EAGAIN] The request would cause the system-wide limitAIO_MAXto be exceeded.

[EINTR] A signal interrupted the system call before it could be completed.

[EINVAL] The mode argument is neitherLIO_WAIT nor LIO_NOWAIT, or nent is greater
thanAIO_LISTIO_MAX .

[EIO] One or more requests failed.

In addition, thelio_listio () function may fail for any of the reasons listed foraio_read (3) and
aio_write (3).

NetBSD 3.0 May 4, 2007 1

LIO_LISTIO (3) NetBSD Library Functions Manual LIO_LISTIO (3)

If lio_listio () succeeds, or fails with an error code ofEAGAIN, EINTR, or EIO, some of the requests
may have been initiated. The caller should check the error status of eachaiocb structure individually by
callingaio_error (3).

SEE ALSO
read (2), siginfo (2), write (2), aio_error (3), aio_read (3), aio_write (3)

STANDARDS
The lio_listio () function is expected to conform toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 May 4, 2007 2

LLABS (3) NetBSD Library Functions Manual LLABS (3)

NAME
llabs — return the absolute value of a long long integer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

long long int
llabs (long long int j);

DESCRIPTION
The llabs () function returns the absolute value of the long long integerj .

SEE ALSO
abs (3), cabs (3), floor (3), labs (3), math (3)

STANDARDS
The llabs () function conforms toISO/IEC9899:1999 (“ISO C99”).

BUGS
The absolute value of the most negative integer remains negative.

NetBSD 3.0 March 6, 2000 1

LLDIV (3) NetBSD Library Functions Manual LLDIV (3)

NAME
lldiv — return quotient and remainder from division

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

lldiv_t
lldiv (long long int num , long long int denom);

DESCRIPTION
The lldiv () function computes the valuenum/denom and returns the quotient and remainder in a struc-
ture namedlldiv_t that contains twolong long integer members namedquot andrem.

SEE ALSO
div (3), ldiv (3), math (3), qdiv (3)

STANDARDS
The lldiv () function conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 March 6, 2000 1

LOCKF (3) NetBSD Library Functions Manual LOCKF (3)

NAME
lockf — record locking on files

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
lockf (int filedes , int function , off_t size);

DESCRIPTION
The lockf () function allows sections of a file to be locked with advisory-mode locks. Calls tolockf ()
from other processes which attempt to lock the locked file section will either return an error value or block
until the section becomes unlocked. All the locks for a process are removed when the process terminates.

The argumentfiledes is an open file descriptor. The file descriptor must have been opened either for
write-only (O_WRONLY) or read/write (O_RDWR) operation.

The function argument is a control value which specifies the action to be taken. Thepermissible values
for function are as follows:

Function Description
F_ULOCK unlock locked sections
F_LOCK lock a section for exclusive use
F_TLOCK test and lock a section for exclusive use
F_TEST test a section for locks by other processes

F_ULOCKremoves locks from a section of the file;F_LOCKandF_TLOCKboth lock a section of a file if
the section is available;F_TESTdetects if a lock by another process is present on the specified section.

Thesize argument is the number of contiguous bytes to be locked or unlocked. Thesection to be locked or
unlocked starts at the current offset in the file and extends forward for a positive size or backward for a neg-
ative size (the preceding bytes up to but not including the current offset). However, it is not permitted to lock
a section that starts or extends before the beginning of the file.If size is 0, the section from the current off-
set through the largest possible file offset is locked (that is, from the current offset through the present or any
future end-of-file).

The sections locked withF_LOCKor F_TLOCKmay, in whole or in part, contain or be contained by a previ-
ously locked section for the same process.When this occurs, or if adjacent locked sections would occur, the
sections are combined into a single locked section. If the request would cause the number of locks to exceed
a system-imposed limit, the request will fail.

F_LOCKand F_TLOCKrequests differ only by the action taken if the section is not available. F_LOCK
blocks the calling process until the section is available. F_TLOCKmakes the function fail if the section is
already locked by another process.

File locks are released on first close by the locking process of any file descriptor for the file.

F_ULOCKrequests release (wholly or in part) one or more locked sections controlled by the process.
Locked sections will be unlocked starting at the current file offset throughsize bytes or to the end of file if
size is 0. When all of a locked section is not released (that is, when the beginning or end of the area to be
unlocked falls within a locked section), the remaining portions of that section are still locked by the process.
Releasing the center portion of a locked section will cause the remaining locked beginning and end portions
to become two separate locked sections.If the request would cause the number of locks in the system to
exceed a system-imposed limit, the request will fail.

NetBSD 3.0 December 19, 1997 1

LOCKF (3) NetBSD Library Functions Manual LOCKF (3)

An F_ULOCKrequest in which size is non-zero and the offset of the last byte of the requested section is the
maximum value for an object of type off_t, when the process has an existing lock in which size is 0 and
which includes the last byte of the requested section, will be treated as a request to unlock from the start of
the requested section with a size equal to 0.Otherwise anF_ULOCKrequest will attempt to unlock only the
requested section.

A potential for deadlock occurs if a process controlling a locked region is put to sleep by attempting to lock
the locked region of another process. This implementation detects that sleeping until a locked region is
unlocked would cause a deadlock and fails with anEDEADLKerror.

lockf (), fcntl (2) andflock (2) locks may be safely used concurrently.

Blocking on a section is interrupted by any signal.

RETURN VALUES
If successful, thelockf () function returns 0. Otherwise, it returns −1, setserrno to indicate an error, and
existing locks are not changed.

ERRORS
lockf () will fail if:

[EAGAIN] The argumentfunction is F_TLOCKor F_TEST and the section is already locked
by another process.

[EBADF] The argumentfiledes is not a valid open file descriptor.

The argumentfunction is F_LOCKor F_TLOCK, and filedes is not a valid file
descriptor open for writing.

[EDEADLK] The argumentfunction is F_LOCKand a deadlock is detected.

[EINTR] The argumentfunction is F_LOCK andlockf () was interrupted by the delivery
of a signal.

[EINVAL] The argumentfunction is not one ofF_ULOCK, F_LOCK, F_TLOCKor F_TEST.

The argumentfiledes refers to a file that does not support locking.

[ENOLCK] The argumentfunction is F_ULOCK, F_LOCKor F_TLOCK, and satisfying the
lock or unlock request would result in the number of locked regions in the system
exceeding a system-imposed limit.

SEE ALSO
fcntl (2), flock (2)

STANDARDS
The lockf () function conforms toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

NetBSD 3.0 December 19, 1997 2

LOGIN (3) NetBSD Library Functions Manual LOGIN (3)

NAME
login , logout , logwtmp — login utility functions

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

void
login (struct utmp ∗ut);

int
logout (const char ∗line);

void
logwtmp (const char ∗line , const char ∗name, const char ∗host);

DESCRIPTION
The login (), logout (), and logwtmp () functions operate on the database of current users in
/var/run/utmp and on the logfile/var/log/wtmp of logins and logouts.

The login () function updates the/var/run/utmp and /var/log/wtmp files with user information
contained inut .

The logout () function removes the entry from/var/run/utmp corresponding to the deviceline .

The logwtmp () function adds an entry to/var/log/wtmp . Since login () will add the appropriate
entry for/var/log/wtmp during a login,logwtmp () is usually used for logouts.

RETURN VALUES
logout () returns non-zero if it was able to find and delete an entry forline , and zero if there is no entry
for line in /var/run/utmp .

FILES
/dev/ ∗
/etc/ttys
/var/run/utmp
/var/log/wtmp

SEE ALSO
utmp (5)

NetBSD 3.0 December 14, 1995 1

LOGIN_CAP (3) NetBSD Library Functions Manual LOGIN_CAP (3)

NAME
login_getclass , login_getcapbool , login_getcapnum , login_getcapsize ,
login_getcapstr , login_getcaptime , login_close , setclasscontext ,
setusercontext — query login.conf database about a user class

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <sys/types.h>
#include <login_cap.h>

login_cap_t ∗
login_getclass (char ∗class);

int
login_getcapbool (login_cap_t ∗lc , const char ∗cap , u_int def);

quad_t
login_getcapnum (login_cap_t ∗lc , const char ∗cap , quad_t def , quad_t err);

quad_t
login_getcapsize (login_cap_t ∗lc , const char ∗cap , quad_t def , quad_t err);

char ∗
login_getcapstr (login_cap_t ∗lc , const char ∗cap , char ∗def , char ∗err);

quad_t
login_getcaptime (login_cap_t ∗lc , const char ∗cap , quad_t def , quad_t err);

void
login_close (login_cap_t ∗lc);

int
setclasscontext (const char ∗class , u_int flags);

int
setusercontext (login_cap_t ∗lc , const struct passwd ∗pwd , uid_t uid ,

u_int flags);

DESCRIPTION
The login_getclass () function extracts the entry specified byclass (or default if class is NULL
or the empty string) from/etc/login.conf (see login.conf (5)). If the entry is found, a
login_cap_t pointer is returned. NULL is returned if the user class is not found. When the
login_cap_t structure is no longer needed, it should be freed by thelogin_close () function.

Oncelc has been returned bylogin_getclass (), any of the otherlogin_ ∗() functions may be called.

The login_getcapnum (), login_getcapsize (), login_getcapstr (), and
login_getcaptime () functions all query the database entry for a field namedcap . If the field is found,
its value is returned. If the field is not found, the value specified bydef is returned. If an error is encoun-
tered while trying to find the field,err is returned.Seelogin.conf (5) for a discussion of the various
textual forms the value may take. Thelogin_getcapbool () function is slightly different. Itreturnsdef
if no capabilities were found for this class (typically meaning that the default class was used and the
/etc/login.conf file is missing). It returns a non-zero value ifcap , with no value, was found, zero
otherwise.

NetBSD 3.0 December 11, 2004 1

LOGIN_CAP (3) NetBSD Library Functions Manual LOGIN_CAP (3)

Thesetclasscontext () function takesclass , the name of a user class, and sets the resources defined
by that class according toflags . Only the LOGIN_SETPATH, LOGIN_SETPRIORITY,
LOGIN_SETRESOURCES, and LOGIN_SETUMASKbits are used.(Seesetusercontext () below). It
returns 0 on success and -1 on failure.

Thesetusercontext () function sets the resources according toflags . The lc argument, if not NULL,
contains the class information that should be used.The pwd argument, if not NULL, provides information
about the user. Both lc andpwd cannot be NULL.Theuid argument is used in place of the user id con-
tained in thepwd structure when callingsetuid (2). Thevarious bits available to be or-ed together to make
up flags are:

LOGIN_SETGID Set the group id. Requires thepwd field be specified.

LOGIN_SETGROUPS Set the group membership list by callinginitgroups (3). Requiresthe
pwd field be specified.

LOGIN_SETGROUP Set the group id and callinitgroups (3). Requiresthepwd field be speci-
fied.

LOGIN_SETLOGIN Sets the login name bysetlogin (2). Requiresthepwd field be specified.

LOGIN_SETPATH Sets thePATHenvironment variable.

LOGIN_SETPRIORITY Sets the priority bysetpriority (2).

LOGIN_SETRESOURCES Sets the various system resources bysetrlimit (2).

LOGIN_SETUMASK Sets the umask byumask(2).

LOGIN_SETUSER Sets the user id touid by setuid (2).

LOGIN_SETENV Sets the environment variables as defined by the setenv keyword, by
setenv (3).

LOGIN_SETALL Sets all of the above.

SEE ALSO
setlogin (2), setpriority (2), setrlimit (2), setuid (2), umask(2), initgroups (3),
secure_path (3), login.conf (5)

HISTORY
The login_getclass family of functions are largely based on theBSD/OSimplementation of same, and
appeared inNetBSD 1.5 by kind permission.

CAVEATS
The string returned bylogin_getcapstr () is allocated viamalloc (3) when the specified capability is
present and thus it is the responsibility of the caller tofree () this space.However, if the capability was not
found or an error occurred anddef or err (whichever is relevant) are non-NULL the returned value is sim-
ply what was passed in tologin_getcapstr (). Thereforeit is not possible to blindlyfree () the return
value without first checking it againstdef anderr .

The same warnings set forth insetlogin (2) apply to setusercontext () when the
LOGIN_SETLOGINflag is used.Specifically, changing the login name affects all processes in the current
session, not just the current process. Seesetlogin (2) for more information.

NetBSD 3.0 December 11, 2004 2

LOGINX (3) NetBSD Library Functions Manual LOGINX (3)

NAME
loginx , logoutx , logwtmpx — login utility functions

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

void
loginx (const struct utmpx ∗ut);

int
logoutx (const char ∗line , int status , int type);

void
logwtmpx (const char ∗line , const char ∗name, const char ∗host , int status ,

int type);

DESCRIPTION
The loginx (), logoutx (), and logwtmpx () operate on theutmpx (5) database of currently logged in
users, and thewtmpx (5) database of logins and logouts.

The loginx () function updates the/var/run/utmpx and/var/log/wtmpx databases with the infor-
mation fromut .

logoutx () updates the entry corresponding toline with the type and status fromtype andstatus .

logwtmpx () writes an entry filled with data fromline , name, host , status , and type to the
wtmpx (5) database.

RETURN VALUES
logoutx () returns 1 on success, and 0 if no corresponding entry was found.

SEE ALSO
endutxent (3), utmpx (5)

NetBSD 3.0 September 26, 2002 1

LRINT (3) NetBSD Library Functions Manual LRINT (3)

NAME
llrint , llrintf , lrint , lrintf — convert to integer

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

long long
llrint (double x);

long long
llrintf (float x);

long
lrint (double x);

long
lrintf (float x);

DESCRIPTION
The lrint () function returns the integer nearest to its argumentx according to the current rounding mode.

The llrint (), llrintf (), and lrintf () functions differ from lrint () only in their input and output
types.

RETURN VALUES
The llrint , llrintf , lrint , and lrintf functions return the integer nearest to their argumentx
according to the current rounding mode. If the rounded result is too large to be represented as along
long or long value, respectively, the return value is undefined.

SEE ALSO
math (3), rint (3), round (3)

STANDARDS
The llrint (), llrintf (), lrint (), and lrintf () functions conform to ISO/IEC 9899:1999
(“ ISO C99”).

NetBSD 3.0 January 11, 2005 1

LSEARCH (3) NetBSD Library Functions Manual LSEARCH (3)

NAME
lsearch , lfind — linear searching routines

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <search.h>

void ∗
lsearch (const void ∗key , void ∗base , size_t ∗nelp , size_t width ,

int (∗compar)(const void ∗, c onst void ∗));

void ∗
lfind (const void ∗key , const void ∗base , size_t ∗nelp , size_t width ,

int (∗compar)(const void ∗, c onst void ∗));

DESCRIPTION
The functionslsearch (), andlfind () provide basic linear searching functionality.

base is the pointer to the beginning of an array. The argumentnelp is the current number of elements in
the array, where each element iswidth bytes long.Thecompar argument points to a function which com-
pares its two arguments and returns zero if they are matching, and non-zero otherwise.

The lsearch () and lfind () functions return a pointer into the array referenced bybase wherekey is
located. Ifkey does not exist, lfind () will return a null pointer andlsearch () will add it to the array.
When an element is added to the array bylsearch () the location referenced by the argumentnelp is
incremented by one.

SEE ALSO
bsearch (3), db(3)

STANDARDS
The lsearch () andlfind () functions conform toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 July 6, 2005 1

LWRES(3) BIND9 LWRES(3)

NAME
lwres − introduction to the lightweight resolver library

SYNOPSIS
#include <lwres/lwres.h>

DESCRIPTION
The BIND 9 lightweight resolver library is a simple, name service independent stub resolver library. It
provides hostname−to−address and address−to−hostname lookup services to applications by transmitting
lookup requests to a resolver daemonlwresd running on the local host. The resover daemon performs the
lookup using the DNS or possibly other name service protocols, and returns the results to the application
through the library. The library and resolver daemon communicate using a simple UDP−based protocol.

OVERVIEW
The lwresd library implements multiple name service APIs. The standardgethostbyname(),
gethostbyaddr(), gethostbyname_r(), gethostbyaddr_r(), getaddrinfo(), getipnodebyname(), and
getipnodebyaddr()functions are all supported. To allow the lwres library to coexist with system libraries
that define functions of the same name, the library defines these functions with names prefixed by lwres_.
To define the standard names, applications must include the header file<lwres/netdb.h>which contains
macro definitions mapping the standard function names into lwres_ prefixed ones. Operating system
vendors who integrate the lwres library into their base distributions should rename the functions in the
library proper so that the renaming macros are not needed.

The library also provides a native API consisting of the functionslwres_getaddrsbyname()and
lwres_getnamebyaddr(). These may be called by applications that require more detailed control over the
lookup process than the standard functions provide.

In addition to these name service independent address lookup functions, the library implements a new,
experimental API for looking up arbitrary DNS resource records, using thelwres_getaddrsbyname()
function.

Finally, there is a low−level API for converting lookup requests and responses to and from raw lwres
protocol packets. This API can be used by clients requiring nonblocking operation, and is also used when
implementing the server side of the lwres protocol, for example in thelwresd resolver daemon. The use of
this low−level API in clients and servers is outlined in the following sections.

CLIENT−SIDE LOW−LEVEL API CALL FLOW
When a client program wishes to make an lwres request using the native low−level API, it typically
performs the following sequence of actions.

(1) Allocate or use an existinglwres_packet_t, calledpktbelow.

(2) Set pkt.recvlength to the maximum length we will accept. This is done so the receiver of our packets
knows how large our receive buffer is. The "default" is a constant inlwres.h: LW RES_RECVLENGTH =
4096.

(3) Set pkt.serial to a unique serial number. This value is echoed back to the application by the remote
server.

(4) Set pkt.pktflags. Usually this is set to 0.

(5) Set pkt.result to 0.

(6) Call lwres_*request_render(), or marshall in the data using the primitives such as
lwres_packet_render()and storing the packet data.

(7) Transmit the resulting buffer.

(8) Call lwres_*response_parse()to parse any packets received.

(9) Verify that the opcode and serial match a request, and process the packet specific information contained
in the body.

BIND9 Jun30, 2000 1

LWRES(3) BIND9 LWRES(3)

SERVER−SIDE LOW−LEVEL API CALL FLOW
When implementing the server side of the lightweight resolver protocol using the lwres library, a sequence
of actions like the following is typically involved in processing each request packet.

Note that the samelwres_packet_tis used in both the_parse()and_render() calls, with only a few
modifications made to the packet header’s contents between uses. This method is recommended as it keeps
the serial, opcode, and other fields correct.

(1) When a packet is received, call lwres_*request_parse()to unmarshall it. This returns alwres_packet_t
(also calledpkt, below) as well as a data specific type, such aslwres_gabnrequest_t.

(2) Process the request in the data specific type.

(3) Set the pkt.result, pkt.recvlength as above. All other fields can be left untouched since they were filled
in by the*_parse()call above. If using lwres_*response_render(), pkt.pktflags will be set up properly.
Otherwise, theLW RES_LWPACKETFLAG_RESPONSE bit should be set.

(4) Call the data specific rendering function, such aslwres_gabnresponse_render().

(5) Send the resulting packet to the client.

SEE ALSO
lwres_gethostent(3), lwres_getipnode(3), lwres_getnameinfo(3), lwres_noop(3), lwres_gabn(3),
lwres_gnba(3), lwres_context(3), lwres_config(3), resolver(5), lwresd(8).

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 2

LWRES_BUFFER(3) BIND9 LWRES_BUFFER(3)

NAME
lwres_buffer_init, lwres_buffer_invalidate, lwres_buffer_add, lwres_buffer_subtract, lwres_buffer_clear,
lwres_buffer_first, lwres_buffer_forward, lwres_buffer_back, lwres_buffer_getuint8,
lwres_buffer_putuint8, lwres_buffer_getuint16, lwres_buffer_putuint16, lwres_buffer_getuint32,
lwres_buffer_putuint32, lwres_buffer_putmem, lwres_buffer_getmem − lightweight resolver buffer
management

SYNOPSIS
#include <lwres/lwbuffer.h>

void lwres_buffer_init(lwres_buffer_t * b, void *base, unsigned int length);

void lwres_buffer_invalidate(lwres_buffer_t *b);

void lwres_buffer_add(lwres_buffer_t *b, unsigned int n);

void lwres_buffer_subtract(lwres_buffer_t *b, unsigned int n);

void lwres_buffer_clear(lwres_buffer_t *b);

void lwres_buffer_first(lwres_buffer_t * b);

void lwres_buffer_forward(lwres_buffer_t * b, unsigned int n);

void lwres_buffer_back(lwres_buffer_t *b, unsigned int n);

lwres_uint8_t lwres_buffer_getuint8(lwres_buffer_t *b);

void lwres_buffer_putuint8(lwres_buffer_t * b, lwres_uint8_t val);

lwres_uint16_t lwres_buffer_getuint16(lwres_buffer_t *b);

void lwres_buffer_putuint16(lwres_buffer_t *b, lwres_uint16_tval);

lwres_uint32_t lwres_buffer_getuint32(lwres_buffer_t *b);

void lwres_buffer_putuint32(lwres_buffer_t *b, lwres_uint32_tval);

void lwres_buffer_putmem(lwres_buffer_t *b, const unsigned char *base, unsigned int length);

void lwres_buffer_getmem(lwres_buffer_t *b, unsigned char *base, unsigned int length);

DESCRIPTION
These functions provide bounds checked access to a region of memory where data is being read or written.
They are based on, and similar to, the isc_buffer_ functions in the ISC library.

A buffer is a region of memory, together with a set of related subregions. Theused region and theavailable
region are disjoint, and their union is the buffer’s region. The used region extends from the beginning of the
buffer region to the last used byte. The available region extends from one byte greater than the last used
byte to the end of the buffer’s region. The size of the used region can be changed using various buffer
commands. Initially, the used region is empty.

The used region is further subdivided into two disjoint regions: theconsumed region and theremaining
region. The union of these two regions is the used region. The consumed region extends from the beginning
of the used region to the byte before thecurrentoffset (if any). Theremainingregion the current pointer to
the end of the used region. The size of the consumed region can be changed using various buffer
commands. Initially, the consumed region is empty.

Theactive region is an (optional) subregion of the remaining region. It extends from the current offset to an
offset in the remaining region. Initially, the active region is empty. If the current offset advances beyond the
chosen offset, the active region will also be empty.

/−−−−−−−−−−−−entire length−−−−−−−−−−−−−−−\\
/−−−−− used region −−−−−\\/−− available −−\\
+−−+
| consumed |remaining | |
+−−+
a b c d e

BIND9 Jun30, 2000 1

LWRES_BUFFER(3) BIND9 LWRES_BUFFER(3)

a == base of buffer.
b == current pointer. Can be anywhere between a and d.
c == active pointer. Meaningful between b and d.
d == used pointer.
e == length of buffer.

a−e == entire length of buffer.
a−d == used region.
a−b == consumed region.
b−d == remaining region.
b−c == optional active region.

lwres_buffer_init() initializes thelwres_buffer_t *b and assocates it with the memory region of size
lengthbytes starting at locationbase.

lwres_buffer_invalidate() marks the buffer*b as invalid. Invalidating a buffer after use is not required, but
makes it possible to catch its possible accidental use.

The functionslwres_buffer_add()andlwres_buffer_subtract() respectively increase and decrease the
used space in buffer*b by n bytes. lwres_buffer_add()checks for buffer overflow and
lwres_buffer_subtract() checks for underflow. These functions do not allocate or deallocate memory. They
just change the value of used.

A buffer is re−initialised bylwres_buffer_clear(). The function sets used, current and active to zero.

lwres_buffer_first makes the consumed region of buffer*p empty by setting current to zero (the start of
the buffer).

lwres_buffer_forward() increases the consumed region of buffer*b by n bytes, checking for overflow.
Similarly, lwres_buffer_back()decreases bufferb’s consumed region byn bytes and checks for underflow.

lwres_buffer_getuint8() reads an unsigned 8−bit integer from*b and returns it.lwres_buffer_putuint8()
writes the unsigned 8−bit integerval to buffer*b.

lwres_buffer_getuint16()andlwres_buffer_getuint32()are identical tolwres_buffer_putuint8() except
that they respectively read an unsigned 16−bit or 32−bit integer in network byte order fromb. Similarly,
lwres_buffer_putuint16() andlwres_buffer_putuint32() writes the unsigned 16−bit or 32−bit integerval
to bufferb, in network byte order.

Arbitrary amounts of data are read or written from a lightweight resolver buffer with
lwres_buffer_getmem()andlwres_buffer_putmem() respectively. lwres_buffer_putmem()copies
lengthbytes of memory atbaseto b. Conversely,lwres_buffer_getmem()copieslengthbytes of memory
from b to base.

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 2

LWRES_CONFIG(3) BIND9 LWRES_CONFIG(3)

NAME
lwres_conf_init, lwres_conf_clear, lwres_conf_parse, lwres_conf_print, lwres_conf_get − lightweight
resolver configuration

SYNOPSIS
#include <lwres/lwres.h>

void lwres_conf_init(lwres_context_t *ctx);

void lwres_conf_clear(lwres_context_t *ctx);

lwres_result_t lwres_conf_parse(lwres_context_t *ctx, const char *filename);

lwres_result_t lwres_conf_print(lwres_context_t *ctx, FILE * fp);

lwres_conf_t * lwres_conf_get(lwres_context_t *ctx);

DESCRIPTION
lwres_conf_init() creates an emptylwres_conf_tstructure for lightweight resolver contextctx.

lwres_conf_clear()frees up all the internal memory used by thatlwres_conf_tstructure in resolver context
ctx.

lwres_conf_parse()opens the filefilenameand parses it to initialise the resolver contextctx’s lwres_conf_t
structure.

lwres_conf_print() prints thelwres_conf_tstructure for resolver contextctx to theFILE fp.

RETURN VALUES
lwres_conf_parse()returnsLW RES_R_SUCCESSif it successfully read and parsedfilename. It returns
LW RES_R_FAILURE if filenamecould not be opened or contained incorrect resolver statements.

lwres_conf_print() returnsLW RES_R_SUCCESSunless an error occurred when converting the network
addresses to a numeric host address string. If this happens, the function returnsLW RES_R_FAILURE.

SEE ALSO
stdio(3), resolver(5).

FILES
/etc/resolv.conf

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 1

LWRES_CONTEXT(3) BIND9 LWRES_CONTEXT(3)

NAME
lwres_context_create, lwres_context_destroy, lwres_context_nextserial, lwres_context_initserial,
lwres_context_freemem, lwres_context_allocmem, lwres_context_sendrecv − lightweight resolver context
management

SYNOPSIS
#include <lwres/lwres.h>

lwres_result_t lwres_context_create(lwres_context_t **contextp, void *arg,
lwres_malloc_tmalloc_function,
lwres_free_t free_function);

lwres_result_t lwres_context_destroy(lwres_context_t **contextp);

void lwres_context_initserial(lwres_context_t *ctx, lwres_uint32_tserial);

lwres_uint32_t lwres_context_nextserial(lwres_context_t *ctx);

void lwres_context_freemem(lwres_context_t *ctx, void *mem, size_t len);

void lwres_context_allocmem(lwres_context_t *ctx, size_t len);

void * lwres_context_sendrecv(lwres_context_t *ctx, void *sendbase, int sendlen, void *recvbase,
int recvlen, int * recvd_len);

DESCRIPTION
lwres_context_create()creates alwres_context_tstructure for use in lightweight resolver operations. It
holds a socket and other data needed for communicating with a resolver daemon. The newlwres_context_t
is returned throughcontextp, a pointer to alwres_context_tpointer. This lwres_context_tpointer must
initially be NULL, and is modified to point to the newly createdlwres_context_t.

When the lightweight resolver needs to perform dynamic memory allocation, it will callmalloc_functionto
allocate memory andfree_functionto free it. Ifmalloc_functionandfree_functionare NULL, memory is
allocated usingmalloc(3). andfree(3). It is not permitted to have a NULL malloc_functionand a
non−NULL free_functionor vice versa.arg is passed as the first parameter to the memory allocation
functions. Ifmalloc_functionandfree_functionare NULL,arg is unused and should be passed as NULL.

Once memory for the structure has been allocated, it is initialized usinglwres_conf_init(3) and returned
via *contextp.

lwres_context_destroy()destroys alwres_context_t, closing its socket.contextpis a pointer to a pointer
to the context that is to be destroyed. The pointer will be set to NULL when the context has been destroyed.

The context holds a serial number that is used to identify resolver request packets and associate responses
with the corresponding requests. This serial number is controlled usinglwres_context_initserial()and
lwres_context_nextserial(). lwres_context_initserial()sets the serial number for context*ctx to serial.
lwres_context_nextserial()increments the serial number and returns the previous value.

Memory for a lightweight resolver context is allocated and freed usinglwres_context_allocmem()and
lwres_context_freemem(). These use whatever allocations were defined when the context was created with
lwres_context_create(). lwres_context_allocmem()allocateslenbytes of memory and if successful
returns a pointer to the allocated storage.lwres_context_freemem()freeslenbytes of space starting at
locationmem.

lwres_context_sendrecv()performs I/O for the contextctx. Data are read and written from the context’s
socket. It writes data fromsendbase— typically a lightweight resolver query packet — and waits for a
reply which is copied to the receive buffer atrecvbase. The number of bytes that were written to this
receive buffer is returned in*recvd_len.

RETURN VALUES
lwres_context_create()returnsLW RES_R_NOMEMORY if memory for thestruct lwres_contextcould
not be allocated,LW RES_R_SUCCESSotherwise.

Successful calls to the memory allocatorlwres_context_allocmem()return a pointer to the start of the
allocated space. It returns NULL if memory could not be allocated.

BIND9 Jun30, 2000 1

LWRES_CONTEXT(3) BIND9 LWRES_CONTEXT(3)

LW RES_R_SUCCESSis returned whenlwres_context_sendrecv()completes successfully.
LW RES_R_IOERROR is returned if an I/O error occurs andLW RES_R_TIMEOUT is returned if
lwres_context_sendrecv()times out waiting for a response.

SEE ALSO
lwres_conf_init(3), malloc(3), free(3).

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001, 2003 Internet Software Consortium.

BIND9 Jun30, 2000 2

LWRES_GABN(3) BIND9 LWRES_GABN(3)

NAME
lwres_gabnrequest_render, lwres_gabnresponse_render, lwres_gabnrequest_parse,
lwres_gabnresponse_parse, lwres_gabnresponse_free, lwres_gabnrequest_free − lightweight resolver
getaddrbyname message handling

SYNOPSIS
#include <lwres/lwres.h>

lwres_result_t lwres_gabnrequest_render(lwres_context_t *ctx, lwres_gabnrequest_t *req,
lwres_lwpacket_t *pkt, lwres_buffer_t *b);

lwres_result_t lwres_gabnresponse_render(lwres_context_t *ctx, lwres_gabnresponse_t *req,
lwres_lwpacket_t *pkt, lwres_buffer_t *b);

lwres_result_t lwres_gabnrequest_parse(lwres_context_t *ctx, lwres_buffer_t *b,
lwres_lwpacket_t *pkt, lwres_gabnrequest_t **structp);

lwres_result_t lwres_gabnresponse_parse(lwres_context_t *ctx, lwres_buffer_t *b,
lwres_lwpacket_t *pkt,
lwres_gabnresponse_t **structp);

void lwres_gabnresponse_free(lwres_context_t *ctx, lwres_gabnresponse_t **structp);

void lwres_gabnrequest_free(lwres_context_t *ctx, lwres_gabnrequest_t **structp);

DESCRIPTION
These are low−level routines for creating and parsing lightweight resolver name−to−address lookup request
and response messages.

There are four main functions for the getaddrbyname opcode. One render function converts a
getaddrbyname request structure —lwres_gabnrequest_t— to the lighweight resolver’s canonical format.
It is complemented by a parse function that converts a packet in this canonical format to a getaddrbyname
request structure. Another render function converts the getaddrbyname response structure —
lwres_gabnresponse_t— to the canonical format. This is complemented by a parse function which
converts a packet in canonical format to a getaddrbyname response structure.

These structures are defined in<lwres/lwres.h>. They are shown below.

#define LWRES_OPCODE_GETADDRSBYNAME 0x00010001U

typedef struct lwres_addr lwres_addr_t;
typedef LWRES_LIST(lwres_addr_t) lwres_addrlist_t;

typedef struct {
lwres_uint32_t flags;
lwres_uint32_t addrtypes;
lwres_uint16_t namelen;
char *name;

} l wres_gabnrequest_t;

typedef struct {
lwres_uint32_t flags;
lwres_uint16_t naliases;
lwres_uint16_t naddrs;
char *realname;
char **aliases;
lwres_uint16_t realnamelen;
lwres_uint16_t *aliaslen;
lwres_addrlist_t addrs;
void *base;

BIND9 Jun30, 2000 1

LWRES_GABN(3) BIND9 LWRES_GABN(3)

size_t baselen;
} l wres_gabnresponse_t;

lwres_gabnrequest_render()uses resolver contextctx to convert getaddrbyname request structurereq to
canonical format. The packet header structurepkt is initialised and transferred to bufferb. The contents of
*req are then appended to the buffer in canonical format.lwres_gabnresponse_render()performs the
same task, except it converts a getaddrbyname response structurelwres_gabnresponse_tto the lightweight
resolver’s canonical format.

lwres_gabnrequest_parse()uses contextctx to convert the contents of packetpkt to a
lwres_gabnrequest_tstructure. Bufferb provides space to be used for storing this structure. When the
function succeeds, the resultinglwres_gabnrequest_tis made available through*structp.
lwres_gabnresponse_parse()offers the same semantics aslwres_gabnrequest_parse()except it yields a
lwres_gabnresponse_tstructure.

lwres_gabnresponse_free()andlwres_gabnrequest_free()release the memory in resolver contextctx that
was allocated to thelwres_gabnresponse_tor lwres_gabnrequest_tstructures referenced viastructp. Any
memory associated with ancillary buffers and strings for those structures is also discarded.

RETURN VALUES
The getaddrbyname opcode functionslwres_gabnrequest_render(), lwres_gabnresponse_render()
lwres_gabnrequest_parse()andlwres_gabnresponse_parse()all returnLW RES_R_SUCCESSon
success. They returnLW RES_R_NOMEMORY if memory allocation fails.
LW RES_R_UNEXPECTEDEND is returned if the available space in the bufferb is too small to
accommodate the packet header or thelwres_gabnrequest_tandlwres_gabnresponse_tstructures.
lwres_gabnrequest_parse()andlwres_gabnresponse_parse()will return
LW RES_R_UNEXPECTEDEND if the buffer is not empty after decoding the received packet. These
functions will returnLW RES_R_FAILURE if pktflags in the packet header structurelwres_lwpacket_t
indicate that the packet is not a response to an earlier query.

SEE ALSO
lwres_packet(3)

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 2

LWRES_GAI_STRERROR(3) BIND9 LWRES_GAI_STRERROR(3)

NAME
lwres_gai_strerror − print suitable error string

SYNOPSIS
#include <lwres/netdb.h>

char * gai_strerror(int ecode);

DESCRIPTION
lwres_gai_strerror() returns an error message corresponding to an error code returned bygetaddrinfo().
The following error codes and their meaning are defined ininclude/lwres/netdb.h.

EAI_ADDRFAMILY
address family for hostname not supported

EAI_AGAIN
temporary failure in name resolution

EAI_BADFLAGS
invalid value forai_flags

EAI_FAIL
non−recoverable failure in name resolution

EAI_FAMILY
ai_family not supported

EAI_MEMORY
memory allocation failure

EAI_NODAT A
no address associated with hostname

EAI_NONAME
hostname or servname not provided, or not known

EAI_SERVICE
servname not supported forai_socktype

EAI_SOCKTYPE
ai_socktypenot supported

EAI_SYSTEM
system error returned in errno

The message invalid error code is returned ifecodeis out of range.

ai_flags, ai_family andai_socktypeare elements of thestruct addrinfo used bylwres_getaddrinfo().

SEE ALSO
strerror (3), lwres_getaddrinfo(3), getaddrinfo(3), RFC2133().

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 1

LWRES_GETADDRINFO(3) BIND9 LWRES_GETADDRINFO(3)

NAME
lwres_getaddrinfo, lwres_freeaddrinfo − socket address structure to host and service name

SYNOPSIS
#include <lwres/netdb.h>

int lwres_getaddrinfo(const char *hostname, const char *servname, const struct addrinfo *hints,
struct addrinf o ** res);

void lwres_freeaddrinfo(struct addrinfo *ai);

If the operating system does not provide astruct addrinfo , the following structure is used:

struct addrinfo{
int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
int ai_family; /* PF_xxx */
int ai_socktype; /* SOCK_xxx */
int ai_protocol; /* 0 or IPPROT O_xxx for IPv4 and IPv6 */
size_t ai_addrlen; /* length of ai_addr */
char *ai_canonname;/* canonical name for hostname */
struct sockaddr *ai_addr; /* binary address */
struct addrinfo *ai_next; /* next structure in linked list */

};

DESCRIPTION
lwres_getaddrinfo() is used to get a list of IP addresses and port numbers for hosthostnameand service
servname. The function is the lightweight resolver’s implementation ofgetaddrinfo() as defined in
RFC2133.hostnameandservnameare pointers to null−terminated strings orNULL . hostnameis either a
host name or a numeric host address string: a dotted decimal IPv4 address or an IPv6 address.servnameis
either a decimal port number or a service name as listed in/etc/services.

hints is an optional pointer to astruct addrinfo . This structure can be used to provide hints concerning the
type of socket that the caller supports or wishes to use. The caller can supply the following structure
elements in*hints:

ai_family
The protocol family that should be used. Whenai_family is set toPF_UNSPEC, it means the caller
will accept any protocol family supported by the operating system.

ai_socktype
denotes the type of socket —SOCK_STREAM, SOCK_DGRAM or SOCK_RAW — that is
wanted. Whenai_socktypeis zero the caller will accept any socket type.

ai_protocol
indicates which transport protocol is wanted: IPPROT O_UDP or IPPROT O_TCP. If ai_protocol is
zero the caller will accept any protocol.

ai_flags
Flag bits. If theAI_CANONNAME bit is set, a successful call tolwres_getaddrinfo()will return a
null−terminated string containing the canonical name of the specified hostname inai_canonnameof
the firstaddrinfo structure returned. Setting theAI_PASSIVE bit indicates that the returned socket
address structure is intended for used in a call tobind(2). In this case, if the hostname argument is a
NULL pointer, then the IP address portion of the socket address structure will be set to
INADDR_ANY for an IPv4 address orIN6ADDR_ANY_INIT for an IPv6 address.

Whenai_flagsdoes not set theAI_PASSIVE bit, the returned socket address structure will be ready
for use in a call toconnect(2) for a connection−oriented protocol orconnect(2), sendto(2), or
sendmsg(2) if a connectionless protocol was chosen. The IP address portion of the socket address
structure will be set to the loopback address ifhostnameis aNULL pointer andAI_PASSIVE is not
set inai_flags.

BIND9 Jun30, 2000 1

LWRES_GETADDRINFO(3) BIND9 LWRES_GETADDRINFO(3)

If ai_flagsis set toAI_NUMERICHOST it indicates thathostnameshould be treated as a numeric
string defining an IPv4 or IPv6 address and no name resolution should be attempted.

All other elements of thestruct addrinfo passed viahintsmust be zero.

A hintsof NULL is treated as if the caller provided astruct addrinfo initialized to zero withai_familyset
to PF_UNSPEC.

After a successful call tolwres_getaddrinfo(), *res is a pointer to a linked list of one or moreaddrinfo
structures. Eachstruct addrinfo in this list cn be processed by following theai_nextpointer, until a NULL
pointer is encountered. The three membersai_family, ai_socktype, andai_protocol in each returned
addrinfo structure contain the corresponding arguments for a call tosocket(2). For eachaddrinfo structure
in the list, theai_addr member points to a filled−in socket address structure of lengthai_addrlen.

All of the information returned bylwres_getaddrinfo() is dynamically allocated: the addrinfo structures,
and the socket address structures and canonical host name strings pointed to by theaddrinfostructures.
Memory allocated for the dynamically allocated structures created by a successful call to
lwres_getaddrinfo() is released bylwres_freeaddrinfo(). ai is a pointer to astruct addrinfo created by a
call to lwres_getaddrinfo().

RETURN VALUES
lwres_getaddrinfo() returns zero on success or one of the error codes listed ingai_strerror (3) if an error
occurs. If bothhostnameandservnameareNULL lwres_getaddrinfo() returnsEAI_NONAME .

SEE ALSO
lwres(3), lwres_getaddrinfo(3), lwres_freeaddrinfo(3), lwres_gai_strerror(3), RFC2133(),
getservbyname(3), bind(2), connect(2), sendto(2), sendmsg(2), socket(2).

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001, 2003 Internet Software Consortium.

BIND9 Jun30, 2000 2

LWRES_GETHOSTENT(3) BIND9 LWRES_GETHOSTENT(3)

NAME
lwres_gethostbyname, lwres_gethostbyname2, lwres_gethostbyaddr, lwres_gethostent, lwres_sethostent,
lwres_endhostent, lwres_gethostbyname_r, lwres_gethostbyaddr_r, lwres_gethostent_r, lwres_sethostent_r,
lwres_endhostent_r − lightweight resolver get network host entry

SYNOPSIS
#include <lwres/netdb.h>

struct hostent * lwres_gethostbyname(const char *name);

struct hostent * lwres_gethostbyname2(const char *name, int af);

struct hostent * lwres_gethostbyaddr(const char *addr, int len, int type);

struct hostent * lwres_gethostent(void);

void lwres_sethostent(intstayopen);

void lwres_endhostent(void);

struct hostent * lwres_gethostbyname_r(const char *name, struct hostent *resbuf, char *buf ,
int buflen, int * error);

struct hostent * lwres_gethostbyaddr_r(const char *addr, int len, int type, struct hostent *resbuf,
char *buf , int buflen, int * error);

struct hostent * lwres_gethostent_r(struct hostent *resbuf, char *buf , int buflen, int * error);

void lwres_sethostent_r(intstayopen);

void lwres_endhostent_r(void);

DESCRIPTION
These functions provide hostname−to−address and address−to−hostname lookups by means of the
lightweight resolver. They are similar to the standardgethostent(3) functions provided by most operating
systems. They use astruct hostentwhich is usually defined in<namedb.h>.

struct hostent{
char *h_name; /* official name of host */
char **h_aliases; /*alias list */
int h_addrtype; /*host address type */
int h_length; /* length of address */
char **h_addr_list;/* list of addresses from name server */

};
#define h_addrh_addr_list[0] /*address, for backward compatibility */

The members of this structure are:

h_name
The official (canonical) name of the host.

h_aliases
A NULL−terminated array of alternate names (nicknames) for the host.

h_addrtype
The type of address being returned —PF_INET or PF_INET6.

h_length
The length of the address in bytes.

h_addr_list
A NULL terminated array of network addresses for the host. Host addresses are returned in network
byte order.

For backward compatibility with very old software,h_addr is the first address inh_addr_list.

lwres_gethostent(), lwres_sethostent(), lwres_endhostent(), lwres_gethostent_r(), lwres_sethostent_r()

BIND9 Jun30, 2000 1

LWRES_GETHOSTENT(3) BIND9 LWRES_GETHOSTENT(3)

andlwres_endhostent_r()provide iteration over the known host entries on systems that provide such
functionality through facilities like/etc/hostsor NIS. The lightweight resolver does not currently implement
these functions; it only provides them as stub functions that always return failure.

lwres_gethostbyname()andlwres_gethostbyname2()look up the hostnamename.
lwres_gethostbyname()always looks for an IPv4 address whilelwres_gethostbyname2()looks for an
address of protocol familyaf: eitherPF_INET or PF_INET6 — IPv4 or IPV6 addresses respectively.
Successful calls of the functions return astruct hostentfor the name that was looked up.NULL is returned
if the lookups bylwres_gethostbyname()or lwres_gethostbyname2()fail.

Reverse lookups of addresses are performed bylwres_gethostbyaddr(). addr is an address of lengthlen
bytes and protocol familytype— PF_INET or PF_INET6. lwres_gethostbyname_r()is a thread−safe
function for forward lookups. If an error occurs, an error code is returned in*error . resbufis a pointer to a
struct hostentwhich is initialised by a successful call tolwres_gethostbyname_r(). buf is a buffer of
lengthlenbytes which is used to store theh_name, h_aliases, andh_addr_list elements of thestruct
hostentreturned inresbuf. Successful calls tolwres_gethostbyname_r()returnresbuf, which is a pointer
to thestruct hostent it created.

lwres_gethostbyaddr_r()is a thread−safe function that performs a reverse lookup of addressaddrwhich is
lenbytes long and is of protocol familytype— PF_INET or PF_INET6. If an error occurs, the error code
is returned in*error . The other function parameters are identical to those inlwres_gethostbyname_r().
resbufis a pointer to astruct hostentwhich is initialised by a successful call tolwres_gethostbyaddr_r().
buf is a buffer of lengthlenbytes which is used to store theh_name, h_aliases, andh_addr_list elements
of thestruct hostent returned inresbuf. Successful calls tolwres_gethostbyaddr_r()returnresbuf, which
is a pointer to thestruct hostent() it created.

RETURN VALUES
The functionslwres_gethostbyname(), lwres_gethostbyname2(), lwres_gethostbyaddr(), and
lwres_gethostent()return NULL to indicate an error. In this case the global variablelwres_h_errnowill
contain one of the following error codes defined in<lwres/netdb.h>:

HOST_NOT_FOUND
The host or address was not found.

TRY_AGAIN
A recoverable error occurred, e.g., a timeout. Retrying the lookup may succeed.

NO_RECOVERY
A non−recoverable error occurred.

NO_DAT A
The name exists, but has no address information associated with it (or vice versa in the case of a
reverse lookup). The code NO_ADDRESS is accepted as a synonym for NO_DAT A for backwards
compatibility.

lwres_hstrerror (3) translates these error codes to suitable error messages.

lwres_gethostent()andlwres_gethostent_r()always returnNULL .

Successful calls tolwres_gethostbyname_r()andlwres_gethostbyaddr_r()returnresbuf, a pointer to the
struct hostent that was initialised by these functions. They returnNULL if the lookups fail or ifbuf was
too small to hold the list of addresses and names referenced by theh_name, h_aliases, andh_addr_list
elements of thestruct hostent. If buf was too small, bothlwres_gethostbyname_r()and
lwres_gethostbyaddr_r()set the global variableerrno to ERANGE.

SEE ALSO
gethostent(3), lwres_getipnode(3), lwres_hstrerror (3)

BUGS
lwres_gethostbyname(), lwres_gethostbyname2(), lwres_gethostbyaddr()andlwres_endhostent()are
not thread safe; they return pointers to static data and provide error codes through a global variable.
Thread−safe versions for name and address lookup are provided bylwres_gethostbyname_r(), and

BIND9 Jun30, 2000 2

LWRES_GETHOSTENT(3) BIND9 LWRES_GETHOSTENT(3)

lwres_gethostbyaddr_r()respectively.

The resolver daemon does not currently support any non−DNS name services such as/etc/hostsor NIS,
consequently the above functions don’t, either.

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2001 Internet Software Consortium.

BIND9 Jun30, 2000 3

LWRES_GETIPNODE(3) BIND9 LWRES_GETIPNODE(3)

NAME
lwres_getipnodebyname, lwres_getipnodebyaddr, lwres_freehostent − lightweight resolver nodename /
address translation API

SYNOPSIS
#include <lwres/netdb.h>

struct hostent * lwres_getipnodebyname(const char *name, int af , int flags, int * error_num);

struct hostent * lwres_getipnodebyaddr(const void *src, size_t len, int af , int * error_num);

void lwres_freehostent(struct hostent *he);

DESCRIPTION
These functions perform thread safe, protocol independent nodename−to−address and
address−to−nodename translation as defined in RFC2553.

They use astruct hostentwhich is defined innamedb.h:

struct hostent{
char *h_name; /* official name of host */
char **h_aliases; /*alias list */
int h_addrtype; /*host address type */
int h_length; /* length of address */
char **h_addr_list;/* list of addresses from name server */

};
#define h_addrh_addr_list[0] /*address, for backward compatibility */

The members of this structure are:

h_name
The official (canonical) name of the host.

h_aliases
A NULL−terminated array of alternate names (nicknames) for the host.

h_addrtype
The type of address being returned − usuallyPF_INET or PF_INET6.

h_length
The length of the address in bytes.

h_addr_list
A NULL terminated array of network addresses for the host. Host addresses are returned in network
byte order.

lwres_getipnodebyname()looks up addresses of protocol familyaf for the hostnamename. Theflags
parameter contains ORed flag bits to specify the types of addresses that are searched for, and the types of
addresses that are returned. The flag bits are:

AI_V4MAPPED
This is used with anaf of AF_INET6, and causes IPv4 addresses to be returned as IPv4−mapped IPv6
addresses.

AI_ALL
This is used with anaf of AF_INET6, and causes all known addresses (IPv6 and IPv4) to be returned.
If AI_V4MAPPED is also set, the IPv4 addresses are return as mapped IPv6 addresses.

AI_ADDRCONFIG
Only return an IPv6 or IPv4 address if here is an active network interface of that type. This is not
currently implemented in the BIND 9 lightweight resolver, and the flag is ignored.

AI_DEFAULT
This default sets theAI_V4MAPPED andAI_ADDRCONFIG flag bits.

BIND9 Jun30, 2000 1

LWRES_GETIPNODE(3) BIND9 LWRES_GETIPNODE(3)

lwres_getipnodebyaddr()performs a reverse lookup of addresssrc which islenbytes long.af denotes the
protocol family, typically PF_INET or PF_INET6.

lwres_freehostent()releases all the memory associated with thestruct hostentpointerhe. Any memory
allocated for theh_name, h_addr_list andh_aliasesis freed, as is the memory for thehostentstructure
itself.

RETURN VALUES
If an error occurs,lwres_getipnodebyname()andlwres_getipnodebyaddr()set*error_numto an
appropriate error code and the function returns aNULL pointer. The error codes and their meanings are
defined in<lwres/netdb.h>:

HOST_NOT_FOUND
No such host is known.

NO_ADDRESS
The server recognised the request and the name but no address is available. Another type of request to
the name server for the domain might return an answer.

TRY_AGAIN
A temporary and possibly transient error occurred, such as a failure of a server to respond. The request
may succeed if retried.

NO_RECOVERY
An unexpected failure occurred, and retrying the request is pointless.

lwres_hstrerror (3) translates these error codes to suitable error messages.

SEE ALSO
RFC2553(), lwres(3), lwres_gethostent(3), lwres_getaddrinfo(3), lwres_getnameinfo(3),
lwres_hstrerror (3).

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001, 2003 Internet Software Consortium.

BIND9 Jun30, 2000 2

LWRES_GETNAMEINFO(3) BIND9 LWRES_GETNAMEINFO(3)

NAME
lwres_getnameinfo − lightweight resolver socket address structure to hostname and service name

SYNOPSIS
#include <lwres/netdb.h>

int lwres_getnameinfo(const struct sockaddr *sa, size_t salen, char * host, size_t hostlen, char * serv,
size_tservlen, int flags);

DESCRIPTION
This function is equivalent to thegetnameinfo(3) function defined in RFC2133.lwres_getnameinfo()
returns the hostname for thestruct sockaddr sawhich issalenbytes long. The hostname is of length
hostlenand is returned via*host. The maximum length of the hostname is 1025 bytes:NI_MAXHOST .

The name of the service associated with the port number insa is returned in*serv. It is servlenbytes long.
The maximum length of the service name isNI_MAXSERV − 32 bytes.

Theflagsargument sets the following bits:

NI_NOFQDN
A fully qualified domain name is not required for local hosts. The local part of the fully qualified
domain name is returned instead.

NI_NUMERICHOST
Return the address in numeric form, as if calling inet_ntop(), instead of a host name.

NI_NAMEREQD
A name is required. If the hostname cannot be found in the DNS and this flag is set, a non−zero error
code is returned. If the hostname is not found and the flag is not set, the address is returned in numeric
form.

NI_NUMERICSERV
The service name is returned as a digit string representing the port number.

NI_DGRAM
Specifies that the service being looked up is a datagram service, and causes getservbyport() to be
called with a second argument of "udp" instead of its default of "tcp". This is required for the few ports
(512−514) that have different services for UDP and TCP.

RETURN VALUES
lwres_getnameinfo()returns 0 on success or a non−zero error code if an error occurs.

SEE ALSO
RFC2133(), getservbyport(3), lwres(3), lwres_getnameinfo(3), lwres_getnamebyaddr(3).
lwres_net_ntop(3).

BUGS
RFC2133 fails to define what the nonzero return values ofgetnameinfo(3) are.

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 1

LWRES_GETRRSETBYNAME(3) BIND9 LWRES_GETRRSETBYNAME(3)

NAME
lwres_getrrsetbyname, lwres_freerrset − retrieve DNS records

SYNOPSIS
#include <lwres/netdb.h>

int lwres_getrrsetbyname(const char *hostname, unsigned int rdclass, unsigned int rdtype,
unsigned intflags, struct rrsetinf o ** res);

void lwres_freerrset(struct rrsetinfo *rrset);

The following structures are used:

struct rdatainfo{
unsigned int rdi_length; /*length of data */
unsigned char *rdi_data; /* record data */

};

struct rrsetinfo{
unsigned int rri_flags; /*RRSET_VALIDATED... */
unsigned int rri_rdclass; /*class number */
unsigned int rri_rdtype; /*RR type number */
unsigned int rri_ttl; /* time to live */
unsigned int rri_nrdatas; /*size of rdatas array */
unsigned int rri_nsigs; /*size of sigs array */
char *rri_name; /* canonical name */
struct rdatainfo *rri_rdatas; /*individual records */
struct rdatainfo *rri_sigs; /* individual signatures */

};

DESCRIPTION
lwres_getrrsetbyname()gets a set of resource records associated with ahostname, class, and type.
hostnameis a pointer a to null−terminated string. Theflagsfield is currently unused and must be zero.

After a successful call tolwres_getrrsetbyname(), *res is a pointer to anrrsetinfo structure, containing a
list of one or morerdatainfo structures containing resource records and potentially another list of
rdatainfo structures containing SIG resource records associated with those records. The members
rri_rdclass andrri_rdtype are copied from the parameters.rri_ttl andrri_name are properties of the
obtained rrset. The resource records contained inrri_rdatas andrri_sigs are in uncompressed DNS wire
format. Properties of the rdataset are represented in therri_flags bitfield. If the RRSET_VALIDATED bit is
set, the data has been DNSSEC validated and the signatures verified.

All of the information returned bylwres_getrrsetbyname()is dynamically allocated: therrsetinfo and
rdatainfo structures, and the canonical host name strings pointed to by therrsetinfostructure. Memory
allocated for the dynamically allocated structures created by a successful call tolwres_getrrsetbyname()is
released bylwres_freerrset(). rrset is a pointer to astruct rrset created by a call to
lwres_getrrsetbyname().

RETURN VALUES
lwres_getrrsetbyname()returns zero on success, and one of the following error codes if an error occurred:

ERRSET_NONAME
the name does not exist

ERRSET_NODAT A
the name exists, but does not have data of the desired type

ERRSET_NOMEMORY
memory could not be allocated

BIND9 Oct18, 2000 1

LWRES_GETRRSETBYNAME(3) BIND9 LWRES_GETRRSETBYNAME(3)

ERRSET_INVAL
a parameter is invalid

ERRSET_FAIL
other failure

SEE ALSO
lwres(3).

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Oct18, 2000 2

LWRES_GNBA(3) BIND9 LWRES_GNBA(3)

NAME
lwres_gnbarequest_render, lwres_gnbaresponse_render, lwres_gnbarequest_parse,
lwres_gnbaresponse_parse, lwres_gnbaresponse_free, lwres_gnbarequest_free − lightweight resolver
getnamebyaddress message handling

SYNOPSIS
#include <lwres/lwres.h>

lwres_result_t lwres_gnbarequest_render(lwres_context_t *ctx, lwres_gnbarequest_t *req,
lwres_lwpacket_t *pkt, lwres_buffer_t *b);

lwres_result_t lwres_gnbaresponse_render(lwres_context_t *ctx, lwres_gnbaresponse_t *req,
lwres_lwpacket_t *pkt, lwres_buffer_t *b);

lwres_result_t lwres_gnbarequest_parse(lwres_context_t *ctx, lwres_buffer_t *b,
lwres_lwpacket_t *pkt, lwres_gnbarequest_t **structp);

lwres_result_t lwres_gnbaresponse_parse(lwres_context_t *ctx, lwres_buffer_t *b,
lwres_lwpacket_t *pkt,
lwres_gnbaresponse_t **structp);

void lwres_gnbaresponse_free(lwres_context_t *ctx, lwres_gnbaresponse_t **structp);

void lwres_gnbarequest_free(lwres_context_t *ctx, lwres_gnbarequest_t **structp);

DESCRIPTION
These are low−level routines for creating and parsing lightweight resolver address−to−name lookup request
and response messages.

There are four main functions for the getnamebyaddr opcode. One render function converts a
getnamebyaddr request structure —lwres_gnbarequest_t— to the lightweight resolver’s canonical
format. It is complemented by a parse function that converts a packet in this canonical format to a
getnamebyaddr request structure. Another render function converts the getnamebyaddr response structure
— lwres_gnbaresponse_tto the canonical format. This is complemented by a parse function which
converts a packet in canonical format to a getnamebyaddr response structure.

These structures are defined inlwres/lwres.h. They are shown below.

#define LWRES_OPCODE_GETNAMEBYADDR 0x00010002U

typedef struct {
lwres_uint32_t flags;
lwres_addr_t addr;

} l wres_gnbarequest_t;

typedef struct {
lwres_uint32_t flags;
lwres_uint16_t naliases;
char *realname;
char **aliases;
lwres_uint16_t realnamelen;
lwres_uint16_t *aliaslen;
void *base;
size_t baselen;

} l wres_gnbaresponse_t;

lwres_gnbarequest_render()uses resolver contextctx to convert getnamebyaddr request structurereq to
canonical format. The packet header structurepkt is initialised and transferred to bufferb. The contents of
*req are then appended to the buffer in canonical format.lwres_gnbaresponse_render()performs the
same task, except it converts a getnamebyaddr response structurelwres_gnbaresponse_tto the lightweight

BIND9 Jun30, 2000 1

LWRES_GNBA(3) BIND9 LWRES_GNBA(3)

resolver’s canonical format.

lwres_gnbarequest_parse()uses contextctx to convert the contents of packetpkt to a
lwres_gnbarequest_tstructure. Bufferb provides space to be used for storing this structure. When the
function succeeds, the resultinglwres_gnbarequest_tis made available through*structp.
lwres_gnbaresponse_parse()offers the same semantics aslwres_gnbarequest_parse()except it yields a
lwres_gnbaresponse_tstructure.

lwres_gnbaresponse_free()andlwres_gnbarequest_free()release the memory in resolver contextctx that
was allocated to thelwres_gnbaresponse_tor lwres_gnbarequest_tstructures referenced viastructp. Any
memory associated with ancillary buffers and strings for those structures is also discarded.

RETURN VALUES
The getnamebyaddr opcode functionslwres_gnbarequest_render(), lwres_gnbaresponse_render()
lwres_gnbarequest_parse()andlwres_gnbaresponse_parse()all returnLW RES_R_SUCCESSon
success. They returnLW RES_R_NOMEMORY if memory allocation fails.
LW RES_R_UNEXPECTEDEND is returned if the available space in the bufferb is too small to
accommodate the packet header or thelwres_gnbarequest_tandlwres_gnbaresponse_tstructures.
lwres_gnbarequest_parse()andlwres_gnbaresponse_parse()will return
LW RES_R_UNEXPECTEDEND if the buffer is not empty after decoding the received packet. These
functions will returnLW RES_R_FAILURE if pktflags in the packet header structurelwres_lwpacket_t
indicate that the packet is not a response to an earlier query.

SEE ALSO
lwres_packet(3).

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 2

LWRES_HSTRERROR(3) BIND9 LWRES_HSTRERROR(3)

NAME
lwres_herror, lwres_hstrerror − lightweight resolver error message generation

SYNOPSIS
#include <lwres/netdb.h>

void lwres_herror(const char *s);

const char * lwres_hstrerror(int err);

DESCRIPTION
lwres_herror() prints the strings onstderr followed by the string generated bylwres_hstrerror() for the
error code stored in the global variablelwres_h_errno.

lwres_hstrerror() returns an appropriate string for the error code gievn byerr. The values of the error
codes and messages are as follows:

NETDB_SUCCESS
Resolver Error 0 (no error)

HOST_NOT_FOUND
Unknown host

TRY_AGAIN
Host name lookup failure

NO_RECOVERY
Unknown server error

NO_DAT A
No address associated with name

RETURN VALUES
The string Unknown resolver error is returned bylwres_hstrerror() when the value oflwres_h_errno is
not a valid error code.

SEE ALSO
herror (3), lwres_hstrerror (3).

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 1

LWRES_INETNTOP(3) BIND9 LWRES_INETNTOP(3)

NAME
lwres_net_ntop − lightweight resolver IP address presentation

SYNOPSIS
#include <lwres/net.h>

const char * lwres_net_ntop(intaf , const void *src, char * dst, size_t size);

DESCRIPTION
lwres_net_ntop()converts an IP address of protocol familyaf — IPv4 or IPv6 — at locationsrc from
network format to its conventional representation as a string. For IPv4 addresses, that string would be a
dotted−decimal. An IPv6 address would be represented in colon notation as described in RFC1884.

The generated string is copied todstprovidedsizeindicates it is long enough to store the ASCII
representation of the address.

RETURN VALUES
If successful, the function returnsdst: a pointer to a string containing the presentation format of the address.
lwres_net_ntop()returnsNULL and sets the global variableerrno to EAFNOSUPPORT if the protocol
family given in af is not supported.

SEE ALSO
RFC1884(), inet_ntop(3), errno(3).

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 1

LWRES_NOOP(3) BIND9 LWRES_NOOP(3)

NAME
lwres_nooprequest_render, lwres_noopresponse_render, lwres_nooprequest_parse,
lwres_noopresponse_parse, lwres_noopresponse_free, lwres_nooprequest_free − lightweight resolver
no−op message handling

SYNOPSIS
#include <lwres/lwres.h>

lwres_result_t lwres_nooprequest_render(lwres_context_t *ctx, lwres_nooprequest_t *req,
lwres_lwpacket_t *pkt, lwres_buffer_t *b);

lwres_result_t lwres_noopresponse_render(lwres_context_t *ctx, lwres_noopresponse_t *req,
lwres_lwpacket_t *pkt, lwres_buffer_t *b);

lwres_result_t lwres_nooprequest_parse(lwres_context_t *ctx, lwres_buffer_t *b,
lwres_lwpacket_t *pkt, lwres_nooprequest_t **structp);

lwres_result_t lwres_noopresponse_parse(lwres_context_t *ctx, lwres_buffer_t *b,
lwres_lwpacket_t *pkt,
lwres_noopresponse_t **structp);

void lwres_noopresponse_free(lwres_context_t *ctx, lwres_noopresponse_t **structp);

void lwres_nooprequest_free(lwres_context_t *ctx, lwres_nooprequest_t **structp);

DESCRIPTION
These are low−level routines for creating and parsing lightweight resolver no−op request and response
messages.

The no−op message is analogous to aping packet: a packet is sent to the resolver daemon and is simply
echoed back. The opcode is intended to allow a client to determine if the server is operational or not.

There are four main functions for the no−op opcode. One render function converts a no−op request
structure —lwres_nooprequest_t— to the lighweight resolver’s canonical format. It is complemented by
a parse function that converts a packet in this canonical format to a no−op request structure. Another render
function converts the no−op response structure —lwres_noopresponse_tto the canonical format. This is
complemented by a parse function which converts a packet in canonical format to a no−op response
structure.

These structures are defined inlwres/lwres.h. They are shown below.

#define LWRES_OPCODE_NOOP 0x00000000U

typedef struct {
lwres_uint16_t datalength;
unsigned char *data;

} l wres_nooprequest_t;

typedef struct {
lwres_uint16_t datalength;
unsigned char *data;

} l wres_noopresponse_t;

Although the structures have different types, they are identical. This is because the no−op opcode simply
echos whatever data was sent: the response is therefore identical to the request.

lwres_nooprequest_render()uses resolver contextctx to convert no−op request structurereq to canonical
format. The packet header structurepkt is initialised and transferred to bufferb. The contents of*req are
then appended to the buffer in canonical format.lwres_noopresponse_render()performs the same task,
except it converts a no−op response structurelwres_noopresponse_tto the lightweight resolver’s canonical
format.

BIND9 Jun30, 2000 1

LWRES_NOOP(3) BIND9 LWRES_NOOP(3)

lwres_nooprequest_parse()uses contextctx to convert the contents of packetpkt to a
lwres_nooprequest_tstructure. Bufferb provides space to be used for storing this structure. When the
function succeeds, the resultinglwres_nooprequest_tis made available through*structp.
lwres_noopresponse_parse()offers the same semantics aslwres_nooprequest_parse()except it yields a
lwres_noopresponse_tstructure.

lwres_noopresponse_free()andlwres_nooprequest_free()release the memory in resolver contextctx that
was allocated to thelwres_noopresponse_tor lwres_nooprequest_tstructures referenced viastructp.

RETURN VALUES
The no−op opcode functionslwres_nooprequest_render(), lwres_noopresponse_render()
lwres_nooprequest_parse()andlwres_noopresponse_parse()all returnLW RES_R_SUCCESSon
success. They returnLW RES_R_NOMEMORY if memory allocation fails.
LW RES_R_UNEXPECTEDEND is returned if the available space in the bufferb is too small to
accommodate the packet header or thelwres_nooprequest_tandlwres_noopresponse_tstructures.
lwres_nooprequest_parse()andlwres_noopresponse_parse()will return
LW RES_R_UNEXPECTEDEND if the buffer is not empty after decoding the received packet. These
functions will returnLW RES_R_FAILURE if pktflags in the packet header structurelwres_lwpacket_t
indicate that the packet is not a response to an earlier query.

SEE ALSO
lwres_packet(3)

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 2

LWRES_PACKET(3) BIND9 LWRES_PACKET(3)

NAME
lwres_lwpacket_renderheader, lwres_lwpacket_parseheader − lightweight resolver packet handling
functions

SYNOPSIS
#include <lwres/lwpacket.h>

lwres_result_t lwres_lwpacket_renderheader(lwres_buffer_t *b, lwres_lwpacket_t *pkt);

lwres_result_t lwres_lwpacket_parseheader(lwres_buffer_t *b, lwres_lwpacket_t *pkt);

DESCRIPTION
These functions rely on astruct lwres_lwpacketwhich is defined inlwres/lwpacket.h.

typedef struct lwres_lwpacket lwres_lwpacket_t;

struct lwres_lwpacket {
lwres_uint32_t length;
lwres_uint16_t version;
lwres_uint16_t pktflags;
lwres_uint32_t serial;
lwres_uint32_t opcode;
lwres_uint32_t result;
lwres_uint32_t recvlength;
lwres_uint16_t authtype;
lwres_uint16_t authlength;

};

The elements of this structure are:

length
the overall packet length, including the entire packet header. This field is filled in by the
lwres_gabn_*() and lwres_gnba_*() calls.

version
the header format. There is currently only one format,LW RES_LWPACKETVERSION_0 . This
field is filled in by the lwres_gabn_*() and lwres_gnba_*() calls.

pktflags
library−defined flags for this packet: for instance whether the packet is a request or a reply. Flag values
can be set, but not defined by the caller. This field is filled in by the application wit the exception of
the LWRES_LWPACKETFLAG_RESPONSE bit, which is set by the library in the lwres_gabn_*()
and lwres_gnba_*() calls.

serial
is set by the requestor and is returned in all replies. If two or more packets from the same source have
the same serial number and are from the same source, they are assumed to be duplicates and the latter
ones may be dropped. This field must be set by the application.

opcode
indicates the operation. Opcodes between 0x00000000 and 0x03ffffff a re reserved for use by the
lightweight resolver library. Opcodes between 0x04000000 and 0xffffffff a re application defined. This
field is filled in by the lwres_gabn_*() and lwres_gnba_*() calls.

result
is only valid for replies. Results between 0x04000000 and 0xffffffff a re application defined. Results
between 0x00000000 and 0x03ffffff a re reserved for library use. This field is filled in by the
lwres_gabn_*() and lwres_gnba_*() calls.

recvlength
is the maximum buffer size that the receiver can handle on requests and the size of the buffer needed to

BIND9 Jun30, 2000 1

LWRES_PACKET(3) BIND9 LWRES_PACKET(3)

satisfy a request when the buffer is too large for replies. This field is supplied by the application.

authtype
defines the packet level authentication that is used. Authorisation types between 0x1000 and 0xffff are
application defined and types between 0x0000 and 0x0fff are reserved for library use. Currently these
are not used and must be zero.

authlen
gives the length of the authentication data. Since packet authentication is currently not used, this must
be zero.

The following opcodes are currently defined:

NOOP
Success is always returned and the packet contents are echoed. The lwres_noop_*() functions should
be used for this type.

GETADDRSBYNAME
returns all known addresses for a given name. The lwres_gabn_*() functions should be used for this
type.

GETNAMEBYADDR
return the hostname for the given address. The lwres_gnba_*() functions should be used for this type.

lwres_lwpacket_renderheader()transfers the contents of lightweight resolver packet structure
lwres_lwpacket_t*pkt in network byte order to the lightweight resolver buffer,*b.

lwres_lwpacket_parseheader()performs the converse operation. It transfers data in network byte order
from buffer*b to resolver packet*pkt. The contents of the bufferb should correspond to a
lwres_lwpacket_t.

RETURN VALUES
Successful calls tolwres_lwpacket_renderheader()andlwres_lwpacket_parseheader()return
LW RES_R_SUCCESS. If there is insufficient space to copy data between the buffer*b and lightweight
resolver packet*pkt both functions returnLW RES_R_UNEXPECTEDEND.

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 2

LWRES_RESUTIL(3) BIND9 LWRES_RESUTIL(3)

NAME
lwres_string_parse, lwres_addr_parse, lwres_getaddrsbyname, lwres_getnamebyaddr − lightweight resolver
utility functions

SYNOPSIS
#include <lwres/lwres.h>

lwres_result_t lwres_string_parse(lwres_buffer_t *b, char ** c, lwres_uint16_t *len);

lwres_result_t lwres_addr_parse(lwres_buffer_t *b, lwres_addr_t *addr);

lwres_result_t lwres_getaddrsbyname(lwres_context_t *ctx, const char *name,
lwres_uint32_t addrtypes,
lwres_gabnresponse_t **structp);

lwres_result_t lwres_getnamebyaddr(lwres_context_t *ctx, lwres_uint32_taddrtype,
lwres_uint16_t addrlen, const unsigned char *addr,
lwres_gnbaresponse_t **structp);

DESCRIPTION
lwres_string_parse()retrieves a DNS−encoded string starting the current pointer of lightweight resolver
bufferb: i.e. b−>current. When the function returns, the address of the first byte of the encoded string is
returned via*c and the length of that string is given by *len. The buffer’s current pointer is advanced to
point at the character following the string length, the encoded string, and the trailingNULL character.

lwres_addr_parse()extracts an address from the bufferb. The buffer’s current pointerb−>current is
presumed to point at an encoded address: the address preceded by a 32−bit protocol family identifier and a
16−bit length field. The encoded address is copied toaddr−>addressandaddr−>length indicates the size
in bytes of the address that was copied.b−>current is advanced to point at the next byte of available data
in the buffer following the encoded address.

lwres_getaddrsbyname()andlwres_getnamebyaddr()use thelwres_gnbaresponse_tstructure defined
below:

typedef struct {
lwres_uint32_t flags;
lwres_uint16_t naliases;
lwres_uint16_t naddrs;
char *realname;
char **aliases;
lwres_uint16_t realnamelen;
lwres_uint16_t *aliaslen;
lwres_addrlist_t addrs;
void *base;
size_t baselen;

} l wres_gabnresponse_t;

The contents of this structure are not manipulated directly but they are controlled through the
lwres_gabn(3) functions.

The lightweight resolver useslwres_getaddrsbyname()to perform foward lookups. Hostnamenameis
looked up using the resolver contextctx for memory allocation.addrtypesis a bitmask indicating which
type of addresses are to be looked up. Current values for this bitmask areLW RES_ADDRTYPE_V4 for
IPv4 addresses andLW RES_ADDRTYPE_V6 for IPv6 addresses. Results of the lookup are returned in
*structp.

lwres_getnamebyaddr()performs reverse lookups. Resolver contextctx is used for memory allocation.
The address type is indicated byaddrtype: LW RES_ADDRTYPE_V4or LW RES_ADDRTYPE_V6. The
address to be looked up is given by addrand its length isaddrlenbytes. The result of the function call is
made available through*structp.

BIND9 Jun30, 2000 1

LWRES_RESUTIL(3) BIND9 LWRES_RESUTIL(3)

RETURN VALUES
Successful calls tolwres_string_parse()andlwres_addr_parse()returnLW RES_R_SUCCESS.Both
functions returnLW RES_R_FAILURE if the buffer is corrupt orLW RES_R_UNEXPECTEDEND if
the buffer has less space than expected for the components of the encoded string or address.

lwres_getaddrsbyname()returnsLW RES_R_SUCCESSon success and it returns
LW RES_R_NOTFOUND if the hostnamenamecould not be found.

LW RES_R_SUCCESSis returned by a successful call tolwres_getnamebyaddr().

Both lwres_getaddrsbyname()andlwres_getnamebyaddr()returnLW RES_R_NOMEMORY when
memory allocation requests fail andLW RES_R_UNEXPECTEDEND if the buffers used for sending
queries and receiving replies are too small.

SEE ALSO
lwres_buffer(3), lwres_gabn(3).

COPYRIGHT
Copyright © 2004, 2005, 2007 Internet Systems Consortium, Inc. ("ISC")
Copyright © 2000, 2001 Internet Software Consortium.

BIND9 Jun30, 2000 2

MAKECONTEXT (3) NetBSD Library Functions Manual MAKECONTEXT (3)

NAME
makecontext , swapcontext — manipulate user contexts

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ucontext.h>

void
makecontext (ucontext_t ∗ucp , void (∗func)() , int argc , . . .);

int
swapcontext (ucontext_t ∗ restrict oucp , ucontext_t ∗ restrict ucp);

DESCRIPTION
The makecontext () function modifies the object pointed to byucp , which has been initialized using
getcontext (2). Whenthis context is resumed usingswapcontext () or setcontext (2), program
execution continues as iffunc had been called with the arguments specified afterargc in the call of
makecontext (). Thevalue of argc must be equal to the number of integer arguments following it, and
must be equal to the number of integer arguments expected byfunc ; otherwise, the behavior is undefined.

Before being modified usingmakecontext (), a stack must be allocated for the context (in theuc_stack
member), and a context to resume afterfunc has returned must be determined (pointed to by theuc_link
member); otherwise, the behavior is undefined.If uc_link is a null pointer, then the context is the main
context, and the process will exit with an exit status of 0 upon return.

The swapcontext () function saves the current context in the object pointed to byoucp , sets the current
context to that specified in the object pointed to byucp , and resumes execution. Whena context saved by
swapcontext () is restored usingsetcontext (2), execution will resume as if the corresponding invoca-
tion of swapcontext () had just returned (successfully).

RETURN VALUES
Themakecontext () function returns no value.

On success,swapcontext () returns a value of 0, Otherwise, −1 is returned anderrno is set to indicate the
error.

ERRORS
Theswapcontext () function will fail if:

[EFAULT] Theoucp argument points to an invalid address.

[EFAULT] Theucp argument points to an invalid address.

[EINVAL] The contents of the datum pointed to byucp are invalid.

SEE ALSO
_exit (2), getcontext (2), setcontext (2), ucontext (2)

STANDARDS
The makecontext () andswapcontext () functions conform toX/Open System Interfaces and Headers
Issue 5 (“XSH5”).

The standard does not clearly define the type of integer arguments passed tofunc via
makecontext (); portable applications should not rely on the implementation detail that it may be

NetBSD 3.0 June 13, 2001 1

MAKECONTEXT (3) NetBSD Library Functions Manual MAKECONTEXT (3)

possible to pass pointer arguments to functions.This may be clarified in a future revision of the standard.

HISTORY
Themakecontext () andswapcontext () functions first appeared inAT&T System V.4UNIX .

NetBSD 3.0 June 13, 2001 2

MALLOC (3) NetBSD Library Functions Manual MALLOC (3)

NAME
malloc , calloc , realloc , free — general purpose memory allocation functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

void ∗
malloc (size_t size);

void ∗
calloc (size_t number , size_t size);

void ∗
realloc (void ∗ptr , size_t size);

void
free (void ∗ptr);

const char ∗ _malloc_options;

DESCRIPTION
The malloc () function allocatessize bytes of uninitialized memory. The allocated space is suitably
aligned (after possible pointer coercion) for storage of any type of object.

Thecalloc () function allocates space fornumber objects, eachsize bytes in length. The result is iden-
tical to callingmalloc () with an argument of “number∗ size”, with the exception that the allocated mem-
ory is explicitly initialized to zero bytes.

The realloc () function changes the size of the previously allocated memory referenced byptr to size
bytes. Thecontents of the memory are unchanged up to the lesser of the new and old sizes. If the new size
is larger, the value of the newly allocated portion of the memory is undefined.Upon success, the memory
referenced byptr is freed and a pointer to the newly allocated memory is returned. Note thatrealloc ()
may move the memory allocation, resulting in a different return value thanptr . If ptr is NULL, the
realloc () function behaves identically tomalloc () for the specified size.

The free () function causes the allocated memory referenced byptr to be made available for future alloca-
tions. Ifptr is NULL, no action occurs.

TUNING
Once, when the first call is made to one of these memory allocation routines, various flags will be set or
reset, which affect the workings of this allocator implementation.

The “name” of the file referenced by the symbolic link named/etc/malloc.conf , the value of the envi-
ronment variableMALLOC_OPTIONS, and the string pointed to by the global variable_malloc_optionswill
be interpreted, in that order, character by character as flags.

Most flags are single letters, where uppercase indicates that the behavior is set, or on, and lowercase means
that the behavior is not set, or off.

A All warnings (except for the warning about unknown flags being set) become fatal. Theprocess
will call abort (3) in these cases.

H Usemadvise (2) when pages within a chunk are no longer in use, but the chunk as a whole can-
not yet be deallocated. This is primarily of use when swapping is a real possibility, due to the high
overhead of themadvise () system call.

NetBSD 3.0 October 15, 2007 1

MALLOC (3) NetBSD Library Functions Manual MALLOC (3)

J Each byte of new memory allocated bymalloc (), realloc () will be initialized to 0xa5.All
memory returned byfree (), realloc () will be initialized to 0x5a. This is intended for debug-
ging and will impact performance negatively.

K Increase/decrease the virtual memory chunk size by a factor of two. Thedefault chunk size is 1
MB. This option can be specified multiple times.

N Increase/decrease the number of arenas by a factor of two. Thedefault number of arenas is four
times the number of CPUs, or one if there is a single CPU. This option can be specified multiple
times.

P Various statistics are printed at program exit via anatexit (3) function. This has the potential to
cause deadlock for a multi-threaded process that exits while one or more threads are executing in
the memory allocation functions.Therefore, this option should only be used with care; it is pri-
marily intended as a performance tuning aid during application development.

Q Increase/decrease the size of the allocation quantum by a factor of two. Thedefault quantum is the
minimum allowed by the architecture (typically 8 or 16 bytes). This option can be specified multi-
ple times.

S Increase/decrease the size of the maximum size class that is a multiple of the quantum by a factor
of two. Above this size, power-of-two spacing is used for size classes. The default value is 512
bytes. Thisoption can be specified multiple times.

U Generate “utrace” entries forktrace (1), for all operations.Consult the source for details on this
option.

V Attempting to allocate zero bytes will return aNULL pointer instead of a valid pointer. (The
default behavior is to make a minimal allocation and return a pointer to it.)This option is provided
for System V compatibility. This option is incompatible with the “X” option.

X Rather than return failure for any allocation function, display a diagnostic message onstderr
and cause the program to drop core (usingabort (3)). Thisoption should be set at compile time
by including the following in the source code:

_malloc_options = "X";

Z Each byte of new memory allocated bymalloc (), realloc () will be initialized to 0. Note that
this initialization only happens once for each byte, sorealloc () call do not zero memory that
was previously allocated. This is intended for debugging and will impact performance negatively.

The “J” and “Z” options are intended for testing and debugging. Anapplication which changes its behavior
when these options are used is flawed.

IMPLEMENT ATION NOTES
This allocator uses multiple arenas in order to reduce lock contention for threaded programs on multi-proces-
sor systems. This works well with regard to threading scalability, but incurs some costs.There is a small
fixed per-arena overhead, and additionally, arenas manage memory completely independently of each other,
which means a small fixed increase in overall memory fragmentation.These overheads are not generally an
issue, given the number of arenas normally used. Note that using substantially more arenas than the default
is not likely to improve performance, mainly due to reduced cache performance.However, it may make
sense to reduce the number of arenas if an application does not make much use of the allocation functions.

Memory is conceptually broken into equal-sized chunks, where the chunk size is a power of two that is
greater than the page size. Chunks are always aligned to multiples of the chunk size.This alignment makes
it possible to find metadata for user objects very quickly.

NetBSD 3.0 October 15, 2007 2

MALLOC (3) NetBSD Library Functions Manual MALLOC (3)

User objects are broken into three categories according to size: small, large, and huge. Small objects are no
larger than one half of a page.Large objects are smaller than the chunk size. Huge objects are a multiple of
the chunk size.Small and large objects are managed by arenas; huge objects are managed separately in a
single data structure that is shared by all threads. Huge objects are used by applications infrequently enough
that this single data structure is not a scalability issue.

Each chunk that is managed by an arena tracks its contents in a page map as runs of contiguous pages
(unused, backing a set of small objects, or backing one large object). The combination of chunk alignment
and chunk page maps makes it possible to determine all metadata regarding small and large allocations in
constant time.

Small objects are managed in groups by page runs. Each run maintains a bitmap that tracks which regions
are in use.Allocation requests that are no more than half the quantum (see the “Q” option) are rounded up to
the nearest power of two (typically 2, 4, or 8). Allocation requests that are more than half the quantum, but
no more than the maximum quantum-multiple size class (see the “S” option) are rounded up to the nearest
multiple of the quantum. Allocation requests that are larger than the maximum quantum-multiple size class,
but no larger than one half of a page, are rounded up to the nearest power of two. Allocationrequests that
are larger than half of a page, but small enough to fit in an arena-managed chunk (see the “K” option), are
rounded up to the nearest run size. Allocation requests that are too large to fit in an arena-managed chunk
are rounded up to the nearest multiple of the chunk size.

Allocations are packed tightly together, which can be an issue for multi-threaded applications. If you need to
assure that allocations do not suffer from cache line sharing, round your allocation requests up to the nearest
multiple of the cache line size.

DEBUGGING MALLOC PR OBLEMS
The first thing to do is to set the “A” option.This option forces a coredump (if possible) at the first sign of
trouble, rather than the normal policy of trying to continue if at all possible.

It is probably also a good idea to recompile the program with suitable options and symbols for debugger sup-
port.

If the program starts to give unusual results, coredump or generally behave differently without emitting any
of the messages mentioned in the next section, it is likely because it depends on the storage being filled with
zero bytes.Try running it with the “Z” option set; if that improves the situation, this diagnosis has been con-
firmed. If the program still misbehaves, the likely problem is accessing memory outside the allocated area.

Alternatively, if the symptoms are not easy to reproduce, setting the “J” option may help provoke the prob-
lem.

In truly difficult cases, the “U” option, if supported by the kernel, can provide a detailed trace of all calls
made to these functions.

Unfortunately this implementation does not provide much detail about the problems it detects; the perfor-
mance impact for storing such information would be prohibitive. There are a number of allocator implemen-
tations available on the Internet which focus on detecting and pinpointing problems by trading performance
for extra sanity checks and detailed diagnostics.

DIAGNOSTIC MESSAGES
If any of the memory allocation/deallocation functions detect an error or warning condition, a message will
be printed to file descriptorSTDERR_FILENO. Errors will result in the process dumping core. If the “A”
option is set, all warnings are treated as errors.

The _malloc_message variable allows the programmer to override the function which emits the text strings
forming the errors and warnings if for some reason thestderr file descriptor is not suitable for this.Please
note that doing anything which tries to allocate memory in this function is likely to result in a crash or dead-

NetBSD 3.0 October 15, 2007 3

MALLOC (3) NetBSD Library Functions Manual MALLOC (3)

lock.

All messages are prefixed by “〈progname 〉: (malloc) ”.

RETURN VALUES
The malloc () andcalloc () functions return a pointer to the allocated memory if successful; otherwise a
NULLpointer is returned anderrno is set toENOMEM.

The realloc () function returns a pointer, possibly identical toptr , to the allocated memory if successful;
otherwise aNULLpointer is returned, anderrno is set toENOMEMif the error was the result of an allocation
failure. Therealloc () function always leaves the original buffer intact when an error occurs.

Thefree () function returns no value.

ENVIRONMENT
The following environment variables affect the execution of the allocation functions:

MALLOC_OPTIONSIf the environment variableMALLOC_OPTIONSis set, the characters it contains will
be interpreted as flags to the allocation functions.

EXAMPLES
To dump core whenever a problem occurs:

ln -s ’A’ /etc/malloc.conf

To specify in the source that a program does no return value checking on calls to these functions:

_malloc_options = "X";

SEE ALSO
limits (1), madvise (2), mmap(2), sbrk (2), alloca (3), atexit (3), getpagesize (3), memory(3),
posix_memalign (3)

STANDARDS
Themalloc (), calloc (), realloc () andfree () functions conform toISO/IEC9899:1990 (“ISO C90”).

NetBSD 3.0 October 15, 2007 4

MATH(3) MATH(3)

NAME
math − introduction to mathematical library functions

DESCRIPTION
These functions constitute the C math library, libm. The link editor searches this library under the “−lm”
option. Declarationsfor these functions may be obtained from the include file <math.h>.

LIST OF FUNCTIONS
Name Appears on Page Description Error Bound (ULPs)

acos acos.3 inverse trigonometric function 3
acosh acosh.3 inverse hyperbolic function 3
asin asin.3 inverse trigonometric function 3
asinh asinh.3 inverse hyperbolic function 3
atan atan.3 inverse trigonometric function 1
atanh atanh.3 inverse hyperbolic function 3
atan2 atan2.3 inverse trigonometric function 2
cbrt sqrt.3 cube root 1
ceil ceil.3 integer no less than 0
copysign ieee.3 copy sign bit 0
cos cos.3 trigonometric function 1
cosh cosh.3 hyperbolic function 3
erf erf.3 error function ???
erfc erf.3 complementary error function ???
exp exp.3 exponential 1
expm1 exp.3 exp(x)−1 1
fabs fabs.3 absolutevalue 0
finite ieee.3 test for finity 0
floor floor.3 integer no greater than 0
fmod fmod.3 remainder ???
hypot hypot.3 Euclideandistance 1
ilogb ieee.3 exponent extraction 0
isinf isinf.3 test for infinity 0
isnan isnan.3 test for not-a-number 0
j0 j0.3 Bessel function ???
j1 j0.3 Bessel function ???
jn j0.3 Bessel function ???
lgamma lgamma.3 loggamma function ???
log exp.3 naturallogarithm 1
log10 exp.3 logarithm to base 10 3
log1p exp.3 log(1+x) 1
nan nan.3 return quietNaN 0
nextafter ieee.3 next representable number 0
pow exp.3 exponential x**y 60−500
remainder ieee.3 remainder 0
rint rint.3 round to nearest integer 0
scalbn ieee.3 exponent adjustment 0
sin sin.3 trigonometric function 1
sinh sinh.3 hyperbolic function 3
sqrt sqrt.3 square root 1
tan tan.3 trigonometric function 3
tanh tanh.3 hyperbolic function 3
trunc trunc.3 nearest integral value 3
y0 j0.3 Bessel function ???
y1 j0.3 Bessel function ???
yn j0.3 Bessel function ???

February 23, 2007 1

MATH(3) MATH(3)

LIST OF DEFINED VALUES
Name Value Description

M_E 2.7182818284590452354 e
M_LOG2E 1.4426950408889634074 log 2e
M_LOG10E 0.43429448190325182765 log 10e
M_LN2 0.69314718055994530942 log e2
M_LN10 2.30258509299404568402 log e10
M_PI 3.14159265358979323846 pi
M_PI_2 1.57079632679489661923 pi/2
M_PI_4 0.78539816339744830962 pi/4
M_1_PI 0.31830988618379067154 1/pi
M_2_PI 0.63661977236758134308 2/pi
M_2_SQRTPI 1.12837916709551257390 2/sqrt(pi)
M_SQRT2 1.41421356237309504880 sqrt(2)
M_SQRT1_2 0.70710678118654752440 1/sqrt(2)

NOTES
In 4.3 BSD, distributed from the University of California in late 1985, most of the foregoing functions
come in two versions, one for the double−precision "D" format in the DEC VAX−11 family of computers,
another for double−precision arithmetic conforming to the IEEE Standard 754 for Binary Floating−Point
Arithmetic. Thetwo versions behave very similarly, as should be expected from programs more accurate
and robust than was the norm when UNIX was born.For instance, the programs are accurate to within the
numbers ofulps tabulated above; an ulp is oneUnit in theLastPlace. Andthe programs have been cured
of anomalies that afflicted the older math librarylibm in which incidents like the following had been
reported:

sqrt(−1.0) = 0.0 and log(−1.0) = −1.7e38.
cos(1.0e−11) > cos(0.0) > 1.0.
pow(x,1.0)≠ x when x = 2.0, 3.0, 4.0, ..., 9.0.
pow(−1.0,1.0e10) trapped on Integer Overflow.
sqrt(1.0e30) and sqrt(1.0e−30) were very slow.

However the two versions do differ in ways that have to be explained, to which end the following notes are
provided.

DEC VAX−11 D_floating−point:

This is the format for which the original math librarylibm was dev eloped, and to which this manual is still
principally dedicated. It isthedouble−precision format for the PDP−11 and the earlier VAX−11 machines;
VAX−11s after 1983 were provided with an optional "G" format closer to the IEEE double−precision for-
mat. Theearlier DEC MicroVAXs have no D format, only G double−precision. (Why? Why not?)

Properties of D_floating−point:
Wordsize: 64 bits, 8 bytes. Radix: Binary.
Precision: 56 significant bits, roughly like 17 significant decimals.

If x and x’ are consecutive positive D_floating−point numbers (they differ by 1ulp), then
1.3e−17 < 0.5**56 < (x’−x)/x 0.5**55 < 2.8e−17.

Range: Overflow threshold =2.0**127 =1.7e38.
Underflow threshold = 0.5**128 =2.9e−39.
NOTE: THISRANGE IS COMPARATIVELY NARROW.
Overflow customarily stops computation.
Underflow is customarily flushed quietly to zero.
CAUTION:

It is possible to have x ≠ y and yet x−y = 0 because of underflow. Similarly x >
y > 0 cannot prevent either x∗y = 0 or y/x = 0 from happening without warning.

Zero is represented ambiguously.
Although 2**55 different representations of zero are accepted by the hardware, only the
obvious representation is ever produced. Thereis no −0 on a VAX.

∞ is not part of the VAX architecture.

February 23, 2007 2

MATH(3) MATH(3)

Reserved operands:
of the 2**55 that the hardware recognizes, only one of them is ever produced. Any float-
ing−point operation upon a reserved operand, even a MOVF or MOVD, customarily stops
computation, so they are not much used.

Exceptions:
Divisions by zero and operations that overflow are invalid operations that customarily
stop computation or, in earlier machines, produce reserved operands that will stop com-
putation.

Rounding:
Every rational operation(+, −, ∗, /) on a VAX (but not necessarily on a PDP−11), if not
an over/underflow nor division by zero, is rounded to within half anulp, and when the
rounding error is exactly half anulp then rounding is away from 0.

Except for its narrow range, D_floating−point is one of the better computer arithmetics designed in the
1960’s. Itsproperties are reflected fairly faithfully in the elementary functions for a VAX distributed in 4.3
BSD. They over/underflow only if their results have to lie out of range or very nearly so, and then they
behave much as any rational arithmetic operation that over/underflowed would behave. Similarly, expres-
sions like log(0) and atanh(1) behave like 1/0; and sqrt(−3) and acos(3) behave like 0/0; they all produce
reserved operands and/or stop computation! The situation is described in more detail in manual pages.

This response seems excessively punitive, so it is destined to be replaced at some time in
the foreseeable future by a more flexible but still uniform scheme being developed to han-
dle all floating−point arithmetic exceptions neatly.

How do the functions in 4.3 BSD’s new libm for UNIX compare with their counterparts in DEC’s
VAX/VMS library? Some of the VMS functions are a little faster, some are a little more accurate, some are
more puritanical about exceptions (like pow(0.0,0.0) and atan2(0.0,0.0)), and most occupy much more
memory than their counterparts inlibm. The VMS codes interpolate in large table to achieve speed and
accuracy; the libm codes use tricky formulas compact enough that all of them may some day fit into a
ROM.

More important, DEC regards the VMS codes as proprietary and guards them zealously against unautho-
rized use. But thelibm codes in 4.3 BSD are intended for the public domain; they may be copied freely
provided their provenance is always acknowledged, and provided users assist the authors in their researches
by reporting experience with the codes.Therefore no user of UNIX on a machine whose arithmetic resem-
bles VAX D_floating−point need use anything worse than the newlibm.

IEEE STANDARD 754 Floating−Point Arithmetic:

This standard is on its way to becoming more widely adopted than any other design for computer arith-
metic. VLSIchips that conform to some version of that standard have been produced by a host of manufac-
turers, among them ...

Intel i8087, i80287 National Semiconductor 32081
Motorola 68881 Weitek WTL-1032, ... , -1165
Zilog Z8070 Western Electric (AT&T) WE32106.

Other implementations range from software, done thoroughly in the Apple Macintosh, through VLSI in the
Hewlett−Packard 9000 series, to the ELXSI 6400 running ECL at 3 Megaflops. Several other companies
have adopted the formats of IEEE 754 without, alas, adhering to the standard’s way of handling rounding
and exceptions like over/underflow. The DEC VAX G_floating−point format is very similar to the IEEE
754 Double format, so similar that the C programs for the IEEE versions of most of the elementary func-
tions listed above could easily be converted to run on a MicroVAX, though nobody has volunteered to do
that yet.

The codes in 4.3 BSD’s libm for machines that conform to IEEE 754 are intended primarily for the
National Semi. 32081 and WTL 1164/65.To use these codes with the Intel or Zilog chips, or with the
Apple Macintosh or ELXSI 6400, is to forego the use of better codes provided (perhaps freely) by those
companies and designed by some of the authors of the codes above. Except foratan, cbrt, erf, erfc, hypot,
j0−jn , lgamma, pow andy0−yn, the Motorola 68881 has all the functions inlibm on chip, and faster and
more accurate; it, Apple, the i8087, Z8070 and WE32106 all use 64 significant bits.The main virtue of 4.3

February 23, 2007 3

MATH(3) MATH(3)

BSD’s libm codes is that they are intended for the public domain; they may be copied freely provided their
provenance is always acknowledged, and provided users assist the authors in their researches by reporting
experience with the codes. Therefore no user of UNIX on a machine that conforms to IEEE 754 need use
anything worse than the newlibm.

Properties of IEEE 754 Double−Precision:
Wordsize: 64 bits, 8 bytes. Radix: Binary.
Precision: 53 significant bits, roughly like 16 significant decimals.

If x and x’ are consecutive positive Double−Precision numbers (they differ by 1ulp), then
1.1e−16 < 0.5**53 < (x’−x)/x 0.5**52 < 2.3e−16.

Range: Overflow threshold =2.0**1024 =1.8e308
Underflow threshold = 0.5**1022 =2.2e−308
Overflow goes by default to a signed∞.
Underflow is Gradual,rounding to the nearest integer multiple of 0.5**1074 = 4.9e−324.

Zero is represented ambiguously as +0 or −0.
Its sign transforms correctly through multiplication or division, and is preserved by addi-
tion of zeros with like signs; but x−x yields +0 for every finite x. The only operations
that reveal zero’s sign are division by zero and copysign(x,±0). In particular, comparison
(x > y, x y, etc.) cannotbe affected by the sign of zero; but if finite x = y then∞ =
1/(x−y) ≠ −1/(y−x) = −∞.

∞ is signed.
it persists when added to itself or to any finite number. Its sign transforms correctly
through multiplication and division, and (finite)/±∞ = ±0 (nonzero)/0 =±∞. But ∞−∞,
∞∗0 and ∞/∞ are, like 0/0 and sqrt(−3), invalid operations that produceNaN. ...

Reserved operands:
there are 2**53−2 of them, all calledNaN (Not a Number). Some,called Signaling
NaNs, trap any floating−point operation performed upon them; they are used to mark
missing or uninitialized values, or nonexistent elements of arrays. The rest are Quiet
NaNs; they are the default results of Invalid Operations, and propagate through subse-
quent arithmetic operations. If x≠ x then x isNaN; every other predicate (x > y, x = y, x
< y, ...) is FALSE ifNaN is involved.
NOTE: Trichotomy is violated byNaN.

Besides being FALSE, predicates that entail ordered comparison, rather than
mere (in)equality, signal Invalid Operation whenNaN is involved.

Rounding:
Every algebraic operation (+, −,∗, /, √) is rounded by default to within half anulp, and
when the rounding error is exactly half anulp then the rounded value’s least significant
bit is zero. This kind of rounding is usually the best kind, sometimes provably so; for
instance, for every x = 1.0, 2.0, 3.0, 4.0, ..., 2.0**52, we find (x/3.0)∗3.0 == x and
(x/10.0)∗10.0 == x and ...despite that both the quotients and the products have been
rounded. Onlyrounding like IEEE 754 can do that. But no single kind of rounding can
be proved best for every circumstance, so IEEE 754 provides rounding towards zero or
towards +∞ or towards −∞ at the programmer’s option. Andthe same kinds of rounding
are specified for Binary−Decimal Conversions, at least for magnitudes between roughly
1.0e−10 and 1.0e37.

Exceptions:
IEEE 754 recognizes five kinds of floating−point exceptions, listed below in declining
order of probable importance.

Exception Default Result

Invalid Operation NaN, or FALSE
Overflow ±∞
Divide by Zero ±∞
Underflow Gradual Underflow
Inexact Roundedvalue

February 23, 2007 4

MATH(3) MATH(3)

NOTE: An Exception is not an Error unless handled badly. What makes a class of
exceptions exceptional is that no single default response can be satisfactory in every
instance. Onthe other hand, if a default response will serve most instances satisfactorily,
the unsatisfactory instances cannot justify aborting computation every time the exception
occurs.

For each kind of floating−point exception, IEEE 754 provides a Flag that is raised each time its
exception is signaled, and stays raised until the program resets it.Programs may also test, save
and restore a flag. Thus, IEEE 754 provides three ways by which programs may cope with excep-
tions for which the default result might be unsatisfactory:

1) Test for a condition that might cause an exception later, and branch to avoid the exception.

2) Test a flag to see whether an exception has occurred since the program last reset its flag.

3) Test a result to see whether it is a value that only an exception could have produced.
CAUTION: The only reliable ways to discover whether Underflow has occurred are to test
whether products or quotients lie closer to zero than the underflow threshold, or to test the
Underflow flag. (Sumsand differences cannot underflow in IEEE 754; if x≠ y then x−y is
correct to full precision and certainly nonzero regardless of how tiny it may be.) Products
and quotients that underflow gradually can lose accuracy gradually without vanishing, so
comparing them with zero (as one might on a VAX) will not reveal the loss.Fortunately, if a
gradually underflowed value is destined to be added to something bigger than the underflow
threshold, as is almost always the case, digits lost to gradual underflow will not be missed
because they would have been rounded off anyway. So gradual underflows are usually
provably ignorable. Thesame cannot be said of underflows flushed to 0.

At the option of an implementor conforming to IEEE 754, other ways to cope with exceptions may
be provided:

4) ABORT. This mechanism classifies an exception in advance as an incident to be handled by
means traditionally associated with error−handling statements like "ON ERROR GO TO ...".
Different languages offer different forms of this statement, but most share the following char-
acteristics:

— No means is provided to substitute a value for the offending operation’s result and resume
computation from what may be the middle of an expression. Anexceptional result is aban-
doned.

— In a subprogram that lacks an error−handling statement, an exception causes the subprogram
to abort within whatever program called it, and so on back up the chain of calling subpro-
grams until an error−handling statement is encountered or the whole task is aborted and
memory is dumped.

5) STOP. This mechanism, requiring an interactive debugging environment, is more for the pro-
grammer than the program. It classifies an exception in advance as a symptom of a program-
mer’s error; the exception suspends execution as near as it can to the offending operation so
that the programmer can look around to see how it happened. Quiteoften the first several
exceptions turn out to be quite unexceptionable, so the programmer ought ideally to be able
to resume execution after each one as if execution had not been stopped.

6) ...Other ways lie beyond the scope of this document.

The crucial problem for exception handling is the problem of Scope, and the problem’s solution is under-
stood, but not enough manpower was available to implement it fully in time to be distributed in 4.3 BSD’s
libm. Ideally, each elementary function should act as if it were indivisible, or atomic, in the sense that ...

i) No exception should be signaled that is not deserved by the data supplied to that function.

ii) Any exception signaled should be identified with that function rather than with one of its subroutines.

iii) The internal behavior of an atomic function should not be disrupted when a calling program changes
from one to another of the five or so ways of handling exceptions listed above, although the definition

February 23, 2007 5

MATH(3) MATH(3)

of the function may be correlated intentionally with exception handling.

Ideally, every programmer should be ableconvenientlyto turn a debugged subprogram into one that appears
atomic to its users. But simulating all three characteristics of an atomic function is still a tedious affair,
entailing hosts of tests and saves−restores; work is under way to ameliorate the inconvenience.

Meanwhile, the functions inlibm are only approximately atomic.They signal no inappropriate exception
except possibly ...

Over/Underflow
when a result, if properly computed, might have lain barely within range, and

Inexact incbrt, hypot, log10andpow
when it happens to be exact, thanks to fortuitous cancellation of errors.

Otherwise, ...
Invalid Operation is signaled only when

any result butNaNwould probably be misleading.
Overflow is signaled only when

the exact result would be finite but beyond the overflow threshold.
Divide−by−Zero is signaled only when

a function takes exactly infinite values at finite operands.
Underflow is signaled only when

the exact result would be nonzero but tinier than the underflow threshold.
Inexact is signaled only when

greater range or precision would be needed to represent the exact result.

SEE ALSO
An explanation of IEEE 754 and its proposed extension p854 was published in the IEEE magazine MICRO
in August 1984 under the title "A Proposed Radix− and Word−length−independent Standard for Float-
ing−point Arithmetic" by W. J. Cody et al. The manuals for Pascal, C and BASIC on the Apple Macintosh
document the features of IEEE 754 pretty well.Articles in the IEEE magazine COMPUTER vol. 14 no. 3
(Mar. 1981), and in the ACM SIGNUM Newsletter Special Issue of Oct. 1979, may be helpful although
they pertain to superseded drafts of the standard.

BUGS
When signals are appropriate, they are emitted by certain operations within the codes, so a subroutine−trace
may be needed to identify the function with its signal in case method 5) above is in use. Andthe codes all
take the IEEE 754 defaults for granted; this means that a decision to trap all divisions by zero could disrupt
a code that would otherwise get correct results despite division by zero.

February 23, 2007 6

MBLEN (3) NetBSD Library Functions Manual MBLEN (3)

NAME
mblen — get number of bytes in a multibyte character

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
mblen (const char ∗s , size_t n);

DESCRIPTION
Themblen () function usually determines the number of bytes in a multibyte character pointed to bys and
returns it. This function shall only examine max n bytes of the array beginning froms .

In state-dependent encodings,s may point the special sequence bytes to change the shift-state.Although
such sequence bytes corresponds to no individual wide-character code, themblen () changes the own state
by them and treats them as if they are a part of the subsequent multibyte character.

Unlike mbrlen (3), the firstn bytes pointed to bys need to form an entire multibyte character. Otherwise,
this function causes an error.

mblen () is equivalent to the following call, except the internal state of thembtowc (3) function is not
affected:

mbtowc(NULL, s, n);

Calling any other functions in Standard C Library (libc, −lc) never changes the internal state ofmblen (),
except for callingsetlocale (3) with theLC_CTYPEcategory changed to that of the current locale.Such
setlocale (3) calls cause the internal state of this function to be indeterminate.

The behaviour ofmblen () is affected by theLC_CTYPEcategory of the current locale.

These are the special cases:

s == NULL mblen () initializes its own internal state to an initial state, and determines whether the cur-
rent encoding is state-dependent. This function returns 0 if the encoding is state-indepen-
dent, otherwise non-zero.

n == 0 In this case, the firstn bytes of the array pointed to bys never form a complete character.
Thus,mblen () always fails.

RETURN VALUES
Normally,mblen () returns:

0 s points to a nul byte(‘ \0’) .

positive The value returned is a number of bytes for the valid multibyte character pointed to bys .
There are no cases that this value is greater thann or the value of theMB_CUR_MAXmacro.

-1 s points to an invalid or incomplete multibyte character. The mblen () also setserrno to
indicate the error.

Whens is equal toNULL, themblen () returns:

0 The current encoding is state-independent.

NetBSD 3.0 February 3, 2002 1

MBLEN (3) NetBSD Library Functions Manual MBLEN (3)

non-zero The current encoding is state-dependent.

ERRORS
mblen () may cause an error in the following case:

[EILSEQ] s points to an invalid or incomplete multibyte character.

SEE ALSO
mbrlen (3), mbtowc (3), setlocale (3)

STANDARDS
Themblen () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 February 3, 2002 2

MBRLEN (3) NetBSD Library Functions Manual MBRLEN (3)

NAME
mbrlen — get number of bytes in a multibyte character (restartable)

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

size_t
mbrlen (const char ∗ restrict s , size_t n , mbstate_t ∗ restrict ps);

DESCRIPTION
Thembrlen () function usually determines the number of bytes in a multibyte character pointed to bys and
returns it. This function shall only examine max n bytes of the array beginning froms .

mbrlen () is equivalent to the following call (exceptps is evaluated only once):

mbrtowc(NULL, s, n, (ps != NULL) ? ps : &internal);

Here,internal is an internal state object.

In state-dependent encodings,s may point to the special sequence bytes to change the shift-state.Although
such sequence bytes corresponds to no individual wide-character code, these affect the conversion state
object pointed to byps , and thembrlen () treats the special sequence bytes as if these are a part of the sub-
sequent multibyte character.

Unlike mblen (3), mbrlen () may accept the byte sequence when it is not a complete character but possibly
contains part of a valid character. In this case, this function will accept all such bytes and save them into the
conversion state object pointed to byps . They will be used on subsequent calls of this function to restart the
conversion suspended.

The behaviour ofmbrlen () is affected by theLC_CTYPEcategory of the current locale.

These are the special cases:

s == NULL mbrlen () sets the conversion state object pointed to byps to an initial state and always
returns 0.Unlike mblen (3), the value returned does not indicate whether the current encod-
ing of the locale is state-dependent.

In this case,mbrlen () ignoresn.

n == 0 In this case, the firstn bytes of the array pointed to bys never form a complete character.
Thus,mbrlen () always returns (size_t)-2.

ps == NULL mbrlen () uses its own internal state object to keep the conversion state, instead ofps men-
tioned in this manual page.

Calling any other functions in Standard C Library (libc, −lc) never changes the internal state
of mbrlen (), except for callingsetlocale (3) with a changingLC_CTYPEcategory of
the current locale.Suchsetlocale (3) calls cause the internal state of this function to be
indeterminate. Thisinternal state is initialized at startup time of the program.

RETURN VALUES
Thembrlen () returns:

0 s points to a nul byte(‘ \0’) .

NetBSD 3.0 February 3, 2002 1

MBRLEN (3) NetBSD Library Functions Manual MBRLEN (3)

positive The value returned is a number of bytes for the valid multibyte character pointed to bys .
There are no cases that this value is greater thann or the value of theMB_CUR_MAXmacro.

(size_t)-2 s points to the byte sequence which possibly contains part of a valid multibyte character, but
which is incomplete.Whenn is at leastMB_CUR_MAX, this case can only occur if the array
pointed to bys contains a redundant shift sequence.

(size_t)-1 s points to an illegal byte sequence which does not form a valid multibyte character. In this
case,mbrtowc () setserrno to indicate the error.

ERRORS
mbrlen () may cause an error in the following case:

[EILSEQ] s points to an invalid multibyte character.

[EINVAL] ps points to an invalid or uninitialized mbstate_t object.

SEE ALSO
mblen (3), mbrtowc (3), setlocale (3)

STANDARDS
Thembrlen () function conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”). The restrict quali-
fier is added atISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 February 3, 2002 2

MBRTOWC (3) NetBSD Library Functions Manual MBRTOWC (3)

NAME
mbrtowc — converts a multibyte character to a wide character (restartable)

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

size_t
mbrtowc (wchar_t ∗ restrict pwc , const char ∗ restrict s , size_t n ,

mbstate_t ∗ restrict ps);

DESCRIPTION
Thembrtowc () usually converts the multibyte character pointed to bys to a wide character, and stores the
wide character to the wchar_t object pointed to bypwc if pwc is non-NULLands points to a valid character.
The conversion happens in accordance with, and changes the conversion state described in the mbstate_t
object pointed to byps . This function may examine at mostn bytes of the array beginning froms .

If s points to a valid character and the character corresponds to a nul wide character, then thembrtowc ()
places the mbstate_t object pointed to byps to an initial conversion state.

Unlike mbtowc (3), thembrtowc () may accept the byte sequence pointed to bys not forming a complete
multibyte character but which may be part of a valid character. In this case, this function will accept all such
bytes and save them into the conversion state object pointed to byps . They will be used at subsequent calls
of this function to restart the conversion suspended.

The behaviour ofmbrtowc () is affected by theLC_CTYPEcategory of the current locale.

These are the special cases:

s == NULL mbrtowc () sets the conversion state object pointed to byps to an initial state and always
returns 0. Unlike mbtowc (3), the value returned does not indicate whether the current
encoding of the locale is state-dependent.

In this case,mbrtowc () ignorespwc andn, and is equivalent to the following call:

mbrtowc(NULL, "", 1, ps);

pwc == NULL The conversion from a multibyte character to a wide character has taken place and the
conversion state may be affected, but the resulting wide character is discarded.

ps == NULL mbrtowc () uses its own internal state object to keep the conversion state, instead ofps
mentioned in this manual page.

Calling any other functions in Standard C Library (libc, −lc) never changes the internal
state ofmbrtowc (), which is initialized at startup time of the program.

RETURN VALUES
In the usual cases,mbrtowc () returns:

0 The next bytes pointed to bys form a nul character.

positive If s points to a valid character,mbrtowc () returns the number of bytes in the character.

(size_t)-2 s points to a byte sequence which possibly contains part of a valid multibyte character,
but which is incomplete.Whenn is at leastMB_CUR_MAX, this case can only occur if
the array pointed to bys contains a redundant shift sequence.

NetBSD 3.0 February 4, 2002 1

MBRTOWC (3) NetBSD Library Functions Manual MBRTOWC (3)

(size_t)-1 s points to an illegal byte sequence which does not form a valid multibyte character. In
this case,mbrtowc () setserrno to indicate the error.

ERRORS
mbrtowc () may cause an error in the following case:

[EILSEQ] s points to an invalid or incomplete multibyte character.

[EINVAL] ps points to an invalid or uninitialized mbstate_t object.

SEE ALSO
mbrlen (3), mbtowc (3), setlocale (3)

STANDARDS
Thembrtowc () function conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”). The restrict qual-
ifier is added atISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 February 4, 2002 2

MBSINIT (3) NetBSD Library Functions Manual MBSINIT (3)

NAME
mbsinit — determines whether the state object is in the initial state

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

int
mbsinit (const mbstate_t ∗ps);

DESCRIPTION
Thembsinit () determines whether the state object pointed to byps is the initial conversion state, or not.

ps may be a null pointer. In this case,mbsinit () will always return non-zero.

RETURN VALUES
mbsinit () returns:

0 The current state is not the initial state.

non-zero The current state is the initial state orps is a null pointer.

ERRORS
No errors are defined.

STANDARDS
Thembsinit () conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”).

NetBSD 3.0 February 3, 2002 1

MBSRTOWCS (3) NetBSD Library Functions Manual MBSRTOWCS (3)

NAME
mbsrtowcs — converts a multibyte character string to a wide character string (restartable)

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

size_t
mbsrtowcs (wchar_t ∗ restrict pwcs , const char ∗∗ restrict s , size_t n ,

mbstate_t ∗ restrict ps);

DESCRIPTION
The mbsrtowcs () converts the multibyte character string indirectly pointed to bys to the corresponding
wide character string, and stores it in the array pointed to bypwcs . The conversion stops due to the follow-
ing reasons:

• The conversion reaches a nul byte. In this case, the nul byte is also converted.

• Thembsrtowcs () has already storedn wide characters.

• The conversion encounters an invalid character.

Each character will be converted as ifmbrtowc (3) is continuously called.

After conversion, if pwcs is not a null pointer, the pointer object pointed to bys is a null pointer (if the con-
version is stopped due to reaching a nul byte) or the first byte of the character just after the last character con-
verted.

If pwcs is not a null pointer and the conversion is stopped due to reaching a nul byte, thembsrtowcs ()
places the state object pointed to byps to an initial state after the conversion has taken place.

The behaviour ofmbsrtowcs () is affected by theLC_CTYPEcategory of the current locale.

These are the special cases:

s == NULL || ∗s == NULL
Undefined (may cause the program to crash).

pwcs == NULL The conversion has taken place, but the resulting wide character string was discarded.In
this case, the pointer object pointed to bys is not modified andn is ignored.

ps == NULL Thembsrtowcs () uses its own internal state object to keep the conversion state, instead
of ps mentioned in this manual page.

Calling any other functions in Standard C Library (libc, −lc) never changes the internal
state ofmbsrtowcs (), which is initialized at startup time of the program.

RETURN VALUES
mbsrtowcs () returns:

0 or positive The value returned is the number of elements stored in the array pointed to bypwcs ,
except for a terminating nul wide character (if any). If pwcs is notNULL and the value
returned is equal ton, the wide character string pointed to bypwcs is not nul-terminated.
If pwcs is a null pointer, the value returned is the number of elements to contain the
whole string converted, except for a terminating nul wide character.

NetBSD 3.0 February 4, 2002 1

MBSRTOWCS (3) NetBSD Library Functions Manual MBSRTOWCS (3)

(size_t)-1 The array indirectly pointed to bys contains a byte sequence forming invalid character.
In this case,mbsrtowcs () setserrno to indicate the error.

ERRORS
mbsrtowcs () may cause an error in the following case:

[EILSEQ] The pointer pointed to bys points to an invalid or incomplete multibyte character.

[EINVAL] ps points to an invalid or uninitialized mbstate_t object.

SEE ALSO
mbrtowc (3), mbstowcs (3), setlocale (3)

STANDARDS
The mbsrtowcs () function conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”). The restrict
qualifier is added atISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 February 4, 2002 2

MBSTOWCS (3) NetBSD Library Functions Manual MBSTOWCS (3)

NAME
mbstowcs — converts a multibyte character string to a wide character string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

size_t
mbstowcs (wchar_t ∗ restrict pwcs , const char ∗ restrict s , size_t n);

DESCRIPTION
mbstowcs () converts a nul-terminated multibyte character string pointed to bys to the corresponding wide
character string and stores it in the array pointed to bypwcs . This function may modify the first at mostn
elements of the array pointed to bypwcs . Each character will be converted as ifmbtowc (3) is continuously
called, except the internal state ofmbtowc (3) will not be affected.

For state-dependent encoding,mbstowcs () implies the multibyte character string pointed to bys always
begins with an initial state.

These are the special cases:

pwcs == NULL mbstowcs () returns the number of elements to store the whole wide character string cor-
responding to the multibyte character string pointed to bys . In this case,n is ignored.

s == NULL Undefined (may cause the program to crash).

RETURN VALUES
mbstowcs () returns:

0 or positive Number of elements stored in the array pointed to bypwcs . There are no cases that the
value returned is greater thann (unlesspwcs is a null pointer) or the value of the
MB_CUR_MAXmacro. If the return value is equal ton, the string pointed to bypwcs
will not be nul-terminated.

(size_t)-1 s points to a string containing an invalid or incomplete multibyte character. The
mbstowcs () also setserrno to indicate the error.

ERRORS
mbstowcs () may cause an error in the following case:

[EILSEQ] s points to a string containing an invalid or incomplete multibyte character.

SEE ALSO
mbtowc (3), setlocale (3)

STANDARDS
The mbstowcs () function conforms toANSI X3.159-1989 (“ANSI C89”). The restrict qualifier is added at
ISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 February 3, 2002 1

MBTOWC (3) NetBSDLibrary Functions Manual MBTOWC (3)

NAME
mbtowc — converts a multibyte character to a wide character

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
mbtowc (wchar_t ∗ restrict pwc , const char ∗ restrict s , size_t n);

DESCRIPTION
mbtowc () usually converts the multibyte character pointed to bys to a wide character, and stores it in the
wchar_t object pointed to bypwc if pwc is non-NULL ands points to a valid character. This function may
inspect at most n bytes of the array beginning froms .

In state-dependent encodings,s may point to the special sequence bytes to change the shift-state.Although
such sequence bytes correspond to no individual wide-character code,mbtowc () changes its own state by
the sequence bytes and treats them as if they are a part of the subsequence multibyte character.

Unlike mbrtowc (3), the firstn bytes pointed to bys need to form an entire multibyte character. Otherwise,
this function causes an error.

Calling any other functions in Standard C Library (libc, −lc) never changes the internal state ofmbtowc (),
except for callingsetlocale (3) with changing theLC_CTYPEcategory of the current locale.Such
setlocale (3) call causes the internal state of this function to be indeterminate.

The behaviour ofmbtowc () is affected by theLC_CTYPEcategory of the current locale.

There are special cases:

s == NULL mbtowc () initializes its own internal state to an initial state, and determines whether the
current encoding is state-dependent. This function returns 0 if the encoding is state-inde-
pendent, otherwise non-zero. In this case,pwc is completely ignored.

pwc == NULL mbtowc () executes the conversion as ifpwc is non-NULL, but a result of the conversion
is discarded.

n == 0 In this case, the firstn bytes of the array pointed to bys never form a complete character.
Thus, thembtowc () always fails.

RETURN VALUES
Normally, thembtowc () returns:

0 s points to a nul byte(‘ \0’) .

positive Number of bytes for the valid multibyte character pointed to bys . There are no cases
that the value returned is greater than the value of theMB_CUR_MAXmacro.

-1 s points to an invalid or an incomplete multibyte character. The mbtowc () also sets
errno to indicate the error.

Whens is equal toNULL, mbtowc () returns:

0 The current encoding is state-independent.

NetBSD 3.0 February 3, 2002 1

MBTOWC (3) NetBSDLibrary Functions Manual MBTOWC (3)

non-zero The current encoding is state-dependent.

ERRORS
mbtowc () may cause an error in the following case:

[EILSEQ] s points to an invalid or incomplete multibyte character.

SEE ALSO
mblen (3), mbrtowc (3), setlocale (3)

STANDARDS
The mbtowc () function conforms toANSI X3.159-1989 (“ANSI C89”). The restrict qualifier is added at
ISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 February 3, 2002 2

MD2 (3) NetBSD Library Functions Manual MD2 (3)

NAME
MD2Init , MD2Update, MD2Final , MD2End, MD2File , MD2Data — calculate the RSA Data Security,
Inc., “MD2” message digest

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <mdX.h>

void
MD2Init (MD2_CTX ∗context);

void
MD2Update(MD2_CTX ∗context , const unsigned char ∗data , unsigned int len);

void
MD2Final (unsigned char digest[16] , MD2_CTX ∗context);

char ∗
MD2End(MD2_CTX ∗context , char ∗buf);

char ∗
MD2File (const char ∗filename , char ∗buf);

char ∗
MD2Data(const unsigned char ∗data , unsigned int len , char ∗buf);

DESCRIPTION
The MD2 functions calculate a 128-bit cryptographic checksum (digest) for any number of input bytes.A
cryptographic checksum is a one-way hash-function, that is, you cannot find (except by exhaustive search)
the input corresponding to a particular output.This net result is a ‘‘fingerprint’’ of the input-data, which
doesn’t disclose the actual input.

The MD2 routines should not be used for any security-related purpose.

The MD2Init (), MD2Update(), and MD2Final () functions are the core functions. Allocate an
MD2_CTX, initialize it withMD2Init (), run over the data withMD2Update(), and finally extract the result
usingMD2Final ().

MD2End() is a wrapper forMD2Final () which converts the return value to a 33-character (including the ter-
minating ’\0’) ASCII string which represents the 128 bits in hexadecimal.

MD2File () calculates the digest of a file, and usesMD2End() to return the result. If the file cannot be
opened, a null pointer is returned.MD2Data() calculates the digest of a chunk of data in memory, and uses
MD2End() to return the result.

When usingMD2End(), MD2File (), or MD2Data(), thebuf argument can be a null pointer, in which case
the returned string is allocated withmalloc (3) and subsequently must be explicitly deallocated using
free (3) after use. If thebuf argument is non-null it must point to at least 33 characters of buffer space.

SEE ALSO
md2(3),

B. Kaliski, The MD2 Message-Digest Algorithm, RFC 1319.

NetBSD 3.0 September 24, 2005 1

MD2 (3) NetBSD Library Functions Manual MD2 (3)

RSA Laboratories,Fr equently Asked Questions About today’s Cryptography.

HISTORY
These functions appeared inNetBSD 1.3.

AUTHORS
The original MD2 routines were developed byRSA Data Security, Inc., and published in the above refer-
ences. Thiscode is a public domain implementation by Andrew Brown.

BUGS
No method is known to exist which finds two files having the same hash value, nor to find a file with a spe-
cific hash value. Thereis on the other hand no guarantee that such a method doesn’t exist.

NetBSD 3.0 September 24, 2005 2

MDX (3) NetBSD Library Functions Manual MDX (3)

NAME
MDXInit , MDXUpdate, MDXFinal , MDXEnd, MDXFile , MDXData — calculate the RSA Data Security,
Inc., “MDX” message digest

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <mdX.h>

void
MDXInit (MDX_CTX∗context);

void
MDXUpdate(MDX_CTX∗context , const unsigned char ∗data , unsigned int len);

void
MDXFinal (unsigned char digest[16] , MDX_CTX∗context);

char ∗
MDXEnd(MDX_CTX∗context , char ∗buf);

char ∗
MDXFile (const char ∗filename , char ∗buf);

char ∗
MDXData(const unsigned char ∗data , unsigned int len , char ∗buf);

DESCRIPTION
The MDX functions calculate a 128-bit cryptographic checksum (digest) for any number of input bytes.A
cryptographic checksum is a one-way hash-function, that is, you cannot find (except by exhaustive search)
the input corresponding to a particular output.This net result is a ‘‘fingerprint’’ of the input-data, which
doesn’t disclose the actual input.

MD2 is the slowest, MD4 is the fastest and MD5 is somewhere in the middle.MD2 can only be used for Pri-
vacy-Enhanced Mail.MD4 has been criticized for being too weak, so MD5 was developed in response as
‘‘ MD4 with safety-belts’’. Whenin doubt, use MD5.

The MDXInit (), MDXUpdate(), and MDXFinal () functions are the core functions. Allocate an
MDX_CTX, initialize it with MDXInit (), run over the data withMDXUpdate(), and finally extract the
result usingMDXFinal ().

MDXEnd() is a wrapper forMDXFinal () which converts the return value to a 33-character (including the ter-
minating ’\0’) ASCII string which represents the 128 bits in hexadecimal.

MDXFile () calculates the digest of a file, and usesMDXEnd() to return the result. If the file cannot be
opened, a null pointer is returned.MDXData() calculates the digest of a chunk of data in memory, and uses
MDXEnd() to return the result.

When usingMDXEnd(), MDXFile (), or MDXData(), thebuf argument can be a null pointer, in which case
the returned string is allocated withmalloc (3) and subsequently must be explicitly deallocated using
free (3) after use. If thebuf argument is non-null it must point to at least 33 characters of buffer space.

SEE ALSO
md2(3), md4(3), md5(3)

NetBSD 3.0 June 13, 2003 1

MDX (3) NetBSD Library Functions Manual MDX (3)

B. Kaliski, The MD2 Message-Digest Algorithm, RFC 1319.

R. Rivest,The MD4 Message-Digest Algorithm, RFC 1186.

R. Rivest,The MD5 Message-Digest Algorithm, RFC 1321.

RSA Laboratories,Fr equently Asked Questions About today’s Cryptography.

HISTORY
These functions appeared inNetBSD 1.3.

AUTHORS
The original MDX routines were developed byRSA Data Security, Inc., and published in the above refer-
ences. This code is derived directly from these implementations by Poul-Henning Kamp
〈phk@login.dkuug.dk 〉

Phk ristede runen.

BUGS
No method is known to exist which finds two files having the same hash value, nor to find a file with a spe-
cific hash value. Thereis on the other hand no guarantee that such a method doesn’t exist.

COPYRIGHT

NetBSD 3.0 June 13, 2003 2

MEMBAR_OPS (3) NetBSD Library Functions Manual MEMBAR_OPS (3)

NAME
membar_ops , membar_enter , membar_exit , membar_producer , membar_consumer ,
membar_sync — memory access barrier operations

SYNOPSIS
#include <sys/atomic.h>

void
membar_enter (void);

void
membar_exit (void);

void
membar_producer (void);

void
membar_consumer (void);

void
membar_sync (void);

DESCRIPTION
Themembar_ops family of functions provide memory access barrier operations necessary for synchroniza-
tion in multiprocessor execution environments that have relaxed load and store order.

membar_enter ()

Any store preceedingmembar_enter () will reach global visibility before all loads and stores follow-
ing it.

membar_enter () is typically used in code that implements locking primitives to ensure that a lock
protects its data.

membar_exit ()

All loads and stores precedingmembar_exit () will reach global visibility before any store that fol-
lows it.

membar_exit () is typically used in code that implements locking primitives to ensure that a lock
protects its data.

membar_producer ()

All stores preceding the memory barrier will reach global visibility before any stores after the memory
barrier reach global visibility.

membar_consumer ()

All loads preceding the memory barrier will complete before any loads after the memory barrier com-
plete.

membar_sync ()

All loads and stores preceding the memory barrier will complete and reach global visibility before any
loads and stores after the memory barrier complete and reach global visibility.

SEE ALSO
atomic_ops (3)

NetBSD 3.0 Febuary 11, 2007 1

MEMBAR_OPS (3) NetBSD Library Functions Manual MEMBAR_OPS (3)

HISTORY
Themembar_ops functions first appeared inNetBSD 5.0.

NetBSD 3.0 Febuary 11, 2007 2

MEMCCPY (3) NetBSD Library Functions Manual MEMCCPY (3)

NAME
memccpy — copy string until character found

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

void ∗
memccpy(void ∗dst , const void ∗src , int c , size_t len);

DESCRIPTION
Thememccpy() function copies bytes from stringsrc to stringdst . If the characterc (as converted to an
unsigned char) occurs in the stringsrc , the copy stops and a pointer to the byte after the copy of c in the
stringdst is returned. Otherwise,len bytes are copied, and a null pointer is returned.

SEE ALSO
bcopy (3), memcpy(3), memmove(3), strcpy (3)

HISTORY
Thememccpy() function first appeared in 4.4BSD.

NetBSD 3.0 June 9, 1993 1

MEMCHR (3) NetBSD Library Functions Manual MEMCHR (3)

NAME
memchr — locate byte in byte string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

void ∗
memchr(const void ∗b , int c , size_t len);

DESCRIPTION
Thememchr() function locates the first occurrence ofc (converted to an unsigned char) in stringb.

RETURN VALUES
The memchr() function returns a pointer to the byte located, orNULL if no such byte exists withinlen
bytes.

SEE ALSO
index (3), rindex (3), strchr (3), strcspn (3), strpbrk (3), strrchr (3), strsep (3), strspn (3),
strstr (3), strtok (3)

STANDARDS
Thememchr() function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

MEMCMP (3) NetBSD Library Functions Manual MEMCMP (3)

NAME
memcmp— compare byte string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

int
memcmp(const void ∗b1 , const void ∗b2 , size_t len);

DESCRIPTION
Thememcmp() function compares byte stringb1 against byte stringb2 . Both strings are assumed to belen
bytes long.

RETURN VALUES
Thememcmp() function returns zero if the two strings are identical, otherwise returns the difference between
the first two differing bytes (treated as unsigned char values, so that ‘\200 ’ is greater than ‘\0 ’, for exam-
ple). Zero-lengthstrings are always identical.

SEE ALSO
bcmp(3), strcasecmp (3), strcmp (3), strcoll (3), strxfrm (3)

STANDARDS
Thememcmp() function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

MEMCPY (3) NetBSD Library Functions Manual MEMCPY (3)

NAME
memcpy— copy byte string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

void ∗
memcpy(void ∗ restrict dst , const void ∗ restrict src , size_t len);

DESCRIPTION
Thememcpy() function copieslen bytes from stringsrc to stringdst . The arguments must not overlap
-- behavior if the arguments overlap is undefined.To copy byte strings that overlap, usememmove(3).

RETURN VALUES
Thememcpy() function returns the original value ofdst .

SEE ALSO
bcopy (3), memccpy(3), memmove(3), strcpy (3)

STANDARDS
Thememcpy() function conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 June 4, 1993 1

MEMMEM (3) NetBSD Library Functions Manual MEMMEM (3)

NAME
memmem— locate substring in byte string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

void ∗
memmem(const void ∗block , size_t blen , const void ∗pat , size_t plen);

DESCRIPTION
Thememmem() function locates the first occurrence of the binary stringpat of sizeplen bytes in the byte
stringblock of sizeblen bytes.

RETURN VALUES
Thememmem() function returns a pointer to the substring located, orNULL if no such substring exists within
block .

If plen is zero,block is returned, i.e. a zero lengthpat is deemed to match the start of the string, as with
strstr (3).

SEE ALSO
bm(3), memchr(3), strchr (3), strstr (3)

STANDARDS
Thememmem() function is not currently standardized.However, it is meant to be API compatible with func-
tions inFreeBSDand Linux.

HISTORY
memmem() first appeared in the Free Software Foundation’s glibc library.

NetBSD 3.0 March 12, 2005 1

MEMMOVE (3) NetBSD Library Functions Manual MEMMOVE (3)

NAME
memmove— copy byte string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

void ∗
memmove(void ∗dst , const void ∗src , size_t len);

DESCRIPTION
Thememmove() function copieslen bytes from stringsrc to stringdst . The two strings may overlap; the
copy is always done in a non-destructive manner.

RETURN VALUES
Thememmove() function returns the original value ofdst .

SEE ALSO
bcopy (3), memccpy(3), memcpy(3), strcpy (3)

STANDARDS
Thememmove() function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

MEMORY (3) NetBSDLibrary Functions Manual MEMORY (3)

NAME
malloc , free , realloc , calloc , alloca — general memory allocation operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

void ∗
malloc (size_t size);

void
free (void ∗ptr);

void ∗
realloc (void ∗ptr , size_t size);

void ∗
calloc (size_t nelem , size_t elsize);

void ∗
alloca (size_t size);

DESCRIPTION
These functions allocate and free memory for the calling process.They are described in the individual man-
ual pages.

SEE ALSO
alloca (3), calloc (3), free (3), malloc (3), realloc (3)

STANDARDS
These functions, with the exception ofalloca () conform toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

MEMSET (3) NetBSD Library Functions Manual MEMSET (3)

NAME
memset — write a byte to byte string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

void ∗
memset(void ∗b , int c , size_t len);

DESCRIPTION
Thememset() function writeslen bytes of valuec (converted to an unsigned char) to the stringb.

RETURN VALUES
Thememset() function returns the original value ofb.

SEE ALSO
bzero (3), swab(3)

STANDARDS
Thememset() function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

MENU_ATTRIBUTES (3) NetBSD Library Functions Manual MENU_ATTRIBUTES (3)

NAME
menu_back , menu_fore , menu_grey , menu_pad, set_menu_back , set_menu_fore ,
set_menu_grey , set_menu_pad — get and set menu attributes

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

char
menu_back (MENU∗menu);

char
menu_fore (MENU∗menu);

char
menu_grey (MENU∗menu);

int
menu_pad(MENU∗menu);

int
set_menu_back (MENU∗menu, char attr);

int
set_menu_fore (MENU∗menu, char attr);

int
set_menu_grey (MENU∗menu, char attr);

int
set_menu_pad (MENU∗menu, int pad);

DESCRIPTION
Themenu_back () function returns the value of the background attribute for the menu passed. This attribute
is set by theset_menu_back () call. Themenu_fore () function returns the value of the foreground char-
acter attribute for the menu passed. This attribute is set by theset_menu_fore () function. The
menu_grey () function returns the value of the grey or unselectable character attribute for the menu passed.
This attribute is set by theset_menu_grey () function. The menu_pad() function returns the padding
character that will be used between the item name and its description. The value of the pad character is set
by theset_menu_pad () function.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_SYSTEM_ERROR There was a system error during the call.
E_BAD_ARGUMENT One or more of the arguments passed to the function was incorrect.
E_POSTED The menu is already posted.
E_CONNECTED An item was already connected to a menu.
E_BAD_STATE The function was called from within an initialization or termination routine.
E_NO_ROOM The menu does not fit within the subwindow.
E_NOT_POSTED The menu is not posted.

NetBSD 3.0 September 10, 1999 1

MENU_ATTRIBUTES (3) NetBSD Library Functions Manual MENU_ATTRIBUTES (3)

E_UNKNOWN_COMMANDThe menu driver does not recognize the request passed to it.
E_NO_MATCH The character search failed to find a match.
E_NOT_SELECTABLE The item could not be selected.
E_NOT_CONNECTED The item is not connected to a menu.
E_REQUEST_DENIED The menu driver could not process the request.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 2

MENU_CURSOR (3) NetBSD Library Functions Manual MENU_CURSOR (3)

NAME
pos_menu_cursor — position cursor in menu window

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

int
pos_menu_cursor (MENU∗menu);

DESCRIPTION
Thepos_menu_cursor () function positions the cursor in the menu window. This function can be called
after other curses calls to restore the cursor to its correct position in the menu.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_SYSTEM_ERROR There was a system error during the call.
E_BAD_ARGUMENT One or more of the arguments passed to the function was incorrect.
E_POSTED The menu is already posted.
E_CONNECTED An item was already connected to a menu.
E_BAD_STATE The function was called from within an initialization or termination routine.
E_NO_ROOM The menu does not fit within the subwindow.
E_NOT_POSTED The menu is not posted.
E_UNKNOWN_COMMANDThe menu driver does not recognize the request passed to it.
E_NO_MATCH The character search failed to find a match.
E_NOT_SELECTABLE The item could not be selected.
E_NOT_CONNECTED The item is not connected to a menu.
E_REQUEST_DENIED The menu driver could not process the request.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_DRIVER (3) NetBSD Library Functions Manual MENU_DRIVER (3)

NAME
menu_driver — main menu handling function

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

int
menu_driver (MENU∗menu, int c);

DESCRIPTION
Themenu_driver () function is the guts of the menu system. It takes the commands passed by c parame-
ter and performs the requested action on the menu given. Thefollowing commands may be given to the
menu driver:

Command Action
REQ_LEFT_ITEM Sets the new current item to be the item to the left of the current item.
REQ_RIGHT_ITEM Sets the new current item to be the item to the rights of the current item.
REQ_UP_ITEM Sets the new current item to be the item above the current item.
REQ_DOWN_ITEM Sets the new current item to be the item below the current item.
REQ_SCR_ULINE Scroll the menu one line towards the bottom of the menu window. The new cur-

rent item becomes the item immediately above the current item.
REQ_SCR_DLINE Scroll the menu one line towards the top of the menu window. The new current

item becomes the item immediately below the current item.
REQ_SCR_DPAGE Scroll the menu one page towards the bottom of the menu window.
REQ_SCR_UPAGE Scroll the menu one page towards the top of the menu window.
REQ_FIRST_ITEM Set the current item to be the first item in the menu.
REQ_LAST_ITEM Set the current item to be the last item in the menu.
REQ_NEXT_ITEM Set the new current item to be the next item in the item array after the current

item.
REQ_PREV_ITEM Set the new current item to be the item before the current item in the items array.
REQ_TOGGLE_ITEM If the item is selectable then toggle the item’s value.
REQ_CLEAR_PATTERN

Clear all the characters currently in the menu’s pattern buffer.
REQ_BACK_PATTERN Remove the last character from the pattern buffer.
REQ_NEXT_MATCH Attempt to find the next item that matches the pattern buffer.
REQ_PREV_MATCH Attempt to find the previous item that matches the pattern buffer.
If menu_driver () is passed a command that is greater than MAX_COMMAND then the command passed
is assumed to be a user defined command andmenu_driver () returns E_UNKNOWN_COMMAND.
Otherwise if the command is a printable character then the character represented by the command is placed
at the end of the pattern buffer and an attempt is made to match the pattern buffer against the items in the
menu.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_SYSTEM_ERROR There was a system error during the call.
E_BAD_ARGUMENT One or more of the arguments passed to the function was incorrect.

NetBSD 3.0 September 10, 1999 1

MENU_DRIVER (3) NetBSD Library Functions Manual MENU_DRIVER (3)

E_NOT_POSTED The menu is not posted.
E_UNKNOWN_COMMANDThe menu driver does not recognize the request passed to it.
E_NO_MATCH The character search failed to find a match.
E_NOT_CONNECTED The item is not connected to a menu.
E_REQUEST_DENIED The menu driver could not process the request.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 2

MENU_FORMAT (3) NetBSDLibrary Functions Manual MENU_FORMAT (3)

NAME
menu_format , set_menu_format — get or set number of rows and columns of items

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

void
menu_format (MENU∗menu, int ∗rows , int ∗cols);

int
set_menu_format (MENU∗menu, int rows , int cols);

DESCRIPTION
Themenu_format () returns the number of rows and columns of items that can be displayed by the menu.
The format is set by theset_menu_format () function call. Note that the rows and columns defined here
are not the size of the window but rather the number of rows and columns of items.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_BAD_ARGUMENTOne or more of the arguments passed to the function was incorrect.
E_POSTED The menu is already posted.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_HOOK (3) NetBSD Library Functions Manual MENU_HOOK (3)

NAME
item_init , item_term , menu_init , menu_term , set_item_init , set_item_term ,
set_menu_init , set_menu_term — get or set handler functions for menu post/unpost or item change

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

void (∗hook)()
item_init (MENU∗menu);

void (∗hook)()
item_term (MENU∗menu);

void (∗hook)()
menu_init (MENU∗menu);

void (∗hook)()
menu_term (MENU∗menu);

int
set_item_init (MENU∗menu, void (∗hook)()));

int
set_item_term (MENU∗menu, void (∗hook)()));

int
set_menu_init (MENU∗menu, void (∗hook)()));

int
set_menu_term (MENU∗menu, void (∗hook)()));

DESCRIPTION
The item_init () function returns a pointer to the function that will be called whenever the menu is posted
and also just after the current item changes.This is set by theset_item_init () call. The item_term ()
function returns a pointer to the function that will be called before the menu is unposted and just before the
current item changes, this pointer is set by theset_item_term () call. The menu_init () functions
returns a pointer to the function that will be called just before the menu is posted to the screen.This pointer
is set by theset_menu_init () function call. The menu_term () function returns a pointer to the func-
tion that will be called just after the menu has been unposted, this pointer is set by theset_menu_term ()
function.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_ITEM_CURRENT (3) NetBSD Library Functions Manual MENU_ITEM_CURRENT (3)

NAME
current_item , item_index , set_current_item , set_top_row top_row — get or set item
pointers or top row

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

ITEM ∗
current_item (MENU∗menu);

int
item_index (ITEM ∗item);

int
set_current_item (MENU∗menu, ITEM ∗item);

int
set_top_row (MENU∗menu, int row);

int
top_row (MENU∗menu);

DESCRIPTION
The current_item () returns a pointer to the current menu item.The set_current_item () can be
used to set this to the item give. The item_index () function returns the index number in the array of items
for the item pointed to by theitem parameter. Theset_top_row () function sets the top row of the menu
displayed to be the row giv en. Thecurrent item becomes the leftmost item of the top row. The top_row ()
call returns the row number that is currently at the top of the displayed menu.

RETURN VALUES
current_item () returns NULL if no items are attached to the menu.

E_OK The function was successful.
E_BAD_ARGUMENTOne or more of the arguments passed to the function was incorrect.
E_BAD_STATE The function was called from within an initialization or termination routine.
E_NOT_CONNECTEDThe item is not connected to a menu.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_ITEM_NAME (3) NetBSD Library Functions Manual MENU_ITEM_NAME (3)

NAME
item_description , item_name — get item name or description

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

char ∗
item_description (ITEM ∗item);

char ∗
item_name (ITEM ∗item);

DESCRIPTION
The item_description () menu function returns the description string associated with the passed item.
The item_name () function returns the name string associated with the passed item.

RETURN VALUES
The functionitem_description () anditem_name () functions return NULL if the item pointer is not
valid.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_ITEM_NEW (3) NetBSD Library Functions Manual MENU_ITEM_NEW (3)

NAME
free_item , new_item — create or delete menu item

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

int
free_item (ITEM ∗item);

ITEM ∗
new_item (char ∗name, char ∗description);

DESCRIPTION
The free_item () function destroys the item and frees all allocated storage for that item.The
new_item () allocates storage for a new item then copies in the item name and description for the new item.
A pointer to the newly created item is returned to the caller.

RETURN VALUES
The new_item () function returns NULL on failure, thefree_item () returns one of the following error
values:

E_OK The function was successful.
E_BAD_ARGUMENTOne or more of the arguments passed to the function was incorrect.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_ITEM_OPTS (3) NetBSD Library Functions Manual MENU_ITEM_OPTS (3)

NAME
item_opts , item_opts_off , item_opts_on — get or modify options for an item

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

OPTIONS
item_opts (ITEM ∗item);

int
item_opts_off (ITEM ∗item , OPTIONS opts);

int
item_opts_on (ITEM ∗item , OPTIONS opts);

DESCRIPTION
The item_opts () function returns the options currently set for the given item. Theitem_opts_off ()
function turns off the options passed inopts for the item passed.The item_opts_on () function turns on
the options passed inopts for the item given.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_SYSTEM_ERRORThere was a system error during the call.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_ITEM_USERPTR (3) NetBSD Library Functions Manual MENU_ITEM_USERPTR (3)

NAME
item_userptr , set_item_userptr — get or set user pointer for an item

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

char ∗
item_userptr (ITEM ∗item);

int
set_item_userptr (ITEM ∗item , char ∗userptr);

DESCRIPTION
The item_userptr () function returns the value of the user defined pointer for the given item, this pointer
is defined by theset_item_userptr () function.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_SYSTEM_ERRORThere was a system error during the call.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_ITEM_VALUE (3) NetBSD Library Functions Manual MENU_ITEM_VALUE (3)

NAME
item_value , set_item_value , item_selected — get or set value for an item

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

int
item_value (ITEM ∗item);

int
set_item_value (ITEM ∗item , int flag);

int
item_selected (MENU∗menu, int ∗∗array);

DESCRIPTION
The item_value () function returns value of the item. If the item has been selected then this value will be
TRUE. Thevalue can also be set by callingset_item_value () to set the value to a defined state.Setting
the value to a value other than TRUE or FALSE will have undefined results.The item_selected () func-
tion returns the number of items that are selected in the menu, that is the number of items whose value is
TRUE. Theindexes of the selected items will be returned inarray which will be dynamically allocated to
hold the number of indexes. It is the responsibility of the caller to release this storage by callingfree (3)
when the storage is no longer required. If there are no elements selected in the items array then
item_selected () will return 0 andarray will be NULL. If an error occursitem_selected () will
return one of the below return values which are less than 0.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_NOT_CONNECTEDThe item is not connected to a menu.
E_REQUEST_DENIEDThe menu driver could not process the request.
E_SYSTEM_ERROR A system error occurred whilst processing the request.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

The functionitem_selected () is aNetBSD extension and must not be used in portable code.

NetBSD 3.0 September 10, 1999 1

MENU_ITEM_VISIBLE (3) NetBSD Library Functions Manual MENU_ITEM_VISIBLE (3)

NAME
item_visible — get visibility status of an item

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

int
item_visible (ITEM ∗item);

DESCRIPTION
The item_visible () function returns TRUE if the item passed is currently visible in a menu.

RETURN VALUES
The functions return one of the following error values:

E_BAD_ARGUMENTOne or more of the arguments passed to the function was incorrect.
E_NOT_CONNECTEDThe item is not connected to a menu.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_ITEMS (3) NetBSD Library Functions Manual MENU_ITEMS (3)

NAME
item_count , menu_items , set_menu_items — attach items to menus or check correspondences

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

int
item_count (MENU∗menu);

ITEMS ∗∗
menu_items (MENU∗menu);

int
set_menu_items (MENU∗menu, ITEM ∗∗items);

DESCRIPTION
The item_count () menu function returns the number of items currently attached to the menu passed.The
menu_items () function returns a pointer to an array of item pointers that represent the menu items cur-
rently attached to the given menu. Apartfrom usingnew_menu() (seemenu_new(3)) menu items may be
attached to a menu by callingset_menu_items () any items currently attached to the menu will be
detached and the NULL terminated array of new items will be attached to the menu.

RETURN VALUES
Any function returning a string pointer will return NULL if an error occurs.Functions returning an integer
will return one of the following:

E_OK The function was successful.
E_POSTED The menu is already posted.
E_CONNECTEDAn item was already connected to a menu.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_MARK (3) NetBSD Library Functions Manual MENU_MARK (3)

NAME
menu_mark , menu_unmark , set_menu_mark , set_menu_unmark — get or set strings that show
mark status for a menu

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

char ∗
menu_mark (MENU∗menu);

char ∗
menu_unmark (MENU∗menu);

int
set_menu_mark (MENU∗menu, char ∗mark);

int
set_menu_unmark (MENU∗menu, char ∗mark);

DESCRIPTION
Themenu_mark () function returns a pointer to the character string that is used to mark selected items in the
menu. Themark string is set by theset_menu_mark () function. Themenu_unmark () function returns a
pointer to the character string that is used to indicate a menu items is not selected, this string is set by the
set_menu_unmark () function. The mark and unmark strings may be of differing lengths, the room allo-
cated to drawing the mark will be the maximum of the lengths of both the mark and unmark strings.The
shorter of the two strings will be left justified and space padded.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_SYSTEM_ERROR There was a system error during the call.
E_BAD_ARGUMENT One or more of the arguments passed to the function was incorrect.
E_POSTED The menu is already posted.
E_CONNECTED An item was already connected to a menu.
E_BAD_STATE The function was called from within an initialization or termination routine.
E_NO_ROOM The menu does not fit within the subwindow.
E_NOT_POSTED The menu is not posted.
E_UNKNOWN_COMMANDThe menu driver does not recognize the request passed to it.
E_NO_MATCH The character search failed to find a match.
E_NOT_SELECTABLE The item could not be selected.
E_NOT_CONNECTED The item is not connected to a menu.
E_REQUEST_DENIED The menu driver could not process the request.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_NEW (3) NetBSD Library Functions Manual MENU_NEW (3)

NAME
free_menu , new_menu — create or delete a menu

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

int
free_menu (MENU∗menu);

MENU∗
new_menu(ITEMS ∗∗items);

DESCRIPTION
The free_menu () menu function destroys the given menu and frees all allocated storage associated with
the menu. All items associated with the menu are detached from the menu before it is destroyed. The
new_menu() function allocates storage for a new menu and initializes all the values to the defined defaults.
If the items pointer passed is not a NULL then the given NULL terminated array of items is attached to the
new menu.

RETURN VALUES
Thenew_menu() function returns NULL on error, while thefree_menu () function returns one of the fol-
lowing error values:

E_OK The function was successful.
E_BAD_ARGUMENTOne or more of the arguments passed to the function was incorrect.
E_POSTED The menu is already posted.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_OPTS (3) NetBSD Library Functions Manual MENU_OPTS (3)

NAME
menu_opts , menu_opts_off , menu_opts_on , set_menu_opts — get or modify options for a
menu

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

OPTIONS
menu_opts (MENU∗menu);

int
menu_opts_off (MENU∗menu, OPTIONS opts);

int
menu_opts_on (MENU∗menu, OPTIONS opts);

int
set_menu_opts (MENU∗menu, OPTIONS opts);

DESCRIPTION
The menu_opts () function returns the current options set for the menu given. Themenu_opts_off ()
function turns off the menu options given by the opts parameter for the menu.Themenu_opts_on () func-
tion turns on the menu options given by the opts parameter for the menu passed.The set_menu_opts ()
sets the menu options to the value given in opts.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_BAD_ARGUMENTOne or more of the arguments passed to the function was incorrect.
E_POSTED The menu is already posted.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_PATTERN (3) NetBSD Library Functions Manual MENU_PATTERN (3)

NAME
menu_pattern , set_menu_pattern — get or set menu pattern

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

char ∗
menu_pattern (MENU∗menu);

DESCRIPTION
The menu_pattern () function returns a pointer to the string that is currently in the menu pattern buffer.
The menu pattern buffer can be set by callingset_menu_pattern () which will set the pattern buffer to
the string passed and then attempt to match that string against the names of the items in the attached items.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_SYSTEM_ERRORThere was a system error during the call.
E_BAD_ARGUMENTOne or more of the arguments passed to the function was incorrect.
E_NO_MATCH The character search failed to find a match.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_POST (3) NetBSD Library Functions Manual MENU_POST (3)

NAME
post_menu unpost_menu — post (draw) or unpost a menu

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

int
post_menu (MENU∗menu);

int
unpost_menu (MENU∗menu);

DESCRIPTION
The post_menu () function causes the menu to be drawn on the screen.Any functions defined by either
set_menu_init () or set_item_init () (seemenu_hook (3)) are called before the menu is placed on
the screen.The unpost_menu () does the opposite, it removes a menu from the screen.Any functions
defined by bothset_menu_term () andset_item_term () (seemenu_hook (3)) are called prior to the
menu’s removal.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_SYSTEM_ERRORThere was a system error during the call.
E_BAD_ARGUMENTOne or more of the arguments passed to the function was incorrect.
E_POSTED The menu is already posted.
E_BAD_STATE The function was called from within an initialization or termination routine.
E_NO_ROOM The menu does not fit within the subwindow.
E_NOT_CONNECTEDThe item is not connected to a menu.

SEE ALSO
curses (3), menu_hook (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_USERPTR (3) NetBSD Library Functions Manual MENU_USERPTR (3)

NAME
menu_userptr , set_menu_userptr — get or set user pointer for a menu

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

char ∗
menu_userptr (MENU∗menu);

int
set_menu_userptr (MENU∗menu, char ∗ptr);

DESCRIPTION
The menu_userptr () function returns the pointer to the user defined pointer for the given menu. This
pointer is set by theset_menu_userptr () function.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_SYSTEM_ERRORThere was a system error during the call.

SEE ALSO
curses (3), menus(3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 1

MENU_WIN (3) NetBSD Library Functions Manual MENU_WIN (3)

NAME
menu_sub , menu_win , scale_menu , set_menu_sub , set_menu_win — sub-menu handling

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

WINDOW∗
menu_sub (MENU∗menu);

WINDOW∗
menu_win (MENU∗menu);

int
scale_menu (MENU∗menu, int ∗rows , int ∗cols);

int
set_menu_sub (MENU∗menu, WINDOW∗sub);

int
set_menu_win (MENU∗menu, WINDOW∗win);

DESCRIPTION
Themenu_sub () function returns a pointer to the window that will be used to post a menu into, this pointer
is set by theset_menu_sub () function. The menu_win () function returns a pointer to the window in
which the menu subwindow will be created when the menu is posted, this pointer is set by the
set_menu_win () function. Thescale_menu () function calculates the minimum size a window needs to
be to hold the items for a given menu, the parameters rows and cols are set to the required number of rows
and columns respectively.

RETURN VALUES
The functions return one of the following error values:

E_OK The function was successful.
E_SYSTEM_ERROR There was a system error during the call.
E_BAD_ARGUMENT One or more of the arguments passed to the function was incorrect.
E_POSTED The menu is already posted.
E_CONNECTED An item was already connected to a menu.
E_BAD_STATE The function was called from within an initialization or termination routine.
E_NO_ROOM The menu does not fit within the subwindow.
E_NOT_POSTED The menu is not posted
E_UNKNOWN_COMMANDThe menu driver does not recognize the request passed to it.
E_NO_MATCH The character search failed to find a match.
E_NOT_SELECTABLE The item could not be selected.
E_NOT_CONNECTED The item is not connected to a menu.
E_REQUEST_DENIED The menu driver could not process the request.

SEE ALSO
curses (3), menus(3)

NetBSD 3.0 September 10, 1999 1

MENU_WIN (3) NetBSD Library Functions Manual MENU_WIN (3)

NOTES
The header<menu.h> automatically includes both<curses.h> and<eti.h> .

NetBSD 3.0 September 10, 1999 2

MENUS (3) NetBSD Library Functions Manual MENUS (3)

NAME
menus — menu library

LIBRARY
Curses Menu Library (libmenu, −lmenu)

SYNOPSIS
#include <menu.h>

DESCRIPTION
The menus library provides a terminal independent menu system using thecurses (3) library. Before
using themenus functions the terminal must be set up bycurses (3) using theinitscr () function or
similar. Programs usingmenus functions must be linked with thecurses (3) library.

Themenus library provides facilities for defining menu items, placing a menu on the terminal screen, assign
pre- and post-change operations and setting the attributes of both the menu and its items.

Defining default attributes for menus and items
The menus library allows any settable attribute or option of both the menu and item objects to be defined
such that any new menu or item automatically inherits the value as default. Settingthe default value will not
affect any item or menu that has already been created but will be applied to subsequent objects.To set the
default attribute or option the set routine is passed a NULL pointer in the item or menu parameter when call-
ing the set routine. The current default value can be retrieved by calling the get routine with a NULL pointer
for the item or menu parameter.

function name manual page name
current_item menu_item_current (3)
free_item menu_item_new (3)
free_menu menu_new(3)
item_count menu_items (3)
item_description menu_item_name (3)
item_index menu_item_current (3)
item_init menu_hook (3)
item_name menu_item_name (3)
item_opts menu_item_opts (3)
item_opts_off menu_item_opts (3)
item_opts_on menu_item_opts (3)
item_selected menu_item_value (3)
item_term menu_hook (3)
item_userptr menu_item_userptr (3)
item_value menu_item_value (3)
item_visible menu_item_visible (3)
menu_back menu_attributes (3)
menu_driver menu_driver (3)
menu_fore menu_attributes (3)
menu_format menu_format (3)
menu_grey menu_attributes (3)
menu_init menu_hook (3)
menu_items menu_items (3)
menu_mark menu_mark (3)

NetBSD 3.0 September 10, 1999 1

MENUS (3) NetBSD Library Functions Manual MENUS (3)

menu_opts menu_opts (3)
menu_opts_off menu_opts (3)
menu_opts_on menu_opts (3)
menu_pad menu_attributes (3)
menu_pattern menu_pattern (3)
menu_sub menu_win (3)
menu_term menu_hook (3)
menu_unmark menu_mark (3)
menu_userptr menu_userptr (3)
men_win menu_win (3)
new_item menu_item_new (3)
new_menu menu_new(3)
pos_menu_cursor menu_cursor (3)
post_menu menu_post (3)
scale_menu menu_win (3)
set_current_item menu_item_current (3)
set_item_init menu_hook (3)
set_item_opts menu_item_opts (3)
set_item_term menu_hook (3)
set_item_userptr menu_item_userptr (3)
set_item_value menu_item_value (3)
set_menu_back menu_attributes (3)
set_menu_fore menu_attributes (3)
set_menu_format menu_format (3)
set_menu_grey menu_attributes (3)
set_menu_init menu_hook (3)
set_menu_items menu_items (3)
set_menu_mark menu_mark (3)
set_menu_opts menu_opts (3)
set_menu_pad menu_attributes (3)
set_menu_pattern menu_pattern (3)
set_menu_sub menu_win (3)
set_menu_term menu_hook (3)
set_menu_unmark menu_mark (3)
set_menu_userptr menu_userptr (3)
set_menu_win menu_win (3)
set_top_row menu_item_current (3)
top_row menu_item_current (3)
unpost_menu menu_post (3)

RETURN VALUES
Any function returning a string pointer will return NULL if an error occurs.Functions returning an integer
will return one of the following:

E_OK The function was successful.
E_SYSTEM_ERROR There was a system error during the call.
E_BAD_ARGUMENT One or more of the arguments passed to the function was incorrect.
E_POSTED The menu is already posted.
E_CONNECTED An item was already connected to a menu.
E_BAD_STATE The function was called from within an initialization or termination routine.

NetBSD 3.0 September 10, 1999 2

MENUS (3) NetBSD Library Functions Manual MENUS (3)

E_NO_ROOM The menu does not fit within the subwindow.
E_NOT_POSTED The menu is not posted.
E_UNKNOWN_COMMANDThe menu driver does not recognize the request passed to it.
E_NO_MATCH The character search failed to find a match.
E_NOT_SELECTABLE The item could not be selected.
E_NOT_CONNECTED The item is not connected to a menu.
E_REQUEST_DENIED The menu driver could not process the request.

SEE ALSO
curses (3), menu_attributes (3), menu_cursor (3), menu_driver (3), menu_format (3),
menu_hook (3), menu_item_current (3), menu_item_name (3), menu_item_new (3),
menu_item_opts (3), menu_item_userptr (3), menu_item_value (3),
menu_item_visible (3), menu_items (3), menu_mark (3), menu_new(3), menu_opts (3),
menu_pattern (3), menu_post (3), menu_userptr (3), menu_win (3)

NOTES
This implementation of the menus library does depart in behaviour subtly from the original AT & T imple-
mentation. Someof the more notable departures are:

unmark The original implementation did not have a marker for an unmarked field the mark was
only displayed next to a field when it had been marked using the REQ_TOGGLE_ITEM.
In this implementation a separate marker can be used to indicate an unmarked item.This
can be set using set_menu_unmark function.There is no requirement for the mark and
unmark strings to be the same length. Room will be left for the longest of the two. The
unmark string is optional, if it is not set then menus defaults to the old behaviour.

item marking In the original implementation the current item was considered selected and hence had the
mark string displayed next to it.This implementation does not do this because the Author
considers the effect too confusing. Especially in the case of a multiple selection menu
because there was no way to tell if the current item is selected or not without shifting off
of it. Since the current item is displayed using the foreground attribute it was deemed
unnecessary to also display the mark string against the current item.

The option O_RADIO and the functionitem_selected () areNetBSD extensions and must not be used in
portable code.

NetBSD 3.0 September 10, 1999 3

MKTEMP (3) NetBSD Library Functions Manual MKTEMP (3)

NAME
mktemp, mkstemp , mkdtemp — make unique temporary file or directory name

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

char ∗
mktemp(char ∗template);

int
mkstemp (char ∗template);

char ∗
mkdtemp(char ∗template);

DESCRIPTION
The mktemp() function takes the given file name template and overwrites a portion of it to create a file
name. Thisfile name is unique and suitable for use by the application. The template may be any file name
with some number of ‘X’s appended to it, for example /tmp/temp.XXXXXX . The trailing ‘X’s are
replaced with the current process number and/or a unique letter combination. The number of unique file
namesmktemp() can return depends on the number of ‘X’s provided. AlthoughtheNetBSD implementation
of the functions will accept any number of trailing ‘X’s, for portability reasons one should use only six.
Using six ‘X’s will result inmktemp() testing roughly 26∗∗ 6 (308915776) combinations.

The mkstemp () function makes the same replacement to the template and creates the template file, mode
0600, returning a file descriptor opened for reading and writing. This avoids the race between testing for a
file’s existence and opening it for use.

Themkdtemp() function is similar tomkstemp (), but it creates a mode 0700 directory instead and returns
the path.

Please note that the permissions of the file or directory being created are subject to the restrictions imposed
by theumask(2) system call. It may thus happen that the created file is unreadable and/or unwritable.

RETURN VALUES
The mktemp() andmkdtemp() functions return a pointer to the template on success andNULL on failure.
The mkstemp () function returns −1 if no suitable file could be created.If either call fails an error code is
placed in the global variableerrno.

EXAMPLES
Quite often a programmer will want to replace a use ofmktemp() with mkstemp (), usually to avoid the
problems described above. Doing this correctly requires a good understanding of the code in question.

For instance, code of this form:

char sfn[15] = "";
FILE ∗sfp;

strlcpy(sfn, "/tmp/ed.XXXXXX", sizeof sfn);
if (mktemp(sfn) == NULL || (sfp = fopen(sfn, "w+")) == NULL) {

fprintf(stderr, "%s: %s\n", sfn, strerror(errno));
return (NULL);

}

NetBSD 3.0 July 28, 1998 1

MKTEMP (3) NetBSD Library Functions Manual MKTEMP (3)

return (sfp);

should be rewritten like this:

char sfn[15] = "";
FILE ∗sfp;
int fd = -1;

strlcpy(sfn, "/tmp/ed.XXXXXX", sizeof sfn);
if ((fd = mkstemp(sfn)) == -1 ||

(sfp = fdopen(fd, "w+")) == NULL) {
if (fd != -1) {

unlink(sfn);
close(fd);

}
fprintf(stderr, "%s: %s\n", sfn, strerror(errno));
return (NULL);

}
return (sfp);

Often one will find code which usesmktemp() very early on, perhaps to globally initialize the template
nicely, but the code which callsopen (2) or fopen (3) on that filename will occur much later. (In almost all
cases, the use offopen (3) will mean that the flagsO_CREAT| O_EXCLare not given to open (2), and thus
a symbolic link race becomes possible, hence making necessary the use offdopen (3) as seen above). Fur-
thermore, one must be careful about code which opens, closes, and then re-opens the file in question.
Finally, one must ensure that upon error the temporary file is removed correctly.

There are also cases where modifying the code to usemktemp(), in concert withopen (2) using the flags
O_CREAT| O_EXCL, is better, as long as the code retries a new template ifopen (2) fails with anerrno of
EEXIST.

ERRORS
Themktemp(), mkstemp () andmkdtemp() functions may seterrno to one of the following values:

[ENOTDIR] The pathname portion of the template is not an existing directory.

The mktemp(), mkstemp () and mkdtemp() functions may also seterrno to any value specified by the
stat (2) function.

Themkstemp () function may also seterrno to any value specified by theopen (2) function.

Themkdtemp() function may also seterrno to any value specified by themkdir (2) function.

SEE ALSO
chmod(2), getpid (2), open (2), stat (2), umask(2)

HISTORY
A mktemp() function appeared in Version 7AT&T UNIX .

Themkstemp () function appeared in 4.4BSD.

Themkdtemp() function appeared inNetBSD 1.4.

BUGS
For mktemp() there is an obvious race between file name selection and file creation and deletion: the pro-
gram is typically written to calltmpnam(3), tempnam(3), or mktemp(). Subsequently, the program calls
open (2) or fopen (3) and erroneously opens a file (or symbolic link, fifo or other device) that the attacker

NetBSD 3.0 July 28, 1998 2

MKTEMP (3) NetBSD Library Functions Manual MKTEMP (3)

has created in the expected file location.Hencemkstemp () is recommended, since it atomically creates the
file. An attacker can guess the filenames produced bymktemp(). Whenever it is possible,mkstemp () or
mkdtemp() should be used instead.

For this reason,ld (1) will output a warning message whenever it l inks code that usesmktemp().

Themkdtemp() function is nonstandard and should not be used if portability is required.

SECURITY CONSIDERATIONS
The use ofmktemp() should generally be avoided, as a hostile process can exploit a race condition in the
time between the generation of a temporary filename bymktemp() and the invoker’s use of the temporary
name. Alink-time warning will be issued advising the use ofmkstemp () or mkdtemp() instead.

NetBSD 3.0 July 28, 1998 3

MODF (3) NetBSD Library Functions Manual MODF (3)

NAME
modf — extract signed integral and fractional values from floating-point number

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
modf (double value , double ∗iptr);

float
modff (float value , float ∗iptr);

DESCRIPTION
The modf () function breaks the argumentvalue into integral and fractional parts, each of which has the
same sign as the argument. Itstores the integral part as adoublein the object pointed to byiptr .

RETURN VALUES
Themodf () function returns the signed fractional part ofvalue .

SEE ALSO
frexp (3), ldexp (3), math (3)

STANDARDS
Themodf () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 March 21, 2006 1

MONCONTROL (3) NetBSD Library Functions Manual MONCONTROL (3)

NAME
moncontrol , monstartup — control execution profile

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
moncontrol (int mode);

monstartup (u_long ∗lowpc , u_long ∗highpc);

DESCRIPTION
An executable program compiled using the−pg option tocc (1) automatically includes calls to collect sta-
tistics for thegprof (1) call-graph execution profiler. In typical operation, profiling begins at program
startup and ends when the program calls exit. Whenthe program exits, the profiling data are written to the
file gmon.out, thengprof (1) can be used to examine the results.

moncontrol () selectively controls profiling within a program.When the program starts, profiling begins.
To stop the collection of histogram ticks and call counts usemoncontrol (0); to resume the collection of
histogram ticks and call counts usemoncontrol (1). This feature allows the cost of particular operations
to be measured. Note that an output file will be produced on program exit regardless of the state of
moncontrol ().

Programs that are not loaded with−pg may selectively collect profiling statistics by callingmonstartup ()
with the range of addresses to be profiled.lowpc andhighpc specify the address range that is to be sam-
pled; the lowest address sampled is that oflowpc and the highest is just below highpc . Only functions in
that range that have been compiled with the−pg option tocc (1) will appear in the call graph part of the out-
put; however, all functions in that address range will have their execution time measured. Profiling begins on
return frommonstartup ().

ENVIRONMENT
PROFDIR Directory to place the output file(s) in.When this is set, instead of writing the profiling output to

gmon.out , a filename is generated from the process id and name of the program (e.g.,
123.a.out). If you are profiling a program that forks, or otherwise creates multiple copies,
setting this is the only reasonable way to get all profiling data.

FILES
gmon.out execution data file

SEE ALSO
cc (1), gprof (1), profil (2)

NetBSD 3.0 June 4, 1993 1

MPOOL (3) NetBSD Library Functions Manual MPOOL (3)

NAME
mpool , mpool_open , mpool_filter , mpool_new , mpool_get , mpool_put , mpool_sync ,
mpool_close — shared memory buffer pool

SYNOPSIS
#include <db.h>
#include <mpool.h>

MPOOL∗
mpool_open (DBT ∗key , int fd , pgno_t pagesize , pgno_t maxcache);

void
mpool_filter (MPOOL∗mp, void (∗pgin)(void ∗, p gno_t, void ∗) ,

void (∗pgout)(void ∗, p gno_t, void ∗) , void ∗pgcookie);

void ∗
mpool_new (MPOOL∗mp, pgno_t ∗pgnoaddr);

void ∗
mpool_get (MPOOL∗mp, pgno_t pgno , u_int flags);

int
mpool_put (MPOOL∗mp, void ∗pgaddr , u_int flags);

int
mpool_sync (MPOOL∗mp);

int
mpool_close (MPOOL∗mp);

DESCRIPTION
mpool is the library interface intended to provide page oriented buffer management of files. The buffers
may be shared between processes.

The functionmpool_open initializes a memory pool.Thekey argument is the byte string used to negoti-
ate between multiple processes wishing to share buffers. If the file buffers are mapped in shared memory, all
processes using the same key will share the buffers. If key is NULL, the buffers are mapped into private
memory. The fd argument is a file descriptor for the underlying file, which must be seekable.If key is
non-NULLand matches a file already being mapped, thefd argument is ignored.

The pagesize argument is the size, in bytes, of the pages into which the file is broken up.The
maxcache argument is the maximum number of pages from the underlying file to cache at any one time.
This value is not relative to the number of processes which share a file’s buffers, but will be the largest value
specified by any of the processes sharing the file.

Thempool_filter function is intended to make transparent input and output processing of the pages pos-
sible. If thepgin function is specified, it is called each time a buffer is read into the memory pool from the
backing file. If thepgout function is specified, it is called each time a buffer is written into the backing file.
Both functions are are called with thepgcookie pointer, the page number and a pointer to the page to
being read or written.

The functionmpool_new takes an MPOOL pointer and an address as arguments. Ifa new page can be allo-
cated, a pointer to the page is returned and the page number is stored into thepgnoaddr address. Other-
wise,NULL is returned and errno is set.

The functionmpool_get takes a MPOOL pointer and a page number as arguments. Ifthe page exists, a
pointer to the page is returned.Otherwise,NULL is returned and errno is set. The flags parameter is not cur-
rently used.

NetBSD 3.0 April 17, 2003 1

MPOOL (3) NetBSD Library Functions Manual MPOOL (3)

The functionmpool_put unpins the page referenced bypgaddr . pgaddr must be an address previously
returned bympool_get or mpool_new . The flag value is specified by or’ing any of the following values:

MPOOL_DIRTY The page has been modified and needs to be written to the backing file.

mpool_put returns 0 on success and −1 if an error occurs.

The functionmpool_sync writes all modified pages associated with the MPOOL pointer to the backing
file. mpool_sync returns 0 on success and −1 if an error occurs.

The mpool_close function frees up any allocated memory associated with the memory pool cookie.
Modified pages arenot written to the backing file.mpool_close returns 0 on success and −1 if an error
occurs.

ERRORS
The mpool_open function may fail and seterrno for any of the errors specified for the library routine
malloc (3).

Thempool_get function may fail and seterrno for the following:

EINVAL The requested record doesn’t exist.

The mpool_new andmpool_get functions may fail and seterrno for any of the errors specified for the
library routinesread (2), write (2), andmalloc (3).

The mpool_sync function may fail and seterrno for any of the errors specified for the library routine
write (2).

The mpool_close function may fail and seterrno for any of the errors specified for the library routine
free (3).

SEE ALSO
btree (3), dbopen (3), hash (3), recno (3)

NetBSD 3.0 April 17, 2003 2

NAN (3) NetBSDLibrary Functions Manual NAN (3)

NAME
nan , nanf , nanl — return quiet NaN

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
nan (const char ∗tagp);

float
nanf (const char ∗tagp);

long double
nanl (const char ∗tagp);

DESCRIPTION
The callnan ("n-char-sequence") is equivalent to the callstrod ("NAN(n-char-sequence)" ,
NULL). Thecall nan ("") is equivalent to the callstrod ("NAN()" , NULL).

The nanf () and nanl () functions are equivalent to nan () but substitutingstrtof () and strtod (),
respectively.

RETURN VALUES
IEEE 754

Thenan (), nanf (), andnanl () functions return a quiet NaN as specified bytagp .

VAX
Thenan (), nanf (), andnanl () functions return zero.

SEE ALSO
math (3), strod (3)

STANDARDS
Thenan (), nanf (), andnanl () functions conform toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 March 15, 2006 1

NGETTEXT(3) NGETTEXT(3)

NAME
ngettext, dngettext, dcngettext − translate message and choose plural form

SYNOPSIS
#include <libintl.h>

char * ngettext (const char *msgid, const char * msgid_plural,
unsigned long intn);

char * dngettext (const char *domainname,
const char * msgid, const char * msgid_plural,
unsigned long intn);

char * dcngettext (const char *domainname,
const char * msgid, const char * msgid_plural,
unsigned long intn, int category);

DESCRIPTION
The ngettext, dngettext and dcngettext functions attempt to translate a text string into the user’s native
language, by looking up the appropriate plural form of the translation in a message catalog.

Plural forms are grammatical variants depending on the a number. Some languages have two forms, called
singular and plural. Other languages have three forms, called singular, dual and plural. There are also lan-
guages with four forms.

Thengettext, dngettext anddcngettext functions work like thegettext, dgettext anddcgettext functions,
respectively. Additionally, they choose the appropriate plural form, which depends on the numbern and the
language of the message catalog where the translation was found.

In the "C" locale, or if none of the used catalogs contain a translation formsgid, the ngettext, dngettext
anddcngettextfunctions returnmsgidif n == 1, ormsgid_pluralif n != 1.

RETURN VALUE
If a translation was found in one of the specified catalogs, the appropriate plural form is converted to the
locale’s codeset and returned. The resulting string is statically allocated and must not be modified or freed.
Otherwisemsgidor msgid_pluralis returned, as described above.

ERRORS
errno is not modified.

BUGS
The return type ought to beconst char *, but ischar * to avoid warnings in C code predating ANSI C.

SEE ALSO
gettext(3), dgettext(3), dcgettext(3)

GNU gettext 0.14.4 May 2001 1

NICE (3) NetBSD Library Functions Manual NICE (3)

NAME
nice — set program scheduling priority

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
nice (int incr);

DESCRIPTION
This interface is obsoleted bysetpriority (2).

Thenice () function obtains the scheduling priority of the process from the system and sets it to the priority
value specified inincr . The priority is a value in the range -20 to 20.The default priority is 0; lower prior-
ities cause more favorable scheduling. Only the super-user may lower priorities.

Children inherit the priority of their parent processes viafork (2).

RETURN VALUES
Upon successful completion,nice () returns the new nice value minusNZERO. Otherwise, −1 is returned,
the process’ nice value is not changed, anderrno is set to indicate the error.

ERRORS
Thenice () function will fail if:

[EPERM] The incr argument is negative and the caller is not the super-user.

SEE ALSO
nice (1), fork (2), setpriority (2), renice (8)

STANDARDS
Thenice () function conforms toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

HISTORY
A nice () syscall appeared in Version 6AT&T UNIX .

NetBSD 3.0 February 16, 1998 1

NL_LANGINFO (3) NetBSD Library Functions Manual NL_LANGINFO (3)

NAME
nl_langinfo — get locale information

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <langinfo.h>

char ∗
nl_langinfo (nl_item item);

DESCRIPTION
The nl_langinfo () function returns a pointer to a string containing information set by the program’s
locale.

The names and values ofitem are defined in〈langinfo.h 〉. The entries under Category indicate in
whichsetlocale (3) category each item is defined.

Constant Category Meaning

CODESET LC_CTYPE Codeset name
D_T_FMT LC_TIME String for formatting date and time
D_FMT LC_TIME Date format string
T_FMT LC_TIME Time format string
T_FMT_AMPM LC_TIME A.M. or P.M. time format string
AM_STR LC_TIME Ante-meridiem affix
PM_STR LC_TIME Post-meridiem affix
DAY_1 LC_TIME Name of the first day of the week (e.g.: Sunday)
DAY_2 LC_TIME Name of the second day of the week (e.g.: Monday)
DAY_3 LC_TIME Name of the third day of the week (e.g.: Tuesday)
DAY_4 LC_TIME Name of the fourth day of the week (e.g.: Wednesday)
DAY_5 LC_TIME Name of the fifth day of the week (e.g.: Thursday)
DAY_6 LC_TIME Name of the sixth day of the week (e.g.: Friday)
DAY_7 LC_TIME Name of the seventh day of the week (e.g.: Saturday)
ABDAY_1 LC_TIME Abbreviated name of the first day of the week
ABDAY_2 LC_TIME Abbreviated name of the second day of the week
ABDAY_3 LC_TIME Abbreviated name of the third day of the week
ABDAY_4 LC_TIME Abbreviated name of the fourth day of the week
ABDAY_5 LC_TIME Abbreviated name of the fifth day of the week
ABDAY_6 LC_TIME Abbreviated name of the sixth day of the week
ABDAY_7 LC_TIME Abbreviated name of the seventh day of the week
MON_1 LC_TIME Name of the first month of the year
MON_2 LC_TIME Name of the second month
MON_3 LC_TIME Name of the third month
MON_4 LC_TIME Name of the fourth month
MON_5 LC_TIME Name of the fifth month
MON_6 LC_TIME Name of the sixth month
MON_7 LC_TIME Name of the seventh month
MON_8 LC_TIME Name of the eighth month
MON_9 LC_TIME Name of the ninth month
MON_10 LC_TIME Name of the tenth month
MON_11 LC_TIME Name of the eleventh month
MON_12 LC_TIME Name of the twelfth month

NetBSD 3.0 February 12, 2003 1

NL_LANGINFO (3) NetBSD Library Functions Manual NL_LANGINFO (3)

ABMON_1 LC_TIME Abbreviated name of the first month
ABMON_2 LC_TIME Abbreviated name of the second month
ABMON_3 LC_TIME Abbreviated name of the third month
ABMON_4 LC_TIME Abbreviated name of the fourth month
ABMON_5 LC_TIME Abbreviated name of the fifth month
ABMON_6 LC_TIME Abbreviated name of the sixth month
ABMON_7 LC_TIME Abbreviated name of the seventh month
ABMON_8 LC_TIME Abbreviated name of the eighth month
ABMON_9 LC_TIME Abbreviated name of the ninth month
ABMON_10 LC_TIME Abbreviated name of the tenth month
ABMON_11 LC_TIME Abbreviated name of the eleventh month
ABMON_12 LC_TIME Abbreviated name of the twelfth month
ERA LC_TIME Era description segments
ERA_D_FMT LC_TIME Era date format string
ERA_D_T_FMT LC_TIME Era date and time format string
ERA_T_FMT LC_TIME Era time format string
ALT_DIGITS LC_TIME Alternative symbols for digits
RADIXCHAR LC_NUMERIC Radix character
THOUSEP LC_NUMERIC Separator for thousands
YESEXPR LC_MESSAGES Affirmative response expression
NOEXPR LC_MESSAGES Negative response expression

RETURN VALUES
nl_langinfo () returns a pointer to an empty string ifitem is invalid.

EXAMPLES
The following example usesnl_langinfo () to obtain the date and time format for the current locale:

#include <time.h>
#include <langinfo.h>
#include <locale.h>

int main(void)
{

char datestring[100];
struct tm ∗tm;
time_t t;
char ∗ptr;

t = t ime(NULL);
tm = localtime(&t);
(void)setlocale(LC_ALL, "");
ptr = nl_langinfo(D_T_FMT);
strftime(datestring, sizeof(datestring), ptr, tm);
printf("%s\n",datestring);
return (0);

}

SEE ALSO
setlocale (3), nls (7)

NetBSD 3.0 February 12, 2003 2

NL_LANGINFO (3) NetBSD Library Functions Manual NL_LANGINFO (3)

STANDARDS
Thenl_langinfo () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

HISTORY
Thenl_langinfo () function appeared inNetBSD 1.0.

NetBSD 3.0 February 12, 2003 3

NLIST (3) NetBSD Library Functions Manual NLIST (3)

NAME
nlist — retrieve symbol table name list from an executable file

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <nlist.h>

int
nlist (const char ∗filename , struct nlist ∗nl);

DESCRIPTION
The nlist () function retrieves name list entries from the symbol table of an executable file. (See
a.out (5).) Theargumentnl is set to reference the beginning of the list. The list is preened of binary and
invalid data; if an entry in the name list is valid, then_type andn_value for the entry are copied into the
list referenced bynl . No other data is copied. The last entry in the list is always NULL.

RETURN VALUES
The number of invalid entries is returned if successful; otherwise, if the filefilename does not exist or is
not executable, the returned value is −1.

SEE ALSO
a.out (5)

HISTORY
A nlist () function appeared in Version 6AT&T UNIX .

NetBSD 3.0 April 19, 1994 1

NSDISPATCH (3) NetBSD Library Functions Manual NSDISPATCH (3)

NAME
nsdispatch — name-service switch dispatcher routine

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <nsswitch.h>

int
nsdispatch (void ∗nsdrv , const ns_dtab dtab[] , const char ∗database ,

const char ∗name, const ns_src defaults[] , . . .);

DESCRIPTION
The nsdispatch () function invokes the callback functions specified indtab in the order given in
/etc/nsswitch.conf for the databasedatabase until the action criteria for a source of that database
is fulfilled.

nsdrv is passed to each callback function to use as necessary (to pass back to the caller of
nsdispatch ()).

dtab is an array ofns_dtab structures, which have the following format:

typedef struct {
const char ∗src;
nss_method cb;
void ∗cb_data;

} n s_dtab;

Thedtab array should consist of one entry for each source type that has a static implementation,
with src as the name of the source,cb as a callback function which handles that source, and
cb_data as a pointer to arbitrary data to be passed to the callback function. The last entry indtab
should containNULLvalues forsrc , cb , andcb_data .

The callback function signature is described by the typedef:

typedef int (∗nss_method)(void ∗cbrv , void ∗cbdata , va_list ap);

cbrv Thensdrv thatnsdispatch () was invoked with.

cbdata Thecb_data member of the array entry for the source that this callback function
implements in thedtab argument ofnsdispatch ().

ap The . . . arguments tonsdispatch (), converted to ava_list .

database and name are used to select methods from optional per-source dynamically-loaded modules.
name is usually the name of the function callingnsdispatch (). Notethat the callback functions provided
by dtab take priority over those implemented in dynamically-loaded modules in the event of a conflict.

defaults contains a list of default sources to try in the case of a missing or corruptnsswitch.conf (5),
or if there isn’t a relevant entry fordatabase . It is an array ofns_src structures, which have the follow-
ing format:

typedef struct {
const char ∗src;
uint32_t flags;

} n s_src;

NetBSD 3.0 May 8, 2008 1

NSDISPATCH (3) NetBSD Library Functions Manual NSDISPATCH (3)

Thedefaults array should consist of one entry for each source to consult by default indicated by
src , and flags set to the desired behavior (usuallyNS_SUCCESS; refer toCallback function
retur n valuesfor more information). The last entry indefaults should havesrc set toNULL
andflags set to 0.

Some invokers ofnsdispatch () (such assetgrent (3)) need to force all callback functions to be
invoked, irrespective of the action criteria listed innsswitch.conf (5). Thiscan be achieved by
addingNS_FORCEALLto defaults[0].flags before invoking nsdispatch (). Thereturn
value ofnsdispatch () will be the result of the final callback function invoked.

For convenience, a global variable defined as:
extern const ns_src __nsdefaultsrc[];

exists which contains a single default entry for ‘files’ for use by callers which don’t require compli-
cated default rules.

. . . are optional extra arguments, which are passed to the appropriate callback function as astdarg (3)
variable argument list of the typeva_list .

nsdispatch returns the value of the callback function that caused the dispatcher to finish, or
NS_NOTFOUNDotherwise.

Dynamically-loaded module interface
Thensdispatch () function loads callback functions from the run-time link-editor’s search path using the
following naming convention:

nss_<source>.so.<version>

〈source〉 The source that the module implements.

〈version〉 Thensdispatch module interface version, which is defined by the integer
NSS_MODULE_INTERFACE_VERSION, which has the value 0.

When a module is loaded,nsdispatch () looks for and calls the following function in the module:

ns_mtab ∗ nss_module_register (const char ∗source , u_int ∗nelems ,
nss_module_unregister_fn ∗unreg);

source The name of the source that the module implements, as used bynsdispatch () to con-
struct the module’s name.

nelems A pointer to an unsigned integer thatnss_module_register () should set to the num-
ber of elements in thens_mtab array returned bynss_module_register (), or0 if
there was a failure.

unreg A pointer to a function pointer thatnss_module_register () can optionally set to an
unregister function to be invoked when the module is unloaded, orNULL if there isn’t one.

The unregister function signature is described by the typedef:

typedef void (∗nss_module_unregister_fn)(ns_mtab ∗mtab , u_int nelems);

mtab The array ofns_mtab structures returned bynss_module_register ().

nelems The∗nelems value set bynss_module_register ().

nss_module_register () returns an array ofns_mtab structures (with∗nelems entries), orNULL if
there was a failure. Thens_mtab structures have the following format:

NetBSD 3.0 May 8, 2008 2

NSDISPATCH (3) NetBSD Library Functions Manual NSDISPATCH (3)

typedef struct {
const char ∗database;
const char ∗name;
nss_method method;
void ∗mdata;

} n s_mtab;

Themtab array should consist of one entry for each callback function (method) that is implemented,
with database as the name of the database,name as the name of the callback function,method
as thenss_method callback function that implements the method, andmdata as a pointer to arbi-
trary data to be passed to the callback function as itscbdata argument.

Valid source types
While there is support for arbitrary sources, the following #defines for commonly implemented sources are
provided:

#define Value
NSSRC_FILES "files"
NSSRC_DNS "dns"
NSSRC_NIS "nis"
NSSRC_COMPAT "compat"

Refer tonsswitch.conf (5) for a complete description of what each source type is.

Valid database types
While there is support for arbitrary databases, the following #defines for currently implemented system data-
bases are provided:

#define Value
NSDB_HOSTS "hosts"
NSDB_GROUP "group"
NSDB_GROUP_COMPAT "group_compat"
NSDB_NETGROUP "netgroup"
NSDB_NETWORKS "networks"
NSDB_PASSWD "passwd"
NSDB_PASSWD_COMPAT "passwd_compat"
NSDB_SHELLS "shells"

Refer tonsswitch.conf (5) for a complete description of what each database is.

Callback function return values
The callback functions should return one of the following values depending upon status of the lookup:

Return value Statuscode
NS_SUCCESS Therequested entry was found.
NS_NOTFOUND Theentry is not present at this source.
NS_TRYA GAIN The source is busy, and may respond to retries.
NS_UNAVA IL The source is not responding, or entry is corrupt.

CALLB ACK FUNCTION API FOR STANDARD DAT ABASES
The organization of theap argument for annss_method () callback function for a standard method in a
standard database is:

NetBSD 3.0 May 8, 2008 3

NSDISPATCH (3) NetBSD Library Functions Manual NSDISPATCH (3)

1. Pointerto return value of the standard function.
2. Firstargument of the standard function.
3. (etc.)

For example, given the standard functiongetgrnam (3):
struct group ∗ getgrnam (const char ∗name)

theap organization used by the callback functions is:
1. struct group ∗∗
2. const char ∗

NOTE: Not all standard databases are using this calling convention yet; those that aren’t are noted below.
These will be changed in the future.

The callback function names andva_list organization for various standard database callback functions
are:

Methods for hosts database
NOTE: The method APIs for this database will be changing in the near future.

getaddrinfo
char ∗name, const struct addrinfo ∗pai

Returnsstruct addrinfo ∗ via void ∗cbrv .

gethostbyaddr
unsigned char ∗addr , int addrlen , int af

Returnsstruct hostent ∗ via void ∗cbrv .

gethostbyname
char ∗name, int namelen , int af

Returnsstruct hostent ∗ via void ∗cbrv .

Methods for group and group_compat databases
endgrent

Emptyap .

All methods for all sources are invoked for this method name.

getgrent
struct group ∗∗retval

∗retval should be set to a pointer to an internal staticstruct group on success,NULL
otherwise.

getgrent (3) returns∗retval if nsdispatch () returnsNS_SUCCESS, NULLotherwise.

getgrent_r
int ∗retval , struct group ∗grp , char ∗buffer , size_t buflen , struct group
∗∗result

∗retval should be set to an appropriateerrno (2) on failure.

getgrent_r (3) returns 0 if nsdispatch () returns NS_SUCCESSor NS_NOTFOUND, and
∗retval otherwise.

getgrgid
struct group ∗∗retval , gid_t gid

NetBSD 3.0 May 8, 2008 4

NSDISPATCH (3) NetBSD Library Functions Manual NSDISPATCH (3)

∗retval should be set to a pointer to an internal staticstruct group on success,NULL
otherwise.

getgrgid (3) returns∗retval if nsdispatch () returnsNS_SUCCESS, NULLotherwise.

getgrgid_r
int ∗retval , gid_t gid , struct group ∗grp , char ∗buffer , size_t buflen ,
struct group ∗∗result

∗retval should be set to an appropriateerrno (2) on failure.

getgrgid_r (3) returns 0 if nsdispatch () returns NS_SUCCESSor NS_NOTFOUND, and
∗retval otherwise.

getgrnam
struct group ∗∗retval , const char ∗name

∗retval should be set to a pointer to an internal staticstruct group on success,NULL
otherwise.

getgrnam (3) returns∗retval if nsdispatch () returnsNS_SUCCESS, NULLotherwise.

getgrnam_r
int ∗retval , const char ∗name, struct group ∗grp , char ∗buffer , size_t
buflen , struct group ∗∗result

∗retval should be set to an appropriateerrno (2) on failure.

getgrnam_r (3) returns 0 if nsdispatch () returns NS_SUCCESSor NS_NOTFOUND, and
∗retval otherwise.

getgroupmembership
int ∗retval , const char ∗name, gid_t basegid , gid_t ∗groups , int maxgrp , int
∗groupc

retval is unused.

Lookups forgroup_compat are also stopped ifNS_SUCCESSwas returned to prevent multiple “+:”
compat entries from being expanded.

getgroupmembership (3) returns is -1 if∗groupc is greater than tomaxgrp , and 0 otherwise.

setgroupent
int ∗retval , int stayopen

retval should be set to 0 on failure and 1 on success.

All methods for all sources are invoked for this method name.

setgrent
Emptyap .

All methods for all sources are invoked for this method name.

Methods for netgroup database
NOTE: The method APIs for this database will be changing in the near future.

endnetgrent
Emptyap .

NetBSD 3.0 May 8, 2008 5

NSDISPATCH (3) NetBSD Library Functions Manual NSDISPATCH (3)

lookup
char ∗name, char ∗∗line , int bywhat

Find the given name and return its value in line . bywhat is one of _NG_KEYBYNAME,
_NG_KEYBYUSER, or _NG_KEYBYHOST.

getnetgrent
int ∗retval , const char ∗∗host , const char ∗∗user , const char ∗∗domain

∗retval should be set to 0 for no more netgroup members and 1 otherwise.

getnetgrent (3) returns∗retval if nsdispatch () returnsNS_SUCCESS, 0 otherwise.

innetgr
int ∗retval , const char ∗grp , const char ∗host , const char ∗user , const
char ∗domain

∗retval should be set to 1 for a successful match and 0 otherwise.

setnetgrent
const char ∗netgroup

Methods for networks database
getnetbyaddr

struct netent ∗∗retval , uint32_t net , int type

∗retval should be set to a pointer to an internal staticstruct netent on success,NULL
otherwise.

getnetbyaddr (3) returns∗retval if nsdispatch () returnsNS_SUCCESS, NULLotherwise.

getnetbyname
struct netent ∗∗retval , const char ∗name

∗retval should be set to a pointer to an internal staticstruct netent on success,NULL
otherwise.

getnetbyname (3) returns∗retval if nsdispatch () returnsNS_SUCCESS, NULLotherwise.

Methods for passwd and passwd_compat databases
endpwent

Emptyap .

All methods for all sources are invoked for this method name.

getpwent
struct passwd ∗∗retval

∗retval should be set to a pointer to an internal staticstruct passwd on success,NULL
otherwise.

getpwent (3) returns∗retval if nsdispatch () returnsNS_SUCCESS, NULLotherwise.

getpwent_r
int ∗retval , struct passwd ∗pw, char ∗buffer , size_t buflen , struct passwd
∗∗result

∗retval should be set to an appropriateerrno (2) on failure.

getpwent_r (3) returns 0 if nsdispatch () returns NS_SUCCESSor NS_NOTFOUND, and
∗retval otherwise.

NetBSD 3.0 May 8, 2008 6

NSDISPATCH (3) NetBSD Library Functions Manual NSDISPATCH (3)

getpwnam
struct passwd ∗∗retval , const char ∗name

∗retval should be set to a pointer to an internal staticstruct passwd on success,NULL
otherwise.

getpwnam (3) returns∗retval if nsdispatch () returnsNS_SUCCESS, NULLotherwise.

getpwnam_r
int ∗retval , const char ∗name, struct passwd ∗pw, char ∗buffer , size_t
buflen , struct passwd ∗∗result

∗retval should be set to an appropriateerrno (2) on failure.

getpwnam_r (3) returns 0 if nsdispatch () returns NS_SUCCESSor NS_NOTFOUND, and
∗retval otherwise.

getpwuid
struct passwd ∗∗retval , uid_t uid

∗retval should be set to a pointer to an internal staticstruct passwd on success,NULL
otherwise.

getpwuid (3) returns∗retval if nsdispatch () returnsNS_SUCCESS, NULLotherwise.

getpwuid_r
int ∗retval , uid_t uid , struct passwd ∗pw, char ∗buffer , size_t buflen ,
struct passwd ∗∗result

∗retval should be set to an appropriateerrno (2) on failure.

getpwuid_r returns 0 ifnsdispatch () returnsNS_SUCCESSor NS_NOTFOUND, and ∗retval
otherwise.

setpassent
int ∗retval , int stayopen

retval should be set to 0 on failure and 1 on success.

All methods for all sources are invoked for this method name.

setpwent
Emptyap .

All methods for all sources are invoked for this method name.

Methods for shells database
endusershell

Emptyap .

All methods for all sources are invoked for this method name.

getusershell
char ∗∗retval

getusershell (3) returns∗retval if nsdispatch () returnsNS_SUCCESS, and 0 otherwise.

setusershell
Emptyap .

All methods for all sources are invoked for this method name.

NetBSD 3.0 May 8, 2008 7

NSDISPATCH (3) NetBSD Library Functions Manual NSDISPATCH (3)

SEE ALSO
ld.elf_so (1), hesiod (3), stdarg (3), ypclnt (3), nsswitch.conf (5)

HISTORY
The nsdispatch routines first appeared inNetBSD 1.4. Supportfor dynamically-loaded modules first
appeared inNetBSD 3.0.

AUTHORS
Luke Mewburn 〈lukem@NetBSD.org〉 wrote this freely distributable name-service switch implementation,
using ideas from theULTRIX svc.conf (5) andSolarisnsswitch.conf (4) manual pages. Support for
dynamically-loaded modules was added by Jason Thorpe〈thorpej@NetBSD.org〉, based on code developed
by theFreeBSDProject.

NetBSD 3.0 May 8, 2008 8

OFFTIME (3) NetBSD Library Functions Manual OFFTIME (3)

NAME
offtime , timeoff , timegm , timelocal — convert date and time

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>

struct tm ∗
offtime (const time_t ∗ clock , long int offset);

time_t
timeoff (struct tm ∗ tm , long int offset);

time_t
timegm (struct tm ∗ tm);

time_t
timelocal (struct tm ∗ tm);

DESCRIPTION
These functions are inspired by C standard interfaces named similarly.

offtime () converts the calendar timeclock , offset by offset seconds, into broken-down time,
expressed as Coordinated Universal Time (UTC).

timeoff () converts the broken-down timetm , expressed as UTC, offset byoffset seconds, into a calen-
dar time value.

timegm () converts the broken-down time tm into a calendar time value, effectively being the inverse of
gmtime (3). It is equivalent to the C standard functionmktime (3) operating in UTC.

timelocal () converts the broken down timetm , expressed as local time, into a calendar time value. It is
equivalent to the C standard functionmktime (3), and is provided for symmetry only.

SEE ALSO
ctime (3), tzset (3)

NetBSD 3.0 May 10, 2004 1

omapi(3) omapi(3)

NAME
OMAPI - Object Management Application Programming Interface

DESCRIPTION
OMAPI is an programming layer designed for controlling remote applications, and for querying them for
their state. It is currently used by the ISC DHCP server and this outline addresses the parts of OMAPI
appropriate to the clients of DHCP server. It does this by also describing the use of a thin API layered on
top of OMAPI called

OMAPI uses TCP/IP as the transport for server communication, and security can be imposed by having the
client and server cryptographically sign messages using a shared secret.

dhcpctl works by presenting the client with handles to objects that act as surrogates for the real objects in
the server. For example a client will create a handle for a lease object, and will request the server to fill the
lease handle’s state. The client application can then pull details such as the lease expiration time from the
lease handle.

Modifications can be made to the server state by creating handles to new objects, or by modifying attributes
of handles to existing objects, and then instructing the server to update itself according to the changes
made.

USAGE
The client application must always call dhcpctl_initialize() before making calls to any other dhcpctl func-
tions. This initializes various internal data structures.

To create the connection to the server the client must use dhcpctl_connect() function. As well as making the
physical connection it will also set up the connection data structures to do authentication on each message,
if that is required.

All the dhcpctl functions return an integer value of type isc_result_t. A successful call will yield a result of
ISC_R_SUCCESS. If the call fails for a reason local to the client (e.g. insufficient local memory, or inv alid
arguments to the call) then the return value of the dhcpctl function will show that. If the call succeeds but
the server couldn’t process the request the error value from the server is returned through another way,
shown below.

The easiest way to understand dhcpctl is to see it in action. The following program is fully functional, but
almost all error checking has been removed to make is shorter and easier to understand. This program will
query the server running on the localhost for the details of the lease for IP address 10.0.0.101. It will then
print out the time the lease ends.

#include <stdarg.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>

#include <isc/result.h>
#include <dhcpctl/dhcpctl.h>

int main (int argc, char **argv) {
dhcpctl_data_string ipaddrstring = NULL;
dhcpctl_data_string value = NULL;

All modifications of handles and all accesses of handle data happen via dhcpctl_data_string objects.

dhcpctl_handle connection = NULL;
dhcpctl_handle lease = NULL;
isc_result_t waitstatus;
struct in_addr convaddr;
time_t thetime;

1

omapi(3) omapi(3)

dhcpctl_initialize ();

Required first step.

dhcpctl_connect (&connection, "127.0.0.1",
7911, 0);

Sets up the connection to the server. The server normally listens on port 7911 unless configured to do other-
wise.

dhcpctl_new_object (&lease, connection,
"lease");

Here we create a handle to a lease. This call just sets up local data structure. The server hasn’t yet made any
association between the client’s data structure and any lease it has.

memset (&ipaddrstring, 0, sizeof
ipaddrstring);

inet_pton(AF_INET, "10.0.0.101",
&convaddr);

omapi_data_string_new (&ipaddrstring,
4, MDL);

Create a new data string to storing in the handle.

memcpy(ipaddrstring->value, &convaddr.s_addr, 4);

dhcpctl_set_value (lease, ipaddrstring,
"ip-address");

We’re setting the ip-address attribute of the lease handle to the given address. We’ve not set any other
attributes so when the server makes the association the ip address will be all it uses to look up the lease in
its tables.

dhcpctl_open_object (lease, connection, 0);

Here we prime the connection with the request to look up the lease in the server and fill up the local handle
with the attributes the server will send over in its answer.

dhcpctl_wait_for_completion (lease,
&waitstatus);

This call causes the message to get sent to the server (the message to look up the lease and send back the
attribute values in the answer). The value in the variable waitstatus when the function returns will be the
result from the server. If the message could not be processed properly by the server then the error will be
reflected here.

if (waitstatus != ISC_R_SUCCESS) {
/* server not authoritative */
exit (0);

}

dhcpctl_data_string_dereference(&ipaddrstring,
MDL);

Clean-up memory we no longer need.

dhcpctl_get_value (&value, lease, "ends");

Get the attribute named ‘‘ends’’ f rom the lease handle. This is a 4-byte integer of the time (in unix epoch
seconds) that the lease will expire.

2

omapi(3) omapi(3)

memcpy(&thetime, value->value, value->len);
dhcpctl_data_string_dereference(&value, MDL);

fprintf (stdout, "ending time is %s",
ctime(&thetime));

}

AUTHENTICATION
If the server demands authenticated connections then before opening the connection the user must call
dhcpctl_new_authenticator.

dhcpctl_handle authenticator = NULL;
const char *keyname = "a-key-name";
const char *algorithm = "hmac-md5";
const char *secret = "a-shared-secret";

dhcpctl_new_authenticator (&authenticator,
keyname,
algorithm,
secret,

strlen(secret) + 1);

The keyname, algorithm and must all match what is specified in the server’s dhcpd.conf file, excepting that
the secret should appear in ’raw’ form, not in base64 as it would in dhcpd.conf:

key "a-key-name" {
algorithm hmac-md5;
secret "a-shared-secret";

};

Set the omapi-key value to use
authenticated connections
omapi-key a-key-name;

The authenticator handle that is created by the call to dhcpctl_new_authenticator must be given as the last
(the 4th) argument to the call to dhcpctl_connect(). All messages will then be signed with the given secret
string using the specified algorithm.

SEE ALSO
dhcpctl(3), omapi(3), dhcpd(8), dhclient(8), dhcpd.conf(5), dhclient.conf(5).

AUTHOR
omapi was created by Ted Lemon of Nominum, Inc.Information about Nominum and support contracts
for DHCP and BIND can be found athttp://www.nominum.com. This documentation was written by
JamesBrister of Nominum, Inc.

3

OPENDISK (3) NetBSD Library Functions Manual OPENDISK (3)

NAME
opendisk — open a disk partition

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
opendisk (const char ∗path , int flags , char ∗buf , size_t buflen , int iscooked);

DESCRIPTION
opendisk () openspath , for reading and/or writing as specified by the argumentflags usingopen (2),
and the file descriptor is returned to the caller. buf is used to store the resultant filename.buflen is the
size, in bytes, of the array referenced bybuf (usually MAXPATHLENbytes). iscooked controls which
paths in/dev are tried.

opendisk () attempts to open the following variations ofpath , in order:

path The pathname as given.

path X path with a suffix of ‘X’, where ‘X’ represents the raw partition of the device, as deter-
mined bygetrawpartition (3), usually “c”.

If path does not contain a slash(“ /”) , the following variations are attempted:

− If iscooked is zero:

/dev/rpath path with a prefix of “/dev/r ”.

/dev/rpath X
path with a prefix of “/dev/r ” and a suffix of ‘X’ (q.v.).

− If iscooked is non-zero:

/dev/path path with a prefix of “/dev/ ”.

/dev/path X path with a prefix of “/dev/ ” and a suffix of ‘X’ (q.v.).

RETURN VALUES
An open file descriptor, or -1 if theopen (2) failed.

ERRORS
opendisk () may seterrno to one of the following values:

[EINVAL] O_CREATwas set in flags , or getrawpartition (3) didn’t return a valid parti-
tion.

[EFAULT] buf was theNULLpointer.

Theopendisk () function may also seterrno to any value specified by theopen (2) function.

SEE ALSO
open (2), getrawpartition (3)

NetBSD 3.0 December 11, 2001 1

OPENDISK (3) NetBSD Library Functions Manual OPENDISK (3)

HISTORY
Theopendisk () function first appeared inNetBSD 1.3.

NetBSD 3.0 December 11, 2001 2

OPENPAM (3) NetBSD Library Functions Manual OPENPAM (3)

NAME
openpam_borrow_cred , openpam_free_data , openpam_free_envlist ,
openpam_get_option , openpam_log , openpam_nullconv , openpam_readline ,
openpam_restore_cred , openpam_set_option , openpam_ttyconv , pam_error ,
pam_get_authtok , pam_info , pam_prompt , pam_setenv , pam_verror , pam_vinfo ,
pam_vprompt — Pluggable Authentication Modules Library

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <security/openpam.h>

int
openpam_borrow_cred (pam_handle_t ∗pamh, const struct passwd ∗pwd);

void
openpam_free_data (pam_handle_t ∗pamh, void ∗data , int status);

void
openpam_free_envlist (char ∗∗envlist);

const char ∗
openpam_get_option (pam_handle_t ∗pamh, const char ∗option);

void
openpam_log (int level , const char ∗fmt , . . .);

int
openpam_nullconv (int n , const struct pam_message ∗∗msg,

struct pam_response ∗∗resp , void ∗data);

char ∗
openpam_readline (FILE ∗f , int ∗lineno , size_t ∗lenp);

int
openpam_restore_cred (pam_handle_t ∗pamh);

int
openpam_set_option (pam_handle_t ∗pamh, const char ∗option ,

const char ∗value);

int
openpam_ttyconv (int n , const struct pam_message ∗∗msg,

struct pam_response ∗∗resp , void ∗data);

int
pam_error (const pam_handle_t ∗pamh, const char ∗fmt , . . .);

int
pam_get_authtok (pam_handle_t ∗pamh, int item , const char ∗∗authtok ,

const char ∗prompt);

int
pam_info (const pam_handle_t ∗pamh, const char ∗fmt , . . .);

int
pam_prompt (const pam_handle_t ∗pamh, int style , char ∗∗resp ,

const char ∗fmt , . . .);

NetBSD 3.0 December 21, 2007 1

OPENPAM (3) NetBSD Library Functions Manual OPENPAM (3)

int
pam_setenv (pam_handle_t ∗pamh, const char ∗name, const char ∗value ,

int overwrite);

int
pam_verror (const pam_handle_t ∗pamh, const char ∗fmt , va_list ap);

int
pam_vinfo (const pam_handle_t ∗pamh, const char ∗fmt , va_list ap);

int
pam_vprompt (const pam_handle_t ∗pamh, int style , char ∗∗resp ,

const char ∗fmt , va_list ap);

DESCRIPTION
These functions are OpenPAM extensions to the PAM API. Those namedpam_∗() are, in the author’s opin-
ion, logical and necessary extensions to the standard API, while those namedopenpam_∗() are either sim-
ple convenience functions, or functions intimately tied to OpenPAM implementation details, and therefore
not well suited to standardization.

SEE ALSO
openpam_borrow_cred (3), openpam_free_data (3), openpam_free_envlist (3),
openpam_get_option (3), openpam_log (3), openpam_nullconv (3), openpam_readline (3),
openpam_restore_cred (3), openpam_set_option (3), openpam_ttyconv (3), pam_error (3),
pam_get_authtok (3), pam_info (3), pam_prompt (3), pam_setenv (3), pam_verror (3),
pam_vinfo (3), pam_vprompt (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The OpenPAM library and this manual page were developed for theFreeBSDProject by ThinkSec AS and
Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 2

OPENPAM_BORROW_CRED (3) NetBSD Library Functions Manual OPENPAM_BORROW_CRED (3)

NAME
openpam_borrow_cred — temporarily borrow user credentials

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/openpam.h>

int
openpam_borrow_cred (pam_handle_t ∗pamh, const struct passwd ∗pwd);

DESCRIPTION
The openpam_borrow_cred function saves the current credentials and switches to those of the user
specified by itspwd argument. Theaffected credentials are the effective UID, the effective GID, and the
group access list. The original credentials can be restored usingopenpam_restore_cred (3).

RETURN VALUES
Theopenpam_borrow_cred function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
setegid (2), seteuid (2), setgroups (2), openpam_restore_cred (3), pam(3),
pam_strerror (3)

STANDARDS
Theopenpam_borrow_cred function is an OpenPAM extension.

AUTHORS
The openpam_borrow_cred function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

OPENPAM_FREE_DAT A (3) NetBSDLibrary Functions Manual OPENPAM_FREE_DAT A (3)

NAME
openpam_free_data — generic cleanup function

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/openpam.h>

void
openpam_free_data (pam_handle_t ∗pamh, void ∗data , int status);

DESCRIPTION
Theopenpam_free_data function is a cleanup function suitable for passing topam_set_data (3). It
simply releases the data by passing itsdata argument tofree (3).

SEE ALSO
free (3), pam(3), pam_set_data (3)

STANDARDS
Theopenpam_free_data function is an OpenPAM extension.

AUTHORS
The openpam_free_data function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

OPENPAM_FREE_ENVLIST (3) NetBSD Library Functions Manual OPENPAM_FREE_ENVLIST (3)

NAME
openpam_free_envlist — free an environment list

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/openpam.h>

void
openpam_free_envlist (char ∗∗envlist);

DESCRIPTION
The openpam_free_envlist function is a convenience function which frees all the environment vari-
ables in an environment list, and the list itself. It is suitable for freeing the return value from
pam_getenvlist (3).

SEE ALSO
pam(3), pam_getenvlist (3)

STANDARDS
Theopenpam_free_envlist function is an OpenPAM extension.

AUTHORS
Theopenpam_free_envlist function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

OPENPAM_GET_OPTION (3) NetBSD Library Functions Manual OPENPAM_GET_OPTION (3)

NAME
openpam_get_option — returns the value of a module option

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/openpam.h>

const char ∗
openpam_get_option (pam_handle_t ∗pamh, const char ∗option);

DESCRIPTION
The openpam_get_option function returns the value of the specified option in the context of the cur-
rently executing service module, orNULL if the option is not set or no module is currently executing.

RETURN VALUES
Theopenpam_get_option function returnsNULLon failure.

SEE ALSO
openpam_set_option (3), pam(3)

STANDARDS
Theopenpam_get_option function is an OpenPAM extension.

AUTHORS
The openpam_get_option function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

OPENPAM_LOG (3) NetBSD Library Functions Manual OPENPAM_LOG (3)

NAME
openpam_log — log a message through syslog

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/openpam.h>

void
openpam_log (int level , const char ∗fmt , . . .);

DESCRIPTION
The openpam_log function logs messages usingsyslog (3). It is primarily intended for internal use by
the library and modules.

The level argument indicates the importance of the message. The following levels are defined:

PAM_LOG_DEBUG Debugging messages. These messages are normally not logged unless the global
integer variable_openpam_debugis set to a non-zero value, in which case they are
logged with asyslog (3) priority ofLOG_DEBUG.

PAM_LOG_VERBOSEInformation about the progress of the authentication process, or other non-essential
messages. Thesemessages are logged with asyslog (3) priority ofLOG_INFO.

PAM_LOG_NOTICE Messages relating to non-fatal errors.These messages are logged with asyslog (3)
priority of LOG_NOTICE.

PAM_LOG_ERROR Messages relating to serious errors. These messages are logged with asyslog (3)
priority of LOG_ERR.

The remaining arguments are aprintf (3) format string and the corresponding arguments.

SEE ALSO
pam(3), printf (3), syslog (3)

STANDARDS
Theopenpam_log function is an OpenPAM extension.

AUTHORS
Theopenpam_log function and this manual page were developed for theFreeBSDProject by ThinkSec AS
and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

OPENPAM_NULLCONV (3) NetBSD Library Functions Manual OPENPAM_NULLCONV (3)

NAME
openpam_nullconv — null conversation function

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/openpam.h>

int
openpam_nullconv (int n , const struct pam_message ∗∗msg,

struct pam_response ∗∗resp , void ∗data);

DESCRIPTION
Theopenpam_nullconv function is a null conversation function suitable for applications that want to use
PAM but don’t support interactive dialog with the user. Such applications should setPAM_AUTHTOKto
whatever authentication token they’ve obtained on their own before callingpam_authenticate (3) and /
or pam_chauthtok (3), and their PAM configuration should specify theuse_first_pass option for all
modules that require access to the authentication token, to make sure they usePAM_AUTHTOKrather than
try to query the user.

RETURN VALUES
Theopenpam_nullconv function returns one of the following values:

[PAM_CONV_ERR] Conversation failure.

SEE ALSO
openpam_ttyconv (3), pam(3), pam_authenticate (3), pam_chauthtok (3), pam_prompt (3),
pam_set_item (3), pam_strerror (3), pam_vprompt (3)

STANDARDS
Theopenpam_nullconv function is an OpenPAM extension.

AUTHORS
The openpam_nullconv function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

OPENPAM_READLINE (3) NetBSD Library Functions Manual OPENPAM_READLINE (3)

NAME
openpam_readline — read a line from a file

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/openpam.h>

char ∗
openpam_readline (FILE ∗f , int ∗lineno , size_t ∗lenp);

DESCRIPTION
Theopenpam_readline function reads a line from a file, and returns it in a NUL-terminated buffer allo-
cated withmalloc (3).

The openpam_readline function performs a certain amount of processing on the data it reads.Com-
ments (introduced by a hash sign) are stripped, as is leading and trailing whitespace.Any amount of linear
whitespace is collapsed to a single space.Blank lines are ignored. If a line ends in a backslash, the back-
slash is stripped and the next line is appended.

If lineno is not NULL, the integer variable it points to is incremented every time a newline character is
read.

If lenp is not NULL, the length of the line (not including the terminating NUL character) is stored in the
variable it points to.

The caller is responsible for releasing the returned buffer by passing it tofree (3).

RETURN VALUES
Theopenpam_readline function returnsNULLon failure.

SEE ALSO
free (3), malloc (3), pam(3)

STANDARDS
Theopenpam_readline function is an OpenPAM extension.

AUTHORS
The openpam_readline function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

OPENPAM_RESTORE_CRED (3) NetBSD Library Functions Manual OPENPAM_RESTORE_CRED (3)

NAME
openpam_restore_cred — restore credentials

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/openpam.h>

int
openpam_restore_cred (pam_handle_t ∗pamh);

DESCRIPTION
Theopenpam_restore_cred function restores the credentials saved by openpam_borrow_cred (3).

RETURN VALUES
Theopenpam_restore_cred function returns one of the following values:

[PAM_NO_MODULE_DATA]
Module data not found.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
setegid (2), seteuid (2), setgroups (2), openpam_borrow_cred (3), pam(3), pam_strerror (3)

STANDARDS
Theopenpam_restore_cred function is an OpenPAM extension.

AUTHORS
Theopenpam_restore_cred function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

OPENPAM_SET_OPTION (3) NetBSD Library Functions Manual OPENPAM_SET_OPTION (3)

NAME
openpam_set_option — sets the value of a module option

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/openpam.h>

int
openpam_set_option (pam_handle_t ∗pamh, const char ∗option ,

const char ∗value);

DESCRIPTION
The openpam_set_option function sets the specified option in the context of the currently executing
service module.

RETURN VALUES
Theopenpam_set_option function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
openpam_get_option (3), pam(3), pam_strerror (3)

STANDARDS
Theopenpam_set_option function is an OpenPAM extension.

AUTHORS
The openpam_set_option function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

OPENPAM_TTYCONV (3) NetBSD Library Functions Manual OPENPAM_TTYCONV (3)

NAME
openpam_ttyconv — simple tty-based conversation function

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/openpam.h>

int
openpam_ttyconv (int n , const struct pam_message ∗∗msg,

struct pam_response ∗∗resp , void ∗data);

DESCRIPTION
The openpam_ttyconv function is a standard conversation function suitable for use on TTY devices. It
should be adequate for the needs of most text-based interactive programs.

Theopenpam_ttyconv function displays a prompt to, and reads in a password from /dev/tty. If this file is
not accessible,openpam_ttyconv displays the prompt on the standard error output and reads from the
standard input.

The openpam_ttyconv function allows the application to specify a timeout for user input by setting the
global integer variableopenpam_ttyconv_timeoutto the length of the timeout in seconds.

RETURN VALUES
Theopenpam_ttyconv function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
getpass (3), openpam_nullconv (3), pam(3), pam_prompt (3), pam_strerror (3),
pam_vprompt (3)

STANDARDS
Theopenpam_ttyconv function is an OpenPAM extension.

AUTHORS
The openpam_ttyconv function and this manual page were developed for theFreeBSD Project by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

OPENPTY (3) NetBSD Library Functions Manual OPENPTY (3)

NAME
openpty , login_tty , forkpty — tty utility functions

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
openpty (int ∗amaster , int ∗aslave , char ∗name, struct termios ∗termp ,

struct winsize ∗winp);

int
login_tty (int fd);

pid_t
forkpty (int ∗amaster , char ∗name, struct termios ∗termp ,

struct winsize ∗winp);

DESCRIPTION
Theopenpty (), login_tty (), andforkpty () functions perform manipulations on ttys and pseudo-ttys.

Theopenpty () function finds an available pseudo-tty and returns file descriptors for the master and slave in
amaster andaslave . If name is non-null, the filename of the slave is returned inname. If termp is
non-null, the terminal parameters of the slave will be set to the values intermp . If winp is non-null, the
window size of the slave will be set to the values inwinp .

The login_tty () function prepares for a login on the ttyfd (which may be a real tty device, or the slave
of a pseudo-tty as returned byopenpty ()) by creating a new session, makingfd the controlling terminal
for the current process, settingfd to be the standard input, output, and error streams of the current process,
and closingfd .

The forkpty () function combinesopenpty (), fork (), andlogin_tty () to create a new process oper-
ating in a pseudo-tty. The file descriptor of the master side of the pseudo-tty is returned inamaster , and
the filename of the slave in name if it is non-null. The termp andwinp parameters, if non-null, will deter-
mine the terminal attributes and window size of the slave side of the pseudo-tty.

RETURN VALUES
If a call toopenpty (), login_tty (), or forkpty () is not successful, -1 is returned anderrno is set to
indicate the error. Otherwise,openpty (), login_tty (), and the child process offorkpty () return 0,
and the parent process offorkpty () returns the process ID of the child process.

FILES
/dev/[pt]ty[p-zP-T][0-9a-zA-Z]

ERRORS
openpty () will fail if:

[ENOENT] There are no available ttys.

[EPERM] The caller was not the superuser and theptm (4) device is missing or not configured.

login_tty () will fail if ioctl () fails to setfd to the controlling terminal of the current process.
forkpty () will fail if either openpty () or fork () fails.

NetBSD 3.0 June 17, 2004 1

OPENPTY (3) NetBSD Library Functions Manual OPENPTY (3)

SEE ALSO
fork (2)

NetBSD 3.0 June 17, 2004 2

bio(3) OpenSSL bio(3)

NAME
bio − I/O abstraction

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bio.h>

TBA

DESCRIPTION
A BIO is an I/O abstraction, it hides many of the underlying I/O details from an application. If an applica-
tion uses aBIO for its I/O it can transparently handleSSL connections, unencrypted network connections
and file I/O.

There are two type ofBIO, a source/sinkBIO and a filterBIO.

As its name implies a source/sinkBIO is a source and/or sink of data, examples include a socket BIO and a
file BIO.

A fi lter BIO takes data from oneBIO and passes it through to another, or the application. The data may be
left unmodified (for example a message digestBIO) or translated (for example an encryptionBIO). The
effect of a filterBIO may change according to the I/O operation it is performing: for example an encryption
BIO will encrypt data if it is being written to and decrypt data if it is being read from.

BIOs can be joined together to form a chain (a singleBIO is a chain with one component). A chain nor-
mally consist of one source/sinkBIO and one or more filter BIOs. Data read from or written to the firstBIO
then traverses the chain to the end (normally a source/sinkBIO).

SEE ALSO
BIO_ctrl (3), BIO_f_base64(3), BIO_f_buffer(3), BIO_f_cipher(3), BIO_f_md(3), BIO_f_null(3),
BIO_f_ssl(3), BIO_find_type(3), BIO_new(3), BIO_new_bio_pair(3), BIO_push(3), BIO_read(3),
BIO_s_accept(3), BIO_s_bio(3), BIO_s_connect(3), BIO_s_fd(3), BIO_s_file(3), BIO_s_mem(3),
BIO_s_null(3), BIO_s_socket (3), BIO_set_callback(3), BIO_should_retry(3)

0.9.9-dev 2001-07-10 1

blowfish(3) OpenSSL blowfish(3)

NAME
blowfish, BF_set_key, BF_encrypt, BF_decrypt, BF_ecb_encrypt, BF_cbc_encrypt, BF_cfb64_encrypt,
BF_ofb64_encrypt, BF_options − Blowfish encryption

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/blowfish.h>

void BF_set_key(BF_KEY *key, int len, const unsigned char *data);

void BF_ecb_encrypt(const unsigned char *in, unsigned char *out,
BF_KEY *key, int enc);

void BF_cbc_encrypt(const unsigned char *in, unsigned char *out,
long length, BF_KEY *schedule, unsigned char *ivec, int enc);

void BF_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, BF_KEY *schedule, unsigned char *ivec, int *num,
int enc);

void BF_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, BF_KEY *schedule, unsigned char *ivec, int *num);

const char *BF_options(void);

void BF_encrypt(BF_LONG *data,const BF_KEY *key);
void BF_decrypt(BF_LONG *data,const BF_KEY *key);

DESCRIPTION
This library implements the Blowfish cipher, which was invented and described by Counterpane (see
http://www.counterpane.com/blowfish.html).

Blowfish is a block cipher that operates on 64 bit (8 byte) blocks of data.It uses a variable size key, but
typically, 128 bit (16 byte) keys are considered good for strong encryption.Blowfish can be used in the
same modes asDES (seedes_modes(7)). Blowfish is currently one of the faster block ciphers. It is quite a
bit faster thanDES, and much faster thanIDEA or RC2.

Blowfish consists of a key setup phase and the actual encryption or decryption phase.

BF_set_key() sets up theBF_KEY key using thelen bytes long key at data.

BF_ecb_encrypt()is the basic Blowfish encryption and decryption function.It encrypts or decrypts the first
64 bits of in using the key key, putting the result inout. enc decides if encryption (BF_ENCRYPT) or
decryption (BF_DECRYPT) shall be performed. The vector pointed at byin and out must be 64 bits in
length, no less. If they are larger, everything after the first 64 bits is ignored.

The mode functionsBF_cbc_encrypt(), BF_cfb64_encrypt()and BF_ofb64_encrypt()all operate on vari-
able length data.They all take an initialization vectorivec which needs to be passed along into the next call
of the same function for the same message.ivec may be initialized with anything, but the recipient needs to
know what it was initialized with, or it won’t be able to decrypt.Some programs and protocols simplify
this, like SSH, whereivec is simply initialized to zero.BF_cbc_encrypt()operates on data that is a multiple
of 8 bytes long, whileBF_cfb64_encrypt()andBF_ofb64_encrypt()are used to encrypt an variable number
of bytes (the amount does not have to be an exact multiple of 8).The purpose of the latter two is to simu-
late stream ciphers, and therefore, they need the parameternum, which is a pointer to an integer where the
current offset inivec is stored between calls. This integer must be initialized to zero whenivec is initial-
ized.

BF_cbc_encrypt()is the Cipher Block Chaining function for Blowfish. It encrypts or decrypts the 64 bits
chunks ofin using the key schedule, putting the result inout. encdecides if encryption (BF_ENCRYPT) or
decryption (BF_DECRYPT) shall be performed.ivec must point at an 8 byte long initialization vector.

BF_cfb64_encrypt()is theCFB mode for Blowfish with 64 bit feedback. It encrypts or decrypts the bytes in
in using the key schedule, putting the result inout. encdecides if encryption (BF_ENCRYPT) or decryp-
tion (BF_DECRYPT) shall be performed.ivec must point at an 8 byte long initialization vector.num must

0.9.9-dev 2005-03-25 1

blowfish(3) OpenSSL blowfish(3)

point at an integer which must be initially zero.

BF_ofb64_encrypt()is theOFB mode for Blowfish with 64 bit feedback.It uses the same parameters as
BF_cfb64_encrypt(), which must be initialized the same way.

BF_encrypt() and BF_decrypt() are the lowest level functions for Blowfish encryption. They
encrypt/decrypt the first 64 bits of the vector pointed bydata, using the key key. These functions should
not be used unless you implement ’modes’ of Blowfish. Thealternative is to useBF_ecb_encrypt(). If you
still want to use these functions, you should be aware that they take each 32−bit chunk in host-byte order,
which is little-endian on little-endian platforms and big-endian on big-endian ones.

RETURN VALUES
None of the functions presented here return any value.

NOTE
Applications should use the higher level functionsEVP_EncryptInit(3) etc. instead of calling the blowfish
functions directly.

SEE ALSO
des_modes(7)

HISTORY
The Blowfish functions are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2005-03-25 2

bn(3) OpenSSL bn(3)

NAME
bn − multiprecision integer arithmetics

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_new(void);
void BN_free(BIGNUM *a);
void BN_init(BIGNUM *);
void BN_clear(BIGNUM *a);
void BN_clear_free(BIGNUM *a);

BN_CTX *BN_CTX_new(void);
void BN_CTX_init(BN_CTX *c);
void BN_CTX_free(BN_CTX *c);

BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
BIGNUM *BN_dup(const BIGNUM *a);

BIGNUM *BN_swap(BIGNUM *a, BIGNUM *b);

int BN_num_bytes(const BIGNUM *a);
int BN_num_bits(const BIGNUM *a);
int BN_num_bits_word(BN_ULONG w);

void BN_set_negative(BIGNUM *a, int n);
int BN_is_negative(const BIGNUM *a);

int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,

BN_CTX *ctx);
int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_nnmod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_add(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,

BN_CTX *ctx);
int BN_mod_sub(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,

BN_CTX *ctx);
int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,

BN_CTX *ctx);
int BN_mod_sqr(BIGNUM *ret, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,

const BIGNUM *m, BN_CTX *ctx);
int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

int BN_add_word(BIGNUM *a, BN_ULONG w);
int BN_sub_word(BIGNUM *a, BN_ULONG w);
int BN_mul_word(BIGNUM *a, BN_ULONG w);
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);

0.9.9-dev 2008-05-09 1

bn(3) OpenSSL bn(3)

int BN_cmp(BIGNUM *a, BIGNUM *b);
int BN_ucmp(BIGNUM *a, BIGNUM *b);
int BN_is_zero(BIGNUM *a);
int BN_is_one(BIGNUM *a);
int BN_is_word(BIGNUM *a, BN_ULONG w);
int BN_is_odd(BIGNUM *a);

int BN_zero(BIGNUM *a);
int BN_one(BIGNUM *a);
const BIGNUM *BN_value_one(void);
int BN_set_word(BIGNUM *a, unsigned long w);
unsigned long BN_get_word(BIGNUM *a);

int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
int BN_rand_range(BIGNUM *rnd, BIGNUM *range);
int BN_pseudo_rand_range(BIGNUM *rnd, BIGNUM *range);

BIGNUM *BN_generate_prime(BIGNUM *ret, int bits,int safe, BIGNUM *add,
BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);

int BN_is_prime(const BIGNUM *p, int nchecks,
void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg);

int BN_set_bit(BIGNUM *a, int n);
int BN_clear_bit(BIGNUM *a, int n);
int BN_is_bit_set(const BIGNUM *a, int n);
int BN_mask_bits(BIGNUM *a, int n);
int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
int BN_lshift1(BIGNUM *r, BIGNUM *a);
int BN_rshift(BIGNUM *r, BIGNUM *a, int n);
int BN_rshift1(BIGNUM *r, BIGNUM *a);

int BN_bn2bin(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
char *BN_bn2hex(const BIGNUM *a);
char *BN_bn2dec(const BIGNUM *a);
int BN_hex2bn(BIGNUM **a, const char *str);
int BN_dec2bn(BIGNUM **a, const char *str);
int BN_print(BIO *fp, const BIGNUM *a);
int BN_print_fp(FILE *fp, const BIGNUM *a);
int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_mpi2bn(unsigned char *s, int len, BIGNUM *ret);

BIGNUM *BN_mod_inverse(BIGNUM *r, BIGNUM *a, const BIGNUM *n,
BN_CTX *ctx);

BN_RECP_CTX *BN_RECP_CTX_new(void);
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
void BN_RECP_CTX_free(BN_RECP_CTX *recp);
int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_mul_reciprocal(BIGNUM *r, BIGNUM *a, BIGNUM *b,

BN_RECP_CTX *recp, BN_CTX *ctx);

0.9.9-dev 2008-05-09 2

bn(3) OpenSSL bn(3)

BN_MONT_CTX *BN_MONT_CTX_new(void);
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
void BN_MONT_CTX_free(BN_MONT_CTX *mont);
int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *m, BN_CTX *ctx);
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);
int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,

BN_MONT_CTX *mont, BN_CTX *ctx);
int BN_from_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,

BN_CTX *ctx);
int BN_to_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,

BN_CTX *ctx);

BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai,
BIGNUM *mod);

void BN_BLINDING_free(BN_BLINDING *b);
int BN_BLINDING_update(BN_BLINDING *b,BN_CTX *ctx);
int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b,

BN_CTX *ctx);
int BN_BLINDING_invert_ex(BIGNUM *n,const BIGNUM *r,BN_BLINDING *b,

BN_CTX *ctx);
void BN_BLINDING_set_thread(BN_BLINDING *);
int BN_BLINDING_cmp_thread(const BN_BLINDING *,

const CRYPTO_THREADID *);

unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,

const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,

const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx),
BN_MONT_CTX *m_ctx);

DESCRIPTION
This library performs arithmetic operations on integers of arbitrary size. It was written for use in public key
cryptography, such asRSA and Diffie−Hellman.

It uses dynamic memory allocation for storing its data structures. That means that there is no limit on the
size of the numbers manipulated by these functions, but return values must always be checked in case a
memory allocation error has occurred.

The basic object in this library is aBIGNUM . It is used to hold a single large integer. This type should be
considered opaque and fields should not be modified or accessed directly.

The creation ofBIGNUM objects is described inBN_new(3); BN_add(3) describes most of the arithmetic
operations. Comparisonis described in BN_cmp(3); BN_zero(3) describes certain assignments,
BN_rand(3) the generation of random numbers,BN_generate_prime(3) deals with prime numbers and
BN_set_bit(3) with bit operations. The conversion of BIGNUM s to external formats is described in
BN_bn2bin(3).

SEE ALSO
openssl_bn_internal(3), openssl_dh(3), openssl_err(3), openssl_rand(3), openssl_rsa(3), BN_new(3),
BN_CTX_new(3), BN_copy(3), BN_swap(3), BN_num_bytes(3), BN_add(3), BN_add_word(3),
BN_cmp(3), BN_zero(3), BN_rand(3), BN_generate_prime(3), BN_set_bit(3), BN_bn2bin(3),
BN_mod_inverse(3), BN_mod_mul_reciprocal(3), BN_mod_mul_montgomery(3), BN_BLIND-
ING_new(3)

0.9.9-dev 2008-05-09 3

bn_internal(3) OpenSSL bn_internal(3)

NAME
bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, bn_add_words, bn_sub_words,
bn_mul_comba4, bn_mul_comba8, bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive, bn_mul_low_recursive, bn_mul_high,
bn_sqr_normal, bn_sqr_recursive, bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top,
bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low − BIGNUM library internal functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/bn.h>

BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,

BN_ULONG w);
void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,

int num);
BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,

int num);

void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);

int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);

void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
int nb);

void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,

int dna,int dnb,BN_ULONG *tmp);
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,

int n, int tna,int tnb, BN_ULONG *tmp);
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,

int n2, BN_ULONG *tmp);
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,

int n2, BN_ULONG *tmp);

void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);

void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);

BIGNUM *bn_expand(BIGNUM *a, int bits);
BIGNUM *bn_wexpand(BIGNUM *a, int n);
BIGNUM *bn_expand2(BIGNUM *a, int n);
void bn_fix_top(BIGNUM *a);

void bn_check_top(BIGNUM *a);
void bn_print(BIGNUM *a);
void bn_dump(BN_ULONG *d, int n);
void bn_set_max(BIGNUM *a);
void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
void bn_set_low(BIGNUM *r, BIGNUM *a, int n);

0.9.9-dev 2008-05-09 1

bn_internal(3) OpenSSL bn_internal(3)

DESCRIPTION
This page documents the internal functions used by the OpenSSLBIGNUM implementation. They are
described here to facilitate debugging and extending the library. They arenot to be used by applications.

The BIGNUM structure

typedef struct bignum_st
{
int top; /* number of words used in d */
BN_ULONG *d; /* pointer to an array containing the integer value */
int max; /* size of the d array */
int neg; /* sign */
} B IGNUM;

The integer value is stored ind, a malloc()ed array of words (BN_ULONG), least significant word first. A
BN_ULONG can be either 16, 32 or 64 bits in size, depending on the ’number of bits’ (BITS2) specified in
openssl/bn.h .

max is the size of thed array that has been allocated.top is the number of words being used, so for a value
of 4, bn.d[0]=4 and bn.top=1.neg is 1 if the number is negative. When aBIGNUM is 0, thed field can be
NULL andtop == 0.

Various routines in this library require the use of temporaryBIGNUM variables during their execution.
Since dynamic memory allocation to createBIGNUM s is rather expensive when used in conjunction with
repeated subroutine calls, theBN_CTX structure is used. This structure containsBN_CTX_NUM
BIGNUM s, seeBN_CTX_start(3).

Low-level arithmetic operations

These functions are implemented in C and for several platforms in assembly language:

bn_mul_words(rp , ap, num, w) operates on thenum word arraysrp andap. It computesap * w, places
the result inrp , and returns the high word (carry).

bn_mul_add_words(rp , ap, num, w) operates on thenum word arraysrp andap. It computesap * w +
rp , places the result inrp , and returns the high word (carry).

bn_sqr_words(rp , ap, n) operates on thenum word arrayap and the 2*num word arrayap. It computes
ap * ap word−wise, and places the low and high bytes of the result inrp .

bn_div_words(h, l, d) divides the two word number (h,l) by d and returns the result.

bn_add_words(rp , ap, bp, num) operates on thenum word arraysap, bp and rp . It computesap + bp,
places the result inrp , and returns the high word (carry).

bn_sub_words(rp , ap, bp, num) operates on thenum word arraysap, bp and rp . It computesap − bp,
places the result inrp , and returns the carry (1 ifbp > ap, 0 otherwise).

bn_mul_comba4(r , a, b) operates on the 4 word arraysa andb and the 8 word arrayr . It computesa*b
and places the result inr .

bn_mul_comba8(r , a, b) operates on the 8 word arraysa andb and the 16 word arrayr . It computesa*b
and places the result inr .

bn_sqr_comba4(r , a, b) operates on the 4 word arraysa andb and the 8 word arrayr .

bn_sqr_comba8(r , a, b) operates on the 8 word arraysa andb and the 16 word arrayr .

The following functions are implemented in C:

bn_cmp_words(a, b, n) operates on then word arraysa andb. It returns 1, 0 and −1 ifa is greater than,
equal and less thanb.

bn_mul_normal(r , a, na, b, nb) operates on thena word arraya, thenb word arrayb and thena+nb word
arrayr . It computesa*b and places the result inr .

0.9.9-dev 2008-05-09 2

bn_internal(3) OpenSSL bn_internal(3)

bn_mul_low_normal(r , a, b, n) operates on then word arraysr , a andb. It computes then low words of
a*b and places the result inr .

bn_mul_recursive(r , a, b, n2, dna, dnb, t) operates on the word arraysa and b of length n2+dna and
n2+dnb (dna anddnb are currently allowed to be 0 or negative) and the 2*n2 word arraysr and t. n2
must be a power of 2. It computesa*b and places the result inr .

bn_mul_part_recursive(r , a, b, n, tna, tnb, tmp) operates on the word arraysa andb of lengthn+tna and
n+tnb and the 4*n word arraysr andtmp.

bn_mul_low_recursive(r , a, b, n2, tmp) operates on then2 word arraysr and tmp and then2/2 word
arraysa andb.

bn_mul_high(r , a, b, l, n2, tmp) operates on then2 word arraysr , a, b and l (?) and the 3*n2 word array
tmp.

BN_mul() calls bn_mul_normal(), or an optimized implementation if the factors have the same size:
bn_mul_comba8()is used if they are 8 words long, bn_mul_recursive()if they are larger than
BN_MULL_SIZE_NORMAL and the size is an exact multiple of the word size, andbn_mul_part_recur-
sive()for others that are larger thanBN_MULL_SIZE_NORMAL .

bn_sqr_normal(r , a, n, tmp) operates on then word arraya and the 2*n word arraystmp andr .

The implementations use the following macros which, depending on the architecture, may use ‘‘long long’’
C operations or inline assembler. They are defined inbn_lcl.h .

mul(r , a, w, c) computesw*a+c and places the low word of the result inr and the high word inc.

mul_add(r , a, w, c) computesw*a+r+c and places the low word of the result inr and the high word inc.

sqr(r0, r1, a) computesa*a and places the low word of the result inr0 and the high word inr1.

Size changes

bn_expand()ensures thatb has enough space for abits bit number. bn_wexpand()ensures thatb has
enough space for ann word number. If the number has to be expanded, both macros callbn_expand2(),
which allocates a newd array and copies the data. They returnNULL on error,b otherwise.

Thebn_fix_top()macro reducesa−>top to point to the most significant non-zero word plus one whena has
shrunk.

Debugging

bn_check_top()verifies that((a)−>top >= 0 && (a)−>top <= (a)−>max) . A violation will
cause the program to abort.

bn_print()printsa to stderr. bn_dump()printsn words atd (in reverse order, i.e. most significant word first)
to stderr.

bn_set_max()makesa a static number with amax of its current size.This is used bybn_set_low()and
bn_set_high()to maker a read-onlyBIGNUM that contains then low or high words ofa.

If BN_DEBUG is not defined,bn_check_top(), bn_print(), bn_dump()and bn_set_max()are defined as
empty macros.

SEE ALSO
openssl_bn(3)

0.9.9-dev 2008-05-09 3

buffer(3) OpenSSL buffer(3)

NAME
BUF_MEM_new, BUF_MEM_free, BUF_MEM_grow, BUF_strdup − simple character arrays structure

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/buffer.h>

BUF_MEM *BUF_MEM_new(void);

void BUF_MEM_free(BUF_MEM *a);

int BUF_MEM_grow(BUF_MEM *str, int len);

char * BUF_strdup(const char *str);

DESCRIPTION
The buffer library handles simple character arrays. Buffers are used for various purposes in the library, most
notably memory BIOs.

The library uses theBUF_MEM structure defined in buffer.h:

typedef struct buf_mem_st
{

int length; /* current number of bytes */
char *data;
int max; /* size of buffer */

} B UF_MEM;

length is the current size of the buffer in bytes,max is the amount of memory allocated to the buffer. There
are three functions which handle these and one ‘‘miscellaneous’’ f unction.

BUF_MEM_new()allocates a new buffer of zero size.

BUF_MEM_free()frees up an already existing buffer. The data is zeroed before freeing up in case the
buffer contains sensitive data.

BUF_MEM_grow()changes the size of an already existing buffer to len. Any data already in the buffer is
preserved if it increases in size.

BUF_strdup()copies a null terminated string into a block of allocated memory and returns a pointer to the
allocated block. Unlike the standard C librarystrdup() this function usesOPENSSL_malloc()and so
should be used in preference to the standard librarystrdup()because it can be used for memory leak check-
ing or replacing themalloc()function.

The memory allocated fromBUF_strdup()should be freed up using theOPENSSL_free()function.

RETURN VALUES
BUF_MEM_new()returns the buffer orNULL on error.

BUF_MEM_free()has no return value.

BUF_MEM_grow()returns zero on error or the new size (i.e.len).

SEE ALSO
openssl_bio(3)

HISTORY
BUF_MEM_new(), BUF_MEM_free()andBUF_MEM_grow()are available in all versions of SSLeay and
OpenSSL.BUF_strdup()was added in SSLeay 0.8.

0.9.9-dev 2001-04-12 1

des(3) OpenSSL des(3)

NAME
DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked, DES_set_key_unchecked,
DES_set_odd_parity, DES_is_weak_key, DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt,
DES_ncbc_encrypt, DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt, DES_ede2_cfb64_encrypt,
DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt, DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt,
DES_ede3_ofb64_encrypt, DES_cbc_cksum, DES_quad_cksum, DES_string_to_key,
DES_string_to_2keys, DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write − DES encryption

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/des.h>

void DES_random_key(DES_cblock *ret);

int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
int DES_set_key_checked(const_DES_cblock *key,

DES_key_schedule *schedule);
void DES_set_key_unchecked(const_DES_cblock *key,

DES_key_schedule *schedule);

void DES_set_odd_parity(DES_cblock *key);
int DES_is_weak_key(const_DES_cblock *key);

void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks, int enc);

void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);

void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks1, DES_key_schedule *ks2,
DES_key_schedule *ks3, int enc);

void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int enc);

void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
int numbits, long length, DES_key_schedule *schedule,
DES_cblock *ivec, int enc);

void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
int numbits, long length, DES_key_schedule *schedule,
DES_cblock *ivec);

void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int enc);

void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int *num, int enc);

void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int *num);

void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
const_DES_cblock *inw, const_DES_cblock *outw, int enc);

0.9.9-dev 2004-03-19 1

des(3) OpenSSL des(3)

void DES_ede2_cbc_encrypt(const unsigned char *input,
unsigned char *output, long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_cblock *ivec, int enc);

void DES_ede2_cfb64_encrypt(const unsigned char *in,
unsigned char *out, long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);

void DES_ede2_ofb64_encrypt(const unsigned char *in,
unsigned char *out, long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_cblock *ivec, int *num);

void DES_ede3_cbc_encrypt(const unsigned char *input,
unsigned char *output, long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
int enc);

void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2,
int enc);

void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);

void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3,
DES_cblock *ivec, int *num);

DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
long length, DES_key_schedule *schedule,
const_DES_cblock *ivec);

DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
long length, int out_count, DES_cblock *seed);

void DES_string_to_key(const char *str, DES_cblock *key);
void DES_string_to_2keys(const char *str, DES_cblock *key1,

DES_cblock *key2);

char *DES_fcrypt(const char *buf, const char *salt, char *ret);
char *DES_crypt(const char *buf, const char *salt);

int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
DES_cblock *iv);

int DES_enc_write(int fd, const void *buf, int len,
DES_key_schedule *sched, DES_cblock *iv);

DESCRIPTION
This library contains a fast implementation of theDESencryption algorithm.

There are two phases to the use ofDESencryption. Thefirst is the generation of aDES_key_schedulefrom
a key, the second is the actual encryption.A DES key is of type DES_cblock. This type is consists of 8
bytes with odd parity. The least significant bit in each byte is the parity bit.The key schedule is an
expanded form of the key; it is used to speed the encryption process.

DES_random_key() generates a random key. The PRNG must be seeded prior to using this function (see
openssl_rand(3)). If thePRNGcould not generate a secure key, 0 is returned.

Before aDES key can be used, it must be converted into the architecture dependentDES_key_schedulevia
theDES_set_key_checked() or DES_set_key_unchecked() function.

DES_set_key_checked() will check that the key passed is of odd parity and is not a week or semi-weak key.
If the parity is wrong, then −1 is returned. If the key is a weak key, then −2 is returned. If an error is
returned, the key schedule is not generated.

0.9.9-dev 2004-03-19 2

des(3) OpenSSL des(3)

DES_set_key() works like DES_set_key_checked() if the DES_check_key flag is non−zero, otherwise like
DES_set_key_unchecked(). These functions are available for compatibility; it is recommended to use a
function that does not depend on a global variable.

DES_set_odd_parity()sets the parity of the passedkey to odd.

DES_is_weak_key() returns 1 is the passed key is a weak key, 0 if it is ok. Theprobability that a randomly
generated key is weak is 1/2ˆ52, so it is not really worth checking for them.

The following routines mostly operate on an input and output stream ofDES_cblocks.

DES_ecb_encrypt()is the basicDES encryption routine that encrypts or decrypts a single 8−byte
DES_cblockin electronic code book(ECB) mode. Italways transforms the input data, pointed to byinput,
into the output data, pointed to by theoutput argument. If the encrypt argument is non-zero
(DES_ENCRYPT), the input (cleartext) is encrypted in to theoutput (ciphertext) using the key_schedule
specified by thescheduleargument, previously set viaDES_set_key. If encryptis zero (DES_DECRYPT), the
input (now ciphertext) is decrypted into theoutput (now cleartext). Input and output may overlap.
DES_ecb_encrypt()does not return a value.

DES_ecb3_encrypt()encrypts/decrypts theinput block by using three-key Triple-DES encryption inECB
mode. Thisinvolves encrypting the input withks1, decrypting with the key scheduleks2, and then encrypt-
ing with ks3. This routine greatly reduces the chances of brute force breaking ofDES and has the advan-
tage of ifks1, ks2andks3are the same, it is equivalent to just encryption usingECB mode andks1as the
key.

The macroDES_ecb2_encrypt()is provided to perform two-key Triple-DES encryption by usingks1for the
final encryption.

DES_ncbc_encrypt()encrypts/decrypts using thecipher-block-chaining(CBC) mode ofDES. If theencrypt
argument is non−zero, the routine cipher-block-chain encrypts the cleartext data pointed to by theinput
argument into the ciphertext pointed to by theoutput argument, using the key schedule provided by the
scheduleargument, and initialization vector provided by theivecargument. Ifthe lengthargument is not an
integral multiple of eight bytes, the last block is copied to a temporary area and zero filled.The output is
always an integral multiple of eight bytes.

DES_xcbc_encrypt()is RSA’s DESX mode ofDES. It usesinw andoutw to ’whiten’ the encryption.inw
andoutware secret (unlike the iv) and are as such, part of the key. So the key is sort of 24 bytes. This is
much better thanCBC DES.

DES_ede3_cbc_encrypt()implements outer tripleCBC DESencryption with three keys. This means that
eachDES operation inside theCBC mode is really anC=E(ks3,D(ks2,E(ks1,M))) . This mode is
used bySSL.

The DES_ede2_cbc_encrypt()macro implements two-key Triple-DES by reusingks1 for the final encryp-
tion. C=E(ks1,D(ks2,E(ks1,M))) . This form of Triple-DES is used by theRSAREFlibrary.

DES_pcbc_encrypt()encrypt/decrypts using the propagating cipher block chaining mode used by Kerberos
v4. Its parameters are the same asDES_ncbc_encrypt().

DES_cfb_encrypt()encrypt/decrypts using cipher feedback mode.This method takes an array of characters
as input and outputs and array of characters. It does not require any padding to 8 character groups.Note:
the ivecvariable is changed and the new changed value needs to be passed to the next call to this function.
Since this function runs a completeDES ECBencryption pernumbits, this function is only suggested for use
when sending small numbers of characters.

DES_cfb64_encrypt()implementsCFB mode ofDES with 64bit feedback.Why is this useful you ask?
Because this routine will allow you to encrypt an arbitrary number of bytes, no 8 byte padding. Each call to
this routine will encrypt the input bytes to output and then update ivec and num. num contains ’how far’
we are though ivec. If this does not make much sense, read more about cfb mode ofDES :−).

DES_ede3_cfb64_encrypt()and DES_ede2_cfb64_encrypt()is the same asDES_cfb64_encrypt()except
that Triple-DES is used.

0.9.9-dev 2004-03-19 3

des(3) OpenSSL des(3)

DES_ofb_encrypt()encrypts using output feedback mode. This method takes an array of characters as
input and outputs and array of characters. It does not require any padding to 8 character groups. Note: the
ivec variable is changed and the new changed value needs to be passed to the next call to this function.
Since this function runs a completeDES ECBencryption per numbits, this function is only suggested for
use when sending small numbers of characters.

DES_ofb64_encrypt()is the same asDES_cfb64_encrypt()using Output Feed Back mode.

DES_ede3_ofb64_encrypt()and DES_ede2_ofb64_encrypt()is the same asDES_ofb64_encrypt(), using
Triple−DES.

The following functions are included in theDES library for compatibility with theMIT Kerberos library.

DES_cbc_cksum()produces an 8 byte checksum based on the input stream (viaCBC encryption). Thelast
4 bytes of the checksum are returned and the complete 8 bytes are placed inoutput. This function is used by
Kerberos v4. Other applications should useEVP_DigestInit(3) etc. instead.

DES_quad_cksum()is a Kerberos v4 function. It returns a 4 byte checksum from the input bytes.The
algorithm can be iterated over the input, depending onout_count, 1, 2, 3 or 4 times. If output is
non−NULL, the 8 bytes generated by each pass are written intooutput.

The following are DES-based transformations:

DES_fcrypt()is a fast version of the Unixcrypt(3) function. This version takes only a small amount of
space relative to other fastcrypt() implementations. Thisis different to the normal crypt in that the third
parameter is the buffer that the return value is written into. It needs to be at least 14 bytes long.This func-
tion is thread safe, unlike the normal crypt.

DES_crypt()is a faster replacement for the normal systemcrypt(). This function callsDES_fcrypt()with a
static array passed as the third parameter. This emulates the normal non-thread safe semantics ofcrypt(3).

DES_enc_write()writes len bytes to file descriptorfd from buffer buf. The data is encrypted via
pcbc_encrypt(default) usingschedfor the key and iv as a starting vector. The actual data send down fd
consists of 4 bytes (in network byte order) containing the length of the following encrypted data.The
encrypted data then follows, padded with random data out to a multiple of 8 bytes.

DES_enc_read()is used to readlen bytes from file descriptorfd into buffer buf. The data being read fromfd
is assumed to have come fromDES_enc_write()and is decrypted usingschedfor the key schedule andiv
for the initial vector.

Warning: The data format used byDES_enc_write()andDES_enc_read()has a cryptographic weakness:
When asked to write more thanMAXWRITE bytes,DES_enc_write()will split the data into several chunks
that are all encrypted using the sameIV . So don’t use these functions unless you are sure you know what
you do (in which case you might not want to use them anyway). They cannot handle non-blocking sockets.
DES_enc_read()uses an internal state and thus cannot be used on multiple files.

DES_rw_modeis used to specify the encryption mode to use withDES_enc_read()andDES_end_write().
If set to DES_PCBC_MODE(the default), DES_pcbc_encrypt is used. If set toDES_CBC_MODE
DES_cbc_encrypt is used.

NOTES
Single-key DES is insecure due to its short key size. ECB mode is not suitable for most applications; see
des_modes(7).

Theopenssl_evp(3) library provides higher-level encryption functions.

BUGS
DES_3cbc_encrypt()is flawed and must not be used in applications.

DES_cbc_encrypt()does not modifyivec; useDES_ncbc_encrypt()instead.

DES_cfb_encrypt()andDES_ofb_encrypt()operates on input of 8 bits.What this means is that if you set
numbits to 12, and length to 2, the first 12 bits will come from the 1st input byte and the low half of the sec-
ond input byte. The second 12 bits will have the low 8 bits taken from the 3rd input byte and the top 4 bits
taken from the 4th input byte. The same holds for output. This function has been implemented this way

0.9.9-dev 2004-03-19 4

des(3) OpenSSL des(3)

because most people will be using a multiple of 8 and because once you get into pulling bytes input bytes
apart things get ugly!

DES_string_to_key() is available for backward compatibility with theMIT library. New applications should
use a cryptographic hash function. The same applies forDES_string_to_2key().

CONFORMING TO
ANSI X3.106

Thedeslibrary was written to be source code compatible with theMIT Kerberos library.

SEE ALSO
crypt(3), des_modes(7), openssl_evp(3), openssl_rand(3)

HISTORY
In OpenSSL 0.9.7, all des_ functions were renamed toDES_ to avoid clashes with older versions of libdes.
Compatibility des_ functions are provided for a short while, as well ascrypt(). Declarations for these are in
<openssl/des_old.h>. There is noDES_variant fordes_random_seed(). This will happen to other functions
as well if they are deemed redundant (des_random_seed()just callsRAND_seed()and is present for back-
ward compatibility only), buggy or already scheduled for removal.

des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(), des_is_weak_key(), des_key_sched(),
des_pcbc_encrypt(), des_quad_cksum(), des_random_key() and des_string_to_key() are available in the
MIT Kerberos library;des_check_key_parity(), des_fixup_key_parity() anddes_is_weak_key() are available
in newer versions of that library.

des_set_key_checked() anddes_set_key_unchecked() were added in OpenSSL 0.9.5.

des_generate_random_block(), des_init_random_number_generator(), des_new_random_key(),
des_set_random_generator_seed()anddes_set_sequence_number()anddes_rand_data()are used in newer
versions of Kerberos but are not implemented here.

des_random_key() generated cryptographically weak random data in SSLeay and in OpenSSL prior version
0.9.5, as well as in the originalMIT library.

AUTHOR
Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project (http://www.openssl.org).

0.9.9-dev 2004-03-19 5

dh(3) OpenSSL dh(3)

NAME
dh − Diffie−Hellman key agreement

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dh.h>
#include <openssl/engine.h>

DH * DH_new(void);
void DH_free(DH *dh);

int DH_size(const DH *dh);

DH * DH_generate_parameters(int prime_len, int generator,
void (*callback)(int, int, void *), void *cb_arg);

int DH_check(const DH *dh, int *codes);

int DH_generate_key(DH *dh);
int DH_compute_key(unsigned char *key, BIGNUM *pub_key, DH *dh);

void DH_set_default_method(const DH_METHOD *meth);
const DH_METHOD *DH_get_default_method(void);
int DH_set_method(DH *dh, const DH_METHOD *meth);
DH *DH_new_method(ENGINE *engine);
const DH_METHOD *DH_OpenSSL(void);

int DH_get_ex_new_index(long argl, char *argp, int (*new_func)(),
int (*dup_func)(), void (*free_func)());

int DH_set_ex_data(DH *d, int idx, char *arg);
char *DH_get_ex_data(DH *d, int idx);

DH * d2i_DHparams(DH **a, unsigned char **pp, long length);
int i2d_DHparams(const DH *a, unsigned char **pp);

int DHparams_print_fp(FILE *fp, const DH *x);
int DHparams_print(BIO *bp, const DH *x);

DESCRIPTION
These functions implement the Diffie-Hellman key agreement protocol. The generation of sharedDH
parameters is described inDH_generate_parameters(3); DH_generate_key(3) describes how to perform a
key agreement.

TheDH structure consists of several BIGNUM components.

struct
{
BIGNUM *p; // prime number (shared)
BIGNUM *g; // generator of Z_p (shared)
BIGNUM *priv_key; // private DH value x
BIGNUM *pub_key; // public DH value gˆx
// ...
};

DH

Note thatDH keys may use non-standardDH_METHOD implementations, either directly or by the use of
ENGINE modules. In some cases (eg. anENGINE providing support for hardware-embedded keys), these
BIGNUM values will not be used by the implementation or may be used for alternative data storage. For this
reason, applications should generally avoid usingDH structure elements directly and instead useAPI func-
tions to query or modify keys.

0.9.9-dev 2003-07-24 1

dh(3) OpenSSL dh(3)

SEE ALSO
openssl_dhparam(1), openssl_bn(3), openssl_dsa(3), openssl_err(3), openssl_rand(3), openssl_rsa(3),
engine(3), DH_set_method(3), DH_new(3), DH_get_ex_new_index(3), DH_generate_parameters(3),
DH_compute_key(3), d2i_DHparams(3), RSA_print(3)

0.9.9-dev 2003-07-24 2

dsa(3) OpenSSL dsa(3)

NAME
dsa − Digital Signature Algorithm

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/dsa.h>
#include <openssl/engine.h>

DSA * DSA_new(void);
void DSA_free(DSA *dsa);

int DSA_size(const DSA *dsa);

DSA * DSA_generate_parameters(int bits, unsigned char *seed,
int seed_len, int *counter_ret, unsigned long *h_ret,
void (*callback)(int, int, void *), void *cb_arg);

DH * DSA_dup_DH(const DSA *r);

int DSA_generate_key(DSA *dsa);

int DSA_sign(int dummy, const unsigned char *dgst, int len,
unsigned char *sigret, unsigned int *siglen, DSA *dsa);

int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp,
BIGNUM **rp);

int DSA_verify(int dummy, const unsigned char *dgst, int len,
const unsigned char *sigbuf, int siglen, DSA *dsa);

void DSA_set_default_method(const DSA_METHOD *meth);
const DSA_METHOD *DSA_get_default_method(void);
int DSA_set_method(DSA *dsa, const DSA_METHOD *meth);
DSA *DSA_new_method(ENGINE *engine);
const DSA_METHOD *DSA_OpenSSL(void);

int DSA_get_ex_new_index(long argl, char *argp, int (*new_func)(),
int (*dup_func)(), void (*free_func)());

int DSA_set_ex_data(DSA *d, int idx, char *arg);
char *DSA_get_ex_data(DSA *d, int idx);

DSA_SIG *DSA_SIG_new(void);
void DSA_SIG_free(DSA_SIG *a);
int i2d_DSA_SIG(const DSA_SIG *a, unsigned char **pp);
DSA_SIG *d2i_DSA_SIG(DSA_SIG **v, unsigned char **pp, long length);

DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);
int DSA_do_verify(const unsigned char *dgst, int dgst_len,

DSA_SIG *sig, DSA *dsa);

DSA * d2i_DSAPublicKey(DSA **a, unsigned char **pp, long length);
DSA * d2i_DSAPrivateKey(DSA **a, unsigned char **pp, long length);
DSA * d2i_DSAparams(DSA **a, unsigned char **pp, long length);
int i2d_DSAPublicKey(const DSA *a, unsigned char **pp);
int i2d_DSAPrivateKey(const DSA *a, unsigned char **pp);
int i2d_DSAparams(const DSA *a,unsigned char **pp);

int DSAparams_print(BIO *bp, const DSA *x);
int DSAparams_print_fp(FILE *fp, const DSA *x);
int DSA_print(BIO *bp, const DSA *x, int off);
int DSA_print_fp(FILE *bp, const DSA *x, int off);

0.9.9-dev 2003-07-24 1

dsa(3) OpenSSL dsa(3)

DESCRIPTION
These functions implement the Digital Signature Algorithm (DSA). Thegeneration of sharedDSA parame-
ters is described inDSA_generate_parameters(3); DSA_generate_key(3) describes how to generate a sig-
nature key. Signature generation and verification are described inDSA_sign(3).

TheDSA structure consists of several BIGNUM components.

struct
{
BIGNUM *p; // prime number (public)
BIGNUM *q; // 160-bit subprime, q p-1 (public)
BIGNUM *g; // generator of subgroup (public)
BIGNUM *priv_key; // private key x
BIGNUM *pub_key; // public key y = gˆx
// ...
}

DSA;

In public keys,priv_key is NULL .

Note thatDSA keys may use non-standardDSA_METHOD implementations, either directly or by the use of
ENGINE modules. In some cases (eg. anENGINE providing support for hardware-embedded keys), these
BIGNUM values will not be used by the implementation or may be used for alternative data storage. For this
reason, applications should generally avoid usingDSA structure elements directly and instead useAPI func-
tions to query or modify keys.

CONFORMING TO
US Federal Information Processing StandardFIPS186 (Digital Signature Standard,DSS), ANSI X9.30

SEE ALSO
openssl_bn(3), openssl_dh(3), openssl_err(3), openssl_rand(3), openssl_rsa(3), openssl_sha(3),
engine(3), DSA_new(3), DSA_size(3), DSA_generate_parameters(3), DSA_dup_DH(3), DSA_gener-
ate_key(3), DSA_sign(3), DSA_set_method(3), DSA_get_ex_new_index(3), RSA_print(3)

0.9.9-dev 2003-07-24 2

ecdsa(3) OpenSSL ecdsa(3)

NAME
ecdsa − Elliptic Curve Digital Signature Algorithm

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ecdsa.h>

ECDSA_SIG* ECDSA_SIG_new(void);
void ECDSA_SIG_free(ECDSA_SIG *sig);
int i2d_ECDSA_SIG(const ECDSA_SIG *sig, unsigned char **pp);
ECDSA_SIG* d2i_ECDSA_SIG(ECDSA_SIG **sig, const unsigned char **pp,

long len);

ECDSA_SIG* ECDSA_do_sign(const unsigned char *dgst, int dgst_len,
EC_KEY *eckey);

ECDSA_SIG* ECDSA_do_sign_ex(const unsigned char *dgst, int dgstlen,
const BIGNUM *kinv, const BIGNUM *rp,
EC_KEY *eckey);

int ECDSA_do_verify(const unsigned char *dgst, int dgst_len,
const ECDSA_SIG *sig, EC_KEY* eckey);

int ECDSA_sign_setup(EC_KEY *eckey, BN_CTX *ctx,
BIGNUM **kinv, BIGNUM **rp);

int ECDSA_sign(int type, const unsigned char *dgst,
int dgstlen, unsigned char *sig,
unsigned int *siglen, EC_KEY *eckey);

int ECDSA_sign_ex(int type, const unsigned char *dgst,
int dgstlen, unsigned char *sig,
unsigned int *siglen, const BIGNUM *kinv,
const BIGNUM *rp, EC_KEY *eckey);

int ECDSA_verify(int type, const unsigned char *dgst,
int dgstlen, const unsigned char *sig,
int siglen, EC_KEY *eckey);

int ECDSA_size(const EC_KEY *eckey);

const ECDSA_METHOD* ECDSA_OpenSSL(void);
void ECDSA_set_default_method(const ECDSA_METHOD *meth);
const ECDSA_METHOD* ECDSA_get_default_method(void);
int ECDSA_set_method(EC_KEY *eckey,const ECDSA_METHOD *meth);

int ECDSA_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int ECDSA_set_ex_data(EC_KEY *d, int idx, void *arg);
void* ECDSA_get_ex_data(EC_KEY *d, int idx);

DESCRIPTION
The ECDSA_SIG structure consists of two BIGNUMs for the r and s value of aECDSA signature (see
X9.62 orFIPS186−2).

struct
{
BIGNUM *r;
BIGNUM *s;

} E CDSA_SIG;

ECDSA_SIG_new()allocates a new ECDSA_SIG structure (note: this function also allocates the
BIGNUMs) and initialize it.

0.9.9-dev 2005-11-24 1

ecdsa(3) OpenSSL ecdsa(3)

ECDSA_SIG_free()frees theECDSA_SIG structuresig.

i2d_ECDSA_SIG()creates theDER encoding of theECDSA signaturesig and writes the encoded signature
to *pp (note: ifpp is NULL i2d_ECDSA_SIGreturns the expected length in bytes of theDER encoded sig-
nature).i2d_ECDSA_SIGreturns the length of theDER encoded signature (or 0 on error).

d2i_ECDSA_SIG()decodes aDER encodedECDSA signature and returns the decoded signature in a newly
allocatedECDSA_SIG structure.*sig points to the buffer containing theDER encoded signature of sizelen.

ECDSA_size()returns the maximum length of aDER encodedECDSAsignature created with the private EC
key eckey.

ECDSA_sign_setup()may be used to precompute parts of the signing operation.eckeyis the private EC key
andctx is a pointer toBN_CTX structure (orNULL). The precomputed values or returned inkinv and rp
and can be used in a later call toECDSA_sign_exor ECDSA_do_sign_ex.

ECDSA_sign()is wrapper function for ECDSA_sign_ex with kinv andrp set toNULL .

ECDSA_sign_ex()computes a digital signature of thedgstlen bytes hash valuedgst using the private EC
key eckeyand the optional pre-computed valueskinv andrp . TheDER encoded signatures is stored insig
and it’s length is returned insig_len. Note:sig must point toECDSA_sizebytes of memory. The parameter
type is ignored.

ECDSA_verify()verifies that the signature insig of sizesiglen is a valid ECDSAsignature of the hash value
valuedgstof sizedgstlenusing the public keyeckey. The parametertype is ignored.

ECDSA_do_sign()is wrapper function for ECDSA_do_sign_ex with kinv andrp set toNULL .

ECDSA_do_sign_ex()computes a digital signature of thedgst_lenbytes hash valuedgst using the private
key eckeyand the optional pre-computed valueskinv andrp . The signature is returned in a newly allocated
ECDSA_SIG structure (orNULL on error).

ECDSA_do_verify()verifies that the signaturesig is a valid ECDSAsignature of the hash valuedgst of size
dgst_lenusing the public keyeckey.

RETURN VALUES
ECDSA_size()returns the maximum length signature or 0 on error.

ECDSA_sign_setup()andECDSA_sign()return 1 if successful or −1 on error.

ECDSA_verify()andECDSA_do_verify()return 1 for a valid signature, 0 for an invalid signature and −1 on
error. The error codes can be obtained byERR_get_error(3).

EXAMPLES
Creating aECDSAsignature of given SHA−1hash value using the named curve secp192k1.

First step: create aEC_KEY object (note: this part isnot ECDSAspecific)

0.9.9-dev 2005-11-24 2

ecdsa(3) OpenSSL ecdsa(3)

int ret;
ECDSA_SIG *sig;
EC_KEY *eckey = EC_KEY_new();
if (eckey == NULL)

{
/* error */
}

key->group = EC_GROUP_new_by_nid(NID_secp192k1);
if (key->group == NULL)

{
/* error */
}

if (!EC_KEY_generate_key(eckey))
{
/* error */
}

Second step: compute theECDSAsignature of aSHA−1hash value usingECDSA_do_sign

sig = ECDSA_do_sign(digest, 20, eckey);
if (sig == NULL)

{
/* error */
}

or usingECDSA_sign

unsigned char *buffer, *pp;
int buf_len;
buf_len = ECDSA_size(eckey);
buffer = OPENSSL_malloc(buf_len);
pp = buffer;
if (!ECDSA_sign(0, dgst, dgstlen, pp, &buf_len, eckey);

{
/* error */
}

Third step: verify the createdECDSAsignature usingECDSA_do_verify

ret = ECDSA_do_verify(digest, 20, sig, eckey);

or usingECDSA_verify

ret = ECDSA_verify(0, digest, 20, buffer, buf_len, eckey);

and finally evaluate the return value:

if (ret == -1)
{
/* error */
}

else if (ret == 0)
{
/* incorrect signature */
}

else /* ret == 1 */
{
/* signature ok */
}

0.9.9-dev 2005-11-24 3

ecdsa(3) OpenSSL ecdsa(3)

CONFORMING TO
ANSI X9.62,US Federal Information Processing StandardFIPS186−2 (Digital Signature Standard,DSS)

SEE ALSO
openssl_dsa(3), openssl_rsa(3)

HISTORY
The ecdsa implementation was first introduced in OpenSSL 0.9.8

AUTHOR
Nils Larsch for the OpenSSL project (http://www.openssl.org).

0.9.9-dev 2005-11-24 4

engine(3) OpenSSL engine(3)

NAME
engine − ENGINE cryptographic module support

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/engine.h>

ENGINE *ENGINE_get_first(void);
ENGINE *ENGINE_get_last(void);
ENGINE *ENGINE_get_next(ENGINE *e);
ENGINE *ENGINE_get_prev(ENGINE *e);

int ENGINE_add(ENGINE *e);
int ENGINE_remove(ENGINE *e);

ENGINE *ENGINE_by_id(const char *id);

int ENGINE_init(ENGINE *e);
int ENGINE_finish(ENGINE *e);

void ENGINE_load_openssl(void);
void ENGINE_load_dynamic(void);
#ifndef OPENSSL_NO_STATIC_ENGINE
void ENGINE_load_4758cca(void);
void ENGINE_load_aep(void);
void ENGINE_load_atalla(void);
void ENGINE_load_chil(void);
void ENGINE_load_cswift(void);
void ENGINE_load_gmp(void);
void ENGINE_load_nuron(void);
void ENGINE_load_sureware(void);
void ENGINE_load_ubsec(void);
#endif
void ENGINE_load_cryptodev(void);
void ENGINE_load_builtin_engines(void);

void ENGINE_cleanup(void);

ENGINE *ENGINE_get_default_RSA(void);
ENGINE *ENGINE_get_default_DSA(void);
ENGINE *ENGINE_get_default_ECDH(void);
ENGINE *ENGINE_get_default_ECDSA(void);
ENGINE *ENGINE_get_default_DH(void);
ENGINE *ENGINE_get_default_RAND(void);
ENGINE *ENGINE_get_cipher_engine(int nid);
ENGINE *ENGINE_get_digest_engine(int nid);

int ENGINE_set_default_RSA(ENGINE *e);
int ENGINE_set_default_DSA(ENGINE *e);
int ENGINE_set_default_ECDH(ENGINE *e);
int ENGINE_set_default_ECDSA(ENGINE *e);
int ENGINE_set_default_DH(ENGINE *e);
int ENGINE_set_default_RAND(ENGINE *e);
int ENGINE_set_default_ciphers(ENGINE *e);
int ENGINE_set_default_digests(ENGINE *e);
int ENGINE_set_default_string(ENGINE *e, const char *list);

int ENGINE_set_default(ENGINE *e, unsigned int flags);

0.9.9-dev 2008-05-09 1

engine(3) OpenSSL engine(3)

unsigned int ENGINE_get_table_flags(void);
void ENGINE_set_table_flags(unsigned int flags);

int ENGINE_register_RSA(ENGINE *e);
void ENGINE_unregister_RSA(ENGINE *e);
void ENGINE_register_all_RSA(void);
int ENGINE_register_DSA(ENGINE *e);
void ENGINE_unregister_DSA(ENGINE *e);
void ENGINE_register_all_DSA(void);
int ENGINE_register_ECDH(ENGINE *e);
void ENGINE_unregister_ECDH(ENGINE *e);
void ENGINE_register_all_ECDH(void);
int ENGINE_register_ECDSA(ENGINE *e);
void ENGINE_unregister_ECDSA(ENGINE *e);
void ENGINE_register_all_ECDSA(void);
int ENGINE_register_DH(ENGINE *e);
void ENGINE_unregister_DH(ENGINE *e);
void ENGINE_register_all_DH(void);
int ENGINE_register_RAND(ENGINE *e);
void ENGINE_unregister_RAND(ENGINE *e);
void ENGINE_register_all_RAND(void);
int ENGINE_register_STORE(ENGINE *e);
void ENGINE_unregister_STORE(ENGINE *e);
void ENGINE_register_all_STORE(void);
int ENGINE_register_ciphers(ENGINE *e);
void ENGINE_unregister_ciphers(ENGINE *e);
void ENGINE_register_all_ciphers(void);
int ENGINE_register_digests(ENGINE *e);
void ENGINE_unregister_digests(ENGINE *e);
void ENGINE_register_all_digests(void);
int ENGINE_register_complete(ENGINE *e);
int ENGINE_register_all_complete(void);

int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));
int ENGINE_cmd_is_executable(ENGINE *e, int cmd);
int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,

long i, void *p, void (*f)(void), int cmd_optional);
int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,

int cmd_optional);

int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg);
void *ENGINE_get_ex_data(const ENGINE *e, int idx);

int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);

ENGINE *ENGINE_new(void);
int ENGINE_free(ENGINE *e);
int ENGINE_up_ref(ENGINE *e);

0.9.9-dev 2008-05-09 2

engine(3) OpenSSL engine(3)

int ENGINE_set_id(ENGINE *e, const char *id);
int ENGINE_set_name(ENGINE *e, const char *name);
int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth);
int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth);
int ENGINE_set_ECDH(ENGINE *e, const ECDH_METHOD *dh_meth);
int ENGINE_set_ECDSA(ENGINE *e, const ECDSA_METHOD *dh_meth);
int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth);
int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth);
int ENGINE_set_STORE(ENGINE *e, const STORE_METHOD *rand_meth);
int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);
int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);
int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);
int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);
int ENGINE_set_load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f);
int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);
int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);
int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);
int ENGINE_set_flags(ENGINE *e, int flags);
int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);

const char *ENGINE_get_id(const ENGINE *e);
const char *ENGINE_get_name(const ENGINE *e);
const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e);
const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e);
const ECDH_METHOD *ENGINE_get_ECDH(const ENGINE *e);
const ECDSA_METHOD *ENGINE_get_ECDSA(const ENGINE *e);
const DH_METHOD *ENGINE_get_DH(const ENGINE *e);
const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e);
const STORE_METHOD *ENGINE_get_STORE(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e);
ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e);
ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e);
ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e);
ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e);
ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e);
const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid);
const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);
int ENGINE_get_flags(const ENGINE *e);
const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);

EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,
UI_METHOD *ui_method, void *callback_data);

EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,
UI_METHOD *ui_method, void *callback_data);

void ENGINE_add_conf_module(void);

DESCRIPTION
These functions create, manipulate, and use cryptographic modules in the form ofENGINE objects. These
objects act as containers for implementations of cryptographic algorithms, and support a reference-counted
mechanism to allow them to be dynamically loaded in and out of the running application.

The cryptographic functionality that can be provided by anENGINE implementation includes the following
abstractions;

0.9.9-dev 2008-05-09 3

engine(3) OpenSSL engine(3)

RSA_METHOD - for providing alternative RSA implementations
DSA_METHOD, DH_METHOD, RAND_METHOD, ECDH_METHOD, ECDSA_METHOD,

STORE_METHOD - similarly for other OpenSSL APIs
EVP_CIPHER - potentially multiple cipher algorithms (indexed by ’nid’)
EVP_DIGEST - potentially multiple hash algorithms (indexed by ’nid’)
key-loading - loading public and/or private EVP_PKEY keys

Reference counting and handles

Due to the modular nature of theENGINE API, pointers to ENGINEs need to be treated as handles − ie. not
only as pointers, but also as references to the underlyingENGINE object. Ie. one should obtain a new refer-
ence when making copies of anENGINE pointer if the copies will be used (and released) independently.

ENGINE objects have two lev els of reference-counting to match the way in which the objects are used. At
the most basic level, eachENGINE pointer is inherently astructural reference − a structural reference is
required to use the pointer value at all, as this kind of reference is a guarantee that the structure can not be
deallocated until the reference is released.

However, a structural reference provides no guarantee that theENGINE is initiliased and able to use any of
its cryptographic implementations. Indeed it’s quite possible that most ENGINEs will not initialise at all in
typical environments, as ENGINEs are typically used to support specialised hardware. To use anENGINE’s
functionality, you need afunctional reference. This kind of reference can be considered a specialised form
of structural reference, because each functional reference implicitly contains a structural reference as well −
however to avoid difficult-to-find programming bugs, it is recommended to treat the two kinds of reference
independently. If you have a functional reference to anENGINE, you have a guarantee that theENGINE has
been initialised ready to perform cryptographic operations and will remain uninitialised until after you have
released your reference.

Structural references

This basic type of reference is used for instantiating new ENGINEs, iterating across OpenSSL’s internal
linked-list of loaded ENGINEs, reading information about anENGINE, etc. Essentially a structural refer-
ence is sufficient if you only need to query or manipulate the data of anENGINE implementation rather than
use its functionality.

The ENGINE_new()function returns a structural reference to a new (empty) ENGINE object. There are
other ENGINE API functions that return structural references such as;ENGINE_by_id(),
ENGINE_get_first(), ENGINE_get_last(), ENGINE_get_next(), ENGINE_get_prev(). All structural refer-
ences should be released by a corresponding to call to theENGINE_free()function − theENGINE object
itself will only actually be cleaned up and deallocated when the last structural reference is released.

It should also be noted that many ENGINE API function calls that accept a structural reference will inter-
nally obtain another reference − typically this happens whenever the suppliedENGINE will be needed by
OpenSSL after the function has returned. Eg. the function to add a new ENGINE to OpenSSL’s internal list
is ENGINE_add()− if this function returns success, then OpenSSL will have stored a new structural refer-
ence internally so the caller is still responsible for freeing their own reference withENGINE_free()when
they are finished with it. In a similar way, some functions will automatically release the structural reference
passed to it if part of the function’s job is to do so. Eg. theENGINE_get_next()andENGINE_get_prev()
functions are used for iterating across the internalENGINE list − they will return a new structural reference
to the next (or previous) ENGINE in the list orNULL if at the end (or beginning) of the list, but in either
case the structural reference passed to the function is released on behalf of the caller.

To clarify a particular function’s handling of references, one should always consult that function’s docu-
mentation ‘‘man’’ page, or failing that the openssl/engine.h header file includes some hints.

Functional references

As mentioned, functional references exist when the cryptographic functionality of anENGINE is required to
be available. A functional reference can be obtained in one of two ways; from an existing structural refer-
ence to the requiredENGINE, or by asking OpenSSL for the default operationalENGINE for a given crypto-
graphic purpose.

0.9.9-dev 2008-05-09 4

engine(3) OpenSSL engine(3)

To obtain a functional reference from an existing structural reference, call theENGINE_init()function. This
returns zero if theENGINE was not already operational and couldn’t be successfully initialised (eg. lack of
system drivers, no special hardware attached, etc), otherwise it will return non-zero to indicate that the
ENGINE is now operational and will have allocated a new functional reference to theENGINE. All func-
tional references are released by callingENGINE_finish()(which removes the implicit structural reference
as well).

The second way to get a functional reference is by asking OpenSSL for a default implementation for a
given task, eg. byENGINE_get_default_RSA(), ENGINE_get_default_cipher_engine(), etc. These are dis-
cussed in the next section, though they are not usually required by application programmers as they are
used automatically when creating and using the relevant algorithm-specific types in OpenSSL, such asRSA,
DSA, EVP_CIPHER_CTX, etc.

Default implementations

For each supported abstraction, theENGINE code maintains an internal table of state to control which
implementations are available for a given abstraction and which should be used by default. These imple-
mentations are registered in the tables and indexed by an ’nid’ value, because abstractions like
EVP_CIPHERand EVP_DIGESTsupport many distinct algorithms and modes, and ENGINEs can support
arbitrarily many of them. Inthe case of other abstractions like RSA, DSA, etc, there is only one ‘‘algo-
rithm’’ so all implementations implicitly register using the same ’nid’ index.

When a default ENGINE is requested for a given abstraction/algorithm/mode, (eg. when calling
RSA_new_method(NULL)), a ‘‘get_default’’ call will be made to theENGINE subsystem to process the cor-
responding state table and return a functional reference to an initialisedENGINE whose implementation
should be used. If noENGINE should (or can) be used, it will returnNULL and the caller will operate with a
NULL ENGINE handle − this usually equates to using the conventional software implementation. In the lat-
ter case, OpenSSL will from then on behave the way it used to before theENGINE APIexisted.

Each state table has a flag to note whether it has processed this ‘‘get_default’’ query since the table was last
modified, because to process this question it must iterate across all the registered ENGINEs in the table try-
ing to initialise each of them in turn, in case one of them is operational. If it returns a functional reference
to anENGINE, it will also cache another reference to speed up processing future queries (without needing
to iterate across the table). Likewise, it will cache aNULL response if noENGINE was available so that
future queries won’t repeat the same iteration unless the state table changes. This behaviour can also be
changed; if theENGINE_TABLE_FLAG_NOINITflag is set (usingENGINE_set_table_flags()), no attempted
initialisations will take place, instead the only way for the state table to return a non-NULLENGINE to the
‘‘ get_default’’ query will be if one is expressly set in the table. Eg.ENGINE_set_default_RSA()does the
same job asENGINE_register_RSA()except that it also sets the state table’s cached response for the
‘‘ get_default’’ query. In the case of abstractions like EVP_CIPHER, where implementations are indexed by
’nid’, these flags and cached-responses are distinct for each ’nid’ value.

Application requirements

This section will explain the basic things an application programmer should support to make the most use-
ful elements of theENGINE functionality available to the user. The first thing to consider is whether the
programmer wishes to make alternative ENGINE modules available to the application and user. OpenSSL
maintains an internal linked list of ‘‘visible’’ ENGINEs from which it has to operate − at start−up, this list
is empty and in fact if an application does not call any ENGINE API calls and it uses static linking against
openssl, then the resulting application binary will not contain any alternative ENGINE code at all. So the
first consideration is whether any/all available ENGINE implementations should be made visible to
OpenSSL − this is controlled by calling the various ‘‘load’’ f unctions, eg.

0.9.9-dev 2008-05-09 5

engine(3) OpenSSL engine(3)

/* Make the "dynamic" ENGINE available */
void ENGINE_load_dynamic(void);
/* Make the CryptoSwift hardware acceleration support available */
void ENGINE_load_cswift(void);
/* Make support for nCipher’s "CHIL" hardware available */
void ENGINE_load_chil(void);
...
/* Make ALL ENGINE implementations bundled with OpenSSL available */
void ENGINE_load_builtin_engines(void);

Having called any of these functions,ENGINE objects would have been dynamically allocated and popu-
lated with these implementations and linked into OpenSSL’s internal linked list. At this point it is important
to mention an importantAPI function;

void ENGINE_cleanup(void);

If no ENGINE API functions are called at all in an application, then there are no inherent memory leaks to
worry about from theENGINE functionality, howev er if any ENGINEs are loaded, even if they are never
registered or used, it is necessary to use theENGINE_cleanup()function to correspondingly cleanup before
program exit, if the caller wishes to avoid memory leaks. This mechanism uses an internal callback registra-
tion table so that any ENGINE API functionality that knows it requires cleanup can register its cleanup
details to be called duringENGINE_cleanup(). This approach allows ENGINE_cleanup()to clean up after
any ENGINE functionality at all that your program uses, yet doesn’t automatically create linker dependen-
cies to all possibleENGINE functionality − only the cleanup callbacks required by the functionality you do
use will be required by the linker.

The fact that ENGINEs are made visible to OpenSSL (and thus are linked into the program and loaded into
memory at run−time) does not mean they are ‘‘registered’’ or called into use by OpenSSL automatically −
that behaviour is something for the application to control. Some applications will want to allow the user to
specify exactly whichENGINE they want used if any is to be used at all. Others may prefer to load all sup-
port and have OpenSSL automatically use at run-time any ENGINE that is able to successfully initialise −
ie. to assume that this corresponds to acceleration hardware attached to the machine or some such thing.
There are probably numerous other ways in which applications may prefer to handle things, so we will sim-
ply illustrate the consequences as they apply to a couple of simple cases and leave dev elopers to consider
these and the source code to openssl’s builtin utilities as guides.

Using a specificENGINEimplementation

Here we’ll assume an application has been configured by its user or admin to want to use the ‘‘ACME’’
ENGINE if it is available in the version of OpenSSL the application was compiled with. If it is available, it
should be used by default for allRSA, DSA, and symmetric cipher operation, otherwise OpenSSL should
use its builtin software as per usual. The following code illustrates how to approach this;

0.9.9-dev 2008-05-09 6

engine(3) OpenSSL engine(3)

ENGINE *e;
const char *engine_id = "ACME";
ENGINE_load_builtin_engines();
e = ENGINE_by_id(engine_id);
if(!e)

/* the engine isn’t available */
return;

if(!ENGINE_init(e)) {
/* the engine couldn’t initialise, release ’e’ */
ENGINE_free(e);
return;

}
if(!ENGINE_set_default_RSA(e))

/* This should only happen when ’e’ can’t initialise, but the previous
* s tatement suggests it did. */

abort();
ENGINE_set_default_DSA(e);
ENGINE_set_default_ciphers(e);
/* Release the functional reference from ENGINE_init() */
ENGINE_finish(e);
/* Release the structural reference from ENGINE_by_id() */
ENGINE_free(e);

Automatically using builtinENGINEimplementations

Here we’ll assume we want to load and register allENGINE implementations bundled with OpenSSL, such
that for any cryptographic algorithm required by OpenSSL − if there is anENGINE that implements it and
can be initialise, it should be used. The following code illustrates how this can work;

/* Load all bundled ENGINEs into memory and make them visible */
ENGINE_load_builtin_engines();
/* Register all of them for every algorithm they collectively implement */
ENGINE_register_all_complete();

That’s all that’s required. Eg. the next time OpenSSL tries to set up anRSA key, any bundled ENGINEs that
implementRSA_METHODwill be passed toENGINE_init()and if any of those succeed, thatENGINE will
be set as the default forRSA use from then on.

Advanced configuration support

There is a mechanism supported by theENGINE framework that allows eachENGINE implementation to
define an arbitrary set of configuration ‘‘commands’’ and expose them to OpenSSL and any applications
based on OpenSSL. This mechanism is entirely based on the use of name-value pairs and assumesASCII
input (no unicode orUTF for now!), so it is ideal if applications want to provide a transparent way for users
to provide arbitrary configuration ‘‘directives’’ directly to such ENGINEs. It is also possible for the applica-
tion to dynamically interrogate the loadedENGINE implementations for the names, descriptions, and input
flags of their available ‘‘control commands’’, providing a more flexible configuration scheme. However, if
the user is expected to know which ENGINE device he/she is using (in the case of specialised hardware, this
goes without saying) then applications may not need to concern themselves with discovering the supported
control commands and simply prefer to pass settings into ENGINEs exactly as they are provided by the
user.

Before illustrating how control commands work, it is worth mentioning what they are typically used for.
Broadly speaking there are two uses for control commands; the first is to provide the necessary details to
the implementation (which may know nothing at all specific to the host system) so that it can be initialised
for use. This could include the path to any driver or config files it needs to load, required network
addresses, smart-card identifiers, passwords to initialise protected devices, logging information, etc etc.
This class of commands typically needs to be passed to anENGINE before attempting to initialise it, ie.

0.9.9-dev 2008-05-09 7

engine(3) OpenSSL engine(3)

before callingENGINE_init(). The other class of commands consist of settings or operations that tweak cer-
tain behaviour or cause certain operations to take place, and these commands may work either before or
afterENGINE_init(), or in some cases both.ENGINE implementations should provide indications of this in
the descriptions attached to builtin control commands and/or in external product documentation.

Issuing control commands to anENGINE

Let’s illustrate by example; a function for which the caller supplies the name of theENGINE it wishes to
use, a table of string-pairs for use before initialisation, and another table for use after initialisation. Note
that the string-pairs used for control commands consist of a command ‘‘name’’ f ollowed by the command
‘‘ parameter’’ − the parameter could beNULL in some cases but the name can not. This function should ini-
tialise theENGINE (issuing the ‘‘pre’’ commands beforehand and the ‘‘post’’ commands afterwards) and set
it as the default for everything exceptRAND and then return a boolean success or failure.

int generic_load_engine_fn(const char *engine_id,
const char **pre_cmds, int pre_num,
const char **post_cmds, int post_num)

{
ENGINE *e = ENGINE_by_id(engine_id);
if(!e) return 0;
while(pre_num--) {

if(!ENGINE_ctrl_cmd_string(e, pre_cmds[0], pre_cmds[1], 0)) {
fprintf(stderr, "Failed command (%s - %s:%s)\n", engine_id,

pre_cmds[0], pre_cmds[1] ? pre_cmds[1] : "(NULL)");
ENGINE_free(e);
return 0;

}
pre_cmds += 2;

}
if(!ENGINE_init(e)) {

fprintf(stderr, "Failed initialisation\n");
ENGINE_free(e);
return 0;

}
/* ENGINE_init() returned a functional reference, so free the structural

* r eference from ENGINE_by_id(). */
ENGINE_free(e);
while(post_num--) {

if(!ENGINE_ctrl_cmd_string(e, post_cmds[0], post_cmds[1], 0)) {
fprintf(stderr, "Failed command (%s - %s:%s)\n", engine_id,

post_cmds[0], post_cmds[1] ? post_cmds[1] : "(NULL)");
ENGINE_finish(e);
return 0;

}
post_cmds += 2;

}
ENGINE_set_default(e, ENGINE_METHOD_ALL & ˜ENGINE_METHOD_RAND);
/* Success */
return 1;

}

Note thatENGINE_ctrl_cmd_string()accepts a boolean argument that can relax the semantics of the func-
tion − if set non-zero it will only return failure if theENGINE supported the given command name but failed
while executing it, if theENGINE doesn’t support the command name it will simply return success without
doing anything. In this case we assume the user is only supplying commands specific to the given ENGINE
so we set this toFALSE.

0.9.9-dev 2008-05-09 8

engine(3) OpenSSL engine(3)

Discovering supported control commands

It is possible to discover at run-time the names, numerical−ids, descriptions and input parameters of the
control commands supported by anENGINE using a structural reference. Note that some control commands
are defined by OpenSSL itself and it will intercept and handle these control commands on behalf of the
ENGINE, ie. theENGINE’s ctrl() handler is not used for the control command. openssl/engine.h defines an
index, ENGINE_CMD_BASE, that all control commands implemented by ENGINEs should be numbered
from. Any command value lower than this symbol is considered a ‘‘generic’’ command is handled directly
by the OpenSSL core routines.

It is using these ‘‘core’’ control commands that one can discover the the control commands implemented by
a giv en ENGINE, specifically the commands;

#define ENGINE_HAS_CTRL_FUNCTION 10
#define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11
#define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12
#define ENGINE_CTRL_GET_CMD_FROM_NAME 13
#define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14
#define ENGINE_CTRL_GET_NAME_FROM_CMD 15
#define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16
#define ENGINE_CTRL_GET_DESC_FROM_CMD 17
#define ENGINE_CTRL_GET_CMD_FLAGS 18

Whilst these commands are automatically processed by the OpenSSL framework code, they use various
properties exposed by eachENGINE to process these queries. AnENGINE has 3 properties it exposes that
can affect how this behaves; it can supply actrl() handler, it can specify ENGINE_FLAGS_MAN-
UAL_CMD_CTRL in theENGINE’s flags, and it can expose an array of control command descriptions. If an
ENGINE specifies theENGINE_FLAGS_MANUAL_CMD_CTRL flag, then it will simply pass all these
‘‘ core’’ control commands directly to theENGINE’s ctrl() handler (and thus, it must have supplied one), so
it is up to theENGINE to reply to these ‘‘discovery’’ commands itself. If that flag is not set, then the
OpenSSL framework code will work with the following rules;

if no ctrl() handler supplied;
ENGINE_HAS_CTRL_FUNCTION returns FALSE (zero),
all other commands fail.

if a ctrl() handler was supplied but no array of control commands;
ENGINE_HAS_CTRL_FUNCTION returns TRUE,
all other commands fail.

if a ctrl() handler and array of control commands was supplied;
ENGINE_HAS_CTRL_FUNCTION returns TRUE,
all other commands proceed processing ...

If the ENGINE’s array of control commands is empty then all other commands will fail, otherwise;
ENGINE_CTRL_GET_FIRST_CMD_TYPEreturns the identifier of the first command supported by the
ENGINE, ENGINE_GET_NEXT_CMD_TYPEtakes the identifier of a command supported by theENGINE
and returns the next command identifier or fails if there are no more,ENGINE_CMD_FROM_NAMEtakes a
string name for a command and returns the corresponding identifier or fails if no such command name
exists, and the remaining commands take a command identifier and return properties of the corresponding
commands. All exceptENGINE_CTRL_GET_FLAGSreturn the string length of a command name or descrip-
tion, or populate a supplied character buffer with a copy of the command name or description.
ENGINE_CTRL_GET_FLAGSreturns a bitwise−OR’d mask of the following possible values;

#define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001
#define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002
#define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004
#define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008

If the ENGINE_CMD_FLAG_INTERNAL flag is set, then any other flags are purely informational to the
caller − this flag will prevent the command being usable for any higher-level ENGINE functions such as

0.9.9-dev 2008-05-09 9

engine(3) OpenSSL engine(3)

ENGINE_ctrl_cmd_string(). ‘‘ INTERNAL’’ commands are not intended to be exposed to text-based config-
uration by applications, administrations, users, etc. These can support arbitrary operations via
ENGINE_ctrl(), including passing to and/or from the control commands data of any arbitrary type. These
commands are supported in the discovery mechanisms simply to allow applications determinie if an
ENGINE supports certain specific commands it might want to use (eg. application ‘‘foo’ ’ might query vari-
ous ENGINEs to see if they implement ‘‘FOO_GET_VENDOR_LOGO_GIF’’ − and ENGINE could therefore
decide whether or not to support this ‘‘foo’’−specific extension).

Futur e dev elopments

TheENGINE APIand internal architecture is currently being reviewed. Slated for possible release in 0.9.8 is
support for transparent loading of ‘‘dynamic’’ ENGINEs (built as self-contained shared−libraries). This
would allow ENGINE implementations to be provided independently of OpenSSL libraries and/or
OpenSSL-based applications, and would also remove any requirement for applications to explicitly use the
‘‘ dynamic’’ ENGINE to bind to shared-library implementations.

SEE ALSO
openssl_rsa(3), openssl_dsa(3), openssl_dh(3), openssl_rand(3)

0.9.9-dev 2008-05-09 10

err(3) OpenSSL err(3)

NAME
err − error codes

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/err.h>

unsigned long ERR_get_error(void);
unsigned long ERR_peek_error(void);
unsigned long ERR_get_error_line(const char **file, int *line);
unsigned long ERR_peek_error_line(const char **file, int *line);
unsigned long ERR_get_error_line_data(const char **file, int *line,

const char **data, int *flags);
unsigned long ERR_peek_error_line_data(const char **file, int *line,

const char **data, int *flags);

int ERR_GET_LIB(unsigned long e);
int ERR_GET_FUNC(unsigned long e);
int ERR_GET_REASON(unsigned long e);

void ERR_clear_error(void);

char *ERR_error_string(unsigned long e, char *buf);
const char *ERR_lib_error_string(unsigned long e);
const char *ERR_func_error_string(unsigned long e);
const char *ERR_reason_error_string(unsigned long e);

void ERR_print_errors(BIO *bp);
void ERR_print_errors_fp(FILE *fp);

void ERR_load_crypto_strings(void);
void ERR_free_strings(void);

void ERR_remove_state(unsigned long pid);

void ERR_put_error(int lib, int func, int reason, const char *file,
int line);

void ERR_add_error_data(int num, ...);

void ERR_load_strings(int lib,ERR_STRING_DATA str[]);
unsigned long ERR_PACK(int lib, int func, int reason);
int ERR_get_next_error_library(void);

DESCRIPTION
When a call to the OpenSSL library fails, this is usually signalled by the return value, and an error code is
stored in an error queue associated with the current thread. Theerr library provides functions to obtain
these error codes and textual error messages.

TheERR_get_error(3) manpage describes how to access error codes.

Error codes contain information about where the error occurred, and what went wrong.ERR_GET_LIB(3)
describes how to extract this information. A method to obtain human-readable error messages is described
in ERR_error_string(3).

ERR_clear_error(3) can be used to clear the error queue.

Note thatERR_remove_state(3) should be used to avoid memory leaks when threads are terminated.

ADDING NEW ERROR CODES TO OPENSSL
SeeERR_put_error(3) if you want to record error codes in the OpenSSL error system from within your
application.

The remainder of this section is of interest only if you want to add new error codes to OpenSSL or add

0.9.9-dev 2002-07-30 1

err(3) OpenSSL err(3)

error codes from external libraries.

Reporting errors

Each sub-library has a specific macroXXXerr() that is used to report errors. Its first argument is a function
codeXXX_F_..., the second argument is a reason codeXXX_R_.... Function codes are derived from the
function names; reason codes consist of textual error descriptions. For example, the functionssl23_read()
reports a ‘‘handshake failure’’ as follows:

SSLerr(SSL_F_SSL23_READ, SSL_R_SSL_HANDSHAKE_FAILURE);

Function and reason codes should consist of upper case characters, numbers and underscores only. The
error file generation script translates function codes into function names by looking in the header files for
an appropriate function name, if none is found it just uses the capitalized form such as ‘‘SSL23_READ’’ i n
the above example.

The trailing section of a reason code (after the ‘‘_R_’’) is translated into lower case and underscores
changed to spaces.

When you are using new function or reason codes, runmake errors . The necessary#defines will then
automatically be added to the sub−library’s header file.

Although a library will normally report errors using its own specific XXXerr macro, another library’s
macro can be used. This is normally only done when a library wants to includeASN1 code which must use
theASN1err()macro.

Adding new libraries

When adding a new sub-library to OpenSSL, assign it a library numberERR_LIB_XXX , define a macro
XXXerr() (both in err.h), add its name toERR_str_libraries[] (in crypto/err/err.c), and add
ERR_load_XXX_strings() to the ERR_load_crypto_strings()function (in crypto/err/err_all.c).
Finally, add an entry

L XXX xxx.h xxx_err.c

to crypto/err/openssl.ec, and addxxx_err.c to the Makefile. Runningmake errors will then generate a
file xxx_err.c, and add all error codes used in the library toxxx.h.

Additionally the library include file must have a certain form. Typically it will initially look lik e this:

#ifndef HEADER_XXX_H
#define HEADER_XXX_H

#ifdef __cplusplus
extern "C" {
#endif

/* Include files */

#include <openssl/bio.h>
#include <openssl/x509.h>

/* Macros, structures and function prototypes */

/* BEGIN ERROR CODES */

TheBEGIN ERROR CODES sequence is used by the error code generation script as the point to place new
error codes, any text after this point will be overwritten whenmake errors is run. The closing #endif etc
will be automatically added by the script.

The generated C error code filexxx_err.c will load the header filesstdio.h, openssl/err.h and
openssl/xxx.hso the header file must load any additional header files containing any definitions it uses.

USING ERROR CODES IN EXTERNAL LIBRARIES
It is also possible to use OpenSSL’s error code scheme in external libraries. The library needs to load its
own codes and call the OpenSSL error code insertion scriptmkerr.pl explicitly to add codes to the header

0.9.9-dev 2002-07-30 2

err(3) OpenSSL err(3)

file and generate the C error code file. This will normally be done if the external library needs to generate
newASN1 structures but it can also be used to add more general purpose error code handling.

TBA more details

INTERNALS
The error queues are stored in a hash table with oneERR_STATE entry for each pid.ERR_get_state()
returns the current thread’s ERR_STATE. An ERR_STATE can hold up toERR_NUM_ERRORS error codes.
When more error codes are added, the old ones are overwritten, on the assumption that the most recent
errors are most important.

Error strings are also stored in hash table. The hash tables can be obtained by calling
ERR_get_err_state_table(void) and ERR_get_string_table(void) respectively.

SEE ALSO
CRYPTO_set_id_callback(3), CRYPTO_set_locking_callback(3), ERR_get_error(3), ERR_GET_LIB(3),
ERR_clear_error(3), ERR_error_string(3), ERR_print_errors(3), ERR_load_crypto_strings(3),
ERR_remove_state(3), ERR_put_error(3), ERR_load_strings(3), SSL_get_error(3)

0.9.9-dev 2002-07-30 3

evp(3) OpenSSL evp(3)

NAME
evp − high−level cryptographic functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/evp.h>

DESCRIPTION
TheEVP library provides a high-level interface to cryptographic functions.

EVP_Seal... and EVP_Open... provide public key encryption and decryption to implement digital
‘‘ envelopes’’.

TheEVP_Sign... andEVP_Verify ... functions implement digital signatures.

Symmetric encryption is available with theEVP_Encrypt... functions. TheEVP_Digest... functions pro-
vide message digests.

TheEVP_PKEY... functions provide a high level interface to asymmetric algorithms.

Algorithms are loaded withOpenSSL_add_all_algorithms(3).

All the symmetric algorithms (ciphers), digests and asymmetric algorithms (public key algorithms) can be
replaced byENGINE modules providing alternative implementations. IfENGINE implementations of
ciphers or digests are registered as defaults, then the variousEVP functions will automatically use those
implementations automatically in preference to built in software implementations. For more information,
consult theengine(3) man page.

Although low lev el algorithm specific functions exist for many algorithms their use is discouraged. They
cannot be used with anENGINE andENGINE versions of new algorithms cannot be accessed using the low
level functions. Alsomakes code harder to adapt to new algorithms and some options are not cleanly sup-
ported at the low lev el and some operations are more efficient using the high level interface.

SEE ALSO
EVP_DigestInit(3), EVP_EncryptInit(3), EVP_OpenInit(3), EVP_SealInit(3), EVP_SignInit(3), EVP_Ver-
ifyInit (3), OpenSSL_add_all_algorithms(3), engine(3)

0.9.9-dev 2008-05-09 1

hmac(3) OpenSSL hmac(3)

NAME
HMAC, HMAC_Init, HMAC_Update, HMAC_Final, HMAC_cleanup − HMAC message authentication
code

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/hmac.h>

unsigned char *HMAC(const EVP_MD *evp_md, const void *key,
int key_len, const unsigned char *d, int n,
unsigned char *md, unsigned int *md_len);

void HMAC_CTX_init(HMAC_CTX *ctx);

void HMAC_Init(HMAC_CTX *ctx, const void *key, int key_len,
const EVP_MD *md);

void HMAC_Init_ex(HMAC_CTX *ctx, const void *key, int key_len,
const EVP_MD *md, ENGINE *impl);

void HMAC_Update(HMAC_CTX *ctx, const unsigned char *data, int len);
void HMAC_Final(HMAC_CTX *ctx, unsigned char *md, unsigned int *len);

void HMAC_CTX_cleanup(HMAC_CTX *ctx);
void HMAC_cleanup(HMAC_CTX *ctx);

DESCRIPTION
HMAC is aMAC (message authentication code), i.e. a keyed hash function used for message authentication,
which is based on a hash function.

HMAC() computes the message authentication code of then bytes atd using the hash functionevp_md and
the keykey which iskey_lenbytes long.

It places the result inmd (which must have space for the output of the hash function, which is no more than
EVP_MAX_MD_SIZE bytes). Ifmd is NULL , the digest is placed in a static array. The size of the output is
placed inmd_len, unless it isNULL .

evp_md can beEVP_sha1(), EVP_ripemd160()etc. key and evp_md may beNULL if a key and hash
function have been set in a previous call toHMAC_Init() for thatHMAC_CTX .

HMAC_CTX_init()initialises aHMAC_CTX before first use. It must be called.

HMAC_CTX_cleanup()erases the key and other data from theHMAC_CTX and releases any associated
resources. It must be called when anHMAC_CTX is no longer required.

HMAC_cleanup()is an alias forHMAC_CTX_cleanup()included for back compatibility with 0.9.6b, it is
deprecated.

The following functions may be used if the message is not completely stored in memory:

HMAC_Init() initializes aHMAC_CTX structure to use the hash functionevp_md and the key key which is
key_lenbytes long. It is deprecated and only included for backward compatibility with OpenSSL 0.9.6b.

HMAC_Init_ex()initializes or reuses aHMAC_CTX structure to use the functionevp_md and key key.
Either can beNULL , in which case the existing one will be reused.HMAC_CTX_init()must have been
called before the first use of anHMAC_CTX in this function.N.B. HMAC_Init() had this undocumented
behaviour in pr evious versions of OpenSSL − failure to switch to HMAC_Init_ex() in programs that
expect it will cause them to stop working.

HMAC_Update()can be called repeatedly with chunks of the message to be authenticated (len bytes at
data).

HMAC_Final()places the message authentication code inmd, which must have space for the hash function
output.

0.9.9-dev 2006-06-02 1

hmac(3) OpenSSL hmac(3)

RETURN VALUES
HMAC() returns a pointer to the message authentication code.

HMAC_CTX_init(), HMAC_Init_ex(), HMAC_Update(), HMAC_Final()andHMAC_CTX_cleanup()do not
return values.

CONFORMING TO
RFC2104

SEE ALSO
openssl_sha(3), openssl_evp(3)

HISTORY
HMAC(), HMAC_Init(), HMAC_Update(), HMAC_Final()andHMAC_cleanup()are available since SSLeay
0.9.0.

HMAC_CTX_init(), HMAC_Init_ex()andHMAC_CTX_cleanup()are available since OpenSSL 0.9.7.

0.9.9-dev 2006-06-02 2

lhash(3) OpenSSL lhash(3)

NAME
lh_new, lh_free, lh_insert, lh_delete, lh_retrieve, lh_doall, lh_doall_arg, lh_error − dynamic hash table

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/lhash.h>

LHASH *lh_new(LHASH_HASH_FN_TYPE hash, LHASH_COMP_FN_TYPE compare);
void lh_free(LHASH *table);

void *lh_insert(LHASH *table, void *data);
void *lh_delete(LHASH *table, void *data);
void *lh_retrieve(LHASH *table, void *data);

void lh_doall(LHASH *table, LHASH_DOALL_FN_TYPE func);
void lh_doall_arg(LHASH *table, LHASH_DOALL_ARG_FN_TYPE func,

void *arg);

int lh_error(LHASH *table);

typedef int (*LHASH_COMP_FN_TYPE)(const void *, const void *);
typedef unsigned long (*LHASH_HASH_FN_TYPE)(const void *);
typedef void (*LHASH_DOALL_FN_TYPE)(const void *);
typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *);

DESCRIPTION
This library implements dynamic hash tables. The hash table entries can be arbitrary structures. Usually
they consist of key and value fields.

lh_new()creates a new LHASH structure to store arbitrary data entries, and provides the ’hash’ and ’com-
pare’ callbacks to be used in organising the table’s entries. Thehash callback takes a pointer to a table
entry as its argument and returns an unsigned long hash value for its key field. Thehash value is normally
truncated to a power of 2, so make sure that your hash function returns well mixed low order bits. The
compare callback takes two arguments (pointers to two hash table entries), and returns 0 if their keys are
equal, non-zero otherwise. If your hash table will contain items of some particular type and thehash and
compare callbacks hash/compare these types, then theDECLARE_LHASH_HASH_FN and IMPLE-
MENT_LHASH_COMP_FN macros can be used to create callback wrappers of the prototypes required by
lh_new(). These provide per-variable casts before calling the type-specific callbacks written by the applica-
tion author. These macros, as well as those used for the ‘‘doall’’ callbacks, are defined as;

#define DECLARE_LHASH_HASH_FN(f_name,o_type) \
unsigned long f_name##_LHASH_HASH(const void *);

#define IMPLEMENT_LHASH_HASH_FN(f_name,o_type) \
unsigned long f_name##_LHASH_HASH(const void *arg) { \

o_type a = (o_type)arg; \
return f_name(a); }

#define LHASH_HASH_FN(f_name) f_name##_LHASH_HASH

#define DECLARE_LHASH_COMP_FN(f_name,o_type) \
int f_name##_LHASH_COMP(const void *, const void *);

#define IMPLEMENT_LHASH_COMP_FN(f_name,o_type) \
int f_name##_LHASH_COMP(const void *arg1, const void *arg2) { \

o_type a = (o_type)arg1; \
o_type b = (o_type)arg2; \
return f_name(a,b); }

#define LHASH_COMP_FN(f_name) f_name##_LHASH_COMP

0.9.9-dev 2003-07-24 1

lhash(3) OpenSSL lhash(3)

#define DECLARE_LHASH_DOALL_FN(f_name,o_type) \
void f_name##_LHASH_DOALL(const void *);

#define IMPLEMENT_LHASH_DOALL_FN(f_name,o_type) \
void f_name##_LHASH_DOALL(const void *arg) { \

o_type a = (o_type)arg; \
f_name(a); }

#define LHASH_DOALL_FN(f_name) f_name##_LHASH_DOALL

#define DECLARE_LHASH_DOALL_ARG_FN(f_name,o_type,a_type) \
void f_name##_LHASH_DOALL_ARG(const void *, const void *);

#define IMPLEMENT_LHASH_DOALL_ARG_FN(f_name,o_type,a_type) \
void f_name##_LHASH_DOALL_ARG(const void *arg1, const void *arg2) { \

o_type a = (o_type)arg1; \
a_type b = (a_type)arg2; \
f_name(a,b); }

#define LHASH_DOALL_ARG_FN(f_name) f_name##_LHASH_DOALL_ARG

An example of a hash table storing (pointers to) structures of type ’STUFF’ could be defined as follows;

/* Calculates the hash value of ’tohash’ (implemented elsewhere) */
unsigned long STUFF_hash(const STUFF *tohash);
/* Orders ’arg1’ and ’arg2’ (implemented elsewhere) */
int STUFF_cmp(const STUFF *arg1, const STUFF *arg2);
/* Create the type-safe wrapper functions for use in the LHASH internals */
static IMPLEMENT_LHASH_HASH_FN(STUFF_hash, const STUFF *)
static IMPLEMENT_LHASH_COMP_FN(STUFF_cmp, const STUFF *);
/* ... */
int main(int argc, char *argv[]) {

/* Create the new hash table using the hash/compare wrappers */
LHASH *hashtable = lh_new(LHASH_HASH_FN(STUFF_hash),

LHASH_COMP_FN(STUFF_cmp));
/* ... */

}

lh_free() frees theLHASH structuretable. Allocated hash table entries will not be freed; consider using
lh_doall() to deallocate any remaining entries in the hash table (see below).

lh_insert()inserts the structure pointed to bydata into table. If there already is an entry with the same key,
the old value is replaced. Note thatlh_insert()stores pointers, the data are not copied.

lh_delete()deletes an entry fromtable.

lh_retrieve()looks up an entry intable. Normally, data is a structure with the key field(s) set; the function
will return a pointer to a fully populated structure.

lh_doall() will, for every entry in the hash table, callfunc with the data item as its parameter. For
lh_doall() and lh_doall_arg(), function pointer casting should be avoided in the callbacks (seeNOTE) −
instead, either declare the callbacks to match the prototype required inlh_new()or use the declare/imple-
ment macros to create type-safe wrappers that cast variables prior to calling your type-specific callbacks.
An example of this is illustrated here where the callback is used to cleanup resources for items in the hash
table prior to the hashtable itself being deallocated:

0.9.9-dev 2003-07-24 2

lhash(3) OpenSSL lhash(3)

/* Cleans up resources belonging to ’a’ (this is implemented elsewhere) */
void STUFF_cleanup(STUFF *a);
/* Implement a prototype-compatible wrapper for "STUFF_cleanup" */
IMPLEMENT_LHASH_DOALL_FN(STUFF_cleanup, STUFF *)

/* ... then later in the code ... */
/* So to run "STUFF_cleanup" against all items in a hash table ... */
lh_doall(hashtable, LHASH_DOALL_FN(STUFF_cleanup));
/* Then the hash table itself can be deallocated */
lh_free(hashtable);

When doing this, be careful if you delete entries from the hash table in your callbacks: the table may
decrease in size, moving the item that you are currently on down lower in the hash table − this could cause
some entries to be skipped during the iteration. The second best solution to this problem is to set
hash−>down_load=0 before you start (which will stop the hash table ever decreasing in size). The best
solution is probably to avoid deleting items from the hash table inside a ‘‘doall’’ callback!

lh_doall_arg() is the same aslh_doall() except thatfunc will be called witharg as the second argument
andfunc should be of typeLHASH_DOALL_ARG_FN_TYPE (a callback prototype that is passed both the
table entry and an extra argument). Aswith lh_doall(), you can instead choose to declare your callback
with a prototype matching the types you are dealing with and use the declare/implement macros to create
compatible wrappers that cast variables before calling your type-specific callbacks.An example of this is
demonstrated here (printing all hash table entries to aBIO that is provided by the caller):

/* Prints item ’a’ to ’output_bio’ (this is implemented elsewhere) */
void STUFF_print(const STUFF *a, BIO *output_bio);
/* Implement a prototype-compatible wrapper for "STUFF_print" */
static IMPLEMENT_LHASH_DOALL_ARG_FN(STUFF_print, const STUFF *, BIO *)

/* ... then later in the code ... */
/* Print out the entire hashtable to a particular BIO */
lh_doall_arg(hashtable, LHASH_DOALL_ARG_FN(STUFF_print), logging_bio);

lh_error() can be used to determine if an error occurred in the last operation.lh_error() is a macro.

RETURN VALUES
lh_new()returnsNULL on error, otherwise a pointer to the newLHASH structure.

When a hash table entry is replaced,lh_insert()returns the value being replaced.NULL is returned on nor-
mal operation and on error.

lh_delete()returns the entry being deleted.NULL is returned if there is no such value in the hash table.

lh_retrieve()returns the hash table entry if it has been found,NULL otherwise.

lh_error() returns 1 if an error occurred in the last operation, 0 otherwise.

lh_free(), lh_doall()andlh_doall_arg()return no values.

NOTE
The variousLHASH macros and callback types exist to make it possible to write type-safe code without
resorting to function-prototype casting − an evil that makes application code much harder to audit/verify
and also opens the window of opportunity for stack corruption and other hard-to-find bugs. Italso, appar-
ently, violatesANSI−C.

TheLHASH code regards table entries as constant data. As such, it internally representslh_insert()’d items
with a ‘‘const void *’’ pointer type. This is why callbacks such as those used bylh_doall() and
lh_doall_arg() declare their prototypes with ‘‘const’’, even for the parameters that pass back the table
items’ data pointers − for consistency, user-provided data is ‘‘const’’ at all times as far as theLHASH code
is concerned.However, as callers are themselves providing these pointers, they can choose whether they
too should be treating all such parameters as constant.

As an example, a hash table may be maintained by code that, for reasons of encapsulation, has only
‘‘ const’’ access to the data being indexed in the hash table (ie. it is returned as ‘‘const’’ f rom elsewhere in

0.9.9-dev 2003-07-24 3

lhash(3) OpenSSL lhash(3)

their code) − in this case theLHASH prototypes are appropriate as−is.Conversely, if the caller is responsi-
ble for the life-time of the data in question, then they may well wish to make modifications to table item
passed back in thelh_doall() or lh_doall_arg()callbacks (see the ‘‘STUFF_cleanup’’ example above). If
so, the caller can either cast the ‘‘const’’ away (if they’re providing the raw callbacks themselves) or use the
macros to declare/implement the wrapper functions without ‘‘const’’ types.

Callers that only have ‘‘const’’ access to data they’re indexing in a table, yet declare callbacks without con-
stant types (or cast the ‘‘const’’ away themselves), are therefore creating their own risks/bugs without being
encouraged to do so by theAPI. On a related note, those auditing code should pay special attention to any
instances of DECLARE/IMPLEMENT_LHASH_DOALL_[ARG_]_FN macros that provide types without
any ‘‘const’’ qualifiers.

BUGS
lh_insert()returnsNULL both for success and error.

INTERNALS
The following description is based on the SSLeay documentation:

The lhash library implements a hash table described in theCommunications of theACM in 1991. What
makes this hash table different is that as the table fills, the hash table is increased (or decreased) in size via
OPENSSL_realloc(). When a ’resize’ is done, instead of all hashes being redistributed over twice as many
’buckets’, one bucket is split. So when an ’expand’ is done, there is only a minimal cost to redistribute
some values. Subsequentinserts will cause more single ’bucket’ redistributions but there will never be a
sudden large cost due to redistributing all the ’buckets’.

The state for a particular hash table is kept in theLHASH structure. Thedecision to increase or decrease
the hash table size is made depending on the ’load’ of the hash table. The load is the number of items in
the hash table divided by the size of the hash table. The default values are as follows. If (hash−>up_load <
load) => expand. if (hash−>down_load > load) => contract.The up_load has a default value of 1 and
down_load has a default value of 2. These numbers can be modified by the application by just playing
with theup_load anddown_load variables. The’l oad’ is kept in a form which is multiplied by 256.So
hash−>up_load=8*256; will cause a load of 8 to be set.

If you are interested in performance the field to watch is num_comp_calls. The hash library keeps track of
the ’hash’ value for each item so when a lookup is done, the ’hashes’ are compared, if there is a match, then
a full compare is done, and hash−>num_comp_calls is incremented. If num_comp_calls is not equal to
num_delete plus num_retrieve it means that your hash function is generating hashes that are the same for
different values. Itis probably worth changing your hash function if this is the case because even if your
hash table has 10 items in a ’bucket’, it can be searched with 10unsigned longcompares and 10 linked list
traverses. Thiswill be much less expensive that 10 calls to your compare function.

lh_strhash()is a demo string hashing function:

unsigned long lh_strhash(const char *c);

Since theLHASH routines would normally be passed structures, this routine would not normally be passed
to lh_new(), rather it would be used in the function passed tolh_new().

SEE ALSO
lh_stats(3)

HISTORY
The lhash library is available in all versions of SSLeay and OpenSSL.lh_error() was added in SSLeay
0.9.1b.

This manpage is derived from the SSLeay documentation.

In OpenSSL 0.9.7, all lhash functions that were passed function pointers were changed for better type
safety, and the function types LHASH_COMP_FN_TYPE, LHASH_HASH_FN_TYPE,
LHASH_DOALL_FN_TYPEandLHASH_DOALL_ARG_FN_TYPEbecame available.

0.9.9-dev 2003-07-24 4

md5(3) OpenSSL md5(3)

NAME
MD2, MD4, MD5, MD2_Init, MD2_Update, MD2_Final, MD4_Init, MD4_Update, MD4_Final,
MD5_Init, MD5_Update, MD5_Final − MD2, MD4, and MD5 hash functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/md2.h>

unsigned char *MD2(const unsigned char *d, unsigned long n,
unsigned char *md);

int MD2_Init(MD2_CTX *c);
int MD2_Update(MD2_CTX *c, const unsigned char *data,

unsigned long len);
int MD2_Final(unsigned char *md, MD2_CTX *c);

#include <openssl/md4.h>

unsigned char *MD4(const unsigned char *d, unsigned long n,
unsigned char *md);

int MD4_Init(MD4_CTX *c);
int MD4_Update(MD4_CTX *c, const void *data,

unsigned long len);
int MD4_Final(unsigned char *md, MD4_CTX *c);

#include <openssl/md5.h>

unsigned char *MD5(const unsigned char *d, unsigned long n,
unsigned char *md);

int MD5_Init(MD5_CTX *c);
int MD5_Update(MD5_CTX *c, const void *data,

unsigned long len);
int MD5_Final(unsigned char *md, MD5_CTX *c);

DESCRIPTION
MD2, MD4, and MD5 are cryptographic hash functions with a 128 bit output.

MD2(), MD4(), and MD5() compute theMD2, MD4, and MD5 message digest of then bytes atd and place it
in md (which must have space for MD2_DIGEST_LENGTH == MD4_DIGEST_LENGTH ==
MD5_DIGEST_LENGTH== 16 bytes of output). Ifmd is NULL , the digest is placed in a static array.

The following functions may be used if the message is not completely stored in memory:

MD2_Init() initializes aMD2_CTX structure.

MD2_Update()can be called repeatedly with chunks of the message to be hashed (len bytes atdata).

MD2_Final() places the message digest inmd, which must have space forMD2_DIGEST_LENGTH== 16
bytes of output, and erases theMD2_CTX .

MD4_Init(), MD4_Update(), MD4_Final(), MD5_Init(), MD5_Update(), and MD5_Final() are analogous
using anMD4_CTX andMD5_CTX structure.

Applications should use the higher level functionsEVP_DigestInit(3) etc. instead of calling the hash func-
tions directly.

NOTE
MD2, MD4, and MD5 are recommended only for compatibility with existing applications. In new applica-
tions,SHA−1or RIPEMD−160should be preferred.

0.9.9-dev 2007-03-06 1

md5(3) OpenSSL md5(3)

RETURN VALUES
MD2(), MD4(), and MD5() return pointers to the hash value.

MD2_Init(), MD2_Update(), MD2_Final(), MD4_Init(), MD4_Update(), MD4_Final(), MD5_Init(),
MD5_Update(), andMD5_Final() return 1 for success, 0 otherwise.

CONFORMING TO
RFC1319,RFC1320,RFC1321

SEE ALSO
openssl_sha(3), openssl_ripemd(3), EVP_DigestInit(3)

HISTORY
MD2(), MD2_Init(), MD2_Update() MD2_Final(), MD5(), MD5_Init(), MD5_Update()and MD5_Final()
are available in all versions of SSLeay and OpenSSL.

MD4(), MD4_Init(), andMD4_Update()are available in OpenSSL 0.9.6 and above.

0.9.9-dev 2007-03-06 2

mdc2(3) OpenSSL mdc2(3)

NAME
MDC2, MDC2_Init, MDC2_Update, MDC2_Final − MDC2 hash function

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/mdc2.h>

unsigned char *MDC2(const unsigned char *d, unsigned long n,
unsigned char *md);

int MDC2_Init(MDC2_CTX *c);
int MDC2_Update(MDC2_CTX *c, const unsigned char *data,

unsigned long len);
int MDC2_Final(unsigned char *md, MDC2_CTX *c);

DESCRIPTION
MDC2 is a method to construct hash functions with 128 bit output from block ciphers. These functions are
an implementation ofMDC2 with DES.

MDC2() computes theMDC2 message digest of then bytes atd and places it inmd (which must have space
for MDC2_DIGEST_LENGTH== 16 bytes of output). Ifmd is NULL , the digest is placed in a static array.

The following functions may be used if the message is not completely stored in memory:

MDC2_Init() initializes aMDC2_CTX structure.

MDC2_Update()can be called repeatedly with chunks of the message to be hashed (len bytes atdata).

MDC2_Final() places the message digest inmd, which must have space forMDC2_DIGEST_LENGTH==
16 bytes of output, and erases theMDC2_CTX .

Applications should use the higher level functionsEVP_DigestInit(3) etc. instead of calling the hash func-
tions directly.

RETURN VALUES
MDC2() returns a pointer to the hash value.

MDC2_Init(), MDC2_Update()andMDC2_Final()return 1 for success, 0 otherwise.

CONFORMING TO
ISO/IEC10118−2, withDES

SEE ALSO
openssl_sha(3), EVP_DigestInit(3)

HISTORY
MDC2(), MDC2_Init(), MDC2_Update()andMDC2_Final()are available since SSLeay 0.8.

0.9.9-dev 2007-03-06 1

pem(3) OpenSSL pem(3)

NAME
PEM − PEM routines

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/pem.h>

EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
pem_password_cb *cb, void *u);

EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
pem_password_cb *cb, void *u);

int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);

int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);

int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
char *kstr, int klen,
pem_password_cb *cb, void *u);

int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
char *kstr, int klen,
pem_password_cb *cb, void *u);

int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
char *kstr, int klen,
pem_password_cb *cb, void *u);

int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
char *kstr, int klen,
pem_password_cb *cb, void *u);

EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
pem_password_cb *cb, void *u);

EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
pem_password_cb *cb, void *u);

int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);

RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
pem_password_cb *cb, void *u);

RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
pem_password_cb *cb, void *u);

int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);

int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);

RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
pem_password_cb *cb, void *u);

0.9.9-dev 2005-03-25 1

pem(3) OpenSSL pem(3)

RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
pem_password_cb *cb, void *u);

int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);

int PEM_write_RSAPublicKey(FILE *fp, RSA *x);

RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
pem_password_cb *cb, void *u);

RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
pem_password_cb *cb, void *u);

int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);

int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);

DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
pem_password_cb *cb, void *u);

DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
pem_password_cb *cb, void *u);

int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);

int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u);

DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
pem_password_cb *cb, void *u);

DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
pem_password_cb *cb, void *u);

int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);

int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);

DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);

DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);

int PEM_write_bio_DSAparams(BIO *bp, DSA *x);

int PEM_write_DSAparams(FILE *fp, DSA *x);

DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);

DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);

int PEM_write_bio_DHparams(BIO *bp, DH *x);

int PEM_write_DHparams(FILE *fp, DH *x);

X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);

X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);

int PEM_write_bio_X509(BIO *bp, X509 *x);

int PEM_write_X509(FILE *fp, X509 *x);

X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);

X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);

int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);

int PEM_write_X509_AUX(FILE *fp, X509 *x);

0.9.9-dev 2005-03-25 2

pem(3) OpenSSL pem(3)

X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
pem_password_cb *cb, void *u);

X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
pem_password_cb *cb, void *u);

int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);

int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);

int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);

int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);

X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
pem_password_cb *cb, void *u);

X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
pem_password_cb *cb, void *u);

int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);

PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);

PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);

int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);

int PEM_write_PKCS7(FILE *fp, PKCS7 *x);

NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp,
NETSCAPE_CERT_SEQUENCE **x,
pem_password_cb *cb, void *u);

NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
NETSCAPE_CERT_SEQUENCE **x,
pem_password_cb *cb, void *u);

int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);

int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);

DESCRIPTION
The PEM functions read or write structures inPEM format. In this sensePEM format is simply base64
encoded data surrounded by header lines.

For more details about the meaning of arguments see thePEM FUNCTION ARGUMENTS section.

Each operation has four functions associated with it. For clarity the term "foobar functions" will be used to
collectively refer to the PEM_read_bio_foobar(), PEM_read_foobar(), PEM_write_bio_foobar()and
PEM_write_foobar()functions.

The PrivateKey functions read or write a private key in PEM format using anEVP_PKEY structure. The
write routines use ‘‘traditional’’ private key format and can handle bothRSA and DSA private keys. The
read functions can additionally transparently handle PKCS#8 format encrypted and unencrypted keys too.

PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a private key in an
EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based
encryption algorithms. Thecipher argument specifies the encryption algoritm to use: unlike all other PEM
routines the encryption is applied at the PKCS#8 level and not in thePEM headers. Ifcipher is NULL then
no encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead.

PEM_write_bio_PKCS8PrivateKey_nid() andPEM_write_PKCS8PrivateKey_nid() also write out a private
key as a PKCS#8 EncryptedPrivateKeyInfo however it uses PKCS#5 v1.5 or PKCS#12 encryption algo-
rithms instead. The algorithm to use is specified in thenid parameter and should be theNID of the corre-
spondingOBJECT IDENTIFIER(seeNOTESsection).

ThePUBKEY functions process a public key using anEVP_PKEYstructure. The public key is encoded as a

0.9.9-dev 2005-03-25 3

pem(3) OpenSSL pem(3)

SubjectPublicKeyInfo structure.

TheRSAPrivateKey functions process anRSA private key using anRSA structure. It handles the same for-
mats as thePrivateKey functions but an error occurs if the private key is not RSA.

The RSAPublicKey functions process anRSA public key using anRSA structure. The public key is
encoded using a PKCS#1 RSAPublicKey structure.

The RSA_PUBKEY functions also process anRSA public key using anRSA structure. However the public
key is encoded using a SubjectPublicKeyInfo structure and an error occurs if the public key is not RSA.

The DSAPrivateKey functions process aDSA private key using aDSA structure. It handles the same for-
mats as thePrivateKey functions but an error occurs if the private key is not DSA.

The DSA_PUBKEY functions process aDSA public key using aDSA structure. The public key is encoded
using a SubjectPublicKeyInfo structure and an error occurs if the public key is not DSA.

The DSAparams functions processDSA parameters using aDSA structure. The parameters are encoded
using a foobar structure.

TheDHparams functions processDH parameters using aDH structure. The parameters are encoded using
a PKCS#3 DHparameter structure.

The X509 functions process an X509 certificate using an X509 structure. They will also process a trusted
X509 certificate but any trust settings are discarded.

TheX509_AUX functions process a trusted X509 certificate using an X509 structure.

The X509_REQ and X509_REQ_NEW functions process a PKCS#10 certificate request using an
X509_REQ structure. TheX509_REQ write functions useCERTIFICA TE REQUEST in the header
whereas theX509_REQ_NEW functions useNEW CERTIFICA TE REQUEST (as required by some CAs).
TheX509_REQread functions will handle either form so there are noX509_REQ_NEWread functions.

TheX509_CRL functions process an X509CRL using an X509_CRL structure.

ThePKCS7 functions process a PKCS#7 ContentInfo using aPKCS7structure.

The NETSCAPE_CERT_SEQUENCE functions process a Netscape Certificate Sequence using a
NETSCAPE_CERT_SEQUENCEstructure.

PEM FUNCTION ARGUMENTS
ThePEM functions have many common arguments.

Thebp BIO parameter (if present) specifies theBIO to read from or write to.

Thefp FILE parameter (if present) specifies theFILE pointer to read from or write to.

ThePEM read functions all take an argumentTYPE **x and return aTYPE * pointer. WhereTYPE is what-
ev er structure the function uses. Ifx is NULL then the parameter is ignored. Ifx is notNULL but *x is NULL
then the structure returned will be written to*x . If neitherx nor *x is NULL then an attempt is made to re-
use the structure at*x (but seeBUGS andEXAMPLES sections). Irrespective of the value ofx a pointer to
the structure is always returned (orNULL if an error occurred).

The PEM functions which write private keys take an enc parameter which specifies the encryption algo-
rithm to use, encryption is done at thePEM level. If this parameter is set toNULL then the private key is
written in unencrypted form.

The cb argument is the callback to use when querying for the pass phrase used for encryptedPEM struc-
tures (normally only private keys).

For the PEM write routines if thekstr parameter is notNULL then klen bytes atkstr are used as the
passphrase andcb is ignored.

If the cb parameters is set toNULL and theu parameter is notNULL then theu parameter is interpreted as a
null terminated string to use as the passphrase. If bothcb andu areNULL then the default callback routine
is used which will typically prompt for the passphrase on the current terminal with echoing turned off.

The default passphrase callback is sometimes inappropriate (for example in aGUI application) so an

0.9.9-dev 2005-03-25 4

pem(3) OpenSSL pem(3)

alternative can be supplied. The callback routine has the following form:

int cb(char *buf, int size, int rwflag, void *u);

buf is the buffer to write the passphrase to.size is the maximum length of the passphrase (i.e. the size of
buf). rwflag is a flag which is set to 0 when reading and 1 when writing. A typical routine will ask the user
to verify the passphrase (for example by prompting for it twice) ifrwflag is 1. Theu parameter has the
same value as theu parameter passed to thePEM routine. It allows arbitrary data to be passed to the call-
back by the application (for example a window handle in aGUI application). The callbackmust return the
number of characters in the passphrase or 0 if an error occurred.

EXAMPLES
Although thePEM routines take sev eral arguments in almost all applications most of them are set to 0 or
NULL .

Read a certificate inPEM format from aBIO:

X509 *x;
x = PEM_read_bio_X509(bp, NULL, 0, NULL);
if (x == NULL)

{
/* Error */
}

Alternative method:

X509 *x = NULL;
if (!PEM_read_bio_X509(bp, &x, 0, NULL))

{
/* Error */
}

Write a certificate to aBIO:

if (!PEM_write_bio_X509(bp, x))
{
/* Error */
}

Write an unencrypted private key to aFILE pointer:

if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
{
/* Error */
}

Write a private key (using traditional format) to aBIO using tripleDES encryption, the pass phrase is
prompted for:

if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
{
/* Error */
}

Write a private key (using PKCS#8 format) to aBIO using tripleDES encryption, using the pass phrase
‘‘ hello’’:

if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
{
/* Error */
}

Read a private key from aBIO using the pass phrase ‘‘hello’’:

0.9.9-dev 2005-03-25 5

pem(3) OpenSSL pem(3)

key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
if (key == NULL)

{
/* Error */
}

Read a private key from aBIO using a pass phrase callback:

key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
if (key == NULL)

{
/* Error */
}

Skeleton pass phrase callback:

int pass_cb(char *buf, int size, int rwflag, void *u);
{
int len;
char *tmp;
/* We’d probably do something else if ’rwflag’ is 1 */
printf("Enter pass phrase for \"%s\"\n", u);

/* get pass phrase, length ’len’ into ’tmp’ */
tmp = "hello";
len = strlen(tmp);

if (len <= 0) return 0;
/* if too long, truncate */
if (len > size) len = size;
memcpy(buf, tmp, len);
return len;
}

NOTES
The oldPrivateKey write routines are retained for compatibility. New applications should write private
keys using thePEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines because
they are more secure (they use an iteration count of 2048 whereas the traditional routines use a count of 1)
unless compatibility with older versions of OpenSSL is important.

ThePrivateKey read routines can be used in all applications because they handle all formats transparently.

A f requent cause of problems is attempting to use thePEM routines like this:

X509 *x;
PEM_read_bio_X509(bp, &x, 0, NULL);

this is a bug because an attempt will be made to reuse the data atx which is an uninitialised pointer.

PEM ENCRYPTION FORMAT
This oldPrivateKey routines use a non standard technique for encryption.

The private key (or other data) takes the following form:

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89

...base64 encoded data...
-----END RSA PRIVATE KEY-----

The line beginning DEK-Info contains two comma separated pieces of information: the encryption algo-
rithm name as used byEVP_get_cipherbyname()and an 8 bytesalt encoded as a set of hexadecimal digits.

After this is the base64 encoded encrypted data.

0.9.9-dev 2005-03-25 6

pem(3) OpenSSL pem(3)

The encryption key is determined usingEVP_bytestokey(), using salt and an iteration count of 1. TheIV
used is the value ofsalt and *not* theIV returned byEVP_bytestokey().

BUGS
The PEM read routines in some versions of OpenSSL will not correctly reuse an existing structure. There-
fore the following:

PEM_read_bio_X509(bp, &x, 0, NULL);

wherex already contains a valid certificate, may not work, whereas:

X509_free(x);
x = PEM_read_bio_X509(bp, NULL, 0, NULL);

is guaranteed to work.

RETURN CODES
The read routines return either a pointer to the structure read orNULL if an error occurred.

The write routines return 1 for success or 0 for failure.

0.9.9-dev 2005-03-25 7

rand(3) OpenSSL rand(3)

NAME
rand − pseudo−random number generator

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rand.h>

int RAND_set_rand_engine(ENGINE *engine);

int RAND_bytes(unsigned char *buf, int num);
int RAND_pseudo_bytes(unsigned char *buf, int num);

void RAND_seed(const void *buf, int num);
void RAND_add(const void *buf, int num, int entropy);
int RAND_status(void);

int RAND_load_file(const char *file, long max_bytes);
int RAND_write_file(const char *file);
const char *RAND_file_name(char *file, size_t num);

int RAND_egd(const char *path);

void RAND_set_rand_method(const RAND_METHOD *meth);
const RAND_METHOD *RAND_get_rand_method(void);
RAND_METHOD *RAND_SSLeay(void);

void RAND_cleanup(void);

/* For Win32 only */
void RAND_screen(void);
int RAND_event(UINT, WPARAM, LPARAM);

DESCRIPTION
Since the introduction of theENGINE API, the recommended way of controlling default implementations is
by using theENGINE API functions. The default RAND_METHOD , as set by RAND_set_rand_method()
and returned byRAND_get_rand_method(), is only used if noENGINE has been set as the default ‘‘rand’’
implementation. Hence, these two functions are no longer the recommened way to control defaults.

If an alternative RAND_METHOD implementation is being used (either set directly or as provided by an
ENGINE module), then it is entirely responsible for the generation and management of a cryptographically
securePRNGstream. The mechanisms described below relate solely to the softwarePRNG implementation
built in to OpenSSL and used by default.

These functions implement a cryptographically secure pseudo-random number generator (PRNG). It is used
by other library functions for example to generate random keys, and applications can use it when they need
randomness.

A cryptographicPRNGmust be seeded with unpredictable data such as mouse movements or keys pressed
at random by the user. This is described inRAND_add(3). Its state can be saved in a seed file (see
RAND_load_file(3)) to avoid having to go through the seeding process whenever the application is started.

RAND_bytes(3) describes how to obtain random data from thePRNG.

INTERNALS
TheRAND_SSLeay()method implements aPRNGbased on a cryptographic hash function.

The following description of its design is based on the SSLeay documentation:

First up I will state the things I believe I need for a goodRNG.

1 A good hashing algorithm to mix things up and to convert theRNG ’state’ to random numbers.

2 An initial source of random ’state’.

0.9.9-dev 2003-07-24 1

rand(3) OpenSSL rand(3)

3 The state should be very large. If theRNG is being used to generate 4096 bitRSA keys, 2 2048 bit ran-
dom strings are required (at a minimum).If your RNG state only has 128 bits, you are obviously limit-
ing the search space to 128 bits, not 2048.I’m probably getting a little carried away on this last point
but it does indicate that it may not be a bad idea to keep quite a lot ofRNG state. Itshould be easier to
break a cipher than guess theRNG seed data.

4 Any RNG seed data should influence all subsequent random numbers generated. This implies that any
random seed data entered will have an influence on all subsequent random numbers generated.

5 When using data to seed theRNG state, the data used should not be extractable from theRNG state. I
believe this should be a requirement because one possible source of ’secret’ semi random data would
be a private key or a password. Thisdata must not be disclosed by either subsequent random numbers
or a ’core’ dump left by a program crash.

6 Giv en the same initial ’state’, 2 systems should deviate in theirRNG state (and hence the random num-
bers generated) over time if at all possible.

7 Giv en the random number output stream, it should not be possible to determine theRNG state or the
next random number.

The algorithm is as follows.

There is global state made up of a 1023 byte buffer (the ’state’), a working hash value (’md’), and a counter
(’count’).

Whenever seed data is added, it is inserted into the ’state’ as follows.

The input is chopped up into units of 20 bytes (or less for the last block). Each of these blocks is run
through the hash function as follows: Thedata passed to the hash function is the current ’md’, the same
number of bytes from the ’state’ (the location determined by in incremented looping index) as the current
’block’, the new key data ’block’, and ’count’ (which is incremented after each use). The result of this is
kept in ’md’ and also xored into the ’state’ at the same locations that were used as input into the hash func-
tion. I believe this system addresses points 1 (hash function; currentlySHA−1), 3 (the ’state’), 4 (via the
’md’), 5 (by the use of a hash function and xor).

When bytes are extracted from theRNG, the following process is used.For each group of 10 bytes (or
less), we do the following:

Input into the hash function the local ’md’ (which is initialized from the global ’md’ before any bytes are
generated), the bytes that are to be overwritten by the random bytes, and bytes from the ’state’ (increment-
ing looping index). From this digest output (which is kept in ’md’), the top (up to) 10 bytes are returned to
the caller and the bottom 10 bytes are xored into the ’state’.

Finally, after we have finished ’num’ random bytes for the caller, ’count’ (which is incremented) and the
local and global ’md’ are fed into the hash function and the results are kept in the global ’md’.

I believe the above addressed points 1 (use ofSHA−1), 6 (by hashing into the ’state’ the ’old’ data from the
caller that is about to be overwritten) and 7 (by not using the 10 bytes given to the caller to update the
’state’, but they are used to update ’md’).

So of the points raised, only 2 is not addressed (but seeRAND_add(3)).

SEE ALSO
BN_rand(3), RAND_add(3), RAND_load_file(3), RAND_egd(3), RAND_bytes(3),
RAND_set_rand_method(3), RAND_cleanup(3)

0.9.9-dev 2003-07-24 2

rc4(3) OpenSSL rc4(3)

NAME
RC4_set_key, RC4 − RC4 encryption

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rc4.h>

void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);

void RC4(RC4_KEY *key, unsigned long len, const unsigned char *indata,
unsigned char *outdata);

DESCRIPTION
This library implements the AllegedRC4 cipher, which is described for example inApplied Cryptography.
It is believed to be compatible with RC4[TM], a proprietary cipher ofRSA Security Inc.

RC4 is a stream cipher with variable key length. Typically, 128 bit (16 byte) keys are used for strong
encryption, but shorter insecure key sizes have been widely used due to export restrictions.

RC4consists of a key setup phase and the actual encryption or decryption phase.

RC4_set_key() sets up theRC4_KEY key using thelen bytes long key at data.

RC4() encrypts or decrypts thelen bytes of data atindata using key and places the result atoutdata.
RepeatedRC4() calls with the samekey yield a continuous key stream.

SinceRC4 is a stream cipher (the input is XORed with a pseudo-random key stream to produce the output),
decryption uses the same function calls as encryption.

Applications should use the higher level functionsEVP_EncryptInit(3) etc. instead of calling theRC4 func-
tions directly.

RETURN VALUES
RC4_set_key() andRC4() do not return values.

NOTE
Certain conditions have to be observed to securely use stream ciphers. It is not permissible to perform mul-
tiple encryptions using the same key stream.

SEE ALSO
openssl_blowfish(3), openssl_des(3), rc2 (3)

HISTORY
RC4_set_key() andRC4() are available in all versions of SSLeay and OpenSSL.

0.9.9-dev 2000-07-16 1

ripemd(3) OpenSSL ripemd(3)

NAME
RIPEMD160, RIPEMD160_Init, RIPEMD160_Update, RIPEMD160_Final − RIPEMD−160 hash function

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ripemd.h>

unsigned char *RIPEMD160(const unsigned char *d, unsigned long n,
unsigned char *md);

int RIPEMD160_Init(RIPEMD160_CTX *c);
int RIPEMD160_Update(RIPEMD_CTX *c, const void *data,

unsigned long len);
int RIPEMD160_Final(unsigned char *md, RIPEMD160_CTX *c);

DESCRIPTION
RIPEMD−160is a cryptographic hash function with a 160 bit output.

RIPEMD160() computes theRIPEMD−160message digest of then bytes atd and places it inmd (which
must have space forRIPEMD160_DIGEST_LENGTH== 20 bytes of output). Ifmd is NULL , the digest is
placed in a static array.

The following functions may be used if the message is not completely stored in memory:

RIPEMD160_Init()initializes aRIPEMD160_CTX structure.

RIPEMD160_Update()can be called repeatedly with chunks of the message to be hashed (len bytes at
data).

RIPEMD160_Final() places the message digest inmd, which must have space for
RIPEMD160_DIGEST_LENGTH== 20 bytes of output, and erases theRIPEMD160_CTX.

Applications should use the higher level functionsEVP_DigestInit(3) etc. instead of calling the hash func-
tions directly.

RETURN VALUES
RIPEMD160() returns a pointer to the hash value.

RIPEMD160_Init(), RIPEMD160_Update()andRIPEMD160_Final()return 1 for success, 0 otherwise.

CONFORMING TO
ISO/IEC10118−3 (draft) (??)

SEE ALSO
openssl_sha(3), openssl_hmac(3), EVP_DigestInit(3)

HISTORY
RIPEMD160(), RIPEMD160_Init(), RIPEMD160_Update()and RIPEMD160_Final()are available since
SSLeay 0.9.0.

0.9.9-dev 2007-03-06 1

rsa(3) OpenSSL rsa(3)

NAME
rsa − RSA public key cryptosystem

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/rsa.h>
#include <openssl/engine.h>

RSA * RSA_new(void);
void RSA_free(RSA *rsa);

int RSA_public_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_private_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_private_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa,int padding);

int RSA_public_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa,int padding);

int RSA_sign(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen, RSA *rsa);

int RSA_verify(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

int RSA_size(const RSA *rsa);

RSA *RSA_generate_key(int num, unsigned long e,
void (*callback)(int,int,void *), void *cb_arg);

int RSA_check_key(RSA *rsa);

int RSA_blinding_on(RSA *rsa, BN_CTX *ctx);
void RSA_blinding_off(RSA *rsa);

void RSA_set_default_method(const RSA_METHOD *meth);
const RSA_METHOD *RSA_get_default_method(void);
int RSA_set_method(RSA *rsa, const RSA_METHOD *meth);
const RSA_METHOD *RSA_get_method(const RSA *rsa);
RSA_METHOD *RSA_PKCS1_SSLeay(void);
RSA_METHOD *RSA_null_method(void);
int RSA_flags(const RSA *rsa);
RSA *RSA_new_method(ENGINE *engine);

int RSA_print(BIO *bp, RSA *x, int offset);
int RSA_print_fp(FILE *fp, RSA *x, int offset);

int RSA_get_ex_new_index(long argl, char *argp, int (*new_func)(),
int (*dup_func)(), void (*free_func)());

int RSA_set_ex_data(RSA *r,int idx,char *arg);
char *RSA_get_ex_data(RSA *r, int idx);

int RSA_sign_ASN1_OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigret, unsigned int *siglen,
RSA *rsa);

int RSA_verify_ASN1_OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigbuf, unsigned int siglen,
RSA *rsa);

0.9.9-dev 2003-07-24 1

rsa(3) OpenSSL rsa(3)

DESCRIPTION
These functions implementRSA public key encryption and signatures as defined inPKCS #1 v2.0 [RFC
2437].

The RSA structure consists of several BIGNUM components. It can contain public as well as private RSA
keys:

struct
{
BIGNUM *n; // public modulus
BIGNUM *e; // public exponent
BIGNUM *d; // private exponent
BIGNUM *p; // secret prime factor
BIGNUM *q; // secret prime factor
BIGNUM *dmp1; // d mod (p-1)
BIGNUM *dmq1; // d mod (q-1)
BIGNUM *iqmp; // qˆ-1 mod p
// ...
};

RSA

In public keys, the private exponent and the related secret values areNULL .

p, q, dmp1, dmq1 and iqmp may beNULL in private keys, but theRSA operations are much faster when
these values are available.

Note thatRSA keys may use non-standardRSA_METHOD implementations, either directly or by the use of
ENGINE modules. In some cases (eg. anENGINE providing support for hardware-embedded keys), these
BIGNUM values will not be used by the implementation or may be used for alternative data storage. For this
reason, applications should generally avoid usingRSA structure elements directly and instead useAPI func-
tions to query or modify keys.

CONFORMING TO
SSL, PKCS#1 v2.0

PATENTS
RSA was covered by aUS patent which expired in September 2000.

SEE ALSO
openssl_rsa(1), openssl_bn(3), openssl_dsa(3), openssl_dh(3), openssl_rand(3), engine(3), RSA_new(3),
RSA_public_encrypt(3), RSA_sign(3), RSA_size(3), RSA_generate_key(3), RSA_check_key(3),
RSA_blinding_on(3), RSA_set_method(3), RSA_print(3), RSA_get_ex_new_index(3), RSA_pri-
vate_encrypt(3), RSA_sign_ASN1_OCTET_STRING(3), RSA_padding_add_PKCS1_type_1(3)

0.9.9-dev 2003-07-24 2

sha(3) OpenSSL sha(3)

NAME
SHA1, SHA1_Init, SHA1_Update, SHA1_Final − Secure Hash Algorithm

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/sha.h>

unsigned char *SHA1(const unsigned char *d, unsigned long n,
unsigned char *md);

int SHA1_Init(SHA_CTX *c);
int SHA1_Update(SHA_CTX *c, const void *data,

unsigned long len);
int SHA1_Final(unsigned char *md, SHA_CTX *c);

DESCRIPTION
SHA−1 (Secure Hash Algorithm) is a cryptographic hash function with a 160 bit output.

SHA1() computes theSHA−1 message digest of then bytes atd and places it inmd (which must have space
for SHA_DIGEST_LENGTH== 20 bytes of output). Ifmd is NULL , the digest is placed in a static array.

The following functions may be used if the message is not completely stored in memory:

SHA1_Init()initializes aSHA_CTX structure.

SHA1_Update()can be called repeatedly with chunks of the message to be hashed (len bytes atdata).

SHA1_Final()places the message digest inmd, which must have space forSHA_DIGEST_LENGTH== 20
bytes of output, and erases theSHA_CTX.

Applications should use the higher level functionsEVP_DigestInit(3) etc. instead of calling the hash func-
tions directly.

The predecessor ofSHA−1, SHA, is also implemented, but it should be used only when backward compati-
bility is required.

RETURN VALUES
SHA1() returns a pointer to the hash value.

SHA1_Init(), SHA1_Update()andSHA1_Final()return 1 for success, 0 otherwise.

CONFORMING TO
SHA: USFederal Information Processing StandardFIPS PUB180 (Secure Hash Standard),SHA−1: USFed-
eral Information Processing StandardFIPS PUB180−1 (Secure Hash Standard),ANSI X9.30

SEE ALSO
openssl_ripemd(3), openssl_hmac(3), EVP_DigestInit(3)

HISTORY
SHA1(), SHA1_Init(), SHA1_Update()and SHA1_Final() are available in all versions of SSLeay and
OpenSSL.

0.9.9-dev 2007-03-06 1

threads(3) OpenSSL threads(3)

NAME
CRYPTO_set_locking_callback, CRYPTO_set_id_callback, CRYPTO_set_idptr_callback,
CRYPTO_num_locks, CRYPTO_set_dynlock_create_callback, CRYPTO_set_dynlock_lock_callback,
CRYPTO_set_dynlock_destroy_callback, CRYPTO_get_new_dynlockid, CRYPTO_destroy_dynlockid,
CRYPTO_lock − OpenSSL thread support

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/crypto.h>

void CRYPTO_set_locking_callback(void (*locking_function)(int mode,
int n, const char *file, int line));

void CRYPTO_set_id_callback(unsigned long (*id_function)(void));

void CRYPTO_set_idptr_callback(void *(*idptr_function)(void));

int CRYPTO_num_locks(void);

/* struct CRYPTO_dynlock_value needs to be defined by the user */
struct CRYPTO_dynlock_value;

void CRYPTO_set_dynlock_create_callback(struct CRYPTO_dynlock_value *
(*dyn_create_function)(char *file, int line));

void CRYPTO_set_dynlock_lock_callback(void (*dyn_lock_function)
(int mode, struct CRYPTO_dynlock_value *l,
const char *file, int line));

void CRYPTO_set_dynlock_destroy_callback(void (*dyn_destroy_function)
(struct CRYPTO_dynlock_value *l, const char *file, int line));

int CRYPTO_get_new_dynlockid(void);

void CRYPTO_destroy_dynlockid(int i);

void CRYPTO_lock(int mode, int n, const char *file, int line);

#define CRYPTO_w_lock(type) \
CRYPTO_lock(CRYPTO_LOCKCRYPTO_WRITE,type,__FILE__,__LINE__)

#define CRYPTO_w_unlock(type) \
CRYPTO_lock(CRYPTO_UNLOCKCRYPTO_WRITE,type,__FILE__,__LINE__)

#define CRYPTO_r_lock(type) \
CRYPTO_lock(CRYPTO_LOCKCRYPTO_READ,type,__FILE__,__LINE__)

#define CRYPTO_r_unlock(type) \
CRYPTO_lock(CRYPTO_UNLOCKCRYPTO_READ,type,__FILE__,__LINE__)

#define CRYPTO_add(addr,amount,type) \
CRYPTO_add_lock(addr,amount,type,__FILE__,__LINE__)

DESCRIPTION
OpenSSL can safely be used in multi-threaded applications provided that at least two callback functions are
set.

locking_function(int mode, int n, const char *file, int line) is needed to perform locking on shared data
structures. (Notethat OpenSSL uses a number of global data structures that will be implicitly shared when-
ev er multiple threads use OpenSSL.) Multi-threaded applications will crash at random if it is not set.

locking_function()must be able to handle up toCRYPTO_num_locks()different mutex locks. It sets the
n−th lock if mode& CRYPTO_LOCK , and releases it otherwise.

file andline are the file number of the function setting the lock. They can be useful for debugging.

id_function(void) is a function that returns a numerical threadID, for examplepthread_self()if it returns an
integer (seeNOTESbelow). By OpenSSL’s defaults, this is not needed on Windows nor on platforms where
getpid() returns a differentID for each thread (seeNOTESbelow).

0.9.9-dev 2008-05-09 1

threads(3) OpenSSL threads(3)

idptr_function(void) is a function that similarly returns a threadID, but of type void *. This is not needed
on platforms where &errno is different for each thread.

Additionally, OpenSSL supports dynamic locks, and sometimes, some parts of OpenSSL need it for better
performance. To enable this, the following is required:

* Three additional callback function, dyn_create_function, dyn_lock_function and dyn_destroy_function.
* A structure defined with the data that each lock needs to handle.

struct CRYPTO_dynlock_value has to be defined to contain whatever structure is needed to handle locks.

dyn_create_function(const char *file, int line) is needed to create a lock. Multi-threaded applications might
crash at random if it is not set.

dyn_lock_function(int mode, CRYPTO_dynlock *l, const char *file, int line) is needed to perform locking
off dynamic lock numbered n. Multi-threaded applications might crash at random if it is not set.

dyn_destroy_function(CRYPTO_dynlock *l, const char *file, int line) is needed to destroy the lock l. Multi-
threaded applications might crash at random if it is not set.

CRYPTO_get_new_dynlockid()is used to create locks. It will call dyn_create_function for the actual cre-
ation.

CRYPTO_destroy_dynlockid()is used to destroy locks. It will call dyn_destroy_function for the actual
destruction.

CRYPTO_lock()is used to lock and unlock the locks. mode is a bitfield describing what should be done
with the lock. n is the number of the lock as returned fromCRYPTO_get_new_dynlockid(). mode can be
combined from the following values. Thesevalues are pairwise exclusive, with undefined behaviour if mis-
used (for example,CRYPTO_READandCRYPTO_WRITEshould not be used together):

CRYPTO_LOCK 0x01
CRYPTO_UNLOCK 0x02
CRYPTO_READ 0x04
CRYPTO_WRITE 0x08

RETURN VALUES
CRYPTO_num_locks()returns the required number of locks.

CRYPTO_get_new_dynlockid()returns the index to the newly created lock.

The other functions return no values.

NOTES
You can find out if OpenSSL was configured with thread support:

#define OPENSSL_THREAD_DEFINES
#include <openssl/opensslconf.h>
#if defined(OPENSSL_THREADS)

// thread support enabled
#else

// no thread support
#endif

Also, dynamic locks are currently not used internally by OpenSSL, but may do so in the future.

Defining id_function(void) has it’s own issues. Generally speaking,pthread_self()should be used, even on
platforms wheregetpid() gives different answers in each thread, since that may depend on the machine the
program is run on, not the machine where the program is being compiled.For instance, Red Hat 8 Linux
and earlier used LinuxThreads, whosegetpid() returns a different value for each thread. Red Hat 9 Linux
and later useNPTL, which is Posix−conformant, and has agetpid() that returns the same value for all
threads in a process.A program compiled on Red Hat 8 and run on Red Hat 9 will therefore seegetpid()
returning the same value for all threads.

There is still the issue of platforms wherepthread_self()returns something other than an integer. It is for

0.9.9-dev 2008-05-09 2

threads(3) OpenSSL threads(3)

cases like this that CRYPTO_set_idptr_callback()comes in handy. (E.g., call malloc(1) once in each
thread, and have idptr_function() return a pointer to this object.) Note that if neitherid_function() or
idptr_function()are provided, OpenSSL will use (&errno) as a fallback (as this usually returns a unique
address for each thread).

EXAMPLES
crypto/threads/mttest.cshows examples of the callback functions on Solaris, Irix and Win32.

HISTORY
CRYPTO_set_locking_callback()and CRYPTO_set_id_callback()are available in all versions of SSLeay
and OpenSSL.CRYPTO_num_locks()was added in OpenSSL 0.9.4. All functions dealing with dynamic
locks were added in OpenSSL 0.9.5b−dev.

CRYPTO_set_idptr_callback()was added in OpenSSL 0.9.9.

SEE ALSO
crypto(3)

0.9.9-dev 2008-05-09 3

ui(3) OpenSSL ui(3)

NAME
UI_new, UI_new_method, UI_free, UI_add_input_string, UI_dup_input_string, UI_add_verify_string,
UI_dup_verify_string, UI_add_input_boolean, UI_dup_input_boolean, UI_add_info_string,
UI_dup_info_string, UI_add_error_string, UI_dup_error_string, UI_construct_prompt, UI_add_user_data,
UI_get0_user_data, UI_get0_result, UI_process, UI_ctrl, UI_set_default_method, UI_get_default_method,
UI_get_method, UI_set_method, UI_OpenSSL, ERR_load_UI_strings − New User Interface

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/ui.h>

typedef struct ui_st UI;
typedef struct ui_method_st UI_METHOD;

UI *UI_new(void);
UI *UI_new_method(const UI_METHOD *method);
void UI_free(UI *ui);

int UI_add_input_string(UI *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize);

int UI_dup_input_string(UI *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize);

int UI_add_verify_string(UI *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize, const char *test_buf);

int UI_dup_verify_string(UI *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize, const char *test_buf);

int UI_add_input_boolean(UI *ui, const char *prompt, const char *action_desc,
const char *ok_chars, const char *cancel_chars,
int flags, char *result_buf);

int UI_dup_input_boolean(UI *ui, const char *prompt, const char *action_desc,
const char *ok_chars, const char *cancel_chars,
int flags, char *result_buf);

int UI_add_info_string(UI *ui, const char *text);
int UI_dup_info_string(UI *ui, const char *text);
int UI_add_error_string(UI *ui, const char *text);
int UI_dup_error_string(UI *ui, const char *text);

/* These are the possible flags. They can be or’ed together. */
#define UI_INPUT_FLAG_ECHO 0x01
#define UI_INPUT_FLAG_DEFAULT_PWD 0x02

char *UI_construct_prompt(UI *ui_method,
const char *object_desc, const char *object_name);

void *UI_add_user_data(UI *ui, void *user_data);
void *UI_get0_user_data(UI *ui);

const char *UI_get0_result(UI *ui, int i);

int UI_process(UI *ui);

int UI_ctrl(UI *ui, int cmd, long i, void *p, void (*f)());
#define UI_CTRL_PRINT_ERRORS 1
#define UI_CTRL_IS_REDOABLE 2

void UI_set_default_method(const UI_METHOD *meth);
const UI_METHOD *UI_get_default_method(void);
const UI_METHOD *UI_get_method(UI *ui);
const UI_METHOD *UI_set_method(UI *ui, const UI_METHOD *meth);

0.9.9-dev 2004-03-19 1

ui(3) OpenSSL ui(3)

UI_METHOD *UI_OpenSSL(void);

DESCRIPTION
UI stands for User Interface, and is general purpose set of routines to prompt the user for text-based infor-
mation. Throughuser-written methods (seeui_create(3)), prompting can be done in any way imaginable,
be it plain text prompting, through dialog boxes or from a cell phone.

All the functions work through a context of the typeUI. This context contains all the information needed to
prompt correctly as well as a reference to aUI_METHOD, which is an ordered vector of functions that carry
out the actual prompting.

The first thing to do is to create aUI with UI_new()or UI_new_method(), then add information to it with
the UI_add or UI_dup functions. Also, user-defined random data can be passed down to the underlying
method through calls to UI_add_user_data.The default UI method doesn’t care about these data, but other
methods might.Finally, useUI_process()to actually perform the prompting andUI_get0_result()to find
the result to the prompt.

A UI can contain more than one prompt, which are performed in the given sequence. Eachprompt gets an
index number which is returned by the UI_add and UI_dup functions, and has to be used to get the corre-
sponding result withUI_get0_result().

The functions are as follows:

UI_new()creates a new UI using the default UI method. Whendone with thisUI, it should be freed using
UI_free().

UI_new_method()creates a new UI using the given UI method. Whendone with thisUI, it should be freed
usingUI_free().

UI_OpenSSL()returns the built-in UI method (note: not the default one, since the default can be changed.
See further on). This method is the most machine/OS dependent part of OpenSSL and normally generates
the most problems when porting.

UI_free() removes a UI from memory, along with all other pieces of memory that’s connected to it, like
duplicated input strings, results and others.

UI_add_input_string()and UI_add_verify_string()add a prompt to theUI, as well as flags and a result
buffer and the desired minimum and maximum sizes of the result.The given information is used to prompt
for information, for example a password, and to verify a password (i.e. having the user enter it twice and
check that the same string was entered twice).UI_add_verify_string()takes and extra argument that should
be a pointer to the result buffer of the input string that it’s supposed to verify, or verification will fail.

UI_add_input_boolean()adds a prompt to theUI that’s supposed to be answered in a boolean way, with a
single character for yes and a different character for no.A set of characters that can be used to cancel the
prompt is given as well. The prompt itself is really divided in two, one part being the descriptive text
(given through theprompt argument) and one describing the possible answers (given through the
action_descargument).

UI_add_info_string()andUI_add_error_string()add strings that are shown at the same time as the prompt
for extra information or to show an error string. The difference between the two is only conceptual.With
the builtin method, there’s no technical difference between them. Other methods may make a difference
between them, however.

The flags currently supported areUI_INPUT_FLAG_ECHO, which is relevant for UI_add_input_string()and
will have the users response be echoed (when prompting for a password, this flag should obviously not be
used, andUI_INPUT_FLAG_DEFAULT_PWD, which means that a default password of some sort will be used
(completely depending on the application and theUI method).

UI_dup_input_string(), UI_dup_verify_string(), UI_dup_input_boolean(), UI_dup_info_string() and
UI_dup_error_string()are basically the same as their UI_add counterparts, except that they make their own
copies of all strings.

UI_construct_prompt()is a helper function that can be used to create a prompt from two pieces of

0.9.9-dev 2004-03-19 2

ui(3) OpenSSL ui(3)

information: an description and a name. The default constructor (if there is none provided by the method
used) creates a string "Enterdescriptionfor name:‘‘. With the description ’’pass phrase‘‘ and the file name
’’ foo.key‘‘ , that becomes ’’Enter pass phrase for foo.key:". Othermethods may create whatever string and
may include encodings that will be processed by the other method functions.

UI_add_user_data()adds a piece of memory for the method to use at any time. Thebuiltin UI method
doesn’t care about this info.Note that several calls to this function doesn’t add data, it replaces the previ-
ous blob with the one given as argument.

UI_get0_user_data()retrieves the data that has last been given to theUI with UI_add_user_data().

UI_get0_result()returns a pointer to the result buffer associated with the information indexed by i.

UI_process()goes through the information given so far, does all the printing and prompting and returns.

UI_ctrl() adds extra control for the application author. For now, it understands two commands:
UI_CTRL_PRINT_ERRORS, which makesUI_process()print the OpenSSL error stack as part of processing
theUI, and UI_CTRL_IS_REDOABLE, which returns a flag saying if the usedUI can be used again or not.

UI_set_default_method()changes the defaultUI method to the one given.

UI_get_default_method()returns a pointer to the current defaultUI method.

UI_get_method()returns theUI method associated with a given UI.

UI_set_method()changes theUI method associated with a given UI.

SEE ALSO
ui_create(3), ui_compat(3)

HISTORY
TheUI section was first introduced in OpenSSL 0.9.7.

AUTHOR
Richard Levitte (richard@levitte.org) for the OpenSSL project (http://www.openssl.org).

0.9.9-dev 2004-03-19 3

ui_compat(3) OpenSSL ui_compat(3)

NAME
des_read_password, des_read_2passwords, des_read_pw_string, des_read_pw − Compatibility user inter-
face functions

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/des_old.h>

int des_read_password(DES_cblock *key,const char *prompt,int verify);
int des_read_2passwords(DES_cblock *key1,DES_cblock *key2,

const char *prompt,int verify);

int des_read_pw_string(char *buf,int length,const char *prompt,int verify);
int des_read_pw(char *buf,char *buff,int size,const char *prompt,int verify);

DESCRIPTION
TheDES library contained a few routines to prompt for passwords. Thesearen’t necessarely dependent on
DES, and have therefore become part of theUI compatibility library.

des_read_pw()writes the string specified byprompt to standard output turns echo off and reads an input
string from the terminal. The string is returned inbuf, which must have spac for at leastsizebytes. Ifverify
is set, the user is asked for the password twice and unless the two copies match, an error is returned.The
second password is stored inbuff, which must therefore also be at leastsizebytes. Areturn code of −1
indicates a system error, 1 failure due to use interaction, and 0 is success. All other functions described
here usedes_read_pw()to do the work.

des_read_pw_string()is a variant ofdes_read_pw()that provides a buffer for you ifverify is set.

des_read_password()calls des_read_pw()and converts the password to a DES key by calling
DES_string_to_key(); des_read_2password()operates in the same way asdes_read_password()except that
it generates two keys by using theDES_string_to_2key() function.

NOTES
des_read_pw_string()is available in theMIT Kerberos library as well, and is also available under the name
EVP_read_pw_string().

SEE ALSO
ui (3), ui_create(3)

AUTHOR
Richard Levitte (richard@levitte.org) for the OpenSSL project (http://www.openssl.org).

0.9.9-dev 2008-05-09 1

x509(3) OpenSSL x509(3)

NAME
x509 − X.509 certificate handling

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
#include <openssl/x509.h>

DESCRIPTION
A X.509 certificate is a structured grouping of information about an individual, a device, or anything one
can imagine.A X.509 CRL (certificate revocation list) is a tool to help determine if a certificate is still
valid. Theexact definition of those can be found in the X.509 document fromITU−T, or in RFC3280from
PKIX. In OpenSSL, the type X509 is used to express such a certificate, and the type X509_CRL is used to
express aCRL.

A related structure is a certificate request, defined in PKCS#10 fromRSA Security, Inc, also reflected in
RFC2896. In OpenSSL, the type X509_REQ is used to express such a certificate request.

To handle some complex parts of a certificate, there are the types X509_NAME (to express a certificate
name), X509_ATTRIBUTE (to express a certificate attributes), X509_EXTENSION (to express a certifi-
cate extension) and a few more.

Finally, there’s the supertype X509_INFO, which can contain aCRL, a certificate and a corresponding pri-
vate key.

X509_..., d2i_X509_... andi2d_X509_... handle X.509 certificates, with some exceptions, shown below.

X509_CRL_..., d2i_X509_CRL_... andi2d_X509_CRL_... handle X.509 CRLs.

X509_REQ_..., d2i_X509_REQ_... andi2d_X509_REQ_... handle PKCS#10 certificate requests.

X509_NAME_... handle certificate names.

X509_ATTRIBUTE_ ... handle certificate attributes.

X509_EXTENSION_... handle certificate extensions.

SEE ALSO
X509_NAME_ENTRY_get_object(3), X509_NAME_add_entry_by_txt(3),
X509_NAME_add_entry_by_NID(3), X509_NAME_print_ex(3), X509_NAME_new(3), d2i_X509(3),
d2i_X509_ALGOR(3), d2i_X509_CRL(3), d2i_X509_NAME(3), d2i_X509_REQ(3), d2i_X509_SIG(3),
crypto(3), x509v3(3)

0.9.9-dev 2005-11-24 1

OSSAUDIO (3) NetBSD Library Functions Manual OSSAUDIO (3)

NAME
ossaudio — OSS audio emulation

LIBRARY
OSS Audio Emulation Library (libossaudio, −lossaudio)

SYNOPSIS
#include <soundcard.h>

DESCRIPTION
Theossaudio library provides an emulation of the OSS (Linux) audio interface.

Use the native interface for new programs and the emulation library only for porting programs.

SEE ALSO
audio (4), midi (4)

HISTORY
Theossaudio library first appeared inNetBSD 1.3.

BUGS
The emulation uses a #define forioctl () so some obscure programs can fail to compile.

The emulation is incomplete.

The emulation only covers ioctl (), there are other differences as well. E.g., on a write that would block in
non-blocking mode Linux returnsEINTR whereasNetBSD 1.3 returnsEAGAIN.

NetBSD 3.0 October 16, 1997 1

PAM (3) NetBSDLibrary Functions Manual PAM (3)

NAME
pam_acct_mgmt , pam_authenticate , pam_chauthtok , pam_close_session , pam_end,
pam_get_data , pam_get_item , pam_get_user , pam_getenv , pam_getenvlist ,
pam_open_session , pam_putenv , pam_set_data , pam_set_item , pam_setcred ,
pam_start , pam_strerror — Pluggable Authentication Modules Library

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <security/pam_appl.h>

int
pam_acct_mgmt (pam_handle_t ∗pamh, int flags);

int
pam_authenticate (pam_handle_t ∗pamh, int flags);

int
pam_chauthtok (pam_handle_t ∗pamh, int flags);

int
pam_close_session (pam_handle_t ∗pamh, int flags);

int
pam_end(pam_handle_t ∗pamh, int status);

int
pam_get_data (const pam_handle_t ∗pamh, const char ∗module_data_name ,

const void ∗∗data);

int
pam_get_item (const pam_handle_t ∗pamh, int item_type , const void ∗∗item);

int
pam_get_user (pam_handle_t ∗pamh, const char ∗∗user , const char ∗prompt);

const char ∗
pam_getenv (pam_handle_t ∗pamh, const char ∗name);

char ∗∗
pam_getenvlist (pam_handle_t ∗pamh);

int
pam_open_session (pam_handle_t ∗pamh, int flags);

int
pam_putenv (pam_handle_t ∗pamh, const char ∗namevalue);

int
pam_set_data (pam_handle_t ∗pamh, const char ∗module_data_name , void ∗data ,

void (∗cleanup)(pam_handle_t ∗pamh, void ∗data, int pam_end_status));

int
pam_set_item (pam_handle_t ∗pamh, int item_type , const void ∗item);

int
pam_setcred (pam_handle_t ∗pamh, int flags);

NetBSD 3.0 December 21, 2007 1

PAM (3) NetBSDLibrary Functions Manual PAM (3)

int
pam_start (const char ∗service , const char ∗user ,

const struct pam_conv ∗pam_conv , pam_handle_t ∗∗pamh);

const char ∗
pam_strerror (const pam_handle_t ∗pamh, int error_number);

DESCRIPTION
The Pluggable Authentication Modules (PAM) library abstracts a number of common authentication-related
operations and provides a framework for dynamically loaded modules that implement these operations in
various ways.

Terminology
In PAM parlance, the application that uses PAM to authenticate a user is the server, and is identified for con-
figuration purposes by a service name, which is often (but not necessarily) the program name.

The user requesting authentication is called the applicant, while the user (usually, root) charged with verify-
ing his identity and granting him the requested credentials is called the arbitrator.

The sequence of operations the server goes through to authenticate a user and perform whatever task he
requested is a PAM transaction; the context within which the server performs the requested task is called a
session.

The functionality embodied by PAM is divided into six primitives grouped into four facilities: authentication,
account management, session management and password management.

Conversation
The PAM library expects the application to provide a conversation callback which it can use to communicate
with the user. Some modules may use specialized conversation functions to communicate with special hard-
ware such as cryptographic dongles or biometric devices. Seepam_conv (3) for details.

Initialization and Cleanup
The pam_start () function initializes the PAM library and returns a handle which must be provided in all
subsequent function calls.The transaction state is contained entirely within the structure identified by this
handle, so it is possible to conduct multiple transactions in parallel.

The pam_end() function releases all resources associated with the specified context, and can be called at
any time to terminate a PAM transaction.

Storage
The pam_set_item () and pam_get_item () functions set and retrieve a number of predefined items,
including the service name, the names of the requesting and target users, the conversation function, and
prompts.

The pam_set_data () andpam_get_data () functions manage named chunks of free-form data, gener-
ally used by modules to store state from one invocation to another.

Authentication
There are two authentication primitives: pam_authenticate () and pam_setcred (). The former
authenticates the user, while the latter manages his credentials.

Account Management
The pam_acct_mgmt () function enforces policies such as password expiry, account expiry, time-of-day
restrictions, and so forth.

NetBSD 3.0 December 21, 2007 2

PAM (3) NetBSDLibrary Functions Manual PAM (3)

Session Management
Thepam_open_session () andpam_close_session () functions handle session setup and teardown.

Password Management
The pam_chauthtok () function allows the server to change the user’s password, either at the user’s
request or because the password has expired.

Miscellaneous
The pam_putenv (), pam_getenv () andpam_getenvlist () functions manage a private environment
list in which modules can set environment variables they want the server to export during the session.

Thepam_strerror () function returns a pointer to a string describing the specified PAM error code.

RETURN VALUES
The following return codes are defined by <security/pam_constants.h >:

[PAM_ABORT] General failure.

[PAM_ACCT_EXPIRED]
User account has expired.

[PAM_AUTHINFO_UNAVAIL]
Authentication information is unavailable.

[PAM_AUTHTOK_DISABLE_AGING]
Authentication token aging disabled.

[PAM_AUTHTOK_ERR]
Authentication token failure.

[PAM_AUTHTOK_EXPIRED]
Password has expired.

[PAM_AUTHTOK_LOCK_BUSY]
Authentication token lock busy.

[PAM_AUTHTOK_RECOVERY_ERR]
Failed to recover old authentication token.

[PAM_AUTH_ERR] Authentication error.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_CRED_ERR] Failed to set user credentials.

[PAM_CRED_EXPIRED]
User credentials have expired.

[PAM_CRED_INSUFFICIENT]
Insufficient credentials.

[PAM_CRED_UNAVAIL]
Failed to retrieve user credentials.

[PAM_DOMAIN_UNKNOWN]
Unknown authentication domain.

NetBSD 3.0 December 21, 2007 3

PAM (3) NetBSDLibrary Functions Manual PAM (3)

[PAM_IGNORE] Ignore this module.

[PAM_MAXTRIES] Maximum number of tries exceeded.

[PAM_MODULE_UNKNOWN]
Unknown module type.

[PAM_NEW_AUTHTOK_REQD]
New authentication token required.

[PAM_NO_MODULE_DATA]
Module data not found.

[PAM_OPEN_ERR] Failed to load module.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SESSION_ERR]
Session failure.

[PAM_SUCCESS] Success.

[PAM_SYMBOL_ERR]
Invalid symbol.

[PAM_SYSTEM_ERR]
System error.

[PAM_TRY_AGAIN] Try again.

[PAM_USER_UNKNOWN]
Unknown user.

SEE ALSO
openpam(3), pam_acct_mgmt (3), pam_authenticate (3), pam_chauthtok (3),
pam_close_session (3), pam_conv (3), pam_end(3), pam_get_data (3), pam_getenv (3),
pam_getenvlist (3), pam_get_item (3), pam_get_user (3), pam_open_session (3),
pam_putenv (3), pam_setcred (3), pam_set_data (3), pam_set_item (3), pam_start (3),
pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The OpenPAM library and this manual page were developed for theFreeBSDProject by ThinkSec AS and
Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 4

PAM_ACCT_MGMT (3) NetBSD Library Functions Manual PAM_ACCT_MGMT (3)

NAME
pam_acct_mgmt — perform PAM account validation procedures

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_acct_mgmt (pam_handle_t ∗pamh, int flags);

DESCRIPTION
The pam_acct_mgmt function verifies and enforces account restrictions after the user has been authenti-
cated.

Theflags argument is the binary or of zero or more of the following values:

PAM_SILENT Do not emit any messages.

PAM_DISALLOW_NULL_AUTHTOK
Fail if the user’s authentication token is null.

If any other bits are set,pam_acct_mgmt will return PAM_SYMBOL_ERR.

RETURN VALUES
Thepam_acct_mgmt function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_ACCT_EXPIRED]
User account has expired.

[PAM_AUTH_ERR] Authentication error.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_NEW_AUTHTOK_REQD]
New authentication token required.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_USER_UNKNOWN]
Unknown user.

SEE ALSO
pam(3), pam_strerror (3)

NetBSD 3.0 December 21, 2007 1

PAM_ACCT_MGMT (3) NetBSD Library Functions Manual PAM_ACCT_MGMT (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
Thepam_acct_mgmt function and this manual page were developed for theFreeBSDProject by ThinkSec
AS and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 2

PAM_AUTHENTICATE (3) NetBSD Library Functions Manual PAM_AUTHENTICATE (3)

NAME
pam_authenticate — perform authentication within the PAM framework

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_authenticate (pam_handle_t ∗pamh, int flags);

DESCRIPTION
Thepam_authenticate function attempts to authenticate the user associated with the pam context speci-
fied by thepamh argument.

The application is free to callpam_authenticate as many times as it wishes, but some modules may
maintain an internal retry counter and returnPAM_MAXTRIESwhen it exceeds some preset or hardcoded
limit.

Theflags argument is the binary or of zero or more of the following values:

PAM_SILENT Do not emit any messages.

PAM_DISALLOW_NULL_AUTHTOK
Fail if the user’s authentication token is null.

If any other bits are set,pam_authenticate will return PAM_SYMBOL_ERR.

RETURN VALUES
Thepam_authenticate function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_AUTHINFO_UNAVAIL]
Authentication information is unavailable.

[PAM_AUTH_ERR] Authentication error.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_CRED_INSUFFICIENT]
Insufficient credentials.

[PAM_MAXTRIES] Maximum number of tries exceeded.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYMBOL_ERR]
Invalid symbol.

NetBSD 3.0 December 21, 2007 1

PAM_AUTHENTICATE (3) NetBSD Library Functions Manual PAM_AUTHENTICATE (3)

[PAM_SYSTEM_ERR]
System error.

[PAM_USER_UNKNOWN]
Unknown user.

SEE ALSO
pam(3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_authenticate function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 2

PAM_CHAUTHTOK (3) NetBSD Library Functions Manual PAM_CHAUTHTOK (3)

NAME
pam_chauthtok — perform password related functions within the PAM framework

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_chauthtok (pam_handle_t ∗pamh, int flags);

DESCRIPTION
Thepam_chauthtok function attempts to change the authentication token for the user associated with the
pam context specified by thepamh argument.

Theflags argument is the binary or of zero or more of the following values:

PAM_SILENT Do not emit any messages.

PAM_CHANGE_EXPIRED_AUTHTOK
Change only those authentication tokens that have expired.

If any other bits are set,pam_chauthtok will return PAM_SYMBOL_ERR.

RETURN VALUES
Thepam_chauthtok function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_AUTHTOK_DISABLE_AGING]
Authentication token aging disabled.

[PAM_AUTHTOK_ERR]
Authentication token failure.

[PAM_AUTHTOK_LOCK_BUSY]
Authentication token lock busy.

[PAM_AUTHTOK_RECOVERY_ERR]
Failed to recover old authentication token.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYMBOL_ERR]
Invalid symbol.

[PAM_SYSTEM_ERR]
System error.

NetBSD 3.0 December 21, 2007 1

PAM_CHAUTHTOK (3) NetBSD Library Functions Manual PAM_CHAUTHTOK (3)

[PAM_TRY_AGAIN] Try again.

SEE ALSO
pam(3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
Thepam_chauthtok function and this manual page were developed for theFreeBSDProject by ThinkSec
AS and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 2

PAM_CLOSE_SESSION (3) NetBSD Library Functions Manual PAM_CLOSE_SESSION (3)

NAME
pam_close_session — close an existing user session

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_close_session (pam_handle_t ∗pamh, int flags);

DESCRIPTION
The pam_close_session function tears down the user session previously set up by
pam_open_session (3).

Theflags argument is the binary or of zero or more of the following values:

PAM_SILENT Do not emit any messages.

If any other bits are set,pam_close_session will return PAM_SYMBOL_ERR.

RETURN VALUES
Thepam_close_session function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SESSION_ERR]
Session failure.

[PAM_SYMBOL_ERR]
Invalid symbol.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_open_session (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_close_session function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

PAM_CONV (3) NetBSD Library Functions Manual PAM_CONV (3)

NAME
pam_conv — PAM conversation system

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <security/pam_appl.h>

struct pam_message {
int msg_style;
char ∗msg;

};

struct pam_response {
char ∗resp;
int resp_retcode;

};

struct pam_conv {
int (∗conv)(int, const struct pam_message ∗∗,

struct pam_response ∗∗, v oid ∗);
void ∗appdata_ptr;

};

DESCRIPTION
The PAM library uses an application-defined callback to communicate with the user. This callback is speci-
fied by thestruct pam_conv passed topam_start () at the start of the transaction. It is also possible
to set or change the conversation function at any point during a PAM transaction by changing the value of the
PAM_CONVitem.

The conversation function’s first argument specifies the number of messages (up toPAM_NUM_MSG) to
process. Thesecond argument is a pointer to an array of pointers topam_message structures containing
the actual messages.

Each message can have one of four types, specified by themsg_stylemember ofstruct pam_message :

PAM_PROMPT_ECHO_OFF
Display a prompt and accept the user’s response without echoing it to the terminal.
This is commonly used for passwords.

PAM_PROMPT_ECHO_ON
Display a prompt and accept the user’s response, echoing it to the terminal.This is
commonly used for login names and one-time passphrases.

PAM_ERROR_MSG Display an error message.

PAM_TEXT_INFO Display an informational message.

In each case, the prompt or message to display is pointed to by themsg member of struct
pam_message. It can be up toPAM_MAX_MSG_SIZEcharacters long, including the terminating NUL.

On success, the conversation function should allocate and fill a contiguous array ofstruct
pam_response , one for each message that was passed in.A pointer to the user’s response to each mes-
sage (orNULL in the case of informational or error messages) should be stored in theresp member of the
correspondingstruct pam_response . Each response can be up toPAM_MAX_RESP_SIZEcharacters

NetBSD 3.0 June 16, 2005 1

PAM_CONV (3) NetBSD Library Functions Manual PAM_CONV (3)

long, including the terminating NUL.

Theresp_retcodemember ofstruct pam_response is unused and should be set to zero.

The conversation function should store a pointer to this array in the location pointed to by its third argument.
It is the caller’s responsibility to release both this array and the responses themselves, usingfree (3). It is
the conversation function’s responsibility to ensure that it is legal to do so.

The appdata_ptrmember ofstruct pam_conv is passed unmodified to the conversation function as its
fourth and final argument.

On failure, the conversation function should release any resources it has allocated, and return one of the pre-
defined PAM error codes.

RETURN VALUES
The conversation function should return one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_SUCCESS] Success.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
openpam_nullconv (3), openpam_ttyconv (3), pam(3), pam_error (3), pam_get_item (3),
pam_info (3), pam_prompt (3), pam_set_item (3), pam_start (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The OpenPAM library and this manual page were developed for theFreeBSDProject by ThinkSec AS and
Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 June 16, 2005 2

PAM_END (3) NetBSD Library Functions Manual PAM_END (3)

NAME
pam_end — terminate the PAM transaction

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_end(pam_handle_t ∗pamh, int status);

DESCRIPTION
The pam_end function terminates a PAM transaction and destroys the corresponding PAM context, releas-
ing all resources allocated to it.

The status argument should be set to the error code returned by the last API call before the call to
pam_end

RETURN VALUES
Thepam_end function returns one of the following values:

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
Thepam_end function and this manual page were developed for theFreeBSDProject by ThinkSec AS and
Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_ERROR (3) NetBSD Library Functions Manual PAM_ERROR (3)

NAME
pam_error — display an error message

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_error (const pam_handle_t ∗pamh, const char ∗fmt , . . .);

DESCRIPTION
The pam_error function displays an error message through the intermediary of the given PAM context’s
conversation function.

RETURN VALUES
Thepam_error function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_info (3), pam_prompt (3), pam_strerror (3), pam_verror (3)

STANDARDS
Thepam_error function is an OpenPAM extension.

AUTHORS
The pam_error function and this manual page were developed for theFreeBSDProject by ThinkSec AS
and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_GET_AUTHTOK (3) NetBSD Library Functions Manual PAM_GET_AUTHTOK (3)

NAME
pam_get_authtok — retrieve authentication token

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_get_authtok (pam_handle_t ∗pamh, int item , const char ∗∗authtok ,

const char ∗prompt);

DESCRIPTION
Thepam_get_authtok function returns the cached authentication token, or prompts the user if no token
is currently cached. Either way, a pointer to the authentication token is stored in the location pointed to by
theauthtok argument.

The item argument must have one of the following values:

PAM_AUTHTOK Returns the current authentication token, or the new token when changing authentica-
tion tokens.

PAM_OLDAUTHTOKReturns the previous authentication token when changing authentication tokens.

The prompt argument specifies a prompt to use if no token is cached. If it isNULL, the
PAM_AUTHTOK_PROMPTor PAM_OLDAUTHTOK_PROMPTitem, as appropriate, will be used. If that item
is alsoNULL, a hardcoded default prompt will be used.

If item is set toPAM_AUTHTOKand there is a non-nullPAM_OLDAUTHTOKitem, pam_get_authtok
will ask the user to confirm the new token by retyping it.If there is a mismatch,pam_get_authtok will
returnPAM_TRY_AGAIN.

RETURN VALUES
Thepam_get_authtok function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_SYSTEM_ERR]
System error.

[PAM_TRY_AGAIN] Try again.

SEE ALSO
pam(3), pam_get_item (3), pam_get_user (3), pam_strerror (3)

STANDARDS
Thepam_get_authtok function is an OpenPAM extension.

AUTHORS
The pam_get_authtok function and this manual page were developed for theFreeBSD Project by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

PAM_GET_DAT A (3) NetBSDLibrary Functions Manual PAM_GET_DAT A (3)

NAME
pam_get_data — get module information

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_get_data (const pam_handle_t ∗pamh, const char ∗module_data_name ,

const void ∗∗data);

DESCRIPTION
The pam_get_data function looks up the opaque object associated with the string specified by the
module_data_name argument, in the PAM context specified by thepamh argument. Apointer to the
object is stored in the location pointed to by thedata argument.

This function and its counterpartpam_set_data (3) are useful for managing data that are meaningful only
to a particular service module.

RETURN VALUES
Thepam_get_data function returns one of the following values:

[PAM_NO_MODULE_DATA]
Module data not found.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_set_data (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_get_data function and this manual page were developed for theFreeBSDProject by ThinkSec
AS and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_GET_ITEM (3) NetBSD Library Functions Manual PAM_GET_ITEM (3)

NAME
pam_get_item — get PAM information

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_get_item (const pam_handle_t ∗pamh, int item_type , const void ∗∗item);

DESCRIPTION
The pam_get_item function stores a pointer to the item specified by theitem_type argument in the
location specified by theitem argument. Theitem is retrieved from the PAM context specified by thepamh
argument. Thefollowing item types are recognized:

PAM_SERVICE The name of the requesting service.

PAM_USER The name of the user the application is trying to authenticate.

PAM_TTY The name of the current terminal.

PAM_RHOST The name of the applicant’s host.

PAM_CONV A struct pam_conv describing the current conversation function.

PAM_AUTHTOK The current authentication token.

PAM_OLDAUTHTOKThe expired authentication token.

PAM_RUSER The name of the applicant.

PAM_USER_PROMPTThe prompt to use when asking the applicant for a user name to authenticate as.

PAM_AUTHTOK_PROMPT
The prompt to use when asking the applicant for an authentication token.

PAM_OLDAUTHTOK_PROMPT
The prompt to use when asking the applicant for an expired authentication token
prior to changing it.

PAM_SOCKADDR The sockaddr_storage of the applicants’s host.

PAM_NUSER The “nested” user if this is a login on top of a previous one.

Seepam_start (3) for a description ofstruct pam_conv .

RETURN VALUES
Thepam_get_item function returns one of the following values:

[PAM_SYMBOL_ERR]
Invalid symbol.

[PAM_SYSTEM_ERR]
System error.

NetBSD 3.0 December 21, 2007 1

PAM_GET_ITEM (3) NetBSD Library Functions Manual PAM_GET_ITEM (3)

SEE ALSO
pam(3), pam_set_item (3), pam_start (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_get_item function and this manual page were developed for theFreeBSDProject by ThinkSec
AS and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 2

PAM_GET_USER (3) NetBSD Library Functions Manual PAM_GET_USER (3)

NAME
pam_get_user — retrieve user name

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_get_user (pam_handle_t ∗pamh, const char ∗∗user , const char ∗prompt);

DESCRIPTION
The pam_get_user function returns the name of the target user, as specified topam_start (3). If no
user was specified, nor set usingpam_set_item (3), pam_get_user will prompt for a user name.Either
way, a pointer to the user name is stored in the location pointed to by theuser argument.

The prompt argument specifies a prompt to use if no user name is cached. If it isNULL, the
PAM_USER_PROMPTwill be used. If that item is alsoNULL, a hardcoded default prompt will be used.

RETURN VALUES
Thepam_get_user function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_get_authtok (3), pam_get_item (3), pam_set_item (3), pam_start (3),
pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_get_user function and this manual page were developed for theFreeBSDProject by ThinkSec
AS and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_GETENV (3) NetBSD Library Functions Manual PAM_GETENV (3)

NAME
pam_getenv — retrieve the value of a PAM environment variable

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

const char ∗
pam_getenv (pam_handle_t ∗pamh, const char ∗name);

DESCRIPTION
Thepam_getenv function returns the value of an environment variable. Itssemantics are similar to those
of getenv (3), but it accesses the PAM context’s environment list instead of the application’s.

RETURN VALUES
Thepam_getenv function returnsNULLon failure.

SEE ALSO
getenv (3), pam(3), pam_getenvlist (3), pam_putenv (3), pam_setenv (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
Thepam_getenv function and this manual page were developed for theFreeBSDProject by ThinkSec AS
and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_GETENVLIST (3) NetBSD Library Functions Manual PAM_GETENVLIST (3)

NAME
pam_getenvlist — returns a list of all the PAM environment variables

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

char ∗∗
pam_getenvlist (pam_handle_t ∗pamh);

DESCRIPTION
Thepam_getenvlist function returns a copy of the given PAM context’s environment list as a pointer to
an array of strings. The last element in the array isNULL. The pointer is suitable for assignment toenviron.

The array and the strings it lists are allocated usingmalloc (3), and should be released usingfree (3) after
use:

char ∗∗envlist, ∗∗env;

envlist = environ;
environ = pam_getenvlist(pamh);
/ ∗ do something nifty ∗/
for (env = environ; ∗env != NULL; env++)

free(∗env);
free(environ);
environ = envlist;

RETURN VALUES
Thepam_getenvlist function returnsNULLon failure.

SEE ALSO
free (3), malloc (3), pam(3), pam_getenv (3), pam_putenv (3), pam_setenv (3), environ (7)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_getenvlist function and this manual page were developed for theFreeBSD Project by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

PAM_INFO (3) NetBSD Library Functions Manual PAM_INFO (3)

NAME
pam_info — display an information message

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_info (const pam_handle_t ∗pamh, const char ∗fmt , . . .);

DESCRIPTION
Thepam_info function displays an informational message through the intermediary of the given PAM con-
text’s conversation function.

RETURN VALUES
Thepam_info function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_error (3), pam_prompt (3), pam_strerror (3), pam_vinfo (3)

STANDARDS
Thepam_info function is an OpenPAM extension.

AUTHORS
Thepam_info function and this manual page were developed for theFreeBSDProject by ThinkSec AS and
Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_OPEN_SESSION (3) NetBSD Library Functions Manual PAM_OPEN_SESSION (3)

NAME
pam_open_session — open a user session

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_open_session (pam_handle_t ∗pamh, int flags);

DESCRIPTION
The pam_open_session sets up a user session for a previously authenticated user. The session should
later be torn down by a call topam_close_session (3).

Theflags argument is the binary or of zero or more of the following values:

PAM_SILENT Do not emit any messages.

If any other bits are set,pam_open_session will return PAM_SYMBOL_ERR.

RETURN VALUES
Thepam_open_session function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SESSION_ERR]
Session failure.

[PAM_SYMBOL_ERR]
Invalid symbol.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_close_session (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_open_session function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

PAM_PROMPT (3) NetBSD Library Functions Manual PAM_PROMPT (3)

NAME
pam_prompt — call the conversation function

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_prompt (const pam_handle_t ∗pamh, int style , char ∗∗resp ,

const char ∗fmt , . . .);

DESCRIPTION
Thepam_prompt function constructs a message from the specified format string and arguments and passes
it to the given PAM context’s conversation function.

A pointer to the response, orNULL if the conversation function did not return one, is stored in the location
pointed to by theresp argument.

Seepam_vprompt (3) for further details.

RETURN VALUES
Thepam_prompt function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_error (3), pam_info (3), pam_strerror (3), pam_vprompt (3)

STANDARDS
Thepam_prompt function is an OpenPAM extension.

AUTHORS
Thepam_prompt function and this manual page were developed for theFreeBSDProject by ThinkSec AS
and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_PUTENV (3) NetBSD Library Functions Manual PAM_PUTENV (3)

NAME
pam_putenv — set the value of an environment variable

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_putenv (pam_handle_t ∗pamh, const char ∗namevalue);

DESCRIPTION
The pam_putenv function sets a environment variable. Itssemantics are similar to those ofputenv (3),
but it modifies the PAM context’s environment list instead of the application’s.

RETURN VALUES
Thepam_putenv function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_getenv (3), pam_getenvlist (3), pam_setenv (3), pam_strerror (3), putenv (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
Thepam_putenv function and this manual page were developed for theFreeBSDProject by ThinkSec AS
and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_SET_DAT A (3) NetBSDLibrary Functions Manual PAM_SET_DAT A (3)

NAME
pam_set_data — set module information

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_set_data (pam_handle_t ∗pamh, const char ∗module_data_name , void ∗data ,

void (∗cleanup)(pam_handle_t ∗pamh, void ∗data, int pam_end_status));

DESCRIPTION
Thepam_set_data function associates a pointer to an opaque object with an arbitrary string specified by
themodule_data_name argument, in the PAM context specified by thepamh argument.

If not NULL, thecleanup argument should point to a function responsible for releasing the resources asso-
ciated with the object.

This function and its counterpartpam_get_data (3) are useful for managing data that are meaningful only
to a particular service module.

RETURN VALUES
Thepam_set_data function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
openpam_free_data (3), pam(3), pam_get_data (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_set_data function and this manual page were developed for theFreeBSDProject by ThinkSec
AS and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_SET_ITEM (3) NetBSD Library Functions Manual PAM_SET_ITEM (3)

NAME
pam_set_item — set authentication information

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_set_item (pam_handle_t ∗pamh, int item_type , const void ∗item);

DESCRIPTION
Thepam_set_item function sets the item specified by theitem_type argument to a copy of the object
pointed to by theitem argument. Theitem is stored in the PAM context specified by thepamh argument.
Seepam_get_item (3) for a list of recognized item types.

RETURN VALUES
Thepam_set_item function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_SYMBOL_ERR]
Invalid symbol.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_get_item (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_set_item function and this manual page were developed for theFreeBSDProject by ThinkSec
AS and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_SETCRED (3) NetBSD Library Functions Manual PAM_SETCRED (3)

NAME
pam_setcred — modify / delete user credentials for an authentication service

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_setcred (pam_handle_t ∗pamh, int flags);

DESCRIPTION
Thepam_setcred function manages the application’s credentials.

Theflags argument is the binary or of zero or more of the following values:

PAM_SILENT Do not emit any messages.

PAM_ESTABLISH_CRED
Establish the credentials of the target user.

PAM_DELETE_CREDRevoke all established credentials.

PAM_REINITIALIZE_CRED
Fully reinitialise credentials.

PAM_REFRESH_CRED
Refresh credentials.

The latter four are mutually exclusive.

If any other bits are set,pam_setcred will return PAM_SYMBOL_ERR.

RETURN VALUES
Thepam_setcred function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_CRED_ERR] Failed to set user credentials.

[PAM_CRED_EXPIRED]
User credentials have expired.

[PAM_CRED_UNAVAIL]
Failed to retrieve user credentials.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYMBOL_ERR]
Invalid symbol.

NetBSD 3.0 December 21, 2007 1

PAM_SETCRED (3) NetBSD Library Functions Manual PAM_SETCRED (3)

[PAM_SYSTEM_ERR]
System error.

[PAM_USER_UNKNOWN]
Unknown user.

SEE ALSO
pam(3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
Thepam_setcred function and this manual page were developed for theFreeBSDProject by ThinkSec AS
and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 2

PAM_SETENV (3) NetBSD Library Functions Manual PAM_SETENV (3)

NAME
pam_setenv — mirrors setenv(3)

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_setenv (pam_handle_t ∗pamh, const char ∗name, const char ∗value ,

int overwrite);

DESCRIPTION
The pam_setenv function sets a environment variable. Itssemantics are similar to those ofsetenv (3),
but it modifies the PAM context’s environment list instead of the application’s.

RETURN VALUES
Thepam_setenv function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_getenv (3), pam_getenvlist (3), pam_putenv (3), pam_strerror (3), setenv (3)

STANDARDS
Thepam_setenv function is an OpenPAM extension.

AUTHORS
Thepam_setenv function and this manual page were developed for theFreeBSDProject by ThinkSec AS
and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_SM_ACCT_MGMT (3) NetBSD Library Functions Manual PAM_SM_ACCT_MGMT (3)

NAME
pam_sm_acct_mgmt — service module implementation for pam_acct_mgmt

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int
pam_sm_acct_mgmt (pam_handle_t ∗pamh, int flags , int argc ,

const char ∗∗argv);

DESCRIPTION
The pam_sm_acct_mgmt function is the service module’s implementation of thepam_acct_mgmt (3)
API function.

RETURN VALUES
Thepam_sm_acct_mgmt function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_ACCT_EXPIRED]
User account has expired.

[PAM_AUTH_ERR] Authentication error.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_IGNORE] Ignore this module.

[PAM_NEW_AUTHTOK_REQD]
New authentication token required.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_USER_UNKNOWN]
Unknown user.

SEE ALSO
pam(3), pam_acct_mgmt (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

NetBSD 3.0 December 21, 2007 1

PAM_SM_ACCT_MGMT (3) NetBSD Library Functions Manual PAM_SM_ACCT_MGMT (3)

AUTHORS
The pam_sm_acct_mgmt function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 2

PAM_SM_AUTHENTICATE (3) NetBSD Library Functions Manual PAM_SM_AUTHENTICATE (3)

NAME
pam_sm_authenticate — service module implementation for pam_authenticate

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int
pam_sm_authenticate (pam_handle_t ∗pamh, int flags , int argc ,

const char ∗∗argv);

DESCRIPTION
The pam_sm_authenticate function is the service module’s implementation of the
pam_authenticate (3) API function.

RETURN VALUES
Thepam_sm_authenticate function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_AUTHINFO_UNAVAIL]
Authentication information is unavailable.

[PAM_AUTH_ERR] Authentication error.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_CRED_INSUFFICIENT]
Insufficient credentials.

[PAM_IGNORE] Ignore this module.

[PAM_MAXTRIES] Maximum number of tries exceeded.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_USER_UNKNOWN]
Unknown user.

SEE ALSO
pam(3), pam_authenticate (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

NetBSD 3.0 December 21, 2007 1

PAM_SM_AUTHENTICATE (3) NetBSD Library Functions Manual PAM_SM_AUTHENTICATE (3)

AUTHORS
The pam_sm_authenticate function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 2

PAM_SM_CHAUTHTOK (3) NetBSD Library Functions Manual PAM_SM_CHAUTHTOK (3)

NAME
pam_sm_chauthtok — service module implementation for pam_chauthtok

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int
pam_sm_chauthtok (pam_handle_t ∗pamh, int flags , int argc ,

const char ∗∗argv);

DESCRIPTION
The pam_sm_chauthtok function is the service module’s implementation of thepam_chauthtok (3)
API function.

RETURN VALUES
Thepam_sm_chauthtok function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_AUTHTOK_DISABLE_AGING]
Authentication token aging disabled.

[PAM_AUTHTOK_ERR]
Authentication token failure.

[PAM_AUTHTOK_LOCK_BUSY]
Authentication token lock busy.

[PAM_AUTHTOK_RECOVERY_ERR]
Failed to recover old authentication token.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_IGNORE] Ignore this module.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_TRY_AGAIN] Try again.

SEE ALSO
pam(3), pam_chauthtok (3), pam_strerror (3)

NetBSD 3.0 December 21, 2007 1

PAM_SM_CHAUTHTOK (3) NetBSD Library Functions Manual PAM_SM_CHAUTHTOK (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_sm_chauthtok function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 2

PAM_SM_CLOSE_SESSION (3) NetBSD Library Functions Manual PAM_SM_CLOSE_SESSION (3)

NAME
pam_sm_close_session — service module implementation for pam_close_session

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int
pam_sm_close_session (pam_handle_t ∗pamh, int flags , int args ,

const char ∗∗argv);

DESCRIPTION
The pam_sm_close_session function is the service module’s implementation of the
pam_close_session (3) API function.

RETURN VALUES
Thepam_sm_close_session function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_IGNORE] Ignore this module.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SESSION_ERR]
Session failure.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_close_session (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
Thepam_sm_close_session function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

PAM_SM_OPEN_SESSION (3) NetBSD Library Functions Manual PAM_SM_OPEN_SESSION (3)

NAME
pam_sm_open_session — service module implementation for pam_open_session

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int
pam_sm_open_session (pam_handle_t ∗pamh, int flags , int argc ,

const char ∗∗argv);

DESCRIPTION
The pam_sm_open_session function is the service module’s implementation of the
pam_open_session (3) API function.

RETURN VALUES
Thepam_sm_open_session function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_IGNORE] Ignore this module.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SESSION_ERR]
Session failure.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_open_session (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_sm_open_session function and this manual page were developed for theFreeBSDProject by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 1

PAM_SM_SETCRED (3) NetBSD Library Functions Manual PAM_SM_SETCRED (3)

NAME
pam_sm_setcred — service module implementation for pam_setcred

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int
pam_sm_setcred (pam_handle_t ∗pamh, int flags , int argc , const char ∗∗argv);

DESCRIPTION
The pam_sm_setcred function is the service module’s implementation of thepam_setcred (3) API
function.

RETURN VALUES
Thepam_sm_setcred function returns one of the following values:

[PAM_ABORT] General failure.

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_CRED_ERR] Failed to set user credentials.

[PAM_CRED_EXPIRED]
User credentials have expired.

[PAM_CRED_UNAVAIL]
Failed to retrieve user credentials.

[PAM_IGNORE] Ignore this module.

[PAM_PERM_DENIED]
Permission denied.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_USER_UNKNOWN]
Unknown user.

SEE ALSO
pam(3), pam_setcred (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

NetBSD 3.0 December 21, 2007 1

PAM_SM_SETCRED (3) NetBSD Library Functions Manual PAM_SM_SETCRED (3)

AUTHORS
The pam_sm_setcred function and this manual page were developed for theFreeBSD Project by
ThinkSec AS and Network Associates Laboratories, the Security Research Division of Network Associates,
Inc. under DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) , as part of the DARPA CHATS
research program.

NetBSD 3.0 December 21, 2007 2

PAM_START (3) NetBSDLibrary Functions Manual PAM_START (3)

NAME
pam_start — initiate a PAM transaction

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_start (const char ∗service , const char ∗user ,

const struct pam_conv ∗pam_conv , pam_handle_t ∗∗pamh);

DESCRIPTION
Thepam_start function creates and initializes a PAM context.

Theservice argument specifies the name of the policy to apply, and is stored in thePAM_SERVICEitem
in the created context.

Theuser argument specifies the name of the target user - the user the created context will serve to authenti-
cate. Itis stored in thePAM_USERitem in the created context.

Thepam_conv argument points to astruct pam_conv describing the conversation function to use; see
pam_conv for details.

RETURN VALUES
Thepam_start function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_end(3), pam_get_item (3), pam_set_item (3), pam_strerror (3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_start function and this manual page were developed for theFreeBSDProject by ThinkSec AS
and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_STRERROR (3) NetBSD Library Functions Manual PAM_STRERROR (3)

NAME
pam_strerror — get PAM standard error message string

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

const char ∗
pam_strerror (const pam_handle_t ∗pamh, int error_number);

DESCRIPTION
Thepam_strerror function returns a pointer to a string containing a textual description of the error indi-
cated by theerror_number argument, in the context of the PAM transaction described by thepamh argu-
ment.

RETURN VALUES
Thepam_strerror function returnsNULLon failure.

SEE ALSO
pam(3)

STANDARDS
X/Open Single Sign-On Service (XSSO) - Pluggable Authentication Modules, June 1997.

AUTHORS
The pam_strerror function and this manual page were developed for theFreeBSDProject by ThinkSec
AS and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_VERROR (3) NetBSD Library Functions Manual PAM_VERROR (3)

NAME
pam_verror — display an error message

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_verror (const pam_handle_t ∗pamh, const char ∗fmt , va_list ap);

DESCRIPTION
The pam_verror function passes its arguments topam_vprompt (3) with a style argument of
PAM_ERROR_MSG, and discards the response.

RETURN VALUES
Thepam_verror function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_error (3), pam_strerror (3), pam_vinfo (3), pam_vprompt (3)

STANDARDS
Thepam_verror function is an OpenPAM extension.

AUTHORS
Thepam_verror function and this manual page were developed for theFreeBSDProject by ThinkSec AS
and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_VINFO (3) NetBSD Library Functions Manual PAM_VINFO (3)

NAME
pam_vinfo — display an information message

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_vinfo (const pam_handle_t ∗pamh, const char ∗fmt , va_list ap);

DESCRIPTION
The pam_vinfo function passes its arguments topam_vprompt (3) with a style argument of
PAM_TEXT_INFO, and discards the response.

RETURN VALUES
Thepam_vinfo function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_info (3), pam_strerror (3), pam_verror (3), pam_vprompt (3)

STANDARDS
Thepam_vinfo function is an OpenPAM extension.

AUTHORS
The pam_vinfo function and this manual page were developed for theFreeBSDProject by ThinkSec AS
and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-
gram.

NetBSD 3.0 December 21, 2007 1

PAM_VPROMPT (3) NetBSD Library Functions Manual PAM_VPROMPT (3)

NAME
pam_vprompt — call the conversation function

LIBRARY
Pluggable Authentication Module Library (libpam, −lpam)

SYNOPSIS
#include <sys/types.h>
#include <security/pam_appl.h>

int
pam_vprompt (const pam_handle_t ∗pamh, int style , char ∗∗resp ,

const char ∗fmt , va_list ap);

DESCRIPTION
The pam_vprompt function constructs a string from thefmt and ap arguments usingvsnprintf (3),
and passes it to the given PAM context’s conversation function.

Thestyle argument specifies the type of interaction requested, and must be one of the following:

PAM_PROMPT_ECHO_OFF
Display the message and obtain the user’s response without displaying it.

PAM_PROMPT_ECHO_ON
Display the message and obtain the user’s response.

PAM_ERROR_MSG Display the message as an error message, and do not wait for a response.

PAM_TEXT_INFO Display the message as an informational message, and do not wait for a response.

A pointer to the response, orNULL if the conversation function did not return one, is stored in the location
pointed to by theresp argument.

The message and response should not exceedPAM_MAX_MSG_SIZEor PAM_MAX_RESP_SIZE, respec-
tively. If they do, they may be truncated.

RETURN VALUES
Thepam_vprompt function returns one of the following values:

[PAM_BUF_ERR] Memory buffer error.

[PAM_CONV_ERR] Conversation failure.

[PAM_SYSTEM_ERR]
System error.

SEE ALSO
pam(3), pam_error (3), pam_info (3), pam_prompt (3), pam_strerror (3), pam_verror (3),
pam_vinfo (3), vsnprintf (3)

STANDARDS
Thepam_vprompt function is an OpenPAM extension.

AUTHORS
Thepam_vprompt function and this manual page were developed for theFreeBSDProject by ThinkSec AS
and Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035(“CBOSS”) ,as part of the DARPA CHATS research pro-

NetBSD 3.0 December 21, 2007 1

PAM_VPROMPT (3) NetBSD Library Functions Manual PAM_VPROMPT (3)

gram.

NetBSD 3.0 December 21, 2007 2

PARSE_TIME (3) NetBSD Library Functions Manual PARSE_TIME (3)

NAME
parse_time , print_time_table , unparse_time , unparse_time_approx , — parse and
unparse time intervals

LIBRARY
The roken library (libroken, -lroken)

SYNOPSIS
#include <parse_time.h>

int
parse_time (const char ∗timespec , const char ∗def_unit);

void
print_time_table (FILE ∗f);

size_t
unparse_time (int seconds , char ∗buf , size_t len);

size_t
unparse_time_approx (int seconds , char ∗buf , size_t len);

DESCRIPTION
The parse_time () function converts a the period of time specified in into a number of seconds.The
timespec can be any number of〈number unit〉 pairs separated by comma and whitespace. The number can
be negative. Number without explicit units are taken as beingdef_unit .

Theunparse_time () andunparse_time_approx () does the opposite ofparse_time (), that is they
take a number of seconds and express that as human readable string.unparse_time produces an exact
time, whileunparse_time_approx restricts the result to only include one units.

print_time_table () prints a descriptive list of available units on the passed file descriptor.

The possible units include:
second , s
minute , m
hour , h
day
week seven days
month 30 days
year 365 days

Units names can be arbitrarily abbreviated (as long as they are unique).

RETURN VALUES
parse_time () returns the number of seconds that represents the expression intimespec or -1 on error.
unparse_time () andunparse_time_approx () return the number of characters written tobuf . if the
return value is greater than or equal to thelen argument, the string was too short and some of the printed
characters were discarded.

EXAMPLES
#include <stdio.h>
#include <parse_time.h>

int
main(int argc, char ∗∗argv)

NetBSD 3.0 October 31, 2004 1

PARSE_TIME (3) NetBSD Library Functions Manual PARSE_TIME (3)

{
int i;
int result;
char buf[128];
print_time_table(stdout);
for (i = 1; i < argc; i++) {

result = parse_time(argv[i], "second");
if(result == -1) {

fprintf(stderr, "%s: parse error\n", argv[i]);
continue;

}
printf("--\n");
printf("parse_time = %d\n", result);
unparse_time(result, buf, sizeof(buf));
printf("unparse_time = %s\n", buf);
unparse_time_approx(result, buf, sizeof(buf));
printf("unparse_time_approx = %s\n", buf);

}
return 0;

}

$. /a.out "1 minute 30 seconds" "90 s" "1 y -1 s"
1 y ear = 365 days
1 month = 30 days
1 week = 7 days
1 day = 24 hours
1 hour = 60 minutes
1 minute = 60 seconds
1 s econd
--
parse_time = 90
unparse_time = 1 minute 30 seconds
unparse_time_approx = 1 minute
--
parse_time = 90
unparse_time = 1 minute 30 seconds
unparse_time_approx = 1 minute
--
parse_time = 31535999
unparse_time = 12 months 4 days 23 hours 59 minutes 59 seconds
unparse_time_approx = 12 months

BUGS
Sinceparse_time () returns -1 on error there is no way to parse "minus one second". Currently "s" at the
end of units is ignored. This is a hack for English plural forms. If these functions are ever localised, this
scheme will have to change.

NetBSD 3.0 October 31, 2004 2

PARSEDATE (3) NetBSDLibrary Functions Manual PARSEDATE (3)

NAME
parsedate — date parsing function

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

time_t
parsedate (const char ∗datestr , const time_t ∗time , const int ∗tzoff);

DESCRIPTION
The parsedate function parses a datetime fromdatestr described in english relative to an optional
time point and an optional timezone offset in seconds specified intzoff . If either time or tzoff are
NULL, then the current time and timezone offset are used.

The datestr is a sequence of white-space separated items.The white-space is optional the concatenated
items are not ambiguous. An emptydatestr is equivalent to midnight today (the beginning of this day).

The following words have the indicated numeric meanings:last = −1, this = 0, first or next 1,
second is unused so that it is not confused with “seconds”,third = 3, fourth = 4, fifth = 5,
sixth = 6, seventh = 7, eighth = 8, ninth = 9, tenth = 10, eleventh = 11, twelfth =
12.

The following words are recognized in English only:AM, PM, a.m. , p.m.

The months:january , february , march , april , may, june , july , august , september , sept ,
october , november , december ,

The days of the week:sunday , monday, tuesday , tues , wednesday , wednes , thursday , thur ,
thurs , friday , saturday .

Time units:year , month , fortnight , week, day , hour , minute , min , second , sec , tomorrow ,
yesterday .

Timezone names:gmt , ut , utc , wet , bst , wat , at , ast , adt , est , edt , cst , cdt , mst , mdt , pst ,
pdt , yst , ydt , hst , hdt , cat , ahst , nt , idlw , cet , met , mewt, mest , swt , sst , fwt , fst , eet ,
bt , zp4 , zp5 , zp6 , wast , wadt , cct , jst , east , eadt , gst , nzt , nzst , nzdt , idle .

A variety of unambiguous dates are recognized:
69-09-10 For years between 69-99 we assume 1900+ and for years between 0-68 we assume 2000+.
2006-11-17 An ISO-8601 date.
10/1/2000 October 10, 2000; the common US format.
20 Jun 1994
23jun2001
1-sep-06 Other common abbreviations.
1/11 the year can be omitted

As well as times:
10:01
10:12pm
12:11:01.000012
12:21-0500

Relative items are also supported:

NetBSD 3.0 November 17, 2006 1

PARSEDATE (3) NetBSDLibrary Functions Manual PARSEDATE (3)

-1 month
last friday
one week ago
this thursday
next sunday
+2 years

RETURN VALUES
parsedate () returns the number of seconds passed since the Epoch, or−1 if the date could not be parsed
properly.

SEE ALSO
date (1), eeprom (8)

HISTORY
The parser used inparsedate () was originally written by Steven M. Bellovin while at the University of
North Carolina at Chapel Hill. It was later tweaked by a couple of people on Usenet. Completely over-
hauled by Rich $alz and Jim Berets in August, 1990.

Theparsedate () function first appeared inNetBSD 4.0.

NetBSD 3.0 November 17, 2006 2

PA USE (3) NetBSD Library Functions Manual PA USE (3)

NAME
pause — stop until signal

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
pause (void);

DESCRIPTION
Pause is made obsolete bysigsuspend (2).

The pause () function forces a process to pause until a signal is received from either thekill (2) function
or an interval timer. (Seesetitimer (2).) Upontermination of a signal handler started during apause (),
thepause () call will return.

RETURN VALUES
Always returns −1.

ERRORS
Thepause () function always returns:

[EINTR] The call was interrupted.

SEE ALSO
kill (2), poll (2), select (2), setitimer (2), sigsuspend (2)

STANDARDS
Thepause () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
A pause () syscall appeared in Version 6AT&T UNIX .

NetBSD 3.0 June 4, 1993 1

PCAP(3) PCAP(3)

NAME
pcap − Packet Capture library

SYNOPSIS
#include <pcap.h>

char errbuf[PCAP_ERRBUF_SIZE];

pcap_t *pcap_open_live(const char *device, int snaplen,
int promisc, int to_ms, char *errbuf)

pcap_t *pcap_open_dead(int linktype, int snaplen)
pcap_t *pcap_open_offline(const char *fname, char *errbuf)
pcap_t *pcap_fopen_offline(FILE *fp, char *errbuf)
pcap_dumper_t *pcap_dump_open(pcap_t *p, const char *fname)
pcap_dumper_t *pcap_dump_fopen(pcap_t *p, FILE *fp)

int pcap_setnonblock(pcap_t *p, int nonblock, char *errbuf);
int pcap_getnonblock(pcap_t *p, char *errbuf);

int pcap_findalldevs(pcap_if_t **alldevsp, char *errbuf)
void pcap_freealldevs(pcap_if_t *alldevs)
char *pcap_lookupdev(char *errbuf)
int pcap_lookupnet(const char *device, bpf_u_int32 *netp,

bpf_u_int32 *maskp, char *errbuf)

typedef void (*pcap_handler)(u_char *user, const struct pcap_pkthdr *h,
const u_char *bytes);

int pcap_dispatch(pcap_t *p, int cnt,
pcap_handler callback, u_char *user)

int pcap_loop(pcap_t *p, int cnt,
pcap_handler callback, u_char *user)

void pcap_dump(u_char *user, struct pcap_pkthdr *h,
u_char *sp)

int pcap_compile(pcap_t *p, struct bpf_program *fp,
const char *str, int optimize, bpf_u_int32 netmask)

int pcap_setfilter(pcap_t *p, struct bpf_program *fp)
void pcap_freecode(struct bpf_program *)
int pcap_setdirection(pcap_t *p, pcap_direction_t d)

const u_char *pcap_next(pcap_t *p, struct pcap_pkthdr *h)
int pcap_next_ex(pcap_t *p, struct pcap_pkthdr **pkt_header,

const u_char **pkt_data)

void pcap_breakloop(pcap_t *)

int pcap_inject(pcap_t *p, const void *buf, size_t size)
int pcap_sendpacket(pcap_t *p, const u_char *buf, int size)

int pcap_datalink(pcap_t *p)
int pcap_list_datalinks(pcap_t *p, int **dlt_buf);
int pcap_set_datalink(pcap_t *p, int dlt);
int pcap_datalink_name_to_val(const char *name);
const char *pcap_datalink_val_to_name(int dlt);
const char *pcap_datalink_val_to_description(int dlt);
int pcap_snapshot(pcap_t *p)
int pcap_is_swapped(pcap_t *p)
int pcap_major_version(pcap_t *p)
int pcap_minor_version(pcap_t *p)
int pcap_stats(pcap_t *p, struct pcap_stat *ps)
FILE *pcap_file(pcap_t *p)

27 February 2004 1

PCAP(3) PCAP(3)

int pcap_fileno(pcap_t *p)
int pcap_get_selectable_fd(pcap_t *p);
void pcap_perror(pcap_t *p, char *prefix)
char *pcap_geterr(pcap_t *p)
const char *pcap_strerror(int error)
const char *pcap_lib_version(void)

void pcap_close(pcap_t *p)
int pcap_dump_flush(pcap_dumper_t *p)
long pcap_dump_ftell(pcap_dumper_t *p)
FILE *pcap_dump_file(pcap_dumper_t *p)
void pcap_dump_close(pcap_dumper_t *p)

DESCRIPTION
The Packet Capture library provides a high level interface to packet capture systems. All packets on the net-
work, even those destined for other hosts, are accessible through this mechanism.

ROUTINES
NOTE: errbuf in pcap_open_live(), pcap_open_dead(), pcap_open_offline(), pcap_fopen_offline(),
pcap_setnonblock(), pcap_getnonblock(), pcap_findalldevs(), pcap_lookupdev(), and pcap_lookup-
net() is assumed to be able to hold at leastPCAP_ERRBUF_SIZEchars.

pcap_open_live() is used to obtain a packet capture descriptor to look at packets on the network. deviceis
a string that specifies the network device to open; on Linux systems with 2.2 or later kernels, adeviceargu-
ment of "any" orNULL can be used to capture packets from all interfaces.snaplenspecifies the maximum
number of bytes to capture. If this value is less than the size of a packet that is captured, only the first
snaplenbytes of that packet will be captured and provided as packet data.A value of 65535 should be suf-
ficient, on most if not all networks, to capture all the data available from the packet. promiscspecifies if
the interface is to be put into promiscuous mode. (Note that even if this parameter is false, the interface
could well be in promiscuous mode for some other reason.)For now, this doesn’t work on the "any"
device; if an argument of "any" or NULL is supplied, thepromiscflag is ignored.to_msspecifies the read
timeout in milliseconds.The read timeout is used to arrange that the read not necessarily return immedi-
ately when a packet is seen, but that it wait for some amount of time to allow more packets to arrive and to
read multiple packets from the OS kernel in one operation. Not all platforms support a read timeout; on
platforms that don’t, the read timeout is ignored.A zero value forto_ms, on platforms that support a read
timeout, will cause a read to wait forever to allow enough packets to arrive, with no timeout.errbuf is used
to return error or warning text. It will be set to error text whenpcap_open_live() fails and returnsNULL .
errbuf may also be set to warning text whenpcap_open_live() succeds; to detect this case the caller should
store a zero-length string inerrbuf before callingpcap_open_live() and display the warning to the user if
errbuf is no longer a zero-length string.

pcap_open_dead()is used for creating apcap_t structure to use when calling the other functions in libp-
cap. Itis typically used when just using libpcap for compiling BPF code.

pcap_open_offline()is called to open a ‘‘savefile’’ f or reading. fnamespecifies the name of the file to
open. The file has the same format as those used bytcpdump(1) and tcpslice(1). The name "-" in a syn-
onym for stdin. Alternatively, you may callpcap_fopen_offline()to read dumped data from an existing
open streamfp. Note that on Windows, that stream should be opened in binary mode.errbuf is used to
return error text and is only set whenpcap_open_offline()or pcap_fopen_offline() fails and returns
NULL .

pcap_dump_open()is called to open a ‘‘savefile’’ f or writing. The name "-" in a synonym forstdout.
NULL is returned on failure. p is a pcapstruct as returned bypcap_open_offline()or pcap_open_live().
fnamespecifies the name of the file to open. Alternatively, you may callpcap_dump_fopen()to write data
to an existing open streamfp. Note that on Windows, that stream should be opened in binary mode.If
NULL is returned,pcap_geterr()can be used to get the error text.

pcap_setnonblock()puts a capture descriptor, opened withpcap_open_live(), into ‘‘non-blocking’’ mode,

27 February 2004 2

PCAP(3) PCAP(3)

or takes it out of ‘‘non-blocking’’ mode, depending on whether thenonblockargument is non-zero or zero.
It has no effect on ‘‘savefiles’’. If there is an error, −1 is returned anderrbuf is filled in with an appropriate
error message; otherwise, 0 is returned. In ‘‘non-blocking’’ mode, an attempt to read from the capture
descriptor withpcap_dispatch()will, if no packets are currently available to be read, return 0 immediately
rather than blocking waiting for packets to arrive. pcap_loop()andpcap_next()will not work in ‘‘non-
blocking’’ mode.

pcap_getnonblock()returns the current ‘‘non-blocking’’ state of the capture descriptor; it always returns 0
on ‘‘savefiles’’. If there is an error, −1 is returned anderrbuf is filled in with an appropriate error message.

pcap_findalldevs()constructs a list of network devices that can be opened withpcap_open_live(). (Note
that there may be network devices that cannot be opened withpcap_open_live() by the process calling
pcap_findalldevs(), because, for example, that process might not have sufficient privileges to open them
for capturing; if so, those devices will not appear on the list.)alldevspis set to point to the first element of
the list; each element of the list is of typepcap_if_t, and has the following members:

next if not NULL , a pointer to the next element in the list;NULL for the last element of the
list

name a pointer to a string giving a name for the device to pass topcap_open_live()

description
if not NULL , a pointer to a string giving a human-readable description of the device

addresses
a pointer to the first element of a list of addresses for the interface

flags interface flags:

PCAP_IF_LOOPBACK
set if the interface is a loopback interface

Each element of the list of addresses is of typepcap_addr_t, and has the following members:

next if not NULL , a pointer to the next element in the list;NULL for the last element of the
list

addr a pointer to astruct sockaddr containing an address

netmask
if not NULL , a pointer to astruct sockaddr that contains the netmask corresponding to
the address pointed to byaddr

broadaddr
if not NULL , a pointer to astruct sockaddr that contains the broadcast address corre-
sponding to the address pointed to byaddr; may be null if the interface doesn’t support
broadcasts

dstaddr
if not NULL , a pointer to astruct sockaddr that contains the destination address corre-
sponding to the address pointed to byaddr; may be null if the interface isn’t a point-to-
point interface

Note that not all the addresses in the list of addresses are necessarily IPv4 or IPv6 addresses - you must
check thesa_familymember of thestruct sockaddr before interpreting the contents of the address.

−1 is returned on failure, in which caseerrbuf is filled in with an appropriate error message;0 is returned
on success.

pcap_freealldevs()is used to free a list allocated bypcap_findalldevs().

pcap_lookupdev() returns a pointer to a network device suitable for use withpcap_open_live() and
pcap_lookupnet(). If there is an error, NULL is returned anderrbuf is filled in with an appropriate error
message.

pcap_lookupnet() is used to determine the network number and mask associated with the network device

27 February 2004 3

PCAP(3) PCAP(3)

device. Both netp and maskpare bpf_u_int32pointers. Areturn of −1 indicates an error in which case
errbuf is filled in with an appropriate error message.

pcap_dispatch()is used to collect and process packets. cnt specifies the maximum number of packets to
process before returning. This is not a minimum number; when reading a live capture, only one bufferful of
packets is read at a time, so fewer thancnt packets may be processed. Acnt of −1 processes all the packets
received in one buffer when reading a live capture, or all the packets in the file when reading a ‘‘savefile’’.
callback specifies a routine to be called with three arguments: au_char pointer which is passed in from
pcap_dispatch(), aconst struct pcap_pkthdrpointer to a structure with the following members:

ts a struct timevalcontaining the time when the packet was captured

caplen a bpf_u_int32giving the number of bytes of the packet that are available from the capture

len a bpf_u_int32giving the length of the packet, in bytes (which might be more than the
number of bytes available from the capture, if the length of the packet is larger than the
maximum number of bytes to capture)

and aconst u_char pointer to the firstcaplen (as given in the struct pcap_pkthdra pointer to which is
passed to the callback routine) bytes of data from the packet (which won’t necessarily be the entire packet;
to capture the entire packet, you will have to provide a value forsnaplenin your call topcap_open_live()
that is sufficiently large to get all of the packet’s data - a value of 65535 should be sufficient on most if not
all networks).

The number of packets read is returned.0 is returned if no packets were read from a live capture (if, for
example, they were discarded because they didn’t pass the packet filter, or if, on platforms that support a
read timeout that starts before any packets arrive, the timeout expires before any packets arrive, or if the file
descriptor for the capture device is in non-blocking mode and no packets were available to be read) or if no
more packets are available in a ‘‘savefile.’’ A r eturn of −1 indicates an error in which casepcap_perror() or
pcap_geterr()may be used to display the error text. A return of −2 indicates that the loop terminated due
to a call topcap_breakloop()before any packets were processed.If your application uses pcap_break-
loop(), make sure that you explicitly check for −1 and −2, rather than just checking for a return value
< 0.

NOTE: when reading a live capture,pcap_dispatch()will not necessarily return when the read times out;
on some platforms, the read timeout isn’t supported, and, on other platforms, the timer doesn’t start until at
least one packet arrives. Thismeans that the read timeout shouldNOT be used in, for example, an interac-
tive application, to allow the packet capture loop to ‘‘poll’ ’ f or user input periodically, as there’s no guaran-
tee thatpcap_dispatch()will return after the timeout expires.

pcap_loop() is similar topcap_dispatch()except it keeps reading packets untilcnt packets are processed
or an error occurs.It doesnot return when live read timeouts occur. Rather, specifying a non-zero read
timeout topcap_open_live() and then callingpcap_dispatch()allows the reception and processing of any
packets that arrive when the timeout occurs.A neg ative cnt causespcap_loop()to loop forever (or at least
until an error occurs). −1 is returned on an error; 0 is returned ifcnt is exhausted; −2 is returned if the loop
terminated due to a call topcap_breakloop()before any packets were processed.If your application uses
pcap_breakloop(), make sure that you explicitly check for −1 and −2, rather than just checking for a
retur n value < 0.

pcap_next() reads the next packet (by callingpcap_dispatch() with a cnt of 1) and returns au_char
pointer to the data in that packet. (The pcap_pkthdrstruct for that packet is not supplied.)NULL is
returned if an error occured, or if no packets were read from a live capture (if, for example, they were dis-
carded because they didn’t pass the packet filter, or if, on platforms that support a read timeout that starts
before any packets arrive, the timeout expires before any packets arrive, or if the file descriptor for the cap-
ture device is in non-blocking mode and no packets were available to be read), or if no more packets are
available in a ‘‘savefile.’’ U nfortunately, there is no way to determine whether an error occured or not.

pcap_next_ex()reads the next packet and returns a success/failure indication:

1 the packet was read without problems

27 February 2004 4

PCAP(3) PCAP(3)

0 packets are being read from a live capture, and the timeout expired

−1 anerror occurred while reading the packet

−2 packets are being read from a ‘‘savefile’’, and there are no more packets to read from the
savefile.

If the packet was read without problems, the pointer pointed to by thepkt_headerargument is set to point
to thepcap_pkthdrstruct for the packet, and the pointer pointed to by thepkt_dataargument is set to point
to the data in the packet.

pcap_breakloop()sets a flag that will forcepcap_dispatch()or pcap_loop()to return rather than looping;
they will return the number of packets that have been processed so far, or −2 if no packets have been pro-
cessed so far.

This routine is safe to use inside a signal handler on UNIX or a console control handler on Windows, as it
merely sets a flag that is checked within the loop.

The flag is checked in loops reading packets from the OS - a signal by itself will not necessarily terminate
those loops - as well as in loops processing a set of packets returned by the OS.Note that if you are
catching signals on UNIX systems that support restarting system calls after a signal, and calling
pcap_breakloop() in the signal handler, you must specify, when catching those signals, that system
calls should NOT be restarted by that signal. Otherwise, if the signal interrupted a call reading pack-
ets in a live capture, when your signal handler returns after calling pcap_breakloop(), the call will be
restarted, and the loop will not terminate until more packets arrive and the call completes.

Note also that, in a multi-threaded application, if one thread is blocked inpcap_dispatch(), pcap_loop(),
pcap_next(), or pcap_next_ex(), a call to pcap_breakloop() in a different thread will not unblock that
thread; you will need to use whatever mechanism the OS provides for breaking a thread out of blocking
calls in order to unblock the thread, such as thread cancellation in systems that support POSIX threads.

Note thatpcap_next()will, on some platforms, loop reading packets from the OS; that loop will not neces-
sarily be terminated by a signal, sopcap_breakloop()should be used to terminate packet processing even
if pcap_next()is being used.

pcap_breakloop() does not guarantee that no further packets will be processed bypcap_dispatch()or
pcap_loop()after it is called; at most one more packet might be processed.

If −2 is returned frompcap_dispatch()or pcap_loop(), the flag is cleared, so a subsequent call will resume
reading packets. Ifa positive number is returned, the flag is not cleared, so a subsequent call will return −2
and clear the flag.

pcap_inject() sends a raw packet through the network interface; buf points to the data of the packet,
including the link-layer header, and sizeis the number of bytes in the packet. It returns the number of bytes
written on success.A return of −1 indicates an error in which casepcap_perror() or pcap_geterr() may
be used to display the error text. Notethat, even if you successfully open the network interface, you might
not have permission to send packets on it, or it might not support sending packets; aspcap_open_live()
doesn’t hav ea flag to indicate whether to open for capturing, sending, or capturing and sending, you cannot
request an open that supports sending and be notified at open time whether sending will be possible.Note
also that some devices might not support sending packets.

Note that, on some platforms, the link-layer header of the packet that’s sent might not be the same as the
link-layer header of the packet supplied topcap_inject(), as the source link-layer address, if the header
contains such an address, might be changed to be the address assigned to the interface on which the packet
it sent, if the platform doesn’t support sending completely raw and unchanged packets. Even worse, some
drivers on some platforms might change the link-layer type field to whatever value libpcap used when
attaching to the device, even on platforms that do nominally support sending completely raw and
unchanged packets.

pcap_sendpacket()is like pcap_inject(), but it returns 0 on success and −1 on failure. (pcap_inject()
comes from OpenBSD;pcap_sendpacket()comes from WinPcap. Bothare provided for compatibility.)

pcap_dump() outputs a packet to the ‘‘savefile’’ opened withpcap_dump_open(). Note that its calling

27 February 2004 5

PCAP(3) PCAP(3)

arguments are suitable for use withpcap_dispatch()or pcap_loop(). If called directly, theuserparameter
is of typepcap_dumper_tas returned bypcap_dump_open().

pcap_compile()is used to compile the stringstr into a filter program.program is a pointer to abpf_pro-
gram struct and is filled in bypcap_compile(). optimizecontrols whether optimization on the resulting
code is performed.netmaskspecifies the IPv4 netmask of the network on which packets are being cap-
tured; it is used only when checking for IPv4 broadcast addresses in the filter program.If the netmask of
the network on which packets are being captured isn’t known to the program, or if packets are being cap-
tured on the Linux "any" pseudo-interface that can capture on more than one network, a value of 0 can be
supplied; tests for IPv4 broadcast addreses won’t be done correctly, but all other tests in the filter program
will be OK. A return of −1 indicates an error in which casepcap_geterr()may be used to display the error
text.

pcap_compile_nopcap()is similar topcap_compile()except that instead of passing a pcap structure, one
passes the snaplen and linktype explicitly. It is intended to be used for compiling filters for direct BPF
usage, without necessarily having calledpcap_open(). A return of −1 indicates an error; the error text is
unavailable. (pcap_compile_nopcap()is a wrapper aroundpcap_open_dead(), pcap_compile(), and
pcap_close(); the latter three routines can be used directly in order to get the error text for a compilation
error.)

pcap_setfilter() is used to specify a filter program.fp is a pointer to abpf_program struct, usually the
result of a call topcap_compile(). −1 is returned on failure, in which casepcap_geterr()may be used to
display the error text;0 is returned on success.

pcap_freecode()is used to free up allocated memory pointed to by abpf_program struct generated by
pcap_compile()when that BPF program is no longer needed, for example after it has been made the filter
program for a pcap structure by a call topcap_setfilter().

pcap_setdirection()is used to specify a direction that packets will be captured.pcap_direction_tis one of
the constantsPCAP_D_IN, PCAP_D_OUT or PCAP_D_INOUT. PCAP_D_IN will only capture pack-
ets received by the device, PCAP_D_OUT will only capture packets sent by the device and
PCAP_D_INOUT will capture packets received by or sent by the device. PCAP_D_INOUT is the default
setting if this function is not called.This isn’t necessarily supported on all platforms; some platforms
might return an error, and some other platforms might not supportPCAP_D_OUT. This operation is not
supported if a ‘‘savefile’’ is being read.−1 is returned on failure,0 is returned on success.

pcap_datalink() returns the link layer type; link layer types it can return include:

DLT_NULL
BSD loopback encapsulation; the link layer header is a 4-byte field, inhostbyte order, contain-
ing a PF_ value fromsocket.hfor the network-layer protocol of the packet.

Note that ‘‘host byte order’’ is the byte order of the machine on which the packets are captured,
and the PF_ values are for the OS of the machine on which the packets are captured; if a live
capture is being done, ‘‘host byte order’’ is the byte order of the machine capturing the packets,
and the PF_ values are those of the OS of the machine capturing the packets, but if a ‘‘savefile’’
is being read, the byte order and PF_ values arenot necessarily those of the machine reading
the capture file.

DLT_EN10MB
Ethernet (10Mb, 100Mb, 1000Mb, and up)

DLT_IEEE802
IEEE 802.5 Token Ring

DLT_ARCNET
ARCNET

DLT_SLIP
SLIP; the link layer header contains, in order:

a 1-byte flag, which is 0 for packets received by the machine and 1 for packets sent by

27 February 2004 6

PCAP(3) PCAP(3)

the machine;

a 1-byte field, the upper 4 bits of which indicate the type of packet, as per RFC 1144:

0x40 anunmodified IP datagram (TYPE_IP);

0x70 anuncompressed-TCP IP datagram (UNCOMPRESSED_TCP), with that
byte being the first byte of the raw IP header on the wire, containing the
connection number in the protocol field;

0x80 a compressed-TCP IP datagram (COMPRESSED_TCP), with that byte
being the first byte of the compressed TCP/IP datagram header;

for UNCOMPRESSED_TCP, the rest of the modified IP header, and for COM-
PRESSED_TCP, the compressed TCP/IP datagram header;

for a total of 16 bytes; the uncompressed IP datagram follows the header.

DLT_PPP
PPP; if the first 2 bytes are 0xff and 0x03, it’s PPP in HDLC-like framing, with the PPP header
following those two bytes, otherwise it’s PPP without framing, and the packet begins with the
PPP header.

DLT_FDDI
FDDI

DLT_ATM_RFC1483
RFC 1483 LLC/SNAP-encapsulated ATM; the packet begins with an IEEE 802.2 LLC header.

DLT_RAW
raw IP; the packet begins with an IP header.

DLT_PPP_SERIAL
PPP in HDLC-like framing, as per RFC 1662, or Cisco PPP with HDLC framing, as per sec-
tion 4.3.1 of RFC 1547; the first byte will be 0xFF for PPP in HDLC-like framing, and will be
0x0F or 0x8F for Cisco PPP with HDLC framing.

DLT_PPP_ETHER
PPPoE; the packet begins with a PPPoE header, as per RFC 2516.

DLT_C_HDLC
Cisco PPP with HDLC framing, as per section 4.3.1 of RFC 1547.

DLT_IEEE802_11
IEEE 802.11 wireless LAN

DLT_FRELAY
Frame Relay

DLT_LOOP
OpenBSD loopback encapsulation; the link layer header is a 4-byte field, innetwork byte
order, containing a PF_ value from OpenBSD’s socket.hfor the network-layer protocol of the
packet.

Note that, if a ‘‘savefile’’ is being read, those PF_ values arenot necessarily those of the
machine reading the capture file.

DLT_LINUX_SLL
Linux "cooked" capture encapsulation; the link layer header contains, in order:

a 2-byte "packet type", in network byte order, which is one of:

0 packet was sent to us by somebody else

1 packet was broadcast by somebody else

2 packet was multicast, but not broadcast, by somebody else

27 February 2004 7

PCAP(3) PCAP(3)

3 packet was sent by somebody else to somebody else

4 packet was sent by us

a 2-byte field, in network byte order, containing a Linux ARPHRD_ value for the link
layer device type;

a 2-byte field, in network byte order, containing the length of the link layer address of
the sender of the packet (which could be 0);

an 8-byte field containing that number of bytes of the link layer header (if there are more
than 8 bytes, only the first 8 are present);

a 2-byte field containing an Ethernet protocol type, in network byte order, or containing
1 for Novell 802.3 frames without an 802.2 LLC header or 4 for frames beginning with
an 802.2 LLC header.

DLT_LTALK
Apple LocalTalk; the packet begins with an AppleTalk LLAP header.

DLT_PFLOG
OpenBSD pflog; the link layer header contains, in order:

a 1-byte header length, in host byte order;

a 4-byte PF_ value, in host byte order;

a 2-byte action code, in network byte order, which is one of:

0 passed

1 dropped

2 scrubbed

a 2-byte reason code, in network byte order, which is one of:

0 match

1 bad offset

2 fragment

3 short

4 normalize

5 memory

a 16-character interface name;

a 16-character ruleset name (only meaningful if subrule is set);

a 4-byte rule number, in network byte order;

a 4-byte subrule number, in network byte order;

a 1-byte direction, in network byte order, which is one of:

0 incoming or outgoing

1 incoming

2 outgoing

DLT_PRISM_HEADER
Prism monitor mode information followed by an 802.11 header.

DLT_IP_OVER_FC
RFC 2625 IP-over-Fibre Channel, with the link-layer header being the Network_Header as
described in that RFC.

27 February 2004 8

PCAP(3) PCAP(3)

DLT_SUNATM
SunATM devices; the link layer header contains, in order:

a 1-byte flag field, containing a direction flag in the uppermost bit, which is set for pack-
ets transmitted by the machine and clear for packets received by the machine, and a
4-byte traffic type in the low-order 4 bits, which is one of:

0 raw traffic

1 LANE traffic

2 LLC-encapsulated traffic

3 MARS traffic

4 IFMP traffic

5 ILMI traffic

6 Q.2931 traffic

a 1-byte VPI value;

a 2-byte VCI field, in network byte order.

DLT_IEEE802_11_RADIO
link-layer information followed by an 802.11 header - see http://www.shaftnet.org/˜pizza/soft-
ware/capturefrm.txt for a description of the link-layer information.

DLT_ARCNET_LINUX
ARCNET, with no exception frames, reassembled packets rather than raw frames, and an extra
16-bit offset field between the destination host and type bytes.

DLT_LINUX_IRDA
Linux-IrDA packets, with aDLT_LINUX_SLL header followed by the IrLAP header.

pcap_list_datalinks() is used to get a list of the supported data link types of the interface associated with
the pcap descriptor. pcap_list_datalinks()allocates an array to hold the list and sets*dlt_buf . The caller
is responsible for freeing the array. −1 is returned on failure; otherwise, the number of data link types in
the array is returned.

pcap_set_datalink()is used to set the current data link type of the pcap descriptor to the type specified by
dlt. −1 is returned on failure.

pcap_datalink_name_to_val()translates a data link type name, which is aDLT_ name with theDLT_
removed, to the corresponding data link type value. Thetranslation is case-insensitive. −1 is returned on
failure.

pcap_datalink_val_to_name()translates a data link type value to the corresponding data link type name.
NULL is returned on failure.

pcap_datalink_val_to_description()translates a data link type value to a short description of that data link
type. NULL is returned on failure.

pcap_snapshot()returns the snapshot length specified whenpcap_open_live() was called.

pcap_is_swapped()returns true if the current ‘‘savefile’’ uses a different byte order than the current sys-
tem.

pcap_major_version()returns the major number of the file format of the savefile; pcap_minor_version()
returns the minor number of the file format of the savefile. Theversion number is stored in the header of
the savefile.

pcap_file() returns the standard I/O stream of the ‘‘savefile,’’ i f a ‘‘savefile’’ was opened with
pcap_open_offline(), or NULL, if a network device was opened withpcap_open_live().

pcap_stats()returns 0 and fills in apcap_statstruct. The values represent packet statistics from the start of
the run to the time of the call. If there is an error or the underlying packet capture doesn’t support packet

27 February 2004 9

PCAP(3) PCAP(3)

statistics, −1 is returned and the error text can be obtained withpcap_perror() or pcap_geterr().
pcap_stats()is supported only on live captures, not on ‘‘savefiles’’; no statistics are stored in ‘‘savefiles’’,
so no statistics are available when reading from a ‘‘savefile’’.

pcap_fileno()returns the file descriptor number from which captured packets are read, if a network device
was opened withpcap_open_live(), or −1, if a ‘‘savefile’’ was opened withpcap_open_offline().

pcap_get_selectable_fd()returns, on UNIX, a file descriptor number for a file descriptor on which one can
do aselect()or poll() to wait for it to be possible to read packets without blocking, if such a descriptor
exists, or −1, if no such descriptor exists. Somenetwork devices opened withpcap_open_live() do not
supportselect()or poll() (for example, regular network devices on FreeBSD 4.3 and 4.4, and Endace DAG
devices), so −1 is returned for those devices.

Note that on most versions of most BSDs (including Mac OS X)select()andpoll() do not work correctly
on BPF devices; pcap_get_selectable_fd()will return a file descriptor on most of those versions (the
exceptions being FreeBSD 4.3 and 4.4), a simpleselect()or poll() will not return even after a timeout spec-
ified in pcap_open_live() expires. To work around this, an application that usesselect()or poll() to wait
for packets to arrive must put thepcap_t in non-blocking mode, and must arrange that theselect()or poll()
have a timeout less than or equal to the timeout specified inpcap_open_live(), and must try to read packets
after that timeout expires, regardless of whetherselect()or poll() indicated that the file descriptor for the
pcap_t is ready to be read or not.(That workaround will not work in FreeBSD 4.3 and later; however, in
FreeBSD 4.6 and later, select()andpoll() work correctly on BPF devices, so the workaround isn’t neces-
sary, although it does no harm.)

pcap_get_selectable_fd()is not available on Windows.

pcap_perror() prints the text of the last pcap library error onstderr, prefixed byprefix.

pcap_geterr() returns the error text pertaining to the last pcap library error. NOTE: the pointer it returns
will no longer point to a valid error message string after thepcap_t passed to it is closed; you must use or
copy the string before closing thepcap_t.

pcap_strerror() is provided in casestrerror (1) isn’t available.

pcap_lib_version()returns a pointer to a string giving information about the version of the libpcap library
being used; note that it contains more information than just a version number.

pcap_close()closes the files associated withp and deallocates resources.

pcap_dump_file()returns the standard I/O stream of the ‘‘savefile’’ opened bypcap_dump_open().

pcap_dump_flush() flushes the output buffer to the ‘‘savefile,’’ so that any packets written with
pcap_dump()but not yet written to the ‘‘savefile’’ w ill be written. −1 is returned on error, 0 on success.

pcap_dump_ftell() returns the current file position for the ‘‘savefile’’, representing the number of bytes
written bypcap_dump_open()andpcap_dump(). −1 is returned on error.

pcap_dump_close()closes the ‘‘savefile.’’

SEE ALSO
tcpdump(1), tcpslice(1)

AUTHORS
The original authors are:

Van Jacobson, Craig Leres and Steven McCanne, all of the Lawrence Berkeley National Laboratory, Uni-
versity of California, Berkeley, CA.

The current version is available from "The Tcpdump Group"’s Web site at

http://www.tcpdump.org/

BUGS
Please send problems, bugs, questions, desirable enhancements, etc. to:

tcpdump-workers@tcpdump.org

27 February 2004 10

PCAP(3) PCAP(3)

Please send source code contributions, etc. to:

patches@tcpdump.org

27 February 2004 11

PCI (3) NetBSD Library Functions Manual PCI (3)

NAME
pci — library interface for PCI bus access

LIBRARY
PCI Bus Access Library (libpci, −lpci)

SYNOPSIS
#include <pci.h>

int
pcibus_conf_read (int pcifd , u_int bus , u_int dev , u_int func , u_int reg ,

pcireg_t ∗valp);

int
pcibus_conf_write (int pcifd , u_int bus , u_int dev , u_int func , u_int reg ,

pcireg_t val);

int
pcidev_conf_read (int devfd , u_int reg , pcireg_t ∗valp);

int
pcidev_conf_write (int devfd , u_int reg , pcireg_t val);

char ∗
pci_findvendor (pcireg_t id_reg);

void
pci_devinfo (pcireg_t id_reg , pcireg_t class_reg , char ∗devinfo , size_t len);

void
pci_conf_print (int pcifd , u_int bus , u_int dev , u_int func);

DESCRIPTION
Thepci library provides support for accessing the PCI bus by user programs.

These functions are available in thelibpci library. Programs should be linked with−lpci .

CONFIGURATION SPACE FUNCTIONS
The following functions are used to access PCI configuration space:

pcibus_conf_read ()
Access the PCI configuration register reg on the device located atbus , dev , func , and place the
result in∗valp . pcifd must be an open file descriptor to a PCI bus within the target PCI domain.

pcibus_conf_write ()
Write the value specified byval into the PCI configuration registerrag on the device located atbus ,
dev , func . pcifd must be an open file descriptor to a PCI bus within the target PCI domain.

pcidev_conf_read ()
Access the PCI configuration register reg on the device associated with the open file descriptor
devfd and place the result in∗valp .

pcidev_conf_write ()
Write the value specified byval into the PCI configuration registerreg on the device associated with
the open file descriptordevfd .

NetBSD 3.0 April 24, 2004 1

PCI (3) NetBSD Library Functions Manual PCI (3)

MISCELLANEOUS FUNCTIONS
The following miscellaneous functions are available:

pci_findvendor ()
Return an ASCII description of the PCI vendor in the PCI ID registerid_reg .

pci_devinfo ()
Return an ASCII description of the PCI vendor, PCI product, and PCI class specified by the PCI ID
registerid_reg and PCI class ID register class_reg . The description is placed into the buffer
pointed to bydevinfo ; the size of that buffer is specified inlen .

pci_conf_print ()
Print the PCI configuration information for the device located atbus , dev , func . pcifd must be an
open file descriptor to a PCI bus within the target PCI domain.

RETURN VALUES
The pcibus_conf_read (), pcibus_conf_write (), pcidev_conf_read (), and
pcidev_conf_write () functions return 0 on success and -1 on failure.

Thepci_findvendor () function returns NULL if the PCI vendor description cannot be found.

SEE ALSO
pci (4)

HISTORY
The pcibus_conf_read (), pcibus_conf_write (), pcidev_conf_read (),
pcidev_conf_write (), pci_findvendor (), pci_devinfo (), andpci_conf_print () functions
first appeared inNetBSD 1.6.

NetBSD 3.0 April 24, 2004 2

PIDFILE (3) NetBSD Library Functions Manual PIDFILE (3)

NAME
pidfile — write a daemon pid file

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
pidfile (const char ∗basename);

DESCRIPTION
pidfile () writes a file containing the process ID of the program to the/var/run directory. The file
name has the form/var/run/basename.pid . If the basename argument is NULL,pidfile will
determine the program name and use that instead.

The pid file can be used as a quick reference if the process needs to be sent a signal. When the program
exits, the pid file will be removed automatically, unless the program receives a fatal signal.

Note that only the first invocation ofpidfile causes a pid file to be written; subsequent invocations have
no effect unless a new basename is supplied. If called with a new basename , pidfile () will remove
the old pid file and write the new one.

RETURN VALUES
pidfile () returns 0 on success and -1 on failure.

SEE ALSO
atexit (3)

HISTORY
Thepidfile function call appeared inNetBSD 1.5.

BUGS
pidfile () usesatexit (3) to ensure the pidfile is unlinked at program exit. However, programs that use
the_exit (2) function (for example, in signal handlers) will not trigger this behaviour.

NetBSD 3.0 June 5, 1999 1

PIDLOCK (3) NetBSD Library Functions Manual PIDLOCK (3)

NAME
pidlock , ttylock , ttyunlock — locks based on files containing PIDs

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
pidlock (const char ∗lockfile , int flags , pid_t ∗locker , const char ∗info);

int
ttylock (const char ∗tty , int flags , pid_t ∗locker);

int
ttyunlock (const char ∗tty);

DESCRIPTION
The pidlock () ttylock (), and ttyunlock () functions attempt to create a lockfile for an arbitrary
resource that only one program may hold at a time.(In the case ofttylock (), this is access to a tty
device.) If the function succeeds in creating the lockfile, it will succeed for no other program calling it with
the same lockfile until the original calling program has removed the lockfile or exited. Thettyunlock ()
function will remove the lockfile created byttylock ().

These functions use the method of creating a lockfile traditionally used by UUCP software. Thisis described
as follows in the documentation for Taylor UUCP:

The lock file normally contains the process ID of the locking process.This makes it easy to deter-
mine whether a lock is still valid. Thealgorithm is to create a temporary file and then link it to the
name that must be locked. If the link fails because a file with that name already exists, the existing
file is read to get the process ID. If the process still exists, the lock attempt fails. Otherwisethe lock
file is deleted and the locking algorithm is retried.

The PID is stored in ASCII format, with leading spaces to pad it out to ten characters, and a terminating new-
line. Thisimplementation has been extended to put the hostname on the second line of the file, terminated
with a newline, and optionally an arbitrary comment on the third line of the file, also terminated with a new-
line. If a comment is given, but PIDLOCK_NONBLOCKis not, a blank line will be written as the second line
of the file.

The pidlock () function will attempt to create the filelockfile and put the current process’s pid in it.
The ttylock () function will do the same, but should be passed only the base name (with no leading direc-
tory prefix) of thetty to be locked; it will test that the tty exists in/dev and is a character device, and then
create the file in the/var/spool/lock directory and prefix the filename withLCK.. . Use the
ttyunlock () function to remove this lock.

The following flags may be passed inflags :

PIDLOCK_NONBLOCK
The function should return immediately when a lock is held by another active
process. Otherwisethe function will wait (forever, if necessary) for the lock to be
freed.

PIDLOCK_USEHOSTNAME
The hostname should be compared against the hostname in the second line of the file
(if present), and if they differ, no attempt at checking for a living process holding the
lock will be made, and the lockfile will never be deleted. (Theprocess is assumed to

NetBSD 3.0 March 19, 2006 1

PIDLOCK (3) NetBSD Library Functions Manual PIDLOCK (3)

be alive.) Thisis used for locking on NFS or other remote filesystems. (The function
will never create a lock ifPIDLOCK_USEHOSTNAMEis specified and no hostname
is present.)

If locker is non-null, it will contain the PID of the locking process, if there is one, on return.

If info is non-null and the lock succeeds, the string it points to will be written as the third line of the lock
file.

RETURN VALUES
Zero is returned if the operation was successful; on an error a -1 is returned and a standard error code is left
in the global locationerrno.

ERRORS
In addition to the errors that are returned fromstat (2), open (2), read (2), write (2), and link (2),
pidlock () or ttylock () can seterrno to the following values on failure:

[EWOULDBLOCK] Another running process has a lock and thePIDLOCK_NONBLOCKflag was specified.

[EFTYPE] The tty specified inttylock () is not a character special device.

HISTORY
Thepidlock () andttylock () functions appeared inNetBSD 1.3.

AUTHORS
Curt Sampson〈cjs@NetBSD.org〉.

BUGS
The lockfile format breaks if a pid is longer than ten digits when printed in decimal form.

The PID returned will be the pid of the locker on the remote machine ifPIDLOCK_USEHOSTNAMEis speci-
fied, but there is no indication that this is not on the local machine.

NetBSD 3.0 March 19, 2006 2

PMC (3) NetBSD Library Functions Manual PMC (3)

NAME
pmc_configure_counter , pmc_start_counter , pmc_stop_counter ,
pmc_get_num_counters , pmc_get_counter_class , pmc_get_counter_type ,
pmc_get_counter_value , pmc_get_accumulated_counter_value ,
pmc_get_counter_class_name , pmc_get_counter_type_name ,
pmc_get_counter_event_name , pmc_get_counter_event_list — performance counter
interface library

LIBRARY
Performance Counters Library (libpmc, −lpmc)

SYNOPSIS
#include <pmc.h>

int
pmc_configure_counter (int ctr , const char ∗evname , pmc_ctr_t reset_val ,

uint32_t flags);

int
pmc_start_counter (int ctr);

int
pmc_stop_counter (int ctr);

int
pmc_get_num_counters (void);

int
pmc_get_counter_class (void);

int
pmc_get_counter_type (int ctr , int ∗typep);

int
pmc_get_counter_value (int ctr , uint64_t ∗valp);

int
pmc_get_accumulated_counter_value (int ctr , uint64_t ∗valp);

const char ∗
pmc_get_counter_class_name (int class);

const char ∗
pmc_get_counter_type_name (int type);

const char ∗
pmc_get_counter_event_name (pmc_evid_t event);

const struct pmc_event ∗
pmc_get_counter_event_list (void);

DESCRIPTION
Thepmc library is an interface to performance monitoring counters available on some CPUs.

The pmc library can count events on the following CPU families. Eachsecond-level entry describes a per-
formance counter class.A giv en class may apply to multiple individual CPU models. Each class has one or
more counter types.A CPU may have more than one counter of a given type. Referto the corresponding
processor programmer’s manual for more information about individual events.

NetBSD 3.0 August 8, 2002 1

PMC (3) NetBSD Library Functions Manual PMC (3)

• ARM

• Intel i80200(PMC_CLASS_I80200)

There are two types of counters available in this class:

PMC_TYPE_I80200_CCNT cycle counter

PMC_TYPE_I80200_PMCx performance counter

The following events may be counted by a counter of type PMC_TYPE_I80200_CCNT:

clock
clock-div-64

The following events may be counted by a counter of type PMC_TYPE_I80200_PMCx:

insfetch-miss
insfetch-stall
datadep-stall
itlb-miss
dtlb-miss
branch-taken
branch-mispredicted
instruction-executed
dcachebufffull-stall-time
dcachebufffull-stall-count
dcache-access
dcache-miss
dcache-writeback
swchange-pc
bcu-mem-request
bcu-queue-full
bcu-queue-drain
bcu-ecc-no-elog
bcu-1bit-error
narrow-ecc-caused-rmw

• i386

• Intel i586 (PMC_CLASS_I586)

There are two types of counters available in this class:

PMC_TYPE_I586_TSC cycle counter

PMC_TYPE_I586_PMCx performance counter

The following events may be counted by a counter of type PMC_TYPE_I586_PMCx:

tlb-data-miss
tlb-ins-miss
l1cache-ins-miss
l1cache-data-miss
l1cache-data-miss-read
l1cache-data-miss-write
l1cache-writeback

NetBSD 3.0 August 8, 2002 2

PMC (3) NetBSD Library Functions Manual PMC (3)

l1cache-writeback-hit
l2cache-data-snoop
l2cache-data-snoop-hit
mem-read
mem-write
mem-access
mem-access-both-pipes
mem-bank-conflicts
mem-misalign-ref
mem-uncached-read
seg-load-any
branch
branch-btb-hit
branch-taken
ins-read
ins-pipeline-flush
ins-executed
ins-executed-vpipe
ins-stall-agi
ins-stall-write
ins-stall-data
ins-stall-writeline
bus-utilization
bus-locked
bus-io-cycle
fpu-flops
int-hw
break-match0
break-match1
break-match2
break-match3

• Intel i686 (PMC_CLASS_I686)

There are two types of counters available in this class:

PMC_TYPE_I686_TSC cycle counter

PMC_TYPE_I686_PMCx performance counter

The following events may be counted by a counter of type PMC_TYPE_I686_PMCx:

mem-refs
l1cache-lines
l1cache-mlines
l1cache-mlines-evict
l1cache-miss-wait
ins-fetch
ins-fetch-misses
itlb-misses
insfetch-mem-stall
insfetch-decode-stall

NetBSD 3.0 August 8, 2002 3

PMC (3) NetBSD Library Functions Manual PMC (3)

l2cache-insfetch
l2cache-data-loads
l2cache-data-stores
l2cache-lines
l2cache-lines-evict
l2cache-mlines
l2cache-mlines-evict
l2cache-reqs
l2cache-addr-strobes
l2cache-data-busy
l2cache-data-busy-read
bus-drdy-clocks-self
bus-drdy-clocks-any
bus-lock-clocks-self
bus-lock-clocks-any
bus-req-outstanding-self
bus-req-outstanding-any
bus-burst-reads-self
bus-burst-reads-any
bus-read-for-ownership-self
bus-read-for-ownership-any
bus-write-back-self
bus-write-back-any
bus-ins-fetches-self
bus-ins-fetches-any
bus-invalidates-self
bus-invalidates-any
bus-partial-writes-self
bus-partial-writes-any
bus-partial-trans-self
bus-partial-trans-any
bus-io-trans-self
bus-io-trans-any
bus-deferred-trans-self
bus-deferred-trans-any
bus-burst-trans-self
bus-burst-trans-any
bus-total-trans-self
bus-total-trans-any
bus-mem-trans-self
bus-mem-trans-any
bus-recv-cycles
bus-bnr-cycles
bus-hit-cycles
bus-hitm-cycles
bus-snoop-stall
fpu-flops
fpu-comp-ops
fpu-except-assist

NetBSD 3.0 August 8, 2002 4

PMC (3) NetBSD Library Functions Manual PMC (3)

fpu-mul
fpu-div
fpu-div-busy
mem-sb-blocks
mem-sb-drains
mem-misalign-ref
ins-pref-dispatch-nta
ins-pref-dispatch-t1
ins-pref-dispatch-t2
ins-pref-dispatch-weak
ins-pref-miss-nta
ins-pref-miss-t1
ins-pref-miss-t2
ins-pref-miss-weak
ins-retired
uops-retired
ins-decoded
ins-stream-retired-packed-scalar
ins-stream-retired-scalar
ins-stream-comp-retired-packed-scalar
ins-stream-comp-retired-scalar
int-hw
int-cycles-masked
int-cycles-masked-pending
branch-retired
branch-miss-retired
branch-taken-retired
branch-taken-mispred-retired
branch-decoded
branch-btb-miss
branch-bogus
branch-baclear
stall-resource
stall-partial
seg-loads
unhalted-cycles
mmx-exec
mmx-sat-exec
mmx-uops-exec
mmx-exec-packed-mul
mmx-exec-packed-shift
mmx-exec-pack-ops
mmx-exec-unpack-ops
mmx-exec-packed-logical
mmx-exec-packed-arith
mmx-trans-mmx-float
mmx-trans-float-mmx
mmx-assist
mmx-retire

NetBSD 3.0 August 8, 2002 5

PMC (3) NetBSD Library Functions Manual PMC (3)

seg-rename-stalls-es
seg-rename-stalls-ds
seg-rename-stalls-fs
seg-rename-stalls-gs
seg-rename-stalls-all
seg-rename-es
seg-rename-ds
seg-rename-fs
seg-rename-gs
seg-rename-all
seg-rename-retire

• AMD Athlon / K7 (PMC_CLASS_K7)

There are two types of counters available in this class:

PMC_TYPE_K7_TSC cycle counter

PMC_TYPE_K7_PMCx performance counter

The following events may be counted by a counter of type PMC_TYPE_K7_PMCx:

seg-load-all
seg-load-es
seg-load-cs
seg-load-ss
seg-load-ds
seg-load-fs
seg-load-gs
seg-load-hs
seg-load-stall
l1cache-access
l1cache-miss
l1cache-refill
l1cache-refill-invalid
l1cache-refill-shared
l1cache-refill-exclusive
l1cache-refill-owner
l1cache-refill-modified
l1cache-load
l1cache-load-invalid
l1cache-load-shared
l1cache-load-exclusive
l1cache-load-owner
l1cache-load-modified
l1cache-writeback
l1cache-writeback-invalid
l1cache-writeback-shared
l1cache-writeback-exclusive
l1cache-writeback-owner
l1cache-writeback-modified
l2cache-access

NetBSD 3.0 August 8, 2002 6

PMC (3) NetBSD Library Functions Manual PMC (3)

l2cache-tag-read
l2cache-tag-write
l2cache-inst-read
l2cache-inst-load
l2cache-data-store
l2cache-data-loadmem
l2cache-data-write
l2cache-data-move
l2cache-access-busy
l2cache-hit
l2cache-miss
mem-misalign-ref
mem-access
mem-access-uc
mem-access-wc
mem-access-wt
mem-access-wp
mem-access-wb
ins-fetch
ins-fetch-miss
ins-refill-l2
ins-refill-mem
ins-fetch-stall
ins-retired
ins-empty
itlb-miss-l1
itlb-miss-l2
ops-retired
branch-retired
branch-miss-retired
branch-taken-retired
branch-taken-miss-retired
branch-far-retired
branch-resync-retired
branch-near-retired
branch-near-miss-retired
branch-indirect-miss-retired
int-hw
int-cycles-masked
int-cycles-masked-pending
break-match0
break-match1
break-match2
break-match3

Thepmc library maintains a mapping between event names and the event selector used by the CPU’s perfor-
mance monitoring hardware. Themapping is described by the following structure:

struct pmc_event {
const char ∗name;
pmc_evid_t val;

};

NetBSD 3.0 August 8, 2002 7

PMC (3) NetBSD Library Functions Manual PMC (3)

Thepmc_configure_counter () function configures the counterctr to count the event evname. The
initial value of the counter will be set toreset_val , and this value will be loaded back into the counter
each time it overflows. Thereare currently no flags defined for theflags argument.

Thepmc_start_counter () function enables counting on counterctr .

Thepmc_stop_counter () function disables counting on counterctr .

Thepmc_get_num_counters () function returns the number of counters present in the CPU.

Thepmc_get_counter_class () function returns the counter class of the CPU.

Thepmc_get_counter_type () function places the counter type of counterctr into ∗typep .

The pmc_get_counter_value () function places the total number of events counted by counterctr
into ∗valp .

The pmc_get_accumulated_counter_value () function places the total number of events counted
for the current process and all of its children by counterctr into ∗valp .

Thepmc_get_counter_class_name () function returns the name of the counter classclassval .

Thepmc_get_counter_type_name () function returns the name of the counter typetype .

The pmc_get_counter_event_name () function returns the name of the event event for the current
CPU’s performance counter class.

The pmc_get_counter_event_list () function returns an array ofpmc_eventstructures, listing the
supported event types for the CPU. The array is terminated by and entry who’snamemember is NULL.

RETURN VALUES
The pmc_configure_counter (), pmc_start_counter (), pmc_stop_counter (),
pmc_get_counter_type (), pmc_get_counter_value (), and
pmc_get_accumulated_counter_value () functions return 0 to indicate success and −1 to indicate
failure, in which caseerrno (2) will be set to indicate the mode of failure.

The pmc_get_counter_class_name (), pmc_get_counter_type_name (),
pmc_get_counter_event_name (), and pmc_get_counter_event_list () functions return
NULL and seterrno (2) to indicate failure.

SEE ALSO
pmc(1), pmc_control (2), pmc_get_info (2), pmc(9)

HISTORY
Thepmc library first appeared inNetBSD 2.0.

AUTHORS
The pmc library was written by Jason R. Thorpe〈thorpej@wasabisystems.com〉 and contributed by Wasabi
Systems, Inc.

NetBSD 3.0 August 8, 2002 8

POPEN (3) NetBSD Library Functions Manual POPEN (3)

NAME
popen , pclose — processI/O

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

FILE ∗
popen (const char ∗command, const char ∗type);

int
pclose (FILE ∗stream);

DESCRIPTION
The popen () function “opens” a process by creating an IPC connection, forking, and invoking the shell.
Historically, popen was implemented with a unidirectional pipe; hence many implementations ofpopen
only allow the type argument to specify reading or writing, not both.Sincepopen is now implemented
using sockets, thetype may request a bidirectional data flow. The type argument is a pointer to a null-ter-
minated string which must be ‘r ’ f or reading, ‘w’ f or writing, or ‘r+ ’ f or reading and writing.

Thecommandargument is a pointer to a null-terminated string containing a shell command line. This com-
mand is passed to/bin/sh using the−c flag; interpretation, if any, is performed by the shell.

The return value frompopen () is a normal standardI/O stream in all respects save that it must be closed
with pclose () rather thanfclose (). Writing to such a stream writes to the standard input of the com-
mand; the command’s standard output is the same as that of the process that calledpopen (), unless this is
altered by the command itself.Conversely, reading from a “popened” stream reads the command’s standard
output, and the command’s standard input is the same as that of the process that calledpopen ().

Note that outputpopen () streams are fully buffered by default.

Thepclose () function waits for the associated process to terminate and returns the exit status of the com-
mand as returned bywait4 ().

RETURN VALUES
Thepopen () function returnsNULL if the fork (2), pipe (2), orsocketpair (2) calls fail, or if it cannot
allocate memory.

Thepclose () function returns −1 ifstream is not associated with a “popened” command, ifstream has
already been “pclosed”, or ifwait4 (2) returns an error.

ERRORS
Thepopen () function does not reliably seterrno.

SEE ALSO
sh (1), fork (2), pipe (2), socketpair (2), wait4 (2), fclose (3), fflush (3), fopen (3),
shquote (3), stdio (3), system (3)

STANDARDS
Thepopen () andpclose () functions conform toIEEE Std 1003.2-1992 (“POSIX.2”).

NetBSD 3.0 August 2, 2007 1

POPEN (3) NetBSD Library Functions Manual POPEN (3)

HISTORY
A popen () and apclose () function appeared in Version 7AT&T UNIX .

BUGS
Since the standard input of a command opened for reading shares its seek offset with the process that called
popen (), if the original process has done a buffered read, the command’s input position may not be as
expected. Similarly, the output from a command opened for writing may become intermingled with that of
the original process. The latter can be avoided by callingfflush (3) beforepopen ().

Failure to execute the shell is indistinguishable from the shell’s failure to execute command, or an immediate
exit of the command. The only hint is an exit status of 127.

Thepopen () argument always callssh (1), never callscsh (1).

NetBSD 3.0 August 2, 2007 2

POSIX_MEMALIGN (3) NetBSD Library Functions Manual POSIX_MEMALIGN (3)

NAME
posix_memalign — aligned memory allocation

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
posix_memalign (void ∗∗ptr , size_t alignment , size_t size);

DESCRIPTION
Theposix_memalign () function allocatessize bytes of memory such that the allocation’s base address
is an even multiple of alignment , and returns the allocation in the value pointed to byptr .

The requestedalignment must be a power of 2 at least as large assizeof (void ∗).

Memory that is allocated viaposix_memalign () can be used as an argument in subsequent calls to
realloc (3) andfree (3).

RETURN VALUES
Theposix_memalign () function returns the value 0 if successful; otherwise it returns an error value.

ERRORS
Theposix_memalign () function will fail if:

[EINVAL] The alignment parameter is not a power of 2 at least as large assizeof (void
∗).

[ENOMEM] Memory allocation error.

SEE ALSO
free (3), malloc (3), realloc (3), valloc (3)

STANDARDS
Theposix_memalign () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 November 19, 2007 1

POSIX_OPENPT (3) NetBSD Library Functions Manual POSIX_OPENPT (3)

NAME
posix_openpt — open a pseudo-terminal device

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>
#include <fcntl.h>

int
posix_openpt (int oflag);

DESCRIPTION
posix_openpt () Searches for an unused master pseudo-terminal device, opens it, and returns a file
descriptor associated the now used pseudo-terminal device. Theoflag argument has the same meaning as
in theopen (2) call.

RETURN VALUES
If successful,posix_openpt () returns a non-negative integer, which corresponds to a file descriptor point-
ing to the master pseudo-terminal device. Otherwise,a value of −1 is returned anderrno is set to indicate the
error.

SEE ALSO
ioctl (2), open (2), grantpt (3), ptsname (3), unlockpt (3)

RATIONALE
The standards committee did not want to directly expose the cloning device, thus decided to wrap the func-
tionality in this function. The equivalent code would be:

int
posix_openpt(int oflag) {

return open("/dev/ptmx", oflag);
}

STANDARDS
Theposix_openpt () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 May 25, 2004 1

PRINTF (3) NetBSD Library Functions Manual PRINTF (3)

NAME
printf , fprintf , sprintf , snprintf , asprintf , vprintf , vfprintf , vsprintf ,
vsnprintf , vasprintf — formatted output conversion

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

int
printf (const char ∗ restrict format , . . .);

int
fprintf (FILE ∗ restrict stream , const char ∗ restrict format , . . .);

int
sprintf (char ∗ restrict str , const char ∗ restrict format , . . .);

int
snprintf (char ∗ restrict str , size_t size , const char ∗ restrict format ,

. . .);

int
asprintf (char ∗∗ restrict ret , const char ∗ restrict format , . . .);

#include <stdarg.h>

int
vprintf (const char ∗ restrict format , va_list ap);

int
vfprintf (FILE ∗ restrict stream , const char ∗ restrict format , va_list ap);

int
vsprintf (char ∗ restrict str , const char ∗ restrict format , va_list ap);

int
vsnprintf (char ∗ restrict str , size_t size , const char ∗ restrict format ,

va_list ap);

int
vasprintf (char ∗∗ restrict ret , const char ∗ restrict format , va_list ap);

DESCRIPTION
The printf () family of functions produces output according to aformat as described below. The
printf () andvprintf () functions write output tostdout, the standard output stream;fprintf () and
vfprintf () write output to the given output stream ; sprintf (), snprintf (), vsprintf (), and
vsnprintf () write to the character stringstr ; and asprintf () andvasprintf () write to a dynami-
cally allocated string that is stored inret .

These functions write the output under the control of aformat string that specifies how subsequent argu-
ments (or arguments accessed via the variable-length argument facilities ofstdarg (3)) are converted for
output.

These functions return the number of characters printed (not including the trailing ‘\0 ’ used to end output to
strings). Ifan output error was encountered, these functions shall return a negative value.

NetBSD 3.0 June 9, 2007 1

PRINTF (3) NetBSD Library Functions Manual PRINTF (3)

asprintf () andvasprintf () return a pointer to a buffer sufficiently large to hold the string in theret
argument. Thispointer should be passed tofree (3) to release the allocated storage when it is no longer
needed. Ifsufficient space cannot be allocated, these functions will return −1 and setret to be aNULL
pointer. Please note that these functions are not standardized, and not all implementations can be assumed to
set theret argument toNULLon error. It is more portable to check for a return value of −1 instead.

snprintf () andvsnprintf () will write at mostsize −1 of the characters printed into the output string
(the size ’th character then gets the terminating ‘\0 ’); if the return value is greater than or equal to the
size argument, the string was too short and some of the printed characters were discarded.If size is zero,
nothing is written andstr may be aNULLpointer.

sprintf () andvsprintf () effectively assume an infinitesize .

The format string is composed of zero or more directives: ordinary characters (not%), which are copied
unchanged to the output stream; and conversion specifications, each of which results in fetching zero or more
subsequent arguments. Eachconversion specification is introduced by the character%. The arguments must
correspond properly (after type promotion) with the conversion specifier. After the%, the following appear
in sequence:

• An optional field, consisting of a decimal digit string followed by a$, specifying the next argument to
access. Ifthis field is not provided, the argument following the last argument accessed will be used.
Arguments are numbered starting at1. If unaccessed arguments in the format string are interspersed
with ones that are accessed the results will be indeterminate.

• Zero or more of the following flags:

‘#’ The value should be converted to an “alternate form”.For c , d, i , n, p, s , and u conver-
sions, this option has no effect. For o conversions, the precision of the number is increased to
force the first character of the output string to a zero (except if a zero value is printed with an
explicit precision of zero).For x andX conversions, a non-zero result has the string ‘0x ’ (or
‘0X’ f or X conversions) prepended to it.For a, A, e, E, f , F, g, and Gconversions, the result
will always contain a decimal point, even if no digits follow it (normally, a decimal point
appears in the results of those conversions only if a digit follows). For g andGconversions,
trailing zeros are not removed from the result as they would otherwise be.

‘0’ (zero) Zero padding.For all conversions exceptn, the converted value is padded on the left with
zeros rather than blanks. If a precision is given with a numeric conversion (d, i , o, u, i , x ,
andX), the0 flag is ignored.

‘−’ A neg ative field width flag; the converted value is to be left adjusted on the field boundary.
Except forn conversions, the converted value is padded on the right with blanks, rather than
on the left with blanks or zeros.A ‘ −’ overrides a ‘0’ if b oth are given.

‘ ’ (space) A blank should be left before a positive number produced by a signed conversion (a, A d, e,
E, f , F, g, G, or i).

‘+’ A sign must always be placed before a number produced by a signed conversion. A‘+’ over-
rides a space if both are used.

‘ ’ ’ Decimal conversions (d, u, or i) or the integral portion of a floating point conversion (f or
F) should be grouped and separated by thousands using the non-monetary separator returned
by localeconv (3).

• An optional decimal digit string specifying a minimum field width.If the converted value has fewer
characters than the field width, it will be padded with spaces on the left (or right, if the left-adjustment
flag has been given) to fill out the field width.

NetBSD 3.0 June 9, 2007 2

PRINTF (3) NetBSD Library Functions Manual PRINTF (3)

• An optional precision, in the form of a period ‘. ’ f ollowed by an optional digit string.If the digit string
is omitted, the precision is taken as zero. This gives the minimum number of digits to appear ford, i , o,
u, x , and X conversions, the number of digits to appear after the decimal-point fora, A, e, E, f , and F
conversions, the maximum number of significant digits forg andGconversions, or the maximum number
of characters to be printed from a string fors conversions.

• An optional length modifier, that specifies the size of the argument. Thefollowing length modifiers are
valid for thed, i , n, o, u, x , or X conversion:

Modifier d, i o , u, x , X n
hh signed char unsigned char signed char ∗
h short unsigned short short ∗
l (ell) long unsigned long long ∗
ll (ell ell) long long unsigned long long long long ∗
j intmax_t uintmax_t intmax_t ∗
t ptrdiff_t (see note) ptrdiff_t ∗
z (see note) size_t (see note)
q (deprecated) quad_t u_quad_t quad_t ∗

Note: thet modifier, when applied to ao, u, x , or X conversion, indicates that the argument is of an
unsigned type equivalent in size to aptrdiff_t . Thez modifier, when applied to ad or i conversion,
indicates that the argument is of a signed type equivalent in size to asize_t . Similarly, when applied
to ann conversion, it indicates that the argument is a pointer to a signed type equivalent in size to a
size_t .

The following length modifier is valid for thea, A, e, E, f , F, g, or Gconversion:

Modifier a, A, e, E, f , F, g, G
l (ell) double (ignored, same behavior as without it)
L long double

The following length modifier is valid for thec or s conversion:

Modifier c s
l (ell) wint_t wchar_t ∗

• A character that specifies the type of conversion to be applied.

A field width or precision, or both, may be indicated by an asterisk ‘∗’ or an asterisk followed by one or
more decimal digits and a ‘$’ i nstead of a digit string. In this case, anint argument supplies the field width
or precision.A neg ative field width is treated as a left adjustment flag followed by a positive field width; a
negative precision is treated as though it were missing. If a single format directive mixes positional(nn$)
and non-positional arguments, the results are undefined.

The conversion specifiers and their meanings are:

diouxX The int (or appropriate variant) argument is converted to signed decimal (d and i), unsigned
octal (o) , unsigned decimal(u) , or unsigned hexadecimal (x and X) notation. Theletters
“abcdef ” are used forx conversions; the letters “ABCDEF” are used forX conversions. Thepre-
cision, if any, giv es the minimum number of digits that must appear; if the converted value requires
fewer digits, it is padded on the left with zeros.

DOU The long int argument is converted to signed decimal, unsigned octal, or unsigned decimal, as
if the format had beenld , lo , or lu respectively. These conversion characters are deprecated,
and will eventually disappear.

NetBSD 3.0 June 9, 2007 3

PRINTF (3) NetBSD Library Functions Manual PRINTF (3)

eE The double argument is rounded and converted in the style [−]d. ddde±dd where there is one
digit before the decimal-point character and the number of digits after it is equal to the precision; if
the precision is missing, it is taken as 6; if the precision is zero, no decimal-point character
appears. AnE conversion uses the letter ‘E’ (rather than ‘e’) to introduce the exponent. The
exponent always contains at least two digits; if the value is zero, the exponent is 00.

For a, A, e, E, f , F, g, and G conversions, positive and negative infinity are represented asinf
and-inf respectively when using the lowercase conversion character, and INF and-INF respec-
tively when using the uppercase conversion character. Similarly, NaN is represented asnan when
using the lowercase conversion, andNANwhen using the uppercase conversion.

fF The double argument is rounded and converted to decimal notation in the style [−]ddd . ddd ,
where the number of digits after the decimal-point character is equal to the precision specification.
If the precision is missing, it is taken as 6; if the precision is explicitly zero, no decimal-point char-
acter appears. If a decimal point appears, at least one digit appears before it.

gG Thedouble argument is converted in stylef or e (or in styleF or E for Gconversions). Thepre-
cision specifies the number of significant digits. If the precision is missing, 6 digits are given; if
the precision is zero, it is treated as 1.Style e is used if the exponent from its conversion is less
than −4 or greater than or equal to the precision.Trailing zeros are removed from the fractional
part of the result; a decimal point appears only if it is followed by at least one digit.

aA The double argument is rounded and converted to hexadecimal notation in the style
[−]0x h. hhhp [±]d, where the number of digits after the hexadecimal-point character is equal to
the precision specification. If the precision is missing, it is taken as enough to represent the float-
ing-point number exactly, and no rounding occurs. If the precision is zero, no hexadecimal-point
character appears.The p is a literal character ‘p’, and the exponent consists of a positive or neg-
ative sign followed by a decimal number representing an exponent of 2.TheA conversion uses the
prefix “0X” (rather than “0x ”), the letters “ABCDEF” (rather than “abcdef ”) to represent the hex
digits, and the letter ‘P’ (rather than ‘p’) to separate the mantissa and exponent.

Note that there may be multiple valid ways to represent floating-point numbers in this hexadecimal
format. For example,0x3.24p+0 , 0x6.48p-1 and0xc.9p-2 are all equivalent. Theformat
chosen depends on the internal representation of the number, but the implementation guarantees
that the length of the mantissa will be minimized. Zeroes are always represented with a mantissa
of 0 (preceded by a ‘- ’ if appropriate) and an exponent of+0.

C Treated asc with thel (ell) modifier.

c The int argument is converted to anunsigned char , and the resulting character is written.

If the l (ell) modifier is used, thewint_t argument shall be converted to awchar_t , and the
(potentially multi-byte) sequence representing the single wide character is written, including any
shift sequences.If a shift sequence is used, the shift state is also restored to the original state after
the character.

S Treated ass with thel (ell) modifier.

s The char ∗ argument is expected to be a pointer to an array of character type (pointer to a
string). Charactersfrom the array are written up to (but not including) a terminatingNULcharac-
ter; if a precision is specified, no more than the number specified are written.If a precision is
given, no null character need be present; if the precision is not specified, or is greater than the size
of the array, the array must contain a terminatingNULcharacter.

If the l (ell) modifier is used, thewchar_t ∗ argument is expected to be a pointer to an array of
wide characters (pointer to a wide string).For each wide character in the string, the (potentially
multi-byte) sequence representing the wide character is written, including any shift sequences.If

NetBSD 3.0 June 9, 2007 4

PRINTF (3) NetBSD Library Functions Manual PRINTF (3)

any shift sequence is used, the shift state is also restored to the original state after the string.Wide
characters from the array are written up to (but not including) a terminating wideNULcharacter; if
a precision is specified, no more than the number of bytes specified are written (including shift
sequences). Partial characters are never written. If a precision is given, no null character need be
present; if the precision is not specified, or is greater than the number of bytes required to render
the multibyte representation of the string, the array must contain a terminating wideNULcharacter.

p Thevoid ∗ pointer argument is printed in hexadecimal (as if by%#xor %#lx).

n The number of characters written so far is stored into the integer indicated by theint ∗ (or vari-
ant) pointer argument. Noargument is converted.

% A ‘ %’ is written. Noargument is converted. Thecomplete conversion specification is ‘%%’.

The decimal point character is defined in the program’s locale (categoryLC_NUMERIC).

In no case does a non-existent or small field width cause truncation of a numeric field; if the result of a con-
version is wider than the field width, the field is expanded to contain the conversion result.

EXAMPLES
To print a date and time in the form “Sunday, July 3, 10:02 ”, where weekday and month are
pointers to strings:

#include <stdio.h>
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);

To print π to five decimal places:

#include <math.h>
#include <stdio.h>
fprintf(stdout, "pi = %.5f\n", 4 ∗ atan(1.0));

To allocate a 128 byte string and print into it:

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
char ∗newfmt(const char ∗fmt, ...)
{

char ∗p;
va_list ap;
if ((p = malloc(128)) == NULL)

return (NULL);
va_start(ap, fmt);
(void) vsnprintf(p, 128, fmt, ap);
va_end(ap);
return (p);

}

SECURITY CONSIDERATIONS
The sprintf () andvsprintf () functions are easily misused in a manner which enables malicious users
to arbitrarily change a running program’s functionality through a buffer overflow attack. Because
sprintf () andvsprintf () assume an infinitely long string, callers must be careful not to overflow the
actual space; this is often hard to assure.For safety, programmers should use thesnprintf () interface
instead. For example:

NetBSD 3.0 June 9, 2007 5

PRINTF (3) NetBSD Library Functions Manual PRINTF (3)

void
foo(const char ∗arbitrary_string, const char ∗and_another)
{

char onstack[8];

#ifdef BAD
/ ∗

∗ This first sprintf is bad behavior. Do not use sprintf!
∗/

sprintf(onstack, "%s, %s", arbitrary_string, and_another);
#else

/ ∗
∗ The following two lines demonstrate better use of
∗ snprintf().
∗/

snprintf(onstack, sizeof(onstack), "%s, %s", arbitrary_string,
and_another);

#endif
}

Theprintf () andsprintf () family of functions are also easily misused in a manner allowing malicious
users to arbitrarily change a running program’s functionality by either causing the program to print poten-
tially sensitive data “left on the stack”, or causing it to generate a memory fault or bus error by dereferencing
an invalid pointer.

%ncan be used to write arbitrary data to potentially carefully-selected addresses.Programmers are therefore
strongly advised to never pass untrusted strings as theformat argument, as an attacker can put format spec-
ifiers in the string to mangle your stack, leading to a possible security hole.This holds true even if the string
was built using a function like snprintf (), as the resulting string may still contain user-supplied conver-
sion specifiers for later interpolation byprintf ().

Always use the proper secure idiom:

snprintf(buffer, sizeof(buffer), "%s", string);

ERRORS
In addition to the errors documented for thewrite (2) system call, theprintf () family of functions may
fail if:

[EILSEQ] An invalid wide character code was encountered.

[ENOMEM] Insufficient storage space is available.

SEE ALSO
printf (1), fmtcheck (3), printf (9), scanf (3), setlocale (3), wprintf (3)

STANDARDS
Subject to the caveats noted in theBUGS section below, the fprintf (), printf (), sprintf (),
vprintf (), vfprintf (), andvsprintf () functions conform toANSI X3.159-1989 (“ANSI C89”) and
ISO/IEC 9899:1999 (“ISO C99”). With the same reservation, thesnprintf () andvsnprintf () functions
conform toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 June 9, 2007 6

PRINTF (3) NetBSD Library Functions Manual PRINTF (3)

HISTORY
The functionssnprintf () andvsnprintf () first appeared in 4.4BSD. The functionsasprintf () and
vasprintf () are modeled on the ones that first appeared in the GNU C library.

CAVEATS
Becausesprintf () andvsprintf () assume an infinitely long string, callers must be careful not to over-
flow the actual space; this is often impossible to assure.For safety, programmers should use the
snprintf () andasprintf () family of interfaces instead.Unfortunately, thesnprintf () interfaces are
not available on older systems and theasprintf () interfaces are not yet portable.

It is important never to pass a string with user-supplied data as a format without using ‘%s’. An attacker can
put format specifiers in the string to mangle your stack, leading to a possible security hole. This holds true
ev en if you have built the string “by hand” using a function like snprintf (), as the resulting string may
still contain user-supplied conversion specifiers for later interpolation byprintf ().

Be sure to use the proper secure idiom:

snprintf(buffer, sizeof(buffer), "%s", string);

There is no way for printf to know the size of each argument passed. If you use positional arguments you
must ensure that all parameters, up to the last positionally specified parameter, are used in the format string.
This allows for the format string to be parsed for this information.Failure to do this will mean your code is
non-portable and liable to fail.

In this implementation, passing aNULL char ∗ argument to the%s format specifier will output(null)
instead of crashing. Programs that depend on this behavior are non-portable and may crash on other systems
or in the future.

BUGS
The conversion formats%D, %O, and %Uare not standard and are provided only for backward compatibility.
The effect of padding the%pformat with zeros (either by the ‘0’ fl ag or by specifying a precision), and the
benign effect (i.e. none) of the ‘#’ fl ag on%nand%pconversions, as well as other nonsensical combinations
such as%Ld, are not standard; such combinations should be avoided.

Theprintf family of functions do not correctly handle multibyte characters in theformat argument.

NetBSD 3.0 June 9, 2007 7

PROP_ARRAY (3) NetBSDLibrary Functions Manual PROP_ARRAY (3)

NAME
prop_array , prop_array_create , prop_array_create_with_capacity ,
prop_array_copy , prop_array_copy_mutable , prop_array_capacity ,
prop_array_count , prop_array_ensure_capacity , prop_array_iterator ,
prop_array_make_immutable , prop_array_mutable , prop_array_get ,
prop_array_set , prop_array_add , prop_array_remove , prop_array_externalize ,
prop_array_internalize , prop_array_externalize_to_file ,
prop_array_internalize_from_file , prop_array_equals — array property collection
object

LIBRARY
library “libprop”

SYNOPSIS
#include <prop/proplib.h>

prop_array_t
prop_array_create (void);

prop_array_t
prop_array_create_with_capacity (unsigned int capacity);

prop_array_t
prop_array_copy (prop_array_t array);

prop_array_t
prop_array_copy_mutable (prop_array_t array);

unsigned int
prop_array_capacity (prop_array_t array);

unsigned int
prop_array_count (prop_array_t array);

bool
prop_array_ensure_capacity (prop_array_t array , unsigned int capacity);

prop_object_iterator_t
prop_array_iterator (prop_array_t array);

void
prop_array_make_immutable (prop_array_t array);

bool
prop_array_mutable (prop_array_t array);

prop_object_t
prop_array_get (prop_array_t array , unsigned int index);

bool
prop_array_set (prop_array_t array , unsigned int index , prop_object_t obj);

bool
prop_array_add (prop_array_t array , prop_object_t obj);

void
prop_array_remove (prop_array_t array , unsigned int index);

NetBSD 3.0 August 19, 2006 1

PROP_ARRAY (3) NetBSDLibrary Functions Manual PROP_ARRAY (3)

char ∗
prop_array_externalize (prop_array_t array);

prop_array_t
prop_array_internalize (const char ∗xml);

bool
prop_array_externalize_to_file (prop_array_t array , const char ∗path);

prop_array_t
prop_array_internalize_from_file (const char ∗path);

bool
prop_array_equals (prop_array_t array1 , prop_array_t array2);

DESCRIPTION
The prop_array family of functions operate on the array property collection object type. An array is an
ordered set; an iterated array will return objects in the same order with which they were stored.

prop_array_create (void)
Create an empty array. The array initially has no capacity. ReturnsNULLon failure.

prop_array_create_with_capacity (unsigned int capacity)
Create an array with the capacity to storecapacity objects. ReturnsNULLon failure.

prop_array_copy (prop_array_t array)
Copy an array. The new array has an initial capacity equal to the number of objects stored in the
array being copied. The new array contains references to the original array’s objects, not copies of
those objects(i.e. a shallow copy is made) . If the original array is immutable, the resulting array is
also immutable. ReturnsNULLon failure.

prop_array_copy_mutable (prop_array_t array)
Like prop_array_copy (), except the resulting array is always mutable.

prop_array_capacity (prop_array_t array)
Returns the total capacity of the array, including objects already stored in the array. If the supplied
object isn’t an array, zero is returned.

prop_array_count (prop_array_t array)
Returns the number of objects stored in the array. If the supplied object isn’t an array, zero is
returned.

prop_array_ensure_capacity (prop_array_t array , unsigned int capacity)
Ensure that the array has a total capacity ofcapacity , including objects already stored in the
array. Returnstrue if the capacity of the array is greater or equal tocapacity or if expansion of
the array’s capacity was successful andfalse otherwise.

prop_array_iterator (prop_array_t array)
Create an iterator for the array. The array is retained by the iterator. An array iterator returns the
object references stored in the array. Storing to or removing from the array invalidates any active
iterators for the array. ReturnsNULLon failure.

prop_array_make_immutable (prop_array_t array)
Makearray immutable.

prop_array_mutable (prop_array_t array)
Returnstrue if the array is mutable.

NetBSD 3.0 August 19, 2006 2

PROP_ARRAY (3) NetBSDLibrary Functions Manual PROP_ARRAY (3)

prop_array_get (prop_array_t array , unsigned int index)
Return the object stored at the array indexindex . ReturnsNULLon failure.

prop_array_set (prop_array_t array , unsigned int index , prop_object_t obj)
Store a reference to the objectobj at the array index index . This function is not allowed to create
holes in the array; the caller must either be setting the object just beyond the existing count or
replacing an already existing object reference. The object will be retained by the array. If an exist-
ing object reference is being replaced, that object will be released.Returnstrue if storing the
object was successful andfalse otherwise.

prop_array_add (prop_array_t array , prop_object_t obj)
Add a reference to the objectobj to the array, appending to the end and growing the array’s capac-
ity if necessary. The object will be retained by the array. Returnstrue if storing the object was
successful andfalse otherwise.

During expansion, array’s capacity is augmented by theEXPAND_STEPconstant, as defined in
libprop/prop_array.c file, e.g.

#define EXPAND_STEP 16

prop_array_remove (prop_array_t array , unsigned int index)
Remove the reference to the object stored at array index index . The object will be released and
the array compacted following the removal.

prop_array_equals (prop_array_t array1 , prop_array_t array2)
Returnstrue if the two arrays are equivalent. If at least one of the supplied objects isn’t an array,
false is returned. Note: Objects contained in the array are compared by value, not by reference.

prop_array_externalize (prop_array_t array)
Externalizes an array, returning a NUL-terminated buffer containing the XML representation of the
array. The caller is responsible for freeing the returned buffer. If converting to the external repre-
sentation fails for any reason,NULL is returned.

In user space, the buffer is allocated usingmalloc (3). In the kernel, the buffer is allocated using
malloc (9) using the malloc typeM_TEMP.

prop_array_internalize (const char ∗xml)
Parse the XML representation of a property list in the NUL-terminated buffer xml and return the
corresponding array. ReturnsNULL if parsing fails for any reason.

prop_array_externalize_to_file (prop_array_t array , const char ∗path)
Externalizes an array and writes it to the file specified bypath . The file is saved with the mode
0666 as modified by the process’s file creation mask(seeumask(3)) and is written atomically.
Returnsfalse if externalizing or writing the array fails for any reason.

prop_array_internalize_from_file (const char ∗path)
Reads the XML property list contained in the file specified bypath , internalizes it, and returns the
corresponding array. ReturnsNULLon failure.

SEE ALSO
prop_bool (3), prop_data (3), prop_dictionary (3), prop_number (3), prop_object (3),
prop_string (3), proplib (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 August 19, 2006 3

PROP_ARRAY_UTIL (3) NetBSD Library Functions Manual PROP_ARRAY_UTIL (3)

NAME
prop_array_util , prop_array_get_bool , prop_array_set_bool ,
prop_array_get_int8 , prop_array_get_uint8 , prop_array_set_int8 ,
prop_array_set_uint8 , prop_array_get_int16 , prop_array_get_uint16 ,
prop_array_set_int16 , prop_array_set_uint16 , prop_array_get_int32 ,
prop_array_get_uint32 , prop_array_set_int32 , prop_array_set_uint32 ,
prop_array_get_int64 , prop_array_get_uint64 , prop_array_set_int64 ,
prop_array_set_uint64 , prop_array_get_cstring , prop_array_set_cstring ,
prop_array_get_cstring_nocopy , prop_array_set_cstring_nocopy

LIBRARY
library “libprop”

SYNOPSIS
#include <prop/proplib.h>

bool
prop_array_get_bool (prop_array_t dict , unsigned int indx , bool ∗valp);

bool
prop_array_set_bool (prop_array_t dict , unsigned int indx , bool val);

bool
prop_array_get_int8 (prop_array_t dict , unsigned int indx , int8_t ∗valp);

bool
prop_array_get_uint8 (prop_array_t dict , unsigned int indx , uint8_t ∗valp);

bool
prop_array_set_int8 (prop_array_t dict , unsigned int indx , int8_t val);

bool
prop_array_set_uint8 (prop_array_t dict , unsigned int indx , uint8_t val);

bool
prop_array_get_int16 (prop_array_t dict , unsigned int indx , int16_t ∗valp);

bool
prop_array_get_uint16 (prop_array_t dict , unsigned int indx ,

uint16_t ∗valp);

bool
prop_array_set_int16 (prop_array_t dict , unsigned int indx , int16_t val);

bool
prop_array_set_uint16 (prop_array_t dict , unsigned int indx , uint16_t val);

bool
prop_array_get_int32 (prop_array_t dict , unsigned int indx , int32_t ∗valp);

bool
prop_array_get_uint32 (prop_array_t dict , unsigned int indx ,

uint32_t ∗valp);

bool
prop_array_set_int32 (prop_array_t dict , unsigned int indx , int32_t val);

NetBSD 3.0 June 2, 2008 1

PROP_ARRAY_UTIL (3) NetBSD Library Functions Manual PROP_ARRAY_UTIL (3)

bool
prop_array_set_uint32 (prop_array_t dict , unsigned int indx , uint32_t val);

bool
prop_array_get_int64 (prop_array_t dict , unsigned int indx , int64_t ∗valp);

bool
prop_array_get_uint64 (prop_array_t dict , unsigned int indx ,

uint64_t ∗valp);

bool
prop_array_set_int64 (prop_array_t dict , unsigned int indx , int64_t val);

bool
prop_array_set_uint64 (prop_array_t dict , unsigned int indx , uint64_t val);

bool
prop_array_get_cstring (prop_array_t dict , unsigned int indx , char ∗∗strp);

bool
prop_array_set_cstring (prop_array_t dict , unsigned int indx ,

const char ∗str);

bool
prop_array_get_cstring_nocopy (prop_array_t dict , unsigned int indx ,

const char ∗∗strp);

bool
prop_array_set_cstring_nocopy (prop_array_t dict , unsigned int indx ,

const char ∗strp);

DESCRIPTION
The prop_array_util family of functions are provided to make getting and setting values in arrays
more convenient in some applications.

The getters check the type of the returned object and, in some cases, also ensure that the returned value is
within the range implied by the getter’s value type.

The setters handle object creation and release for the caller.

The prop_array_get_cstring () function returns dynamically allocated memory. See
prop_string (3) for more information.

The prop_array_get_cstring_nocopy () and prop_array_set_cstring_nocopy () func-
tions do not copy the string that is set or returned. Seeprop_string (3) for more information.

RETURN VALUES
The prop_array_util getter functions returntrue if the object exists in the array and the value is in-
range, orfalse otherwise.

The prop_array_util setter functions returntrue if creating the object and storing it in the array is
successful, orfalse otherwise.

SEE ALSO
prop_array (3), prop_bool (3), prop_number (3), proplib (3)

NetBSD 3.0 June 2, 2008 2

PROP_ARRAY_UTIL (3) NetBSD Library Functions Manual PROP_ARRAY_UTIL (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 June 2, 2008 3

PROP_BOOL (3) NetBSD Library Functions Manual PROP_BOOL (3)

NAME
prop_bool , prop_bool_create , prop_bool_copy , prop_bool_true — boolean value prop-
erty object

LIBRARY
library “libprop”

SYNOPSIS
#include <prop/proplib.h>

prop_bool_t
prop_bool_create (bool val);

prop_bool_t
prop_booly_copy (prop_bool_t bool);

bool
prop_bool_true (prop_bool_t bool);

DESCRIPTION
Theprop_bool family of functions operate on a boolean value property object type.

prop_bool_create (bool val)
Create a boolean value object with the valueval .

prop_bool_copy (prop_bool_t bool)
Copy a boolean value object. If the supplied object isn’t a boolean,NULL is returned.

prop_bool_true (prop_bool_t bool)
Returns the value of the boolean value object. If the supplied object isn’t a boolean,false is
returned.

SEE ALSO
prop_array (3), prop_data (3), prop_dictionary (3), prop_number (3), prop_object (3),
prop_string (3), proplib (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 April 22, 2006 1

PROP_DAT A (3) NetBSDLibrary Functions Manual PROP_DAT A (3)

NAME
prop_data , prop_data_create_data , prop_data_create_data_nocopy ,
prop_data_copy , prop_data_size , prop_data_data , prop_data_data_nocopy ,
prop_data_equals , prop_data_equals_data — opaque data value property object

LIBRARY
library “libprop”

SYNOPSIS
#include <prop/proplib.h>

prop_data_t
prop_data_create_data (const void ∗blob , size_t len);

prop_data_t
prop_data_create_data_nocopy (const void ∗blob , size_t len);

prop_data_t
prop_data_copy (prop_data_t data);

void ∗
prop_data_data (prop_data_t data);

size_t
prop_data_size (prop_data_t data);

const void ∗
prop_data_data_nocopy (prop_data_t data);

bool
prop_data_equals (prop_data_t dat1 , prop_data_t dat2);

bool
prop_data_equals_data (prop_data_t data , const void ∗blob , size_t len);

DESCRIPTION
Theprop_data family of functions operate on an opaque data value property object type.

prop_data_create_data (const void ∗blob , size_t len)
Create a data object that contains a copy of blob with sizelen . ReturnsNULLon failure.

prop_data_create_data_nocopy (const void ∗blob , size_t len)
Create a data object that contains a reference toblob with sizelen . ReturnsNULLon failure.

prop_data_copy (prop_data_t data)
Copy a data object.If the data object being copied is an external data reference, then the copy also
references the same external data. ReturnsNULLon failure.

prop_data_size (prop_data_t data)
Returns the size of the data object. If the supplied object isn’t a data object, zero is returned.

prop_data_data (prop_data_t data)
Returns a copy of the data object’s contents. Thecaller is responsible for freeing the returned buffer.
If the supplied object isn’t a data object or if the data container is empty,NULL is returned.

In user space, the buffer is allocated usingmalloc (3). In the kernel, the buffer is allocated using
malloc (9) using the malloc typeM_TEMP.

NetBSD 3.0 April 22, 2006 1

PROP_DAT A (3) NetBSDLibrary Functions Manual PROP_DAT A (3)

prop_data_data_nocopy (prop_data_t data)
Returns an immutable reference to the contents of the data object.If the supplied object isn’t a data
object,NULL is returned.

prop_data_equals (prop_data_t dat1 , prop_data_t dat2)
Returnstrue if the two data objects are equivalent. If at least one of the supplied objects isn’t a
data object,false is returned.

prop_data_equals_data (prop_data_t data , const void ∗blob , size_t len)
Returnstrue if the data object’s value is equivalent toblob with sizelen . If the supplied object
isn’t a data object,false is returned.

SEE ALSO
prop_array (3), prop_bool (3), prop_dictionary (3), prop_number (3), prop_object (3),
prop_string (3), proplib (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 April 22, 2006 2

PROP_DICTIONARY (3) NetBSDLibrary Functions Manual PROP_DICTIONARY (3)

NAME
prop_dictionary , prop_dictionary_create ,
prop_dictionary_create_with_capacity , prop_dictionary_copy ,
prop_dictionary_copy_mutable , prop_dictionary_count ,
prop_dictionary_ensure_capacity , prop_dictionary_iterator ,
prop_dictionary_all_keys , prop_dictionary_make_immutable ,
prop_dictionary_mutable , prop_dictionary_get , prop_dictionary_set ,
prop_dictionary_remove , prop_dictionary_get_keysym ,
prop_dictionary_set_keysym , prop_dictionary_remove_keysym ,
prop_dictionary_externalize , prop_dictionary_internalize ,
prop_dictionary_externalize_to_file ,
prop_dictionary_internalize_from_file , prop_dictionary_equals ,
prop_dictionary_keysym_cstring_nocopy , prop_dictionary_keysym_equals — dic-
tionary property collection object

LIBRARY
library “libprop”

SYNOPSIS
#include <prop/proplib.h>

prop_dictionary_t
prop_dictionary_create (void);

prop_dictionary_t
prop_dictionary_create_with_capacity (unsigned int capacity);

prop_dictionary_t
prop_dictionary_copy (prop_dictionary_t dict);

prop_dictionary_t
prop_dictionary_copy_mutable (prop_dictionary_t dict);

unsigned int
prop_dictionary_count (prop_dictionary_t dict);

bool
prop_dictionary_ensure_capacity (prop_dictionary_t dict ,

unsigned int capacity);

prop_object_iterator_t
prop_dictionary_iterator (prop_dictionary_t dict);

prop_array_t
prop_dictionary_all_keys (prop_dictionary_t dict);

void
prop_dictionary_make_immutable (prop_dictionary_t dict);

bool
prop_dictionary_mutable (prop_dictionary_t dict);

prop_object_t
prop_dictionary_get (prop_dictionary_t dict , const char ∗key);

bool
prop_dictionary_set (prop_dictionary_t dict , const char ∗key ,

prop_object_t obj);

NetBSD 3.0 May 6, 2008 1

PROP_DICTIONARY (3) NetBSDLibrary Functions Manual PROP_DICTIONARY (3)

void
prop_dictionary_remove (prop_dictionary_t dict , const char ∗key);

prop_object_t
prop_dictionary_get_keysym (prop_dictionary_t dict ,

prop_dictionary_keysym_t keysym);

bool
prop_dictionary_set_keysym (prop_dictionary_t dict ,

prop_dictionary_keysym_t keysym , prop_object_t obj);

void
prop_dictionary_remove_keysym (prop_dictionary_t dict ,

prop_dictionary_keysym_t keysym);

bool
prop_dictionary_equals (prop_dictionary_t dict1 , prop_dictionary_t dict2);

const char ∗
prop_dictionary_keysym_cstring_nocopy (prop_dictionary_keysym_t sym);

bool
prop_dictionary_keysym_equals (prop_dictionary_keysym_t keysym1 ,

prop_dictionary_keysym_t keysym2);

char ∗
prop_dictionary_externalize (prop_dictionary_t dict);

prop_dictionary_t
prop_dictionary_internalize (const char ∗xml);

bool
prop_dictionary_externalize_to_file (prop_dictionary_t dict ,

const char ∗path);

prop_dictionary_t
prop_dictionary_internalize_from_file (const char ∗path);

DESCRIPTION
The prop_dictionary family of functions operate on the dictionary property collection object type.A
dictionary is an unordered set of objects stored as key-value pairs.

prop_dictionary_create (void)
Create an empty dictionary. The dictionary initially has no capacity. ReturnsNULLon failure.

prop_dictionary_create_with_capacity (unsigned int capacity)
Create a dictionary with the capacity to storecapacity objects. ReturnsNULLon failure.

prop_dictionary_copy (prop_dictionary_t dict)
Copy a dictionary. The new dictionary has an initial capacity equal to the number of objects stored
in the dictionary being copied. The new dictionary contains references to the original dictionary’s
objects, not copies of those objects(i.e. a shallow copy is made) . If the original dictionary is
immutable, the resulting dictionary is also immutable.

prop_dictionary_copy_mutable (prop_dictionary_t dict)
Like prop_dictionary_copy (), except the resulting dictionary is always mutable.

NetBSD 3.0 May 6, 2008 2

PROP_DICTIONARY (3) NetBSDLibrary Functions Manual PROP_DICTIONARY (3)

prop_dictionary_count (prop_dictionary_t dict)
Returns the number of objects stored in the dictionary.

prop_dictionary_ensure_capacity (prop_dictionary_t dict)
Ensure that the dictionary has a total capacity ofcapacity , including objects already stored in the
dictionary. Returnstrue if the capacity of the dictionary is greater or equal tocapacity or if the
expansion of the dictionary’s capacity was successful andfalse otherwise. Ifthe supplied object
isn’t a dictionary,false is returned.

prop_dictionary_iterator (prop_dictionary_t dict)
Create an iterator for the dictionary. The dictionary is retained by the iterator. A dictionary iterator
returns the key symbols used to look up objects stored in the dictionary; to get the object itself, a
dictionary lookup using this key symbol must be performed. Storing to or removing from the dictio-
nary invalidates any active iterators for the dictionary. ReturnsNULLon failure.

prop_dictionary_all_keys (prop_dictionary_t dict)
Return an array of all of the dictionary key symbols (prop_dictionary_keysym_t) in the dictionary.
This provides a way to iterate over the items in the dictionary while retaining the ability to mutate
the dictionary; instead of iterating over the dictionary itself, iterate over the array of keys. Thecaller
is responsible for releasing the array. ReturnsNULLon failure.

prop_dictionary_make_immutable (prop_dictionary_t dict)
Makedict immutable.

prop_dictionary_mutable (prop_dictionary_t dict)
Returnstrue if the dictionary is mutable.

prop_dictionary_get (prop_dictionary_t dict , const char ∗key)
Return the object stored in the dictionary with the key key . If no object is stored with the specified
key, NULL is returned.

prop_dictionary_set (prop_dictionary_t dict , const char ∗key , prop_object_t
obj)
Store a reference to the objectobj with the key key . The object will be retained by the dictionary.
If the key already exists in the dictionary, the object associated with that key will be released and
replaced with the new object. Returnstrue if storing the object was successful andfalse other-
wise.

prop_dictionary_remove (prop_dictionary_t dict , const char ∗key)
Remove the reference to the object stored in the dictionary with the key key . The object will be
released.

prop_dictionary_get_keysym (prop_dictionary_t dict ,
prop_dictionary_keysym_t sym)
Like prop_dictionary_get (), but the lookup is performed using a key symbol returned by a
dictionary iterator. The results are undefined if the iterator used to obtain the key symbol is not
associated withdict .

prop_dictionary_set_keysym (prop_dictionary_t dict ,
prop_dictionary_keysym_t sym , prop_object_t obj)
Like prop_dictionary_set (), but the lookup of the object to replace is performed using a key
symbol returned by a dictionary iterator. The results are undefined if the iterator used to obtain the
key symbol is not associated withdict .

prop_dictionary_remove_keysym (prop_dictionary_t dict ,
prop_dictionary_keysym_t sym)
Like prop_dictionary_remove (), but the lookup of the object to remove is performed using a

NetBSD 3.0 May 6, 2008 3

PROP_DICTIONARY (3) NetBSDLibrary Functions Manual PROP_DICTIONARY (3)

key symbol returned by a dictionary iterator. The results are undefined if the iterator used to obtain
the key symbol is not associated withdict .

prop_dictionary_equals (prop_dictionary_t dict1 , prop_dictionary_t dict2)
Returnstrue if the two dictionaries are equivalent. Note:Objects contained in the dictionary are
compared by value, not by reference.

prop_dictionary_keysym_cstring_nocopy (prop_dictionary_keysym_t keysym)
Returns an immutable reference to the dictionary key symbol’s string value.

prop_dictionary_keysym_equals (prop_dictionary_keysym_t keysym1 ,
prop_dictionary_keysym_t keysym2)
Returnstrue if the two dictionary key symbols are equivalent.

prop_dictionary_externalize (prop_dictionary_t dict)
Externalizes a dictionary, returning a NUL-terminated buffer containing the XML representation of
the dictionary. The caller is responsible for freeing the returned buffer. If converting to the external
representation fails for any reason,NULL is returned.

In user space, the buffer is allocated usingmalloc (3). In the kernel, the buffer is allocated using
malloc (9) using the malloc typeM_TEMP.

prop_dictionary_internalize (const char ∗xml)
Parse the XML representation of a property list in the NUL-terminated buffer xml and return the
corresponding dictionary. ReturnsNULL if parsing fails for any reason.

prop_dictionary_externalize_to_file (prop_dictionary_t dict , const char
∗path)
Externalizes a dictionary and writes it to the file specified bypath . The file is saved with the mode
0666 as modified by the process’s file creation mask(seeumask(3)) and is written atomically.
Returnsfalse if externalizing or writing the dictionary fails for any reason.

prop_dictionary_internalize_from_file (const char ∗path)
Reads the XML property list contained in the file specified bypath , internalizes it, and returns the
corresponding array. ReturnsNULLon failure.

SEE ALSO
prop_array (3), prop_bool (3), prop_data (3), prop_dictionary_util (3), prop_number (3),
prop_object (3), prop_string (3), proplib (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 May 6, 2008 4

PROP_DICTIONARY_UTIL (3) NetBSD Library Functions Manual PROP_DICTIONARY_UTIL (3)

NAME
prop_dictionary_util , prop_dictionary_get_bool , prop_dictionary_set_bool ,
prop_dictionary_get_int8 , prop_dictionary_get_uint8 ,
prop_dictionary_set_int8 , prop_dictionary_set_uint8 ,
prop_dictionary_get_int16 , prop_dictionary_get_uint16 ,
prop_dictionary_set_int16 , prop_dictionary_set_uint16 ,
prop_dictionary_get_int32 , prop_dictionary_get_uint32 ,
prop_dictionary_set_int32 , prop_dictionary_set_uint32 ,
prop_dictionary_get_int64 , prop_dictionary_get_uint64 ,
prop_dictionary_set_int64 , prop_dictionary_set_uint64 ,
prop_dictionary_get_cstring , prop_dictionary_set_cstring ,
prop_dictionary_get_cstring_nocopy , prop_dictionary_set_cstring_nocopy

LIBRARY
library “libprop”

SYNOPSIS
#include <prop/proplib.h>

bool
prop_dictionary_get_bool (prop_dictionary_t dict , const char ∗key ,

bool ∗valp);

bool
prop_dictionary_set_bool (prop_dictionary_t dict , const char ∗key ,

bool val);

bool
prop_dictionary_get_int8 (prop_dictionary_t dict , const char ∗key ,

int8_t ∗valp);

bool
prop_dictionary_get_uint8 (prop_dictionary_t dict , const char ∗key ,

uint8_t ∗valp);

bool
prop_dictionary_set_int8 (prop_dictionary_t dict , const char ∗key ,

int8_t val);

bool
prop_dictionary_set_uint8 (prop_dictionary_t dict , const char ∗key ,

uint8_t val);

bool
prop_dictionary_get_int16 (prop_dictionary_t dict , const char ∗key ,

int16_t ∗valp);

bool
prop_dictionary_get_uint16 (prop_dictionary_t dict , const char ∗key ,

uint16_t ∗valp);

bool
prop_dictionary_set_int16 (prop_dictionary_t dict , const char ∗key ,

int16_t val);

NetBSD 3.0 October 25, 2006 1

PROP_DICTIONARY_UTIL (3) NetBSD Library Functions Manual PROP_DICTIONARY_UTIL (3)

bool
prop_dictionary_set_uint16 (prop_dictionary_t dict , const char ∗key ,

uint16_t val);

bool
prop_dictionary_get_int32 (prop_dictionary_t dict , const char ∗key ,

int32_t ∗valp);

bool
prop_dictionary_get_uint32 (prop_dictionary_t dict , const char ∗key ,

uint32_t ∗valp);

bool
prop_dictionary_set_int32 (prop_dictionary_t dict , const char ∗key ,

int32_t val);

bool
prop_dictionary_set_uint32 (prop_dictionary_t dict , const char ∗key ,

uint32_t val);

bool
prop_dictionary_get_int64 (prop_dictionary_t dict , const char ∗key ,

int64_t ∗valp);

bool
prop_dictionary_get_uint64 (prop_dictionary_t dict , const char ∗key ,

uint64_t ∗valp);

bool
prop_dictionary_set_int64 (prop_dictionary_t dict , const char ∗key ,

int64_t val);

bool
prop_dictionary_set_uint64 (prop_dictionary_t dict , const char ∗key ,

uint64_t val);

bool
prop_dictionary_get_cstring (prop_dictionary_t dict , const char ∗key ,

char ∗∗strp);

bool
prop_dictionary_set_cstring (prop_dictionary_t dict , const char ∗key ,

const char ∗str);

bool
prop_dictionary_get_cstring_nocopy (prop_dictionary_t dict ,

const char ∗key , const char ∗∗strp);

bool
prop_dictionary_set_cstring_nocopy (prop_dictionary_t dict ,

const char ∗key , const char ∗strp);

DESCRIPTION
Theprop_dictionary_util family of functions are provided to make getting and setting values in dic-
tionaries more convenient in some applications.

The getters check the type of the returned object and, in some cases, also ensure that the returned value is
within the range implied by the getter’s value type.

NetBSD 3.0 October 25, 2006 2

PROP_DICTIONARY_UTIL (3) NetBSD Library Functions Manual PROP_DICTIONARY_UTIL (3)

The setters handle object creation and release for the caller.

The prop_dictionary_get_cstring () function returns dynamically allocated memory. See
prop_string (3) for more information.

The prop_dictionary_get_cstring_nocopy () and
prop_dictionary_set_cstring_nocopy () functions do not copy the string that is set or returned.
Seeprop_string (3) for more information.

RETURN VALUES
Theprop_dictionary_util getter functions returntrue if the object exists in the dictionary and the
value is in-range, orfalse otherwise.

The prop_dictionary_util setter functions returntrue if creating the object and storing it in the
dictionary is successful, orfalse otherwise.

SEE ALSO
prop_bool (3), prop_dictionary (3), prop_number (3), proplib (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 October 25, 2006 3

PROP_INGEST (3) NetBSD Library Functions Manual PROP_INGEST (3)

NAME
prop_ingest_context_alloc , prop_ingest_context_free ,
prop_ingest_context_error , prop_ingest_context_type ,
prop_ingest_context_key , prop_ingest_context_private ,
prop_dictionary_ingest — Ingest a dictionary into an arbitrary binary format

SYNOPSIS
#include <prop/proplib.h>

prop_ingest_context_t
prop_ingest_context_alloc (void ∗private);

void
prop_ingest_context_free (prop_ingest_context_t ctx);

prop_ingest_error_t
prop_ingest_context_error (prop_ingest_context_t ctx);

prop_type_t
prop_ingest_context_type (prop_ingest_context_t ctx);

const char ∗
prop_ingest_context_key (prop_ingest_context_t ctx);

void ∗
prop_ingest_context_private (prop_ingest_context_t ctx);

bool
prop_dictionary_ingest (prop_dictionary_t dict ,

const prop_ingest_table_entry rules[] , prop_ingest_context_t ctx);

typedef bool
(∗prop_ingest_handler_t) (prop_ingest_context_t , prop_object_t);

DESCRIPTION
The prop_dictionary_ingest function provides a convenient way to convert a property list into an
arbitrary binary format or to extract values from dictionaries in a way that is convenient to an application
(for configuration files, for example) .

prop_dictionary_ingest is driven by a table of rules provided by the application.Each rule consists
of three items:

• A C string containing a key to be looked up in the dictionary.

• The expected property type of the object associated with the key (or PROP_TYPE_UNKNOWNto specify
that any type is allowed).

• A callback function of typeprop_ingest_handler_t that will perform the translation for the appli-
cation.

The table is constructed using a series of macros as follows:

static const prop_ingest_table_entry ingest_rules[] = {
PROP_INGEST("file-name", PROP_TYPE_STRING, ingest_filename),
PROP_INGEST("count", PROP_TYPE_NUMBER, ingest_count),
PROP_INGEST_OPTIONAL("required", PROP_TYPE_BOOL, ingest_required),
PROP_INGEST_OPTIONAL("extra", PROP_TYPE_UNKNOWN, ingest_extra),
PROP_INGEST_END

};

NetBSD 3.0 January 21, 2008 1

PROP_INGEST (3) NetBSD Library Functions Manual PROP_INGEST (3)

The PROP_INGESTmacro specifies that the key is required to be present in the dictionary. The
PROP_INGEST_OPTIONALmacro specifies that the presence of the key in the dictionary is optional.The
PROP_INGEST_ENDmacro marks the end of the rules table.

In each case,prop_dictionary_ingest looks up the rule’s key in the dictionary. If an object is
present in the dictionary at that key, its type is checked against the type specified in the rule.A type specifi-
cation ofPROP_TYPE_UNKNOWNallows the object to be of any type. If the object does not exist and the
rule is not marked as optional, then an error is returned.Otherwise, the handler specified in the rule is
invoked with the ingest context and the object (orNULL if the key does not exist in the dictionary). The han-
dler should returnfalse if the value of the object is invalid to indicate failure andtrue otherwise.

The ingest context contains several pieces of information that are useful during the ingest process. The con-
text also provides specific error information should the ingest fail.

prop_ingest_context_alloc (void ∗private)
Allocate an ingest context. Theargumentprivate may be used to pass application-specific con-
text to the ingest handlers. Note that an ingest context can be re-used to perform multiple ingests.
ReturnsNULLon failure.

prop_ingest_context_free (prop_ingest_context_t ctx)
Free an ingest context.

prop_ingest_context_error (prop_ingest_context_t ctx)
Returns the code indicating the error encountered during ingest. The following error codes are
defined:

PROP_INGEST_ERROR_NO_ERROR No error was encountered during ingest.
PROP_INGEST_ERROR_NO_KEY A non-optional key was not found in the dictio-

nary.
PROP_INGEST_ERROR_WRONG_TYPE An object in the dictionary was not the same type

specifed in the rules.
PROP_INGEST_ERROR_HANDLER_FAILEDAn object’s handler returnedfalse .

prop_ingest_context_type (prop_ingest_context_t ctx)
Returns the type of the last object visited during an ingest. When called by an ingest handler, it
returns the type of the object currently being processed.

prop_ingest_context_key (prop_ingest_context_t ctx)
Returns the last dictionary key looked up during an ingest.When called by an ingest handler, it
returns the dictionary key corresponding to the object currently being processed.

prop_ingest_context_private (prop_ingest_context_t ctx)
Returns the private data set when the context was allocated with
prop_ingest_context_alloc ().

SEE ALSO
prop_dictionary (3), proplib (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 January 21, 2008 2

PROP_NUMBER (3) NetBSD Library Functions Manual PROP_NUMBER (3)

NAME
prop_number , prop_number_create_integer ,
prop_number_create_unsigned_integer , prop_number_copy , prop_number_size ,
prop_number_unsigned , prop_number_integer_value ,
prop_number_unsigned_integer_value , prop_number_equals ,
prop_number_equals_integer , prop_number_equals_unsigned_integer — numeric
value property object

LIBRARY
library “libprop”

SYNOPSIS
#include <prop/proplib.h>

prop_number_t
prop_number_create_integer (int64_t val);

prop_number_t
prop_number_create_unsigned_integer (uint64_t val);

prop_number_t
prop_number_copy (prop_number_t number);

int
prop_number_size (prop_number_t number);

bool
prop_number_unsigned (prop_number_t number);

int64_t
prop_number_integer_value (prop_number_t number);

uint64_t
prop_number_unsigned_integer_value (prop_number_t number);

bool
prop_number_equals (prop_number_t num1 , prop_number_t num2);

bool
prop_number_equals_integer (prop_number_t number , int64_t val);

bool
prop_number_equals_unsigned_integer (prop_number_t number , uint64_t val);

DESCRIPTION
Theprop_number family of functions operate on a numeric value property object type.Values are either
signed or unsigned, and promoted to a 64-bit type(int64_t or uint64_t, respectively) .

It is possible to compare number objects that differ in sign. Such comparisons first test to see if each object
is within the valid number range of the other:

• Signed numbers that are greater than or equal to 0 can be compared to unsigned numbers.

• Unsigned numbers that are less than or equal to the largest signed 64-bit value (INT64_MAX) can be
compared to signed numbers.

Number objects have a different externalized representation depending on their sign:

NetBSD 3.0 January 21, 2008 1

PROP_NUMBER (3) NetBSD Library Functions Manual PROP_NUMBER (3)

• Signed numbers are externalized in base-10(decimal) .

• Unsigned numbers are externalized in base-16(hexadecimal) .

When numbers are internalized, the sign of the resulting number object(and thus its valid range) is deter-
mined by a set of rules evaluated in the following order:

• If the first character of the number is a ‘-’ then the number is signed.

• If the first two characters of the number are ‘0x’ then the number is unsigned.

• If the number value fits into the range of a signed number then the number is signed.

• In all other cases, the number is unsigned.

prop_number_create_integer (int64_t val)
Create a numeric value object with the signed valueval . ReturnsNULLon failure.

prop_number_create_unsigned_integer (uint64_t val)
Create a numeric value object with the unsigned valueval . ReturnsNULLon failure.

prop_number_copy (prop_number_t number)
Copy a numeric value object. If the supplied object isn’t a numeric value,NULL is returned.

prop_number_size (prop_number_t number)
Returns 8, 16, 32, or 64, representing the number of bits required to hold the value of the object.If
the supplied object isn’t a numeric value,NULL is returned.

prop_number_unsigned (prop_number_t number)
Returnstrue if the numeric value object has an unsigned value.

prop_number_integer_value (prop_number_t number)
Returns the signed integer value of the numeric value object. If the supplied object isn’t a numeric
value, zero is returned. Thus, it is not possible to distinguish between ‘‘not a prop_number_t’’ and
‘‘ prop_number_t has a value of 0’’.

prop_number_unsigned_integer_value (prop_number_t number)
Returns the unsigned integer value of the numeric value object.If the supplied object isn’t a
numeric value, zero is returned. Thus, it is not possible to distinguish between ‘‘not a prop_num-
ber_t’’ and ‘‘prop_number_t has a value of 0’’.

prop_number_equals (prop_number_t num1 , prop_number_t num2)
Returnstrue if the two numeric value objects are equivalent. If at least one of the supplied objects
isn’t a numeric value,false is returned.

prop_number_equals_integer (prop_number_t number , int64_t val)
Returnstrue if the object’s value is equivalent to the signed valueval . If the supplied object isn’t
a numerical value or ifval exceedsINT64_MAX, false is returned.

prop_number_equals_unsigned_integer (prop_number_t number , uint64_t val)
Returnstrue if the object’s value is equivalent to the unsigned valueval . If the supplied object
isn’t a numerical value or ifval exceedsINT64_MAX, false is returned.

SEE ALSO
prop_array (3), prop_bool (3), prop_data (3), prop_dictionary (3), prop_object (3),
prop_string (3), proplib (3)

NetBSD 3.0 January 21, 2008 2

PROP_NUMBER (3) NetBSD Library Functions Manual PROP_NUMBER (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 January 21, 2008 3

PROP_OBJECT (3) NetBSD Library Functions Manual PROP_OBJECT (3)

NAME
prop_object , prop_object_retain , prop_object_release , prop_object_type ,
prop_object_equals , prop_object_iterator_next , prop_object_iterator_reset ,
prop_object_iterator_release — general property container object functions

LIBRARY
library “libprop”

SYNOPSIS
#include <prop/proplib.h>

void
prop_object_retain (prop_object_t obj);

void
prop_object_release (prop_object_t obj);

prop_type_t
prop_object_type (prop_object_t obj);

bool
prop_object_equals (prop_object_t obj1 , prop_object_t obj2);

prop_object_t
prop_object_iterator_next (prop_object_iterator_t iter);

void
prop_object_iterator_reset (prop_object_iterator_t iter);

void
prop_object_iterator_release (prop_object_iterator_t iter);

DESCRIPTION
Theprop_object family of functions operate on all property container object types.

prop_object_retain (prop_object_t obj)
Increment the reference count on an object.

prop_object_release (prop_object_t obj)
Decrement the reference count on an object. If the last reference is dropped, the object is freed.

prop_object_type (prop_object_t obj)
Determine the type of the object. Objects are one of the following types:

PROP_TYPE_BOOL Boolean value (prop_bool_t)
PROP_TYPE_NUMBER Number (prop_number_t)
PROP_TYPE_STRING String (prop_string_t)
PROP_TYPE_DATA Opaque data(prop_data_t)
PROP_TYPE_ARRAY Array (prop_array_t)
PROP_TYPE_DICTIONARY Dictionary (prop_dictionary_t)
PROP_TYPE_DICT_KEYSYMDictionary key symbol (prop_dictionary_keysym_t)

If obj is NULL, thenPROP_TYPE_UNKNOWNis returned.

prop_object_equals (prop_object_t obj1 , prop_object_t obj2)
Returnstrue if the two objects are of the same type and are equivalent.

NetBSD 3.0 August 21, 2006 1

PROP_OBJECT (3) NetBSD Library Functions Manual PROP_OBJECT (3)

prop_object_iterator_next (prop_object_iterator_t iter)
Return the next object in the collection(array or dictionary) being iterated by the iteratoriter . If there
are no more objects in the collection,NULL is returned.

prop_object_iterator_reset (prop_object_iterator_t iter)
Reset the iterator to the first object in the collection being iterated by the iteratoriter .

prop_object_iterator_release (prop_object_iterator_t iter)
Release the iteratoriter .

SEE ALSO
prop_array (3), prop_bool (3), prop_data (3), prop_dictionary (3), prop_number (3),
prop_string (3), proplib (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 August 21, 2006 2

PROP_SEND_IOCTL (3) NetBSD Library Functions Manual PROP_SEND_IOCTL (3)

NAME
prop_array_send_ioctl , prop_array_recv_ioctl , prop_dictionary_send_ioctl ,
prop_dictionary_recv_ioctl , prop_dictionary_sendrecv_ioctl — Send and receive
propertly lists to and from the kernel using ioctl

SYNOPSIS
#include <prop/proplib.h>

int
prop_array_send_ioctl (prop_array_t array , int fd , unsigned long cmd);

int
prop_array_recv_ioctl (int fd , unsigned long cmd , prop_array_t ∗arrayp);

int
prop_dictionary_send_ioctl (prop_dictionary_t dict , int fd ,

unsigned long cmd);

int
prop_dictionary_recv_ioctl (int fd , unsigned long cmd ,

prop_dictionary_t ∗dictp);

prop_dictionary_sendrecv_ioctl (prop_dictionary_t dict , int fd ,
unsigned long cmd , prop_dictionary_t ∗dictp);

DESCRIPTION
The prop_array_send_ioctl , prop_array_recv_ioctl ,
prop_dictionary_send_ioctl , prop_dictionary_recv_ioctl , and
prop_dictionary_sendrecv_ioctl functions implement the user space side of a protocol for send-
ing property lists to and from the kernel usingioctl (2).

RETURN VALUES
If successful, functions return zero. Otherwise, an error number is returned to indicate the error.

ERRORS
prop_array_send_ioctl () andprop_dictionary_send_ioctl () will fail if:

[ENOMEM] Cannot allocate memory

[ENOTSUP] Not supported

prop_array_recv_ioctl () andprop_dictionary_recv_ioctl () will fail if:

[EIO] Input/output error

[ENOTSUP] Not supported

In addition to these,ioctl (2) errors may be returned.

EXAMPLES
The following (simplified) example demonstrates usingprop_dictionary_send_ioctl () and
prop_dictionary_recv_ioctl () in an application:

void
foo_setprops(prop_dictionary_t dict)
{

int fd;

NetBSD 3.0 January 21, 2008 1

PROP_SEND_IOCTL (3) NetBSD Library Functions Manual PROP_SEND_IOCTL (3)

fd = open("/dev/foo", O_RDWR, 0640);
if (fd == -1)

return;

(void) prop_dictionary_send_ioctl(dict, fd, FOOSETPROPS);

(void) close(fd);
}

prop_dictionary_t
foo_getprops(void)
{

prop_dictionary_t dict;
int fd;

fd = open("/dev/foo", O_RDONLY, 0640);
if (fd == -1)

return (NULL);

if (prop_dictionary_recv_ioctl(fd, FOOGETPROPS, &dict) != 0)
return (NULL);

(void) close(fd);

return (dict);
}

The prop_dictionary_sendrecv_ioctl function combines the send and receive functionality,
allowing for ioctls that require two-way communication(for example to specify arguments for the ioctl
operation) .

SEE ALSO
prop_array (3), prop_dictionary (3), proplib (3), prop_copyin_ioctl (9)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 January 21, 2008 2

PROP_STRING (3) NetBSD Library Functions Manual PROP_STRING (3)

NAME
prop_string , prop_string_create , prop_string_create_cstring ,
prop_string_create_cstring_nocopy , prop_string_copy ,
prop_string_copy_mutable , prop_string_size , prop_string_mutable ,
prop_string_cstring , prop_string_cstring_nocopy , prop_string_append ,
prop_string_append_cstring , prop_string_equals , prop_string_equals_cstring
— string value property object

LIBRARY
library “libprop”

SYNOPSIS
#include <prop/proplib.h>

prop_string_t
prop_string_create (void);

prop_string_t
prop_string_create_cstring (const char ∗cstring);

prop_string_t
prop_string_create_cstring_nocopy (const char ∗cstring);

prop_string_t
prop_string_copy (prop_string_t string);

prop_string_t
prop_string_copy_mutable (prop_string_t string);

char ∗
prop_string_cstring (prop_string_t string);

const char ∗
prop_string_cstring_nocopy (prop_string_t string);

bool
prop_string_append (prop_string_t str1 , prop_string_t str2);

bool
prop_string_append_cstring (prop_string_t string , const char ∗cstring);

bool
prop_string_equals (prop_string_t str1 , prop_string_t str2);

bool
prop_string_equals_cstring (prop_string_t string , const char ∗cstring);

DESCRIPTION
Theprop_string family of functions operate on a string value property object type.

prop_string_create (void)
Create an empty mutable string. ReturnsNULLon failure.

prop_string_create_cstring (const char ∗cstring)
Create a mutable string that contains a copy of cstring . ReturnsNULLon failure.

prop_string_create_cstring_nocopy (const char ∗cstring)
Create an immutable string that contains a reference tocstring . ReturnsNULLon failure.

NetBSD 3.0 January 21, 2008 1

PROP_STRING (3) NetBSD Library Functions Manual PROP_STRING (3)

prop_string_copy (prop_string_t string)
Copy a string. If the the string being copied is an immutable external C string reference, then the
copy is also immutable and references the same external C string. ReturnsNULLon failure.

prop_string_copy_mutable (prop_string_t string)
Copy a string, always creating a mutable copy. ReturnsNULLon failure.

prop_string_size (prop_string_t string)
Returns the size of the string, not including the terminating NUL.If the supplied object isn’t a
string, zero is returned.

prop_string_mutable (prop_string_t string)
Returnstrue if the string is mutable. If the supplied object isn’t a string, false is returned.

prop_string_cstring (prop_string_t string)
Returns a copy of the string’s contents as a C string. The caller is responsible for freeing the
returned buffer.

In user space, the buffer is allocated usingmalloc (3). In the kernel, the buffer is allocated using
malloc (9) using the malloc typeM_TEMP.

ReturnsNULLon failure.

prop_string_cstring_nocopy (prop_string_t string)
Returns an immutable reference to the contents of the string as a C string.If the supplied object
isn’t a string, NULL is returned.

prop_string_append (prop_string_t str1 , prop_string_t str2)
Append the contents ofstr2 to str1 , which must be mutable.Returnstrue upon success and
false otherwise.

prop_string_append_cstring (prop_string_t string , const char ∗cstring)
Append the C stringcstring to string , which must be mutable.Returnstrue upon success
andfalse otherwise.

prop_string_equals (prop_string_t str1 , prop_string_t str2)
Returnstrue if the two string objects are equivalent.

prop_string_equals_cstring (prop_string_t string , const char ∗cstring)
Returnstrue if the string’s value is equivalent tocstring .

SEE ALSO
prop_array (3), prop_bool (3), prop_data (3), prop_dictionary (3), prop_number (3),
prop_object (3), proplib (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 January 21, 2008 2

PROPLIB (3) NetBSD Library Functions Manual PROPLIB (3)

NAME
proplib — property container object library

LIBRARY
library “libprop”

SYNOPSIS
#include <prop/proplib.h>

DESCRIPTION
The proplib library provides an abstract interface for creating and manipulating property lists.Property
lists have object types for boolean values, opaque data, numbers, and strings. Structure is provided by the
array and dictionary collection types.

Property lists can be passed across protection boundaries by translating them to an external representation.
This external representation is an XML document whose format is described by the following DTD:

http://www.apple.com/DTDs/PropertyList-1.0.dtd

Property container objects are reference counted.When an object is created, its reference count is set to 1.
Any code that keeps a reference to an object, including the collection types(arrays and dictionaries) , must
“retain” the object (increment its reference count) . When that reference is dropped, the object must be
“released” (reference count decremented) . When an object’s reference count drops to 0, it is automatically
freed.

The rules for managing reference counts are very simple:

• If you create an object and do not explicitly maintain a reference to it, you must release it.

• If you get a reference to an object from other code and wish to maintain a reference to it, you must retain
the object.You are responsible for releasing the object once you drop that reference.

• You must never release an object unless you create it or retain it.

Object collections may be iterated by creating a special iterator object. Iterator objects are special; they may
not be retained, and they are released using an iterator-specific release function.

SEE ALSO
prop_array (3), prop_bool (3), prop_data (3), prop_dictionary (3),
prop_dictionary_util (3), prop_number (3), prop_object (3), prop_send_ioctl (3),
prop_string (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

CAVEATS
proplib does not have a ‘date’ object type, and thus will not parse ‘date’ elements from an Apple XML
property list.

Theproplib ‘number’ object type differs from the Apple XML property list format in the following ways:

• The external representation is in base 16, not base 10.proplib is able to parse base 8, base 10, and
base 16 ‘integer’ elements.

• Internally, integers are always stored as unsigned numbers(uint64_t) . Therefore, the external represen-
tation will never be neg ative.

NetBSD 3.0 June 21, 2007 1

PROPLIB (3) NetBSD Library Functions Manual PROPLIB (3)

• Because floating point numbers are not supported, ‘real’ elements from an Apple XML property list will
not be parsed.

In order to facilitate use ofproplib in kernel, standalone, and user space environments, theproplib
parser is not a real XML parser. It is hard-coded to parse only the property list external representation.

NetBSD 3.0 June 21, 2007 2

PSET (3) NetBSD Library Functions Manual PSET (3)

NAME
pset_create , pset_assign , pset_bind , pset_destroy — processor sets

SYNOPSIS
#include <sys/pset.h>

int
pset_create (psetid_t ∗psid);

int
pset_assign (psetid_t psid , cpuid_t cpuid , psetid_t ∗opsid);

int
pset_bind (psetid_t psid , idtype_t type , id_t id , psetid_t ∗opsid);

int
pset_destroy (psetid_t psid);

DESCRIPTION
The processor sets API provides the possibility to bind processes or threads to specific processors or groups
of processors. This section describes the functions used to control processor sets.

FUNCTIONS
pset_create (psid)

Creates a processor set, and returns its ID intopsid .

pset_assign (psid , cpu , opsid)
Assigns the processor specified bycpuid to the processor set specified bypsid . Stores the
current processor set ID of the processor orPS_NONEinto opsid , if the pointer is notNULL.

If psid is set toPS_QUERY, then the current processor set ID will be returned intopsid , and
no assignment will be performed.

If psid is set toPS_MYID, then the processor set ID of the calling process will be used, and
psid will be ignored.

If psid is set toPS_NONE, any assignment to the processor will be cleared.

pset_bind (psid , type , id , opsid)
Binds the target specified byid to the processor set specified bypsid . The current processor
set ID to which the target is bound orPS_NONEwill be returned inopsid , if the pointer is not
NULL. NetBSD supports the following types of targets specified bytype :

P_PID Process identified by the PID.

P_LWPID
Thread of the calling process indentified by the LID.

If psid is set toPS_QUERY, then the current processor set ID to which the target is bound or
PS_NONEwill be returned inopsid , and no binding will be performed.If psid is set to
PS_MYID, then the processor set ID of the calling process will be used.

If psid is set toPS_NONE, the specified target will be unbound from the processor set.

pset_destroy (psid)
Destroys the processor set specified bypsid . Before destroying the processor set, all related
assignments of the processors will be cleared, and all bound threads will be unbound.

NetBSD 3.0 May 5, 2008 1

PSET (3) NetBSD Library Functions Manual PSET (3)

If psid is PS_MYID, the processor set ID of the caller thread will be used.

NOTES
Thepset_bind function can return the current processor set ID to which the target is bound, orPS_NONE.
However, for example, the process may have many threads, which could be bound to different processor sets.
In such a case it is unspecified which thread will be used to return the information.

RETURN VALUES
Upon successful completion these functions return 0. Otherwise, −1 is returned anderrno is set to indicate
the error.

ERRORS
Thepset_create () function fails if:

[ENOMEM] No memory is available for creation of the processor set, or limit of the allowed count
of the processor sets was reached.

[EPERM] The calling process is not the super-user.

Thepset_assign () function fails if:

[EBUSY] Another operation is performing on the processor set.

[EINVAL] psid or cpuid are invalid.

[EPERM] The calling process is not the super-user, andpsid is notPS_QUERY.

Thepset_bind () function fails if:

[EBUSY] Another operation is performing on the processor set.

[EINVAL] psid or type are invalid.

[EPERM] The calling process is not the super-user, andpsid is notPS_QUERY.

[ESRCH] The specified target was not found.

Thepset_destroy () function fails if:

[EBUSY] Another operation is performing on the processor set.

[EPERM] The calling process is not the super-user.

SEE ALSO
sched (3), schedctl (8)

STANDARDS
This API is expected to be compatible with the APIs found in Solaris and HP-UX operating systems.

HISTORY
The processor sets appeared inNetBSD 5.0.

NetBSD 3.0 May 5, 2008 2

PSIGNAL (3) NetBSD Library Functions Manual PSIGNAL (3)

NAME
psignal , sys_siglist , sys_signame — system signal messages

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

void
psignal (unsigned sig , const char ∗s);

extern const char ∗ const sys_siglist[];
extern const char ∗ const sys_signame[];

DESCRIPTION
Thepsignal () function locates the descriptive message string for the given signal numbersig and writes
it to the standard error.

If the arguments is non-NULL it is written to the standard error file descriptor prior to the message string,
immediately followed by a colon and a space. If the signal number is not recognized(sigaction (2)) ,
the string “Unknown signal” is produced.

The message strings can be accessed directly using the external arraysys_siglist, indexed by recognized sig-
nal numbers. The external arraysys_signameis used similarly and contains short, upper-case abbreviations
for signals which are useful for recognizing signal names in user input. The defined variableNSIG contains
a count of the strings insys_siglistandsys_signame.

SEE ALSO
sigaction (2), perror (3), setlocale (3), strsignal (3)

HISTORY
Thepsignal () function appeared in 4.2BSD.

NetBSD 3.0 February 27, 1995 1

<<<<<<< pthread.3 ======= >>>>>>> 1.8

NAME
pthread — POSIX Threads Library

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

cc [flags] files −lpthread [libraries]

DESCRIPTION
Thepthread library provides an implementation of the standardPOSIX threads framework.

Note that the system private thread interfaces upon which thepthread library is built are subject to change
without notice. In order to remain compatible with futureNetBSD releases, programs must be linked against
the dynamic version of the thread library. Statically linked programs using thePOSIX threads framework
may not work when run on a future version of the system.

ENVIRONMENT
PTHREAD_CONCURRENCY The current version of the system does not inspect this variable. It is

reserved for use by thepthread library.

PTHREAD_DIAGASSERT Possible values are any combinations of:
A Ignore errors.
a Abort on errors, creating a core dump for further

debugging.
E Do not log errors to stdout.
e Log errors to stdout.
L Do not log errors viasyslogd (8).
l Log errors viasyslogd (8).

PTHREAD_RRTIME The current version of the system does not inspect this variable. It is
reserved for use by thepthread library.

PTHREAD_STACKSIZE Integer value giving the stack size in kilobytes. This allows to set a
smaller stack size than the default stack size.The default stack size is the
current limit on the stack size as set with the shell’s command to change
limits (limit for csh (1), orulimit for sh (1)).

SEE ALSO
pthread_attr (3), pthread_barrier_destroy (3), pthread_barrier_init (3),
pthread_barrier_wait (3), pthread_barrierattr (3), pthread_cancel (3),
pthread_cleanup_push (3), pthread_cond_broadcast (3), pthread_cond_destroy (3),
pthread_cond_init (3), pthread_cond_wait (3), pthread_condattr (3),
pthread_create (3), pthread_detach (3), pthread_equal (3), pthread_exit (3),
pthread_getspecific (3), pthread_join (3), pthread_key_create (3),
pthread_key_delete (3), pthread_kill (3), pthread_mutex_destroy (3),
pthread_mutex_init (3), pthread_mutex_lock (3), pthread_mutex_unlock (3),
pthread_mutexattr (3), pthread_once (3), pthread_rwlock_destroy (3),
pthread_rwlock_init (3), pthread_rwlock_rdlock (3), pthread_rwlock_unlock (3),
pthread_rwlock_wrlock (3), pthread_rwlockattr (3), pthread_schedparam (3),
pthread_self (3), pthread_setspecific (3), pthread_sigmask (3),
pthread_spin_destroy (3), pthread_spin_init (3), pthread_spin_lock (3),
pthread_spin_unlock (3), pthread_testcancel (3)

NetBSD 3.0 November 19, 2007 1

PTHREAD (3) NetBSD Library Functions Manual PTHREAD (3)

STANDARDS
Thepthread library conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 November 19, 2007 2

PTHREAD_ATFORK (3) NetBSD Library Functions Manual PTHREAD_ATFORK (3)

NAME
pthread_atfork — register handlers to be called when process forks

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <pthread.h>

int
pthread_atfork (void (∗prepare)(void) , void (∗parent)(void) ,

void (∗child)(void));

DESCRIPTION
Thepthread_atfork () function registers the provided handler functions to be called when thefork (2)
function is called. Each of the three handlers is called at a different place in thefork (2) sequence.The
prepare handler is called in the parent process before the fork happens, theparent handler is called in
the parent process after the fork has happened, and thechild handler is called in the child process after the
fork has happened.Theparent andchild handlers are called in the order in which they were registered,
while theprepare handlers are called in reverse of the order in which they were registered.

Any of the handlers given may beNULL.

The intended use ofpthread_atfork () is to provide a consistent state to a child process from a multi-
threaded parent process where locks may be acquired and released asynchronously with respect to the
fork (2) call. Each subsystem with locks that are used in a child process should register handlers with
pthread_atfork () that acquires those locks in theprepare handler and releases them in theparent
handler.

RETURN VALUES
Thepthread_atfork () function returns 0 on success and an error number on failure.

ERRORS
The following error code may be returned:

[ENOMEM] Insufficient memory exists to register the fork handlers.

SEE ALSO
fork (2)

STANDARDS
Thepthread_atfork () function conforms toIEEE Std 1003.1c-1995 (“POSIX.1”).

HISTORY
Thepthread_atfork () function first appeared inNetBSD 2.0.

CAVEATS
After calling fork (2) from a multithreaded process, it is only safe to call async-signal-safe functions until
calling one of theexec (3) functions. The pthread_ ∗() functions are not async-signal-safe, so it is not
safe to use such functions in thechild handler.

NetBSD 3.0 February 12, 2003 1

PTHREAD_ATFORK (3) NetBSD Library Functions Manual PTHREAD_ATFORK (3)

BUGS
There is no way to unregister a handler registered withpthread_atfork ().

NetBSD 3.0 February 12, 2003 2

PTHREAD_ATTR (3) NetBSD Library Functions Manual PTHREAD_ATTR (3)

NAME
pthread_attr_init , pthread_attr_destroy , pthread_attr_setdetachstate ,
pthread_attr_getdetachstate , pthread_attr_setschedparam ,
pthread_attr_getschedparam — thread attribute operations

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_attr_init (pthread_attr_t ∗attr);

int
pthread_attr_destroy (pthread_attr_t ∗attr);

int
pthread_attr_setdetachstate (pthread_attr_t ∗attr , int detachstate);

int
pthread_attr_getdetachstate (const pthread_attr_t ∗attr , int ∗detachstate);

int
pthread_attr_setschedparam (pthread_attr_t ∗ restrict attr ,

const struct sched_param ∗ restrict param);

int
pthread_attr_getschedparam (const pthread_attr_t ∗ restrict attr ,

struct sched_param ∗ restrict param);

DESCRIPTION
Thread attributes are used to specify parameters topthread_create (). Oneattribute object can be used
in multiple calls topthread_create (), with or without modifications between calls.

Thepthread_attr_init () function initializesattr with all the default thread attributes.

Thepthread_attr_destroy () function destroysattr .

Thepthread_attr_set ∗() functions set the attribute that corresponds to each function name.

The pthread_attr_get ∗() functions copy the value of the attribute that corresponds to each function
name to the location pointed to by the second function parameter.

The attribute parameters for the pthread_attr_setdetachstate () and
pthread_attr_getdetachstate () are mutually exclusive and must be one of:

PTHREAD_CREATE_JOINABLE
The threads must explicitely be waited for using thepthread_join () function once they exit
for their status to be received and their resources to be freed. This is the default.

PTHREAD_CREATE_DETACHED
The thread’s resources will automatically be freed once the thread exits, and the thread will not
be joined.

RETURN VALUES
If successful, these functions return 0. Otherwise, an error number is returned to indicate the error.

NetBSD 3.0 March 21, 2007 1

PTHREAD_ATTR (3) NetBSD Library Functions Manual PTHREAD_ATTR (3)

ERRORS
pthread_attr_init () shall fail if:

[ENOMEM] Out of memory.

pthread_attr_destroy () may fail if:

[EINVAL] The value specified byattr is invalid.

pthread_attr_setdetachstate () shall fail if:

[EINVAL] The value specified bydetachstate is invalid.

pthread_attr_setschedparam () may fail if:

[EINVAL] The value specified byattr is invalid.

[ENOTSUP] The value specified byparam is invalid.

SEE ALSO
pthread_create (3), pthread_join (3)

STANDARDS
pthread_attr_init (), pthread_attr_destroy (), pthread_attr_setdetachstate (),
pthread_attr_getdetachstate (), pthread_attr_setschedparam (), and
pthread_attr_getschedparam () conform toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 March 21, 2007 2

PTHREAD_ATTR_GETNAME_NP (3)NetBSD Library Functions Manual PTHREAD_ATTR_GETNAME_NP (3)

NAME
pthread_attr_getname_np — set descriptive name of an attribute

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <pthread.h>

int
pthread_attr_getname_np (const pthread_attr_t attr , char ∗name, size_t len);

DESCRIPTION
pthread_attr_getname_np () gets the descriptive name of the attribute. It takes the following argu-
ments.

attr The attribute whose descriptive name will be obtained.

name The buffer to be filled with the descriptive name of the attribute.

len The size of the buffername in bytes.

RETURN VALUES
pthread_attr_getname_np () returns 0 on success.Otherwise,pthread_attr_getname_np ()
returns an error number described inerrno (2).

SEE ALSO
errno (2), pthread_attr_setname_np (3)

NetBSD 3.0 December 15, 2007 1

PTHREAD_ATTR_SETCREATESU . . .NetBSD Library Functions ManualPTHREAD_ATTR_SETCREATESU . . .

NAME
pthread_attr_setcreatesuspend_np — set attribute to create a thread suspended

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_attr_setcreatesuspend_np (pthread_attr_t attr);

DESCRIPTION
Thepthread_attr_setcreatesuspend_np () function sets theattr argument, so that if thisattr
is used in apthread_create (3) call, then the thread created will not run, but it will remain blocked in the
suspended queue, untilpthread_resume_np (3) is called on it.

RETURN VALUES
Thepthread_attr_setcreatesuspend_np () function always returns 0.

ERRORS
pthread_attr_setcreatesuspend_np () never fails.

SEE ALSO
pthread_create (3), pthread_resume_np (3), pthread_suspend_np (3)

NetBSD 3.0 November 12, 2003 1

PTHREAD_ATTR_SETNAME_NP (3) NetBSD Library Functions Manual PTHREAD_ATTR_SETNAME_NP (3)

NAME
pthread_attr_setname_np — set descriptive name of an attribute

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <pthread.h>

int
pthread_attr_setname_np (pthread_attr_t attr , const char ∗name, void ∗arg);

DESCRIPTION
pthread_attr_setname_np () sets the descriptive name of the attribute. It takes the following argu-
ments.

attr The attribute whose descriptive name will be set.

name The printf (3) format string to be used to construct the descriptive name of the attribute. The
resulted descriptive name should be shorter thanPTHREAD_MAX_NAMELEN_NP.

arg Theprintf (3) argument used withname.

RETURN VALUES
pthread_attr_setname_np () returns 0 on success.Otherwise,pthread_attr_setname_np ()
returns an error number described inerrno (2).

SEE ALSO
errno (2), pthread_attr_getname_np (3)

NetBSD 3.0 December 15, 2007 1

PTHREAD_BARRIER_DESTROY (3) NetBSDLibrary Functions Manual PTHREAD_BARRIER_DESTROY (3)

NAME
pthread_barrier_destroy — destroy a barrier

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_barrier_destroy (pthread_barrier_t ∗barrier);

DESCRIPTION
Thepthread_barrier_destroy () function causes the resources allocated tobarrier to be released.
No threads should be blocked onbarrier .

RETURN VALUES
If successful,pthread_barrier_destroy () will return zero. Otherwise an error value will be
returned.

ERRORS
pthread_barrier_destroy () may fail if:

[EBUSY] Thebarrier still has active threads associated with it.

[EINVAL] The value specified bybarrier is invalid.

SEE ALSO
pthread_barrier_init (3), pthread_barrier_wait (3),
pthread_barrierattr_destroy (3), pthread_barrierattr_init (3)

STANDARDS
pthread_barrier_destroy () conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_BARRIER_INIT (3) NetBSD Library Functions Manual PTHREAD_BARRIER_INIT (3)

NAME
pthread_barrier_init — create a barrier

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_barrier_init (pthread_barrier_t ∗ restrict barrier ,

const pthread_barrierattr_t ∗ restrict attr , unsigned int count);

DESCRIPTION
The pthread_barrier_init () function creates a new barrier, with attributes specified withattr and
count . The count parameter indicates the number of threads which will participate in the barrier. If
attr is NULL the default attributes are used. Barriers are most commonly used in the decomposition of
parallel loops.

RETURN VALUES
If successful,pthread_barrier_init () will return zero and put the new barrier id intobarrier , oth-
erwise an error number will be returned to indicate the error.

ERRORS
pthread_barrier_init () shall fail if:

[EAGAIN] The system lacks the resources to initialize another barrier.

[EINVAL] The value specified bycount is zero.

[ENOMEM] Insufficient memory exists to initialize the barrier.

pthread_barrier_init () may fail if:

[EBUSY] The barrier structure has been initialized already.

[EINVAL] The value specified byattr is invalid.

SEE ALSO
pthread_barrier_destroy (3), pthread_barrier_wait (3),
pthread_barrierattr_destroy (3), pthread_barrierattr_init (3)

STANDARDS
pthread_barrier_init () conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_BARRIER_WAIT (3) NetBSD Library Functions Manual PTHREAD_BARRIER_WAIT (3)

NAME
pthread_barrier_wait — wait for a barrier

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_barrier_wait (pthread_barrier_t ∗barrier);

DESCRIPTION
Thepthread_barrier_wait () function causes the current thread to wait on the barrier specified.Once
as many threads as specified by thecount parameter to the correspondingpthread_barrier_init ()
call have called pthread_barrier_wait (), all threads will wake up, return from their respective
pthread_barrier_wait () calls and continue execution.

RETURN VALUES
If successful,pthread_barrier_wait () will return zero for all waiting threads except for one.One
thread will receive statusPTHREAD_BARRIER_SERIAL_THREAD, which is intended to indicate that this
thread may be used to update shared data.It is the responsibility of this thread to insure the visibility and
atomicity of any updates to shared data with respect to the other threads participating in the barrier. In the
case of failure, an error value will be returned.

ERRORS
pthread_barrier_wait () may fail if:

[EINVAL] The value specified bybarrier is invalid.

SEE ALSO
pthread_barrier_destroy (3), pthread_barrier_init (3),
pthread_barrierattr_destroy (3), pthread_barrierattr_init (3)

STANDARDS
pthread_barrier_wait () conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_BARRIERATTR (3) NetBSD Library Functions Manual PTHREAD_BARRIERATTR (3)

NAME
pthread_barrierattr_init , pthread_barrierattr_destroy , — barrier attribute operations

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_barrierattr_init (pthread_barrierattr_t ∗attr);

int
pthread_barrierattr_destroy (pthread_barrierattr_t ∗attr);

DESCRIPTION
Barrier attributes are used to specify parameters topthread_barrier_init (). Oneattribute object can
be used in multiple calls topthread_barrier_init (), with or without modifications between calls.

Thepthread_barrierattr_init () function initializesattr with all the default barrier attributes.

Thepthread_barrierattr_destroy () function destroysattr .

RETURN VALUES
If successful, these functions return 0. Otherwise, an error number is returned to indicate the error.

ERRORS
pthread_barrierattr_init () shall fail if:

[ENOMEM] Insufficient memory exists to initialize the barrier attributes object.

pthread_barrierattr_init () may fail if:

[EINVAL] The value specified byattr is invalid.

pthread_barrierattr_destroy () may fail if:

[EINVAL] The value specified byattr is invalid

SEE ALSO
pthread_barrier_init (3)

STANDARDS
pthread_barrierattr_init () and pthread_barrierattr_destroy () conform to IEEE Std
1003.1-2001 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_CANCEL (3) NetBSD Library Functions Manual PTHREAD_CANCEL (3)

NAME
pthread_cancel — cancel execution of a thread

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_cancel (pthread_t thread);

DESCRIPTION
The pthread_cancel () function requests thatthread be canceled.The target thread’s cancelability
state and type determines when the cancellation takes effect. Whenthe cancellation is acted on, the cancella-
tion cleanup handlers forthread are called.When the last cancellation cleanup handler returns, the thread-
specific data destructor functions will be called forthread . When the last destructor function returns,
thread will be terminated.

The cancellation processing in the target thread runs asynchronously with respect to the calling thread return-
ing frompthread_cancel ().

A status ofPTHREAD_CANCELEDis made available to any threads joining with the target. Thesymbolic
constantPTHREAD_CANCELEDexpands to a constant expression of type(void ∗) , whose value matches
no pointer to an object in memory nor the valueNULL.

RETURN VALUES
If successful, the pthread_cancel () functions will return zero.Otherwise an error number will be
returned to indicate the error.

ERRORS
pthread_cancel () may fail if:

[ESRCH] No thread could be found corresponding to that specified by the given thread ID.

SEE ALSO
pthread_cleanup_pop (3), pthread_cleanup_push (3), pthread_exit (3),
pthread_join (3), pthread_setcancelstate (3), pthread_setcanceltype (3),
pthread_testcancel (3)

STANDARDS
pthread_cancel () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

AUTHORS
This man page was written by David Leonard〈d@openbsd.org〉 for the OpenBSD implementation of
pthread_cancel ().

NetBSD 3.0 January 30, 2003 1

PTHREAD_CLEANUP (3) NetBSD Library Functions Manual PTHREAD_CLEANUP (3)

NAME
pthread_cleanup_push , pthread_cleanup_pop — add and remove cleanup functions for thread
exit

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

void
pthread_cleanup_push (void (∗cleanup_routine)(void ∗) , void ∗arg);

void
pthread_cleanup_pop (int execute);

DESCRIPTION
The pthread_cleanup_push () function addscleanup_routine to the top of the stack of cleanup
handlers that get called when the current thread exits.

The pthread_cleanup_pop () function pops the top cleanup routine off of the current threads cleanup
routine stack, and, ifexecute is non-zero, it will execute the function.

Whencleanup_routine is called, it is passedarg as its only argument.

These functions may be implemented as macros which contain scope delimiters; therefore, there must be a
matchingpthread_cleanup_pop () for every pthread_cleanup_push () at the same level of lexical
scoping.

The effect of calling longjmp () or siglongjmp () is undefined after a call to
pthread_cleanup_push () but before the matching call topthread_cleanup_pop () after the jump
buffer was filled.

RETURN VALUES
Neitherpthread_cleanup_push () norpthread_cleanup_pop () returns a value.

ERRORS
None.

SEE ALSO
pthread_exit (3)

STANDARDS
pthread_cleanup_push () and pthread_cleanup_pop () conform to ISO/IEC 9945-1:1996
(“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_COND_BROADCAST (3) NetBSD Library Functions Manual PTHREAD_COND_BROADCAST (3)

NAME
pthread_cond_broadcast , pthread_cond_signal — unblock one or all threads waiting on a
condition variable

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_cond_broadcast (pthread_cond_t ∗cond);

int
pthread_cond_signal (pthread_cond_t ∗cond);

DESCRIPTION
The pthread_cond_broadcast () function unblocks all threads waiting for the condition variable
cond . If no threads are waiting oncond , thepthread_cond_broadcast () function has no effect.

Thepthread_cond_signal () function unblocks one thread waiting for the condition variablecond . If
no threads are waiting oncond , thepthread_cond_signal () function has no effect.

When callingpthread_cond_wait () and/orpthread_cond_timedwait (), a temporary binding is
established between the condition variablecond and a caller-supplied mutex.

The same mutex must be held while calling pthread_cond_broadcast () and
pthread_cond_signal (). Neitherfunction enforces this requirement, but if the mutex is not held the
resulting behaviour is undefined.

RETURN VALUES
If successful, thepthread_cond_broadcast () andpthread_cond_signal () functions will return
zero, otherwise an error number will be returned to indicate the error.

ERRORS
pthread_cond_broadcast () andpthread_cond_signal () may fail if:

[EINVAL] The value specified bycond is invalid.

SEE ALSO
pthread_cond_destroy (3), pthread_cond_init (3), pthread_cond_timedwait (3),
pthread_cond_wait (3)

STANDARDS
pthread_cond_broadcast () and pthread_cond_signal () conform to ISO/IEC 9945-1:1996
(“POSIX.1”).

NetBSD 3.0 May 26, 2008 1

PTHREAD_COND_DESTROY (3) NetBSDLibrary Functions Manual PTHREAD_COND_DESTROY (3)

NAME
pthread_cond_destroy — destroy a condition variable

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_cond_destroy (pthread_cond_t ∗cond);

DESCRIPTION
Thepthread_cond_destroy () function frees the resources allocated by the condition variablecond .

RETURN VALUES
If successful, thepthread_cond_destroy () function will return zero, otherwise an error number will be
returned to indicate the error.

ERRORS
pthread_cond_destroy () may fail if:

[EBUSY] The variablecond is locked by another thread.

[EINVAL] The value specified bycond is invalid.

SEE ALSO
pthread_cond_broadcast (3), pthread_cond_init (3), pthread_cond_signal (3),
pthread_cond_timedwait (3), pthread_cond_wait (3)

STANDARDS
pthread_cond_destroy () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_COND_INIT (3) NetBSD Library Functions Manual PTHREAD_COND_INIT (3)

NAME
pthread_cond_init — create a condition variable

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_cond_init (pthread_cond_t ∗ restrict cond ,

const pthread_condattr_t ∗ restrict attr);

DESCRIPTION
The pthread_cond_init () function creates a new condition variable, with attributes specified with
attr . If attr is NULL the default attributes are used.

Condition variables are intended to be used to communicate changes in the state of data shared between
threads. Conditionvariables are always associated with a mutex to provide synchronized access to the
shared data.A single predicate should always be associated with a condition variable. Thepredicate should
identify a state of the shared data that must be true before the thread proceeds.

RETURN VALUES
If successful, thepthread_cond_init () function will return zero and put the new condition variable id
into cond , otherwise an error number will be returned to indicate the error.

ERRORS
pthread_cond_init () shall fail if:

[EAGAIN] The system lacks the resources to initialize another condition variable.

[ENOMEM] The process cannot allocate enough memory to initialize another condition variable.

pthread_cond_init () may fail if:

[EINVAL] The value specified byattr is invalid.

SEE ALSO
pthread_cond_broadcast (3), pthread_cond_destroy (3), pthread_cond_signal (3),
pthread_cond_timedwait (3), pthread_cond_wait (3)

STANDARDS
pthread_cond_init () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_COND_WAIT (3) NetBSD Library Functions Manual PTHREAD_COND_WAIT (3)

NAME
pthread_cond_wait , pthread_cond_timedwait — wait on a condition variable

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_cond_wait (pthread_cond_t ∗ restrict cond ,

pthread_mutex_t ∗ restrict mutex);

int
pthread_cond_timedwait (pthread_cond_t ∗ restrict cond ,

pthread_mutex_t ∗ restrict mutex ,
const struct timespec ∗ restrict abstime);

DESCRIPTION
The pthread_cond_wait () function atomically blocks the current thread waiting on the condition vari-
able specified bycond , and unblocks the mutex specified bymutex . The waiting thread unblocks after
another thread callspthread_cond_signal (3), or pthread_cond_broadcast (3) with the same
condition variable. The current thread holds the lock onmutex upon return from the
pthread_cond_wait call.

The pthread_cond_timedwait () function atomically blocks the current thread waiting on the condi-
tion variable specified bycond , and unblocks the mutex specified bymutex . The waiting thread unblocks
after another thread callspthread_cond_signal (3), or pthread_cond_broadcast (3) with the
same condition variable, or if the system time reaches the time specified inabstime .

Note that a call topthread_cond_wait () or pthread_cond_timedwait () may wake up sponta-
neously, without a call topthread_cond_signal (3) or pthread_cond_broadcast (3). Thecaller
should prepare for this by invoking pthread_cond_wait () or pthread_cond_timedwait () within
a predicate loop that tests whether the thread should proceed.

When calling pthread_cond_wait () or pthread_cond_timedwait (), a temporary binding is
established between the condition variablecond and the mutexmutex .

The same mutex must be held while calling pthread_cond_broadcast () and
pthread_cond_signal () on cond . Additionally, the same mutex must be used for concurrent calls to
pthread_cond_wait () and pthread_cond_timedwait (). Only when a condition variable is
known to be quiescent may an application change the mutex associated with it.In this implementation, none
of the functions enforce this requirement, but if the mutex is not held or independent mutexes are used the
resulting behaviour is undefined.

RETURN VALUES
If successful, thepthread_cond_wait () and pthread_cond_timedwait () functions will return
zero. Otherwisean error number will be returned to indicate the error.

ERRORS
pthread_cond_wait () may fail if:

[EINVAL] The value specified bycond or the value specified bymutex is invalid.

NetBSD 3.0 May 26, 2008 1

PTHREAD_COND_WAIT (3) NetBSD Library Functions Manual PTHREAD_COND_WAIT (3)

pthread_cond_timedwait () shall fail if:

[ETIMEDOUT] The system time has reached or exceeded the time specified inabstime .

pthread_cond_timedwait () may fail if:

[EINVAL] The value specified bycond , mutex , or abstime is invalid.

SEE ALSO
pthread_cond_broadcast (3), pthread_cond_destroy (3), pthread_cond_init (3),
pthread_cond_signal (3)

STANDARDS
pthread_cond_wait () and pthread_cond_timedwait () conform to ISO/IEC 9945-1:1996
(“POSIX.1”).

NetBSD 3.0 May 26, 2008 2

PTHREAD_CONDATTR (3) NetBSD Library Functions Manual PTHREAD_CONDATTR (3)

NAME
pthread_condattr_init , pthread_condattr_destroy — condition attribute operations

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_condattr_init (pthread_condattr_t ∗attr);

int
pthread_condattr_destroy (pthread_condattr_t ∗attr);

DESCRIPTION
Condition attribute objects are used to specify parameters topthread_cond_init (). The
pthread_condattr_init () function initializes a condition attribute object with the default attributes.

Thepthread_condattr_destroy () function destroys a condition attribute object.

RETURN VALUES
If successful, these functions return 0. Otherwise, an error number is returned to indicate the error.

ERRORS
pthread_condattr_init () shall fail if:

[ENOMEM] Insufficient memory exists to initialize the condition attribute object.

pthread_condattr_destroy () may fail if:

[EINVAL] The value specified byattr is invalid.

SEE ALSO
pthread_cond_init (3)

STANDARDS
pthread_condattr_init () andpthread_condattr_destroy () conform toISO/IEC9945-1:1996
(“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_CREATE (3) NetBSD Library Functions Manual PTHREAD_CREATE (3)

NAME
pthread_create — create a new thread

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_create (pthread_t ∗ restrict thread ,

const pthread_attr_t ∗ restrict attr , void ∗(∗start_routine)(void ∗) ,
void ∗ restrict arg);

DESCRIPTION
Thepthread_create () function is used to create a new thread, with attributes specified byattr , within
a process. Ifattr is NULL, the default attributes are used. If the attribute object pointed to byattr are
modified later, the thread’s attributes are not affected. Uponsuccessful completionpthread_create ()
will store the ID of the created thread in the location specified bythread .

The thread is created executingstart_routine with arg as its sole argument. Ifthestart_routine
returns, the effect is as if there was an implicit call topthread_exit () using the return value of
start_routine as the exit status. Note that the thread in whichmain () was originally invoked differs
from this. When it returns frommain (), the effect is as if there was an implicit call toexit () using the
return value ofmain () as the exit status.

The signal state of the new thread is initialized as:

• The signal mask is inherited from the creating thread.

• The set of signals pending for the new thread is empty.

RETURN VALUES
If successful, the pthread_create () function will return zero.Otherwise an error number will be
returned to indicate the error.

ERRORS
pthread_create () shall fail if:

[EAGAIN] The system lacks the necessary resources to create another thread, or the system-
imposed limit on the total number of threads in a processPTHREAD_THREADS_MAX
would be exceeded.

[EINVAL] The value specified byattr is invalid.

SEE ALSO
fork (2), pthread_cleanup_pop (3), pthread_cleanup_push (3), pthread_exit (3),
pthread_join (3)

STANDARDS
pthread_create () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_DETACH (3) NetBSDLibrary Functions Manual PTHREAD_DETACH (3)

NAME
pthread_detach — detach a thread

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_detach (pthread_t thread);

DESCRIPTION
The pthread_detach () function is used to indicate to the implementation that storage for the thread
thread can be reclaimed when the thread terminates.If thread has not terminated,
pthread_detach () will not cause it to terminate. The effect of multiplepthread_detach () calls on
the same target thread is unspecified.

RETURN VALUES
If successful, the pthread_detach () function will return zero.Otherwise an error number will be
returned to indicate the error.

ERRORS
pthread_detach () shall fail if:

[EINVAL] The value specified bythread does not refer to a joinable thread.

[ESRCH] No thread could be found corresponding to that specified by the given thread ID,
thread .

SEE ALSO
pthread_join (3)

STANDARDS
pthread_detach () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_EQUAL (3) NetBSDLibrary Functions Manual PTHREAD_EQUAL (3)

NAME
pthread_equal — compare thread IDs

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_equal (pthread_t t1 , pthread_t t2);

DESCRIPTION
Thepthread_equal () function compares the thread IDst1 andt2 .

RETURN VALUES
Thepthread_equal () function will return non-zero if the thread IDst1 andt2 correspond to the same
thread, otherwise it will return zero.

ERRORS
None.

SEE ALSO
pthread_create (3), pthread_exit (3)

STANDARDS
pthread_equal () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_EXIT (3) NetBSD Library Functions Manual PTHREAD_EXIT (3)

NAME
pthread_exit — terminate the calling thread

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

void
pthread_exit (void ∗value_ptr);

DESCRIPTION
Thepthread_exit () function terminates the calling thread and makes the valuevalue_ptr available to
any successful join with the terminating thread.Any cancellation cleanup handlers that have been pushed
and are not yet popped are popped in the reverse order that they were pushed and then executed. Afterall
cancellation handlers have been executed, if the thread has any thread-specific data, appropriate destructor
functions are called in an unspecified order. Thread termination does not release any application visible
process resources, including, but not limited to, mutexes and file descriptors, nor does it perform any process
level cleanup actions, including, but not limited to, callingatexit () routines that may exist.

An implicit call topthread_exit () is made when a thread other than the thread in whichmain () was first
invoked returns from the start routine that was used to create it. The function’s return value serves as the
thread’s exit status.

The behavior ofpthread_exit () is undefined if called from a cancellation handler or destructor function
that was invoked as the result of an implicit or explicit call topthread_exit ().

After a thread has terminated, the result of access to local (auto) variables of the thread is undefined.Thus,
references to local variables of the exiting thread should not be used for thepthread_exit ()
value_ptr parameter value.

The process will exit with an exit status of 0 after the last thread has been terminated. The behavior is as if
the implementation calledexit () with a zero argument at thread termination time.

RETURN VALUES
Thepthread_exit () function cannot return to its caller.

ERRORS
None.

SEE ALSO
_exit (2), exit (3), pthread_create (3), pthread_join (3)

STANDARDS
pthread_exit () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_GETNAME_NP (3) NetBSD Library Functions Manual PTHREAD_GETNAME_NP (3)

NAME
pthread_getname_np — set descriptive name of a thread

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <pthread.h>

int
pthread_getname_np (pthread_t thread , char ∗name, size_t len);

DESCRIPTION
pthread_getname_np () gets the descriptive name of the thread. It takes the following arguments.

thread The thread whose descriptive name will be obtained.

name The buffer to be filled with the descriptive name of the thread.

len The size of the buffername in bytes.

RETURN VALUES
pthread_getname_np () returns 0 on success.Otherwise,pthread_getname_np () returns an error
number described inerrno (2).

SEE ALSO
errno (2), pthread_setname_np (3)

NetBSD 3.0 December 15, 2007 1

PTHREAD_GETSPECIFIC (3) NetBSD Library Functions Manual PTHREAD_GETSPECIFIC (3)

NAME
pthread_getspecific — get a thread-specific data value

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

void ∗
pthread_getspecific (pthread_key_t key);

DESCRIPTION
Thepthread_getspecific () function returns the value currently bound to the specifiedkey on behalf
of the calling thread.

The effect of calling pthread_getspecific () with a key value not obtained from
pthread_key_create () or afterkey has been deleted withpthread_key_delete () is undefined.

pthread_getspecific () may be called from a thread-specific data destructor function.

RETURN VALUES
The pthread_getspecific () function will return the thread-specific data value associated with the
given key . If no thread-specific data value is associated withkey , then the value NULL is returned.

ERRORS
None.

SEE ALSO
pthread_key_create (3), pthread_key_delete (3), pthread_setspecific (3)

STANDARDS
pthread_getspecific () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_JOIN (3) NetBSD Library Functions Manual PTHREAD_JOIN (3)

NAME
pthread_join — wait for thread termination

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_join (pthread_t thread , void ∗∗value_ptr);

DESCRIPTION
The pthread_join () function suspends execution of the calling thread until the target thread termi-
nates unless the targetthread has already terminated.

On return from a successfulpthread_join () call with a non-NULLvalue_ptr argument, the value
passed topthread_exit () by the terminating thread is stored in the location referenced byvalue_ptr .
When apthread_join () returns successfully, the target thread has been terminated. The results of multi-
ple simultaneous calls topthread_join () specifying the same target thread are undefined. If the thread
callingpthread_join () is cancelled, then the target thread is not detached.

A thread that has exited but remains unjoined counts against_POSIX_THREAD_THREADS_MAX.

RETURN VALUES
If successful,thepthread_join () function will return zero. Otherwise an error number will be returned
to indicate the error.

ERRORS
pthread_join () shall fail if:

[EINVAL] The value specified bythread does not refer to a joinable thread.

[ESRCH] No thread could be found corresponding to that specified by the given thread ID,
thread .

pthread_join () may fail if:

[EDEADLK] A deadlock was detected or the value ofthread specifies the calling thread.

SEE ALSO
wait (2), pthread_create (3)

STANDARDS
pthread_join () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_KEY_CREATE (3) NetBSD Library Functions Manual PTHREAD_KEY_CREATE (3)

NAME
pthread_key_create — thread-specific data key creation

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_key_create (pthread_key_t ∗key , void (∗destructor)(void ∗));

DESCRIPTION
The pthread_key_create () function creates a thread-specific data key visible to all threads in the
process. Key values provided bypthread_key_create () are opaque objects used to locate thread-spe-
cific data. Although the same key value may be used by different threads, the values bound to the key by
pthread_setspecific () are maintained on a per-thread basis and persist for the life of the calling
thread.

Upon key creation, the value NULL is associated with the new key in all active threads. Uponthread cre-
ation, the value NULL is associated with all defined keys in the new thread.

An optional destructor function may be associated with each key value. Atthread exit, if a key value has a
non-NULL destructor pointer, and the thread has a non-NULL value associated with the key, the function
pointed to is called with the current associated value as its sole argument. Theorder of destructor calls is
unspecified if more than one destructor exists for a thread when it exits.

If, after all the destructors have been called for all non-NULL values with associated destructors, there are
still some non-NULL values with associated destructors, then the process is repeated.If, after at least
PTHREAD_DESTRUCTOR_ITERATIONSiterations of destructor calls for outstanding non-NULL values,
there are still some non-NULL values with associated destructors, the implementation stops calling destruc-
tors.

RETURN VALUES
If successful, thepthread_key_create () function will store the newly created key value at the location
specified bykey and returns zero. Otherwise an error number will be returned to indicate the error.

ERRORS
pthread_key_create () shall fail if:

[EAGAIN] The system lacked the necessary resources to create another thread-specific data key,
or the system-imposed limit on the total number of keys per process
PTHREAD_KEYS_MAXwould be exceeded.

[ENOMEM] Insufficient memory exists to create the key.

SEE ALSO
pthread_getspecific (3), pthread_key_delete (3), pthread_setspecific (3)

STANDARDS
pthread_key_create () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_KEY_DELETE (3) NetBSD Library Functions Manual PTHREAD_KEY_DELETE (3)

NAME
pthread_key_delete — delete a thread-specific data key

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_key_delete (pthread_key_t key);

DESCRIPTION
The pthread_key_delete () function deletes a thread-specific data key previously returned by
pthread_key_create (). Thethread-specific data values associated withkey need not be NULL at the
time thatpthread_key_delete () is called. It is the responsibility of the application to free any applica-
tion storage or perform any cleanup actions for data structures related to the deleted key or associated thread-
specific data in any threads; this cleanup can be done either before or afterpthread_key_delete () is
called. Any attempt to usekey following the call topthread_key_delete () results in undefined
behavior.

Thepthread_key_delete () function is callable from within destructor functions. Destructor functions
are not invoked by pthread_key_delete (). Any destructor function that may have been associated with
key will no longer be called upon thread exit.

RETURN VALUES
If successful, thepthread_key_delete () function will return zero.Otherwise an error number will be
returned to indicate the error.

ERRORS
pthread_key_delete () may fail if:

[EINVAL] Thekey value is invalid.

SEE ALSO
pthread_getspecific (3), pthread_key_create (3), pthread_setspecific (3)

STANDARDS
pthread_key_delete () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

BUGS
The current specifications ofpthread_key_create () andpthread_key_delete () are flawed and
do not permit a clean implementation without potential problems.The current implementation of these func-
tionsNetBSD in addresses these problems by not supporting key reuse.

NetBSD 3.0 January 30, 2003 1

PTHREAD_KILL (3) NetBSD Library Functions Manual PTHREAD_KILL (3)

NAME
pthread_kill — send a signal to a specified thread

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>
#include <signal.h>

int
pthread_kill (pthread_t thread , int sig);

DESCRIPTION
The pthread_kill () function sends a signal, specified bysig , to a thread, specified bythread . The
signal will be handled in the context ofthread , but the signal action may alter the process as a whole.If
sig is 0, error checking is performed, but no signal is actually sent.

RETURN VALUES
If successful,pthread_kill () returns 0. Otherwise, an error number is returned.

ERRORS
pthread_kill () shall fail if:

[EINVAL] sig is an invalid or unsupported signal number.

[ESRCH] thread is an invalid thread ID.

SEE ALSO
kill (2), sigwait (2), pthread_self (3), raise (3)

STANDARDS
pthread_kill () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 October 30, 2003 1

PTHREAD_MUTEX_DESTROY (3) NetBSDLibrary Functions Manual PTHREAD_MUTEX_DESTROY (3)

NAME
pthread_mutex_destroy — free resources allocated for a mutex

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_mutex_destroy (pthread_mutex_t ∗mutex);

DESCRIPTION
Thepthread_mutex_destroy () function frees the resources allocated formutex .

RETURN VALUES
If successful,pthread_mutex_destroy () will return zero, otherwise an error number will be returned
to indicate the error.

ERRORS
pthread_mutex_destroy () may fail if:

[EBUSY] Mutex is locked by another thread.

[EINVAL] The value specified bymutex is invalid.

SEE ALSO
pthread_mutex_init (3), pthread_mutex_lock (3), pthread_mutex_trylock (3),
pthread_mutex_unlock (3)

STANDARDS
pthread_mutex_destroy () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_MUTEX_INIT (3) NetBSD Library Functions Manual PTHREAD_MUTEX_INIT (3)

NAME
pthread_mutex_init — create a mutex

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_mutex_init (pthread_mutex_t ∗ restrict mutex ,

const pthread_mutexattr_t ∗ restrict attr);

DESCRIPTION
The pthread_mutex_init () function creates a new mutex, with attributes specified withattr . If
attr is NULL the default attributes are used.

RETURN VALUES
If successful,pthread_mutex_init () will return zero and put the new mutex id into mutex , otherwise
an error number will be returned to indicate the error.

ERRORS
pthread_mutex_init () shall fail if:

[EAGAIN] The system lacks the resources to initialize another mutex.

[ENOMEM] The process cannot allocate enough memory to initialize another mutex.

pthread_mutex_init () may fail if:

[EINVAL] The value specified byattr is invalid.

SEE ALSO
pthread_mutex_destroy (3), pthread_mutex_lock (3), pthread_mutex_trylock (3),
pthread_mutex_unlock (3)

STANDARDS
pthread_mutex_init () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_MUTEX_LOCK (3) NetBSD Library Functions Manual PTHREAD_MUTEX_LOCK (3)

NAME
pthread_mutex_lock , pthread_mutex_trylock — acquire a lock on a mutex

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_mutex_lock (pthread_mutex_t ∗mutex);

int
pthread_mutex_trylock (pthread_mutex_t ∗mutex);

DESCRIPTION
The pthread_mutex_lock () function locksmutex . If the mutex is already locked, the calling thread
will block until the mutex becomes available.

The pthread_mutex_trylock () function locks mutex . If the mutex is already locked,
pthread_mutex_trylock () will not block waiting for the mutex, but will return an error condition.

RETURN VALUES
If successful,pthread_mutex_lock () andpthread_mutex_trylock () will return zero, otherwise
an error number will be returned to indicate the error.

ERRORS
pthread_mutex_lock () may fail if:

[EDEADLK] A deadlock would occur if the thread blocked waiting formutex .

[EINVAL] The value specified bymutex is invalid.

pthread_mutex_trylock () shall fail if:

[EBUSY] Mutex is already locked.

pthread_mutex_trylock () may fail if:

[EINVAL] The value specified bymutex is invalid.

SEE ALSO
pthread_mutex_destroy (3), pthread_mutex_init (3), pthread_mutex_unlock (3)

STANDARDS
pthread_mutex_lock () and pthread_mutex_trylock () conform to ISO/IEC 9945-1:1996
(“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_MUTEX_UNLOCK (3) NetBSD Library Functions Manual PTHREAD_MUTEX_UNLOCK (3)

NAME
pthread_mutex_unlock — unlock a mutex

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_mutex_unlock (pthread_mutex_t ∗mutex);

DESCRIPTION
If the current thread holds the lock onmutex , then thepthread_mutex_unlock () function unlocks
mutex .

RETURN VALUES
If successful,pthread_mutex_unlock () will return zero, otherwise an error number will be returned to
indicate the error.

ERRORS
pthread_mutex_unlock () may fail if:

[EINVAL] The value specified bymutex is invalid.

[EPERM] The current thread does not hold a lock onmutex .

SEE ALSO
pthread_mutex_destroy (3), pthread_mutex_init (3), pthread_mutex_lock (3),
pthread_mutex_trylock (3)

STANDARDS
pthread_mutex_unlock () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_MUTEXATTR (3) NetBSD Library Functions Manual PTHREAD_MUTEXATTR (3)

NAME
pthread_mutexattr_init , pthread_mutexattr_destroy ,
pthread_mutexattr_settype , pthread_mutexattr_gettype — mutex attribute operations

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_mutexattr_init (pthread_mutexattr_t ∗attr);

int
pthread_mutexattr_destroy (pthread_mutexattr_t ∗attr);

int
pthread_mutexattr_settype (pthread_mutexattr_t ∗attr , int type);

int
pthread_mutexattr_gettype (pthread_mutexattr_t ∗ restrict attr ,

int ∗ restrict type);

DESCRIPTION
Mutex attributes are used to specify parameters topthread_mutex_init (). Oneattribute object can be
used in multiple calls topthread_mutex_init (), with or without modifications between calls.

Thepthread_mutexattr_init () function initializesattr with all the default mutex attributes.

Thepthread_mutexattr_destroy () function destroysattr .

The pthread_mutexattr_settype () functions set the mutex type value of the attribute. Valid mutex
types are: PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_MUTEX_RECURSIVE, and PTHREAD_MUTEX_DEFAULT. The default mutex type for
pthread_mutexaddr_init () is PTHREAD_MUTEX_DEFAULT.

PTHREAD_MUTEX_NORMALmutexes do not check for usage errors.PTHREAD_MUTEX_NORMALmutexes
will deadlock if reentered, and result in undefined behavior if a locked mutex is unlocked by another thread.
Attempts to unlock an already unlockedPTHREAD_MUTEX_NORMALmutex will result in undefined behav-
ior.

PTHREAD_MUTEX_ERRORCHECKmutexes do check for usage errors.If an attempt is made to relock a
PTHREAD_MUTEX_ERRORCHECKmutex without first dropping the lock an error will be returned. If a
thread attempts to unlock aPTHREAD_MUTEX_ERRORCHECKmutex that is locked by another thread, an
error will be returned. If a thread attempts to unlock aPTHREAD_MUTEX_ERRORCHECKthread that is
unlocked, an error will be returned.

PTHREAD_MUTEX_RECURSIVEmutexes allow recursive locking. An attempt to relock a
PTHREAD_MUTEX_RECURSIVEmutex that is already locked by the same thread succeeds. An equivalent
number ofpthread_mutex_unlock (3) calls are needed before the mutex will wake another thread wait-
ing on this lock. If a thread attempts to unlock aPTHREAD_MUTEX_RECURSIVEmutex that is locked by
another thread, an error will be returned. If a thread attempts to unlock aPTHREAD_MUTEX_RECURSIVE
thread that is unlocked, an error will be returned.

PTHREAD_MUTEX_DEFAULTmutexes result in undefined behavior if reentered. Unlocking a
PTHREAD_MUTEX_DEFAULTmutex locked by another thread will result in undefined behavior. Attempts
to unlock an already unlockedPTHREAD_MUTEX_DEFAULTmutex will result in undefined behavior.

NetBSD 3.0 January 30, 2003 1

PTHREAD_MUTEXATTR (3) NetBSD Library Functions Manual PTHREAD_MUTEXATTR (3)

pthread_mutexattr_gettype () functions copy the type value of the attribute to the location pointed
to by the second parameter.

RETURN VALUES
If successful, these functions return 0. Otherwise, an error number is returned to indicate the error.

ERRORS
pthread_mutexattr_init () shall fail if:

[ENOMEM] Insufficient memory exists to initialize the mutex attributes object.

pthread_mutexattr_settype () shall fail if:

[EINVAL] The value specified bytype is invalid.

pthread_mutexattr_destroy (), pthread_mutexattr_settype (), and
pthread_mutexattr_gettype () may fail if:

[EINVAL] Invalid value forattr .

SEE ALSO
pthread_mutex_init (3)

STANDARDS
pthread_mutexattr_init (), pthread_mutexattr_destroy (),
pthread_mutexattr_settype (), and pthread_mutexattr_gettype () conform to ISO/IEC
9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 2

PTHREAD_ONCE (3) NetBSD Library Functions Manual PTHREAD_ONCE (3)

NAME
pthread_once — dynamic package initialization

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

pthread_once_tonce_control = PTHREAD_ONCE_INIT;

int
pthread_once (pthread_once_t ∗once_control , void (∗init_routine)(void));

DESCRIPTION
The first call topthread_once () by any thread in a process, with a given once_control , will call the
init_routine () with no arguments. Subsequentcalls to pthread_once () with the same
once_control will not call theinit_routine (). Onreturn frompthread_once (), it is guaranteed
that init_routine () has completed.The once_control parameter is used to determine whether the
associated initialization routine has been called.

The functionpthread_once () is not a cancellation point.However, if init_routine () is a cancella-
tion point and is cancelled, the effect ononce_control is as ifpthread_once () was never called.

The constantPTHREAD_ONCE_INITis defined by header〈pthread.h 〉.

The behavior ofpthread_once () is undefined ifonce_control has automatic storage duration or is
not initialized byPTHREAD_ONCE_INIT.

RETURN VALUES
If successful,thepthread_once () function will return zero.Otherwise an error number will be returned
to indicate the error.

ERRORS
None.

STANDARDS
pthread_once () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_RWLOCK_DESTROY (3) NetBSDLibrary Functions Manual PTHREAD_RWLOCK_DESTROY (3)

NAME
pthread_rwlock_destroy — destroy a read/write lock

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_rwlock_destroy (pthread_rwlock_t ∗lock);

DESCRIPTION
The pthread_rwlock_destroy () function is used to destroy a read/write lock previously created with
pthread_rwlock_init ().

RETURN VALUES
If successful, thepthread_rwlock_destroy () function will return zero. Otherwise an error number
will be returned to indicate the error.

ERRORS
Thepthread_rwlock_destroy () function may fail if:

[EBUSY] The system has detected an attempt to destroy the object referenced bylock while it
is locked.

[EINVAL] The value specified bylock is invalid.

SEE ALSO
pthread_rwlock_init (3), pthread_rwlock_rdlock (3), pthread_rwlock_unlock (3),
pthread_rwlock_wrlock (3)

STANDARDS
pthread_rwlock_destroy () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_RWLOCK_INIT (3) NetBSD Library Functions Manual PTHREAD_RWLOCK_INIT (3)

NAME
pthread_rwlock_init — initialize a read/write lock

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_rwlock_init (pthread_rwlock_t ∗ restrict lock ,

const pthread_rwlockattr_t ∗ restrict attr);

DESCRIPTION
Thepthread_rwlock_init () function is used to initialize a read/write lock, with attributes specified by
attr . If attr is NULL, the default read/write lock attributes are used.

The results of callingpthread_rwlock_init () with an already initialized lock are undefined.

RETURN VALUES
If successful, thepthread_rwlock_init () function will return zero. Otherwise an error number will be
returned to indicate the error.

ERRORS
Thepthread_rwlock_init () function shall fail if:

[EAGAIN] The system lacks the resources to initialize another read-write lock.

[ENOMEM] Insufficient memory exists to initialize the read-write lock.

Thepthread_rwlock_init () function may fail if:

[EBUSY] The system has detected an attempt to re-initialize the object referenced bylock , a
previously initialized but not yet destroyed read/write lock.

[EINVAL] The value specified byattr is invalid.

SEE ALSO
pthread_rwlock_destroy (3), pthread_rwlock_rdlock (3), pthread_rwlock_unlock (3),
pthread_rwlock_wrlock (3)

STANDARDS
pthread_rwlock_init () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

BUGS
The PTHREAD_PROCESS_SHARED attribute is not supported.

NetBSD 3.0 January 30, 2003 1

PTHREAD_RWLOCK_RDLOCK (3) NetBSD Library Functions Manual PTHREAD_RWLOCK_RDLOCK (3)

NAME
pthread_rwlock_rdlock , pthread_rwlock_timedrdlock , pthread_rwlock_tryrdlock
— acquire a read/write lock for reading

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_rwlock_rdlock (pthread_rwlock_t ∗lock);

int
pthread_rwlock_timedrdlock (pthread_rwlock_t ∗ restrict lock ,

const struct timespec ∗ restrict abstime);

int
pthread_rwlock_tryrdlock (pthread_rwlock_t ∗lock);

DESCRIPTION
The pthread_rwlock_rdlock () function acquires a read lock onlock provided that lock is not
presently held for writing and no writer threads are presently blocked on the lock. If the read lock cannot be
immediately acquired, the calling thread blocks until it can acquire the lock.

The pthread_rwlock_timedrdlock () performs the same action, but will not wait beyond abstime
to obtain the lock before returning.

The pthread_rwlock_tryrdlock () function performs the same action as
pthread_rwlock_rdlock (), but does not block if the lock cannot be immediately obtained (i.e., the
lock is held for writing or there are waiting writers).

A thread may hold multiple concurrent read locks. If so,pthread_rwlock_unlock () must be called
once for each lock obtained.

The results of acquiring a read lock while the calling thread holds a write lock are undefined.

RETURN VALUES
If successful, the pthread_rwlock_rdlock (), pthread_rwlock_timedrdlock (), and
pthread_rwlock_tryrdlock () functions will return zero.Otherwise an error number will be returned
to indicate the error.

ERRORS
Thepthread_rwlock_tryrdlock () function shall fail if:

[EBUSY] The lock could not be acquired because a writer holds the lock or was blocked on it.

Thepthread_rwlock_timedrdlock () function shall fail if:

[ETIMEDOUT] The time specified byabstime was reached before the lock could be obtained.

The pthread_rwlock_rdlock (), pthread_rwlock_timedrdlock (), and
pthread_rwlock_tryrdlock () functions may fail if:

[EAGAIN] The lock could not be acquired because the maximum number of read locks against
lock has been exceeded.

NetBSD 3.0 January 30, 2003 1

PTHREAD_RWLOCK_RDLOCK (3) NetBSD Library Functions Manual PTHREAD_RWLOCK_RDLOCK (3)

[EDEADLK] The current thread already ownslock for writing.

[EINVAL] The value specified bylock is invalid.

SEE ALSO
pthread_rwlock_destroy (3), pthread_rwlock_init (3), pthread_rwlock_unlock (3),
pthread_rwlock_wrlock (3)

STANDARDS
pthread_rwlock_rdlock (), pthread_rwlock_timedrdlock (), and
pthread_rwlock_tryrdlock () conform toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 2

PTHREAD_RWLOCK_UNLOCK (3) NetBSD Library Functions Manual PTHREAD_RWLOCK_UNLOCK (3)

NAME
pthread_rwlock_unlock — release a read/write lock

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_rwlock_unlock (pthread_rwlock_t ∗lock);

DESCRIPTION
The pthread_rwlock_unlock () function is used to release the read/write lock previously obtained by
pthread_rwlock_rdlock (), pthread_rwlock_wrlock (), pthread_rwlock_tryrdlock (),
or pthread_rwlock_trywrlock ().

RETURN VALUES
If successful, thepthread_rwlock_unlock () function will return zero. Otherwise an error number will
be returned to indicate the error.

The results are undefined iflock is not held by the calling thread.

ERRORS
Thepthread_rwlock_unlock () function may fail if:

[EINVAL] The value specified bylock is invalid.

[EPERM] The current thread does not own the read/write lock.

SEE ALSO
pthread_rwlock_destroy (3), pthread_rwlock_init (3), pthread_rwlock_rdlock (3),
pthread_rwlock_wrlock (3)

STANDARDS
pthread_rwlock_unlock () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_RWLOCK_WRLOCK (3) NetBSD Library Functions Manual PTHREAD_RWLOCK_WRLOCK (3)

NAME
pthread_rwlock_wrlock , pthread_rwlock_timedwrlock , pthread_rwlock_trywrlock
— acquire a read/write lock for writing

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_rwlock_wrlock (pthread_rwlock_t ∗lock);

int
pthread_rwlock_timedwrlock (pthread_rwlock_t ∗ restrict lock ,

const struct timespec ∗ restrict abstime);

int
pthread_rwlock_trywrlock (pthread_rwlock_t ∗lock);

DESCRIPTION
Thepthread_rwlock_wrlock () function blocks until a write lock can be acquired againstlock .

The pthread_rwlock_timedwrlock () performs the same action, but will not wait beyond abstime
to obtain the lock before returning.

The pthread_rwlock_trywrlock () function performs the same action as
pthread_rwlock_wrlock (), but does not block if the lock cannot be immediately obtained.

The results are undefined if the calling thread already holds the lock at the time the call is made.

RETURN VALUES
If successful, the pthread_rwlock_wrlock (), pthread_rwlock_timedwrlock (), and
pthread_rwlock_trywrlock () functions will return zero.Otherwise an error number will be returned
to indicate the error.

ERRORS
Thepthread_rwlock_trywrlock () function shall fail if:

[EBUSY] The calling thread is not able to acquire the lock without blocking.

Thepthread_rwlock_timedrdlock () function shall fail if:

[ETIMEDOUT] The time specified byabstime was reached before the lock could be obtained.

The pthread_rwlock_wrlock (), pthread_rwlock_timedwrlock (), and
pthread_rwlock_trywrlock () functions may fail if:

[EDEADLK] The calling thread already owns the read/write lock (for reading or writing).

[EINVAL] The value specified bylock is invalid.

SEE ALSO
pthread_rwlock_destroy (3), pthread_rwlock_init (3), pthread_rwlock_rdlock (3),
pthread_rwlock_unlock (3)

NetBSD 3.0 January 30, 2003 1

PTHREAD_RWLOCK_WRLOCK (3) NetBSD Library Functions Manual PTHREAD_RWLOCK_WRLOCK (3)

STANDARDS
pthread_rwlock_wrlock (), pthread_rwlock_timedwrlock (),
andpthread_rwlock_trywrlock () conform toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 2

PTHREAD_RWLOCKATTR (3) NetBSD Library Functions Manual PTHREAD_RWLOCKATTR (3)

NAME
pthread_rwlockattr_init , pthread_rwlockattr_destroy — initialize or destroy read/write
lock attributes

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_rwlockattr_init (pthread_rwlockattr_t ∗attr);

int
pthread_rwlockattr_destroy (pthread_rwlockattr_t ∗attr);

DESCRIPTION
Thepthread_rwlockattr_init () function is used to initialize a read/write lock attributes object.

The pthread_rwlockattr_destroy () function is used to destroy a read/write lock attribute object
previously created withpthread_rwlockattr_init ().

RETURN VALUES
If successful, thepthread_rwlockattr_init () andpthread_rwlockattr_destroy () functions
return zero. Otherwise an error number will be returned to indicate the error.

ERRORS
pthread_rwlockattr_init () shall fail if:

[ENOMEM] Insufficient memory exists to initialize the read/write lock attributes object.

pthread_rwlockattr_init () andpthread_rwlockattr_destroy () may fail if:

[EINVAL] The value specified byattr is invalid.

SEE ALSO
pthread_rwlock_init (3)

STANDARDS
The pthread_rwlockattr_init () andpthread_rwlockattr_destroy () functions conform to
ISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_SCHEDPARAM (3) NetBSD Library Functions Manual PTHREAD_SCHEDPARAM (3)

NAME
pthread_setschedparam , pthread_getschedparam — thread scheduling parameter manipula-
tion

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_setschedparam (pthread_t thread , int policy ,

const struct sched_param ∗param);

int
pthread_getschedparam (pthread_t thread , int ∗ restrict policy ,

struct sched_param ∗ restrict param);

DESCRIPTION
The pthread_setschedparam () andpthread_getschedparam () functions set and get the sched-
uling parameters of individual threads. The scheduling policy for a thread can either beSCHED_FIFO(first
in, first out),SCHED_RR(round-robin), orSCHED_OTHER(system default). Thethread priority (accessed
via param->sched_priority) must be at leastPTHREAD_MIN_PRIORITY and no more than
PTHREAD_MAX_PRIORITY.

RETURN VALUES
If successful, these functions return 0. Otherwise, an error number is returned to indicate the error.

ERRORS
pthread_setschedparam () may fail if:

[EINVAL] The value specified bypolicy is invalid.

[ENOTSUP] Invalid value for scheduling parameters.

[ESRCH] Non-existent threadthread.

pthread_getschedparam () may fail if:

[ESRCH] Non-existent threadthread.

STANDARDS
pthread_setschedparam () and pthread_getschedparam () conform to ISO/IEC 9945-1:1996
(“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_SELF (3) NetBSD Library Functions Manual PTHREAD_SELF (3)

NAME
pthread_self — get the calling thread’s ID

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

pthread_t
pthread_self (void);

DESCRIPTION
Thepthread_self () function returns the thread ID of the calling thread.

RETURN VALUES
Thepthread_self () function returns the thread ID of the calling thread.

ERRORS
None.

SEE ALSO
pthread_create (3), pthread_equal (3)

STANDARDS
pthread_self () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_SETNAME_NP (3) NetBSD Library Functions Manual PTHREAD_SETNAME_NP (3)

NAME
pthread_setname_np — set descriptive name of a thread

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <pthread.h>

int
pthread_setname_np (pthread_t thread , const char ∗name, void ∗arg);

DESCRIPTION
pthread_setname_np () sets the descriptive name of the thread. It takes the following arguments.

thread The thread whose descriptive name will be set.

name The printf (3) format string to be used to construct the descriptive name of the thread.The
resulted descriptive name should be shorter thanPTHREAD_MAX_NAMELEN_NP.

arg Theprintf (3) argument used withname.

RETURN VALUES
pthread_setname_np () returns 0 on success.Otherwise,pthread_setname_np () returns an error
number described inerrno (2).

SEE ALSO
errno (2), pthread_getname_np (3)

NetBSD 3.0 December 15, 2007 1

PTHREAD_SETSPECIFIC (3) NetBSD Library Functions Manual PTHREAD_SETSPECIFIC (3)

NAME
pthread_setspecific — set a thread-specific data value

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_setspecific (pthread_key_t key , const void ∗value);

DESCRIPTION
Thepthread_setspecific () function associates a thread-specific value with akey obtained via a pre-
vious call topthread_key_create (). Different threads have different values bound to each key. These
values are typically pointers to blocks of dynamically allocated memory that have been reserved for use by
the calling thread.

The effect of calling pthread_setspecific () with a key value not obtained from
pthread_key_create () or afterkey has been deleted withpthread_key_delete () is undefined.

pthread_setspecific () may be called from a thread-specific data destructor function, however this
may result in lost storage or infinite loops.

RETURN VALUES
If successful, the pthread_setspecific () function will return zero. Otherwise an error number will
be returned to indicate the error.

ERRORS
pthread_setspecific () shall fail if:

[ENOMEM] Insufficient memory exists to associate the value with thekey .

pthread_setspecific () may fail if:

[EINVAL] Thekey value is invalid.

SEE ALSO
pthread_getspecific (3), pthread_key_create (3), pthread_key_delete (3)

STANDARDS
pthread_setspecific () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 30, 2003 1

PTHREAD_SIGMASK (3) NetBSD Library Functions Manual PTHREAD_SIGMASK (3)

NAME
pthread_sigmask — examine and/or change a thread’s signal mask

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <signal.h>

int
pthread_sigmask (int how , const sigset_t ∗ restrict set ,

sigset_t ∗ restrict oset);

DESCRIPTION
Thepthread_sigmask () function examines and/or changes the calling thread’s signal mask.

If set is notNULL, it specifies a set of signals to be modified, andhow specifies what to set the signal mask
to:

SIG_BLOCK Union of the current mask andset .

SIG_UNBLOCKIntersection of the current mask and the complement ofset .

SIG_SETMASKset .

If oset is not NULL, the previous signal mask is stored in the location pointed to byoset .

SIGKILL andSIGSTOPcannot be blocked, and will be silently ignored if included in the signal mask.

RETURN VALUES
If successful,pthread_sigmask () returns 0. Otherwise, an error is returned.

ERRORS
pthread_sigmask () shall fail if:

[EINVAL] how is not one of the defined values.

SEE ALSO
sigaction (2), sigpending (2), sigprocmask (2), sigsuspend (2), sigwait (2), sigsetops (3)

STANDARDS
pthread_sigmask () conforms toISO/IEC9945-1:1996 (“POSIX.1”)

NetBSD 3.0 January 7, 2006 1

PTHREAD_SPIN_DESTROY (3) NetBSDLibrary Functions Manual PTHREAD_SPIN_DESTROY (3)

NAME
pthread_spin_destroy — destroy a spin lock

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_spin_destroy (pthread_spinlock_t ∗lock);

DESCRIPTION
The pthread_spin_destroy () function is used to destroy a spin lock previously created with
pthread_spin_init ().

RETURN VALUES
If successful, thepthread_spin_destroy () function will return zero. Otherwise an error number will
be returned to indicate the error.

ERRORS
Thepthread_spin_destroy () function may fail if:

[EBUSY] The system has detected an attempt to destroy the object referenced bylock while it
is locked.

[EINVAL] The value specified bylock is invalid.

SEE ALSO
pthread_spin_init (3), pthread_spin_lock (3), pthread_spin_trylock (3),
pthread_spin_unlock (3)

STANDARDS
pthread_spin_destroy () conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

CAVEATS
Applications using spinlocks are vulnerable to the effects of priority inversion. Applicationsusing real-time
threads (SCHED_FIFO, SCHED_RR) should not use these interfaces. Outsidecarefully controlled envi-
ronments, priority inversion with spinlocks can lead to system deadlock.Mutexes are preferable in nearly
ev ery possible use case.

NetBSD 3.0 May 26, 2008 1

PTHREAD_SPIN_INIT (3) NetBSD Library Functions Manual PTHREAD_SPIN_INIT (3)

NAME
pthread_spin_init — initialize a spin lock

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_spin_init (pthread_spinlock_t ∗lock , int pshared);

DESCRIPTION
The pthread_spin_init () function is used to initialize a spinlock.The pshared parameter is cur-
rently unused and all spinlocks exhibit thePTHREAD_PROCESS_SHAREDproperty.

The results of callingpthread_spin_init () with an already initialized lock are undefined.

RETURN VALUES
If successful, thepthread_spin_init () function will return zero. Otherwise an error number will be
returned to indicate the error.

ERRORS
Thepthread_spin_init () function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the lock.

Thepthread_spin_init () function may fail if:

[EINVAL] The lock parameter was NULL or thepshared parameter was neither
PTHREAD_PROCESS_SHAREDnorPTHREAD_PROCESS_PRIVATE.

SEE ALSO
pthread_spin_destroy (3), pthread_spin_lock (3), pthread_spin_trylock (3),
pthread_spin_unlock (3)

STANDARDS
pthread_spin_init () conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

CAVEATS
Applications using spinlocks are vulnerable to the effects of priority inversion. Applicationsusing real-time
threads (SCHED_FIFO, SCHED_RR) should not use these interfaces. Outsidecarefully controlled envi-
ronments, priority inversion with spinlocks can lead to system deadlock.Mutexes are preferable in nearly
ev ery possible use case.

NetBSD 3.0 May 26, 2008 1

PTHREAD_SPIN_LOCK (3) NetBSD Library Functions Manual PTHREAD_SPIN_LOCK (3)

NAME
pthread_spin_lock , pthread_spin_trylock — acquire a spin lock

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_spin_lock (pthread_spinlock_t ∗lock);

int
pthread_spin_trylock (pthread_spinlock_t ∗lock);

DESCRIPTION
The pthread_spin_lock () function acquires a spin lock onlock provided thatlock is not presently
held. If the lock cannot be immediately acquired, the calling thread repeatedly retries until it can acquire the
lock.

Thepthread_spin_trylock () function performs the same action, but does not block if the lock cannot
be immediately obtained (i.e., the lock is held).

RETURN VALUES
If successful, thepthread_spin_lock () andpthread_spin_trylock () functions will return zero.
Otherwise an error number will be returned to indicate the error.

ERRORS
Thepthread_spin_trylock () function shall fail if:

[EBUSY] The lock could not be acquired because a writer holds the lock or was blocked on it.

Thepthread_spin_lock () function may fail if:

[EDEADLK] The current thread already ownslock for writing.

Thepthread_spin_lock () andpthread_spin_trylock () functions may fail if:

[EINVAL] The value specified bylock is invalid.

SEE ALSO
pthread_spin_destroy (3), pthread_spin_init (3), pthread_spin_unlock (3)

STANDARDS
pthread_spin_lock () and pthread_spin_trylock () conform to IEEE Std 1003.1-2001
(“POSIX.1”).

CAVEATS
Applications using spinlocks are vulnerable to the effects of priority inversion. Applicationsusing real-time
threads (SCHED_FIFO, SCHED_RR) should not use these interfaces. Outsidecarefully controlled envi-
ronments, priority inversion with spinlocks can lead to system deadlock.Mutexes are preferable in nearly
ev ery possible use case.

NetBSD 3.0 May 26, 2008 1

PTHREAD_SPIN_UNLOCK (3) NetBSD Library Functions Manual PTHREAD_SPIN_UNLOCK (3)

NAME
pthread_spin_unlock — release a spin lock

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_spin_unlock (pthread_spinlock_t ∗lock);

DESCRIPTION
The pthread_spin_unlock () function is used to release the read/write lock previously obtained by
pthread_spin_lock () or pthread_spin_trylock ().

RETURN VALUES
If successful, thepthread_spin_unlock () function will return zero. Otherwise an error number will be
returned to indicate the error.

The results are undefined iflock is not held by the calling thread.

ERRORS
Thepthread_spin_unlock () function may fail if:

[EINVAL] The value specified bylock is invalid.

SEE ALSO
pthread_spin_destroy (3), pthread_spin_init (3), pthread_spin_lock (3),
pthread_spin_trylock (3)

STANDARDS
pthread_rwlock_unlock () conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

CAVEATS
Applications using spinlocks are vulnerable to the effects of priority inversion. Applicationsusing real-time
threads (SCHED_FIFO, SCHED_RR) should not use these interfaces. Outsidecarefully controlled envi-
ronments, priority inversion with spinlocks can lead to system deadlock.Mutexes are preferable in nearly
ev ery possible use case.

NetBSD 3.0 May 26, 2008 1

PTHREAD_SUSPEND_NP (3) NetBSD Library Functions Manual PTHREAD_SUSPEND_NP (3)

NAME
pthread_suspend_np , pthread_resume_np — suspend/resume the given thread

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_suspend_np (pthread_t thread);

int
pthread_resume_np (pthread_t thread);

DESCRIPTION
The pthread_suspend_np () function suspends thethread given as argument. Ifthread is the cur-
rently running thread as returned bypthread_self (3), the function fails and returnsEDEADLK. Other-
wise, it removes the named thread from the running queue, and adds it to the suspended queue.The
thread will remain blocked untilpthread_resume_np () is called on it.

pthread_resume_np () resumes thethread given as argument, if it was suspended.

RETURN VALUES
Thepthread_suspend_np () function returns 0 on success and an error number indicating the reason for
the failure. Thepthread_resume_np () function always returns 0.

ERRORS
pthread_suspend_np () shall fail if:

[EDEADLK] The thread requested to suspend was the currently running thread.

pthread_resume_np () never fails.

NOTES
Somepthread_suspend_np () implementations may allow suspending the current thread. This is dan-
gerous, because the semantics of the function would then require the scheduler to schedule another thread,
causing a thread context switch. Since that context switch can happen in a signal handler by someone calling
pthread_suspend_np () in a signal handler, this is currently not allowed.

In pthread_resume_np () we don’t check if the thread argument is not already suspended.Some
implementations might return an error condition ifpthread_resume_np () is called on a non-suspended
thread.

SEE ALSO
pthread_attr_setcreatesuspend_np (3), pthread_self (3)

NetBSD 3.0 November 12, 2003 1

PTHREAD_TESTCANCEL (3) NetBSD Library Functions Manual PTHREAD_TESTCANCEL (3)

NAME
pthread_setcancelstate , pthread_setcanceltype , pthread_testcancel — set cancela-
bility state

LIBRARY
POSIXThreads Library (libpthread, −lpthread)

SYNOPSIS
#include <pthread.h>

int
pthread_setcancelstate (int state , int ∗oldstate);

int
pthread_setcanceltype (int type , int ∗oldtype);

void
pthread_testcancel (void);

DESCRIPTION
The pthread_setcancelstate () function atomically both sets the calling thread’s cancelability state
to the indicatedstate and, ifoldstate is notNULL, returns the previous cancelability state at the loca-
tion referenced byoldstate . Leg al values for state are PTHREAD_CANCEL_ENABLEand
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype () function atomically both sets the calling thread’s cancelability type to
the indicatedtype and, ifoldtype is notNULL, returns the previous cancelability type at the location ref-
erenced by oldtype . Leg al values for type are PTHREAD_CANCEL_DEFERREDand
PTHREAD_CANCEL_ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the thread in whichmain () was first
invoked, arePTHREAD_CANCEL_ENABLEandPTHREAD_CANCEL_DEFERREDrespectively.

The pthread_testcancel () function creates a cancellation point in the calling thread.The
pthread_testcancel () function has no effect if cancelability is disabled.

Cancelability States
The cancelability state of a thread determines the action taken upon receipt of a cancellation request.The
thread may control cancellation in a number of ways.

Each thread maintains its own “cancelability state” which may be encoded in two bits:

Cancelability EnableWhen cancelability isPTHREAD_CANCEL_DISABLE, cancellation requests against
the target thread are held pending.

Cancelability Type When cancelability is enabled and the cancelability type is
PTHREAD_CANCEL_ASYNCHRONOUS, new or pending cancellation requests may be acted upon at
any time. When cancelability is enabled and the cancelability type is
PTHREAD_CANCEL_DEFERRED, cancellation requests are held pending until a cancellation point
(see below) is reached. If cancelability is disabled, the setting of the cancelability type has no
immediate effect as all cancellation requests are held pending; however, once cancelability is
enabled again the new type will be in effect.

Cancellation Points
Cancellation points will occur when a thread is executing the following functions:accept (), close (),
connect (), creat (), fcntl (), fsync (), fsync_range (), msgrcv (), msgsnd(), msync (),

NetBSD 3.0 January 30, 2003 1

PTHREAD_TESTCANCEL (3) NetBSD Library Functions Manual PTHREAD_TESTCANCEL (3)

nanosleep (), open (), pause (), poll (), pread (), pselect (), pthread_cond_timedwait (),
pthread_cond_wait (), pthread_join (), pthread_testcancel (), pwrite (), read (),
readv (), recv (), recvfrom (), recvmsg (), select (), sem_timedwait (), sem_wait (), send (),
sendmsg (), sendto (), sigpause (), sigsuspend (), sigtimedwait (), sigwait (),
sigwaitinfo (), sleep (), system (), tcdrain (), usleep (), wait (), waitid (), waitpid (),
write (), andwritev ().

RETURN VALUES
If successful, thepthread_setcancelstate () and pthread_setcanceltype () functions will
return zero. Otherwise, an error number shall be returned to indicate the error.

The pthread_setcancelstate () and pthread_setcanceltype () functions are used to control
the points at which a thread may be asynchronously canceled.For cancellation control to be usable in modu-
lar fashion, some rules must be followed.

For purposes of this discussion, consider an object to be a generalization of a procedure. It is a set of proce-
dures and global variables written as a unit and called by clients not known by the object. Objects may
depend on other objects.

First, cancelability should only be disabled on entry to an object, never explicitly enabled. On exit from an
object, the cancelability state should always be restored to its value on entry to the object.

This follows from a modularity argument: if the client of an object (or the client of an object that uses that
object) has disabled cancelability, it is because the client doesn’t want to have to worry about how to clean up
if the thread is canceled while executing some sequence of actions. If an object is called in such a state and it
enables cancelability and a cancellation request is pending for that thread, then the thread will be canceled,
contrary to the wish of the client that disabled.

Second, the cancelability type may be explicitly set to eitherdeferredor asynchronousupon entry to an
object. Butas with the cancelability state, on exit from an object that cancelability type should always be
restored to its value on entry to the object.

Finally, only functions that are cancel-safe may be called from a thread that is asynchronously cancelable.

ERRORS
The functionpthread_setcancelstate () may fail with:

[EINVAL] The specified state is not PTHREAD_CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE.

The functionpthread_setcanceltype () may fail with:

[EINVAL] The specified state is not PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS.

SEE ALSO
pthread_cancel (3)

STANDARDS
pthread_testcancel () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

AUTHORS
This man page was written by David Leonard〈d@openbsd.org〉 for the OpenBSD implementation of
pthread_cancel (3).

NetBSD 3.0 January 30, 2003 2

PTSNAME (3) NetBSD Library Functions Manual PTSNAME (3)

NAME
ptsname — get the pathname of the slave pseudo-terminal device

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

char ∗
ptsname (int masterfd);

DESCRIPTION
The ptsname () function returns the pathname of the slave pseudo-terminal device that corresponds to the
master pseudo-terminal device associated withmasterfd . The ptsname () function is not reentrant or
thread-safe.

RETURN VALUES
If successful,ptsname () returns a pointer to a nul-terminated string containing the pathname of the slave
pseudo-terminal device. If an error occursptsname () will return NULL and errno is set to indicate the
error.

ERRORS
Theptsname () function will fail if:

[EACCESS] the corresponding pseudo-terminal device could not be accessed.

[EBADF] masterfd is not a valid descriptor.

[EINVAL] masterfd is not associated with a master pseudo-terminal device.

NOTES
The error returns ofptsname () are aNetBSD extension. Theptsname () function is equivalent to:

struct ptmget pm;
return ioctl(masterfd, TIOCPTSNAME, &pm) == -1 ? NULL : pm.ps;

SEE ALSO
ioctl (2), grantpt (3), posix_openpt (3), unlockpt (3)

STANDARDS
The ptsname () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”). Its first release was inX/Open
Portability Guide Issue 4, Version 2 (“XPG4.2”).

NetBSD 3.0 May 25, 2004 1

PUFFS (3) NetBSD Library Functions Manual PUFFS (3)

NAME
puffs — Pass-to-Userspace Framework File System development interface

LIBRARY
library “libpuffs”

SYNOPSIS
#include <puffs.h>

struct puffs_usermount ∗
puffs_init (struct puffs_ops ∗pops , const char ∗mntfromname ,

const char ∗puffsname , void ∗private , uint32_t flags);

int
puffs_mount (struct puffs_usermount ∗pu , const char ∗dir , int mntflags ,

void ∗root_cookie);

int
puffs_getselectable (struct puffs_usermount ∗pu);

int
puffs_setblockingmode (struct puffs_usermount ∗pu , int mode);

int
puffs_getstate (struct puffs_usermount ∗pu);

int
puffs_setstacksize (struct puffs_usermount ∗pu , size_t stacksize);

void
puffs_setroot (struct puffs_usermount ∗pu , struct puffs_node ∗node);

void
puffs_setrootinfo (struct puffs_usermount ∗pu , enum vtype vt , vsize_t vsize ,

dev_t rdev);

struct puffs_node ∗
puffs_getroot (struct puffs_usermount ∗pu);

void ∗
puffs_getspecific (struct puffs_usermount ∗pu);

void
puffs_setmaxreqlen (struct puffs_usermount ∗pu , size_t maxreqlen);

size_t
puffs_getmaxreqlen (struct puffs_usermount ∗pu);

void
puffs_setfhsize (struct puffs_usermount ∗pu , size_t fhsize , int flags);

void
puffs_setncookiehash (struct puffs_usermount ∗pu , int nhashes);

void
puffs_ml_loop_fn (struct puffs_usermount ∗pu);

void
puffs_ml_setloopfn (struct puffs_usermount ∗pu , puffs_ml_loop_fn lfn);

NetBSD 3.0 January 28, 2008 1

PUFFS (3) NetBSD Library Functions Manual PUFFS (3)

void
puffs_ml_settimeout (struct puffs_usermount ∗pu , struct timespec ∗ts);

int
puffs_daemon (struct puffs_usermount ∗pu , int nochdir , int noclose);

int
puffs_mainloop (struct puffs_usermount ∗pu);

int
puffs_dispatch_create (struct puffs_usermount ∗pu ,

struct puffs_framebuf ∗pb , struct puffs_cc ∗∗pccp);

int
puffs_dispatch_exec (.Fa , struct puffs_cc ∗pcc , struct puffs_framebuf ∗∗pbp);

DESCRIPTION
IMPORTANT NOTE! This document describes interfaces which are not yet guaranteed to be stable.In case
you update your system sources, please recompile everything and fix compilation errors.If your sources are
out-of-sync, incorrect operation may result. The interfaces in this document will most likely be hugely sim-
plified in later versions or made transparent to the implementation.

puffs provides a framework for creating file systems as userspace servers. Operationsare transported from
the kernel virtual file system layer to the concrete implementation behindpuffs , where they are processed
and results are sent back to the kernel.

It is possible to usepuffs in two different ways. Callingpuffs_mainloop () takes execution context
aw ay from the caller and automatically handles all requests by using the callbacks. By using
puffs_framebuf (3) in conjuction withpuffs_mainloop (), it is possible to handle I/O to and from
file descriptors. This is suited e.g. for distributed file servers.

Library operation
Operations on the library always require a pointer to the opaque context identifier, struct puffs_usermount. It
is obtained by callingpuffs_init ().

puffs operates using operation callbacks.They can be initialized using the macroPUFFSOP_SET(pops ,
fsname , type , opname), which will initialize the operationpuffs_type_opname () in pops to
fsname_type_opname (). All operations are initialized to a default state with the call
PUFFSOP_INIT(pops). All of the VFS routines are mandatory, but all of the node operations with the
exception ofpuffs_node_lookup () are optional.However, leaving operations blank will naturally have
an effect on the features available from the file system implementation.

puffs_init (pops , mntfromname , puffsname , private , flags)
Initializes the library context. pops specifies the callback operations vector. mntfromname is
device the file system is mounted from. This can be for example a block device such as/dev/wd0a
or, if the file system is pseudo file system, thepuffs device name can be given by _PATH_PUFFS.
This value is used for example in the first column of the output ofmount (8) and df (1).
puffsname is the file system type. It will always be prepended with the string "puffs|". If possible,
file server binaries should be named using the format "mount_myfsnamehere" and this value should
equal "myfsnamehere".A fi le system specific context pointer can optionally be given in private .
This can be retrieved by puffs_getspecific (). Flagsfor puffs can be given via pflags .
Currently the following flags are supported:

PUFFS_KFLAG_NOCACHE_NAME Do not enter pathname components into the name cache.
This means that every time the kernel does a lookup for a
componentname, the file server will be consulted.

NetBSD 3.0 January 28, 2008 2

PUFFS (3) NetBSD Library Functions Manual PUFFS (3)

PUFFS_KFLAG_NOCACHE_PAGE Do not use the page cache. This means that all reads and
writes to regular file are propagated to the file server for
handling. Thisoption makes a difference only for regu-
lar files.

PUFFS_KFLAG_NOCACHE An alias for both PUFFS_KFLAG_NOCACHE_NAME
andPUFFS_KFLAG_NOCACHE_PAGE.

PUFFS_KFLAG_ALLOPS This flag requests that all operations are sent to
userspace. Normallythe kernel shortcircuits unimple-
mented operations.This flag is mostly useful for debug-
ging purposes.

PUFFS_KFLAG_WTCACHE Set the file system cache behavior as write-through.This
means that all writes are immediately issued to the file
server instead of being flushed in file system sync.This
is useful especially for distributed file systems.

PUFFS_KFLAG_IAONDEMAND Issue inactive only on demand. If a file server defines the
inactive method, call it only if the file server has explic-
itly requested that inactive be called for the node in ques-
tion. Onceinactive has been called for a node, it will not
be called again unless the request to call inactive is reis-
sued by the file server. See puffs_setback () in
puffs_ops (3) for more information.

PUFFS_KFLAG_LOOKUP_FULLPNBUFThis flag affects only the parameterpcn to
puffs_node_lookup (). If this flag is not given, only
the next pathname component under lookup is found
from pcn->pcn_name . If this flag is given, the full
path the kernel was asked to resolve can be found from
there.

PUFFS_FLAG_BUILDPATH The framework will build a complete path name, which
is supplied with each operation and can be found from
the pn_po.po_full_pcn field in a struct
puffs_node . The option assumes that the framework
can map a cookie to astruct puffs_node . See
Cookies for more information on cookie mapping.See
puffs_path (3) for more information on library calls
involving paths.

PUFFS_FLAG_HASHPATH Calculate a hash of the path into the path object field
po_hash. This hash value is used by
puffs_path_walkcmp () to avoid doing a full com-
parison for every path equal in length to the one searched
for. Especially if the file system uses the abovemen-
tioned function, it is a good idea to define this flag.

PUFFS_FLAG_OPDUMP This option makes the framework dump a textual repre-
sentation of each operation before executing it. It is use-
ful for debugging purposes.

The following functions can be used to query or modify the global state of the file system. Note, that all calls
are not available at all times.

NetBSD 3.0 January 28, 2008 3

PUFFS (3) NetBSD Library Functions Manual PUFFS (3)

puffs_getselectable (pu)
Returns a handle to do I/O multiplexing with:select (2), poll (2), andkqueue (2) are all exam-
ples of acceptable operations.

puffs_setblockingmode (pu , mode)
Sets the file system upstream access to blocking or non-blocking mode.Acceptable values for the
argument arePUFFSDEV_BLOCKandPUFFSDEV_NONBLOCK.

This routine can be called only after callingpuffs_mount ().

puffs_getstate (pu)
Returns the state of the file system.It is maintained by the framework and is mostly useful for the
framework itself. Possible values are PUFFS_STATE_BEFOREMOUNT,
PUFFS_STATE_RUNNING, PUFFS_STATE_UNMOUNTINGandPUFFS_STATE_UNMOUNTED.

puffs_setstacksize (pu , stacksize)
Sets the stack size used when running callbacks. The default isPUFFS_STACKSIZE_DEFAULT
bytes of stack space per request. The minimum stacksize is architecture-dependent and can be speci-
fied by using the opaque constantPUFFS_STACKSIZE_MIN.

puffs_setroot (pu , node)
Sets the root node of mountpu to node . Setting the root node is currently required only if the path
framework is used, seepuffs_path (3).

puffs_setrootinfo (pu , vt , vsize , rdev)
The default root node is a directory. In case the file system wants something different, it can call this
function and set the type, size and possible device type to whatever it wants. Thisroutine is indepen-
dent ofpuffs_setroot ().

puffs_getroot (pu)
Returns the root node set earlier.

puffs_getspecific (pu)
Returns theprivate argument ofpuffs_init ().

puffs_setmaxreqlen (pu , maxreqlen)
In case the file system desires a maximum buffer length different from the default, the amount
maxreqlen will be requested from the kernel when the file system is mounted.

It is legal to call this function only betweenpuffs_init () andpuffs_mount ().

NOTEThis does not currently work.

puffs_getmaxreqlen (pu)
Returns the maximum request length the kernel will need for a single request.

NOTEThis does not currently work.

puffs_setfhsize (pu , fhsize , flags)
Sets the desired file handle size.This must be called if the file system wishes to support NFS export-
ing file systems of thefh ∗() family of function calls.

In case all nodes in the file system produce the same length file handle, it must be supplied as
fhsize . In this case, the file system may ignore the length parameters in the file handle callback
routines, as the kernel will always pass the correct length buffer. Howev er, if the file handle size
varies according to file, the argumentfhsize defines the maximum size of a file handle for the file
system. Inthis case the file system must take care of the handle lengths by itself in the file handle
callbacks, seepuffs_ops (3) for more information. Also, the flagPUFFS_FHFLAG_DYNAMIC
must be provided in the argumentflags .

NetBSD 3.0 January 28, 2008 4

PUFFS (3) NetBSD Library Functions Manual PUFFS (3)

In case the file system wants to sanity check its file handle lengths for the limits of NFS, it can supply
PUFFS_FHFLAG_NFSV2andPUFFS_FHFLAG_NFSV3in the flags parameter. It is especially
important to note that these are not directly the limits specified by the protocols, as the kernel uses
some bytes from the buffer space. In case the file handles are too large, mount will return an error.

It is legal to call this function only betweenpuffs_init () andpuffs_mount ().

puffs_setncookiehash (pu , ncookiehash)
The parameterncookiehash controls the amount of hash buckets the kernel has for reverse
lookups from cookie to vnode.Technically the default is enough, but a memory/time tradeoff can be
made by increasing this for file systems which know they will have very many active files.

It is legal to call this function only betweenpuffs_init () andpuffs_mount ().

After the correct setup for the library has been established and the backend has been initialized the file sys-
tem is made operational by callingpuffs_mount (). After this function returns the file system should start
processing requests.

puffs_mount (pu , dir , mntflags , root_cookie)
pu is the library context pointer frompuffs_init (). Theargumentdir signifies the mount point
and mntflags is the flagset given to mount (2). Thevalue root_cookie will be used as the
cookie for the file system root node.

Using the built-in eventloop
puffs_ml_loop_fn (pu)

Loop function signature.

puffs_ml_setloopfn (pu , lfn)
Set loop function tolfn . This function is called once each time the event loop loops. It is not a
well-defined interval, but it can be made fairly regular by setting the loop timeout by
puffs_ml_settimeout ().

puffs_ml_settimeout (pu , ts)
Sets the loop timeout tots or disables it ifts is NULL. This can be used to roughly control how
often the loop callbacklfn () is called

puffs_daemon (pu , nochdir , noclose)
Detach from the console like daemon(3). This call synchronizes withpuffs_mount () and the
foreground process does not exit before the file system mount call has returned from the kernel.

puffs_mainloop (pu , flags)
Handle all requests automatically until the file system is unmounted.It returns 0 if the file system
was successfully unmounted or −1 if it was killed in action.

In casepuffs_framebuf (3) has been initialized, I/O from the relevant descriptors is processed
automatically by the eventloop.

puffs_dispatch_create (pu , pb , pccp)

puffs_dispatch_exec (pcc , pbp)
In case the use ofpuffs_mainloop () is not possible, requests may be dispatched manually. How-
ev er, as this is less efficient than using the mainloop, it should never be the first preference.

Calling puffs_dispatch_create () creates a dispatch request. The argumentpb should con-
tains a valid request and upon successpccp will contain a valid request context. This context is
passed topuffs_dispatch_exec () to execute the request. If the request yielded before complet-
ing, the routine returns 0, otherwise 1. When the routine completes,pcc is made invalid and a
pointer to the processed buffer is placed inpbp . It is the responsibility of the caller to send the

NetBSD 3.0 January 28, 2008 5

PUFFS (3) NetBSD Library Functions Manual PUFFS (3)

response (if necessary) and destroy the buffer.

Seepuffs_cc (3) andpuffs_framebuf (3) for further information.

Cookies
Every file (regular file, directory, device node, ...) instance is attached to the kernel using a cookie.A cookie
should uniquely map to a file during its lifetime. If file instances are kept in memory, a simple strategy is to
use the virtual address of the structure describing the file. The cookie can be recycled when
puffs_node_reclaim () is called for a node.

For some operations (such as building paths) the framework needs to map the cookie to the framework-level
structure describing a file,struct puffs_node . It is advisable to simply use thestruct
puffs_node address as a cookie and store file system specific data in the private portion ofstruct
puffs_node . The library assumes this by default. If it is not desirable, the file system implementation can
call puffs_set_cookiemap () to provide an alternative cookie-to-node mapping function.

SEE ALSO
mount (2), puffs_cc (3), puffs_cred (3), puffs_flush (3), puffs_framebuf (3),
puffs_node (3), puffs_ops (3), puffs_path (3), puffs_suspend (3), refuse (3), puffs (4)

Antti Kantee, "puffs - Pass-to-Userspace Framework File System",Proceedings of AsiaBSDCon 2007, pp.
29-42, March 2007.

Antti Kantee,Using puffs for Implementing Client-Server Distributed File Systems, Helsinki University of
Technology, Tech Report TKK-TKO-B157, September 2007.

Antti Kantee and Alistair Crooks, "ReFUSE: Userspace FUSE Reimplementation Using puffs",
EuroBSDCon 2007, September 2007.

HISTORY
An unsupported experimental version ofpuffs first appeared inNetBSD 4.0.

AUTHORS
Antti Kantee〈pooka@iki.fi〉

BUGS
Under construction.

NetBSD 3.0 January 28, 2008 6

PUFFS_CC (3) NetBSD Library Functions Manual PUFFS_CC (3)

NAME
puffs_cc — puffs continuation routines

LIBRARY
library “libpuffs”

SYNOPSIS
#include <puffs.h>

void
puffs_cc_yield (struct puffs_cc ∗pcc);

void
puffs_cc_continue (struct puffs_cc ∗pcc);

void
puffs_cc_schedule (struct puffs_cc ∗pcc);

struct puffs_cc ∗
puffs_cc_getcc (struct puffs_usermount ∗pu);

DESCRIPTION
IMPORTANT NOTE! This document describes interfaces which are not yet guaranteed to be stable. In case
you update your system sources, please recompile everything and fix compilation errors. If your sources are
out-of-sync, incorrect operation may result. The interfaces in this document will most likely be hugely sim-
plified in later versions or made transparent to the implementation.

These routines are used for the cooperative multitasking suite present in puffs.

puffs_cc_yield (pcc)
Suspend and save the current execution context and return control to the previous point. In practice,
from the file system author perspective, control returns back to where either the mainloop or where
puffs_dispatch_exec () was called from.

puffs_cc_continue (pcc)
Will suspend current execution and return control to where it was before before calling
puffs_cc_yield (). This is rarely called directly but rather through
puffs_dispatch_exec ().

puffs_cc_schedule (pcc)
Schedule a continuation. As opposed topuffs_cc_continue () this call returns immediately.
pcc will be scheduled sometime in the future.

puffs_cc_getcc (pu)
Returns the current pcc orNULL if this is the main thread.NOTE: The argumentpu will most likely
disappear at some point.

Before callingpuffs_cc_yield () a file system will typically want to record some cookie value into its
own internal bookkeeping. Thiscookie should be hooked to thepcc so that the correct continuation can be
continued when the event it was waiting for triggers.Alternatively, the puffs_framebuf (3) framework
andpuffs_mainloop () can be used for handling this automatically.

SEE ALSO
puffs (3), puffs_framebuf (3)

NetBSD 3.0 January 28, 2008 1

PUFFS_CRED (3) NetBSD Library Functions Manual PUFFS_CRED (3)

NAME
puffs_cred — puffs credential and access control routines

LIBRARY
library “libpuffs”

SYNOPSIS
#include <puffs.h>

int
puffs_cred_getuid (const struct puffs_cred ∗pcr , uid_t ∗uid);

int
puffs_cred_getgid (const struct puffs_cred ∗pcr , gid_t ∗gid);

int
puffs_cred_getgroups (const struct puffs_cred ∗pcr , gid_t ∗gids ,

short ∗ngids);

bool
puffs_cred_isuid (const struct puffs_cred ∗pcr , uid_t uid);

bool
puffs_cred_hasgroup (const struct puffs_cred ∗pcr , gid_t gid);

bool
puffs_cred_iskernel (const struct puffs_cred ∗pcr);

bool
puffs_cred_isfs (const struct puffs_cred ∗pcr);

bool
puffs_cred_isjuggernaut (const struct puffs_cred ∗pcr);

int
puffs_access (enum vtype type , mode_t file_mode , uid_t owner , gid_t group ,

mode_t access_mode , const struct puffs_cred ∗pcr);

int
puffs_access_chown (uid_t owner , gid_t group , uid_t newowner , gid_t newgroup ,

const struct puffs_cred ∗pcr);

int
puffs_access_chmod (uid_t owner , gid_t group , enum vtype type ,

mode_t newmode , const struct puffs_cred ∗pcr);

int
puffs_access_times (uid_t owner , gid_t group , mode_t file_mode ,

int va_utimes_null , const struct puffs_cred ∗pcr);

DESCRIPTION
IMPORTANT NOTE! This document describes interfaces which are not yet guaranteed to be stable.In case
you update your system sources, please recompile everything and fix compilation errors.If your sources are
out-of-sync, incorrect operation may result. The interfaces in this document will most likely be hugely sim-
plified in later versions or made transparent to the implementation.

These functions can be used to check operation credentials and perform access control.The structure
struct puffs_cred can contain two types of credentials: ones belonging to users and ones belonging to

NetBSD 3.0 October 18, 2007 1

PUFFS_CRED (3) NetBSD Library Functions Manual PUFFS_CRED (3)

the kernel. Thelatter is further divided into generic kernel credentials and file system credentials. The gen-
eral rule is that these should be treated as more powerful than superuser credentials, but the file system is free
to treat them as it sees fit.

Credentials
Thepuffs_cred_get () family of functions fetch the uid or gid(s) from the given credential cookie.They
return 0 for success or −1 for an error and seterrno. An error happens when the credentials represent kernel
or file system credentials and do not contain an uid or gid(s).

For puffs_cred_getgroups (), the argumentgids should point to an array with room for∗ngids ele-
ments.

Thepuffs_cred_is () family of functions return 1 if the truth value of the function forpcr is true and 0
if it is false. Thefunction puffs_cred_isjuggernaut () is true ifpcr describes superuser, kernel or
file system credentials.

Access Control
To help the programmers task of emulating normal kernel file system access control semantics, several helper
functions are provided to check if access is allowed. They return 0 if access should be permitted or an errno
value to indicate that access should be denied with the returned value.

puffs_access () is equivalent to the kernelvaccess () function. The arguments specify current informa-
tion of the file to be tested with the exception ofaccess_mode , which is a combination of
PUFFS_VREAD, PUFFS_VWRITEandPUFFS_VEXECindicating the desired file access mode.

The rest of the functions provide UFS semantics for operations.puffs_access_chown () checks if it is
permissible to chown a file with the current uid and gid to the new uid and gid with the credentials ofpcr .

puffs_access_chmod () checks against permission to chmod a file of typetype to the modenewmode.

Finally, puffs_access_times () checks if it is allowable to update the timestamps of a file. The argu-
mentva_utimes_null signals if the flagsVA_UTIMES_NULLwas set in va_vaflags of struct vattr.
If coming from a path where this information is unavailable, passing 0 as this argument restricts the permis-
sion of modification to the owner and superuser. Otherwise the function checks for write permissions to the
node and returns success if the caller has write permissions.

SEE ALSO
puffs (3), vnode (9)

NetBSD 3.0 October 18, 2007 2

PUFFS_FLUSH (3) NetBSD Library Functions Manual PUFFS_FLUSH (3)

NAME
puffs_flush — puffs kernel cache flushing and invalidation routines

LIBRARY
library “libpuffs”

SYNOPSIS
#include <puffs.h>

int
puffs_inval_namecache_dir (struct puffs_usermount ∗pu , void ∗cookie);

int
puffs_inval_namecache_all (struct puffs_usermount ∗pu);

int
puffs_inval_pagecache_node (struct puffs_usermount ∗pu , void ∗cookie);

int
puffs_inval_pagecache_node_range (struct puffs_usermount ∗pu , void ∗cookie ,

off_t start , off_t end);

int
puffs_flush_pagecache_node (struct puffs_usermount ∗pu , void ∗cookie);

int
puffs_flush_pagecache_node_range (struct puffs_usermount ∗pu , void ∗cookie ,

off_t start , off_t end);

DESCRIPTION
IMPORTANT NOTE! This document describes interfaces which are not yet guaranteed to be stable. In case
you update your system sources, please recompile everything and fix compilation errors. If your sources are
out-of-sync, incorrect operation may result. The interfaces in this document will most likely be hugely sim-
plified in later versions or made transparent to the implementation.

These routines are used inform the kernel that any information it might have cached is no longer valid.
puffs_inval_namecache_dir () invalidates the name cache for a given directory. The argument
cookie should describe an existing and valid directory cookie for the file system.Similarly,
puffs_inval_namecache_all () invalidates the name cache for the entire file system (this routine
might go away).

The cached pages (file contents) for a regular file described bycookie are invalidated using
puffs_inval_pagecache_node (). A specific range can be invalidated using
puffs_inval_pagecache_node_range () for a platform specific page level granularity. The offset
start will be truncatedto a page boundary whileendwill be rounded upto the next page boundary. As a spe-
cial case, specifying 0 asendwill invalidate all contents fromstart to the end of the file.

It is especially important to note that these routines will not only invalidate data in the "read cache", but also
data in the "write back" cache (conceptually speaking; in reality they are the same cache), which has not yet
been flushed to the file server. Therefore any unflushed data will be lost.

The counterparts of the invalidation routines are the flushing routines
puffs_flush_pagecache_node () andpuffs_flush_pagecache_node_range (), which force
unwritten data from the kernel page cache to be written.For the flush range version, the same range rules as
with the invalidation routine apply. The data is flushed asynchronously, i.e. if the routine returns success-
fully, all the caller knows is that the data has been queued for writing.

NetBSD 3.0 April 7, 2007 1

PUFFS_FLUSH (3) NetBSD Library Functions Manual PUFFS_FLUSH (3)

SEE ALSO
puffs (3)

NetBSD 3.0 April 7, 2007 2

PUFFS_FRAMEBUF (3) NetBSD Library Functions Manual PUFFS_FRAMEBUF (3)

NAME
puffs_framebuf — buffering and event handling for networked file systems

LIBRARY
library “libpuffs”

SYNOPSIS
#include <puffs.h>

struct puffs_framebuf ∗
puffs_framebuf_make ();

void
puffs_framebuf_destroy (struct puffs_framebuf ∗pufbuf);

void
puffs_framebuf_recycle (struct puffs_framebuf ∗pufbuf);

int
puffs_framebuf_reserve_space (struct puffs_framebuf ∗pufbuf , size_t space);

int
puffs_framebuf_putdata (struct puffs_framebuf ∗pufbuf , const void ∗data ,

size_t dlen);

int
puffs_framebuf_putdata_atoff (struct puffs_framebuf ∗pufbuf , size_t offset ,

const void ∗data , size_t dlen);

int
puffs_framebuf_getdata (struct puffs_framebuf ∗pufbuf , void ∗data ,

size_t dlen);

int
puffs_framebuf_getdata_atoff (struct puffs_framebuf ∗pufbuf , size_t offset ,

void ∗data , size_t dlen);

size_t
puffs_framebuf_telloff (struct puffs_framebuf ∗pufbuf);

size_t
puffs_framebuf_tellsize (struct puffs_framebuf ∗pufbuf);

size_t
puffs_framebuf_remaining (struct puffs_framebuf ∗pufbuf);

int
puffs_framebuf_seekset (struct puffs_framebuf ∗pufbuf , size_t offset);

int
puffs_framebuf_getwindow (struct puffs_framebuf ∗pufbuf , size_t offset ,

void ∗∗winp , size_t ∗winlen);

int
puffs_framev_enqueue_cc (struct puffs_cc ∗pcc , int fd ,

struct puffs_framebuf ∗pufbuf , int flags);

void
puffs_framev_cb (struct puffs_usermount ∗pu , int fd ,

NetBSD 3.0 January 29, 2008 1

PUFFS_FRAMEBUF (3) NetBSD Library Functions Manual PUFFS_FRAMEBUF (3)

struct puffs_framebuf ∗pufbuf , void ∗arg , int flags , int error);

void
puffs_framev_enqueue_cb (struct puffs_usermount ∗pu , int fd ,

struct puffs_framebuf ∗pufbuf , puffs_framebuf_cb fcb , void ∗fcb_arg ,
int flags);

void
puffs_framev_enqueue_justsend (struct puffs_usermount ∗pu , int fd , struct ,

puffs_framebuf , ∗pufbuf" , int waitreply , int flags);

void
puffs_framev_enqueue_directsend (struct puffs_usermount ∗pu , int fd ,

struct puffs_framebuf ∗pufbuf , int flags);

void
puffs_framev_enqueue_directreceive (struct puffs_usermount ∗pu , int fd ,

struct puffs_framebuf ∗pufbuf , int flags);

int
puffs_framev_framebuf_ccpromote (struct puffs_framebuf ∗pufbuf ,

struct puffs_cc ∗pcc);

int
puffs_framev_enqueue_waitevent (struct puffs_cc ∗pcc , int fd , int ∗what);

int
puffs_framev_readframe_fn (struct puffs_usermount ∗pu ,

struct puffs_framebuf ∗pufbuf , int fd , int ∗done);

int
puffs_framev_writeframe_fn (struct puffs_usermount ∗pu ,

struct puffs_framebuf ∗pufbuf , int fd , int ∗done);

int
puffs_framev_cmpframe_fn (struct puffs_usermount ∗pu ,

struct puffs_framebuf ∗cmp1 , struct puffs_framebuf ∗cmp2 ,
int ∗notresp);

void
puffs_framev_gotframe_fn (struct puffs_usermount ∗pu ,

struct puffs_framebuf ∗pufbuf);

void
puffs_framev_fdnotify_fn (struct puffs_usermount ∗pu , int fd , int what);

void
puffs_framev_init (struct puffs_usermount ∗pu ,

puffs_framev_readframe_fn rfb , puffs_framev_writeframe_fn wfb ,
puffs_framev_cmpframe_fn cmpfb , puffs_framev_gotframe_fn gotfb ,
puffs_framev_fdnotify_fn fdnotfn);

int
puffs_framev_addfd (struct puffs_usermount ∗pu , int fd , int what);

int
puffs_framev_enablefd (struct puffs_usermount ∗pu , int fd , int what);

NetBSD 3.0 January 29, 2008 2

PUFFS_FRAMEBUF (3) NetBSD Library Functions Manual PUFFS_FRAMEBUF (3)

int
puffs_framev_disablefd (struct puffs_usermount ∗pu , int fd , int what);

int
puffs_framev_removefd (struct puffs_usermount ∗pu , int fd , int error);

void
puffs_framev_unmountonclose (struct puffs_usermount ∗pu , int fd , int what);

DESCRIPTION
IMPORTANT NOTE! This document describes interfaces which are not yet guaranteed to be stable.In case
you update your system sources, please recompile everything and fix compilation errors.If your sources are
out-of-sync, incorrect operation may result.

Thepuffs_framebuf routines provide buffering and an event loop structured around the buffers. Itoper-
ates on top of the puffs continuation framework, puffs_cc (3), and multiplexes execution automatically to
an instance whenever one is runnable.

The file system is entered in three different ways:

• An event arrives from the kernel and thepuffs_ops (3) callbacks are called to start processing
the event.

• A file system which has sent out a request receives a response. Execution is resumed from the
place where the file system yielded.

• A request from a peer arrives. A request is an incoming PDU which is not a response to any out-
standing request.

puffs_framebuf is used by defining various callbacks and providing I/O descriptors, which are then
monitored for activity by the library. A descriptor, when present, can be either enabled or disabled for input
and output. If a descriptor is not enabled for a certain direction, the callbacks will not be called even if there
were activity on the descriptor. For example, even if a network socket has been added and there is input data
in the socket buffer, the read callback will be called only if the socket has been enabled for reading.

File descriptors are treated like sockets: they hav etwo sides, a read side and a write side. The framework
determines that one side of the descriptor has been closed if the supplied I/O callbacks return an error or if
the I/O multiplexing call says a side has been closed.It is still possible, from the framework perspective, to
write to a file descriptor whose read side is closed.However, it is not possible to wait for a response on such
a file descriptor. Conversely, it is possible to read responses from a descriptor whose write side is closed.It
should be stressed that the implementation underlying the file descriptor might not support this.

The following callbacks can be defined, cf.puffs_framev_init (), and all are optional. None of them
should block, because this would cause the entire file server to block. One option is to make the descriptors
non-blocking before adding them.

rfb Read a frame from the file descriptor onto the specified buffer.

wfb Write a frame from the the specified buffer into the file descriptor.

cmpfb Identify if a buffer is the response to the specified buffer.

gotfb Called iff no outstanding request matches the incoming frame. In other words, this is called
when we receive a request from a peer.

fdnotfn Receive notifications about a change-of-state in a file descriptor’s status.

Better descriptions for each callback are given below.

NetBSD 3.0 January 29, 2008 3

PUFFS_FRAMEBUF (3) NetBSD Library Functions Manual PUFFS_FRAMEBUF (3)

The buffers of puffs_framebuf provide automatic memory management of buffers for the file servers.
They provide a cursor to the current buffer offset. Readingor writing data through the normal routines will
advance that cursor. Additionally, the buffer size is provided to the user. It represents the maximum offset
where data was written.

Generally the write functions will fail if the cannot allocate enough memory to satisfy the buffer length
requirements. Readfunctions will fail if the amount of data written to the buffer is not large enough to sat-
isfy the read.

puffs_framebuf_make ()
Create a buffer. Return the address of the buffer orNULL in case no memory was available.

puffs_framebuf_destroy (pufbuf)
Free memory used by buffer.

puffs_framebuf_recycle (pufbuf)
Reset offsets so that buffer can be reused. Does not free memory or reallocate memory.

puffs_framebuf_reserve_space (pufbuf , space)
Make sure that the buffer hasspace bytes of available memory starting from the current offset. This
is not strictly necessary, but can be used for optimizations where it is known in advance how much
memory will be required.

puffs_framebuf_putdata (pufbuf , data , dlen)
Write dlen amount of data from the addressdata into the buffer. Moves the offset cursor forward
dlen bytes.

puffs_framebuf_putdata_atoff (pufbuf , offset , data , dlen)
Like puffs_framebuf_putdata (), except writes data at buffer offset offset . It is leg al to
write past the current end of the buffer. Does NOT modify the current offset cursor.

puffs_framebuf_getdata (pufbuf , data , dlen)
Readdlen bytes of data from the buffer intodata . Advances the offset cursor.

puffs_framebuf_getdata_atoff (pufbuf , offset , data , dlen)
Read data from buffer positionoffset . Does NOT modify the offset cursor.

puffs_framebuf_telloff (pufbuf)
Return the offset into the buffer.

puffs_framebuf_tellsize (pufbuf)
Return the maximum offset where data has been written, i.e. buffer size.

puffs_framebuf_remaining (pufbuf)
Distance from current offset to the end of the buffer, i.e. size-offset.

puffs_framebuf_seekset (pufbuf , offset)
Set the offset cursor to the positionoffset . This does NOT modify the buffer size, but reserves at
least enough memory memory for a write tooffset and will fail if memory cannot be allocated.

puffs_framebuf_getwindow (pufbuf , offset , winp , winlen)
Get a direct memory window into the buffer starting fromoffset . The maximum mapped window
size will bewinlen bytes, but this routine might return a smaller window and the caller should
always check the actual mapped size after the call. The window is returned inwinp . This function
not modify the buffer offset, but it DOES set the buffer size tooffset + winlen in case that value
is greater than the current size. The window is valid until the next until the next
puffs_framebuf () call operating on the buffer in question.

NetBSD 3.0 January 29, 2008 4

PUFFS_FRAMEBUF (3) NetBSD Library Functions Manual PUFFS_FRAMEBUF (3)

puffs_framev_enqueue_cc (pcc , fd , pufbuf , flags)
Add the buffer pufbuf to outgoing queue of descriptorfd and yield with the continuationpcc .
Execution is resumed once a response is received. Returns0 if the buffer was successfully enqueued
(not necessarily delivered) and non-zero to signal a non-recoverable error.

Usually the buffer is placed at the end of the output queue.However, if flags contains
PUFFS_FBQUEUE_URGENT, pufbuf is placed in the front of the queue to be sent immediately
after the current PDU (if any) has been sent.

puffs_framev_enqueue_cb (pu , fd , pufbuf , fcb , fcb_arg , flags)
Enqueue the buffer pufbuf for outgoing data and immediately return.Once a response arrives, the
callbackfcb () will be called with the argumentfcb_arg . The callback functionfcb () is responsi-
ble for freeing the buffer. Returns 0 if the buffer was successfully enqueued (not necessarily deliv-
ered) and non-zero to signal a non-recoverable error.

Seepuffs_framev_enqueue_cc () for flags .

puffs_framev_cb (pu , pufbuf , arg , error)
Callback function. Called when a response to a specific request arrives from the server. If error is
non-zero, the framework was unable to obtain a response and the function should not examine the
contents ofpufbuf , only do resource cleanup. May not block.

puffs_framev_enqueue_justsend (pu , fd , pufbuf , waitreply , flags)
Enqueue the buffer pufbuf for outgoing traffic and immediately return. The parameter
waitreply can be used to control if the buffer is to be freed immediately after sending of if a
response is expected and the buffer should be freed only after the response arrives (receiving an unex-
pected message from the server is treated as an error).Returns 0 if the buffer was successfully
enqueued (not necessarily delivered) and non-zero to signal a non-recoverable error.

Seepuffs_framev_enqueue_cc () for flags .

puffs_framev_enqueue_directsend (pcc , fd , pufbuf , flags)
Acts like puffs_framev_enqueue_justsend () with the exception that the call yields until the
frame has been sent. As opposed topuffs_framev_enqueue_cc (), the routine does not wait for
input, but returns immediately after sending the frame.

Seepuffs_framev_enqueue_cc () for flags .

puffs_framev_enqueue_directreceive (pcc , fd , pufbuf , flags)
Receive data intopufbuf . This routine yields until a complete frame has been read into the buffer
by the readframe routine.

Seepuffs_framev_enqueue_cc () for flags .

puffs_framev_framebuf_ccpromote (pufbuf , pcc)
Promote the framebuffer pufbuf sent with puffs_framev_enqueue_cb () or
puffs_framev_enqueue_justsend () to a wait usingpcc and yield until the result arrives.
The response from the file server forpufbuf must not yet have arrived. If sent with
puffs_framev_enqueue_justsend (), the call must be expecting a response.

puffs_framev_enqueue_waitevent (pcc , fd , what)
Waits for an event in what to happen on file descriptorfd . The events which happened are returned
back in what . The possible events are PUFFS_FBIO_READ, PUFFS_FBIO_WRITE, and
PUFFS_FBIO_ERROR, specifying read, write and error conditions, respectively. Error is always
checked.

This call does not depend on if the events were previously enabled on the file descriptor - the speci-
fied events are always checked regardless.

NetBSD 3.0 January 29, 2008 5

PUFFS_FRAMEBUF (3) NetBSD Library Functions Manual PUFFS_FRAMEBUF (3)

There is currently no other way to cancel or timeout a call except by removing the file descriptor in
question. Thismay change in the future.

puffs_framev_readframe_fn (pu , pufbuf , fd , done)
Callback function. Read at most one frame from file descriptorfd into the buffer pufbuf . If a
complete frame is read, the value pointed to bydone must be set to 1. This function should return 0
on success (even if a complete frame was not yet read) and a non-zeroerrno to signal a fatal error.
In case a fatal error is returned, the read side of the file descriptor is marked closed. This routine will
be called with the same buffer argument until a complete frame has been read. May not block.

puffs_framev_writeframe_fn (pu , pufbuf , fd , done)
Write the frame contained inpufbuf to the file descriptorfd . In case the entire frame is success-
fully written, ∗done should be set to 1. This function should return 0 on success (even if a complete
frame was not yet written) and a non-zeroerrno to signal a fatal error. In case a fatal error is
returned, the write side of the file descriptor is marked closed. This routine will be called with the
same buffer argument until the complete frame has been written. May not block.

It is a good idea to make sure that this function can handle a possibleSIGPIPE caused by a closed
connection. For example, the file server can opt to trapSIGPIPE or, if writing to a socket, call
send () with the flagMSG_NOSIGNALinstead of usingwrite ().

puffs_framev_cmpframe_fn (pu , pufbuf_cmp1 , pufbuf_cmp2 , notresp)
Compare the file system internal request tags inpufbuf_cmp1 andpufbuf_cmp2 . Should return
0 if the tags are equal, 1 if first buffer’s tag is greater than the second and −1 if it is smaller. The defi-
nitions "greater" and "smaller" are used transparently by the library, e.g. like qsort (3). If it can be
determined frompufbuf_cmp1 that it is not a response to any outstanding request,notresp
should be set to non-zero.This will causepuffs_framebuf to skip the test of the buffer against
the rest of the outstanding request. May not block.

puffs_framev_gotframe_fn (pu , pufbuf)
Called when no outstanding request matches an incoming frame. The ownership ofpufbuf is trans-
ferred to the called function and must be destroyed once processing is over. May not block.

puffs_framev_fdnotify_fn (pu , fd , what)
Is called when the read or write side of the file descriptorfd is closed.It is called once for each side,
the bitmask parameterwhat specified what is currently closed:PUFFS_FBIO_READ and
PUFFS_FBIO_WRITEfor read and write, respectively.

puffs_framev_init (pu , rfb , wfb , cmpfb , gotfb , fdnotfn)
Initializes the given callbacks to the system.They will be used whenpuffs_mainloop () is called.
The framework provides the routines puffs_framev_removeonclose () and
puffs_framev_unmountonclose (), which can be given as fdnotfn . The first one removes
the file descriptor once both sides are closed while the second one unmounts the file system and exits
the mainloop.

puffs_framev_addfd (pu , fd , what)
Add file descriptorfd to be handled by the framework. It is legal to add a file descriptor either before
calling puffs_mainloop () or at time when running. The parameterwhat controls enabling of
input and output events and can be a bitwise combination ofPUFFS_FBIO_READ and
PUFFS_FBIO_WRITE. If not specified, the descriptor will be in a disabled state.

puffs_framev_enablefd (pu , fd , error)
Enable events of typewhat for file descriptorfd .

puffs_framev_disablefd (pu , fd , error)
Disable events of typewhat for file descriptorfd .

NetBSD 3.0 January 29, 2008 6

PUFFS_FRAMEBUF (3) NetBSD Library Functions Manual PUFFS_FRAMEBUF (3)

puffs_framev_removefd (pu , fd , error)
Remove file descriptorfd from the list of descriptors handled by the framework. Removing a file
descriptor causes all operations blocked either on output or input to be released with the error value
error . In case 0 is supplied as this parameter,ECONNRESETis used.

The file systemmust explicitly remove each fd it has added.A good place to do this is
puffs_framev_fdnotify_fn () or puffs_node_reclaim (), depending a little on the struc-
ture of the file system.

puffs_framev_unmountonclose (pu , fd , what)
This is library provided convenience routine forpuffs_framev_fdnotify_fn (). It unmounts
the file system when both the read and write side are closed.It is useful for file systems such as
mount_psshfs (8) which depend on a single connection.

CODE REFERENCES
The current users ofpuffs_framebuf in the tree aremount_psshfs (8) and mount_9p (8). See
src/usr.sbin/puffs/mount_psshfs and src/usr.sbin/puffs/mount_9p for the respec-
tive usage examples.

RETURN VALUES
These functions generally return −1 to signal error and seterrno to indicate the type of error.

SEE ALSO
puffs (3), puffs_cc (3), puffs_ops (3)

Antti Kantee,Using puffs for Implementing Client-Server Distributed File Systems, Helsinki University of
Technology, Tech Report TKK-TKO-B157, September 2007.

NetBSD 3.0 January 29, 2008 7

PUFFS_NODE (3) NetBSD Library Functions Manual PUFFS_NODE (3)

NAME
puffs_node — puffs node routines

LIBRARY
library “libpuffs”

SYNOPSIS
#include <puffs.h>

struct puffs_node ∗
puffs_pn_new (struct puffs_usermount ∗pu , void ∗priv);

void ∗
puffs_nodewalk_fn (struct puffs_usermount ∗pu , struct puffs_node ∗pn ,

void ∗arg);

void ∗
puffs_pn_nodewalk (struct puffs_usermount ∗pu , puffs_nodewalk_fn nwfn ,

void ∗arg);

void
puffs_pn_remove (struct puffs_node ∗pn);

void
puffs_pn_put (struct puffs_node ∗pn);

DESCRIPTION
IMPORTANT NOTE! This document describes interfaces which are not yet guaranteed to be stable. In case
you update your system sources, please recompile everything and fix compilation errors. If your sources are
out-of-sync, incorrect operation may result. The interfaces in this document will most likely be hugely sim-
plified in later versions or made transparent to the implementation.

MORE IMPORTANT STUFF!It should especially be noted, that it is yet completely unsure, how much of the
internals contents ofstruct puffs_node will be exposed to file systems in the end.

puffs_pn_new (pu , priv)
Create a new node and attach it to the mountpointpu . The argumentpriv can be used for associat-
ing file system specific data with the new node and will not be accessed by puffs.

puffs_nodewalk_fn (pu , pn , arg)
A callback forpuffs_nodewalk (). Thelist of nodes is iterated in the argumentpn and the argu-
mentarg is the argument given to puffs_nodewalk ().

puffs_nodewalk (pu , nwfn , arg)
Walk all nodes associted with the mountpointpu and callnwfn () for them. The walk is aborted if
puffs_nodewalk_fn () returns a value which is notNULL. This value is also returned this func-
tion. In case the whole set of nodes is traversed,NULL is returned. This function is useful for exam-
ple in handling thepuffs_fs_sync () callback, when cached data for every node should be flushed
to stable storage.

puffs_pn_remove (pn)
Signal that a node has been removed from the file system, but do not yet release resources associated
with the node. This will prevent the nodewalk functions from accessing the node.If necessary, this is
usually called frompuffs_node_remove () andpuffs_node_rmdir ().

NetBSD 3.0 June 24, 2007 1

PUFFS_NODE (3) NetBSD Library Functions Manual PUFFS_NODE (3)

puffs_pn_put (pn)
Free all resources associated with nodepn . This is typically called from
puffs_node_reclaim ().

SEE ALSO
puffs (3)

NetBSD 3.0 June 24, 2007 2

PUFFS_OPS (3) NetBSD Library Functions Manual PUFFS_OPS (3)

NAME
puffs_ops — puffs callback operations

LIBRARY
library “libpuffs”

SYNOPSIS
#include <puffs.h>

int
puffs_fs_statvfs (struct puffs_usermount ∗pu , struct statvfs ∗sbp);

int
puffs_fs_sync (struct puffs_usermount ∗pu , int waitfor ,

const struct puffs_cred ∗pcr);

int
puffs_fs_fhtonode (struct puffs_usermount ∗pu , void ∗fid , size_t fidsize ,

struct puffs_newinfo ∗pni);

int
puffs_fs_nodetofh (struct puffs_usermount ∗pu , void ∗cookie , void ∗fid ,

size_t ∗fidsize);

void
puffs_fs_suspend (struct puffs_usermount ∗pu , int status);

int
puffs_fs_unmount (struct puffs_usermount ∗pu , int flags);

int
puffs_node_lookup (struct puffs_usermount ∗pu , void ∗opc ,

struct puffs_newinfo ∗pni , const struct puffs_cn ∗pcn);

int
puffs_node_create (struct puffs_usermount ∗pu , void ∗opc ,

struct puffs_newinfo ∗pni , const struct puffs_cn ∗pcn ,
const struct vattr ∗vap);

int
puffs_node_mknod (struct puffs_usermount ∗pu , void ∗opc ,

struct puffs_newinfo ∗pni , const struct puffs_cn ∗pcn ,
const struct vattr ∗vap);

int
puffs_node_open (struct puffs_usermount ∗pu , void ∗opc , int mode ,

const struct puffs_cred ∗pcr);

int
puffs_node_close (struct puffs_usermount ∗pu , void ∗opc , int flags ,

const struct puffs_cred ∗pcr);

int
puffs_node_access (struct puffs_usermount ∗pu , void ∗opc , int mode ,

const struct puffs_cred ∗pcr);

int
puffs_node_getattr (struct puffs_usermount ∗pu , void ∗opc , struct vattr ∗vap ,

NetBSD 3.0 December 16, 2007 1

PUFFS_OPS (3) NetBSD Library Functions Manual PUFFS_OPS (3)

const struct puffs_cred ∗pcr);

int
puffs_node_setattr (struct puffs_usermount ∗pu , void ∗opc ,

const struct vattr ∗vap , const struct puffs_cred ∗pcr);

int
puffs_node_poll (struct puffs_usermount ∗pu , void ∗opc , int ∗events);

int
puffs_node_mmap (struct puffs_usermount ∗pu , void ∗opc , int flags ,

const struct puffs_cred ∗pcr);

int
puffs_node_fsync (struct puffs_usermount ∗pu , void ∗opc ,

const struct puffs_cred ∗pcr , int flags , off_t offlo , off_t offhi);

int
puffs_node_seek (struct puffs_usermount ∗pu , void ∗opc , off_t oldoff ,

off_t newoff , const struct puffs_cred ∗pcr);

int
puffs_node_remove (struct puffs_usermount ∗pu , void ∗opc , void ∗targ ,

const struct puffs_cn ∗pcn);

int
puffs_node_link (struct puffs_usermount ∗pu , void ∗opc , void ∗targ ,

const struct puffs_cn ∗pcn);

int
puffs_node_rename (struct puffs_usermount ∗pu , void ∗opc , void ∗src ,

const struct puffs_cn ∗pcn_src , void ∗targ_dir , void ∗targ ,
const struct puffs_cn ∗pcn_targ);

int
puffs_node_mkdir (struct puffs_usermount ∗pu , void ∗opc ,

struct puffs_newinfo ∗pni , const struct puffs_cn ∗pcn ,
const struct vattr ∗vap);

int
puffs_node_rmdir (struct puffs_usermount ∗pu , void ∗opc , void ∗targ ,

const struct puffs_cn ∗pcn);

int
puffs_node_readdir (struct puffs_usermount ∗pu , void ∗opc ,

struct dirent ∗dent , off_t ∗readoff , size_t ∗reslen ,
const struct puffs_cred ∗pcr , int ∗eofflag , off_t ∗cookies ,
size_t ∗ncookies);

int
puffs_node_symlink (struct puffs_usermount ∗pu , void ∗opc ,

struct puffs_newinfo ∗pni , const struct puffs_cn ∗pcn_src ,
const struct vattr ∗vap , const char ∗link_target);

int
puffs_node_readlink (struct puffs_usermount ∗pu , void ∗opc ,

const struct puffs_cred ∗pcr , char ∗link , size_t ∗linklen);

NetBSD 3.0 December 16, 2007 2

PUFFS_OPS (3) NetBSD Library Functions Manual PUFFS_OPS (3)

int
puffs_node_read (struct puffs_usermount ∗pu , void ∗opc , uint8_t ∗buf ,

off_t offset , size_t ∗resid , const struct puffs_cred ∗pcr , int ioflag);

int
puffs_node_write (struct puffs_usermount ∗pu , void ∗opc , uint8_t ∗buf ,

off_t offset , size_t ∗resid , const struct puffs_cred ∗pcr , int ioflag);

int
puffs_node_print (struct puffs_usermount ∗pu , void ∗opc);

int
puffs_node_reclaim (struct puffs_usermount ∗pu , void ∗opc);

int
puffs_node_inactive (struct puffs_usermount ∗pu , void ∗opc);

void
puffs_setback (struct puffs_cc ∗pcc , int op);

void
puffs_newinfo_setcookie (struct puffs_newinfo ∗pni , void ∗cookie);

void
puffs_newinfo_setvtype (struct puffs_newinfo ∗pni , enum vtype vtype);

void
puffs_newinfo_setsize (struct puffs_newinfo ∗pni , voff_t size);

void
puffs_newinfo_setrdev (struct puffs_newinfo ∗pni , dev_t rdev);

DESCRIPTION
IMPORTANT NOTE! This document describes interfaces which are not yet guaranteed to be stable.In case
you update your system sources, please recompile everything and fix compilation errors.If your sources are
out-of-sync, incorrect operation may result. The interfaces in this document will most likely be hugely sim-
plified in later versions or made transparent to the implementation.

The operationspuffs requires to function can be divided into two categories: file system callbacks and
node callbacks. The former affect the entire file system while the latter are targeted at a file or a directory
and a file. They are roughly equivalent to the vfs and vnode operations in the kernel.

All callbacks can be prototyped with the file system name and operation name using the macro
PUFFSOP_PROTOS(fsname).

File system callbacks (puffs_fs)
puffs_fs_statvfs (pu , sbp)

The following fields of the argumentsbp need to be filled:

∗ unsigned long f_bsize; file system block size
∗ unsigned long f_frsize; fundamental file system block size
∗ fsblkcnt_t f_blocks; number of blocks in file system,
∗ (in units of f_frsize)
∗
∗ fsblkcnt_t f_bfree; free blocks avail in file system
∗ fsblkcnt_t f_bavail; free blocks avail to non-root
∗ fsblkcnt_t f_bresvd; blocks reserved for root

NetBSD 3.0 December 16, 2007 3

PUFFS_OPS (3) NetBSD Library Functions Manual PUFFS_OPS (3)

∗ fsfilcnt_t f_files; total file nodes in file system
∗ fsfilcnt_t f_ffree; free file nodes in file system
∗ fsfilcnt_t f_favail; free file nodes avail to non-root
∗ fsfilcnt_t f_fresvd; file nodes reserved for root

puffs_fs_sync (pu , waitfor , pcr)
All the dirty buffers that have been cached at the file server level including metadata should be com-
mitted to stable storage. Thewaitfor parameter affects the operation. Possible values are:

MNT_WAIT Wait for all I/O for complete until returning.

MNT_NOWAIT Initiate I/O, but do not wait for completion.

MNT_LAZY Synchorize data not synchoronized by the file system syncer, i.e. data not written
whennode_fsync () is called withFSYNC_LAZY.

The credentials for the initiator of the sync operation are present inpcr and will usually be either file
system or kernel credentials, but might also be user credentials.However, most of the time it is advis-
able to sync regardless of the credentials of the caller.

puffs_fs_fhtonode (pu , fid , fidsize , pni)
Translates a file handlefid to a node. The parameterfidsize indicates how large the file handle
is. In case the file system’s handles are static length, this parameter can be ignored as the kernel guar-
antees all file handles passed to the file server are of correct length.For dynamic length handles the
field should be examined andEINVAL returned in case the file handle length is not correct.

This function provides essentially the same information to the kernel aspuffs_node_lookup ().
The information is necessary for creating a new vnode corresponding to the file handle.

puffs_fs_nodetofh (pu , cookie , fid , fidsize)
Create a file handle from the node described bycookie . The file handle should contain enough
information to reliably identify the node even after reboots and the pathname/inode being replaced by
another file. If this is not possible, it is up to the author of the file system to act responsibly and
decide if the file system can support file handles at all.

For file systems which want dynamic length file handles, this function must check if the file handle
space indicated byfidsize is large enough to accommodate the file handle for the node.If not, it
must fill in the correct size and returnE2BIG. In either case, the handle length should be supplied to
the kernel infidsize . File systems with static length handles can ignore the size parameter as the
kernel always supplies the correct size buffer.

puffs_fs_suspend (pu , status)
Called when file system suspension reaches various phases.Seepuffs_suspend (3) for more
information.

puffs_fs_unmount (pu , flags)
Unmount the file system. The kernel has assumedly flushed all cached data when this callback is
executed. Ifthe file system cannot currently be safely be unmounted, for whatever reason, the kernel
will honor an error value and not forcibly unmount.However, if the flagMNT_FORCEis not honored
by the file server, the kernel will forcibly unmount the file system.

Node callbacks
These operations operate in the level of individual files. The file cookie is always provided as the second
argumentopc . If the operation is for a file, it will be the cookie of the file. The case the operation involves
a directory (such as “create file in directory”), the cookie will be for the directory. Some operations take
additional cookies to describe the rest of the operands. The return value 0 signals success, else an appropri-

NetBSD 3.0 December 16, 2007 4

PUFFS_OPS (3) NetBSD Library Functions Manual PUFFS_OPS (3)

ate errno value should be returned. Please note that neither this list nor the descriptions are complete.

puffs_node_lookup (pu , opc , pni , pcn)
This function is used to locate nodes, or in other words translate pathname components to file system
data structures. The implementation should match the name inpcn against the existing entries in the
directory provided by the cookieopc . If found, the cookie for the located node should be set inpni
usingpuffs_newinfo_setcookie (). Additionally, the vnode type and size (latter applicable to
regular files only) should be set usingpuffs_newinfo_setvtype () and
puffs_newinfo_setsize (), respectively. If the located entry is a block device or character
device file, the dev_t for the entry should be set usingpuffs_newinfo_setrdev ().

The type of operation is found frompcn->pcn_nameiop:

PUFFSLOOKUP_LOOKUP Normal lookup operation.

PUFFSLOOKUP_CREATE Lookup to create a node.

PUFFSLOOKUP_DELETE Lookup for node deletion.

PUFFSLOOKUP_RENAME Lookup for the target of a rename operation (source will be looked up
usingPUFFSLOOKUP_DELETE).

The final component from a pathname lookup usually requires special treatment.It can be identified
by looking at thepcn->pcn_flagsfields for the flagPUFFSLOOKUP_ISLASTCN. For example, in
most cases the lookup operation will want to check if a delete, rename or create operation has enough
credentials to perform the operation.

The return value 0 signals a found node and a nonzero value signals an errno. As a special case,
ENOENTsignals "success" for cases where the lookup operation isPUFFSLOOKUP_CREATEor
PUFFSLOOKUP_RENAME. Failure in these cases can be signalled by returning another appropriate
error code, for exampleEACCESS.

Usually a null-terminated string for the next pathname component is provided inpcn->pcn_name .
In case the file system is using the optionPUFFS_KFLAG_LOOKUP_FULLPNBUF, the remainder of
the complete pathname under lookup is found in the same location.pcn->pcn_namelen always
specifies the length of the next component.If operating with a full path, the file system is allowed to
consume more than the next component’s length in node lookup. This is done by setting
pcn->pcn_consume to indicate the amount of extra characters in addition to
pcn->pcn_namelen processed.

puffs_node_create (pu , opc , pni , pcn , va)

puffs_node_mkdir (pu , opc , pni , pcn , va)

puffs_node_mknod (pu , opc , pni , pcn , va)
A fi le node is created in the directory denoted by the cookieopc by any of the above callbacks. The
name of the new file can be found frompcn and the attributes are specified byva and the cookie for
the newly created node should be set inpni . The only difference between these three is that they
create a regular file, directory and device special file, respectively.

In case of mknod, the device identifier can be found inva->va_rdev .

puffs_node_open (pu , opc , mode, pcr)
Open the node denoted by the cookieopc . The parametermode specifies the flags thatopen (2) was
called with, e.g.O_APPENDandO_NONBLOCK.

puffs_node_close (pu , opc , flags , pcr)
Close a node. The parameterflags parameter describes the flags that the file was opened with.

NetBSD 3.0 December 16, 2007 5

PUFFS_OPS (3) NetBSD Library Functions Manual PUFFS_OPS (3)

puffs_node_access (pu , opc , mode, pcr)
Check if the credentials ofpcr have the right to perform the operation specified bymode onto the
node opc . The argument mode can specify read, write or execute by PUFFS_VREAD,
PUFFS_VWRITE, andPUFFS_VEXEC, respectively.

puffs_node_getattr (pu , opc , va , pcr)
The attributes of the node specified byopc must be copied to the space pointed byva .

puffs_node_setattr (pu , opc , va , pcr)
The attributes for the node specified byopc must be set to those contained inva . Only fields ofva
which contain a value different fromPUFFS_VNOVAL(typecast to the field’s type!) contain a valid
value.

puffs_node_poll (pu , opc , events)
Poll for events on nodeopc . If poll (2) events specified inevents are available, the function
should set the bitmask to match available events and return immediately. Otherwise, the function
should block (yield) until some events inevents become available and only then set theevents
bitmask and return.

In case this function returns an error, POLLERR(or it’s select (2) equivalent) will be delivered to
the calling process.

NOTE!The system call interface forpoll () contains a timeout parameter. At this level, however, the
timeout is not supplied.In case input does not arrive, the file system should periodically unblock and
return 0 new events to avoid hanging forever. This will hopefully be better supported by libpuffs in
the future.

puffs_node_mmap (pu , opc , flags , pcr)
Called when a regular file is being memory mapped bymmap(2). flags is currently always 0.

puffs_node_fsync (pu , opc , pcr , flags , offlo , offhi)
Sychronize a node’s contents onto stable storage.This is necessary only if the file server caches some
information before committing it.The parameterflags specifies the minimum level of sychroniza-
tion required (XXX: they are not yet available). Theparametersofflo andoffhi specify the data
offsets requiring to be synced.A high offset of 0 means sync fromofflo to the end of the file.

puffs_node_seek (pu , opc , oldoff , newoff , pcr)
Test if the nodeopc is seekable to the locationnewoff . The argumentoldoff specifies the offset
we are starting the seek from.Most file systems dealing only with regular will choose to not imple-
ment this. However, it is useful for example in cases where files are unseekable streams.

puffs_node_remove (pu , opc , targ , pcn)

puffs_node_rmdir (pu , opc , targ , pcn)
Remove the nodetarg from the directory indicated byopc . The directory entry name to be
removed is provided bypcn . The rmdir operation removes only directories, while the remove opera-
tion removes all other types except directories.

It is paramount to note that the file system may not remove the node data structures at this point, only
the directory entry and prevent lookups from finding the node again. Thisis to retain theUNIX open
file semantics. The data may be removed only whenpuffs_node_reclaim () is called for the
node, as this assures there are no further users.

puffs_node_link (pu , opc , targ , pcn)
Create a hard link for the nodetarg into the directoryopc . The argumentpcn provides the direc-
tory entry name for the new link.

NetBSD 3.0 December 16, 2007 6

PUFFS_OPS (3) NetBSD Library Functions Manual PUFFS_OPS (3)

puffs_node_rename (pu , src_dir , src , pcn_src , targ_dir , targ , pcn_targ)
Rename the nodesrc with the name specified bypcn_src from the directorysrc_dir . The tar-
get directory and target name are given by targ_dir andpcn_targ , respectively. the target node
already exists, it is specified bytarg and must be replaced atomically. Otherwisetarg is gives as
NULL.

It is legal to replace a directory node by another directory node with the means of rename if the target
directory is empty, otherwiseENOTEMPTYshould be returned.All other types can replace all other
types. Incase a rename between incompatible types is attempted, the errorsENOTDIRor EISDIR
should be returned, depending on the target type.

puffs_node_readdir (pu , opc , dent , readoff , reslen , pcr , eofflag , cookies ,
ncookies)
To read directory entries,puffs_node_readdir () is called. It should store directories asstruct
dirent in the space pointed to bydent . The amount of space available is given by reslen and
before returning it should be set to the amount of spaceremaining in the buffer. The argument
offset is used to specify the offset to the directory. Its intepretation is up to the file system and it
should be set to signal the continuation point when there is no more room for the next entry indent .
It is most performant to return the maximal amount of directory entries each call. It is easiest to gen-
erate directory entries by usingpuffs_nextdent (), which also automatically advances the neces-
sary pointers.

In case end-of-directory is reached,eofflag should be set to one. Note that even a new call to
readdir may start wherereadoff points to end-of-directory.

If the file system supports file handles, the argumentscookies andncookies must be filled out.
cookies is a vector for offsets corresponding to read offsets. Onecookie should be filled out for
each directory entry. The value of the cookie should equal the offset of thenextdirectory entry, i.e.
which offset should be passed to readdir for the first entry read to be the entry following the current
one. ncookies is the number of slots for cookies in the cookie vector upon entry to the function
and must be set to the amount of cookies stored in the vector (i.e. amount of directory entries read)
upon exit. Thereis always enough space in the cookie vector for the maximal number of entries that
will fit into the directory entry buffer. For filling out the vector, the helper function
PUFFS_STORE_DCOOKIE(cookies , ncookies , offset) can be used.This properly checks
againstcookies beingNULL. Note thatncookies must be initialized to zero before the first call
to PUFFS_STORE_DCOOKIE().

puffs_node_symlink (pu , opc , pni , pcn_src , va , link_target)
Create a symbolic link into the directoryopc with the name inpcn_src and the initial attributes in
va . The argumentlink_target contains a null-terminated string for the link target. Thecreated
node cookie should be set inpni .

puffs_node_readlink (pu , opc , pcr , link , linklen)
Read the target of a symbolic linkopc . The result is placed in the buffer pointed to bylink . This
buffer’s length is given in linklen and it must be updated to reflect the real link length.A terminat-
ing nul character should not be put into the buffer andmust notbe included in the link length.

puffs_node_read (pu , opc , buf , offset , resid , pcr , ioflag)
Read the contents of a fileopc . It will gather the data fromoffset in the file and read the number
resid octets. Thebuffer is guaranteed to have this much space. The amount of data requested by
resid should be read, except in the case of eof-of-file or an error. The parameterresid should be
set to indicate the amount of request NOT completed. Inthe normal case this should be 0.

puffs_node_write (pu , opc , buf , offset , resid , pcr , ioflag)
puffs_node_write () Write data to a fileopc at offset and extend the file if necessary. The
number of octets written is indicated byresid ; everything must be written or an error will be gener-

NetBSD 3.0 December 16, 2007 7

PUFFS_OPS (3) NetBSD Library Functions Manual PUFFS_OPS (3)

ated. Theparameter must be set to indicate the amount of data NOT written. In case the flag
PUFFS_IO_APPENDis specified, the data should be appended to the end of the file.

puffs_node_print (pu , opc)
Print information about node. This is used only for kernel-initiated diagnostic purposes.

puffs_node_reclaim (pu , opc)
The kernel will no longer reference the cookie and resources associated with it may be freed.In case
the fileopc has a link count of zero, it may be safely removed now.

puffs_node_inactive (pu , opc)
The nodeopc has lost its last reference in the kernel. However, the cookie must still remain valid
until puffs_node_reclaim () is called.

puffs_setback (pcc , op)
Issue a "setback" operation which will be handled when the request response is returned to the kernel.
Currently this can be only called from mmap, open, remove and rmdir. The valid parameters forop
are PUFFS_SETBACK_INACT_N1and PUFFS_SETBACK_INACT_N2. These signal that a file
system mounted withPUFFS_KFLAG_IAONDEMANDshould call the file system inactive method for
the specified node. The node number 1 always means the operation cookieopc , while the node num-
ber 2 can be used to specify the second node argument present in some methods, e.g. remove.

puffs_newinfo_setcookie (pni , cookie)
Set cookie for node provided by this method tocookie .

puffs_newinfo_setvtype (pni , vtype)
Set the type of the newly located node tovtype . This call is valid only forlookup () and
fhtonode ().

puffs_newinfo_setsize (pni , size)
Set the size of the newly located node tosize . If left unset, the value defaults to 0.This call is valid
only for lookup () andfhtovp ().

puffs_newinfo_setrdev (pni , rdev)
Set the type of the newly located node tovtype . This call is valid only forlookup () and
fhtovp () producing device type nodes.

SEE ALSO
puffs (3), vfsops (9), vnodeops (9)

NetBSD 3.0 December 16, 2007 8

PUFFS_PATH (3) NetBSDLibrary Functions Manual PUFFS_PATH (3)

NAME
puffs_path — puffs pathbuilding routines

LIBRARY
library “libpuffs”

SYNOPSIS
#include <puffs.h>

int
pu_pathbuild_fn (struct puffs_usermount ∗pu ,

const struct puffs_pathobj ∗po_dir ,
const struct puffs_pathobj ∗po_comp , size_t offset ,
struct puffs_pathobj ∗po_new);

int
pu_pathtransform_fn (struct puffs_usermount ∗pu ,

const struct puffs_pathobj ∗po_base , const struct puffs_cn ∗pcn ,
struct puffs_pathobj ∗po_new);

int
pu_pathcmp_fn (struct puffs_usermount ∗pu , struct puffs_pathobj ∗po1 ,

struct puffs_pathobj ∗po2 , size_t checklen , int checkprefix);

void
pu_pathfree_fn (struct puffs_usermount ∗pu , struct puffs_pathobj ∗po);

int
pu_namemod_fn (struct puffs_usermount ∗pu , struct puffs_pathobj ∗po_dir ,

struct puffs_cn ∗pcn);

struct puffs_pathobj ∗
puffs_getrootpathobj (struct puffs_usermount ∗pu);

DESCRIPTION
IMPORTANT NOTE! This document describes interfaces which are not yet guaranteed to be stable.In case
you update your system sources, please recompile everything and fix compilation errors.If your sources are
out-of-sync, incorrect operation may result. The interfaces in this document will most likely be hugely sim-
plified in later versions or made transparent to the implementation.

The puffs library has the ability to provide full pathnames for backends which require them. Normal file sys-
tems should be constructed without the file system node tied to a file name and should not used routines
described herein. An example of a file system where the backend requires filenames ismount_psshfs (8).

The features described here are enabled by passingPUFFS_FLAG_BUILDPATHto puffs_init (). This
facility requires to use puffs nodes to store the contents of the pathname. Either the address of the operation
cookie must directly be that of the puffs node, orpuffs_set_cmap () must be used to set a mapping func-
tion from the cookie to the puffs node associated with the cookie.Finally, the root node for the file system
must be set using puffs_setroot () and the root path object retrieved using
puffs_getrootpathobj () and initialized.

There are two different places a filename can be retrieved from. It is available for each puffs node after the
node has been registered with the framework, i.e. after the routine creating the node returns. In other words,
there is a window between the node is created and when the pathname is available and multithreaded file sys-
tems must take this into account.The second place where a pathname is available is from the component-
namestruct puffs_pcn in operations which are passed one.These can be retrieved using the con-

NetBSD 3.0 December 27, 2007 1

PUFFS_PATH (3) NetBSDLibrary Functions Manual PUFFS_PATH (3)

venience macrosPNPATH() andPCNPATH() for node and componentname, respectively. The type of object
they return isvoid ∗.

By default the framework manages "regular" filenames, which consist of directory names separated by "/"
and a final component.If the file system wishes to use pathnames of this format, all it has to do it enable the
feature. Everything else, including bookkeeping for node and directory renames, is done by the library. The
callback routines described next provide the ability to build non-standard pathnames.A pu_foo_fn () call-
back is set using thepuffs_set_foo () routine.

This manual page is still unfinished. Please take a number and wait in line.

SEE ALSO
puffs (3), puffs_node (3), mount_psshfs (8), mount_sysctlfs (8)

NetBSD 3.0 December 27, 2007 2

PUFFS_SUSPEND (3) NetBSD Library Functions Manual PUFFS_SUSPEND (3)

NAME
puffs_suspend — puffs file system suspension and snapshotting

LIBRARY
library “libpuffs”

SYNOPSIS
#include <puffs.h>

int
puffs_fs_suspend (struct puffs_usermount ∗pu);

DESCRIPTION
IMPORTANT NOTE! This document describes interfaces which are not yet guaranteed to be stable. In case
you update your system sources, please recompile everything and fix compilation errors. If your sources are
out-of-sync, incorrect operation may result. The interfaces in this document will most likely be hugely sim-
plified in later versions or made transparent to the implementation.

The functionpuffs_fs_suspend () requests the kernel to suspend operations to the file system indicated
by pu . There are several possible outcomes: nothing, an error or success. These will be indicated through
the callback of the same name.The file system must set this callback if it wants to be notified of file system
suspension. Theinterface call itself returns 0 on success or −1 on error and setserrno. In case an error is
returned, the callback will never be called. However, the converse does not hold and the callback may never
be called even if the library call is successful.

In case the kernel is successful to start suspending the file system, the callback is called with status
PUFFS_SUSPEND START. The file system implementation may use this as a hint on how to handle fol-
lowing operations. Once the file system has successfully been suspended, the status
PUFFS_SUSPEND_SUSPENDEDwill be delivered. In case there was an error while suspending,
PUFFS_SUSPEND_ERRORis given. This effectively nullifies any PUFFS_SUSPEND_STARTgiven ear-
lier. Operation will automatically resume after suspension and the statusPUFFS_SUSPEND_RESUMEis
delivered to the callback. Error or success is always provided in case start is given.

The file system is supposed to do a file system specific snapshotting routine when it receives
PUFFS_SUSPEND_SUSPENDED.

SEE ALSO
puffs (3), puffs_cc (3)

BUGS
Currently the implementation works only for single-threaded file systems which do not usepuffs_cc .

File system data and metadata are not always totally correctly synchronized at suspend.This will be fixed
soon.

NetBSD 3.0 January 27, 2007 1

PUTC (3) NetBSD Library Functions Manual PUTC (3)

NAME
fputc , putc , putchar , putc_unlocked , putchar_unlocked , putw — output a character or
word to a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

int
fputc (int c , FILE ∗stream);

int
putc (int c , FILE ∗stream);

int
putchar (int c);

int
putc_unlocked (int c , FILE ∗stream);

int
putchar_unlocked (int c);

int
putw (int w , FILE ∗stream);

DESCRIPTION
The fputc () function writes the characterc (converted to an ‘‘unsigned char’’) to the output stream pointed
to bystream .

putc () acts essentially identically tofputc (), but is a macro that expands in-line. It may evaluatestream
more than once, so arguments given to putc () should not be expressions with potential side effects.

putchar () is identical toputc () with an output stream ofstdout.

The putc_unlocked () andputchar_unlocked () functions provide functionality identical to that of
putc () andputchar (), respectively, but do not perform implicit locking of the streams they operate on.In
multi-threaded programs they may be usedonly within a scope in which the stream has been successfully
locked by the calling thread using eitherflockfile (3) or ftrylockfile (3), and may later be released
usingfunlockfile (3).

Theputw () function writes the specifiedint to the named outputstream .

RETURN VALUES
The functions,fputc (), putc () andputchar () return the character written.If an error occurs, the value
EOFis returned.Theputw () function returns 0 on success;EOFis returned if a write error occurs, or if an
attempt is made to write a read-only stream.

SEE ALSO
ferror (3), fopen (3), getc (3), stdio (3)

STANDARDS
The functionsfputc (), putc (), andputchar (), conform toANSI X3.159-1989 (“ANSI C89”). The func-
tions putc_unlocked () andputchar_unlocked () conform toISO/IEC 9945-1:1996 (“POSIX.1”). A
functionputw () function appeared in Version 6AT&T UNIX .

NetBSD 3.0 April 25, 2001 1

PUTC (3) NetBSD Library Functions Manual PUTC (3)

BUGS
The size and byte order of anint varies from one machine to another, and putw () is not recommended for
portable applications.

NetBSD 3.0 April 25, 2001 2

PUTWC (3) NetBSD Library Functions Manual PUTWC (3)

NAME
fputwc , putwc , putwchar , — output a wide-character to a stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t
fputwc (wchar_t wc , FILE ∗stream);

wint_t
putwc (wchar_t wc , FILE ∗stream);

wint_t
putwchar (wchar_t wc);

DESCRIPTION
Thefputwc () function writes the wide-characterwc to the output stream pointed to bystream .

putwc () acts essentially identically tofputwc (), but is a macro that expands in-line. It may evaluate
stream more than once, so arguments given to putwc () should not be expressions with potential side
effects.

putwchar () is identical toputwc () with an output stream ofstdout.

RETURN VALUES
The functionsfputwc (), putwc (), andputwchar () return the wide-character written.If an error occurs,
the valueWEOFis returned.

SEE ALSO
ferror (3), fopen (3), getwc (3), stdio (3)

STANDARDS
The functionsfputwc (), putwc (), andputwchar (), conform toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 October 20, 2001 1

PW_GETCONF (3) NetBSD Library Functions Manual PW_GETCONF (3)

NAME
pw_getconf — password encryption configuration access function

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

void
pw_getconf (char ∗data , size_t len , const char ∗key , const char ∗option);

DESCRIPTION
The pw_getconf () function reads/etc/passwd.conf and retrieves the value of the option specified
by option from the section given by key . If no suitable entry is found for thekey an empty string will be
returned in data.

To retrieve default values the key default can be used. In this case, if/etc/passwd.conf does not
exist or does not contain adefault section, the built-in defaults will be returned. They are as follows:

option data
ypcipher old
localcipher old

An empty string is returned for all errors.

FILES
/etc/passwd.conf

ERRORS
pw_getconf () will fail if:

[ENOTDIR] There is no key in /etc/passwd.conf namedkey .

[ENOENT] There is no option namedoption in the specified key.

SEE ALSO
passwd (5), passwd.conf (5)

HISTORY
Thepw_getconf () function first appeared inNetBSD 1.6.

NetBSD 3.0 August 18, 2005 1

PW_INIT (3) NetBSD Library Functions Manual PW_INIT (3)

NAME
pw_init , pw_edit , pw_prompt , pw_copy , pw_copyx , pw_scan , pw_error — utility functions
for interactive passwd file updates

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <pwd.h>
#include <util.h>

void
pw_init (void);

void
pw_edit (int notsetuid , const char ∗filename);

void
pw_prompt (void);

void
pw_copy (int ffd , int tfd , struct passwd ∗pw , struct passwd ∗old_pw);

int
pw_copyx (int ffd , int tfd , struct passwd ∗pw , struct passwd ∗old_pw ,

char ∗errbuf , size_t errbufsz);

int
pw_scan (char ∗bp , struct passwd ∗pw , int ∗flags);

void
pw_error (const char ∗name, int err , int eval);

DESCRIPTION
These functions are designed as conveniences for interactive programs which update the passwd file and do
nothing else.They generally handle errors by printing out a message to the standard error stream and possi-
bly aborting the process.

Thepw_init () function prepares for a passwd update by unlimiting all resource constraints, disabling core
dumps (thus preventing dumping the contents of the passwd database into a world-readable file), and dis-
abling most signals.

Thepw_edit () function runs an editor (named by the environment variable EDITOR, or/usr/bin/vi if
EDITOR is not set) on the filefilename (or /etc/ptmp if filename is NULL). If notsetuid is
nonzero,pw_edit () will set the effective user and group ID to the real user and group ID before running the
editor.

Thepw_prompt () function asks the user whether he or she wants to re-edit the password file; if the answer
is no,pw_prompt () deletes the lock file and exits the process.

Thepw_copy () function reads a passwd file fromffd and writes it totfd , updating the entry correspond-
ing to pw->pw_name with the information inpw. If old_pw is not NULL, it checks to make sure the old
entry is the same as the one described inold_pw or the process is aborted. If an entry is not found to match
pw, a new entry is appended to the passwd file only if the real user ID is 0. If an error occurs,pw_copy ()
will display a message onstderr and callpw_error ().

NetBSD 3.0 August 1, 2004 1

PW_INIT (3) NetBSD Library Functions Manual PW_INIT (3)

Thepw_copyx () function performs the same operation aspw_copy () with the exception of error handling.
Upon an error, pw_copyx () will write an error message into the buffer pointed to byerrbuf which has the
sizeerrbufsz .

The pw_scan () function accepts in bp a passwd entry as it would be represented in
/etc/master.passwd and fills inpw with corresponding values; string fields inpw will be pointers into
bp . Some characters inbp will be overwritten with 0s in order to terminate the strings pointed to bypw. If
flags is non-null, it should be cleared and the following options enabled if required:

_PASSWORD_NOWARNDon’t print warnings.

_PASSWORD_OLDFMTParsebp as an old format entry as found in/etc/passwd .

Upon return it is cleared, and filled in with the following flags:

_PASSWORD_NOUIDThe uid field ofbp is empty.

_PASSWORD_NOGIDThe gid field ofbp is empty.

_PASSWORD_NOCHGThe change field ofbp is empty.

_PASSWORD_NOEXPThe expire field ofbp is empty.

Thepw_error () function displays an error message, aborts the current passwd update, and exits the current
process. Iferr is non-zero, a warning message beginning with name is printed for the current value of
errno. The process exits with statuseval .

RETURN VALUES
The pw_copyx () function returns 1 if the new password entry was successfully written to the destination
file, and 0 otherwise.

The pw_scan () function prints a warning message and returns 0 if the string in thebp argument is not a
valid passwd string. Otherwise,pw_scan () returns 1.

FILES
/etc/master.passwd
/etc/ptmp

SEE ALSO
pw_lock (3), passwd (5)

NetBSD 3.0 August 1, 2004 2

PW_LOCK (3) NetBSD Library Functions Manual PW_LOCK (3)

NAME
pw_lock , pw_mkdb, pw_abort , pw_setprefix , pw_getprefix — passwd file update functions

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
pw_lock (int retries);

int
pw_mkdb(const char ∗username , int secureonly);

void
pw_abort (void);

int
pw_setprefix (const char ∗new_prefix);

const char ∗
pw_getprefix (void);

DESCRIPTION
The pw_lock (), pw_mkdb(), andpw_abort () functions allow a program to update the system passwd
database.

Thepw_lock () function attempts to lock the passwd database by creating the file/etc/ptmp , and returns
the file descriptor of that file.If retries is greater than zero,pw_lock () will try multiple times to open
/etc/ptmp , waiting one second between tries. In addition to being a lock file,/etc/ptmp will also hold
the contents of the new passwd file.

Thepw_mkdb() function updates the passwd file from the contents of/etc/ptmp . You should finish writ-
ing to and close the file descriptor returned bypw_lock () before callingpw_mkdb(). If pw_mkdb() fails
and you do not wish to retry, you should make sure to callpw_abort () to clean up the lock file. If the
username argument is not NULL, only database entries pertaining to the specified user will be modified.
If the secureonly argument is non-zero, only the secure database will be updated.

The pw_abort () function aborts a passwd file update by deleting/etc/ptmp . The passwd database
remains unchanged.

The pw_setprefix () function defines the root directory used for passwd file updates. If the prefix is set
to /newroot pw_lock () will operate on/newroot/etc/ptmp afterwards. Thedefault prefix is an
empty string.

Thepw_getprefix () function returns the root directory which is currently used for passwd file updates.

RETURN VALUES
Thepw_lock () andpw_mkdb() functions return -1 if they are unable to complete properly.

FILES
/etc/master.passwd
/etc/ptmp

NetBSD 3.0 February 17, 2007 1

PW_LOCK (3) NetBSD Library Functions Manual PW_LOCK (3)

SEE ALSO
pw_init (3), pwd_mkdb(8)

NetBSD 3.0 February 17, 2007 2

PW_POLICY (3) NetBSD Library Functions Manual PW_POLICY (3)

NAME
pw_policy_load , pw_policy_test — password policy enforcement

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

pw_policy_t
pw_policy_load (void ∗key , int how);

int
pw_policy_test (pw_policy_t policy , char ∗pw);

void
pw_policy_free (pw_policy_t policy);

DESCRIPTION
The pw_policy_load (), pw_policy_test (), and pw_policy_free () functions are used as an
interface to the system’s password policy as specified in/etc/passwd.conf .

pw_policy_load () will load a password policy and return a pointer to apw_policy_t containing it. It
is the caller’s responsibility to free this pointer usingpw_policy_free ().

Using pw_getconf (3) terminology, pw_policy_load () accepts akey to be used when searching
/etc/passwd.conf for a password policy. This key contains various options describing different poli-
cies. Somebuilt-in ones are described along with their syntax below.

To allow calling from various program contexts and using various password policy retrieval schemes,how
tellspw_policy_load () how to treatkey .

Possible values forhow are:

PW_POLICY_BYSTRING
key is used as achar ∗, looking up the string it contains in/etc/passwd.conf .

PW_POLICY_BYPASSWD
key is used as astruct passwd ∗, first looking up the username inpw_name, and if
no key can be found, it will try the login class inpw_class .

PW_POLICY_BYGROUP
key is used as astruct group ∗, looking up the group name ingr_name .

If key is NULL, or no specified key can be found, the default key, “pw_policy”, is used. If even the default
key can’t be found, the password is accepted as no policy is defined.

pw_policy_test () can be used to check if the password inpw is compliant with the policy in policy .

BUILT-IN POLICY SYNT AX
Av ailable built-in policy options include the following:

length Length of the password.
uppercase Number of upper-case characters in the password.
lowercase Number of lower-case characters in the password.
digits Number of digits in the password.

NetBSD 3.0 March 19, 2006 1

PW_POLICY (3) NetBSD Library Functions Manual PW_POLICY (3)

punctuation Number of punctuation characters in the password.
nclasses Number of different character classes in the password.
ntoggles How often a user has to toggle between character classes in the password.

Options are used inside keys. Anoption uses a format of “option = value”. For the built-in options, we use
either “N” or “N-M” for the value.

The first, “N” format, specifies a single length.For example, the following option specifies that the password
should have exactly 3 upper-case characters:

uppercase = 3

The second, “N-M” format, can be used to specify a range.Forcing a policy for number of digits between 1
and 4 would be:

digits = 1-4

The characters ‘0’ and ‘∗’ can also be used to indicate “not allowed” and “any number”, respectively. To
illustrate, the following example states that the number of punctuation characters should be at least two:

punctuation = 2- ∗

No more than 7 digits:

digits = ∗-7

Any number of lower-case characters:

lowercase = ∗

Upper-case characters not allowed:

uppercase = 0

To specify that the password must be at least 8 characters long:

length = 8- ∗

Specifying a password must have at least 3 different character classes:

nclasses = 3- ∗

And that the user must change character class every 2 characters:

ntoggles = ∗-2

Note that when using the “nclasses” directive, the policy will be initialized to allow any number of characters
from all classes. If desired, this should be overridden after the “nclasses” option.

RETURN VALUES
pw_policy_load () returns apw_policy_t on success, orNULL on failure, in which case theerrno
variable will be set to any of the following values indicating the reason for the failure:

[ENOENT] The /etc/passwd.conf is missing.

[EINVAL] Invalid value for thehow parameter or an invalid value in the password policy specifi-
cation.

pw_policy_load () can also seterrno to a value returned by the called handlers and/ormalloc (3).

pw_policy_test () returns 0 if the password follows the policy, or −1 if it doesn’t,errno can be set to any
of the following values:

NetBSD 3.0 March 19, 2006 2

PW_POLICY (3) NetBSD Library Functions Manual PW_POLICY (3)

[EPERM] The password does not follow the password policy.

[EINVAL] NULLpointer was passed as the password.

In addition,errnocan be set to any error code returned by the handlers.

FILES
/etc/passwd.conf password configuration file.

EXAMPLES
Declare a password policy storage:

pw_policy_t policy;

Load the system global password policy intopolicy :

policy = pw_policy_load(NULL, 0);
if (policy == NULL)

errx(1, "Can’t load password policy");

Load a policy for a user whose password database entry is inpw_entry into policy :

policy = pw_policy_load(pw_entry, PW_POLICY_BYPASSWD);
if (policy == NULL)

errx(1, "Can’t load password policy for \"%s\"", pw_entry->pw_name);

Note that pw_policy_load () will first look for a password policy for the username in
pw_entry->pw_name , if not found, it will try looking for a policy for the login class in
pw_entry->pw_class , and if it can’t find such either it will fallback to the default key, “pw_policy”.

Load the password policy for a group whose group database entry is ingrent , intopolicy :

policy = pw_policy_load(grent, PW_POLICY_BYGROUP);
if (policy == NULL)

errx(1, "Can’t load password policy for \"%s\"", grent->gr_name);

Check ifthe_password follows the policy in policy :

if (pw_policy_test(policy, the_password) != 0)
warnx("Please refer to the password policy");

After finished using the password policy, free it:

pw_policy_free(policy);

An example for a common default password policy in /etc/passwd.conf :

pw_policy:
length = 8- ∗ # At l east 8 characters long,
lowercase = 1- ∗ # c ombining lowercase,
uppercase = 1- ∗ # uppercase,
digits = 1- ∗ # and digits.
punctuation = ∗ # Punctuation is optional.

A different policy that might be used:

nclasses = 3- ∗ # At l east 3 different character classes,
ntoggles = ∗-2 # not more than 2 same class in a row.

NetBSD 3.0 March 19, 2006 3

PW_POLICY (3) NetBSD Library Functions Manual PW_POLICY (3)

SEE ALSO
pw_getconf (3), passwd.conf (5)

HISTORY
The pw_policy_load (), pw_policy_test (), and pw_policy_free () functions first appeared in
NetBSD 4.0.

AUTHORS
Elad Efrat〈elad@NetBSD.org〉

NetBSD 3.0 March 19, 2006 4

PWCACHE (3) NetBSD Library Functions Manual PWCACHE (3)

NAME
pwcache , user_from_uid , group_from_gid — cache password and group entries

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <pwd.h>

const char ∗
user_from_uid (uid_t uid , int nouser);

int
uid_from_user (const char ∗name, uid_t ∗uid);

int
pwcache_userdb (int (∗setpassent)(int) , void (∗endpwent)(void) ,

struct passwd ∗ (∗getpwnam)(const char ∗) ,
struct passwd ∗ (∗getpwuid)(uid_t));

#include <grp.h>

const char ∗
group_from_gid (gid_t gid , int nogroup);

int
gid_from_group (const char ∗name, gid_t ∗gid);

int
pwcache_groupdb (int (∗setgroupent)(int) , void (∗endgrent)(void) ,

struct group ∗ (∗getgrnam)(const char ∗) ,
struct group ∗ (∗getgrgid)(gid_t));

DESCRIPTION
Theuser_from_uid () function returns the user name associated with the argumentuid . The user name
is cached so that multiple calls with the sameuid do not require additional calls togetpwuid (3). If there
is no user associated with theuid , a pointer is returned to a string representation of theuid , unless the
argumentnouser is non-zero, in which case aNULLpointer is returned.

The group_from_gid () function returns the group name associated with the argumentgid . The group
name is cached so that multiple calls with the samegid do not require additional calls togetgrgid (3). If
there is no group associated with thegid , a pointer is returned to a string representation of thegid , unless
the argumentnogroup is non-zero, in which case aNULLpointer is returned.

Theuid_from_user () function returns the uid associated with the argumentname. The uid is cached so
that multiple calls with the samename do not require additional calls togetpwnam (3). If there is no uid
associated with thename, the uid_from_user () function returns −1; otherwise it stores the uid at the
location pointed to byuid and returns 0.

The gid_from_group () function returns the gid associated with the argumentname. The gid is cached
so that multiple calls with the samename do not require additional calls togetgrnam (3). If there is no gid
associated with thename, the gid_from_group () function returns −1; otherwise it stores the gid at the
location pointed to bygid and returns 0.

The pwcache_userdb () function changes the user database access routines whichuser_from_uid ()
and uid_from_user () call to search for users. The caches are flushed and the existing endpwent ()
method is called before switching to the new routines. getpwnam andgetpwuid must be provided, and

NetBSD 3.0 January 24, 2002 1

PWCACHE (3) NetBSD Library Functions Manual PWCACHE (3)

setpassent andendpwent may beNULLpointers.

The pwcache_groupdb () function changes the group database access routines which
group_from_gid () andgid_from_group () call to search for groups. The caches are flushed and the
existing endgrent () method is called before switching to the new routines. getgrnam andgetgrgid
must be provided, andsetgroupent andendgrent may beNULLpointers.

SEE ALSO
getgrgid (3), getgrnam (3), getpwnam (3), getpwuid (3)

HISTORY
Theuser_from_uid () andgroup_from_gid () functions first appeared in 4.4BSD.

Theuid_from_user () andgid_from_group () functions first appeared inNetBSD 1.4.

Thepwcache_userdb () andpwcache_groupdb () functions first appeared inNetBSD 1.6.

NetBSD 3.0 January 24, 2002 2

QABS (3) NetBSD Library Functions Manual QABS (3)

NAME
qabs — return the absolute value of a quad integer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

quad_t
qabs (quad_t j);

DESCRIPTION
Theqabs () function returns the absolute value of the quad integerj .

SEE ALSO
abs (3), cabs (3), floor (3), labs (3), llabs (3), math (3)

BUGS
The absolute value of the most negative integer remains negative.

NetBSD 3.0 June 29, 1991 1

QDIV (3) NetBSD Library Functions Manual QDIV (3)

NAME
qdiv — return quotient and remainder from division

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

qdiv_t
qdiv (quad_t num , quad_t denom);

DESCRIPTION
Theqdiv () function computes the valuenum/denom and returns the quotient and remainder in a structure
namedqdiv_t that contains twoquad integer members namedquot andrem.

SEE ALSO
div (3), ldiv (3), lldiv (3), math (3)

NetBSD 3.0 June 29, 1991 1

QSORT (3) NetBSDLibrary Functions Manual QSORT (3)

NAME
qsort , heapsort , mergesort — sort functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

void
qsort (void ∗base , size_t nmemb , size_t size ,

int (∗compar)(const void ∗, c onst void ∗));

int
heapsort (void ∗base , size_t nmemb , size_t size ,

int (∗compar)(const void ∗, c onst void ∗));

int
mergesort (void ∗base , size_t nmemb , size_t size ,

int (∗compar)(const void ∗, c onst void ∗));

DESCRIPTION
The qsort () function is a modified partition-exchange sort, or quicksort.The heapsort () function is a
modified selection sort.The mergesort () function is a modified merge sort with exponential search
intended for sorting data with pre-existing order.

The qsort () andheapsort () functions sort an array ofnmembobjects, the initial member of which is
pointed to bybase . The size of each object is specified bysize . mergesort () behaves similarly, but
requiresthatsize be greater than “sizeof(void∗) / 2”.

The contents of the arraybase are sorted in ascending order according to a comparison function pointed to
by compar , which requires two arguments pointing to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero if the first argument
is considered to be respectively less than, equal to, or greater than the second.

The functionsqsort () andheapsort () arenot stable, that is, if two members compare as equal, their
order in the sorted array is undefined. The functionmergesort () is stable.

Theqsort () function is an implementation of C.A.R. Hoare’s ‘‘quicksort’’ algorithm, a variant of partition-
exchange sorting; in particular, see D.E. Knuth’s Algorithm Q. qsort () takes O N lg N average time.This
implementation uses median selection to avoid its O N∗∗2 worst-case behavior.

The heapsort () function is an implementation of J.W.J. William’s ‘‘heapsort’’ algorithm, a variant of
selection sorting; in particular, see D.E. Knuth’s Algorithm H. heapsort () takes O N lg N worst-case
time. Itsonly advantage over qsort () is that it uses almost no additional memory; whileqsort () does not
allocate memory, it is implemented using recursion.

The functionmergesort () requires additional memory of sizenmemb ∗ size bytes; it should be used
only when space is not at a premium.mergesort () is optimized for data with pre-existing order; its worst
case time is O N lg N; its best case is O N.

Normally, qsort () is faster thanmergesort () is faster thanheapsort (). Memoryavailability and pre-
existing order in the data can make this untrue.

NetBSD 3.0 June 4, 1993 1

QSORT (3) NetBSDLibrary Functions Manual QSORT (3)

RETURN VALUES
Theqsort () function returns no value.

Upon successful completion,heapsort () andmergesort () return 0. Otherwise, they return −1 and the
global variableerrno is set to indicate the error.

ERRORS
Theheapsort () function succeeds unless:

[EINVAL] The size argument is zero, or, the size argument tomergesort () is less than
“sizeof(void∗) / 2”.

[ENOMEM] heapsort () or mergesort () were unable to allocate memory.

COMPATIBILITY
Previous versions ofqsort () did not permit the comparison routine itself to callqsort (). This is no
longer true.

SEE ALSO
sort (1), radixsort (3)

Hoare, C.A.R., "Quicksort",The Computer Journal, 5:1, pp. 10-15, 1962.

Williams, J.W.J, "Heapsort",Communications of the ACM, 7:1, pp. 347-348, 1964.

Knuth, D.E., "Sorting and Searching",The Art of Computer Programming, Vol. 3, pp. 114-123, 145-149,
1968.

McIlroy, P.M., "Optimistic Sorting and Information Theoretic Complexity",Proceedings of the Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 467-474, 1993.

Bentley, J.L. and McIlroy, M.D., "Engineering a Sort Function",Software-Practice and Experience, Vol. 23,
pp. 1249-1265, 1993.

STANDARDS
Theqsort () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 2

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

NAME
SLIST_HEAD, SLIST_HEAD_INITIALIZER , SLIST_ENTRY, SLIST_INIT ,
SLIST_INSERT_AFTER, SLIST_INSERT_HEAD, SLIST_REMOVE_HEAD, SLIST_REMOVE,
SLIST_FOREACH, SLIST_EMPTY, SLIST_FIRST , SLIST_NEXT, SIMPLEQ_HEAD,
SIMPLEQ_HEAD_INITIALIZER , SIMPLEQ_ENTRY, SIMPLEQ_INIT , SIMPLEQ_INSERT_HEAD,
SIMPLEQ_INSERT_TAIL, SIMPLEQ_INSERT_AFTER, SIMPLEQ_REMOVE_HEAD,
SIMPLEQ_REMOVE, SIMPLEQ_FOREACH, SIMPLEQ_EMPTY, SIMPLEQ_FIRST, SIMPLEQ_NEXT,
STAILQ_HEAD, STAILQ_HEAD_INITIALIZER , STAILQ_ENTRY, STAILQ_INIT ,
STAILQ_INSERT_HEAD, STAILQ_INSERT_TAIL , STAILQ_INSERT_AFTER,
STAILQ_REMOVE_HEAD, STAILQ_REMOVE, STAILQ_FOREACH, STAILQ_EMPTY, STAILQ_FIRST ,
STAILQ_NEXT, STAILQ_CONCAT, LIST_HEAD, LIST_HEAD_INITIALIZER , LIST_ENTRY,
LIST_INIT , LIST_INSERT_AFTER, LIST_INSERT_BEFORE, LIST_INSERT_HEAD,
LIST_REMOVE, LIST_FOREACH, LIST_EMPTY, LIST_FIRST , LIST_NEXT, TAILQ_HEAD,
TAILQ_HEAD_INITIALIZER , TAILQ_ENTRY, TAILQ_INIT , TAILQ_INSERT_HEAD,
TAILQ_INSERT_TAIL , TAILQ_INSERT_AFTER, TAILQ_INSERT_BEFORE, TAILQ_REMOVE,
TAILQ_FOREACH, TAILQ_FOREACH_REVERSE, TAILQ_EMPTY, TAILQ_FIRST , TAILQ_NEXT,
TAILQ_LAST, TAILQ_PREV, TAILQ_CONCAT, CIRCLEQ_HEAD, CIRCLEQ_HEAD_INITIALIZER ,
CIRCLEQ_ENTRY, CIRCLEQ_INIT , CIRCLEQ_INSERT_AFTER, CIRCLEQ_INSERT_BEFORE,
CIRCLEQ_INSERT_HEAD, CIRCLEQ_INSERT_TAIL, CIRCLEQ_REMOVE, CIRCLEQ_FOREACH,
CIRCLEQ_FOREACH_REVERSE, CIRCLEQ_EMPTY, CIRCLEQ_FIRST, CIRCLEQ_LAST,
CIRCLEQ_NEXT, CIRCLEQ_PREV, CIRCLEQ_LOOP_NEXT, CIRCLEQ_LOOP_PREV— implementa-
tions of singly-linked lists, simple queues, lists, tail queues, and circular queues

SYNOPSIS
#include <sys/queue.h>

SLIST_HEAD(HEADNAME, TYPE);

SLIST_HEAD_INITIALIZER (head);

SLIST_ENTRY(TYPE);

SLIST_INIT (SLIST_HEAD ∗head);

SLIST_INSERT_AFTER(TYPE ∗listelm , TYPE ∗elm , SLIST_ENTRY NAME);

SLIST_INSERT_HEAD(SLIST_HEAD ∗head , TYPE ∗elm , SLIST_ENTRY NAME);

SLIST_REMOVE_HEAD(SLIST_HEAD ∗head , SLIST_ENTRY NAME);

SLIST_REMOVE(SLIST_HEAD ∗head , TYPE ∗elm , TYPE, SLIST_ENTRY NAME);

SLIST_FOREACH(TYPE ∗var , SLIST_HEAD ∗head , SLIST_ENTRY NAME);

int
SLIST_EMPTY(SLIST_HEAD ∗head);

TYPE ∗
SLIST_FIRST (SLIST_HEAD ∗head);

TYPE ∗
SLIST_NEXT(TYPE ∗elm , SLIST_ENTRY NAME);

SIMPLEQ_HEAD(HEADNAME, TYPE);

NetBSD 3.0 December 11, 2007 1

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

SIMPLEQ_HEAD_INITIALIZER (head);

SIMPLEQ_ENTRY(TYPE);

SIMPLEQ_INIT (SIMPLEQ_HEAD∗head);

SIMPLEQ_INSERT_HEAD(SIMPLEQ_HEAD∗head , TYPE ∗elm , SIMPLEQ_ENTRY NAME);

SIMPLEQ_INSERT_TAIL(SIMPLEQ_HEAD∗head , TYPE ∗elm , SIMPLEQ_ENTRY NAME);

SIMPLEQ_INSERT_AFTER(SIMPLEQ_HEAD∗head , TYPE ∗listelm , TYPE ∗elm ,
SIMPLEQ_ENTRY NAME);

SIMPLEQ_REMOVE_HEAD(SIMPLEQ_HEAD∗head , SIMPLEQ_ENTRY NAME);

SIMPLEQ_REMOVE(SIMPLEQ_HEAD∗head , TYPE ∗elm , TYPE, SIMPLEQ_ENTRY NAME);

SIMPLEQ_FOREACH(TYPE ∗var , SIMPLEQ_HEAD∗head , SIMPLEQ_ENTRY NAME);

int
SIMPLEQ_EMPTY(SIMPLEQ_HEAD∗head);

TYPE ∗
SIMPLEQ_FIRST(SIMPLEQ_HEAD∗head);

TYPE ∗
SIMPLEQ_NEXT(TYPE ∗elm , SIMPLEQ_ENTRY NAME);

STAILQ_HEAD(HEADNAME, TYPE);

STAILQ_HEAD_INITIALIZER (head);

STAILQ_ENTRY(TYPE);

STAILQ_INIT (STAILQ_HEAD ∗head);

STAILQ_INSERT_HEAD(STAILQ_HEAD ∗head , TYPE ∗elm , STAILQ_ENTRY NAME);

STAILQ_INSERT_TAIL (STAILQ_HEAD ∗head , TYPE ∗elm , STAILQ_ENTRY NAME);

STAILQ_INSERT_AFTER(STAILQ_HEAD ∗head , TYPE ∗listelm , TYPE ∗elm ,
STAILQ_ENTRY NAME);

STAILQ_REMOVE_HEAD(STAILQ_HEAD ∗head , STAILQ_ENTRY NAME);

STAILQ_REMOVE(STAILQ_HEAD ∗head , TYPE ∗elm , TYPE, STAILQ_ENTRY NAME);

STAILQ_FOREACH(TYPE ∗var , STAILQ_HEAD ∗head , STAILQ_ENTRY NAME);

int
STAILQ_EMPTY(STAILQ_HEAD ∗head);

TYPE ∗
STAILQ_FIRST (STAILQ_HEAD ∗head);

TYPE ∗
STAILQ_NEXT(TYPE ∗elm , STAILQ_ENTRY NAME);

STAILQ_CONCAT(STAILQ_HEAD ∗head1 , STAILQ_HEAD ∗head2);

LIST_HEAD(HEADNAME, TYPE);

NetBSD 3.0 December 11, 2007 2

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

LIST_HEAD_INITIALIZER (head);

LIST_ENTRY(TYPE);

LIST_INIT (LIST_HEAD ∗head);

LIST_INSERT_AFTER(TYPE ∗listelm , TYPE ∗elm , LIST_ENTRY NAME);

LIST_INSERT_BEFORE(TYPE ∗listelm , TYPE ∗elm , LIST_ENTRY NAME);

LIST_INSERT_HEAD(LIST_HEAD ∗head , TYPE ∗elm , LIST_ENTRY NAME);

LIST_REMOVE(TYPE ∗elm , LIST_ENTRY NAME);

LIST_FOREACH(TYPE ∗var , LIST_HEAD ∗head , LIST_ENTRY NAME);

int
LIST_EMPTY(LIST_HEAD ∗head);

TYPE ∗
LIST_FIRST (LIST_HEAD ∗head);

TYPE ∗
LIST_NEXT(TYPE ∗elm , LIST_ENTRY NAME);

TAILQ_HEAD(HEADNAME, TYPE);

TAILQ_HEAD_INITIALIZER (head);

TAILQ_ENTRY(TYPE);

TAILQ_INIT (TAILQ_HEAD ∗head);

TAILQ_INSERT_HEAD(TAILQ_HEAD ∗head , TYPE ∗elm , TAILQ_ENTRY NAME);

TAILQ_INSERT_TAIL (TAILQ_HEAD ∗head , TYPE ∗elm , TAILQ_ENTRY NAME);

TAILQ_INSERT_AFTER(TAILQ_HEAD ∗head , TYPE ∗listelm , TYPE ∗elm ,
TAILQ_ENTRY NAME);

TAILQ_INSERT_BEFORE(TYPE ∗listelm , TYPE ∗elm , TAILQ_ENTRY NAME);

TAILQ_REMOVE(TAILQ_HEAD ∗head , TYPE ∗elm , TAILQ_ENTRY NAME);

TAILQ_FOREACH(TYPE ∗var , TAILQ_HEAD ∗head , TAILQ_ENTRY NAME);

TAILQ_FOREACH_REVERSE(TYPE ∗var , TAILQ_HEAD ∗head , HEADNAME,
TAILQ_ENTRY NAME);

int
TAILQ_EMPTY(TAILQ_HEAD ∗head);

TYPE ∗
TAILQ_FIRST (TAILQ_HEAD ∗head);

TYPE ∗
TAILQ_NEXT(TYPE ∗elm , TAILQ_ENTRY NAME);

TYPE ∗
TAILQ_LAST(TAILQ_HEAD ∗head , HEADNAME);

TYPE ∗
TAILQ_PREV(TYPE ∗elm , HEADNAME, TAILQ_ENTRY NAME);

NetBSD 3.0 December 11, 2007 3

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

TAILQ_CONCAT(TAILQ_HEAD ∗head1 , TAILQ_HEAD ∗head2 , TAILQ_ENTRY NAME);

CIRCLEQ_HEAD(HEADNAME, TYPE);

CIRCLEQ_HEAD_INITIALIZER (head);

CIRCLEQ_ENTRY(TYPE);

CIRCLEQ_INIT (CIRCLEQ_HEAD∗head);

CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD∗head , TYPE ∗listelm , TYPE ∗elm ,
CIRCLEQ_ENTRY NAME);

CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD∗head , TYPE ∗listelm , TYPE ∗elm ,
CIRCLEQ_ENTRY NAME);

CIRCLEQ_INSERT_HEAD(CIRCLEQ_HEAD∗head , TYPE ∗elm , CIRCLEQ_ENTRY NAME);

CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD∗head , TYPE ∗elm , CIRCLEQ_ENTRY NAME);

CIRCLEQ_REMOVE(CIRCLEQ_HEAD∗head , TYPE ∗elm , CIRCLEQ_ENTRY NAME);

CIRCLEQ_FOREACH(TYPE ∗var , CIRCLEQ_HEAD∗head , CIRCLEQ_ENTRY NAME);

CIRCLEQ_FOREACH_REVERSE(TYPE ∗var , CIRCLEQ_HEAD∗head , CIRCLEQ_ENTRY NAME);

int
CIRCLEQ_EMPTY(CIRCLEQ_HEAD∗head);

TYPE ∗
CIRCLEQ_FIRST(CIRCLEQ_HEAD∗head);

TYPE ∗
CIRCLEQ_LAST(CIRCLEQ_HEAD∗head);

TYPE ∗
CIRCLEQ_NEXT(TYPE ∗elm , CIRCLEQ_ENTRY NAME);

TYPE ∗
CIRCLEQ_PREV(TYPE ∗elm , CIRCLEQ_ENTRY NAME);

TYPE ∗
CIRCLEQ_LOOP_NEXT(CIRCLEQ_HEAD∗head , TYPE ∗elm , CIRCLEQ_ENTRY NAME);

TYPE ∗
CIRCLEQ_LOOP_PREV(CIRCLEQ_HEAD∗head , TYPE ∗elm , CIRCLEQ_ENTRY NAME);

DESCRIPTION
These macros define and operate on five types of data structures: singly-linked lists, simple queues, lists, tail
queues, and circular queues. All five structures support the following functionality:

1. Insertionof a new entry at the head of the list.
2. Insertionof a new entry before or after any element in the list.
3. Removal of any entry in the list.
4. Forward traversal through the list.

Singly-linked lists are the simplest of the five data structures and support only the above functionality.
Singly-linked lists are ideal for applications with large datasets and few or no removals, or for implementing
a LIFO queue.

NetBSD 3.0 December 11, 2007 4

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

Simple queues add the following functionality:
1. Entriescan be added at the end of a list.
2. They may be concatenated.

However:
1. Entriesmay not be added before any element in the list.
2. All list insertions and removals must specify the head of the list.
3. Eachhead entry requires two pointers rather than one.

Simple queues are ideal for applications with large datasets and few or no removals, or for implementing a
FIFO queue.

All doubly linked types of data structures (lists, tail queues, and circle queues) additionally allow:
1. Insertionof a new entry before any element in the list.
2. O(1)removal of any entry in the list.

However:
1. Eachelement requires two pointers rather than one.
2. Codesize and execution time of operations (except for removal) is about twice that of the singly-

linked data-structures.

Linked lists are the simplest of the doubly linked data structures and support only the above functionality
over singly-linked lists.

Tail queues add the following functionality:
1. Entriescan be added at the end of a list.
2. They may be concatenated.

However:
1. All list insertions and removals, except insertion before another element, must specify the head

of the list.
2. Eachhead entry requires two pointers rather than one.
3. Codesize is about 15% greater and operations run about 20% slower than lists.

Circular queues add the following functionality:
1. Entriescan be added at the end of a list.
2. They may be traversed backwards, from tail to head.

However:
1. All list insertions and removals must specify the head of the list.
2. Eachhead entry requires two pointers rather than one.
3. Thetermination condition for traversal is more complex.
4. Codesize is about 40% greater and operations run about 45% slower than lists.

In the macro definitions,TYPE is the name of a user defined structure, that must contain a field of type
LIST_ENTRY, SIMPLEQ_ENTRY, SLIST_ENTRY, TAILQ_ENTRY, or CIRCLEQ_ENTRY, named
NAME. The argumentHEADNAMEis the name of a user defined structure that must be declared using the
macrosLIST_HEAD, SIMPLEQ_HEAD, SLIST_HEAD, TAILQ_HEAD, or CIRCLEQ_HEAD. See the
examples below for further explanation of how these macros are used.

Summary of Operations
The following table summarizes the supported macros for each type of data structure.

NetBSD 3.0 December 11, 2007 5

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

SLIST LIST SIMPLEQ STAILQ TAILQ CIRCLEQ

_EMPTY + + + + + +
_FIRST + + + + + +
_FOREACH + + + + + +
_FOREACH_REVERSE - - - - + +
_INSERT_AFTER + + + + + +
_INSERT_BEFORE - + - - + +
_INSERT_HEAD + + + + + +
_INSERT_TAIL - - + + + +
_LAST - - - - + +
_LOOP_NEXT - - - - - +
_LOOP_PREV - - - - - +
_NEXT + + + + + +
_PREV - - - - + +
_REMOVE + + + + + +
_REMOVE_HEAD + - + + - -
_CONCAT - - - + + -

SINGLY-LINKED LISTS
A singly-linked list is headed by a structure defined by theSLIST_HEAD macro. Thisstructure contains a
single pointer to the first element on the list.The elements are singly linked for minimum space and pointer
manipulation overhead at the expense of O(n) removal for arbitrary elements.New elements can be added to
the list after an existing element or at the head of the list.An SLIST_HEAD structure is declared as follows:

SLIST_HEAD(HEADNAME, TYPE) head;

whereHEADNAMEis the name of the structure to be defined, andTYPE is the type of the elements to be
linked into the list.A pointer to the head of the list can later be declared as:

struct HEADNAME ∗headp;

(The nameshead andheadp are user selectable.)

The macroSLIST_HEAD_INITIALIZER evaluates to an initializer for the listhead .

The macroSLIST_EMPTYevaluates to true if there are no elements in the list.

The macroSLIST_ENTRYdeclares a structure that connects the elements in the list.

The macroSLIST_FIRST returns the first element in the list or NULL if the list is empty.

The macroSLIST_FOREACHtraverses the list referenced byhead in the forward direction, assigning each
element in turn tovar .

The macroSLIST_INIT initializes the list referenced byhead .

The macroSLIST_INSERT_HEAD inserts the new elementelm at the head of the list.

The macroSLIST_INSERT_AFTER inserts the new elementelm after the elementlistelm .

The macroSLIST_NEXT returns the next element in the list.

The macroSLIST_REMOVEremoves the elementelm from the list.

The macroSLIST_REMOVE_HEADremoves the first element from the head of the list.For optimum effi-
ciency, elements being removed from the head of the list should explicitly use this macro instead of the
genericSLIST_REMOVEmacro.

NetBSD 3.0 December 11, 2007 6

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

SINGLY-LINKED LIST EXAMPLE
SLIST_HEAD(slisthead, entry) head =

SLIST_HEAD_INITIALIZER(head);
struct slisthead ∗headp; / ∗ Singly-linked List head. ∗/
struct entry {

...
SLIST_ENTRY(entry) entries; / ∗ Singly-linked List. ∗/
...

} ∗n1, ∗n2, ∗n3, ∗np;

SLIST_INIT(&head); / ∗ Initialize the list. ∗/

n1 = malloc(sizeof(struct entry)); / ∗ Insert at the head. ∗/
SLIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); / ∗ Insert after. ∗/
SLIST_INSERT_AFTER(n1, n2, entries);

SLIST_REMOVE(&head, n2, entry, entries);/ ∗ Deletion. ∗/
free(n2);

n3 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD(&head, entries); / ∗ Deletion from the head. ∗/
free(n3);

/ ∗ Forward traversal. ∗/
SLIST_FOREACH(np, &head, entries)

np-> ...

while (!SLIST_EMPTY(&head)) { / ∗ List Deletion. ∗/
n1 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD(&head, entries);
free(n1);

}

SIMPLE QUEUES
A simple queue is headed by a structure defined by theSIMPLEQ_HEADmacro. Thisstructure contains a
pair of pointers, one to the first element in the simple queue and the other to the last element in the simple
queue. Theelements are singly linked for minimum space and pointer manipulation overhead at the expense
of O(n) removal for arbitrary elements.New elements can be added to the queue after an existing element, at
the head of the queue, or at the end of the queue. ASIMPLEQ_HEADstructure is declared as follows:

SIMPLEQ_HEAD(HEADNAME, TYPE) head;

whereHEADNAMEis the name of the structure to be defined, andTYPE is the type of the elements to be
linked into the simple queue.A pointer to the head of the simple queue can later be declared as:

struct HEADNAME ∗headp;

(The nameshead andheadp are user selectable.)

The macroSIMPLEQ_ENTRYdeclares a structure that connects the elements in the simple queue.

NetBSD 3.0 December 11, 2007 7

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

The macroSIMPLEQ_HEAD_INITIALIZER provides a value which can be used to initialize a simple
queue head at compile time, and is used at the point that the simple queue head variable is declared, like:

struct HEADNAME head = SIMPLEQ_HEAD_INITIALIZER(head);

The macroSIMPLEQ_INIT initializes the simple queue referenced byhead .

The macroSIMPLEQ_INSERT_HEADinserts the new elementelm at the head of the simple queue.

The macroSIMPLEQ_INSERT_TAIL inserts the new elementelm at the end of the simple queue.

The macroSIMPLEQ_INSERT_AFTERinserts the new elementelm after the elementlistelm .

The macroSIMPLEQ_REMOVEremoves elm from the simple queue.

The macroSIMPLEQ_REMOVE_HEADremoves the first element from the head of the simple queue.For
optimum efficiency, elements being removed from the head of the queue should explicitly use this macro
instead of the genericSIMPLQ_REMOVEmacro.

The macroSIMPLEQ_EMPTYreturn true if the simple queuehead has no elements.

The macroSIMPLEQ_FIRST returns the first element of the simple queuehead .

The macroSIMPLEQ_FOREACHtraverses the tail queue referenced byhead in the forward direction,
assigning each element in turn tovar .

The macroSIMPLEQ_NEXTreturns the element after the elementelm .

The macros prefixed with “STAILQ_” (STAILQ_HEAD, STAILQ_HEAD_INITIALIZER ,
STAILQ_ENTRY, STAILQ_INIT , STAILQ_INSERT_HEAD, STAILQ_INSERT_TAIL ,
STAILQ_INSERT_AFTER, STAILQ_REMOVE_HEAD, STAILQ_REMOVE, STAILQ_FOREACH,
STAILQ_EMPTY, STAILQ_FIRST , and STAILQ_NEXT) are functionally identical to these simple queue
functions, and are provided for compatibility withFreeBSD.

SIMPLE QUEUE EXAMPLE
SIMPLEQ_HEAD(simplehead, entry) head;
struct simplehead ∗headp; / ∗ Simple queue head. ∗/
struct entry {

...
SIMPLEQ_ENTRY(entry) entries; / ∗ Simple queue. ∗/
...

} ∗n1, ∗n2, ∗np;

SIMPLEQ_INIT(&head); / ∗ Initialize the queue. ∗/

n1 = malloc(sizeof(struct entry)); / ∗ Insert at the head. ∗/
SIMPLEQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); / ∗ Insert at the tail. ∗/
SIMPLEQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); / ∗ Insert after. ∗/
SIMPLEQ_INSERT_AFTER(&head, n1, n2, entries);

/ ∗ Forward traversal. ∗/
SIMPLEQ_FOREACH(np, &head, entries)

np-> ...
/ ∗ Delete. ∗/

while (SIMPLEQ_FIRST(&head) != NULL)

NetBSD 3.0 December 11, 2007 8

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

SIMPLEQ_REMOVE_HEAD(&head, entries);
if (SIMPLEQ_EMPTY(&head)) / ∗ Test for emptiness. ∗/

printf("nothing to do\n");

LISTS
A l ist is headed by a structure defined by theLIST_HEAD macro. Thisstructure contains a single pointer to
the first element on the list. The elements are doubly linked so that an arbitrary element can be removed
without traversing the list.New elements can be added to the list after an existing element, before an exist-
ing element, or at the head of the list. ALIST_HEAD structure is declared as follows:

LIST_HEAD(HEADNAME, TYPE) head;

whereHEADNAMEis the name of the structure to be defined, andTYPE is the type of the elements to be
linked into the list.A pointer to the head of the list can later be declared as:

struct HEADNAME ∗headp;

(The nameshead andheadp are user selectable.)

The macroLIST_ENTRY declares a structure that connects the elements in the list.

The macroLIST_HEAD_INITIALIZER provides a value which can be used to initialize a list head at
compile time, and is used at the point that the list head variable is declared, like:

struct HEADNAME head = LIST_HEAD_INITIALIZER(head);

The macroLIST_INIT initializes the list referenced byhead .

The macroLIST_INSERT_HEAD inserts the new elementelm at the head of the list.

The macroLIST_INSERT_AFTER inserts the new elementelm after the elementlistelm .

The macroLIST_INSERT_BEFOREinserts the new elementelm before the elementlistelm .

The macroLIST_REMOVEremoves the elementelm from the list.

The macroLIST_EMPTY return true if the listhead has no elements.

The macroLIST_FIRST returns the first element of the listhead .

The macroLIST_FOREACHtraverses the list referenced byhead in the forward direction, assigning each
element in turn tovar .

The macroLIST_NEXT returns the element after the elementelm .

LIST EXAMPLE
LIST_HEAD(listhead, entry) head;
struct listhead ∗headp; / ∗ List head. ∗/
struct entry {

...
LIST_ENTRY(entry) entries; / ∗ List. ∗/
...

} ∗n1, ∗n2, ∗np;

LIST_INIT(&head); / ∗ Initialize the list. ∗/

n1 = malloc(sizeof(struct entry)); / ∗ Insert at the head. ∗/
LIST_INSERT_HEAD(&head, n1, entries);

NetBSD 3.0 December 11, 2007 9

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

n2 = malloc(sizeof(struct entry)); / ∗ Insert after. ∗/
LIST_INSERT_AFTER(n1, n2, entries);

n2 = malloc(sizeof(struct entry)); / ∗ Insert before. ∗/
LIST_INSERT_BEFORE(n1, n2, entries);

/ ∗ Forward traversal. ∗/
LIST_FOREACH(np, &head, entries)

np-> ...
/ ∗ Delete. ∗/

while (LIST_FIRST(&head) != NULL)
LIST_REMOVE(LIST_FIRST(&head), entries);

if (LIST_EMPTY(&head)) / ∗ Test for emptiness. ∗/
printf("nothing to do\n");

TAIL Q UEUES
A tail queue is headed by a structure defined by theTAILQ_HEADmacro. Thisstructure contains a pair of
pointers, one to the first element in the tail queue and the other to the last element in the tail queue.The ele-
ments are doubly linked so that an arbitrary element can be removed without traversing the tail queue.New
elements can be added to the queue after an existing element, before an existing element, at the head of the
queue, or at the end the queue. ATAILQ_HEADstructure is declared as follows:

TAILQ_HEAD(HEADNAME, TYPE) head;

whereHEADNAMEis the name of the structure to be defined, andTYPE is the type of the elements to be
linked into the tail queue.A pointer to the head of the tail queue can later be declared as:

struct HEADNAME ∗headp;

(The nameshead andheadp are user selectable.)

The macroTAILQ_ENTRYdeclares a structure that connects the elements in the tail queue.

The macroTAILQ_HEAD_INITIALIZER provides a value which can be used to initialize a tail queue
head at compile time, and is used at the point that the tail queue head variable is declared, like:

struct HEADNAME head = TAILQ_HEAD_INITIALIZER(head);

The macroTAILQ_INIT initializes the tail queue referenced byhead .

The macroTAILQ_INSERT_HEADinserts the new elementelm at the head of the tail queue.

The macroTAILQ_INSERT_TAIL inserts the new elementelm at the end of the tail queue.

The macroTAILQ_INSERT_AFTER inserts the new elementelm after the elementlistelm .

The macroTAILQ_INSERT_BEFOREinserts the new elementelm before the elementlistelm .

The macroTAILQ_REMOVEremoves the elementelm from the tail queue.

The macroTAILQ_EMPTYreturn true if the tail queuehead has no elements.

The macroTAILQ_FIRST returns the first element of the tail queuehead .

The macroTAILQ_FOREACHtraverses the tail queue referenced byhead in the forward direction, assign-
ing each element in turn tovar .

The macroTAILQ_FOREACH_REVERSEtraverses the tail queue referenced byhead in the reverse direc-
tion, assigning each element in turn tovar .

NetBSD 3.0 December 11, 2007 10

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

The macroTAILQ_NEXT returns the element after the elementelm .

The macroTAILQ_CONCATconcatenates the tail queue headed byhead2 onto the end of the one headed
by head1 removing all entries from the former.

TAIL QUEUE EXAMPLE
TAILQ_HEAD(tailhead, entry) head;
struct tailhead ∗headp; / ∗ Tail queue head. ∗/
struct entry {

...
TAILQ_ENTRY(entry) entries; / ∗ Tail queue. ∗/
...

} ∗n1, ∗n2, ∗np;

TAILQ_INIT(&head); / ∗ Initialize the queue. ∗/

n1 = malloc(sizeof(struct entry)); / ∗ Insert at the head. ∗/
TAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); / ∗ Insert at the tail. ∗/
TAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); / ∗ Insert after. ∗/
TAILQ_INSERT_AFTER(&head, n1, n2, entries);

n2 = malloc(sizeof(struct entry)); / ∗ Insert before. ∗/
TAILQ_INSERT_BEFORE(n1, n2, entries);

/ ∗ Forward traversal. ∗/
TAILQ_FOREACH(np, &head, entries)

np-> ...
/ ∗ Reverse traversal. ∗/

TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)
np-> ...

/ ∗ Delete. ∗/
while (TAILQ_FIRST(&head) != NULL)

TAILQ_REMOVE(&head, TAILQ_FIRST(&head), entries);
if (TAILQ_EMPTY(&head)) / ∗ Test for emptiness. ∗/

printf("nothing to do\n");

CIRCULAR Q UEUES
A circular queue is headed by a structure defined by theCIRCLEQ_HEADmacro. Thisstructure contains a
pair of pointers, one to the first element in the circular queue and the other to the last element in the circular
queue. Theelements are doubly linked so that an arbitrary element can be removed without traversing the
queue. New elements can be added to the queue after an existing element, before an existing element, at the
head of the queue, or at the end of the queue. ACIRCLEQ_HEADstructure is declared as follows:

CIRCLEQ_HEAD(HEADNAME, TYPE) head;

whereHEADNAMEis the name of the structure to be defined, andTYPE is the type of the elements to be
linked into the circular queue.A pointer to the head of the circular queue can later be declared as:

struct HEADNAME ∗headp;

NetBSD 3.0 December 11, 2007 11

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

(The nameshead andheadp are user selectable.)

The macroCIRCLEQ_ENTRYdeclares a structure that connects the elements in the circular queue.

The macroCIRCLEQ_HEAD_INITIALIZER provides a value which can be used to initialize a circular
queue head at compile time, and is used at the point that the circular queue head variable is declared, like:

struct HEADNAME head = CIRCLEQ_HEAD_INITIALIZER(head);

The macroCIRCLEQ_INIT initializes the circular queue referenced byhead .

The macroCIRCLEQ_INSERT_HEADinserts the new elementelm at the head of the circular queue.

The macroCIRCLEQ_INSERT_TAIL inserts the new elementelm at the end of the circular queue.

The macroCIRCLEQ_INSERT_AFTERinserts the new elementelm after the elementlistelm .

The macroCIRCLEQ_INSERT_BEFOREinserts the new elementelm before the elementlistelm .

The macroCIRCLEQ_REMOVEremoves the elementelm from the circular queue.

The macroCIRCLEQ_EMPTYreturn true if the circular queuehead has no elements.

The macroCIRCLEQ_FIRST returns the first element of the circular queuehead .

The macroCIRCLEQ_FOREACHtraverses the circle queue referenced byhead in the forward direction,
assigning each element in turn tovar . Each element is assigned exactly once.

The macroCIRCLEQ_FOREACH_REVERSEtraverses the circle queue referenced byhead in the reverse
direction, assigning each element in turn tovar . Each element is assigned exactly once.

The macroCIRCLEQ_LASTreturns the last element of the circular queuehead .

The macroCIRCLEQ_NEXTreturns the element after the elementelm .

The macroCIRCLEQ_PREVreturns the element before the elementelm .

The macroCIRCLEQ_LOOP_NEXTreturns the element after the elementelm . If elm was the last element
in the queue, the first element is returned.

The macroCIRCLEQ_LOOP_PREVreturns the element before the elementelm . If elm was the first ele-
ment in the queue, the last element is returned.

CIRCULAR QUEUE EXAMPLE
CIRCLEQ_HEAD(circleq, entry) head;
struct circleq ∗headp; / ∗ Circular queue head. ∗/
struct entry {

...
CIRCLEQ_ENTRY(entry) entries; / ∗ Circular queue. ∗/
...

} ∗n1, ∗n2, ∗np;

CIRCLEQ_INIT(&head); / ∗ Initialize the circular queue. ∗/

n1 = malloc(sizeof(struct entry)); / ∗ Insert at the head. ∗/
CIRCLEQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); / ∗ Insert at the tail. ∗/
CIRCLEQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); / ∗ Insert after. ∗/

NetBSD 3.0 December 11, 2007 12

QUEUE (3) NetBSD Library Functions Manual QUEUE (3)

CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries);

n2 = malloc(sizeof(struct entry)); / ∗ Insert before. ∗/
CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries);

/ ∗ Forward traversal. ∗/
CIRCLEQ_FOREACH(np, &head, entries)

np-> ...
/ ∗ Reverse traversal. ∗/

CIRCLEQ_FOREACH_REVERSE(np, &head, entries)
np-> ...

/ ∗ Delete. ∗/
while (CIRCLEQ_FIRST(&head) != (void ∗)&head)

CIRCLEQ_REMOVE(&head, CIRCLEQ_FIRST(&head), entries);
if (CIRCLEQ_EMPTY(&head)) / ∗ Test for emptiness. ∗/

printf("nothing to do\n");

HISTORY
Thequeue functions first appeared in 4.4BSD. TheSIMPLEQfunctions first appeared inNetBSD 1.2. The
SLIST and STAILQ functions first appeared inFreeBSD 2.1.5. TheCIRCLEQ_LOOPfunctions first
appeared inNetBSD 4.0.

NetBSD 3.0 December 11, 2007 13

RADIXSORT (3) NetBSDLibrary Functions Manual RADIXSORT (3)

NAME
radixsort , sradixsort — radix sort

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <limits.h>
#include <stdlib.h>

int
radixsort (const u_char ∗∗base , int nmemb , u_char ∗table , u_int endbyte);

int
sradixsort (const u_char ∗∗base , int nmemb , u_char ∗table , u_int endbyte);

DESCRIPTION
Theradixsort () andsradixsort () functions are implementations of radix sort.

These functions sort annmembelement array of pointers to byte strings, with the initial member of which is
referenced bybase . The byte strings may contain any values. Endof strings is denoted by character which
has same weight as user specified valueendbyte . endbyte has to be between 0 and 255.

Applications may specify a sort order by providing thetable argument. Ifnon-NULL, table must refer-
ence an array ofUCHAR_MAX+ 1 bytes which contains the sort weight of each possible byte value. The
end-of-string byte must have a sort weight of 0 or 255 (for sorting in reverse order). More than one byte may
have the same sort weight.The table argument is useful for applications which wish to sort different char-
acters equally, for example, providing a table with the same weights for A-Z as for a-z will result in a case-
insensitive sort. If table is NULL, the contents of the array are sorted in ascending order according to the
ASCII order of the byte strings they reference andendbyte has a sorting weight of 0.

The sradixsort () function is stable, that is, if two elements compare as equal, their order in the sorted
array is unchanged.The sradixsort () function uses additional memory sufficient to holdnmembpoint-
ers.

Theradixsort () function is not stable, but uses no additional memory.

These functions are variants of most-significant-byte radix sorting; in particular, see D.E. Knuth’s Algorithm
R and section 5.2.5, exercise 10. They take linear time relative to the number of bytes in the strings.

RETURN VALUES
Upon successful completion 0 is returned. Otherwise, −1 is returned and the global variableerrno is set to
indicate the error.

ERRORS
[EINVAL] The value of theendbyte element oftable is not 0 or 255.

Additionally, the sradixsort () function may fail and seterrno for any of the errors specified for the
library routinemalloc (3).

SEE ALSO
sort (1), qsort (3)

Knuth, D.E., "Sorting and Searching",The Art of Computer Programming, Vol. 3, pp. 170-178, 1968.

NetBSD 3.0 January 27, 1994 1

RADIXSORT (3) NetBSDLibrary Functions Manual RADIXSORT (3)

Paige, R., "Three Partition Refinement Algorithms",SIAM J. Comput., No. 6, Vol. 16, 1987.

McIlroy, P., "Computing Systems",Engineering Radix Sort, Vol. 6:1, pp. 5-27, 1993.

HISTORY
Theradixsort () function first appeared in 4.4BSD.

NetBSD 3.0 January 27, 1994 2

RAISE (3) NetBSD Library Functions Manual RAISE (3)

NAME
raise — send a signal to the current process

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
raise (int sig);

DESCRIPTION
Theraise () function sends the signalsig to the current process.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and the global
variableerrno is set to indicate the error.

ERRORS
The raise () function may fail and seterrno for any of the errors specified for the library functions
getpid (2) andkill (2).

SEE ALSO
kill (2)

STANDARDS
Theraise () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

RAISE_DEFAULT_SIGNAL (3) NetBSD Library Functions Manual RAISE_DEFAULT_SIGNAL (3)

NAME
raise_default_signal — raise the default signal handler

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
raise_default_signal (int sig);

DESCRIPTION
The raise_default_signal () function raises the default signal handler for the signalsig . This func-
tion may be used by a user-defined signal handler router to ensure that a parent process receives the correct
notification of a process termination by a signal. This can be used to avoid a common programming mistake
when terminating a process from a customSIGINT or SIGQUIT signal handler.

The operations performed are:

1. Blockall signals, usingsigprocmask (3).

2. Setthe signal handler for signalsig to the default signal handler (SIG_DFL).

3. raise (3) signalsig .

4. Unblocksignalsig to deliver it.

5. Restorethe original signal mask and handler, even if there was a failure.

Seesignal (7) for a table of signals and default actions.

Theraise_default_signal () function should be async-signal-safe.

RETURN VALUES
Upon successful completion, a value of 0 is returned.Otherwise, a value of −1 is returned and the global
variableerrno is set to indicate the error.

ERRORS
The raise_default_signal () function may fail and seterrno for any of the errors specified for the
functionssigemptyset (3), sigfillset (3), sigaddset (3), sigprocmask (2), sigaction (2), or
raise (3).

SEE ALSO
sigaction (2), sigprocmask (2), raise (3), signal (7)

HISTORY
Theraise_default_signal () function first appeared inNetBSD 5.0.

NetBSD 3.0 September 25, 2007 1

RAND (3) NetBSD Library Functions Manual RAND (3)

NAME
rand , srand , rand_r — bad random number generator

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

void
srand (unsigned int seed);

int
rand (void);

int
rand_r (unsigned int ∗seed);

DESCRIPTION
These interfaces are obsoleted byrandom (3).

The rand () function computes a sequence of pseudo-random integers in the range of 0 toRAND_MAX(as
defined by the header file〈stdlib.h 〉).

The srand () function sets its argument as the seed for a new sequence of pseudo-random numbers to be
returned byrand (). Thesesequences are repeatable by callingsrand () with the same seed value.

If no seed value is provided, therand () function is automatically seeded with a value of 1.

The rand_r () function is a reentrant interface torand (); the seed has to be supplied and is maintained by
the caller.

SEE ALSO
random (3), rnd (4)

STANDARDS
The rand () andsrand () functions conform toANSI X3.159-1989 (“ANSI C89”). The rand_r () function
conforms toIEEE Std 1003.1c-1995 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 1

RAND48 (3) NetBSD Library Functions Manual RAND48 (3)

NAME
drand48 , erand48 , lrand48 , nrand48 , mrand48 , jrand48 , srand48 , seed48 , lcong48 —
pseudo-random number generators and initialization routines

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

double
drand48 (void);

double
erand48 (unsigned short xseed[3]);

long
lrand48 (void);

long
nrand48 (unsigned short xseed[3]);

long
mrand48 (void);

long
jrand48 (unsigned short xseed[3]);

void
srand48 (long seed);

unsigned short ∗
seed48 (unsigned short xseed[3]);

void
lcong48 (unsigned short p[7]);

DESCRIPTION
The rand48 () family of functions generates pseudo-random numbers using a linear congruential algorithm
working on integers 48 bits in size. The particular formula employed is r(n+1) = (a∗ r(n) + c) mod m where
the default values are for the multiplicand a = 0x5deece66d = 25214903917 and the addend c = 0xb = 11.
The modulus is always fixed at m = 2∗∗ 48. r(n)is called the seed of the random number generator.

For all the six generator routines described next, the first computational step is to perform a single iteration
of the algorithm.

drand48 () anderand48 () return values of type double. The full 48 bits of r(n+1) are loaded into the
mantissa of the returned value, with the exponent set such that the values produced lie in the interval [0.0,
1.0).

lrand48 () andnrand48 () return values of type long in the range [0, 2∗∗31-1]. Thehigh-order (31) bits
of r(n+1) are loaded into the lower bits of the returned value, with the topmost (sign) bit set to zero.

mrand48 () andjrand48 () return values of type long in the range [-2∗∗31, 2∗∗31-1]. Thehigh-order (32)
bits of r(n+1) are loaded into the returned value.

drand48 (), lrand48 (), andmrand48 () use an internal buffer to store r(n).For these functions the initial
value of r(0) = 0x1234abcd330e = 20017429951246.

NetBSD 3.0 October 8, 1993 1

RAND48 (3) NetBSD Library Functions Manual RAND48 (3)

On the other hand,erand48 (), nrand48 (), and jrand48 () use a user-supplied buffer to store the seed
r(n), which consists of an array of 3 shorts, where the zeroth member holds the least significant bits.

All functions share the same multiplicand and addend.

srand48 () is used to initialize the internal buffer r(n) of drand48 (), lrand48 (), andmrand48 () such
that the 32 bits of the seed value are copied into the upper 32 bits of r(n), with the lower 16 bits of r(n) arbi-
trarily being set to 0x330e.Additionally, the constant multiplicand and addend of the algorithm are reset to
the default values given above.

seed48 () also initializes the internal buffer r(n) ofdrand48 (), lrand48 (), andmrand48 (), but here all
48 bits of the seed can be specified in an array of 3 shorts, where the zeroth member specifies the lowest bits.
Again, the constant multiplicand and addend of the algorithm are reset to the default values given above.
seed48 () returns a pointer to an array of 3 shorts which contains the old seed. This array is statically allo-
cated, thus its contents are lost after each new call to seed48 ().

Finally, lcong48 () allows full control over the multiplicand and addend used indrand48 (), erand48 (),
lrand48 (), nrand48 (), mrand48 (), andjrand48 (), and the seed used indrand48 (), lrand48 (), and
mrand48 (). An array of 7 shorts is passed as parameter; the first three shorts are used to initialize the seed;
the second three are used to initialize the multiplicand; and the last short is used to initialize the addend.It is
thus not possible to use values greater than 0xffff as the addend.

Note that all three methods of seeding the random number generator always also set the multiplicand and
addend for any of the six generator calls.

For a more powerful random number generator, seerandom (3).

SEE ALSO
rand (3), random (3)

AUTHORS
Martin Birgmeier

NetBSD 3.0 October 8, 1993 2

RANDOM (3) NetBSD Library Functions Manual RANDOM (3)

NAME
random , srandom , initstate , setstate — better random number generator; routines for changing
generators

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

long
random (void);

void
srandom (unsigned long seed);

char ∗
initstate (unsigned long seed , char ∗state , size_t n);

char ∗
setstate (char ∗state);

DESCRIPTION
The random () function uses a non-linear additive feedback random number generator employing a default
table of size 31 long integers to return successive pseudo-random numbers in the range from 0 to 231−1. The
period of this random number generator is very large, approximately 16×(231−1). The maximum value
RANDOM_MAXis defined in <stdlib.h >.

The random () and srandom () have (almost) the same calling sequence and initialization properties as
rand (3) andsrand (3). Thedifference is thatrand (3) produces a much less random sequence — in fact,
the low dozen bits generated byrand (3) go through a cyclic pattern. All the bits generated byrandom ()
are usable.For example, ‘random()&01 ’ w ill produce a random binary value.

Like rand (3), random () will by default produce a sequence of numbers that can be duplicated by calling
srandom () with ‘1’ as the seed.

The initstate () routine allows a state array, passed in as an argument, to be initialized for future use.
The size of the state array (in bytes) is used byinitstate () to decide how sophisticated a random number
generator it should use — the more state, the better the random numbers will be.(Current "optimal" values
for the amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will be rounded down to
the nearest known amount.Using less than 8 bytes will cause an error). The seed for the initialization
(which specifies a starting point for the random number sequence, and provides for restarting at the same
point) is also an argument. Thestate array passed toinitstate () must be aligned to a 32-bit boundary.
This can be achieved by using a suitably-sized array of ints, and casting the array to char∗ when passing it to
initstate (). Theinitstate () function returns a pointer to the previous state information array.

Once a state has been initialized, thesetstate () routine provides for rapid switching between states.The
setstate () function returns a pointer to the previous state array; its argument state array is used for further
random number generation until the next call toinitstate () or setstate ().

Once a state array has been initialized, it may be restarted at a different point either by callinginitstate ()
(with the desired seed, the state array, and its size) or by calling bothsetstate () (with the state array) and
srandom () (with the desired seed). The advantage of calling bothsetstate () andsrandom () is that the
size of the state array does not have to be remembered after it is initialized.

NetBSD 3.0 February 28, 2008 1

RANDOM (3) NetBSD Library Functions Manual RANDOM (3)

With 256 bytes of state information, the period of the random number generator is greater than 269, which
should be sufficient for most purposes.

DIAGNOSTICS
If initstate () is called with less than 8 bytes of state information, or ifsetstate () detects that the state
information has been garbled, error messages are printed on the standard error output.

SEE ALSO
rand (3), srand (3), rnd (4), rnd (9)

HISTORY
These functions appeared in 4.2BSD.

AUTHORS
Earl T. Cohen

BUGS
About 2/3 the speed ofrand (3).

NetBSD 3.0 February 28, 2008 2

RANDOMID (3) NetBSD Library Functions Manual RANDOMID (3)

NAME
randomid randomid_new , randomid_delete , — provide pseudo-random data stream without repe-
titions

SYNOPSIS
#include <sys/types.h>
#include <randomid.h>

uint32_t
randomid (randomid_t ctx);

randomid_t
randomid_new (int bits , long timeo);

void
randomid_delete (randomid_t ctx);

DESCRIPTION
The randomid () function provides pseudo-random data stream, which is guaranteed not to generate the
same number twice during a certain duration.ctx is the context which holds internal state for the random
number generator.

To initialize a context, randomid_new is used. bits specifies the bitwidth of the value generated by
randomid (). Currently32, 20, and 16 are supported.timeo specifies the reinitialization interval in sec-
onds. timeo has to be bigger thanRANDOMID_TIMEO_MIN. randomid_new returns a dynamically-
allocated memory region allocated bymalloc (3).

randomid_delete () will free (3) the internal statectx .

The same number may appear after two reinitialization events of the internal state,ctx . Reinitialization
happens when the random number generator cycle is exhausted, ortimeo seconds have passed since the last
reinitialization. For instance,ctx configured to generate 16 bit data stream will reinitialize its internal state
ev ery 30000 calls torandomid () (or aftertimeo seconds) ,therefore the same data will not appear until
after 30000 calls torandomid () (or aftertimeo seconds) .

The internal state,ctx , determines the data stream generated byrandomid (). ctx must be allocated per
data stream(such as a specific data field) . It must not be shared among multiple data streams with different
usage.

EXAMPLES
#include <stdio.h>
#include <sys/types.h>
#include <randomid.h>

uint32_t
genid(void)
{

static randomid_t ctx = NULL;

if (!ctx)
ctx = randomid_new(16, (long)3600);

return randomid(ctx);
}

NetBSD 3.0 January 5, 2006 1

RANDOMID (3) NetBSD Library Functions Manual RANDOMID (3)

ERRORS
randomid_new () returnsNULLon error and sets the external variableerrno.

SEE ALSO
arc4random (3)

HISTORY
The pseudo-random data stream generator was designed by Niels Provos for OpenBSDIPv4 fragment ID gen-
eration. randomid () is a generalized version of the generator, rew orked by Jun-ichiro itojun Hagino, and
was introduced inNetBSD 2.0.

NetBSD 3.0 January 5, 2006 2

RCMD (3) NetBSD Library Functions Manual RCMD (3)

NAME
rcmd , orcmd , rcmd_af , orcmd_af , rresvport , rresvport_af , iruserok , ruserok ,
iruserok_sa — routines for returning a stream to a remote command

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
rcmd (char ∗∗ahost , int inport , const char ∗locuser , const char ∗remuser ,

const char ∗cmd, int ∗fd2p);

int
orcmd (char ∗∗ahost , int inport , const char ∗locuser , const char ∗remuser ,

const char ∗cmd, int ∗fd2p);

int
rcmd_af (char ∗∗ahost , int inport , const char ∗locuser , const char ∗remuser ,

const char ∗cmd, int ∗fd2p , int af);

int
orcmd_af (char ∗∗ahost , int inport , const char ∗locuser , const char ∗remuser ,

const char ∗cmd, int ∗fd2p , int af);

int
rresvport (int ∗port);

int
rresvport_af (int ∗port , int family);

int
iruserok (uint32_t raddr , int superuser , const char ∗ruser ,

const char ∗luser);

int
ruserok (const char ∗rhost , int superuser , const char ∗ruser ,

const char ∗luser);

int
iruserok_sa (const void ∗raddr , int rlen , int superuser , const char ∗ruser ,

const char ∗luser);

DESCRIPTION
The rcmd () function is available for use by anyone to run commands on a remote system. It acts like the
orcmd () command, with the exception that it makes a call out to thercmd (1) command, or any other user-
specified command, to perform the actual connection (thus not requiring that the caller be running as the
super-user), and is only available for the “shell/tcp” port.Theorcmd () function is used by the super-user to
execute a command on a remote machine using an authentication scheme based on reserved port numbers.
While rcmd () and orcmd () can only handle IPv4 address in the first argument, rcmd_af () and
orcmd_af () can handle other cases as well.The rresvport () function returns a descriptor to a socket
with an address in the privileged port space.The rresvport_af () function is similar torresvport (),
but you can explicitly specify the address family to use.Calling rresvport_af () with AF_INET has the
same effect asrresvport (). Theiruserok () andruserok () functions are used by servers to authenti-
cate clients requesting service withrcmd (). All six functions are present in the same file and are used by the

NetBSD 3.0 March 30, 2005 1

RCMD (3) NetBSD Library Functions Manual RCMD (3)

rshd (8) server (among others).iruserok_sa () is an address family independent variant of
iruserok ().

The rcmd () function looks up the host∗ahost usinggethostbyname (3), returning −1 if the host does
not exist. Otherwise∗ahost is set to the standard name of the host and a connection is established to a
server residing at the well-known Internet portinport .

If the connection succeeds, a socket in the Internet domain of typeSOCK_STREAMis returned to the caller,
and given to the remote command asstdin andstdout. If fd2p is non-zero, then an auxiliary channel to a
control process will be set up, and a descriptor for it will be placed in∗fd2p . The control process will
return diagnostic output from the command (unit 2) on this channel, and will also accept bytes on this chan-
nel as beingUNIX signal numbers, to be forwarded to the process group of the command.If fd2p is 0, then
thestderr (unit 2 of the remote command) will be made the same as thestdoutand no provision is made for
sending arbitrary signals to the remote process, although you may be able to get its attention by using out-of-
band data.

rcmd_af () andorcmd_af () take address family in the last argument. Ifthe last argument isPF_UNSPEC,
interpretation of∗ahost will obey the underlying address resolution like DNS.

The protocol is described in detail inrshd (8).

The rresvport () andrresvport_af () functions are used to obtain a socket with a privileged address
bound to it. This socket is suitable for use byrcmd () and several other functions.Privileged Internet ports
are those in the range 0 to 1023. Only the super-user is allowed to bind an address of this sort to a socket.

The iruserok () andruserok () functions take a remote host’s IP address or name, respectively, two user
names and a flag indicating whether the local user’s name is that of the super-user. Then, if the user isNOT
the super-user, it checks the/etc/hosts.equiv file. If that lookup is not done, or is unsuccessful, the
.rhosts in the local user’s home directory is checked to see if the request for service is allowed.

If this file does not exist, is not a regular file, is owned by anyone other than the user or the super-user, or is
writable by anyone other than the owner, the check automatically fails. Zerois returned if the machine name
is listed in the “hosts.equiv ” fi le, or the host and remote user name are found in the “.rhosts ” fi le;
otherwise iruserok () and ruserok () return −1. If the local domain (as obtained from
gethostname (3)) is the same as the remote domain, only the machine name need be specified.

If the IP address of the remote host is known, iruserok () should be used in preference toruserok (), as
it does not require trusting the DNS server for the remote host’s domain.

While iruserok () can handle IPv4 addresses only, iruserok_sa () and ruserok () can handle other
address families as well, like IPv6. Thefirst argument ofiruserok_sa () is typed asvoid ∗ to avoid
dependency between〈unistd.h 〉 and〈sys/socket.h 〉.

ENVIRONMENT
RCMD_CMD When using thercmd () function, this variable is used as the program to run instead of

rcmd (1).

DIAGNOSTICS
Thercmd () function returns a valid socket descriptor on success. It returns −1 on error and prints a diagnos-
tic message on the standard error.

The rresvport () and rresvport_af () function return a valid, bound socket descriptor on success.
They return −1 on error with the global valueerrno set according to the reason for failure. Theerror code
EAGAIN is overloaded to mean ‘‘A ll network ports in use.’’

NetBSD 3.0 March 30, 2005 2

RCMD (3) NetBSD Library Functions Manual RCMD (3)

SEE ALSO
rcmd (1), rlogin (1), rsh (1), intro (2), rexec (3), hosts.equiv (5), rhosts (5), rexecd (8),
rlogind (8), rshd (8)

HISTORY
The orcmd (), rresvport (), iruserok () and ruserok () functions appeared in 4.2BSD, where the
orcmd () function was calledrcmd (). The(newer)rcmd () function appeared inNetBSD 1.3. rcmd_af ()
andrresvport_af () were defined in RFC2292.

NetBSD 3.0 March 30, 2005 3

RE_COMP (3) NetBSD Library Functions Manual RE_COMP (3)

NAME
re_comp , re_exec — regular expression handler

LIBRARY
Compatibility Library (libcompat, −lcompat)

SYNOPSIS
#include <re_comp.h>

char ∗
re_comp (const char ∗s);

int
re_exec (const char ∗s);

DESCRIPTION
This interface is made obsolete byregex (3). I t is available from the compatibility library , libcompat.

The re_comp () function compiles a string into an internal form suitable for pattern matching.The
re_exec () function checks the argument string against the last string passed tore_comp ().

The re_comp () function returns 0 if the strings was compiled successfully; otherwise a string containing
an error message is returned.If re_comp () is passed 0 or a null string, it returns without changing the cur-
rently compiled regular expression.

There_exec () function returns 1 if the strings matches the last compiled regular expression, 0 if the string
s failed to match the last compiled regular expression, and −1 if the compiled regular expression was invalid
(indicating an internal error).

The strings passed to bothre_comp () andre_exec () may have trailing or embedded newline characters;
they are terminated byNULs. Theregular expressions recognized are described in the manual entry for
ed(1), given the above difference.

DIAGNOSTICS
There_exec () function returns −1 for an internal error.

There_comp () function returns one of the following strings if an error occurs:

No previous regular expression,
Regular expression too long,
unmatched \(,
missing],
too many \(\) pairs,
unmatched \).

SEE ALSO
ed(1), egrep (1), ex (1), fgrep (1), grep (1), regex (3)

HISTORY
There_comp () andre_exec () functions appeared in 4.0BSD.

NetBSD 3.0 June 4, 1993 1

READLINE(3) READLINE(3)

NAME
readline − get a line from a user with editing

SYNOPSIS
#include <stdio.h>
#include <readline/readline.h>
#include <readline/history.h>

char *
readline (const char *prompt);

COPYRIGHT
Readline is Copyright © 1989−2004 by the Free Software Foundation, Inc.

DESCRIPTION
readline will read a line from the terminal and return it, usingprompt as a prompt.If prompt is NULL or
the empty string, no prompt is issued.The line returned is allocated withmalloc(3); the caller must free it
when finished. The line returned has the final newline removed, so only the text of the line remains.

readline offers editing capabilities while the user is entering the line.By default, the line editing com-
mands are similar to those of emacs.A vi−style line editing interface is also available.

This manual page describes only the most basic use ofreadline. Much more functionality is available; see
The GNU Readline LibraryandThe GNU History Libraryfor additional information.

RETURN VALUE
readline returns the text of the line read.A blank line returns the empty string.If EOF is encountered
while reading a line, and the line is empty, NULL is returned. If anEOF is read with a non−empty line, it
is treated as a newline.

NOTATION
An emacs-style notation is used to denote keystrokes. Controlkeys are denoted by C−key, e.g., C−n means
Control−N. Similarly, metakeys are denoted by M−key, so M−x means Meta−X. (On keyboards without a
metakey, M−x means ESCx, i.e., press the Escape key then thex key. This makes ESC themeta prefix.
The combination M−C−x means ESC−Control−x, or press the Escape key then hold the Control key while
pressing thex key.)

Readline commands may be given numericarguments, which normally act as a repeat count.Sometimes,
however, it is the sign of the argument that is significant.Passing a negative argument to a command that
acts in the forward direction (e.g.,kill−line) causes that command to act in a backward direction.Com-
mands whose behavior with arguments deviates from this are noted.

When a command is described askilling text, the text deleted is saved for possible future retrieval (yank-
ing). Thekilled text is saved in akill ring. Consecutive kills cause the text to be accumulated into one unit,
which can be yanked all at once. Commands which do not kill text separate the chunks of text on the kill
ring.

INITIALIZATION FILE
Readline is customized by putting commands in an initialization file (theinputrc file). Thename of this file
is taken from the value of theINPUTRC environment variable. If that variable is unset, the default is
˜/.inputrc. When a program which uses the readline library starts up, the init file is read, and the key bind-
ings and variables are set. There are only a few basic constructs allowed in the readline init file.Blank
lines are ignored. Lines beginning with a# are comments. Lines beginning with a$ indicate conditional
constructs. Otherlines denote key bindings and variable settings. Each program using this library may add
its own commands and bindings.

For example, placing

M−Control−u: universal−argument
or

C−Meta−u: universal−argument

GNU Readline 5.1-beta1 2005 Sep 13 1

READLINE(3) READLINE(3)

into theinputrc would make M−C−u execute the readline commanduniversal−argument.

The following symbolic character names are recognized while processing key bindings: DEL, ESC,
ESCAPE, LFD, NEWLINE, RET, RETURN, RUBOUT, SPACE, SPC, andTAB.

In addition to command names, readline allows keys to be bound to a string that is inserted when the key is
pressed (amacro).

Key Bindings
The syntax for controlling key bindings in theinputrc file is simple. All that is required is the name of the
command or the text of a macro and a key sequence to which it should be bound. The name may be speci-
fied in one of two ways: as a symbolic key name, possibly withMeta− or Control− prefixes, or as a key
sequence.

When using the formkeyname: function-nameor macro, keynameis the name of a key spelled out in
English. For example:

Control−u: universal−argument
Meta−Rubout: backward−kill−word
Control−o: "> output"

In the above example,C−u is bound to the functionuniversal−argument, M-DEL is bound to the function
backward−kill−word , and C−o is bound to run the macro expressed on the right hand side (that is, to
insert the text> output into the line).

In the second form,"keyseq" : function−nameor macro, keyseqdiffers fromkeynameabove in that strings
denoting an entire key sequence may be specified by placing the sequence within double quotes.Some
GNU Emacs style key escapes can be used, as in the following example, but the symbolic character names
are not recognized.

"\C−u": universal−argument
"\C−x\C−r": re−read−init−file
"\e[11˜": "Function Key 1"

In this example,C-u is again bound to the functionuniversal−argument. C-x C-r is bound to the function
re−read−init−file, and ESC [1 1 ˜is bound to insert the textFunction Key 1 .

The full set of GNU Emacs style escape sequences available when specifying key sequences is
\C− control prefix
\M− meta prefix
\e an escape character
\\ backslash
\" literal ", a double quote
\’ literal ’, a single quote

In addition to the GNU Emacs style escape sequences, a second set of backslash escapes is available:
\a alert (bell)
\b backspace
\d delete
\f form feed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\nnn the eight-bit character whose value is the octal valuennn(one to three digits)
\xHH the eight-bit character whose value is the hexadecimal valueHH (one or two hex digits)

When entering the text of a macro, single or double quotes should be used to indicate a macro definition.
Unquoted text is assumed to be a function name.In the macro body, the backslash escapes described above
are expanded. Backslashwill quote any other character in the macro text, including " and ’.

GNU Readline 5.1-beta1 2005 Sep 13 2

READLINE(3) READLINE(3)

Bashallows the current readline key bindings to be displayed or modified with thebind builtin command.
The editing mode may be switched during interactive use by using the−o option to theset builtin com-
mand. Otherprograms using this library provide similar mechanisms.The inputrc file may be edited and
re-read if a program does not provide any other means to incorporate new bindings.

Variables
Readline has variables that can be used to further customize its behavior. A variable may be set in theinpu-
trc file with a statement of the form

setvariable−name value

Except where noted, readline variables can take the valuesOn or Off (without regard to case).Unrecog-
nized variable names are ignored. When a variable value is read, empty or null values, "on" (case-insensi-
tive), and "1" are equivalent toOn. All other values are equivalent toOff . The variables and their default
values are:

bell−style (audible)
Controls what happens when readline wants to ring the terminal bell. If set tonone, readline never
rings the bell. If set tovisible, readline uses a visible bell if one is available. If set toaudible,
readline attempts to ring the terminal’s bell.

bind−tty−special−chars (On)
If set toOn, readline attempts to bind the control characters treated specially by the kernel’s termi-
nal driver to their readline equivalents.

comment−begin (‘‘#’’)
The string that is inserted invi mode when theinsert−commentcommand is executed. Thiscom-
mand is bound toM−# in emacs mode and to# in vi command mode.

completion−ignore−case (Off)
If set toOn, readline performs filename matching and completion in a case−insensitive fashion.

completion−query−items (100)
This determines when the user is queried about viewing the number of possible completions gen-
erated by thepossible−completionscommand. Itmay be set to any integer value greater than or
equal to zero.If the number of possible completions is greater than or equal to the value of this
variable, the user is asked whether or not he wishes to view them; otherwise they are simply listed
on the terminal.A neg ative value causes readline to never ask.

convert−meta (On)
If set toOn, readline will convert characters with the eighth bit set to an ASCII key sequence by
stripping the eighth bit and prefixing it with an escape character (in effect, using escape as the
meta prefix).

disable−completion (Off)
If set toOn, readline will inhibit word completion. Completion characters will be inserted into the
line as if they had been mapped toself-insert.

editing−mode (emacs)
Controls whether readline begins with a set of key bindings similar to emacs or vi.editing−mode
can be set to eitheremacsor vi.

enable−keypad (Off)
When set toOn, readline will try to enable the application keypad when it is called. Some sys-
tems need this to enable the arrow keys.

expand−tilde (Off)
If set toon, tilde expansion is performed when readline attempts word completion.

history−preserve−point (Off)
If set to on, the history code attempts to place point at the same location on each history line
retrieved with previous-history or next-history.

horizontal−scroll−mode (Off)
When set toOn, makes readline use a single line for display, scrolling the input horizontally on a
single screen line when it becomes longer than the screen width rather than wrapping to a new
line.

GNU Readline 5.1-beta1 2005 Sep 13 3

READLINE(3) READLINE(3)

input−meta (Off)
If set toOn, readline will enable eight-bit input (that is, it will not clear the eighth bit in the char-
acters it reads), regardless of what the terminal claims it can support. The namemeta−flag is a
synonym for this variable.

isearch−terminators (‘‘C−[C−J’’)
The string of characters that should terminate an incremental search without subsequently execut-
ing the character as a command. If this variable has not been given a value, the charactersESC
andC−J will terminate an incremental search.

keymap (emacs)
Set the current readline keymap. Theset of legal keymap names isemacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and vi-insert. vi is equivalent tovi-command;
emacsis equivalent toemacs-standard. The default value isemacs. The value ofediting−mode
also affects the default keymap.

mark−directories (On)
If set toOn, completed directory names have a slash appended.

mark−modified−lines (Off)
If set toOn, history lines that have been modified are displayed with a preceding asterisk (*).

mark−symlinked−directories (Off)
If set toOn, completed names which are symbolic links to directories have a slash appended (sub-
ject to the value ofmark−directories).

match−hidden−files (On)
This variable, when set toOn, causes readline to match files whose names begin with a ‘.’ (hidden
files) when performing filename completion, unless the leading ‘.’ is supplied by the user in the
filename to be completed.

output−meta (Off)
If set toOn, readline will display characters with the eighth bit set directly rather than as a meta-
prefixed escape sequence.

page−completions (On)
If set toOn, readline uses an internalmore-like pager to display a screenful of possible comple-
tions at a time.

print−completions−horizontally (Off)
If set to On, readline will display completions with matches sorted horizontally in alphabetical
order, rather than down the screen.

show−all−if−ambiguous (Off)
This alters the default behavior of the completion functions.If set toon, words which have more
than one possible completion cause the matches to be listed immediately instead of ringing the
bell.

show−all−if−unmodified (Off)
This alters the default behavior of the completion functions in a fashion similar to
show−all−if−ambiguous. If set to on, words which have more than one possible completion
without any possible partial completion (the possible completions don’t share a common prefix)
cause the matches to be listed immediately instead of ringing the bell.

visible−stats (Off)
If set toOn, a character denoting a file’s type as reported bystat(2) is appended to the filename
when listing possible completions.

Conditional Constructs
Readline implements a facility similar in spirit to the conditional compilation features of the C preprocessor
which allows key bindings and variable settings to be performed as the result of tests.There are four parser
directives used.

$if The$if construct allows bindings to be made based on the editing mode, the terminal being used,
or the application using readline. The text of the test extends to the end of the line; no characters
are required to isolate it.

GNU Readline 5.1-beta1 2005 Sep 13 4

READLINE(3) READLINE(3)

mode The mode= form of the$if directive is used to test whether readline is in emacs or vi
mode. Thismay be used in conjunction with theset keymapcommand, for instance, to
set bindings in theemacs-standardandemacs-ctlxkeymaps only if readline is starting out
in emacs mode.

term The term= form may be used to include terminal-specific key bindings, perhaps to bind
the key sequences output by the terminal’s function keys. Theword on the right side of
the= is tested against the full name of the terminal and the portion of the terminal name
before the first−. This allowssunto match bothsunandsun−cmd, for instance.

application
Theapplication construct is used to include application-specific settings. Each program
using the readline library sets theapplication name, and an initialization file can test for a
particular value. Thiscould be used to bind key sequences to functions useful for a spe-
cific program. For instance, the following command adds a key sequence that quotes the
current or previous word in Bash:

$if Bash
Quote the current or previous word
"\C-xq": "\eb\"\ef\""
$endif

$endif This command, as seen in the previous example, terminates an$if command.

$else Commands in this branch of the$if directive are executed if the test fails.

$include
This directive takes a single filename as an argument and reads commands and bindings from that
file. For example, the following directive would read/etc/inputrc:

$include /etc/inputrc

SEARCHING
Readline provides commands for searching through the command history for lines containing a specified
string. Thereare two search modes:incrementalandnon-incremental.

Incremental searches begin before the user has finished typing the search string.As each character of the
search string is typed, readline displays the next entry from the history matching the string typed so far. An
incremental search requires only as many characters as needed to find the desired history entry. To search
backward in the history for a particular string, typeC−r . Typing C−s searches forward through the history.
The characters present in the value of theisearch-terminators variable are used to terminate an incremen-
tal search. If that variable has not been assigned a value theEscapeandC−J characters will terminate an
incremental search.C−G will abort an incremental search and restore the original line.When the search is
terminated, the history entry containing the search string becomes the current line.

To find other matching entries in the history list, typeC−s or C−r as appropriate.This will search back-
ward or forward in the history for the next line matching the search string typed so far. Any other key
sequence bound to a readline command will terminate the search and execute that command.For instance,
a newline will terminate the search and accept the line, thereby executing the command from the history
list. A movement command will terminate the search, make the last line found the current line, and begin
editing.

Non-incremental searches read the entire search string before starting to search for matching history lines.
The search string may be typed by the user or be part of the contents of the current line.

EDITING COMMANDS
The following is a list of the names of the commands and the default key sequences to which they are
bound. Commandnames without an accompanying key sequence are unbound by default.

In the following descriptions,point refers to the current cursor position, andmarkrefers to a cursor position
saved by theset−mark command. Thetext between the point and mark is referred to as theregion.

GNU Readline 5.1-beta1 2005 Sep 13 5

READLINE(3) READLINE(3)

Commands for Moving
beginning−of−line (C−a)

Move to the start of the current line.
end−of−line (C−e)

Move to the end of the line.
forward−char (C−f)

Move forward a character.
backward−char (C−b)

Move back a character.
forward−word (M−f)

Move forward to the end of the next word. Words are composed of alphanumeric characters (let-
ters and digits).

backward−word (M−b)
Move back to the start of the current or previous word. Words are composed of alphanumeric
characters (letters and digits).

clear−screen (C−l)
Clear the screen leaving the current line at the top of the screen.With an argument, refresh the
current line without clearing the screen.

redraw−current−line
Refresh the current line.

Commands for Manipulating the History
accept−line (Newline, Return)

Accept the line regardless of where the cursor is. If this line is non-empty, it may be added to the
history list for future recall withadd_history(). If the line is a modified history line, the history
line is restored to its original state.

previous−history (C−p)
Fetch the previous command from the history list, moving back in the list.

next−history (C−n)
Fetch the next command from the history list, moving forward in the list.

beginning−of−history (M−<)
Move to the first line in the history.

end−of−history (M−>)
Move to the end of the input history, i.e., the line currently being entered.

re verse−search−history (C−r)
Search backward starting at the current line and moving ‘up’ through the history as necessary.
This is an incremental search.

forward−search−history (C−s)
Search forward starting at the current line and moving ‘down’ through the history as necessary.
This is an incremental search.

non−incremental−rev erse−search−history (M−p)
Search backward through the history starting at the current line using a non-incremental search for
a string supplied by the user.

non−incremental−forward−search−history (M−n)
Search forward through the history using a non-incremental search for a string supplied by the
user.

history−search−forward
Search forward through the history for the string of characters between the start of the current line
and the current cursor position (thepoint). Thisis a non-incremental search.

history−search−backward
Search backward through the history for the string of characters between the start of the current
line and the point. This is a non-incremental search.

yank−nth−arg (M−C−y)
Insert the first argument to the previous command (usually the second word on the previous line)
at point. With an argumentn, insert thenth word from the previous command (the words in the

GNU Readline 5.1-beta1 2005 Sep 13 6

READLINE(3) READLINE(3)

previous command begin with word 0). A neg ative argument inserts thenth word from the end of
the previous command. Once the argumentn is computed, the argument is extracted as if the "!n"
history expansion had been specified.

yank−last−arg (M−. , M−_)
Insert the last argument to the previous command (the last word of the previous history entry).
With an argument, behave exactly like yank−nth−arg. Successive calls toyank−last−arg move
back through the history list, inserting the last argument of each line in turn. The history expan-
sion facilities are used to extract the last argument, as if the "!$" history expansion had been speci-
fied.

Commands for Changing Text
delete−char (C−d)

Delete the character at point. If point is at the beginning of the line, there are no characters in the
line, and the last character typed was not bound todelete−char, then returnEOF.

backward−delete−char (Rubout)
Delete the character behind the cursor. When given a numeric argument, save the deleted text on
the kill ring.

forward−backward−delete−char
Delete the character under the cursor, unless the cursor is at the end of the line, in which case the
character behind the cursor is deleted.

quoted−insert (C−q, C−v)
Add the next character that you type to the line verbatim. Thisis how to insert characters like
C−q, for example.

tab−insert (M-TAB)
Insert a tab character.

self−insert (a, b, A, 1, !, ...)
Insert the character typed.

transpose−chars (C−t)
Drag the character before point forward over the character at point, moving point forward as well.
If point is at the end of the line, then this transposes the two characters before point.Negative
arguments have no effect.

transpose−words (M−t)
Drag the word before point past the word after point, moving point over that word as well. If point
is at the end of the line, this transposes the last two words on the line.

upcase−word (M−u)
Uppercase the current (or following) word. With a negative argument, uppercase the previous
word, but do not move point.

downcase−word (M−l)
Lowercase the current (or following) word. With a negative argument, lowercase the previous
word, but do not move point.

capitalize−word (M−c)
Capitalize the current (or following) word. With a negative argument, capitalize the previous
word, but do not move point.

overwrite−mode
Toggle overwrite mode. With an explicit positive numeric argument, switches to overwrite mode.
With an explicit non-positive numeric argument, switches to insert mode. This command affects
only emacsmode; vi mode does overwrite differently. Each call toreadline() starts in insert
mode. Inoverwrite mode, characters bound toself−insert replace the text at point rather than
pushing the text to the right.Characters bound tobackward−delete−charreplace the character
before point with a space. By default, this command is unbound.

Killing and Yanking
kill−line (C−k)

Kill the text from point to the end of the line.

GNU Readline 5.1-beta1 2005 Sep 13 7

READLINE(3) READLINE(3)

backward−kill−line (C−x Rubout)
Kill backward to the beginning of the line.

unix−line−discard (C−u)
Kill backward from point to the beginning of the line. The killed text is saved on the kill-ring.

kill−whole−line
Kill all characters on the current line, no matter where point is.

kill−word (M−d)
Kill from point the end of the current word, or if between words, to the end of the next word.
Word boundaries are the same as those used byforward−word .

backward−kill−word (M−Rubout)
Kill the word behind point.Word boundaries are the same as those used bybackward−word.

unix−word−rubout (C−w)
Kill the word behind point, using white space as a word boundary. The killed text is saved on the
kill-ring.

unix−filename−rubout
Kill the word behind point, using white space and the slash character as the word boundaries.The
killed text is saved on the kill-ring.

delete−horizontal−space (M−\)
Delete all spaces and tabs around point.

kill−region
Kill the text between the point andmark (saved cursor position). This text is referred to as the
region.

copy−region−as−kill
Copy the text in the region to the kill buffer.

copy−backward−word
Copy the word before point to the kill buffer. The word boundaries are the same asback-
ward−word .

copy−forward−word
Copy the word following point to the kill buffer. The word boundaries are the same asfor-
ward−word .

yank (C−y)
Yank the top of the kill ring into the buffer at point.

yank−pop (M−y)
Rotate the kill ring, and yank the new top. Onlyworks followingyank or yank−pop.

Numeric Arguments
digit−argument (M−0, M−1, ..., M−−)

Add this digit to the argument already accumulating, or start a new argument. M−−starts a neg-
ative argument.

universal−argument
This is another way to specify an argument. Ifthis command is followed by one or more digits,
optionally with a leading minus sign, those digits define the argument. If the command is fol-
lowed by digits, executing universal−argument again ends the numeric argument, but is other-
wise ignored. As a special case, if this command is immediately followed by a character that is
neither a digit or minus sign, the argument count for the next command is multiplied by four. The
argument count is initially one, so executing this function the first time makes the argument count
four, a second time makes the argument count sixteen, and so on.

Completing
complete (TAB)

Attempt to perform completion on the text before point. The actual completion performed is
application-specific.Bash, for instance, attempts completion treating the text as a variable (if the
text begins with$), username (if the text begins with˜), hostname (if the text begins with@), or
command (including aliases and functions) in turn.If none of these produces a match, filename
completion is attempted.Gdb, on the other hand, allows completion of program functions and
variables, and only attempts filename completion under certain circumstances.

GNU Readline 5.1-beta1 2005 Sep 13 8

READLINE(3) READLINE(3)

possible−completions (M−?)
List the possible completions of the text before point.

insert−completions (M−*)
Insert all completions of the text before point that would have been generated bypossible−com-
pletions.

menu−complete
Similar to complete, but replaces the word to be completed with a single match from the list of
possible completions. Repeated execution of menu−completesteps through the list of possible
completions, inserting each match in turn.At the end of the list of completions, the bell is rung
(subject to the setting ofbell−style) and the original text is restored. An argument ofn moves n
positions forward in the list of matches; a negative argument may be used to move backward
through the list. This command is intended to be bound toTAB, but is unbound by default.

delete−char−or−list
Deletes the character under the cursor if not at the beginning or end of the line (like delete-char).
If at the end of the line, behaves identically topossible-completions.

Keyboard Macros
start−kbd−macro (C−x ()

Begin saving the characters typed into the current keyboard macro.
end−kbd−macro (C−x))

Stop saving the characters typed into the current keyboard macro and store the definition.
call−last−kbd−macro (C−x e)

Re-execute the last keyboard macro defined, by making the characters in the macro appear as if
typed at the keyboard.

Miscellaneous
re−read−init−file (C−x C−r)

Read in the contents of theinputrc file, and incorporate any bindings or variable assignments
found there.

abort (C−g)
Abort the current editing command and ring the terminal’s bell (subject to the setting of
bell−style).

do−uppercase−version (M−a, M−b, M−x, ...)
If the metafied characterx is lowercase, run the command that is bound to the corresponding
uppercase character.

prefix−meta (ESC)
Metafy the next character typed.ESC f is equivalent toMeta−f.

undo (C−_, C−x C−u)
Incremental undo, separately remembered for each line.

re vert−line (M−r)
Undo all changes made to this line. This is like executing theundo command enough times to
return the line to its initial state.

tilde−expand (M−&)
Perform tilde expansion on the current word.

set−mark (C−@, M−<space>)
Set the mark to the point. If a numeric argument is supplied, the mark is set to that position.

exchange−point−and−mark (C−x C−x)
Swap the point with the mark.The current cursor position is set to the saved position, and the old
cursor position is saved as the mark.

character−search (C−])
A character is read and point is moved to the next occurrence of that character. A negative count
searches for previous occurrences.

character−search−backward (M−C−])
A character is read and point is moved to the previous occurrence of that character. A negative
count searches for subsequent occurrences.

GNU Readline 5.1-beta1 2005 Sep 13 9

READLINE(3) READLINE(3)

insert−comment (M−#)
Without a numeric argument, the value of the readlinecomment−beginvariable is inserted at the
beginning of the current line.If a numeric argument is supplied, this command acts as a toggle:if
the characters at the beginning of the line do not match the value ofcomment−begin, the value is
inserted, otherwise the characters incomment-beginare deleted from the beginning of the line.
In either case, the line is accepted as if a newline had been typed. The default value ofcom-
ment−beginmakes the current line a shell comment. If a numeric argument causes the comment
character to be removed, the line will be executed by the shell.

dump−functions
Print all of the functions and their key bindings to the readline output stream. If a numeric argu-
ment is supplied, the output is formatted in such a way that it can be made part of aninputrcfile.

dump−variables
Print all of the settable variables and their values to the readline output stream. If a numeric argu-
ment is supplied, the output is formatted in such a way that it can be made part of aninputrcfile.

dump−macros
Print all of the readline key sequences bound to macros and the strings they output. If a numeric
argument is supplied, the output is formatted in such a way that it can be made part of aninputrc
file.

emacs−editing−mode (C−e)
When invi command mode, this causes a switch toemacsediting mode.

vi−editing−mode (M−C−j)
When inemacsediting mode, this causes a switch tovi editing mode.

DEFAULT K EY BINDINGS
The following is a list of the default emacs and vi bindings.Characters with the eighth bit set are written as
M−<character>, and are referred to asmetafiedcharacters. Theprintable ASCII characters not mentioned
in the list of emacs standard bindings are bound to theself−insert function, which just inserts the given
character into the input line. In vi insertion mode, all characters not specifically mentioned are bound to
self−insert. Characters assigned to signal generation bystty(1) or the terminal driver, such as C-Z or C-C,
retain that function. Upper and lower case metafied characters are bound to the same function in the emacs
mode meta keymap. Theremaining characters are unbound, which causes readline to ring the bell (subject
to the setting of thebell−stylevariable).

Emacs Mode
Emacs Standard bindings

"C-@" set-mark
"C-A" beginning-of-line
"C-B" backward-char
"C-D" delete-char
"C-E" end-of-line
"C-F" forward-char
"C-G" abort
"C-H" backward-delete-char
"C-I" complete
"C-J" accept-line
"C-K" kill-line
"C-L" clear-screen
"C-M" accept-line
"C-N" next-history
"C-P" previous-history
"C-Q" quoted-insert
"C-R" reverse-search-history
"C-S" forward-search-history
"C-T" transpose-chars
"C-U" unix-line-discard

GNU Readline 5.1-beta1 2005 Sep 13 10

READLINE(3) READLINE(3)

"C-V" quoted-insert
"C-W" unix-word-rubout
"C-Y" yank
"C-]" character-search
"C-_" undo
" " to "/" self-insert
"0" to "9" self-insert
":" to "˜" self-insert
"C-?" backward-delete-char

Emacs Meta bindings

"M-C-G" abort
"M-C-H" backward-kill-word
"M-C-I" tab-insert
"M-C-J" vi-editing-mode
"M-C-M" vi-editing-mode
"M-C-R" revert-line
"M-C-Y" yank-nth-arg
"M-C-[" complete
"M-C-]" character-search-backward
"M-space" set-mark
"M-#" insert-comment
"M-&" tilde-expand
"M-*" insert-completions
"M--" digit-argument
"M-." yank-last-arg
"M-0" digit-argument
"M-1" digit-argument
"M-2" digit-argument
"M-3" digit-argument
"M-4" digit-argument
"M-5" digit-argument
"M-6" digit-argument
"M-7" digit-argument
"M-8" digit-argument
"M-9" digit-argument
"M-<" beginning-of-history
"M-=" possible-completions
"M->" end-of-history
"M-?" possible-completions
"M-B" backward-word
"M-C" capitalize-word
"M-D" kill-w ord
"M-F" forward-word
"M-L" downcase-word
"M-N" non-incremental-forward-search-history
"M-P" non-incremental-reverse-search-history
"M-R" revert-line
"M-T" transpose-words
"M-U" upcase-word
"M-Y" yank-pop
"M-\" delete-horizontal-space
"M-˜" tilde-expand
"M-C-?" backward-kill-word

GNU Readline 5.1-beta1 2005 Sep 13 11

READLINE(3) READLINE(3)

"M-_" yank-last-arg

Emacs Control-X bindings

"C-XC-G" abort
"C-XC-R" re-read-init-file
"C-XC-U" undo
"C-XC-X" exchange-point-and-mark
"C-X(" start-kbd-macro
"C-X)" end-kbd-macro
"C-XE" call-last-kbd-macro
"C-XC-?" backward-kill-line

VI Mode bindings
VI Insert Mode functions

"C-D" vi-eof-maybe
"C-H" backward-delete-char
"C-I" complete
"C-J" accept-line
"C-M" accept-line
"C-R" reverse-search-history
"C-S" forward-search-history
"C-T" transpose-chars
"C-U" unix-line-discard
"C-V" quoted-insert
"C-W" unix-word-rubout
"C-Y" yank
"C-[" vi-movement-mode
"C-_" undo
" " to "˜" self-insert
"C-?" backward-delete-char

VI Command Mode functions

"C-D" vi-eof-maybe
"C-E" emacs-editing-mode
"C-G" abort
"C-H" backward-char
"C-J" accept-line
"C-K" kill-line
"C-L" clear-screen
"C-M" accept-line
"C-N" next-history
"C-P" previous-history
"C-Q" quoted-insert
"C-R" reverse-search-history
"C-S" forward-search-history
"C-T" transpose-chars
"C-U" unix-line-discard
"C-V" quoted-insert
"C-W" unix-word-rubout
"C-Y" yank
"C-_" vi-undo
" " f orward-char

GNU Readline 5.1-beta1 2005 Sep 13 12

READLINE(3) READLINE(3)

"#" insert-comment
"$" end-of-line
"%" vi-match
"&" vi-tilde-expand
"*" vi-complete
"+" next-history
"," vi-char-search
"-" previous-history
"." vi-redo
"/" vi-search
"0" beginning-of-line
"1" to "9" vi-arg-digit
";" vi-char-search
"=" vi-complete
"?" vi-search
"A" vi-append-eol
"B" vi-prev-word
"C" vi-change-to
"D" vi-delete-to
"E" vi-end-word
"F" vi-char-search
"G" vi-fetch-history
"I" vi-insert-beg
"N" vi-search-again
"P" vi-put
"R" vi-replace
"S" vi-subst
"T" vi-char-search
"U" revert-line
"W" vi-next-word
"X" backward-delete-char
"Y" vi-yank-to
"\" vi-complete
"ˆ" vi-first-print
"_" vi-yank-arg
"‘" vi-goto-mark
"a" vi-append-mode
"b" vi-prev-word
"c" vi-change-to
"d" vi-delete-to
"e" vi-end-word
"f" vi-char-search
"h" backward-char
"i" vi-insertion-mode
"j" next-history
"k" prev-history
"l" forward-char
"m" vi-set-mark
"n" vi-search-again
"p" vi-put
"r" vi-change-char
"s" vi-subst
"t" vi-char-search
"u" vi-undo

GNU Readline 5.1-beta1 2005 Sep 13 13

READLINE(3) READLINE(3)

"w" vi-next-word
"x" vi-delete
"y" vi-yank-to
"|" vi-column
"˜" vi-change-case

SEE ALSO
The Gnu Readline Library, Brian Fox and Chet Ramey
The Gnu History Library, Brian Fox and Chet Ramey
bash(1)

FILES
˜/.inputrc

Individual readline initialization file

AUTHORS
Brian Fox, Free Software Foundation
bfox@gnu.org

Chet Ramey, Case Western Reserve University
chet@ins.CWRU.Edu

BUG REPORTS
If you find a bug inreadline, you should report it.But first, you should make sure that it really is a bug,
and that it appears in the latest version of thereadline library that you have.

Once you have determined that a bug actually exists, mail a bug report tobug−readline@gnu.org. If you
have a fix, you are welcome to mail that as well!Suggestions and ‘philosophical’ bug reports may be
mailed tobug-readline@gnu.orgor posted to the Usenet newsgroupgnu.bash.bug.

Comments and bug reports concerning this manual page should be directed tochet@ins.CWRU.Edu.

BUGS
It’s too big and too slow.

GNU Readline 5.1-beta1 2005 Sep 13 14

READPASSPHRASE (3) NetBSD Library Functions Manual READPASSPHRASE (3)

NAME
readpassphrase — get a passphrase from the user

SYNOPSIS
#include <readpassphrase.h>

char ∗
readpassphrase (const char ∗prompt , char ∗buf , size_t bufsiz , int flags);

DESCRIPTION
The readpassphrase () function displays a prompt to, and reads in a passphrase from,/dev/tty . If
this file is inaccessible and theRPP_REQUIRE_TTYflag is not set,readpassphrase () displays the
prompt on the standard error output and reads from the standard input.In this case it is generally not possi-
ble to turn off echo.

Up to bufsiz - 1 characters (one is for the NUL) are read into the provided buffer buf . Any additional
characters and the terminating newline (or return) character are discarded.

readpassphrase () takes the following optionalflags :

RPP_ECHO_OFF turn off echo (default behavior)
RPP_ECHO_ON leave echo on
RPP_REQUIRE_TTY fail if there is no tty
RPP_FORCELOWER force input to lower case
RPP_FORCEUPPER force input to upper case
RPP_SEVENBIT strip the high bit from input

The calling process should zero the passphrase as soon as possible to avoid leaving the cleartext passphrase
visible in the process’s address space.

RETURN VALUES
On success,readpassphrase () returns a pointer to the null-terminated passphrase.If the
RPP_REQUIRE_TTYflag is set and/dev/tty is inaccessible,readpassphrase () returns a null
pointer.

FILES
/dev/tty

EXAMPLES
The following code fragment will read a passphrase from/dev/tty into the bufferpassbuf .

char passbuf[1024];

...

if (readpassphrase("Response: ", passbuf, sizeof(passbuf),
RPP_REQUIRE_TTY) == NULL)

errx(1, "unable to read passphrase");

if (compare(transform(passbuf), epass) != 0)
errx(1, "bad passphrase");

...

memset(passbuf, 0, sizeof(passbuf));

NetBSD 3.0 November 20, 2000 1

READPASSPHRASE (3) NetBSD Library Functions Manual READPASSPHRASE (3)

SEE ALSO
getpass (3)

HISTORY
Thereadpassphrase () function first appeared inOpenBSD2.9.

NetBSD 3.0 November 20, 2000 2

REALPATH (3) NetBSDLibrary Functions Manual REALPATH (3)

NAME
realpath — returns the canonicalized absolute pathname

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/param.h>
#include <stdlib.h>

char ∗
realpath (const char ∗pathname , char resolvedname[MAXPATHLEN]);

DESCRIPTION
The realpath () function resolves all symbolic links, extra “/” characters and references to/./ and/../
in pathname , and copies the resulting absolute pathname into the memory referenced byresolvedname .
Theresolvedname argumentmustrefer to a buffer capable of storing at leastMAXPATHLENcharacters.

The realpath () function will resolve both absolute and relative paths and return the absolute pathname
corresponding topathname .

RETURN VALUES
The realpath () function returnsresolvedname on success. If an error occurs,realpath () returns
NULL, and resolvedname contains the pathname which caused the problem.

ERRORS
The functionrealpath () may fail and set the external variableerrno for any of the errors specified for the
library functionschdir (2), close (2), fchdir (2), lstat (2), open (2), readlink (2) andgetcwd (3).

SEE ALSO
getcwd (3)

HISTORY
Therealpath () function call first appeared in 4.4BSD.

BUGS
This implementation ofrealpath () differs slightly from the Solaris implementation.The 4.4BSD version
always returns absolute pathnames, whereas the Solaris implementation will, under certain circumstances,
return a relative resolvedname when given a relativepathname .

NetBSD 3.0 August 13, 2005 1

RECNO (3) NetBSD Library Functions Manual RECNO (3)

NAME
recno — record number database access method

SYNOPSIS
#include <sys/types.h>
#include <db.h>

DESCRIPTION
The routinedbopen () is the library interface to database files. One of the supported file formats is record
number files. The general description of the database access methods is indbopen (3), this manual page
describes only the recno specific information.

The record number data structure is either variable or fixed-length records stored in a flat-file format,
accessed by the logical record number. The existence of record number five implies the existence of records
one through four, and the deletion of record number one causes record number five to be renumbered to
record number four, as well as the cursor, if positioned after record number one, to shift down one record.

The recno access method specific data structure provided todbopen () is defined in the〈db.h 〉 include file
as follows:

typedef struct {
u_long flags;
u_int cachesize;
u_int psize;
int lorder;
size_t reclen;
u_char bval;
char ∗bfname;

} R ECNOINFO;

The elements of this structure are defined as follows:

flags The flag value is specified by or’ing any of the following values:

R_FIXEDLEN The records are fixed-length, not byte delimited. The structure ele-
ment reclen specifies the length of the record, and the structure
elementbval is used as the pad character. Any records, inserted
into the database, that are less thanreclen bytes long are auto-
matically padded.

R_NOKEY In the interface specified bydbopen (), the sequential record
retrieval fi lls in both the caller’s key and data structures. If the
R_NOKEYflag is specified, the cursor routines are not required to
fill in the key structure. Thispermits applications to retrieve
records at the end of files without reading all of the intervening
records.

R_SNAPSHOT This flag requires that a snapshot of the file be taken when
dbopen () is called, instead of permitting any unmodified records
to be read from the original file.

cachesize A suggested maximum size, in bytes, of the memory cache. This value isonly advisory, and
the access method will allocate more memory rather than fail. If cachesize is 0 (no size
is specified) a default cache is used.

NetBSD 3.0 April 17, 2003 1

RECNO (3) NetBSD Library Functions Manual RECNO (3)

psize The recno access method stores the in-memory copies of its records in a btree.This value is
the size (in bytes) of the pages used for nodes in that tree.If psize is 0 (no page size is
specified) a page size is chosen based on the underlying file system I/O block size.See
btree (3) for more information.

lorder The byte order for integers in the stored database metadata. The number should represent
the order as an integer; for example, big endian order would be the number 4,321.If
lorder is 0 (no order is specified) the current host order is used.

reclen The length of a fixed-length record.

bval The delimiting byte to be used to mark the end of a record for variable-length records, and
the pad character for fixed-length records. If no value is specified, newlines (“\n”) are used
to mark the end of variable-length records and fixed-length records are padded with spaces.

bfname The recno access method stores the in-memory copies of its records in a btree. If bfname is
non-NULL, it specifies the name of the btree file, as if specified as the file name for a
dbopen () of a btree file.

The data part of the key/data pair used by the recno access method is the same as other access methods.The
key is different. Thedata field of the key should be a pointer to a memory location of type recno_t, as
defined in the〈db.h 〉 include file. This type is normally the largest unsigned integral type available to the
implementation. Thesize field of the key should be the size of that type.

Because there can be no meta-data associated with the underlying recno access method files, any changes
made to the default values (e.g., fixed record length or byte separator value) must be explicitly specified each
time the file is opened.

In the interface specified bydbopen (), using theput interface to create a new record will cause the cre-
ation of multiple, empty records if the record number is more than one greater than the largest record cur-
rently in the database.

ERRORS
The recno access method routines may fail and seterrno for any of the errors specified for the library rou-
tinedbopen (3) or the following:

EINVAL An attempt was made to add a record to a fixed-length database that was too large to
fit.

SEE ALSO
btree (3), dbopen (3), hash (3), mpool (3)

Michael Stonebraker, Heidi Stettner, Joseph Kalash, Antonin Guttman, and Nadene Lynn, "Document
Processing in a Relational Database System",Memorandum No. UCB/ERL M82/32, May 1982.

BUGS
Only big and little endian byte order is supported.

NetBSD 3.0 April 17, 2003 2

REFUSE (3) NetBSD Library Functions Manual REFUSE (3)

NAME
refuse — Re-implementation of a file system in userspace system

LIBRARY
library “librefuse”

SYNOPSIS
#include <fuse.h>

int
fuse_main (int argc , char ∗∗argv , const struct fuse_operations ∗);

int
fuse_opt_add_arg (struct fuse_args ∗args , const char ∗arg);

int
fuse_opt_parse (struct fuse_args ∗args , void ∗userdata ,

const struct fuse_opt ∗descriptions , fuse_opt_proc_t processingfunc);

int
fuse_teardown (struct fuse ∗fuse , char ∗mountpoint);

struct fuse ∗
fuse_setup (int argc , char ∗∗argv , const struct fuse_operations ∗ops ,

size_t opssize , char ∗∗mountpoint , int ∗multithreaded , int ∗fd);

int
puffs_fuse_node_getattr (const char ∗path , struct stat ∗attrs);

int
puffs_fuse_node_readlink (const char ∗path , char ∗output , size_t outlen);

int
puffs_fuse_node_mknod (const char ∗path , mode_t permissions ,

dev_t devicenumber);

int
puffs_fuse_node_mkdir (const char ∗path , mode_t permissions);

int
puffs_fuse_unlink (const char ∗path);

int
puffs_fuse_node_rmdir (const char ∗path);

int
puffs_fuse_node_symlink (const char ∗path , const char ∗target);

int
puffs_fuse_node_rename (const char ∗from , const char ∗to);

int
puffs_fuse_node_link (const char ∗from , const char ∗to);

int
puffs_fuse_node_chmod (const char ∗path , mode_t permissions);

int
puffs_fuse_node_own (const char ∗path , uid_t owner , gid_t group);

NetBSD 3.0 April 30, 2007 1

REFUSE (3) NetBSD Library Functions Manual REFUSE (3)

int
puffs_fuse_node_truncate (const char ∗path , off_t newsize);

int
puffs_fuse_node_utime (const char ∗path , struct utimbuf ∗newtimes);

int
puffs_fuse_node_open (const char ∗path , struct fuse_file_info ∗fileinfo);

int
puffs_fuse_node_read (const char ∗path , char ∗buffer , size_t bufferlen ,

off_t startoffset , struct fuse_file_info ∗fileinfo);

int
puffs_fuse_node_write (const char ∗path , char ∗buffer , size_t bufferlen ,

off_t startoffset , struct fuse_file_info ∗fileinfo);

int
puffs_fuse_fs_statfs (const char ∗path , struct statvfs ∗vfsinfo);

int
puffs_fuse_node_flush (const char ∗path , struct fuse_file_info ∗fileinfo);

int
puffs_fuse_node_fsync (const char ∗path , int flags ,

struct fuse_file_info ∗fileinfo);

int
puffs_fuse_node_setxattr (const char ∗path , const char ∗attrname ,

const char ∗attrvalue , size_t attrsize , int flags);

int
puffs_fuse_node_getxattr (const char ∗path , const char ∗attrname ,

const char ∗attrvalue , size_t attrvaluesize);

int
puffs_fuse_node_listxattr (const char ∗path , const char ∗attrname ,

size_t attrvaluesize);

int
puffs_fuse_node_removexattr (const char ∗path , const char ∗attrname);

int
puffs_fuse_node_opendir (const char ∗path , struct fuse_file_info ∗fileinfo);

int
puffs_fuse_node_readdir (const char ∗path , void ∗data ,

fuse_fill_dir_t fillinfo , off_t offset ,
struct fuse_file_info ∗fileinfo);

int
puffs_fuse_node_releasedir (const char ∗path ,

struct fuse_file_info ∗fileinfo);

int
puffs_fuse_node_fsyncdir (const char ∗path , int flags ,

struct fuse_file_info ∗fileinfo);

NetBSD 3.0 April 30, 2007 2

REFUSE (3) NetBSD Library Functions Manual REFUSE (3)

void ∗
puffs_fuse_fs_init (struct fuse_conn_info ∗connectioninfo);

void
puffs_fuse_node_destroy (void ∗connection);

int
puffs_fuse_node_access (const char ∗path , int accesstype);

int
puffs_fuse_node_create (const char ∗path , mode_t permissions ,

struct fuse_file_info ∗fileinfo);

int
puffs_fuse_node_ftruncate (const char ∗path , off_t offset ,

struct fuse_file_info ∗fileinfo);

int
puffs_fuse_node_fgetattr (const char ∗path , struct stat ∗attrs ,

struct fuse_file_info ∗fileinfo);

int
puffs_fuse_node_lock (const char ∗path , struct fuse_file_info ∗fileinfo ,

int locktype , struct flock ∗lockinfo);

int
puffs_fuse_node_utimens (const char ∗path , const struct timespec ∗newtimes);

int
puffs_fuse_node_bmap (const char ∗path , size_t mapsize , uint64_t offset);

DESCRIPTION
refuse is a reimplementation of the file system in user space subsystem. Operations are transported from
the kernel virtual file system layer to the concrete implementation behindrefuse , where they are processed
and results are sent back to the kernel.

It uses the framework provided by thepuffs (3) subsystem, and, through that, the kernel interface provided
by puffs (4).

SEE ALSO
puffs (3), puffs (4)

Antti Kantee and Alistair Crooks, "ReFUSE: Userspace FUSE Reimplementation Using puffs",
EuroBSDCon 2007, September 2007.

HISTORY
An unsupported experimental version ofrefuse first appeared inNetBSD 5.0.

AUTHORS
Alistair Crooks〈agc@NetBSD.org〉,
Antti Kantee〈pooka@NetBSD.org〉

BUGS
Many, legion, but well-loved.

NetBSD 3.0 April 30, 2007 3

REGEX(3) REGEX(3)

NAME
regcomp, regexec, regerror, regfree − regular-expression library

SYNOPSIS
#include <sys/types.h>
#include <regex.h>

int regcomp(regex_t *preg, const char *pattern, int cflags);

int regexec(const regex_t *preg, const char *string, size_t nmatch, regmatch_t pmatch[], int eflags);

size_t regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size);

void regfree(regex_t *preg);

DESCRIPTION
These routines implement POSIX 1003.2 regular expressions (‘‘RE’’s); seere_format(7). Regcompcom-
piles an RE written as a string into an internal form,regexecmatches that internal form against a string and
reports results,regerror transforms error codes from either into human-readable messages, andregfreefrees
any dynamically-allocated storage used by the internal form of an RE.

The header<reg ex.h> declares two structure types,regex_t andregmatch_t, the former for compiled inter-
nal forms and the latter for match reporting.It also declares the four functions, a typeregoff_t, and a num-
ber of constants with names starting with ‘‘REG_’’.

Regcompcompiles the regular expression contained in thepatternstring, subject to the flags incflags, and
places the results in theregex_t structure pointed to bypreg. Cflagsis the bitwise OR of zero or more of
the following flags:

REG_EXTENDED Compilemodern (‘‘extended’’) REs, rather than the obsolete (‘‘basic’’) REs that are
the default.

REG_BASIC This is a synonym for 0, provided as a counterpart to REG_EXTENDED to improve
readability.

REG_NOSPEC Compilewith recognition of all special characters turned off. All characters are thus
considered ordinary, so the ‘‘RE’’ is a literal string. This is an extension, compatible
with but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portable to other systems. REG_EXTENDED and REG_NOSPEC
may not be used in the same call toregcomp.

REG_ICASE Compilefor matching that ignores upper/lower case distinctions. Seere_format(7).

REG_NOSUB Compilefor matching that need only report success or failure, not what was matched.

REG_NEWLINE Compilefor newline-sensitive matching. Bydefault, newline is a completely ordi-
nary character with no special meaning in either REs or strings.With this flag, ‘[ˆ’
bracket expressions and ‘.’ nev er match newline, a ‘ˆ’ anchor matches the null string
after any newline in the string in addition to its normal function, and the ‘$’ anchor
matches the null string before any newline in the string in addition to its normal func-
tion.

REG_PEND Theregular expression ends, not at the first NUL, but just before the character
pointed to by there_endpmember of the structure pointed to bypreg. The re_endp
member is of typeconst char *. This flag permits inclusion of NULs in the RE; they
are considered ordinary characters.This is an extension, compatible with but not
specified by POSIX 1003.2, and should be used with caution in software intended to
be portable to other systems.

When successful,regcompreturns 0 and fills in the structure pointed to bypreg. One member of that struc-
ture (other thanre_endp) is publicized: re_nsub, of type size_t, contains the number of parenthesized
subexpressions within the RE (except that the value of this member is undefined if the REG_NOSUB flag
was used). Ifregcompfails, it returns a non-zero error code; see DIAGNOSTICS.

Regexecmatches the compiled RE pointed to bypreg against thestring, subject to the flags ineflags, and

March 16, 1994 1

REGEX(3) REGEX(3)

reports results usingnmatch, pmatch, and the returned value. TheRE must have been compiled by a previ-
ous invocation ofregcomp. The compiled form is not altered during execution ofregexec, so a single com-
piled RE can be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to bystring is considered to be the text of an entire line,
minus any terminating newline. Theeflagsargument is the bitwise OR of zero or more of the following
flags:

REG_NOTBOL Thefirst character of the string is not the beginning of a line, so the ‘ˆ’ anchor should
not match before it. This does not affect the behavior of newlines under REG_NEW-
LINE.

REG_NOTEOL The NUL terminating the string does not end a line, so the ‘$’ anchor should not
match before it. This does not affect the behavior of newlines under REG_NEW-
LINE.

REG_STARTEND Thestring is considered to start atstring+ pmatch[0].rm_soand to have a terminating
NUL located atstring+ pmatch[0].rm_eo(there need not actually be a NUL at that
location), regardless of the value ofnmatch. See below for the definition ofpmatch
and nmatch. This is an extension, compatible with but not specified by POSIX
1003.2, and should be used with caution in software intended to be portable to other
systems. Notethat a non-zerorm_sodoes not imply REG_NOTBOL; REG_STAR-
TEND affects only the location of the string, not how it is matched.

Seere_format(7) for a discussion of what is matched in situations where an RE or a portion thereof could
match any of sev eral substrings ofstring.

Normally, regexec returns 0 for success and the non-zero code REG_NOMATCH for failure. Othernon-
zero error codes may be returned in exceptional situations; see DIAGNOSTICS.

If REG_NOSUB was specified in the compilation of the RE, or ifnmatchis 0, regexec ignores thepmatch
argument (but see below for the case where REG_STARTEND is specified).Otherwise,pmatchpoints to
an array ofnmatchstructures of typeregmatch_t. Such a structure has at least the membersrm_soand
rm_eo, both of typeregoff_t (a signed arithmetic type at least as large as anoff_t and assize_t), containing
respectively the offset of the first character of a substring and the offset of the first character after the end of
the substring.Offsets are measured from the beginning of thestring argument given to regexec. An empty
substring is denoted by equal offsets, both indicating the character following the empty substring.

The 0th member of thepmatcharray is filled in to indicate what substring ofstring was matched by the
entire RE. Remaining members report what substring was matched by parenthesized subexpressions within
the RE; memberi reports subexpressioni , with subexpressions counted (starting at 1) by the order of their
opening parentheses in the RE, left to right.Unused entries in the array—corresponding either to subex-
pressions that did not participate in the match at all, or to subexpressions that do not exist in the RE (that is,
i > preg−>re_nsub)—have both rm_soand rm_eoset to −1. If a subexpression participated in the match
several times, the reported substring is the last one it matched.(Note, as an example in particular, that
when the RE ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression matches each of the three ‘b’s and
then an infinite number of empty strings following the last ‘b’, so the reported substring is one of the emp-
ties.)

If REG_STARTEND is specified,pmatchmust point to at least oneregmatch_t(even if nmatchis 0 or
REG_NOSUB was specified), to hold the input offsets for REG_STARTEND. Use for output is still
entirely controlled bynmatch; if nmatchis 0 or REG_NOSUB was specified, the value ofpmatch[0] will
not be changed by a successfulregexec.

Regerror maps a non-zeroerrcodefrom eitherregcompor regexecto a human-readable, printable message.
If preg is non-NULL, the error code should have arisen from use of theregex_t pointed to bypreg, and if
the error code came fromregcomp, it should have been the result from the most recentregcompusing that
regex_t. (Regerror may be able to supply a more detailed message using information from theregex_t.)
Regerror places the NUL-terminated message into the buffer pointed to byerrbuf , limiting the length
(including the NUL) to at mosterrbuf_sizebytes. Ifthe whole message won’t fit, as much of it as will fit

March 16, 1994 2

REGEX(3) REGEX(3)

before the terminating NUL is supplied. In any case, the returned value is the size of buffer needed to hold
the whole message (including terminating NUL).If errbuf_sizeis 0,errbuf is ignored but the return value
is still correct.

If the errcodegiven to regerror is first ORed with REG_ITOA, the ‘‘message’’ that results is the printable
name of the error code, e.g. ‘‘REG_NOMATCH’’, rather than an explanation thereof.If errcode is
REG_ATOI, then pregshall be non-NULL and there_endpmember of the structure it points to must point
to the printable name of an error code; in this case, the result inerrbuf is the decimal digits of the numeric
value of the error code (0 if the name is not recognized).REG_ITOA and REG_ATOI are intended primar-
ily as debugging facilities; they are extensions, compatible with but not specified by POSIX 1003.2, and
should be used with caution in software intended to be portable to other systems.Be warned also that they
are considered experimental and changes are possible.

Regfreefrees any dynamically-allocated storage associated with the compiled RE pointed to bypreg. The
remainingregex_t is no longer a valid compiled RE and the effect of supplying it toregexecor regerror is
undefined.

None of these functions references global variables except for tables of constants; all are safe for use from
multiple threads if the arguments are safe.

IMPLEMENT ATION CHOICES
There are a number of decisions that 1003.2 leaves up to the implementor, either by explicitly saying
‘‘ undefined’’ or by virtue of them being forbidden by the RE grammar. This implementation treats them as
follows.

Seere_format(7) for a discussion of the definition of case-independent matching.

There is no particular limit on the length of REs, except insofar as memory is limited. Memory usage is
approximately linear in RE size, and largely insensitive to RE complexity, except for bounded repetitions.
See BUGS for one short RE using them that will run almost any system out of memory.

A backslashed character other than one specifically given a magic meaning by 1003.2 (such magic mean-
ings occur only in obsolete [‘‘basic’’] REs) is taken as an ordinary character.

Any unmatched [is a REG_EBRACK error.

Equivalence classes cannot begin or end bracket-expression ranges.The endpoint of one range cannot
begin another.

RE_DUP_MAX, the limit on repetition counts in bounded repetitions, is 255.

A repetition operator (?, *, +, or bounds) cannot follow another repetition operator. A repetition operator
cannot begin an expression or subexpression or follow ‘ ˆ’ or ‘|’.

‘|’ cannot appear first or last in a (sub)expression or after another ‘|’, i.e. an operand of ‘|’ cannot be an
empty subexpression. Anempty parenthesized subexpression, ‘()’, is legal and matches an empty
(sub)string. Anempty string is not a legal RE.

A ‘ {’ followed by a digit is considered the beginning of bounds for a bounded repetition, which must then
follow the syntax for bounds.A ‘ {’ not followed by a digit is considered an ordinary character.

‘ˆ’ and ‘$’ beginning and ending subexpressions in obsolete (‘‘basic’’) REs are anchors, not ordinary char-
acters.

SEE ALSO
grep(1), re_format(7)

POSIX 1003.2, sections 2.8 (Regular Expression Notation) and B.5 (C Binding for Regular Expression
Matching).

DIAGNOSTICS
Non-zero error codes fromregcompandregexecinclude the following:

REG_NOMATCH regexec() failed to match
REG_BADPAT inv alid regular expression

March 16, 1994 3

REGEX(3) REGEX(3)

REG_ECOLLATE invalid collating element
REG_ECTYPE invalid character class
REG_EESCAPE \applied to unescapable character
REG_ESUBREG invalid backreference number
REG_EBRACK brackets [] not balanced
REG_EPAREN parentheses() not balanced
REG_EBRACE braces{ } n ot balanced
REG_BADBR invalid repetition count(s) in { }
REG_ERANGE invalid character range in []
REG_ESPACE ran out of memory
REG_BADRPT ?,*, or + operand invalid
REG_EMPTY empty(sub)expression
REG_ASSERT ‘‘can’t happen’’—you found a bug
REG_INVARG invalid argument, e.g. negative-length string

HISTORY
Originally written by Henry Spencer at University of Toronto. Alteredfor inclusion in the 4.4BSD distribu-
tion.

BUGS
This is an alpha release with known defects. Please report problems.

There is one known functionality bug. Theimplementation of internationalization is incomplete: the locale
is always assumed to be the default one of 1003.2, and only the collating elements etc. of that locale are
available.

The back-reference code is subtle and doubts linger about its correctness in complex cases.

Regexec performance is poor. This will improve with later releases.Nmatchexceeding 0 is expensive;
nmatchexceeding 1 is worse. Regexec is largely insensitive to RE complexityexceptthat back references
are massively expensive. RE length does matter; in particular, there is a strong speed bonus for keeping RE
length under about 30 characters, with most special characters counting roughly double.

Regcompimplements bounded repetitions by macro expansion, which is costly in time and space if counts
are large or bounded repetitions are nested. An RE like, say,
‘((((a{1,100}){1,100}){1,100}){1,100}){1,100}’ will (e ventually) run almost any existing machine out of
swap space.

There are suspected problems with response to obscure error conditions.Notably, certain kinds of internal
overflow, produced only by truly enormous REs or by multiply nested bounded repetitions, are probably not
handled well.

Due to a mistake in 1003.2, things like ‘a)b’ are legal REs because ‘)’ is a special character only in the pres-
ence of a previous unmatched ‘(’. This can’t be fixed until the spec is fixed.

The standard’s definition of back references is vague. For example, does ‘a\(\(b\)*\2\)*d’ match ‘abbbd’?
Until the standard is clarified, behavior in such cases should not be relied on.

The implementation of word-boundary matching is a bit of a kludge, and bugs may lurk in combinations of
word-boundary matching and anchoring.

March 16, 1994 4

REGEX (3) NetBSD Library Functions Manual REGEX (3)

NAME
regex , regcomp , regexec , regerror , regfree — regular-expression library

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <regex.h>

int
regcomp (regex_t ∗ restrict preg , const char ∗ restrict pattern ,

int cflags);

int
regexec (const regex_t ∗ restrict preg , const char ∗ restrict string ,

size_t nmatch , regmatch_t pmatch[] , int eflags);

size_t
regerror (int errcode , const regex_t ∗ restrict preg ,

char ∗ restrict errbuf , size_t errbuf_size);

void
regfree (regex_t ∗preg);

DESCRIPTION
These routines implementIEEE Std 1003.2-1992 (“POSIX.2”) regular expressions (‘‘RE’’s); see
re_format (7). regcomp () compiles an RE written as a string into an internal form,regexec () matches
that internal form against a string and reports results,regerror () transforms error codes from either into
human-readable messages, andregfree () frees any dynamically-allocated storage used by the internal
form of an RE.

The header<reg ex.h> declares two structure types,regex_t andregmatch_t , the former for compiled
internal forms and the latter for match reporting.It also declares the four functions, a typeregoff_t , and
a number of constants with names starting with ‘‘REG_’’.

regcomp () compiles the regular expression contained in thepattern string, subject to the flags in
cflags , and places the results in theregex_t structure pointed to bypreg . cflags is the bitwise OR
of zero or more of the following flags:

REG_EXTENDED Compile modern (‘‘extended’’) REs, rather than the obsolete (‘‘basic’’) REs that are
the default.

REG_BASIC This is a synonym for 0, provided as a counterpart to REG_EXTENDED to improve
readability.

REG_NOSPEC Compile with recognition of all special characters turned off. All characters are thus
considered ordinary, so the ‘‘RE’’ i s a literal string. This is an extension, compatible
with but not specified byIEEE Std 1003.2-1992 (“POSIX.2”), and should be used
with caution in software intended to be portable to other systems.REG_EXTENDED
andREG_NOSPECmay not be used in the same call toregcomp ().

REG_ICASE Compile for matching that ignores upper/lower case distinctions.See
re_format (7).

REG_NOSUB Compile for matching that need only report success or failure, not what was matched.

NetBSD 3.0 December 29, 2003 1

REGEX (3) NetBSD Library Functions Manual REGEX (3)

REG_NEWLINE Compile for newline-sensitive matching. Bydefault, newline is a completely ordi-
nary character with no special meaning in either REs or strings.With this flag, ‘[ˆ’
bracket expressions and ‘.’ nev er match newline, a ‘ˆ’ anchor matches the null string
after any newline in the string in addition to its normal function, and the ‘$’ anchor
matches the null string before any newline in the string in addition to its normal func-
tion.

REG_PEND The regular expression ends, not at the first NUL, but just before the character
pointed to by there_endp member of the structure pointed to bypreg . The
re_endp member is of typeconst char ∗. This flag permits inclusion of NULs
in the RE; they are considered ordinary characters. This is an extension, compatible
with but not specified byIEEE Std 1003.2-1992 (“POSIX.2”), and should be used
with caution in software intended to be portable to other systems.

When successful,regcomp () returns 0 and fills in the structure pointed to bypreg . One member of that
structure (other thanre_endp) is publicized: re_nsub , of type size_t , contains the number of paren-
thesized subexpressions within the RE (except that the value of this member is undefined if theREG_NOSUB
flag was used). Ifregcomp () fails, it returns a non-zero error code; seeDIAGNOSTICS .

regexec () matches the compiled RE pointed to bypreg against thestring , subject to the flags in
eflags , and reports results usingnmatch , pmatch , and the returned value. TheRE must have been com-
piled by a previous invocation of regcomp (). The compiled form is not altered during execution of
regexec (), so a single compiled RE can be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to bystring is considered to be the text of an entire line,
minus any terminating newline. Theeflags argument is the bitwise OR of zero or more of the following
flags:

REG_NOTBOL The first character of the string is not the beginning of a line, so the ‘ˆ’ anchor should
not match before it. This does not affect the behavior of newlines under
REG_NEWLINE.

REG_NOTEOL The NUL terminating the string does not end a line, so the ‘$’ anchor should not match
before it. This does not affect the behavior of newlines underREG_NEWLINE.

REG_STARTEND The string is considered to start atstring + pmatch[0].rm_so and to have a ter-
minating NUL located atstring + pmatch[0].rm_eo (there need not actually be a
NUL at that location), regardless of the value ofnmatch . See below for the definition
of pmatch and nmatch . This is an extension, compatible with but not specified by
IEEE Std 1003.2-1992 (“POSIX.2”), and should be used with caution in software
intended to be portable to other systems.Note that a non-zerorm_so does not imply
REG_NOTBOL; REG_STARTENDaffects only the location of the string, not how it is
matched.

Seere_format (7) for a discussion of what is matched in situations where an RE or a portion thereof could
match any of sev eral substrings ofstring .

Normally, regexec () returns 0 for success and the non-zero codeREG_NOMATCHfor failure. Othernon-
zero error codes may be returned in exceptional situations; seeDIAGNOSTICS .

If REG_NOSUBwas specified in the compilation of the RE, or ifnmatch is 0, regexec () ignores the
pmatch argument (but see below for the case whereREG_STARTENDis specified).Otherwise,pmatch
points to an array ofnmatch structures of typeregmatch_t . Such a structure has at least the members
rm_so andrm_eo , both of typeregoff_t (a signed arithmetic type at least as large as anoff_t and a
ssize_t), containing respectively the offset of the first character of a substring and the offset of the first
character after the end of the substring.Offsets are measured from the beginning of thestring argument
given to regexec (). An empty substring is denoted by equal offsets, both indicating the character follow-

NetBSD 3.0 December 29, 2003 2

REGEX (3) NetBSD Library Functions Manual REGEX (3)

ing the empty substring.

The 0th member of thepmatch array is filled in to indicate what substring ofstring was matched by the
entire RE. Remaining members report what substring was matched by parenthesized subexpressions within
the RE; memberi reports subexpressioni , with subexpressions counted (starting at 1) by the order of their
opening parentheses in the RE, left to right. Unused entries in the array—corresponding either to subexpres-
sions that did not participate in the match at all, or to subexpressions that do not exist in the RE (that is,i >
preg->re_nsub) —have both rm_so andrm_eo set to -1. If a subexpression participated in the match
several times, the reported substring is the last one it matched.(Note, as an example in particular, that when
the RE ‘(b∗)+’ matches ‘bbb’, the parenthesized subexpression matches each of the three ‘b’s and then an
infinite number of empty strings following the last ‘b’, so the reported substring is one of the empties.)

If REG_STARTENDis specified,pmatch must point to at least oneregmatch_t (even if nmatch is 0 or
REG_NOSUBwas specified), to hold the input offsets forREG_STARTEND. Use for output is still entirely
controlled bynmatch ; if nmatch is 0 orREG_NOSUBwas specified, the value ofpmatch [0] will not
be changed by a successfulregexec ().

regerror () maps a non-zeroerrcode from either regcomp () or regexec () to a human-readable,
printable message.If preg is non-NULL, the error code should have arisen from use of theregex_t
pointed to bypreg , and if the error code came fromregcomp (), it should have been the result from the
most recentregcomp () using thatregex_t . (regerror () may be able to supply a more detailed mes-
sage using information from theregex_t .) regerror () places the NUL-terminated message into the
buffer pointed to byerrbuf , limiting the length (including the NUL) to at mosterrbuf_size bytes. If
the whole message won’t fit, as much of it as will fit before the terminating NUL is supplied. In any case,
the returned value is the size of buffer needed to hold the whole message (including terminating NUL).If
errbuf_size is 0,errbuf is ignored but the return value is still correct.

If the errcode given to regerror () is first ORed withREG_ITOA, the ‘‘message’’ that results is the
printable name of the error code, e.g. ‘‘REG_NOMATCH’’, rather than an explanation thereof.If errcode
is REG_ATOI, thenpreg shall be non-NULL and there_endp member of the structure it points to must
point to the printable name of an error code; in this case, the result inerrbuf is the decimal digits of the
numeric value of the error code (0 if the name is not recognized).REG_ITOAandREG_ATOIare intended
primarily as debugging facilities; they are extensions, compatible with but not specified byIEEE Std
1003.2-1992 (“POSIX.2”), and should be used with caution in software intended to be portable to other sys-
tems. Bewarned also that they are considered experimental and changes are possible.

regfree () frees any dynamically-allocated storage associated with the compiled RE pointed to bypreg .
The remainingregex_t is no longer a valid compiled RE and the effect of supplying it toregexec () or
regerror () is undefined.

None of these functions references global variables except for tables of constants; all are safe for use from
multiple threads if the arguments are safe.

IMPLEMENT ATION CHOICES
There are a number of decisions thatIEEE Std 1003.2-1992 (“POSIX.2”) leaves up to the implementor, either
by explicitly saying ‘‘undefined’’ or by virtue of them being forbidden by the RE grammar. This implemen-
tation treats them as follows.

Seere_format (7) for a discussion of the definition of case-independent matching.

There is no particular limit on the length of REs, except insofar as memory is limited. Memory usage is
approximately linear in RE size, and largely insensitive to RE complexity, except for bounded repetitions.
See BUGS for one short RE using them that will run almost any system out of memory.

A backslashed character other than one specifically given a magic meaning byIEEE Std 1003.2-1992
(“POSIX.2”) (such magic meanings occur only in obsolete [‘‘basic’’] REs) is taken as an ordinary character.

NetBSD 3.0 December 29, 2003 3

REGEX (3) NetBSD Library Functions Manual REGEX (3)

Any unmatched [is aREG_EBRACKerror.

Equivalence classes cannot begin or end bracket-expression ranges. The endpoint of one range cannot begin
another.

RE_DUP_MAX, the limit on repetition counts in bounded repetitions, is 255.

A repetition operator (?,∗, +, or bounds) cannot follow another repetition operator. A repetition operator
cannot begin an expression or subexpression or follow ‘ ˆ’ or ‘|’.

‘|’ cannot appear first or last in a (sub)expression or after another ‘|’, i.e. an operand of ‘|’ cannot be an empty
subexpression. Anempty parenthesized subexpression, ‘()’, is legal and matches an empty (sub)string.An
empty string is not a legal RE.

A ‘ {’ followed by a digit is considered the beginning of bounds for a bounded repetition, which must then
follow the syntax for bounds.A ‘ {’ not followed by a digit is considered an ordinary character.

‘ˆ’ and ‘$’ beginning and ending subexpressions in obsolete (‘‘basic’’) REs are anchors, not ordinary charac-
ters.

DIAGNOSTICS
Non-zero error codes fromregcomp () andregexec () include the following:

REG_NOMATCH regexec() failed to match
REG_BADPAT invalid regular expression
REG_ECOLLATE invalid collating element
REG_ECTYPE invalid character class
REG_EESCAPE \ applied to unescapable character
REG_ESUBREG invalid backreference number
REG_EBRACK brackets [] not balanced
REG_EPAREN parentheses () not balanced
REG_EBRACE braces { } not balanced
REG_BADBR invalid repetition count(s) in { }
REG_ERANGE invalid character range in []
REG_ESPACE ran out of memory
REG_BADRPT ?,∗, or + operand invalid
REG_EMPTY empty (sub)expression
REG_ASSERT ‘‘ can’t happen’’—you found a bug
REG_INVARG invalid argument, e.g. negative-length string

SEE ALSO
grep (1), sed (1), re_format (7)

IEEE Std 1003.2-1992 (“POSIX.2”), sections 2.8 (Regular Expression Notation) and B.5 (C Binding for Reg-
ular Expression Matching).

HISTORY
Originally written by Henry Spencer. Altered for inclusion in the 4.4BSD distribution.

BUGS
There is one known functionality bug. Theimplementation of internationalization is incomplete: the locale
is always assumed to be the default one ofIEEE Std 1003.2-1992 (“POSIX.2”), and only the collating ele-
ments etc. of that locale are available.

The back-reference code is subtle and doubts linger about its correctness in complex cases.

NetBSD 3.0 December 29, 2003 4

REGEX (3) NetBSD Library Functions Manual REGEX (3)

regexec () performance is poor. This will improve with later releases.nmatch exceeding 0 is expensive;
nmatch exceeding 1 is worse. regexec is largely insensitive to RE complexity except that back refer-
ences are massively expensive. RE length does matter; in particular, there is a strong speed bonus for keep-
ing RE length under about 30 characters, with most special characters counting roughly double.

regcomp () implements bounded repetitions by macro expansion, which is costly in time and space if counts
are large or bounded repetitions are nested. An RE like, say,
‘((((a{1,100}){1,100}){1,100}){1,100}){1,100}’ will (e ventually) run almost any existing machine out of
swap space.

There are suspected problems with response to obscure error conditions.Notably, certain kinds of internal
overflow, produced only by truly enormous REs or by multiply nested bounded repetitions, are probably not
handled well.

Due to a mistake in IEEE Std 1003.2-1992 (“POSIX.2”), things like ‘a)b’ are legal REs because ‘)’ is a special
character only in the presence of a previous unmatched ‘(’. This can’t be fixed until the spec is fixed.

The standard’s definition of back references is vague. For example, does ‘a\(\(b\)∗\2\)∗d’ match ‘abbbd’?
Until the standard is clarified, behavior in such cases should not be relied on.

The implementation of word-boundary matching is a bit of a kludge, and bugs may lurk in combinations of
word-boundary matching and anchoring.

NetBSD 3.0 December 29, 2003 5

REGEXP (3) NetBSD Library Functions Manual REGEXP (3)

NAME
regcomp , regexec , regsub , regerror — regular expression handlers

LIBRARY
Compatibility Library (libcompat, −lcompat)

SYNOPSIS
#include <regexp.h>

regexp ∗
regcomp (const char ∗exp);

int
regexec (const regexp ∗prog , const char ∗string);

void
regsub (const regexp ∗prog , const char ∗source , char ∗dest);

void
regerror (const char ∗msg);

DESCRIPTION
This interface is made obsolete byregex (3). I t is available from the compatibility library , libcompat.

The regcomp (), regexec (), regsub (), andregerror () functions implementegrep (1)-style regular
expressions and supporting facilities.

The regcomp () function compiles a regular expression into a structure of typeregexp, and returns a pointer
to it. The space has been allocated usingmalloc (3) and may be released byfree (3).

The regexec () function matches aNUL-terminatedstring against the compiled regular expression in
prog . It returns 1 for success and 0 for failure, and adjusts the contents ofprog ’s startp andendp(see
below) accordingly.

The members of aregexpstructure include at least the following (not necessarily in order):

char ∗startp[NSUBEXP];
char ∗endp[NSUBEXP];

whereNSUBEXPis defined (as 10) in the header file. Once a successfulregexec () has been done using the
regexp (), eachstartp- endppair describes one substring within thestring , with thestartppointing to the
first character of the substring and theendppointing to the first character following the substring. The 0th
substring is the substring ofstring that matched the whole regular expression. Theothers are those sub-
strings that matched parenthesized expressions within the regular expression, with parenthesized expressions
numbered in left-to-right order of their opening parentheses.

The regsub () function copiessource to dest , making substitutions according to the most recent
regexec () performed usingprog . Each instance of ‘&’ insource is replaced by the substring indicated
by startp[] and endp[] . Each instance of ‘\n’, wheren is a digit, is replaced by the substring indicated by
startp[n] and endp[n]. To get a literal ‘&’ or ‘\n’ i nto dest , prefix it with ‘\’; to get a literal ‘\’ preceding
‘&’ or ‘\ n’, prefix it with another ‘\’.

The regerror () function is called whenever an error is detected inregcomp (), regexec (), or
regsub (). Thedefaultregerror () writes the stringmsg, with a suitable indicator of origin, on the stan-
dard error output and invokes exit (3). The regerror () function can be replaced by the user if other
actions are desirable.

NetBSD 3.0 June 4, 1993 1

REGEXP (3) NetBSD Library Functions Manual REGEXP (3)

REGULAR EXPRESSION SYNTAX
A regular expression is zero or morebranches, separated by ‘|’. It matches anything that matches one of the
branches.

A branch is zero or morepieces, concatenated. Itmatches a match for the first, followed by a match for the
second, etc.

A piece is anatompossibly followed by ‘∗’, ‘+’, or ‘?’. An atom followed by ‘∗’ matches a sequence of 0 or
more matches of the atom. An atom followed by ‘+’ matches a sequence of 1 or more matches of the atom.
An atom followed by ‘?’ matches a match of the atom, or the null string.

An atom is a regular expression in parentheses (matching a match for the regular expression), arange (see
below), ‘.’ (matching any single character), ‘ˆ’ (matching the null string at the beginning of the input string),
‘$’ (matching the null string at the end of the input string), a ‘\’ followed by a single character (matching that
character), or a single character with no other significance (matching that character).

A range is a sequence of characters enclosed in ‘[]’.It normally matches any single character from the
sequence. Ifthe sequence begins with ‘ˆ’, it matches any single characternot from the rest of the sequence.
If two characters in the sequence are separated by ‘−’, this is shorthand for the full list ofASCII characters
between them (e.g. ‘[0-9]’ matches any decimal digit). To include a literal ‘]’ in the sequence, make it the
first character (following a possible ‘ˆ’).To include a literal ‘−’, make it the first or last character.

AMBIGUITY
If a regular expression could match two different parts of the input string, it will match the one which begins
earliest. Ifboth begin in the same place but match different lengths, or match the same length in different
ways, life gets messier, as follows.

In general, the possibilities in a list of branches are considered in left-to-right order, the possibilities for ‘∗’,
‘+’, and ‘?’ are considered longest-first, nested constructs are considered from the outermost in, and concate-
nated constructs are considered leftmost-first. The match that will be chosen is the one that uses the earliest
possibility in the first choice that has to be made. If there is more than one choice, the next will be made in
the same manner (earliest possibility) subject to the decision on the first choice. And so forth.

For example, ‘(ab|a)b ∗c ’ could match ‘abc’ in one of two ways. Thefirst choice is between ‘ab’ and ‘a’;
since ‘ab’ is earlier, and does lead to a successful overall match, it is chosen. Since the ‘b’ is already spoken
for, the ‘b∗’ must match its last possibility—the empty string—since it must respect the earlier choice.

In the particular case where no ‘|’s are present and there is only one ‘∗’, ‘+’, or ‘?’, the net effect is that the
longest possible match will be chosen.So ‘ab∗’, presented with ‘xabbbby’, will match ‘abbbb’. Note that if
‘ab∗’, is tried against ‘xabyabbbz’, it will match ‘ab’ just after ‘x’, due to the begins-earliest rule. (In effect,
the decision on where to start the match is the first choice to be made, hence subsequent choices must respect
it even if this leads them to less-preferred alternatives.)

RETURN VALUES
The regcomp () function returnsNULL for a failure (regerror () permitting), where failures are syntax
errors, exceeding implementation limits, or applying ‘+’ or ‘∗’ to a possibly-null operand.

SEE ALSO
ed(1), egrep (1), ex (1), expr (1), fgrep (1), grep (1), regex (3)

HISTORY
Both code and manual page forregcomp (), regexec (), regsub (), andregerror () were written at the
University of Toronto and appeared in 4.3BSD−Tahoe. They are intended to be compatible with the Bell V8
regexp (3), but are not derived from Bell code.

NetBSD 3.0 June 4, 1993 2

REGEXP (3) NetBSD Library Functions Manual REGEXP (3)

BUGS
Empty branches and empty regular expressions are not portable to V8.

The restriction against applying ‘∗’ or ‘ +’ to a possibly-null operand is an artifact of the simplistic implemen-
tation.

Does not supportegrep (1)’s newline-separated branches; neither does the V8regexp (3), though.

Due to emphasis on compactness and simplicity, it’s not strikingly fast. Itdoes give special attention to han-
dling simple cases quickly.

NetBSD 3.0 June 4, 1993 3

REMOVE (3) NetBSD Library Functions Manual REMOVE (3)

NAME
remove — remove directory entry

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

int
remove (const char ∗path);

DESCRIPTION
Theremove () function removes the file or directory specified bypath .

If path specifies a directory, remove (path) is the equivalent of rmdir (path). Otherwise,it is the
equivalent ofunlink (path).

RETURN VALUES
Upon successful completion,remove () returns 0. Otherwise, −1 is returned and the global variableerrno is
set to indicate the error.

ERRORS
The remove () function may fail and seterrno for any of the errors specified for the routinesrmdir (2) or
unlink (2).

SEE ALSO
rmdir (2), unlink (2), symlink (7)

STANDARDS
Theremove () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

RESOLVER (3) NetBSD Library Functions Manual RESOLVER (3)

NAME
res_query , res_search , res_mkquery , res_send , res_init , dn_comp , dn_expand —
resolver routines

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

res_query (const char ∗dname , int class , int type , u_char ∗answer , int anslen);

res_search (const char ∗dname , int class , int type , u_char ∗answer ,
int anslen);

res_mkquery (int op , const char ∗dname , int class , int type , const char ∗data ,
int datalen , struct rrec ∗newrr , char ∗buf , int buflen);

res_send (const u_char ∗msg, int msglen , u_char ∗answer , int anslen);

res_init ();

dn_comp(const char ∗exp_dn , u_char ∗comp_dn , int length , u_char ∗∗dnptrs ,
u_char ∗∗lastdnptr);

dn_expand (const u_char ∗msg, const u_char ∗eomorig , const u_char ∗comp_dn ,
u_char ∗exp_dn , int length);

DESCRIPTION
These routines are used for making, sending and interpreting query and reply messages with Internet domain
name servers.

Global configuration and state information that is used by the resolver routines is kept in the structure_res.
Most of the values have reasonable defaults and can be ignored.Options stored in_res.optionsare defined in
resolv.h and are as follows. Optionsare stored as a simple bit mask containing the bitwise ‘‘or’ ’ of the
options enabled.

RES_INIT True if the initial name server address and default domain name are initialized (i.e.,
res_init () has been called).

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,res_send () should continue until
it finds an authoritative answer or finds an error. Currently this is not implemented.

RES_USEVC UseTCPconnections for queries instead ofUDP datagrams.

RES_STAYOPEN Used withRES_USEVCto keep theTCPconnection open between queries. This is use-
ful only in programs that regularly do many queries. UDP should be the normal mode
used.

RES_IGNTC Unused currently (ignore truncation errors, i.e., don’t retry withTCP).

RES_RECURSE Set the recursion-desired bit in queries. This is the default. (res_send () does not do
iterative queries and expects the name server to handle recursion.)

NetBSD 3.0 June 4, 1993 1

RESOLVER (3) NetBSD Library Functions Manual RESOLVER (3)

RES_DEFNAMES If set, res_search () will append the default domain name to single-component
names (those that do not contain a dot). This option is enabled by default.

RES_DNSRCH If this option is set,res_search () will search for host names in the current domain
and in parent domains; seehostname (7). This is used by the standard host lookup
routinegethostbyname (3). Thisoption is enabled by default.

RES_USE_INET6 Enables support for IPv6-only applications.This causes IPv4 addresses to be returned
as an IPv4 mapped address.For example, 10.1.1.1 will be returned as ::ffff :10.1.1.1.
The option is meaningful with certain kernel configuration only.

RES_USE_EDNS0Enables support for OPT pseudo-RR for EDNS0 extension. With the option, resolver
code will attach OPT pseudo-RR into DNS queries, to inform of our receive buffer size.
The option will allow DNS servers to take advantage of non-default receive buffer size,
and to send larger replies. DNS query packets with EDNS0 extension is not compatible
with non-EDNS0 DNS servers.

The res_init () routine reads the configuration file (if any; seeresolv.conf (5)) to get the default
domain name, search list and the Internet address of the local name server(s). Ifno server is configured, the
host running the resolver is tried.The current domain name is defined by the hostname if not specified in the
configuration file; it can be overridden by the environment variableLOCALDOMAIN. This environment vari-
able may contain several blank-separated tokens if you wish to override thesearch list on a per-process
basis. Thisis similar to thesearch command in the configuration file. Another environment variable
RES_OPTIONScan be set to override certain internal resolver options which are otherwise set by changing
fields in the_res structure or are inherited from the configuration file’s options command. Thesyntax of
theRES_OPTIONSenvironment variable is explained inresolv.conf (5). Initializationnormally occurs
on the first call to one of the following routines.

The res_query () function provides an interface to the server query mechanism. It constructs a query,
sends it to the local server, awaits a response, and makes preliminary checks on the reply. The query requests
information of the specifiedtype andclass for the specified fully-qualified domain namedname. The
reply message is left in theanswer buffer with lengthanslen supplied by the caller.

The res_search () routine makes a query and awaits a response like res_query (), but in addition, it
implements the default and search rules controlled by theRES_DEFNAMESandRES_DNSRCHoptions. It
returns the first successful reply.

The remaining routines are lower-level routines used byres_query (). The res_mkquery () function
constructs a standard query message and places it inbuf . It returns the size of the query, or −1 if the query
is larger thanbuflen . The query typeop is usuallyQUERY, but can be any of the query types defined in
〈arpa/nameser.h 〉. The domain name for the query is given by dname. newrr is currently unused but
is intended for making update messages.

The res_send () routine sends a pre-formatted query and returns an answer. It will call res_init () if
RES_INIT is not set, send the query to the local name server, and handle timeouts and retries. The length
of the reply message is returned, or −1 if there were errors.

Thedn_comp() function compresses the domain nameexp_dn and stores it incomp_dn . The size of the
compressed name is returned or −1 if there were errors. The size of the array pointed to bycomp_dn is
given by length . The compression uses an array of pointersdnptrs to previously-compressed names in
the current message.The first pointer points to the beginning of the message and the list ends withNULL.
The limit to the array is specified bylastdnptr . A side effect ofdn_comp() is to update the list of point-
ers for labels inserted into the message as the name is compressed.If dnptr is NULL, names are not com-
pressed. Iflastdnptr is NULL, the list of labels is not updated.

NetBSD 3.0 June 4, 1993 2

RESOLVER (3) NetBSD Library Functions Manual RESOLVER (3)

The dn_expand () entry expands the compressed domain namecomp_dn to a full domain name.The
compressed name is contained in a query or reply message;msg is a pointer to the beginning of the message.
The uncompressed name is placed in the buffer indicated byexp_dn which is of sizelength . The size of
compressed name is returned or −1 if there was an error.

FILES
/etc/resolv.conf The configuration file, seeresolv.conf (5).

SEE ALSO
gethostbyname (3), resolv.conf (5), hostname (7), named(8)

RFC 974, RFC 1032, RFC 1033, RFC 1034, RFC 1035, RFC 1535

Name Server Operations Guide for BIND.

HISTORY
Theres_query function appeared in 4.3BSD.

NetBSD 3.0 June 4, 1993 3

REXEC (3) NetBSD Library Functions Manual REXEC (3)

NAME
rexec — return stream to a remote command

LIBRARY
Compatibility Library (libcompat, −lcompat)

SYNOPSIS
int
rexec (char ∗∗ahost , int inport , char ∗user , char ∗passwd , char ∗cmd,

int ∗fd2p);

DESCRIPTION
This interface is obsoleted byrcmd (3). It is available from the compatibility library , libcompat.

The rexec () function looks up the host∗ahost usinggethostbyname (3), returning −1 if the host does
not exist. Otherwise∗ahost is set to the standard name of the host.If a username and password are both
specified, then these are used to authenticate to the foreign host; otherwise the environment and then the
user’s.netrc file in his home directory are searched for appropriate information. If all this fails, the user is
prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for the connection; the call
getservbyname("exec", "tcp") (seegetservent (3)) will return a pointer to a structure, which
contains the necessary port. The protocol for connection is described in detail inrexecd (8).

If the connection succeeds, a socket in the Internet domain of typeSOCK_STREAMis returned to the caller,
and given to the remote command asstdin andstdout. If fd2p is non-zero, then an auxiliary channel to a
control process will be set up, and a descriptor for it will be placed in∗fd2p . The control process will
return diagnostic output from the command (unit 2) on this channel, and will also accept bytes on this chan-
nel as beingUNIX signal numbers, to be forwarded to the process group of the command. The diagnostic
information returned does not include remote authorization failure, as the secondary connection is set up
after authorization has been verified. If fd2p is 0, then thestderr (unit 2 of the remote command) will be
made the same as thestdoutand no provision is made for sending arbitrary signals to the remote process,
although you may be able to get its attention by using out-of-band data.

SEE ALSO
rcmd (3), rexecd (8)

HISTORY
Therexec () function appeared in 4.2BSD.

NetBSD 3.0 June 4, 1993 1

RINDEX (3) NetBSD Library Functions Manual RINDEX (3)

NAME
rindex — locate character in string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <strings.h>

char ∗
rindex (const char ∗s , int c);

DESCRIPTION
The rindex () function locates the last character matchingc (converted to achar) in the nul-terminated
strings .

RETURN VALUES
A pointer to the character is returned if it is found; otherwiseNULL is returned. If c is ‘\0 ’, rindex ()
locates the terminating ‘\0 ’.

SEE ALSO
index (3), memchr(3), strchr (3), strcspn (3), strpbrk (3), strrchr (3), strsep (3), strspn (3),
strstr (3), strtok (3)

HISTORY
A rindex () function appeared in Version 6AT&T UNIX .

NetBSD 3.0 June 4, 1993 1

RINT (3) NetBSD Library Functions Manual RINT (3)

NAME
rint , rintf — round to integral value in floating-point format

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
rint (double x);

float
rintf (float x);

DESCRIPTION
The rint () function returns the integral value (represented as a double precision number) nearest tox
according to the prevailing rounding mode.

SEE ALSO
abs (3), ceil (3), fabs (3), floor (3), ieee (3), math (3)

HISTORY
A rint () function appeared in Version 6AT&T UNIX .

NetBSD 3.0 March 10, 1994 1

RMD160 (3) NetBSD Library Functions Manual RMD160 (3)

NAME
RMD160Init , RMD160Update, RMD160Final , RMD160Transform , RMD160End, RMD160File ,
RMD160Data — calculate the ‘‘RIPEMD-160’’ message digest

SYNOPSIS
#include <sys/types.h>
#include <rmd160.h>

void
RMD160Init (RMD160_CTX∗context);

void
RMD160Update(RMD160_CTX∗context , const u_char ∗data , u_int nbytes);

void
RMD160Final (u_char digest[20] , RMD160_CTX∗context);

void
RMD160Transform (uint32_t state[5] , const uint32_t block[16]);

char ∗
RMD160End(RMD160_CTX∗context , char ∗buf);

char ∗
RMD160File (char ∗filename , char ∗buf);

char ∗
RMD160Data(u_char ∗data , size_t len , char ∗buf);

DESCRIPTION
The RMD160 functions implement the 160-bit RIPE message digest hash algorithm (RMD-160).RMD-160
is used to generate a condensed representation of a message called a message digest.The algorithm takes a
message less than 2ˆ64 bits as input and produces a 160-bit digest suitable for use as a digital signature.

The RMD160 functions are considered to be more secure than themd4(3) andmd5(3) functions and at least
as secure as thesha1 (3) function. All share a similar interface.

The RMD160Init () function initializes a RMD160_CTXcontext for use withRMD160Update(), and
RMD160Final (). TheRMD160Update() function addsdata of lengthnbytes to the RMD160_CTX
specified bycontext . RMD160Final () is called when all data has been added viaRMD160Update()
and stores a message digest in thedigest parameter. When a null pointer is passed toRMD160Final () as
first argument only the final padding will be applied and the current context can still be used with
RMD160Update().

The RMD160Transform () function is used byRMD160Update() to hash 512-bit blocks and forms the
core of the algorithm. Most programs should use the interface provided byRMD160Init (),
RMD160Update() andRMD160Final () instead of callingRMD160Transform () directly.

TheRMD160End() function is a front end forRMD160Final () which converts the digest into anASCII rep-
resentation of the 160 bit digest in hexadecimal.

The RMD160File () function calculates the digest for a file and returns the result viaRMD160End(). If
RMD160File () is unable to open the file a NULL pointer is returned.

The RMD160Data() function calculates the digest of an arbitrary string and returns the result via
RMD160End().

NetBSD 3.0 July 16, 1997 1

RMD160 (3) NetBSD Library Functions Manual RMD160 (3)

For each of theRMD160End(), RMD160File (), andRMD160Data() functions thebuf parameter should
either be a string of at least 41 characters in size or a NULL pointer. In the latter case, space will be dynami-
cally allocated viamalloc (3) and should be freed usingfree (3) when it is no longer needed.

EXAMPLES
The follow code fragment will calculate the digest for the string "abc" which is
‘‘ 0x8eb208f7e05d987a9b044a8e98c6b087f15a0bfc’’.

RMD160_CTX rmd;
u_char results[20];
char ∗buf;
int n;

buf = "abc";
n = s trlen(buf);
RMD160Init(&rmd);
RMD160Update(&rmd, (u_char ∗)buf, n);
RMD160Final(results, &rmd);

/ ∗ Print the digest as one long hex value ∗/
printf("0x");
for (n = 0; n < 20; n++)

printf("%02x", results[n]);
putchar(’\n’);

Alternately, the helper functions could be used in the following way:

RMD160_CTX rmd;
u_char output[41];
char ∗buf = "abc";

printf("0x%s\n", RMD160Data(buf, strlen(buf), output));

SEE ALSO
rmd160 (1), md4(3), md5(3), sha1 (3)

H. Dobbertin, A. Bosselaers, B. Preneel,RIPEMD-160, a strengthened version of RIPEMD.

Information technology - Security techniques - Hash-functions - Part 3: Dedicated hash-functions, ISO/IEC
10118-3.

H. Dobbertin, A. Bosselaers, B. Preneel, "The RIPEMD-160 cryptographic hash function",Dr. Dobb’s
Journal, Vol. 22, No. 1, pp. 24-28, January 1997.

HISTORY
The RMD-160 functions appeared inOpenBSD2.1.

AUTHORS
This implementation of RMD-160 was written by Antoon Bosselaers.

The RMD160End(), RMD160File (), andRMD160Data() helper functions are derived from code written
by Poul-Henning Kamp.

NetBSD 3.0 July 16, 1997 2

RMD160 (3) NetBSD Library Functions Manual RMD160 (3)

BUGS
If a message digest is to be copied to a multi-byte type (ie: an array of five 32-bit integers) it will be neces-
sary to perform byte swapping on little endian machines such as the i386, alpha, and VAX.

NetBSD 3.0 July 16, 1997 3

RMTOPS (3) NetBSD Library Functions Manual RMTOPS (3)

NAME
rmtops — access tape drives on remote machines

LIBRARY
Remote Magnetic Tape Library (librmt, -lrmt)

SYNOPSIS
#include <rmt.h>
#include <sys/stat.h>

int
isrmt (int fd);

int
rmtaccess (char ∗file , int mode);

int
rmtclose (int fd);

int
rmtcreat (char ∗file , int mode);

int
rmtdup (int fd);

int
rmtfcntl (int fd , int cmd , int arg);

int
rmtfstat (int fd , struct stat ∗buf);

int
rmtioctl (int fd , int request , char ∗argp);

int
rmtisatty (int fd);

long
rmtlseek (int fd , long offset , int whence);

int
rmtlstat (char ∗file , struct stat ∗buf);

int
rmtopen (char ∗file , int flags , int mode);

int
rmtread (int fd , char ∗buf , int nbytes);

int
rmtstat (char ∗file , struct stat ∗buf);

int
rmtwrite (int fd , char ∗buf , int nbytes);

DESCRIPTION
The rmtops library provides a simple means of transparently accessing tape drives on remote machines via
rsh (1) andrmt (8). Theseroutines are used like their corresponding system calls, but allow the user to open
up a tape drive on a remote system on which he or she has an account and the appropriate remote permis-

NetBSD 3.0 October 16, 2001 1

RMTOPS (3) NetBSD Library Functions Manual RMTOPS (3)

sions.

A remote tape drive file name has the form

[user@]hostname:/dev/???

wheresystemis the remote system,/dev/???is the particular drive on the remote system (raw, blocked,
rewinding, non-rewinding, etc.), and the optionaluser is the login name to be used on the remote system, if
different from the current user’s login name.

For transparency, the user should include the file<rmt.h> , which has the following defines in it:

#define access rmtaccess
#define close rmtclose
#define creat rmtcreat
#define dup rmtdup
#define fcntl rmtfcntl
#define fstat rmtfstat
#define ioctl rmtioctl
#define isatty rmtisatty
#define lseek rmtlseek
#define lstat rmtlstat
#define open rmtopen
#define read rmtread
#define stat rmtstat
#define write rmtwrite

This allows the programmer to useopen (2), close (2), read (2), write (2), etc. in their normal fashion,
with the rmtops routines taking care of differentiating between local and remote files.This file should be
includedbeforeincluding the file<sys/stat.h> , since it redefines the identifier ‘‘stat’’ which is used to
declare objects of typestruct stat.

The routines differentiate between local and remote file descriptors by adding a bias (currently 128) to the
file descriptor of the pipe. The programmer, if he or she must know if a file is remote, should useisrmt ().

ENVIRONMENT
The RCMD_CMD environment variable can be set to the name or pathname of a program to use, instead of
/usr/bin/rsh , and must have the same calling conventions asrsh (1).

FILES
/usr/lib/librmt.a remote tape library

DIAGNOSTICS
Several of these routines will return −1 and seterrno to EOPNOTSUPP, if they are given a remote file name
or a file descriptor on an open remote file (e.g.,rmtdup ()).

SEE ALSO
rcp (1), rsh (1), rmt (8)

And the appropriate system calls in section 2.

AUTHORS
Jeff Lee wrote the original routines for accessing tape drives via rmt (8).

NetBSD 3.0 October 16, 2001 2

RMTOPS (3) NetBSD Library Functions Manual RMTOPS (3)

Fred Fish redid them into a general purpose library.

Arnold Robbins added the ability to specify a user name on the remote system, the<rmt.h> include file,
this man page, cleaned up the library a little, and made the appropriate changes for 4.3BSD.

Dan Kegel contributed the code to use therexec (3) library routine.

BUGS
There is no way to use remote tape drives with stdio (3), short of recompiling it entirely to use these rou-
tines.

The rmt (8) protocol is not very capable. In particular, it relies on TCP/IP sockets for error free transmis-
sion, and does no data validation of its own.

NetBSD 3.0 October 16, 2001 3

ROUND (3) NetBSD Library Functions Manual ROUND (3)

NAME
round , roundf — round to nearest integral value

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
round (double x);

float
roundf (float x);

DESCRIPTION
The round () androundf () functions return the nearest integral value tox ; if x lies halfway between two
integral values, then these functions return the integral value with the larger absolute value (i.e., they round
aw ay from zero).

SEE ALSO
ceil (3), floor (3), ieee (3), math (3), rint (3), trunc (3)

STANDARDS
Theround () androundf () functions conform toISO/IEC9899:1999 (“ISO C99”).

HISTORY
Theround () androundf () functions appeared inNetBSD 2.0.

NetBSD 3.0 July 15, 2004 1

RPC (3) NetBSD Library Functions Manual RPC (3)

NAME
rpc — library routines for remote procedure calls

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <rpc/rpc.h>
#include <netconfig.h>

DESCRIPTION
These routines allow C language programs to make procedure calls on other machines across a network.
First, the client sends a request to the server. On receipt of the request, the server calls a dispatch routine to
perform the requested service, and then sends back a reply.

All RPC routines require the header〈rpc/rpc.h 〉. Routines that take anetconfig structure also require
that〈netconfig.h 〉 be included.

Nettype
Some of the high-level RPC interface routines take anettype string as one of the parameters (for example,
clnt_create (), svc_create (), rpc_reg (), rpc_call (). This string defines a class of transports
which can be used for a particular application.

nettype can be one of the following:

netpath Choose from the transports which have been indicated by their token names in theNETPATH
environment variable. IfNETPATHis unset orNULL , it defaults tovisible . netpath
is the defaultnettype .

visible Choose the transports which have the visible flag (v) set in the/etc/netconfig file.

circuit_v This is same asvisible except that it chooses only the connection oriented transports
(semanticstpi_cots or tpi_cots_ord) from the entries in the/etc/netconfig
file.

datagram_v This is same asvisible except that it chooses only the connectionless datagram transports
(semanticstpi_clts) from the entries in the/etc/netconfig file.

circuit_n This is same asnetpath except that it chooses only the connection oriented datagram
transports (semanticstpi_cots or tpi_cots_ord).

datagram_n This is same asnetpath except that it chooses only the connectionless datagram transports
(semanticstpi_clts).

udp This refers to Internet UDP, both version 4 and 6.

tcp This refers to Internet TCP, both version 4 and 6.

If is NULL, it defaults tonetpath . The transports are tried in left to right order in theNETPATHvariable
or in top to down order in the/etc/netconfig file.

Derived Types
The derived types used in the RPC interfaces are defined as follows:

typedef uint32_t rpcprog_t;
typedef uint32_t rpcvers_t;
typedef uint32_t rpcproc_t;
typedef uint32_t rpcprot_t;

NetBSD 3.0 May 7, 1993 1

RPC (3) NetBSD Library Functions Manual RPC (3)

typedef uint32_t rpcport_t;
typedef int32_t rpc_inline_t;

Data Structures
Some of the data structures used by the RPC package are shown below.

The AUTH Structur e
/ ∗

∗ Authentication info. Opaque to client.
∗/

struct opaque_auth {
enum_t oa_flavor; / ∗ flavor of auth ∗/
caddr_t oa_base; / ∗ address of more auth stuff ∗/
u_int oa_length; / ∗ not to exceed MAX_AUTH_BYTES ∗/

};

/ ∗
∗ Auth handle, interface to client side authenticators.
∗/

typedef struct {
struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
struct auth_ops {

void (∗ah_nextverf)();
int (∗ah_marshal)(); / ∗ nextverf & serialize ∗/
int (∗ah_validate)(); / ∗ validate verifier ∗/
int (∗ah_refresh)(); / ∗ refresh credentials ∗/
void (∗ah_destroy)(); / ∗ destroy this structure ∗/

} ∗ah_ops;
caddr_t ah_private;

} A UTH;

The CLIENT Structur e
/ ∗

∗ Client rpc handle.
∗ Created by individual implementations.
∗ Client is responsible for initializing auth.
∗/

typedef struct {
AUTH ∗cl_auth; / ∗ authenticator ∗/
struct clnt_ops {

enum clnt_stat (∗cl_call)(); / ∗ call remote procedure ∗/
void (∗cl_abort)(); / ∗ abort a call ∗/
void (∗cl_geterr)(); / ∗ get specific error code ∗/
bool_t (∗cl_freeres)(); / ∗ frees results ∗/
void (∗cl_destroy)(); / ∗ destroy this structure ∗/
bool_t (∗cl_control)(); / ∗ the ioctl() of rpc ∗/

} ∗cl_ops;
caddr_t cl_private; / ∗ private stuff ∗/
char ∗cl_netid; / ∗ network identifier ∗/
char ∗cl_tp; / ∗ device name ∗/

NetBSD 3.0 May 7, 1993 2

RPC (3) NetBSD Library Functions Manual RPC (3)

} C LIENT;

The SVCXPRT structure
enum xprt_stat {

XPRT_DIED,
XPRT_MOREREQS,
XPRT_IDLE

};

/ ∗
∗ Server side transport handle
∗/

typedef struct {
int xp_fd; / ∗ file descriptor for the server handle ∗/
u_short xp_port; / ∗ obsolete ∗/
const struct xp_ops {

bool_t (∗xp_recv)(); / ∗ receive incoming requests ∗/
enum xprt_stat (∗xp_stat)(); / ∗ get transport status ∗/
bool_t (∗xp_getargs)(); / ∗ get arguments ∗/
bool_t (∗xp_reply)(); / ∗ send reply ∗/
bool_t (∗xp_freeargs)(); / ∗ free mem allocated for args ∗/
void (∗xp_destroy)(); / ∗ destroy this struct ∗/

} ∗xp_ops;
int xp_addrlen; / ∗ length of remote addr. Obsolete ∗/
struct sockaddr_in xp_raddr; / ∗ Obsolete ∗/
const struct xp_ops2 {

bool_t (∗xp_control)(); / ∗ catch-all function ∗/
} ∗xp_ops2;
char ∗xp_tp; / ∗ transport provider device name ∗/
char ∗xp_netid; / ∗ network identifier ∗/
struct netbuf xp_ltaddr; / ∗ local transport address ∗/
struct netbuf xp_rtaddr; / ∗ remote transport address ∗/
struct opaque_auth xp_verf; / ∗ raw response verifier ∗/
caddr_t xp_p1; / ∗ private: for use by svc ops ∗/
caddr_t xp_p2; / ∗ private: for use by svc ops ∗/
caddr_t xp_p3; / ∗ private: for use by svc lib ∗/
int xp_type / ∗ transport type ∗/

} S VCXPRT;

The svc_req structure
struct svc_req {

rpcprog_t rq_prog; / ∗ service program number ∗/
rpcvers_t rq_vers; / ∗ service protocol version ∗/
rpcproc_t rq_proc; / ∗ the desired procedure ∗/
struct opaque_auth rq_cred; / ∗ raw creds from the wire ∗/
caddr_t rq_clntcred; / ∗ read only cooked cred ∗/
SVCXPRT ∗rq_xprt; / ∗ associated transport ∗/

};

NetBSD 3.0 May 7, 1993 3

RPC (3) NetBSD Library Functions Manual RPC (3)

The XDR structure
/ ∗

∗ XDR operations.
∗ XDR_ENCODE causes the type to be encoded into the stream.
∗ XDR_DECODE causes the type to be extracted from the stream.
∗ XDR_FREE can be used to release the space allocated by an XDR_DECODE
∗ request.
∗/

enum xdr_op {
XDR_ENCODE=0,
XDR_DECODE=1,
XDR_FREE=2

};
/ ∗

∗ This is the number of bytes per unit of external data.
∗/

#define BYTES_PER_XDR_UNIT (4)
#define RNDUP(x) ((((x) + BYTES_PER_XDR_UNIT - 1) /

BYTES_PER_XDR_UNIT) \ ∗ BYTES_PER_XDR_UNIT)

/ ∗
∗ A xdrproc_t exists for each data type which is to be encoded or
∗ decoded. The second argument to the xdrproc_t is a pointer to
∗ an opaque pointer. The opaque pointer generally points to a
∗ structure of the data type to be decoded. If this points to 0,
∗ then the type routines should allocate dynamic storage of the
∗ appropriate size and return it.
∗ bool_t (∗xdrproc_t)(XDR ∗, c addr_t ∗);
∗/

typedef bool_t (∗xdrproc_t)();

/ ∗
∗ The XDR handle.
∗ Contains operation which is being applied to the stream,
∗ an operations vector for the particular implementation
∗/

typedef struct {
enum xdr_op x_op; / ∗ operation; fast additional param ∗/
struct xdr_ops {

bool_t (∗x_getlong)(); / ∗ get a long from underlying stream ∗/
bool_t (∗x_putlong)(); / ∗ put a long to underlying stream ∗/
bool_t (∗x_getbytes)(); / ∗ get bytes from underlying stream ∗/
bool_t (∗x_putbytes)(); / ∗ put bytes to underlying stream ∗/
u_int (∗x_getpostn)(); / ∗ returns bytes off from beginning ∗/
bool_t (∗x_setpostn)(); / ∗ lets you reposition the stream ∗/
long ∗ (∗x_inline)(); / ∗ buf quick ptr to buffered data ∗/
void (∗x_destroy)(); / ∗ free privates of this xdr_stream ∗/

} ∗x_ops;
caddr_t x_public; / ∗ users’ data ∗/
caddr_t x_private; / ∗ pointer to private data ∗/
caddr_t x_base; / ∗ private used for position info ∗/
int x_handy; / ∗ extra private word ∗/

NetBSD 3.0 May 7, 1993 4

RPC (3) NetBSD Library Functions Manual RPC (3)

} X DR;

/ ∗
∗ The netbuf structure. This structure is defined in <xti.h> on SysV
∗ systems, but NetBSD does not use XTI.
∗
∗ Usually, buf will point to a struct sockaddr, and len and maxlen
∗ will contain the length and maximum length of that socket address,
∗ respectively.
∗/

struct netbuf {
unsigned int maxlen;
unsigned int len;
void ∗buf;

};

/ ∗
∗ The format of the address and options arguments of the XTI t_bind call.
∗ Only provided for compatibility, it should not be used other than
∗ as an argument to svc_tli_create().
∗/

struct t_bind {
struct netbuf addr;
unsigned int qlen;

};

Index to Routines
The following table lists RPC routines and the manual reference pages on which they are described:

RPC Routine Manual Reference Page

auth_destroy () rpc_clnt_auth (3),
authdes_create () rpc_soc (3),
authnone_create () rpc_clnt_auth (3),
authsys_create () rpc_clnt_auth (3),
authsys_create_default () rpc_clnt_auth (3),
authunix_create () rpc_soc (3),
authunix_create_default () rpc_soc (3),
callrpc () rpc_soc (3),
clnt_broadcast () rpc_soc (3),
clnt_call () rpc_clnt_calls (3),
clnt_control () rpc_clnt_create (3),
clnt_create () rpc_clnt_create (3),
clnt_destroy () rpc_clnt_create (3),
clnt_dg_create () rpc_clnt_create (3),
clnt_freeres () rpc_clnt_calls (3),
clnt_geterr () rpc_clnt_calls (3),
clnt_pcreateerror () rpc_clnt_create (3),
clnt_perrno () rpc_clnt_calls (3),

NetBSD 3.0 May 7, 1993 5

RPC (3) NetBSD Library Functions Manual RPC (3)

clnt_perror () rpc_clnt_calls (3),
clnt_raw_create () rpc_clnt_create (3),
clnt_spcreateerror () rpc_clnt_create (3),
clnt_sperrno () rpc_clnt_calls (3),
clnt_sperror () rpc_clnt_calls (3),
clnt_tli_create () rpc_clnt_create (3),
clnt_tp_create () rpc_clnt_create (3),
clnt_udpcreate () rpc_soc (3),
clnt_vc_create () rpc_clnt_create (3),
clntraw_create () rpc_soc (3),
clnttcp_create () rpc_soc (3),
clntudp_bufcreate () rpc_soc (3),
get_myaddress () rpc_soc (3),
pmap_getmaps () rpc_soc (3),
pmap_getport () rpc_soc (3),
pmap_rmtcall () rpc_soc (3),
pmap_set () rpc_soc (3),
pmap_unset () rpc_soc (3),
registerrpc () rpc_soc (3),
rpc_broadcast () rpc_clnt_calls (3),
rpc_broadcast_exp () rpc_clnt_calls (3),
rpc_call () rpc_clnt_calls (3),
rpc_reg () rpc_svc_calls (3),
svc_create () rpc_svc_create (3),
svc_destroy () rpc_svc_create (3),
svc_dg_create () rpc_svc_create (3),
svc_dg_enablecache () rpc_svc_calls (3),
svc_fd_create () rpc_svc_create (3),
svc_fds () rpc_soc (3),
svc_freeargs () rpc_svc_reg (3),
svc_getargs () rpc_svc_reg (3),
svc_getcaller () rpc_soc (3),
svc_getreq () rpc_soc (3),
svc_getreqset () rpc_svc_calls (3),
svc_getrpccaller () rpc_svc_calls (3),
svc_kerb_reg () kerberos_rpc (3),
svc_raw_create () rpc_svc_create (3),
svc_reg () rpc_svc_calls (3),
svc_register () rpc_soc (3),
svc_run () rpc_svc_reg (3),
svc_sendreply () rpc_svc_reg (3),
svc_tli_create () rpc_svc_create (3),
svc_tp_create () rpc_svc_create (3),
svc_unreg () rpc_svc_calls (3),
svc_unregister () rpc_soc (3),
svc_vc_create () rpc_svc_create (3),
svcerr_auth () rpc_svc_err (3),
svcerr_decode () rpc_svc_err (3),
svcerr_noproc () rpc_svc_err (3),

NetBSD 3.0 May 7, 1993 6

RPC (3) NetBSD Library Functions Manual RPC (3)

svcerr_noprog () rpc_svc_err (3),
svcerr_progvers () rpc_svc_err (3),
svcerr_systemerr () rpc_svc_err (3),
svcerr_weakauth () rpc_svc_err (3),
svcfd_create () rpc_soc (3),
svcraw_create () rpc_soc (3),
svctcp_create () rpc_soc (3),
svcudp_bufcreate () rpc_soc (3),
svcudp_create () rpc_soc (3),
xdr_accepted_reply () rpc_xdr (3),
xdr_authsys_parms () rpc_xdr (3),
xdr_authunix_parms () rpc_soc (3),
xdr_callhdr () rpc_xdr (3),
xdr_callmsg () rpc_xdr (3),
xdr_opaque_auth () rpc_xdr (3),
xdr_rejected_reply () rpc_xdr (3),
xdr_replymsg () rpc_xdr (3),
xprt_register () rpc_svc_calls (3),
xprt_unregister () rpc_svc_calls (3),

FILES
/etc/netconfig

SEE ALSO
getnetconfig (3), getnetpath (3), rpc_clnt_auth (3), rpc_clnt_calls (3),
rpc_clnt_create (3), rpc_svc_calls (3), rpc_svc_create (3), rpc_svc_err (3),
rpc_svc_reg (3), rpc_xdr (3), rpcbind (3), xdr (3), netconfig (5)

NetBSD 3.0 May 7, 1993 7

RPC_CLNT_AUTH (3) NetBSD Library Functions Manual RPC_CLNT_AUTH (3)

NAME
auth_destroy , authnone_create , authsys_create , authsys_create_default — library
routines for client side remote procedure call authentication

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <rpc/rpc.h>

void
auth_destroy (AUTH ∗auth);

AUTH ∗
authnone_create (void);

AUTH ∗
authsys_create (const char ∗host , const uid_t uid , const gid_t gid ,

const int len , const gid_t ∗aup_gids);

AUTH ∗
authsys_create_default (void);

DESCRIPTION
These routines are part of the RPC library that allows C language programs to make procedure calls on other
machines across the network, with desired authentication.

These routines are normally called after creating theCLIENT handle. Thecl_auth field of theCLIENT
structure should be initialized by theAUTHstructure returned by some of the following routines. The client’s
authentication information is passed to the server when the RPC call is made.

Only theNULLand theSYSstyle of authentication is discussed here.

ROUTINES
auth_destroy () A function macro that destroys the authentication information associ-

ated withauth . Destruction usually involves deallocation of private
data structures. The use ofauth () is undefined after calling
auth_destroy ().

authnone_create () Create and return an RPC authentication handle that passes nonusable
authentication information with each remote procedure call.This is the
default authentication used by RPC.

authsys_create () Create and return an RPC authentication handle that contains
AUTH_SYSauthentication information. The parameterhost is the
name of the machine on which the information was created;uid is the
user’s user ID;gid is the user’s current group ID;len andaup_gids
refer to a counted array of groups to which the user belongs.

authsys_create_default () Call authsys_create () with the appropriate parameters.

SEE ALSO
rpc (3), rpc_clnt_calls (3), rpc_clnt_create (3)

NetBSD 3.0 May 7, 1993 1

RPC_CLNT_CALLS (3) NetBSD Library Functions Manual RPC_CLNT_CALLS (3)

NAME
rpc_clnt_calls , clnt_call , clnt_freeres , clnt_geterr , clnt_perrno , clnt_perror ,
clnt_sperrno , clnt_sperror , rpc_broadcast , rpc_broadcast_exp , rpc_call — library
routines for client side calls

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <rpc/rpc.h>

enum clnt_stat
clnt_call (CLIENT ∗clnt , const rpcproc_t procnum , const xdrproc_t inproc ,

const char ∗in , const xdrproc_t outproc , caddr_t out ,
const struct timeval tout);

bool_t
clnt_freeres (CLIENT ∗clnt , const xdrproc_t outproc , caddr_t out);

void
clnt_geterr (const CLIENT ∗ clnt , struct rpc_err ∗ errp);

void
clnt_perrno (const enum clnt_stat stat);

void
clnt_perror (const CLIENT ∗ clnt , const char ∗s);

char ∗
clnt_sperrno (const enum clnt_stat stat);

char ∗
clnt_sperror (const CLIENT ∗clnt , const char ∗ s);

enum clnt_stat
rpc_broadcast (const rpcprog_t prognum, const rpcvers_t versnum ,

const rpcproc_t procnum , const xdrproc_t inproc , const char ∗in ,
const xdrproc_t outproc , caddr_t out , const resultproc_t eachresult ,
const char ∗nettype);

enum clnt_stat
rpc_broadcast_exp (rpcprog_t prognum, const rpcvers_t versnum ,

const rpcproc_t procnum, const xdrproc_t xargs ,
caddr_t argsp, const xdrproc_t xresults , caddr_t resultsp ,
const int inittime , const int waittime , const resultproc_t eachresult ,
const char ∗ nettype);

enum clnt_stat
rpc_call (const char ∗host, const rpcprog_t prognum ,

const rpcvers_t versnum ,
const rpcproc_t procnum, const xdrproc_t inproc , const char ∗in ,
const xdrproc_t outproc , char ∗out , const char ∗nettype);

DESCRIPTION
RPC library routines allow C language programs to make procedure calls on other machines across the net-
work. First, the client calls a procedure to send a request to the server. Upon receipt of the request, the
server calls a dispatch routine to perform the requested service, and then sends back a reply.

NetBSD 3.0 December 4, 2005 1

RPC_CLNT_CALLS (3) NetBSD Library Functions Manual RPC_CLNT_CALLS (3)

Theclnt_call (), rpc_call (), andrpc_broadcast () routines handle the client side of the procedure
call. Theremaining routines deal with error handling in the case of errors.

Some of the routines take aCLIENT handle as one of the parameters.A CLIENT handle can be created by
an RPC creation routine such asclnt_create () (seerpc_clnt_create (3)).

These routines are safe for use in multithreaded applications.CLIENT handles can be shared between
threads, however in this implementation requests by different threads are serialized (that is, the first request
will receive its results before the second request is sent).

ROUTINES
Seerpc (3) for the definition of theCLIENT data structure.

clnt_call ()
A function macro that calls the remote procedureprocnum associated with the client handle,
clnt , which is obtained with an RPC client creation routine such asclnt_create () (see
rpc_clnt_create (3)). Theparameterinproc () is the XDR function used to encode the pro-
cedure’s parameters, andoutproc () is the XDR function used to decode the procedure’s results;
in () is the address of the procedure’s argument(s), andout () is the address of where to place the
result(s). tout () is the time allowed for results to be returned, which is overridden by a time-out
set explicitly throughclnt_control (), seerpc_clnt_create (3). If the remote call suc-
ceeds, the status returned isRPC_SUCCESS, otherwise an appropriate status is returned.

clnt_freeres ()
A function macro that frees any data allocated by the RPC/XDR system when it decoded the results
of an RPC call. The parameterout is the address of the results, andoutproc is the XDR routine
describing the results. This routine returns 1 if the results were successfully freed, and 0 otherwise.

clnt_geterr ()
A function macro that copies the error structure out of the client handle to the structure at address
errp .

clnt_perrno ()
Print a message to standard error corresponding to the condition indicated bystat . A newline is
appended. Normallyused after a procedure call fails for a routine for which a client handle is not
needed, for instancerpc_call ().

clnt_perror ()
Print a message to the standard error indicating why an RPC call failed;clnt is the handle used to
do the call. The message is prepended with strings and a colon.A newline is appended.Normally
used after a remote procedure call fails for a routine which requires a client handle, for instance
clnt_call ().

clnt_sperrno ()
Take the same arguments asclnt_perrno (), but instead of sending a message to the standard
error indicating why an RPC call failed, return a pointer to a string which contains the message.
clnt_sperrno () is normally used instead ofclnt_perrno () when the program does not have
a standard error (as a program running as a server quite likely does not), or if the programmer does
not want the message to be output withprintf () (seeprintf (3)), or if a message format differ-
ent than that supported byclnt_perrno () is to be used.Note: unlike clnt_sperror () and
clnt_spcreaterror () (see rpc_clnt_create (3)), clnt_sperrno () does not return
pointer to static data so the result will not get overwritten on each call.

clnt_sperror ()
Like clnt_perror (), except that (like clnt_sperrno ()) it returns a string instead of printing
to standard error. Howev er, clnt_sperror () does not append a newline at the end of the mes-

NetBSD 3.0 December 4, 2005 2

RPC_CLNT_CALLS (3) NetBSD Library Functions Manual RPC_CLNT_CALLS (3)

sage. Warning: returns pointer to a buffer that is overwritten on each call.

rpc_broadcast ()
Like rpc_call (), except the call message is broadcast to all the connectionless transports speci-
fied bynettype . If nettype is NULL, it defaults to “netpath”. Each time it receives a response,
this routine callseachresult (), whose form is:bool_t eachresult (caddr_t out ,
const struct netbuf ∗ addr , const struct netconfig ∗ netconf) where
out is the same asout passed torpc_broadcast (), except that the remote procedure’s output is
decoded there;addr points to the address of the machine that sent the results, andnetconf is the
netconfig structure of the transport on which the remote server responded.If eachresult ()
returns 0,rpc_broadcast () waits for more replies; otherwise it returns with appropriate status.
Warning: broadcast file descriptors are limited in size to the maximum transfer size of that transport.
For Ethernet, this value is 1500 bytes.rpc_broadcast () usesAUTH_SYScredentials by default
(seerpc_clnt_auth (3)).

rpc_broadcast_exp ()
Like rpc_broadcast (), except that the initial timeout,inittime and the maximum timeout,
waittime are specified in milliseconds. inittime is the initial time that
rpc_broadcast_exp () waits before resending the request.After the first resend, the re-trans-
mission interval increases exponentially until it exceedswaittime .

rpc_call ()
Call the remote procedure associated withprognum , versnum , and procnum on the machine,
host . The parameterinproc is used to encode the procedure’s parameters, andoutproc is
used to decode the procedure’s results;in is the address of the procedure’s argument(s), andout is
the address of where to place the result(s).nettype can be any of the values listed onrpc (3).
This routine returnsRPC_SUCCESSif it succeeds, or an appropriate status is returned.Use the
clnt_perrno () routine to translate failure status into error messages.Warning: rpc_call ()
uses the first available transport belonging to the classnettype , on which it can create a connec-
tion. You do not have control of timeouts or authentication using this routine.

SEE ALSO
printf (3), rpc (3), rpc_clnt_auth (3), rpc_clnt_create (3)

NetBSD 3.0 December 4, 2005 3

RPC_CLNT_CREATE (3) NetBSD Library Functions Manual RPC_CLNT_CREATE (3)

NAME
rpc_clnt_create , clnt_control , clnt_create , clnt_create_vers , clnt_destroy ,
clnt_dg_create , clnt_pcreateerror , clnt_raw_create , clnt_spcreateerror ,
clnt_tli_create , clnt_tp_create , clnt_vc_create , rpc_createerr — library routines
for dealing with creation and manipulation of CLIENT handles

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <rpc/rpc.h>

bool_t
clnt_control (CLIENT ∗clnt , const u_int req , char ∗info);

CLIENT ∗
clnt_create (const char ∗ host , const rpcprog_t prognum ,

const rpcvers_t versnum , const char ∗nettype);

CLIENT ∗
clnt_create_vers (const char ∗ host , const rpcprog_t prognum ,

rpcvers_t ∗vers_outp , const rpcvers_t vers_low ,
const rpcvers_t vers_high , char ∗nettype);

void
clnt_destroy (CLIENT ∗ , clnt);

CLIENT ∗
clnt_dg_create (const int fildes , const struct netbuf ∗svcaddr ,

const rpcprog_t prognum , const rpcvers_t versnum , const u_int sendsz ,
const u_int recvsz);

void
clnt_pcreateerror (const char ∗s);

char ∗
clnt_spcreateerror (const char ∗s);

CLIENT ∗
clnt_raw_create (const rpcprog_t prognum , const rpcvers_t versnum);

CLIENT ∗
clnt_tli_create (const int fildes , const struct netconfig ∗netconf ,

const struct netbuf ∗svcaddr , const rpcprog_t prognum ,
const rpcvers_t versnum , const u_int sendsz , const u_int recvsz);

CLIENT ∗
clnt_tp_create (const char ∗ host , const rpcprog_t prognum ,

const rpcvers_t versnum , const struct netconfig ∗netconf);

CLIENT ∗
clnt_vc_create (const int fildes , const struct netbuf ∗svcaddr ,

const rpcprog_t prognum , const rpcvers_t versnum , const u_int sendsz ,
const u_int recvsz);

NetBSD 3.0 May 7, 1993 1

RPC_CLNT_CREATE (3) NetBSD Library Functions Manual RPC_CLNT_CREATE (3)

DESCRIPTION
RPC library routines allow C language programs to make procedure calls on other machines across the net-
work. Firsta CLIENT handle is created and then the client calls a procedure to send a request to the server.
On receipt of the request, the server calls a dispatch routine to perform the requested service, and then sends
a reply.

ROUTINES
clnt_control ()

A function macro to change or retrieve various information about a client object.req indicates
the type of operation, andinfo is a pointer to the information.For both connectionless and con-
nection-oriented transports, the supported values ofreq and their argument types and what they
do are:

CLSET_TIMEOUT struct timeval ∗ set total timeout
CLGET_TIMEOUT struct timeval ∗ get total timeout

Note: if you set the timeout usingclnt_control (), the timeout argument passed by
clnt_call () is ignored in all subsequent calls.

Note: If you set the timeout value to 0clnt_control () immediately returns an error (
RPC_TIMEDOUT). Setthe timeout parameter to 0 for batching calls.

CLGET_SVC_ADDR struct netbuf∗ get servers address
CLGET_FD int ∗ get fd from handle
CLSET_FD_CLOSE void closefd on destroy
CLSET_FD_NCLOSE void don’t close fd on destroy
CLGET_VERS unsigned long∗ get RPC program version
CLSET_VERS unsigned long∗ set RPC program version
CLGET_XID unsigned long∗ get XID of previous call
CLSET_XID unsigned long∗ set XID of next call

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval ∗ set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval ∗ get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before retransmitting the
request.clnt_control () returnsTRUEon success andFALSEon failure.

clnt_create ()
Generic client creation routine for programprognum and versionversnum . host identifies
the name of the remote host where the server is located.nettype indicates the class of trans-
port protocol to use. The transports are tried in left to right order inNETPATHenvironment vari-
able or in top to bottom order in the netconfig database.clnt_create () tries all the transports
of thenettype class available from theNETPATHenvironment variable and the netconfig data-
base, and chooses the first successful one.A default timeout is set and can be modified using
clnt_control (). This routine returnsNULL if it f ails. Theclnt_pcreateerror () rou-
tine can be used to print the reason for failure.

Note: clnt_create () returns a valid client handle even if the particular version number sup-
plied toclnt_create () is not registered with therpcbind (8) service. This mismatch will be
discovered by aclnt_call () later (seerpc_clnt_calls (3)).

clnt_create_vers ()
Generic client creation routine which is similar toclnt_create () but which also checks for
the version availability. host identifies the name of the remote host where the server is located.
nettype indicates the class transport protocols to be used.If the routine is successful it returns

NetBSD 3.0 May 7, 1993 2

RPC_CLNT_CREATE (3) NetBSD Library Functions Manual RPC_CLNT_CREATE (3)

a client handle created for the highest version betweenvers_low andvers_high that is sup-
ported by the server. vers_outp is set to this value. Thatis, after a successful return
vers_low ≤ ∗vers_outp ≤ vers_high . If no version betweenvers_low and
vers_high is supported by the server then the routine fails and returnsNULL. A default time-
out is set and can be modified usingclnt_control (). This routine returnsNULL if it f ails.
The clnt_pcreateerror () routine can be used to print the reason for failure. Note:
clnt_create () returns a valid client handle even if the particular version number supplied to
clnt_create () is not registered with therpcbind (8) service. This mismatch will be discov-
ered by aclnt_call () later (seerpc_clnt_calls (3)). However, clnt_create_vers ()
does this for you and returns a valid handle only if a version within the range supplied is sup-
ported by the server.

clnt_destroy ()
A function macro that destroys the client’s RPC handle.Destruction usually involves dealloca-
tion of private data structures, includingclnt itself. Useof clnt is undefined after calling
clnt_destroy (). If the RPC library opened the associated file descriptor, or
CLSET_FD_CLOSEwas set usingclnt_control (), the file descriptor will be closed.The
caller should callauth_destroy (clnt->cl_auth) (before callingclnt_destroy ()) to
destroy the associatedAUTHstructure (seerpc_clnt_auth (3)).

clnt_dg_create ()
This routine creates an RPC client for the remote programprognum and versionversnum ; the
client uses a connectionless transport.The remote program is located at addresssvcaddr . The
parameterfildes is an open and bound file descriptor. This routine will resend the call mes-
sage in intervals of 15 seconds until a response is received or until the call times out. The total
time for the call to time out is specified byclnt_call () (see clnt_call () in
rpc_clnt_calls (3)). Theretry time out and the total time out periods can be changed using
clnt_control (). Theuser may set the size of the send and receive buffers with the parame-
terssendsz andrecvsz ; values of 0 choose suitable defaults. Thisroutine returnsNULL if it
fails.

clnt_pcreateerror ()
Print a message to standard error indicating why a client RPC handle could not be created.The
message is prepended with the strings and a colon, and appended with a newline.

clnt_spcreateerror ()
Like clnt_pcreateerror (), except that it returns a string instead of printing to the standard
error. A newline is not appended to the message in this case.Warning: returns a pointer to a
buffer that is overwritten on each call.

clnt_raw_create ()
This routine creates an RPC client handle for the remote programprognum and version
versnum . The transport used to pass messages to the service is a buffer within the process’s
address space, so the corresponding RPC server should live in the same address space; (see
svc_raw_create () in rpc_svc_create (3)). Thisallows simulation of RPC and measure-
ment of RPC overheads, such as round trip times, without any kernel or networking interference.
This routine returnsNULL if it f ails. clnt_raw_create () should be called after
svc_raw_create ().

clnt_tli_create ()
This routine creates an RPC client handle for the remote programprognum and version
versnum . The remote program is located at addresssvcaddr . If svcaddr is NULLand it is
connection-oriented, it is assumed that the file descriptor is connected.For connectionless trans-
ports, ifsvcaddr is RPC_UNKNOWNADDRerror is set.fildes is a file descriptor which may
be open, bound and connected.If it is RPC_ANYFD, it opens a file descriptor on the transport

NetBSD 3.0 May 7, 1993 3

RPC_CLNT_CREATE (3) NetBSD Library Functions Manual RPC_CLNT_CREATE (3)

specified by netconf . If fildes is RPC_ANYFD and netconf is NULL, a
RPC_UNKNOWNPROTOerror is set. If fildes is unbound, then it will attempt to bind the
descriptor. The user may specify the size of the buffers with the parameterssendsz and
recvsz ; values of 0 choose suitable defaults. Dependingupon the type of the transport (con-
nection-oriented or connectionless),clnt_tli_create () calls appropriate client creation rou-
tines. Thisroutine returnsNULL if it f ails. Theclnt_pcreateerror () routine can be used
to print the reason for failure. Theremote rpcbind service (seerpcbind (8)) is not consulted for
the address of the remote service.

clnt_tp_create ()
Like clnt_create () exceptclnt_tp_create () tries only one transport specified through
netconf . clnt_tp_create () creates a client handle for the programprognum , the version
versnum , and for the transport specified bynetconf . Default options are set, which can be
changed usingclnt_control () calls. The remote rpcbind service on the hosthost is con-
sulted for the address of the remote service.This routine returnsNULL if it f ails. The
clnt_pcreateerror () routine can be used to print the reason for failure.

clnt_vc_create ()
This routine creates an RPC client for the remote programprognum and versionversnum ; the
client uses a connection-oriented transport.The remote program is located at addresssvcaddr .
The parameterfildes is an open and bound file descriptor. The user may specify the size of
the send and receive buffers with the parameterssendsz andrecvsz ; values of 0 choose suit-
able defaults. Thisroutine returnsNULL if it f ails. Theaddresssvcaddr should not beNULL
and should point to the actual address of the remote program.clnt_vc_create () does not
consult the remote rpcbind service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that fails. It is
used by the routineclnt_pcreateerror () to print the reason for the failure.

SEE ALSO
rpc (3), rpc_clnt_auth (3), rpc_clnt_calls (3), rpcbind (8)

NetBSD 3.0 May 7, 1993 4

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

NAME
rpc_soc , auth_destroy , authnone_create , authunix_create ,
authunix_create_default , callrpc , clnt_broadcast , clnt_call , clnt_control ,
clnt_create , clnt_destroy , clnt_freeres , clnt_geterr , clnt_pcreateerror ,
clnt_perrno , clnt_perror , clnt_spcreateerror , clnt_sperrno , clnt_sperror ,
clntraw_create , clnttcp_create , clntudp_bufcreate , clntudp_create ,
get_myaddress , pmap_getmaps , pmap_getport , pmap_rmtcall , pmap_set , pmap_unset ,
registerrpc , rpc_createerr , svc_destroy , svc_fds , svc_fdset , svc_getargs ,
svc_getcaller , svc_getreg , svc_getregset , svc_register , svc_run , svc_sendreply ,
svc_unregister , svcerr_auth , svcerr_decode , svcerr_noproc , svcerr_noprog ,
svcerr_progvers , svcerr_systemerr , svcerr_weakauth , svcfd_create ,
svcraw_create , xdr_accepted_reply , xdr_authunix_parms , xdr_callhdr ,
xdr_callmsg , xdr_opaque_auth , xdr_pmap , xdr_pmaplist , xdr_rejected_reply ,
xdr_replymsg , xprt_register , xprt_unregister — library routines for remote procedure calls

SYNOPSIS
#include <rpc/rpc.h>

void
auth_destroy (AUTH ∗auth);

AUTH ∗
authnone_create (void);

AUTH ∗
authunix_create (char ∗host , int uid , int gid , int len , int ∗aup_gids);

AUTH ∗
authunix_create_default (void);

int
callrpc (char ∗host , u_long prognum , u_long versnum , u_long procnum ,

xdrproc_t inproc , char ∗in , xdrproc_t outproc , char ∗out);

enum clnt_stat
clnt_broadcast (u_long prognum , u_long versnum , u_long procnum ,

xdrproc_t inproc , char ∗in , xdrproc_t outproc , char ∗out ,
resultproc_t eachresult);

enum clnt_stat
clnt_call (CLIENT ∗clnt , u_long procnum , xdrproc_t inproc , char ∗in ,

xdrproc_t outproc , char ∗out , struct timeval tout);

int
clnt_destroy (CLIENT ∗clnt);

CLIENT ∗
clnt_create (char ∗host , u_long prog , u_long vers , char ∗proto);

bool_t
clnt_control (CLIENT ∗cl , u_int req , char ∗info);

int
clnt_freeres (CLIENT ∗clnt , xdrproc_t outproc , char ∗out);

void
clnt_geterr (CLIENT ∗clnt , struct rpc_err errp);

NetBSD 3.0 April 17, 2003 1

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

void
clnt_pcreateerror (char ∗s);

void
clnt_perrno (enum clnt_stat stat);

int
clnt_perror (CLIENT ∗clnt , char ∗s);

char ∗
clnt_spcreateerror (const char ∗s);

char ∗
clnt_sperrno (enum clnt_stat stat);

char ∗
clnt_sperror (CLIENT ∗rpch , char ∗s);

CLIENT ∗
clntraw_create (u_long prognum , u_long versnum);

CLIENT ∗
clnttcp_create (struct sockaddr_in ∗addr , u_long prognum , u_long versnum ,

int ∗sockp , u_int sendsz , u_int recvsz);

CLIENT ∗
clntudp_create (struct sockaddr_in ∗addr , u_long prognum , u_long versnum ,

struct timeval wait , int ∗sockp);

CLIENT ∗
clntudp_bufcreate (struct sockaddr_in ∗addr , u_long prognum , u_long versnum ,

struct timeval wait , int ∗sockp , unsigned int sendsize ,
unsigned int recosize);

int
get_myaddress (struct sockaddr_in ∗addr);

struct pmaplist ∗
pmap_getmaps (struct sockaddr_in ∗addr);

u_short
pmap_getport (struct sockaddr_in ∗addr , u_long prognum , u_long versnum ,

u_long protocol);

enum clnt_stat
pmap_rmtcall (struct sockaddr_in ∗addr , u_long prognum , u_long versnum ,

u_long procnum , xdrproc_t inproc , char ∗in , xdrpoc_t outproc , char ∗out ,
struct timeval tout , u_long ∗portp);

int
pmap_set (u_long prognum , u_long versnum , int protocol , int port);

int
pmap_unset (u_long prognum , u_long versnum);

int
registerrpc (u_long prognum , u_long versnum , u_long procnum ,

char ∗(∗procname)() , xdrproc_t inproc , xdrproc_t outproc);

NetBSD 3.0 April 17, 2003 2

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

struct rpc_createerr rpc_createerr;

int
svc_destroy (SVCXPRT∗xprt);

fd_set svc_fdset;
int svc_fds;

int
svc_freeargs (SVCXPRT∗xprt , xdrproc_t inproc , char ∗in);

int
svc_getargs (SVCXPRT∗xprt , xdrproc_t inproc , char ∗in);

struct sockaddr_in ∗
svc_getcaller (SVCXPRT∗xprt);

int
svc_getreqset (fd_set ∗rdfds);

int
svc_getreq (int rdfds);

int
svc_register (SVCXPRT∗xprt , u_long prognum , u_long versnum ,

void (∗dispatch)() , u_long protocol);

int
svc_run (void);

int
svc_sendreply (SVCXPRT∗xprt , xdrproc_t outproc , char ∗out);

void
svc_unregister (u_long prognum , u_long versnum);

void
svcerr_auth (SVCXPRT∗xprt , enum auth_stat why);

void
svcerr_decode (SVCXPRT∗xprt);

void
svcerr_noproc (SVCXPRT∗xprt);

void
svcerr_noprog (SVCXPRT∗xprt);

void
svcerr_progvers (SVCXPRT∗xprt);

void
svcerr_systemerr (SVCXPRT∗xprt);

void
svcerr_weakauth (SVCXPRT∗xprt);

SVCXPRT∗
svcraw_create (void);

NetBSD 3.0 April 17, 2003 3

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

SVCXPRT∗
svctcp_create (int sock , u_int send_buf_size , u_int recv_buf_size);

SVCXPRT∗
svcfd_create (int fd , u_int sendsize , u_int recvsize);

SVCXPRT∗
svcudp_bufcreate (int sock , u_int sendsize , u_int recosize);

SVCXPRT∗
svcudp_create (int sock);

int
xdr_accepted_reply (XDR ∗xdrs , struct accepted_reply ∗ar);

int
xdr_authunix_parms (XDR ∗xdrs , struct authunix_parms ∗aupp);

void
xdr_callhdr (XDR ∗xdrs , struct rpc_msg ∗chdr);

int
xdr_callmsg (XDR ∗xdrs , struct rpc_msg ∗cmsg);

int
xdr_opaque_auth (XDR ∗xdrs , struct opaque_auth ∗ap);

int
xdr_pmap (XDR ∗xdrs , struct pmap ∗regs);

int
xdr_pmaplist (XDR ∗xdrs , struct pmaplist ∗∗rp);

int
xdr_rejected_reply (XDR ∗xdrs , struct rejected_reply ∗rr);

int
xdr_replymsg (XDR ∗xdrs , struct rpc_msg ∗rmsg);

void
xprt_register (SVCXPRT∗xprt);

void
xprt_unregister (SVCXPRT∗xprt);

DESCRIPTION
The svc and clnt functions described in this page are the old, TS-RPC interface to the XDR and RPC library,
and exist for backward compatibility. The new interface is described in the pages referenced fromrpc (3).

These routines allow C programs to make procedure calls on other machines across the network. First,the
client calls a procedure to send a data packet to the server. Upon receipt of the packet, the server calls a dis-
patch routine to perform the requested service, and then sends back a reply. Finally, the procedure call
returns to the client.

auth_destroy ()
A macro that destroys the authentication information associated withauth . Destruction usually
involves deallocation of private data structures. The use ofauth is undefined after calling
auth_destroy ().

NetBSD 3.0 April 17, 2003 4

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

authnone_create ()
Create and returns an RPC authentication handle that passes nonusable authentication information with
each remote procedure call. This is the default authentication used by RPC.

authunix_create ()
Create and return an RPC authentication handle that contains authentication information. The parame-
ter host is the name of the machine on which the information was created;uid is the user’s user ID;
gid is the user’s current group id;len andaup_gids refer to a counted array of groups to which the
user belongs. It is easy to impersonate a user.

authunix_create_default ()
Callsauthunix_create () with the appropriate parameters.

callrpc ()
Call the remote procedure associated withprognum , versnum , and procnum on the machine,
host . The parameterin is the address of the procedure’s argument(s), andout is the address of
where to place the result(s);inproc is used to encode the procedure’s parameters, andoutproc is
used to decode the procedure’s results. Thisroutine returns zero if it succeeds, or the value ofenum
clnt_statcast to an integer if it fails. Theroutineclnt_perrno () is handy for translating failure sta-
tuses into messages.

Warning: calling remote procedures with this routine uses UDP/IP as a transport; see
clntudp_create () for restrictions.You do not have control of timeouts or authentication using this
routine.

clnt_broadcast ()
Like callrpc (), except the call message is broadcast to all locally connected broadcast nets.Each
time it receives a response, this routine callseachresult (), whose form is int
eachresult (char ∗out , struct sockaddr_in ∗addr) whereout is the same asout
passed toclnt_broadcast (), except that the remote procedure’s output is decoded there;addr
points to the address of the machine that sent the results.If eachresult () returns zero,
clnt_broadcast () waits for more replies; otherwise it returns with appropriate status.

Warning: broadcast sockets are limited in size to the maximum transfer unit of the data link.For ether-
net, this value is 1500 bytes.

clnt_call ()
A macro that calls the remote procedureprocnum associated with the client handle,clnt , which is
obtained with an RPC client creation routine such asclnt_create (). The parameterin is the
address of the procedure’s argument(s), andout is the address of where to place the result(s);inproc
is used to encode the procedure’s parameters, andoutproc is used to decode the procedure’s results;
tout is the time allowed for results to come back.

clnt_destroy ()
A macro that destroys the client’s RPC handle.Destruction usually involves deallocation of private
data structures, includingclnt itself. Useof clnt is undefined after callingclnt_destroy (). If
the RPC library opened the associated socket, it will close it also. Otherwise, the socket remains open.

clnt_create ()
Generic client creation routine.host identifies the name of the remote host where the server is
located. proto indicates which kind of transport protocol to use.The currently supported values for
this field are “udp” and “tcp”.Default timeouts are set, but can be modified usingclnt_control ().

Warning: Using UDP has its shortcomings.Since UDP-based RPC messages can only hold up to 8
Kbytes of encoded data, this transport cannot be used for procedures that take large arguments or return
huge results.

NetBSD 3.0 April 17, 2003 5

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

clnt_control ()
A macro used to change or retrieve various information about a client object.req indicates the type of
operation, andinfo is a pointer to the information.For both UDP and TCP the supported values of
req and their argument types and what they do are:

CLSET_TIMEOUT struct timeval ; set total timeout.

CLGET_TIMEOUT struct timeval ; get total timeout.

Note: if you set the timeout usingclnt_control (), the timeout
parameter passed toclnt_call () will be ignored in all future calls.

CLGET_SERVER_ADDR struct sockaddr_in ; get server’s address.

The following operations are valid for UDP only:

CLSET_RETRY_TIMEOUT
struct timeval ; set the retry timeout.

CLGET_RETRY_TIMEOUT
struct timeval ; get the retry timeout.

The retry timeout is the time that UDP RPC waits for the server to reply
before retransmitting the request.

clnt_freeres ()
A macro that frees any data allocated by the RPC/XDR system when it decoded the results of an RPC
call. Theparameterout is the address of the results, andoutproc is the XDR routine describing the
results. Thisroutine returns one if the results were successfully freed, and zero otherwise.

clnt_geterr ()
A macro that copies the error structure out of the client handle to the structure at addresserrp .

clnt_pcreateerror ()
Print a message to standard error indicating why a client RPC handle could not be created. The mes-
sage is prepended with strings and a colon.A newline character is appended at the end of the mes-
sage. Used when a clnt_create (), clntraw_create (), clnttcp_create (), or
clntudp_create () call fails.

clnt_perrno ()
Print a message to standard error corresponding to the condition indicated bystat . A newline char-
acter is appended at the end of the message. Used aftercallrpc ().

clnt_perror ()
Print a message to standard error indicating why an RPC call failed;clnt is the handle used to do the
call. Themessage is prepended with strings and a colon.A newline character is appended at the end
of the message. Used afterclnt_call ().

clnt_spcreateerror ()
Like clnt_pcreateerror (), except that it returns a string instead of printing to the standard error.

Bugs: returns pointer to static data that is overwritten on each call.

clnt_sperrno ()
Take the same arguments asclnt_perrno (), but instead of sending a message to the standard error
indicating why an RPC call failed, return a pointer to a string which contains the message.

clnt_sperrno () is used instead ofclnt_perrno () if the program does not have a standard error
(as a program running as a server quite likely does not), or if the programmer does not want the mes-
sage to be output withprintf (3), or if a message format different than that supported by

NetBSD 3.0 April 17, 2003 6

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

clnt_perrno () is to be used.Note: unlike clnt_sperror () and clnt_spcreateerror (),
clnt_sperrno () returns a pointer to static data, but the result will not get overwritten on each call.

clnt_sperror ()
Like clnt_perror (), except that (like clnt_sperrno ()) it returns a string instead of printing to
standard error.

Bugs: returns pointer to static data that is overwritten on each call.

clntraw_create ()
This routine creates a toy RPC client for the remote programprognum , versionversnum . The trans-
port used to pass messages to the service is actually a buffer within the process’s address space, so the
corresponding RPC server should live in the same address space; seesvcraw_create (). This
allows simulation of RPC and acquisition of RPC overheads, such as round trip times, without any ker-
nel interference. This routine returnsNULL if it fails.

clnttcp_create ()
This routine creates an RPC client for the remote programprognum , versionversnum ; the client
uses TCP/IP as a transport.The remote program is located at Internet address∗addr . If
addr->sin_port is zero, then it is set to the actual port that the remote program is listening on (the
remoterpcbind (8) orportmap service is consulted for this information). The parametersockp is
a socket; if it is RPC_ANYSOCK, then this routine opens a new one and setssockp . Since TCP-based
RPC uses buffered I/O , the user may specify the size of the send and receive buffers with the parame-
ters sendsz and recvsz ; values of zero choose suitable defaults. Thisroutine returnsNULL if it
fails.

clntudp_create ()
This routine creates an RPC client for the remote programprognum , versionversnum ; the client
uses UDP/IP as a transport.The remote program is located at Internet addressaddr . If
addr->sin_port is zero, then it is set to actual port that the remote program is listening on (the
remoterpcbind (8) orportmap service is consulted for this information). The parametersockp is
a socket; if it is RPC_ANYSOCK, then this routine opens a new one and setssockp . The UDP trans-
port resends the call message in intervals of wait time until a response is received or until the call
times out. The total time for the call to time out is specified byclnt_call .

Warning: since UDP-based RPC messages can only hold up to 8 Kbytes of encoded data, this transport
cannot be used for procedures that take large arguments or return huge results.

clntudp_bufcreate ()
This routine creates an RPC client for the remote programprognum , on versnum ; the client uses
UDP/IP as a transport.The remote program is located at Internet addressaddr . If
addr->sin_port is zero, then it is set to actual port that the remote program is listening on (the
remoterpcbind (8) orportmap service is consulted for this information). The parametersockp is
a socket; if it is RPC_ANYSOCK, then this routine opens a new one and setssockp . The UDP trans-
port resends the call message in intervals ofwait time until a response is received or until the call
times out. The total time for the call to time out is specified byclnt_call .

This allows the user to specify the maximum packet size for sending and receiving UDP-based RPC
messages.

get_myaddress ()
Stuff the machine’s IP address into∗addr , without consulting the library routines that deal with
/etc/hosts . The port number is always set tohtons (PMAPPORT). Returnszero on success, non-
zero on failure.

NetBSD 3.0 April 17, 2003 7

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

pmap_getmaps ()
A user interface to therpcbind (8) service, which returns a list of the current RPC program-to-port
mappings on the host located at IP address∗addr . This routine can returnNULL. The command

rpcinfo −p
uses this routine.

pmap_getport ()
A user interface to therpcbind (8) service, which returns the port number on which waits a service
that supports program numberprognum , versionversnum , and speaks the transport protocol associ-
ated withprotocol . The value ofprotocol is most likely IPPROTO_UDPor IPPROTO_TCP. A
return value of zero means that the mapping does not exist or that the RPC system failured to contact
the remoterpcbind (8) service. In the latter case, the global variablerpc_createerr () contains
the RPC status.

pmap_rmtcall ()
A user interface to therpcbind (8) service, which instructsrpcbind (8) on the host at IP address
∗addr to make an RPC call on your behalf to a procedure on that host. The parameter∗portp will
be modified to the program’s port number if the procedure succeeds. The definitions of other parame-
ters are discussed incallrpc () andclnt_call (). Thisprocedure should be used for a “ping” and
nothing else. See alsoclnt_broadcast ().

pmap_set ()
A user interface to therpcbind (8) service, which establishes a mapping between the triple
[prognum , versnum , protocol] and port on the machine’s rpcbind (8) service. The value of
protocol is most likely IPPROTO_UDPor IPPROTO_TCP. This routine returns one if it succeeds,
zero otherwise. Automatically done bysvc_register ().

pmap_unset ()
A user interface to therpcbind (8) service, which destroys all mapping between the triple
[prognum , versnum , ∗] and ports on the machine’s rpcbind (8) service. This routine returns
one if it succeeds, zero otherwise.

registerrpc ()
Register procedureprocname with the RPC service package.If a request arrives for program
prognum , versionversnum , and procedureprocnum , procname is called with a pointer to its
parameter(s);progname should return a pointer to its static result(s);inproc is used to decode the
parameters whileoutproc is used to encode the results.This routine returns zero if the registration
succeeded, −1 otherwise.

Warning: remote procedures registered in this form are accessed using the UDP/IP transport; see
svcudp_bufcreate () for restrictions.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client creation routine that does not succeed. Use the
routineclnt_pcreateerror () to print the reason why.

svc_destroy ()
A macro that destroys the RPC service transport handle,xprt . Destruction usually involves dealloca-
tion of private data structures, includingxprt itself. Useof xprt is undefined after calling this rou-
tine.

fd_set svc_fdset;
A global variable reflecting the RPC service side’s read file descriptor bit mask; it is suitable as a
parameter to theselect (2) system call. This is only of interest if a service implementor does not call
svc_run (), but rather does his own asynchronous event processing. This variable is read-only (do not
pass its address toselect (2)!), yet it may change after calls tosvc_getreqset () or any creation

NetBSD 3.0 April 17, 2003 8

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

routines.

int svc_fds;
Similar to svc_fedset (), but limited to 32 descriptors. This interface is obsoleted by
svc_fdset ().

svc_freeargs ()
A macro that frees any data allocated by the RPC/XDR system when it decoded the arguments to a ser-
vice procedure usingsvc_getargs (). This routine returns 1 if the results were successfully freed,
and zero otherwise.

svc_getargs ()
A macro that decodes the arguments of an RPC request associated with the RPC service transport han-
dle,xprt . The parameterin is the address where the arguments will be placed;inproc is the XDR
routine used to decode the arguments. Thisroutine returns one if decoding succeeds, and zero other-
wise.

svc_getcaller ()
The approved way of getting the network address of the caller of a procedure associated with the RPC
service transport handle,xprt .

svc_getreqset ()
This routine is only of interest if a service implementor does not callsvc_run (), but instead imple-
ments custom asynchronous event processing. It is called when theselect (2) system call has deter-
mined that an RPC request has arrived on some RPC socket(s) ;rdfds is the resultant read file
descriptor bit mask. The routine returns when all sockets associated with the value of rdfds have
been serviced.

svc_getreq ()
Similar to svc_getreqset (), but limited to 32 descriptors. This interface is obsoleted by
svc_getreqset ().

svc_register ()
Associatesprognum andversnum with the service dispatch procedure,dispatch . If protocol
is zero, the service is not registered with therpcbind (8) service. If protocol is non-zero, then a
mapping of the triple [prognum , versnum , protocol] to xprt->xp_port is established with
the localrpcbind (8) service (generallyprotocol is zero,IPPROTO_UDPor IPPROTO_TCP).
The proceduredispatch has the following form: int dispatch (struct svc_req
∗request , SVCXPRT∗xprt).

Thesvc_register () routine returns one if it succeeds, and zero otherwise.

svc_run ()
This routine never returns. Itwaits for RPC requests to arrive, and calls the appropriate service proce-
dure usingsvc_getreq () when one arrives. Thisprocedure is usually waiting for aselect (2) sys-
tem call to return.

svc_sendreply ()
Called by an RPC service’s dispatch routine to send the results of a remote procedure call.The param-
eterxprt is the request’s associated transport handle;outproc is the XDR routine which is used to
encode the results; andout is the address of the results. This routine returns one if it succeeds, zero
otherwise.

svc_unregister ()
Remove all mapping of the double [prognum , versnum] to dispatch routines, and of the triple
[prognum , versnum , ∗] to port number.

NetBSD 3.0 April 17, 2003 9

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

svcerr_auth ()
Called by a service dispatch routine that refuses to perform a remote procedure call due to an authenti-
cation error.

svcerr_decode ()
Called by a service dispatch routine that cannot successfully decode its parameters. See also
svc_getargs ().

svcerr_noproc ()
Called by a service dispatch routine that does not implement the procedure number that the caller
requests.

svcerr_noprog ()
Called when the desired program is not registered with the RPC package. Service implementors usu-
ally do not need this routine.

svcerr_progvers ()
Called when the desired version of a program is not registered with the RPC package. Service imple-
mentors usually do not need this routine.

svcerr_systemerr ()
Called by a service dispatch routine when it detects a system error not covered by any particular proto-
col. For example, if a service can no longer allocate storage, it may call this routine.

svcerr_weakauth ()
Called by a service dispatch routine that refuses to perform a remote procedure call due to insufficient
authentication parameters. The routine callssvcerr_auth (xprt , AUTH_TOOWEAK).

svcraw_create ()
This routine creates a toy RPC service transport, to which it returns a pointer. The transport is really a
buffer within the process’s address space, so the corresponding RPC client should live in the same
address space; seeclntraw_create (). This routine allows simulation of RPC and acquisition of
RPC overheads (such as round trip times), without any kernel interference. This routine returnsNULL
if it fails.

svctcp_create ()
This routine creates a TCP/IP-based RPC service transport, to which it returns a pointer. The transport
is associated with the socket sock , which may beRPC_ANYSOCK, in which case a new socket is cre-
ated. Ifthe socket is not bound to a local TCP port, then this routine binds it to an arbitrary port.Upon
completion,xprt->xp_sock is the transport’s socket descriptor, and xprt->xp_port is the
transport’s port number. This routine returnsNULL if it f ails. SinceTCP-based RPC uses buffered I/O
, users may specify the size of buffers; values of zero choose suitable defaults.

svcfd_create ()
Create a service on top of any open descriptor. Typically, this descriptor is a connected socket for a
stream protocol such as TCP. sendsize and recvsize indicate sizes for the send and receive
buffers. Ifthey are zero, a reasonable default is chosen.

svcudp_bufcreate ()
This routine creates a UDP/IP-based RPC service transport, to which it returns a pointer. The transport
is associated with the socket sock , which may beRPC_ANYSOCK, in which case a new socket is cre-
ated. If the socket is not bound to a local UDP port, then this routine binds it to an arbitrary port.
Upon completion,xprt->xp_sock is the transport’s socket descriptor, and xprt->xp_port is
the transport’s port number. This routine returnsNULL if it fails.

This allows the user to specify the maximum packet size for sending and receiving UDP-based RPC
messages.

NetBSD 3.0 April 17, 2003 10

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

svcudp_create ()
This acts assvcudp_bufcreate (with) predefined sizes for the maximum packet sizes.

xdr_accepted_reply ()
Used for encoding RPC reply messages.This routine is useful for users who wish to generate RPC-
style messages without using the RPC package.

xdr_authunix_parms ()
Used for describing UNIX credentials.This routine is useful for users who wish to generate these cre-
dentials without using the RPC authentication package.

xdr_callhdr ()
Used for describing RPC call header messages. This routine is useful for users who wish to generate
RPC-style messages without using the RPC package.

xdr_callmsg ()
Used for describing RPC call messages. This routine is useful for users who wish to generate RPC-
style messages without using the RPC package.

xdr_opaque_auth ()
Used for describing RPC authentication information messages. This routine is useful for users who
wish to generate RPC-style messages without using the RPC package.

xdr_pmap ()
Used for describing parameters to variousrpcbind (8) procedures, externally. This routine is useful
for users who wish to generate these parameters without using thepmapinterface.

xdr_pmaplist ()
Used for describing a list of port mappings, externally. This routine is useful for users who wish to
generate these parameters without using thepmapinterface.

xdr_rejected_reply ()
Used for describing RPC reply messages. This routine is useful for users who wish to generate RPC-
style messages without using the RPC package.

xdr_replymsg ()
Used for describing RPC reply messages. This routine is useful for users who wish to generate RPC-
style messages without using the RPC package.

xprt_register ()
After RPC service transport handles are created, they should register themselves with the RPC service
package. Thisroutine modifies the global variablesvc_fds. Service implementors usually do not need
this routine.

xprt_unregister ()
Before an RPC service transport handle is destroyed, it should unregister itself with the RPC service
package. Thisroutine modifies the global variablesvc_fds. Service implementors usually do not need
this routine.

SEE ALSO
xdr (3)

The following manuals:

Remote Procedure Calls: Protocol Specification.

Remote Procedure Call Programming Guide.

NetBSD 3.0 April 17, 2003 11

RPC_SOC (3) NetBSD Library Functions Manual RPC_SOC (3)

rpcgen Programming Guide.

Sun Microsystems, Inc., USC-ISI, "RPC: Remote Procedure Call Protocol Specification",RFC, 1050.

NetBSD 3.0 April 17, 2003 12

RPC_SVC_CALLS (3) NetBSD Library Functions Manual RPC_SVC_CALLS (3)

NAME
svc_dg_enablecache , svc_exit , svc_fdset , svc_freeargs , svc_getargs ,
svc_getreq_common , svc_getreq_poll , svc_getreqset , svc_getrpccaller ,
svc_pollset , svc_run , svc_sendreply — library routines for RPC servers

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <rpc/rpc.h>

int
svc_dg_enablecache (SVCXPRT∗xprt , const unsigned cache_size);

void
svc_exit (void);

bool_t
svc_freeargs (const SVCXPRT ∗xprt , const xdrproc_t inproc , caddr_t in);

bool_t
svc_getargs (const SVCXPRT ∗xprt , const xdrproc_t inproc , caddr_t in);

void
svc_getreq_common (const int fd);

void
svc_getreq_poll (struct pollfd ∗pfdp , const int pollretval);

void
svc_getreqset (fd_set ∗ rdfds);

struct netbuf ∗
svc_getrpccaller (const SVCXPRT ∗xprt);

struct sockcred ∗
__svc_getcallercreds (const SVCXPRT ∗xprt);

struct pollfd svc_pollset[FD_SETSIZE];

void
svc_run (void);

bool_t
svc_sendreply (const SVCXPRT ∗xprt , const xdrproc_t outproc ,

const caddr_t ∗out);

DESCRIPTION
These routines are part of the RPC library which allows C language programs to make procedure calls on
other machines across the network.

These routines are associated with the server side of the RPC mechanism.Some of them are called by the
server side dispatch function, while others (such assvc_run ()) are called when the server is initiated.

ROUTINES
Seerpc (3) for the definition of theSVCXPRTdata structure.

NetBSD 3.0 May 3, 1993 1

RPC_SVC_CALLS (3) NetBSD Library Functions Manual RPC_SVC_CALLS (3)

svc_dg_enablecache () This function allocates a duplicate request cache for the service endpoint
xprt , large enough to holdcache_size entries. Onceenabled, there is
no way to disable caching.This routine returns 0 if space necessary for a
cache of the given size was successfully allocated, and 1 otherwise.

svc_exit () This function when called by any of the RPC server procedure or other-
wise, causessvc_run () to return.

As currently implemented,svc_exit () zeroes thesvc_fdset global
variable. If RPC server activity is to be resumed, services must be reregis-
tered with the RPC library either through one of therpc_svc_create ()
functions, or usingxprt_register (). svc_exit () has global scope
and ends all RPC server activity. fd_set svc_fdset A global vari-
able reflecting the RPC server’s read file descriptor bit mask; it is suitable
as a parameter to theselect (2) system call.This is only of interest if
service implementors do not callsvc_run (), but rather do their own
asynchronous event processing. This variable is read-only (do not pass its
address to select (2)!), yet it may change after calls to
svc_getreqset () or any creation routines.

svc_freeargs () A function macro that frees any data allocated by the RPC/XDR system
when it decoded the arguments to a service procedure using
svc_getargs (). This routine returnsTRUEif the results were success-
fully freed, andFALSEotherwise.

svc_getargs () A function macro that decodes the arguments of an RPC request associated
with the RPC service transport handlexprt . The parameterin is the
address where the arguments will be placed;inproc is the XDR routine
used to decode the arguments. Thisroutine returnsTRUEif decoding suc-
ceeds, andFALSEotherwise.

svc_getreq_common () This routine is called to handle a request on the given file descriptor.

svc_getreq_poll () This routine is only of interest if a service implementor does not call
svc_run (), but instead implements custom asynchronous event process-
ing. It is called whenpoll (2) has determined that an RPC request has
arrived on some RPC file descriptors;pollretval () is the return value
from poll (2) andpfdp is the array ofpollfd structures on which the
poll (2) was done.It is assumed to be an array large enough to contain
the maximal number of descriptors allowed.

svc_getreqset () This routine is only of interest if a service implementor does not call
svc_run (), but instead implements custom asynchronous event process-
ing. It is called whenpoll (2) has determined that an RPC request has
arrived on some RPC file descriptors;rdfds is the resultant read file
descriptor bit mask. The routine returns when all file descriptors associ-
ated with the value ofrdfds have been serviced.

svc_getrpccaller () The approved way of getting the network address of the caller of a proce-
dure associated with the RPC service transport handlexprt .

__svc_getcallercreds () Warning: this macro is specific to NetBSD and thus not portable. This
macro returns a pointer to a sockcred structure, defined in
〈sys/socket.h 〉, identifying the calling client. This only works if the
client is calling the server over an AF_LOCALsocket.

NetBSD 3.0 May 3, 1993 2

RPC_SVC_CALLS (3) NetBSD Library Functions Manual RPC_SVC_CALLS (3)

struct pollfd svc_pollset[FD_SETSIZE];
svc_pollsetis an array ofpollfd structures derived from svc_fdset[]. It
is suitable as a parameter to thepoll (2) system call. The derivation of
svc_pollset from svc_fdsetis made in the current implementation in
svc_run (). Serviceimplementors who do not callsvc_run () and who
wish to use this array must perform this derivation themselves.

svc_run () This routine never returns. Itwaits for RPC requests to arrive, and calls
the appropriate service procedure usingsvc_getreq_poll () when one
arrives. Thisprocedure is usually waiting for thepoll (2) system call to
return.

svc_sendreply () Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameterxprt is the request’s associated transport
handle;outproc is the XDR routine which is used to encode the results;
andout is the address of the results.This routine returnsTRUEif it suc-
ceeds,FALSEotherwise.

SEE ALSO
poll (2), rpc (3), rpc_svc_create (3), rpc_svc_err (3), rpc_svc_reg (3)

NetBSD 3.0 May 3, 1993 3

RPC_SVC_CREATE (3) NetBSD Library Functions Manual RPC_SVC_CREATE (3)

NAME
rpc_svc_create , svc_control , svc_create , svc_destroy , svc_dg_create ,
svc_fd_create , svc_raw_create , svc_tli_create , svc_tp_create , svc_vc_create —
library routines for the creation of server handles

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <rpc/rpc.h>

bool_t
svc_control (SVCXPRT∗svc , const u_int req , void ∗info);

int
svc_create (const void (∗dispatch)(struct svc_req ∗, S VCXPRT ∗) ,

const rpcprog_t prognum , const rpcvers_t versnum , const char ∗nettype);

SVCXPRT∗"
svc_dg_create (const int fildes , const u_int sendsz , const u_int recvsz);

void
svc_destroy (SVCXPRT∗xprt);

SVCXPRT∗
svc_fd_create (const int fildes , const u_int sendsz , const u_int recvsz);

SVCXPRT∗
svc_raw_create (void);

SVCXPRT∗
svc_tli_create (const int fildes , const struct netconfig ∗netconf ,

const struct t_bind ∗bindaddr , const u_int sendsz , const u_int recvsz);

SVCXPRT∗
svc_tp_create (const void (∗dispatch)(const struct svc_reg ∗, c onst SVCXPRT ∗) ,

const rpcprog_t prognum , const rpcvers_t versnum ,
const struct netconfig ∗netconf);

SVCXPRT∗
svc_vc_create (const int fildes , const u_int sendsz , const u_int recvsz);

DESCRIPTION
These routines are part of the RPC library which allows C language programs to make procedure calls on
servers across the network. Theseroutines deal with the creation of service handles. Once the handle is cre-
ated, the server can be invoked by calling svc_run ().

ROUTINES
Seerpc (3) for the definition of theSVCXPRTdata structure.

svc_control ()
A function to change or retrieve various information about a service object.req indicates the type
of operation andinfo is a pointer to the information. The supported values ofreq , their argument
types, and what they do are:

NetBSD 3.0 May 3, 1993 1

RPC_SVC_CREATE (3) NetBSD Library Functions Manual RPC_SVC_CREATE (3)

SVCGET_VERSQUIET
If a request is received for a program number served by this server but the version
number is outside the range registered with the server, an
RPC_PROGVERSMISMATCHerror will normally be returned.info should be a
pointer to an integer. Upon successful completion of theSVCGET_VERSQUIET
request,∗info contains an integer which describes the server’s current behavior: 0
indicates normal server behavior (that is, anRPC_PROGVERSMISMATCHerror will
be returned); 1 indicates that the out of range request will be silently ignored.

SVCSET_VERSQUIET
If a request is received for a program number served by this server but the version
number is outside the range registered with the server, an
RPC_PROGVERSMISMATCHerror will normally be returned.It is sometimes
desirable to change this behavior. info should be a pointer to an integer which is
either 0 (indicating normal server behavior - anRPC_PROGVERSMISMATCHerror
will be returned), or 1 (indicating that the out of range request should be silently
ignored).

svc_create ()
svc_create () creates server handles for all the transports belonging to the classnettype .
nettype defines a class of transports which can be used for a particular application. The trans-
ports are tried in left to right order inNETPATHvariable or in top to bottom order in the netconfig
database. Ifnettype is NULL, it defaults tonetpath .

svc_create () registers itself with the rpcbind service (seerpcbind (8)). dispatch is called
when there is a remote procedure call for the given prognum andversnum ; this requires calling
svc_run () (seesvc_run () in rpc_svc_reg (3)). If svc_create () succeeds, it returns the
number of server handles it created, otherwise it returns 0 and an error message is logged.

svc_destroy ()
A function macro that destroys the RPC service handlexprt . Destruction usually involves deallo-
cation of private data structures, includingxprt itself. Useof xprt is undefined after calling this
routine.

svc_dg_create ()
This routine creates a connectionless RPC service handle, and returns a pointer to it. This routine
returnsNULL if it fails, and an error message is logged.sendsz andrecvsz are parameters used
to specify the size of the buffers. If they are 0, suitable defaults are chosen. The file descriptor
fildes should be open and bound. The server is not registered withrpcbind (8). Warning:
since connectionless-based RPC messages can only hold limited amount of encoded data, this trans-
port cannot be used for procedures that take large arguments or return huge results.

svc_fd_create ()
This routine creates a service on top of an open and bound file descriptor, and returns the handle to
it. Typically, this descriptor is a connected file descriptor for a connection-oriented transport.
sendsz and recvsz indicate sizes for the send and receive buffers. If they are 0, reasonable
defaults are chosen. This routine returnsNULL if it fails, and an error message is logged.

svc_raw_create ()
This routine creates an RPC service handle and returns a pointer to it. The transport is really a
buffer within the process’s address space, so the corresponding RPC client should live in the same
address space; (seeclnt_raw_create () in rpc_clnt_create (3)). Thisroutine allows simu-
lation of RPC and acquisition of RPC overheads (such as round trip times), without any kernel and
networking interference.This routine returnsNULL if it fails, and an error message is logged.
Note:svc_run () should not be called when the raw interface is being used.

NetBSD 3.0 May 3, 1993 2

RPC_SVC_CREATE (3) NetBSD Library Functions Manual RPC_SVC_CREATE (3)

svc_tli_create ()
This routine creates an RPC server handle, and returns a pointer to it.fildes is the file descriptor
on which the service is listening.If fildes is RPC_ANYFD, it opens a file descriptor on the trans-
port specified bynetconf . If the file descriptor is unbound andbindaddr is non-nullfildes
is bound to the address specified bybindaddr , otherwisefildes is bound to a default address
chosen by the transport.

Note: thet_bind structure comes from the TLI/XTI SysV interface, whichNetBSD does not use.
The structure is defined in〈rpc/types.h 〉 for compatibility as:

struct t_bind {
struct netbuf addr; / ∗ network address, see rpc(3) ∗/
unsigned int qlen; / ∗ queue length (for listen(2)) ∗/

};

In the case where the default address is chosen, the number of outstanding connect requests is set to
8 for connection-oriented transports.The user may specify the size of the send and receive buffers
with the parameterssendsz and recvsz ; values of 0 choose suitable defaults. Thisroutine
returnsNULL if it fails, and an error message is logged.The server is not registered with the
rpcbind (8) service.

svc_tp_create ()
svc_tp_create () creates a server handle for the network specified bynetconf , and registers
itself with the rpcbind service.dispatch is called when there is a remote procedure call for the
given prognum andversnum ; this requires callingsvc_run (). svc_tp_create () returns the
service handle if it succeeds, otherwise aNULL is returned and an error message is logged.

svc_vc_create ()
This routine creates a connection-oriented RPC service and returns a pointer to it.This routine
returnsNULL if it f ails, and an error message is logged. The users may specify the size of the send
and receive buffers with the parameterssendsz andrecvsz ; values of 0 choose suitable defaults.
The file descriptorfildes should be open and bound. The server is not registered with the
rpcbind (8) service.

SEE ALSO
rpc (3), rpc_svc_calls (3), rpc_svc_err (3), rpc_svc_reg (3), rpcbind (8)

NetBSD 3.0 May 3, 1993 3

RPC_SVC_ERR (3) NetBSD Library Functions Manual RPC_SVC_ERR (3)

NAME
rpc_svc_err , svcerr_auth , svcerr_decode , svcerr_noproc , svcerr_noprog ,
svcerr_progvers , svcerr_systemerr , svcerr_weakauth — library routines for server side
remote procedure call errors

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <rpc/rpc.h>

void
svcerr_auth (const SVCXPRT1 ∗xprt , const enum auth_stat why);

void
svcerr_decode (const SVCXPRT ∗xprt);

void
svcerr_noproc (const SVCXPRT ∗xprt);

void
svcerr_noprog (const SVCXPRT ∗xprt);

void
svcerr_progvers (const SVCXPRT ∗xprt , rpcvers_t low_vers ,

rpcvers_t high_vers);

void
svcerr_systemerr (const SVCXPRT ∗xprt);

void
svcerr_weakauth (const SVCXPRT ∗xprt);

DESCRIPTION
These routines are part of the RPC library which allows C language programs to make procedure calls on
other machines across the network.

These routines can be called by the server side dispatch function if there is any error in the transaction with
the client.

ROUTINES
Seerpc (3) for the definition of theSVCXPRTdata structure.

svcerr_auth ()
Called by a service dispatch routine that refuses to perform a remote procedure call due to an
authentication error.

svcerr_decode () Called by a service dispatch routine that cannot successfully decode the
remote parameters (seesvc_getargs () in rpc_svc_reg (3)).

svcerr_noproc ()
Called by a service dispatch routine that does not implement the procedure number that the caller
requests.

svcerr_noprog ()
Called when the desired program is not registered with the RPC package. Service implementors
usually do not need this routine.

NetBSD 3.0 May 3, 1993 1

RPC_SVC_ERR (3) NetBSD Library Functions Manual RPC_SVC_ERR (3)

svcerr_progvers ()
Called when the desired version of a program is not registered with the RPC package.low_vers
is the lowest version number, and high_vers is the highest version number. Service implemen-
tors usually do not need this routine.

svcerr_systemerr ()
Called by a service dispatch routine when it detects a system error not covered by any particular
protocol. For example, if a service can no longer allocate storage, it may call this routine.

svcerr_weakauth ()
Called by a service dispatch routine that refuses to perform a remote procedure call due to insuffi-
cient (but correct) authentication parameters.The routine calls svcerr_auth (xprt ,
AUTH_TOOWEAK).

SEE ALSO
rpc (3), rpc_svc_calls (3), rpc_svc_create (3), rpc_svc_reg (3)

NetBSD 3.0 May 3, 1993 2

RPC_SVC_REG (3) NetBSD Library Functions Manual RPC_SVC_REG (3)

NAME
rpc_svc_reg , rpc_reg , svc_reg , svc_unreg , svc_auth_reg , xprt_register ,
xprt_unregister — library routines for registering servers

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <rpc/rpc.h>

bool_t
rpc_reg (const rpcprog_t prognum , const rpcvers_t versnum ,

const rpcproc_t procnum , const char ∗(∗procname)() ,
const xdrproc_t inproc , const xdrproc_t outproc , const char ∗nettype);

int
svc_reg (const SVCXPRT ∗xprt , const rpcprog_t prognum ,

const rpcvers_t versnum ,
const void (∗dispatch(struct svc_req ∗, S VCXPRT ∗) ,
const struct netconfig ∗netconf);

void
svc_unreg (const rpcprog_t prognum , const rpcvers_t versnum);

int
svc_auth_reg (const int cred_flavor ,

const enum auth_stat (∗handler(struct svc_req ∗, s truct rpc_msg ∗)));

void
xprt_register (const SVCXPRT ∗xprt);

void
xprt_unregister (const SVCXPRT ∗xprt);

DESCRIPTION
These routines are a part of the RPC library which allows the RPC servers to register themselves with
rpcbind (seerpcbind (8)), and associate the given program and version number with the dispatch function.
When the RPC server receives a RPC request, the library invokes the dispatch routine with the appropriate
arguments.

ROUTINES
Seerpc (3) for the definition of theSVCXPRTdata structure.

rpc_reg ()
Register programprognum , procedureprocname , and versionversnum with the RPC service
package. Ifa request arrives for programprognum , versionversnum , and procedureprocnum ,
procname is called with a pointer to its parameter(s);procname should return a pointer to its
static result(s);inproc is the XDR function used to decode the parameters whileoutproc is the
XDR function used to encode the results. Procedures are registered on all available transports of the
classnettype . Seerpc (3). Thisroutine returns 0 if the registration succeeded, -1 otherwise.

svc_reg ()
Associatesprognum and versnum with the service dispatch procedure,dispatch . If
netconf is NULL, the service is not registered with therpcbind (8) service.If netconf is non-
zero, then a mapping of the triple [prognum , versnum , netconf->nc_netid] to
xprt->xp_ltaddr is established with the local rpcbind service.

NetBSD 3.0 May 3, 1993 1

RPC_SVC_REG (3) NetBSD Library Functions Manual RPC_SVC_REG (3)

Thesvc_reg () routine returns 1 if it succeeds, and 0 otherwise.

svc_unreg ()
Remove from the rpcbind service, all mappings of the triple [prognum , versnum , all-transports]
to network address and all mappings within the RPC service package of the double [prognum ,
versnum] to dispatch routines.

svc_auth_reg ()
Registers the service authentication routinehandler with the dispatch mechanism so that it can be
invoked to authenticate RPC requests received with authentication typecred_flavor . This inter-
face allows developers to add new authentication types to their RPC applications without needing to
modify the libraries. Service implementors usually do not need this routine.

Typical service application would callsvc_auth_reg () after registering the service and prior to
calling svc_run (). When needed to process an RPC credential of typecred_flavor , the
handler procedure will be called with two parametersstruct svc_req ∗rqst , and
struct rpc_msg ∗ msg, and is expected to return a valid enum auth_stat value. Thereis
no provision to change or delete an authentication handler once registered.

The svc_auth_reg () routine returns 0 if the registration is successful, 1 ifcred_flavor
already has an authentication handler registered for it, and -1 otherwise.

xprt_register ()
After RPC service transport handlexprt is created, it is registered with the RPC service package.
This routine modifies the global variablesvc_fdset(seerpc_svc_calls (3)). Serviceimplemen-
tors usually do not need this routine.

xprt_unregister ()
Before an RPC service transport handlexprt is destroyed, it unregisters itself with the RPC service
package. Thisroutine modifies the global variablesvc_fdset(seerpc_svc_calls (3)). Service
implementors usually do not need this routine.

SEE ALSO
select (2), rpc (3), rpc_svc_calls (3), rpc_svc_create (3), rpc_svc_err (3), rpcbind (3),
rpcbind (8)

NetBSD 3.0 May 3, 1993 2

RPC_XDR (3) NetBSD Library Functions Manual RPC_XDR (3)

NAME
xdr_accepted_reply , xdr_authsys_parms , xdr_callhdr , xdr_callmsg ,
xdr_opaque_auth , xdr_rejected_reply , xdr_replymsg — XDR library routines for remote
procedure calls

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <rpc/rpc.h>

bool_t
xdr_accepted_reply (XDR ∗xdrs , const struct accepted_reply ∗ar);

bool_t
xdr_authsys_parms (XDR ∗xdrs , struct authsys_parms ∗aupp);

void
xdr_callhdr (XDR ∗xdrs , struct rpc_msg ∗chdr);

bool_t
xdr_callmsg (XDR ∗xdrs , struct rpc_msg ∗cmsg);

bool_t
xdr_opaque_auth (XDR ∗xdrs , struct opaque_auth ∗ap);

bool_t
xdr_rejected_reply (XDR ∗xdrs , const struct rejected_reply ∗rr);

bool_t
xdr_replymsg (XDR ∗xdrs , const struct rpc_msg ∗rmsg);

DESCRIPTION
These routines are used for describing the RPC messages in XDR language.They should normally be used
by those who do not want to use the RPC package directly. These routines return TRUE if they succeed,
FALSE otherwise.

ROUTINES
Seerpc (3) for the definition of theXDRdata structure.

xdr_accepted_reply ()
Used to translate between RPC reply messages and their external representation.It includes the sta-
tus of the RPC call in the XDR language format.In the case of success, it also includes the call
results.

xdr_authsys_parms ()
Used for describing UNIX operating system credentials. It includes machine-name, uid, gid list, etc.

xdr_callhdr ()
Used for describing call header messages. It encodes the static part of the call message header in the
XDR language format. It includes information such as transaction ID, RPC version number, pro-
gram and version number.

xdr_callmsg ()
Used for describing RPC call messages.This includes all the RPC call information such as transac-
tion ID, RPC version number, program number, version number, authentication information, etc.
This is normally used by servers to determine information about the client RPC call.

NetBSD 3.0 May 3, 1993 1

RPC_XDR (3) NetBSD Library Functions Manual RPC_XDR (3)

xdr_opaque_auth ()
Used for describing RPC opaque authentication information messages.

xdr_rejected_reply ()
Used for describing RPC reply messages.It encodes the rejected RPC message in the XDR lan-
guage format. The message could be rejected either because of version number mis-match or
because of authentication errors.

xdr_replymsg ()
Used for describing RPC reply messages. It translates between the RPC reply message and its
external representation. This reply could be either an acceptance, rejection orNULL.

SEE ALSO
rpc (3), xdr (3)

NetBSD 3.0 May 3, 1993 2

RPCBIND (3) NetBSD Library Functions Manual RPCBIND (3)

NAME
rpcb_getmaps , rpcb_getaddr , rpcb_gettime , rpcb_rmtcall , rpcb_set , rpcb_unset —
library routines for RPC bind service

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <rpc/rpc.h>

struct rpcblist ∗
rpcb_getmaps (const struct netconfig ∗netconf , const char ∗host);

bool_t
rpcb_getaddr (const rpcprog_t prognum , const rpcvers_t versnum ,

const struct netconfig ∗netconf , struct netbuf ∗svcaddr ,
const char ∗host);

bool_t
rpcb_gettime (const char ∗host , time_t ∗ timep);

enum clnt_stat
rpcb_rmtcall (const struct netconfig ∗netconf , const char ∗host ,

const rpcprog_t prognum, const rpcvers_t versnum ,
const rpcproc_t procnum, const xdrproc_t inproc , const char ∗in ,
const xdrproc_t outproc , caddr_t out ,
const struct timeval tout, struct netbuf ∗svcaddr);

bool_t
rpcb_set (const rpcprog_t prognum , const rpcvers_t versnum ,

const struct netconfig ∗netconf , const struct netbuf ∗svcaddr);

bool_t
rpcb_unset (const rpcprog_t prognum , const rpcvers_t versnum ,

const struct netconfig ∗netconf);

DESCRIPTION
These routines allow client C programs to make procedure calls to the RPC binder service.(see
rpcbind (8)) maintains a list of mappings between programs and their universal addresses.

ROUTINES
rpcb_getmaps ()

An interface to the rpcbind service, which returns a list of the current RPC program-to-address map-
pings onhost . It uses the transport specified throughnetconf to contact the remote rpcbind ser-
vice onhost . This routine will returnNULL, if the remote rpcbind could not be contacted.

rpcb_getaddr ()
An interface to the rpcbind service, which finds the address of the service onhost that is registered
with program numberprognum , versionversnum , and speaks the transport protocol associated
with netconf . The address found is returned insvcaddr . svcaddr should be preallocated.
This routine returnsTRUEif it succeeds.A return value ofFALSEmeans that the mapping does not
exist or that the RPC system failed to contact the remote rpcbind service. In the latter case, the
global variablerpc_createerr(seerpc_clnt_create (3) contains the RPC status.

NetBSD 3.0 December 4, 2005 1

RPCBIND (3) NetBSD Library Functions Manual RPCBIND (3)

rpcb_gettime ()
This routine returns the time onhost in timep . If host is NULL, rpcb_gettime () returns the
time on its own machine. This routine returnsTRUE if it succeeds,FALSE if it f ails.
rpcb_gettime () can be used to synchronize the time between the client and the remote server.

rpcb_rmtcall ()
An interface to the rpcbind service, which instructs rpcbind onhost to make an RPC call on your
behalf to a procedure on that host.Thenetconfig () structure should correspond to a connection-
less transport. The parametersvcaddr will be modified to the server’s address if the procedure
succeeds (seerpc_call () and clnt_call () in rpc_clnt_calls (3) for the definitions of
other parameters).

This procedure should normally be used for a ‘‘ping’’ and nothing else. This routine allows pro-
grams to do lookup and call, all in one step. Note: Even if the server is not running
rpcb_rmtcall () does not return any error messages to the caller. In such a case, the caller times
out.

Note:rpcb_rmtcall () is only available for connectionless transports.

rpcb_set ()
An interface to the rpcbind service, which establishes a mapping between the triple [prognum ,
versnum , netconf->nc_netid] and svcaddr on the machine’s rpcbind service. The value
of nc_netid must correspond to a network identifier that is defined by the netconfig database.
This routine returnsTRUEif it succeeds,FALSEotherwise. (Seealso inrpc_svc_calls (3). If
there already exists such an entry with rpcbind,rpcb_set () will fail.

rpcb_unset ()
An interface to the rpcbind service, which destroys the mapping between the triple [prognum ,
versnum , netconf->nc_netid] and the address on the machine’s rpcbind service. If
netconf is NULL, rpcb_unset () destroys all mapping between the triple [prognum ,
versnum , all-transports] and the addresses on the machine’s rpcbind service. This routine
returnsTRUEif it succeeds,FALSEotherwise. Onlythe owner of the service or the super-user can
destroy the mapping. (See alsosvc_unreg () in rpc_svc_calls (3).

SEE ALSO
rpc_clnt_calls (3), rpc_svc_calls (3), rpcbind (8), rpcinfo (8)

NetBSD 3.0 December 4, 2005 2

RTBL (3) NetBSD Library Functions Manual RTBL (3)

NAME
rtbl_create , rtbl_destroy , rtbl_set_flags , rtbl_get_flags , rtbl_set_prefix ,
rtbl_set_separator , rtbl_set_column_prefix , rtbl_set_column_affix_by_id ,
rtbl_add_column , rtbl_add_column_by_id , rtbl_add_column_entry ,
rtbl_add_column_entry_by_id , rtbl_new_row , rtbl_format — format data in simple tables

LIBRARY
The roken library (libroken, -lroken)

SYNOPSIS
#include <rtbl.h>

int
rtbl_add_column (rtbl_t table , const char ∗column_name , unsigned int flags);

int
rtbl_add_column_by_id (rtbl_t table , unsigned int column_id ,

const char ∗column_header , unsigned int flags);

int
rtbl_add_column_entry (rtbl_t table , const char ∗column_name ,

const char ∗cell_entry);

int
rtbl_add_column_entry_by_id (rtbl_t table , unsigned int column_id ,

const char ∗cell_entry);

rtbl_t
rtbl_create (void);

void
rtbl_destroy (rtbl_t table);

int
rtbl_new_row (rtbl_t table);

int
rtbl_set_column_affix_by_id (rtbl_t table , unsigned int column_id , const ,

char , ∗prefix" , const char ∗suffix);

int
rtbl_set_column_prefix (rtbl_t table , const char ∗column_name ,

const char ∗prefix);

unsigned int
rtbl_get_flags (rtbl_t table);

void
rtbl_set_flags (rtbl_t table , unsigned int flags);

int
rtbl_set_prefix (rtbl_t table , const char ∗prefix);

int
rtbl_set_separator (rtbl_t table , const char ∗separator);

int
rtbl_format (rtbl_t table , FILE , ∗file");

NetBSD 3.0 June 26, 2004 1

RTBL (3) NetBSD Library Functions Manual RTBL (3)

DESCRIPTION
This set of functions assemble a simple table consisting of rows and columns, allowing it to be printed with
certain options. Typical use would be output from tools such asls (1) or netstat (1), where you have a
fixed number of columns, but don’t know the column widthds before hand.

A table is created withrtbl_create () and destroyed withrtbl_destroy ().

Global flags on the table are set withrtbl_set_flags and retrieved with rtbl_get_flags . At
present the only defined flag isRTBL_HEADER_STYLE_NONEwhich suppresses printing the header.

Before adding data to the table, one or more columns need to be created. This would normally be done with
rtbl_add_column_by_id (), column_id is any number of your choice (it’s used only to identify col-
umns),column_header is the header to print at the top of the column, andflags are flags specific to
this column. Currently the only defined flag isRTBL_ALIGN_RIGHT, aligning column entries to the right.
Columns are printed in the order they are added.

There’s also a way to add columns by column name withrtbl_add_column (), but this is less flexible
(you need unique header names), and is considered deprecated.

To add data to a column you usertbl_add_column_entry_by_id (), where thecolumn_id is the
same as when the column was added (adding data to a non-existent column is undefined), andcell_entry
is whatever string you wish to include in that cell. It should not include newlines. For columns added with
rtbl_add_column () you must usertbl_add_column_entry () instead.

rtbl_new_row () fills all columns with blank entries until they all have the same number of rows.

Each column can have a separate prefix and suffix, set withrtbl_set_column_affix_by_id ;
rtbl_set_column_prefix allows setting the prefix only by column name. In addition to this, columns
may be separated by a string set withrtbl_set_separator (by default columns are not seprated by
anything).

The finished table is printed tofile with rtbl_format .

EXAMPLES
This program:

#include <stdio.h>
#include <rtbl.h>
int
main(int argc, char ∗∗argv)
{

rtbl_t table;
table = rtbl_create();
rtbl_set_separator(table, " ");
rtbl_add_column_by_id(table, 0, "Column A", 0);
rtbl_add_column_by_id(table, 1, "Column B", RTBL_ALIGN_RIGHT);
rtbl_add_column_by_id(table, 2, "Column C", 0);
rtbl_add_column_entry_by_id(table, 0, "A-1");
rtbl_add_column_entry_by_id(table, 0, "A-2");
rtbl_add_column_entry_by_id(table, 0, "A-3");
rtbl_add_column_entry_by_id(table, 1, "B-1");
rtbl_add_column_entry_by_id(table, 2, "C-1");
rtbl_add_column_entry_by_id(table, 2, "C-2");
rtbl_add_column_entry_by_id(table, 1, "B-2");
rtbl_add_column_entry_by_id(table, 1, "B-3");
rtbl_add_column_entry_by_id(table, 2, "C-3");

NetBSD 3.0 June 26, 2004 2

RTBL (3) NetBSD Library Functions Manual RTBL (3)

rtbl_add_column_entry_by_id(table, 0, "A-4");
rtbl_new_row(table);
rtbl_add_column_entry_by_id(table, 1, "B-4");
rtbl_new_row(table);
rtbl_add_column_entry_by_id(table, 2, "C-4");
rtbl_new_row(table);
rtbl_format(table, stdout);
rtbl_destroy(table);
return 0;

}

will output the following:

Column A Column B Column C
A-1 B-1 C-1
A-2 B-2 C-2
A-3 B-3 C-3
A-4

B-4
C-4

NetBSD 3.0 June 26, 2004 3

SCANDIR (3) NetBSD Library Functions Manual SCANDIR (3)

NAME
scandir , alphasort — scan a directory

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

int
scandir (const char ∗dirname , struct dirent ∗∗∗namelist ,

int (∗select)(const struct dirent ∗) ,
int (∗compar)(const void ∗, c onst void ∗));

int
alphasort (const void ∗d1 , const void ∗d2);

DESCRIPTION
The scandir () function reads the directorydirname and builds an array of pointers to directory entries
usingmalloc (3). It returns the number of entries in the array. A pointer to the array of directory entries is
stored in the location referenced bynamelist .

The select parameter is a pointer to a user supplied subroutine which is called byscandir () to select
which entries are to be included in the array. The select routine is passed a pointer to a directory entry and
should return a non-zero value if the directory entry is to be included in the array. If select is null, then all
the directory entries will be included.

The compar parameter is a pointer to a user supplied subroutine which is passed toqsort (3) to sort the
completed array. If this pointer is null, the array is not sorted.

The alphasort () function is a routine which can be used for thecompar parameter to sort the array
alphabetically.

The memory allocated for the array can be deallocated withfree (3), by freeing each pointer in the array
and then the array itself.

DIAGNOSTICS
Returns −1 if the directory cannot be opened for reading or ifmalloc (3) cannot allocate enough memory to
hold all the data structures.

SEE ALSO
directory (3), malloc (3), qsort (3), dir (5)

HISTORY
Thescandir () andalphasort () functions appeared in 4.2BSD.

NetBSD 3.0 June 4, 1993 1

SCANF (3) NetBSD Library Functions Manual SCANF (3)

NAME
scanf , fscanf , sscanf , vscanf , vsscanf , vfscanf — input format conversion

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

int
scanf (const char ∗ restrict format , . . .);

int
fscanf (FILE ∗ restrict stream , const char ∗ restrict format , . . .);

int
sscanf (const char ∗ restrict str , const char ∗ restrict format , . . .);

#include <stdarg.h>

int
vscanf (const char ∗ restrict format , va_list ap);

int
vsscanf (const char ∗ restrict str , const char ∗ restrict format ,

va_list ap);

int
vfscanf (FILE ∗ restrict stream , const char ∗ restrict format , va_list ap);

DESCRIPTION
Thescanf () family of functions scans input according to aformat as described below. This format may
containconversion specifiers; the results from such conversions, if any, are stored through thepointer argu-
ments. Thescanf () function reads input from the standard input streamstdin, fscanf () reads input from
the stream pointerstream , and sscanf () reads its input from the character string pointed to bystr . The
vfscanf () function is analogous tovfprintf (3) and reads input from the stream pointerstream using
a variable argument list of pointers (seestdarg (3)). Thevscanf () function scans a variable argument list
from the standard input and thevsscanf () function scans it from a string; these are analogous to the
vprintf () andvsprintf () functions respectively. Each successive pointer argument must correspond
properly with each successive conversion specifier (but see ‘suppression’ below). All conversions are intro-
duced by the%(percent sign) character. The format string may also contain other characters.White space
(such as blanks, tabs, or newlines) in theformat string match any amount of white space, including none,
in the input. Everything else matches only itself. Scanning stops when an input character does not match
such a format character. Scanning also stops when an input conversion cannot be made (see below).

CONVERSIONS
Following the%character introducing a conversion there may be a number offlagcharacters, as follows:

∗ Suppresses assignment. The conversion that follows occurs as usual, but no pointer is used; the
result of the conversion is simply discarded.

h Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to ashort
int (rather thanint).

hh Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to achar
(rather thanint).

NetBSD 3.0 May 30, 2008 1

SCANF (3) NetBSD Library Functions Manual SCANF (3)

j Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to an
intmax_t(rather thanint).

l Indicates either that the conversion will be one ofdioux or n and the next pointer is a pointer to a
long int (rather thanint), or that the conversion will be one ofefg and the next pointer is a pointer
to double(rather thanfloat).

q Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to a
quad_t(rather thanint).

t Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to a
ptrdiff_t (rather thanint).

z Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to asize_t
(rather thanint).

L Indicates that the conversion will beefg and the next pointer is a pointer tolong double.

In addition to these flags, there may be an optional maximum field width, expressed as a decimal integer,
between the%and the conversion. If no width is given, a default of ‘infinity’ is used (with one exception,
below); otherwise at most this many characters are scanned in processing the conversion. Beforeconversion
begins, most conversions skip white space; this white space is not counted against the field width.

The following conversions are available:

% Matches a literal ‘%’. That is, ‘%%’ in the format string matches a single input ‘%’ character. No
conversion is done, and assignment does not occur.

d Matches an optionally signed decimal integer; the next pointer must be a pointer toint.

D Equivalent told ; this exists only for backwards compatibility.

i Matches an optionally signed integer; the next pointer must be a pointer toint. The integer is read in
base 16 if it begins with ‘0x ’ or ‘ 0X’, in base 8 if it begins with ‘0’, and in base 10 otherwise.Only
characters that correspond to the base are used.

o Matches an octal integer; the next pointer must be a pointer tounsigned int.

O Equivalent tolo ; this exists for backwards compatibility.

u Matches an optionally signed decimal integer; the next pointer must be a pointer tounsigned int.

x Matches an optionally signed hexadecimal integer; the next pointer must be a pointer tounsigned int.

X Equivalent tox .

f Matches an optionally signed floating-point number; the next pointer must be a pointer tofloat.

e Equivalent tof .

g Equivalent tof .

E Equivalent tof .

G Equivalent tof .

s Matches a sequence of non-white-space characters; the next pointer must be a pointer tochar, and the
array must be large enough to accept all the sequence and the terminatingNULcharacter. The input
string stops at white space or at the maximum field width, whichever occurs first.

c Matches a sequence ofwidth count characters (default 1); the next pointer must be a pointer tochar,
and there must be enough room for all the characters (no terminatingNUL is added). The usual skip
of leading white space is suppressed.To skip white space first, use an explicit space in the format.

NetBSD 3.0 May 30, 2008 2

SCANF (3) NetBSD Library Functions Manual SCANF (3)

[Matches a nonempty sequence of characters from the specified set of accepted characters; the next
pointer must be a pointer tochar, and there must be enough room for all the characters in the string,
plus a terminatingNULcharacter. The usual skip of leading white space is suppressed.The string is
to be made up of characters in (or not in) a particular set; the set is defined by the characters between
the open bracket [character and a close bracket] character. The setexcludesthose characters if the
first character after the open bracket is a circumflex ˆ . To include a close bracket in the set, make it
the first character after the open bracket or the circumflex; any other position will end the set.The
hyphen character- is also special; when placed between two other characters, it adds all intervening
characters to the set.To include a hyphen, make it the last character before the final close bracket.
For instance,[ˆ]0-9-] means the set ‘everything except close bracket, zero through nine, and
hyphen’. Thestring ends with the appearance of a character not in the (or, with a circumflex, in) set
or when the field width runs out.

p Matches a pointer value (as printed by ‘%p’ i n printf (3)); the next pointer must be a pointer to
void.

n Nothing is expected; instead, the number of characters consumed thus far from the input is stored
through the next pointer, which must be a pointer toint. This isnot a conversion, although it can be
suppressed with the∗ flag.

For backwards compatibility, other conversion characters (except ‘\0 ’) are taken as if they were ‘%d’ or, if
uppercase,%ld , and a ‘conversion’ of %\0 causes an immediate return ofEOF.

RETURN VALUES
These functions return the number of input items assigned, which can be fewer than provided for, or even
zero, in the event of a matching failure. Zeroindicates that, while there was input available, no conversions
were assigned; typically this is due to an invalid input character, such as an alphabetic character for a ‘%d’
conversion. Thevalue EOFis returned if an input failure occurs before any conversion such as an end-of-file
occurs. Ifan error or end-of-file occurs after conversion has begun, the number of conversions which were
successfully completed is returned.

SEE ALSO
getc (3), printf (3), strtod (3), strtol (3), strtoul (3)

STANDARDS
The functionsfscanf (), scanf (), andsscanf () conform toISO/IEC9899:1990 (“ISO C90”). The %j , %t
and %z conversion format modifiers conform toISO/IEC 9899:1999 (“ISO C99”). The vfscanf (),
vscanf () andvsscanf () functions conform toISO/IEC9899:1999 (“ISO C99”).

HISTORY
The functionsvscanf (), vsscanf () andvfscanf () appeared in 4.4BSD or even 4.3BSD.

NOTES
All of the backwards compatibility formats will be removed in the future.

BUGS
Numerical strings are truncated to 512 characters; for example, %f and %d are implicitly %512f and
%512d.

NetBSD 3.0 May 30, 2008 3

SCHED (3) NetBSD Library Functions Manual SCHED (3)

NAME
sched_setparam , sched_getparam , sched_setscheduler , sched_getscheduler ,
sched_get_priority_max , sched_get_priority_min , sched_rr_get_interval ,
sched_yield — process scheduling

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <sched.h>

int
sched_setparam (pid_t pid , const struct sched_param ∗param);

int
sched_getparam (pid_t pid , struct sched_param ∗param);

int
sched_setscheduler (pid_t pid , int policy , const struct sched_param ∗param);

int
sched_getscheduler (pid_t pid);

int
sched_get_priority_max (int policy);

int
sched_get_priority_min (int policy);

int
sched_rr_get_interval (pid_t pid , struct timespec ∗interval);

int
sched_yield (void);

DESCRIPTION
This section describes the functions used to get the scheduling information about the processes, and control
the scheduling of the process.

Av ailable scheduling policies (classes) are:

SCHED_OTHERTime-sharing (TS) scheduling policy. The default policy in NetBSD.

SCHED_FIFO First in, first out (FIFO) scheduling policy.

SCHED_RR Round robin scheduling policy.

Thestruct sched_param contains at least one member:

sched_priority
Specifies the priority of the process.

FUNCTIONS
sched_setparam (pid , param)

Sets the scheduling parameters for the process specified bypid to param . If the value ofpid
is equal to zero, then the calling process is used.

NetBSD 3.0 May 24, 2008 1

SCHED (3) NetBSD Library Functions Manual SCHED (3)

sched_getparam (pid , param)
Gets the scheduling parameters of the process specified bypid into the structureparam . If the
value ofpid is equal to zero, then the calling process is used.

sched_setscheduler (pid , policy , param)
Set the scheduling policy and parameters for the process specified bypid . If the value ofpid is
equal to zero, then the calling process is used.

sched_getscheduler (pid)
Returns the scheduling policy of the process specified bypid . If the value ofpid is equal to
zero, then the calling process is used.

sched_get_priority_max (policy)
Returns the maximal priority which may be used for the scheduling policy specified bypolicy .

sched_get_priority_min (policy)
Returns the minimal priority which may be used for the scheduling policy specified bypolicy .

sched_rr_get_interval (pid , interval)
Returns the time quantum into the structureinterval of the process specified bypid . If the
value of pid is equal to zero, then the calling process is used. The process must be running at
SCHED_RRscheduling policy.

sched_yield ()
Yields a processor voluntarily and gives other threads a chance to run without waiting for an
involuntary preemptive switch.

RETURN VALUES
sched_setparam (), sched_getparam (), sched_rr_get_interval (), and sched_yield ()
return 0 on success. Otherwise, −1 is returned anderrno is set to indicate the error.

sched_setscheduler () returns the previously used scheduling policy on success. Otherwise,−1 is
returned anderrno is set to indicate the error.

sched_getscheduler () returns the scheduling policy on success. Otherwise,−1 is returned anderrno is
set to indicate the error.

The sched_get_priority_max () andsched_get_priority_min () return the maximal/minimal
priority value on success. Otherwise, −1 is returned anderrno is set to indicate the error.

ERRORS
Thesched_setparam () andsched_setscheduler () functions fail if:

[EINVAL] At least one of the specified scheduling parameters was invalid.

[EPERM] The calling process has no appropriate privileges to perform the operation.

[ESRCH] No process can be found corresponding to that specified bypid , and value ofpid is
not zero.

Thesched_getparam () andsched_getscheduler () functions fail if:

[EPERM] The calling process is not a super-user and its effective user id does not match the
effective user-id of the specified process.

[ESRCH] No process can be found corresponding to that specified bypid , and value ofpid is
not zero.

NetBSD 3.0 May 24, 2008 2

SCHED (3) NetBSD Library Functions Manual SCHED (3)

Thesched_get_priority_max () andsched_get_priority_min () functions fail if:

[EINVAL] The specified scheduling policy is inv alid.

Thesched_rr_get_interval () function fails if:

[ESRCH] No process can be found corresponding to that specified bypid , and value ofpid is
not zero.

SEE ALSO
pset (3), schedctl (8)

STANDARDS
These functions conform toIEEE Std 1003.1-2001 (“POSIX.1”) standard.

HISTORY
The scheduling functions appeared inNetBSD 5.0.

NetBSD 3.0 May 24, 2008 3

SDP (3) NetBSD Library Functions Manual SDP (3)

NAME
SDP_GET8, SDP_GET16, SDP_GET32, SDP_GET64, SDP_GET128, SDP_GET_UUID128,
SDP_PUT8, SDP_PUT16, SDP_PUT32, SDP_PUT64, SDP_PUT128, SDP_PUT_UUID128,
sdp_open , sdp_open_local , sdp_close , sdp_error , sdp_search , sdp_attr2desc ,
sdp_uuid2desc — Bluetooth SDP routines

LIBRARY
library “libsdp”

SYNOPSIS
#include <bluetooth.h>
#include <sdp.h>

SDP_GET8(b , cp);

SDP_GET16(s , cp);

SDP_GET32(l , cp);

SDP_GET64(l , cp);

SDP_GET128(l , cp);

SDP_GET_UUID128(l , cp);

SDP_PUT8(b , cp);

SDP_PUT16(s , cp);

SDP_PUT32(l , cp);

SDP_PUT64(l , cp);

SDP_PUT128(l , cp);

SDP_PUT_UUID128(l , cp);

void ∗
sdp_open (bdaddr_t const ∗l , bdaddr_t const ∗r);

void ∗
sdp_open_local (char const ∗control);

int32_t
sdp_close (void ∗xs);

int32_t
sdp_error (void ∗xs);

int32_t
sdp_search (void ∗xs , uint32_t plen , uint16_t const ∗pp , uint32_t alen ,

uint32_t const ∗ap , uint32_t vlen , sdp_attr_t ∗vp);

char const ∗ const
sdp_attr2desc (uint16_t attr);

char const ∗ const
sdp_uuid2desc (uint16_t uuid);

int32_t
sdp_register_service (void ∗xss , uint16_t uuid , bdaddr_t const ∗bdaddr ,

uint8_t const ∗data , uint32_t datalen , uint32_t ∗handle);

NetBSD 3.0 May 27, 2005 1

SDP (3) NetBSD Library Functions Manual SDP (3)

int32_t
sdp_unregister_service (void ∗xss , uint32_t handle);

int32_t
sdp_change_service (void ∗xss , uint32_t handle , uint8_t const ∗data ,

uint32_t datalen);

DESCRIPTION
TheSDP_GET8(), SDP_GET16(), SDP_GET32(), SDP_GET64() andSDP_GET128() macros are used to
get byte, short, long, long long and 128-bit integer from the buffer pointed bycp pointer. The pointer is
automatically advanced.

TheSDP_PUT8(), SDP_PUT16(), SDP_PUT32(), SDP_PUT64() andSDP_PUT128() macros are used to
put byte, short, long, long long and 128-bit integer into the buffer pointed bycp pointer. The pointer is auto-
matically advanced.

SDP_GET_UUID128() andSDP_PUT_UUID128() macros are used to get and put 128-bit UUID into the
buffer pointed bycp pointer. The pointer is automatically advanced.

Thesdp_open () andsdp_open_local () functions each return a pointer to an opaque object describing
SDP session.The l argument passed tosdp_open () function should point to a source BD_ADDR.If
source BD_ADDR isNULL then source addressBDADDR_ANYis used. The r argument passed to
sdp_open () function should point to a non-NULL remote BD_ADDR. Remote BD_ADDR cannot be
BDADDR_ANY. Thesdp_open_local () function takes path to the control socket and opens a connection
to a local SDP server. If path to the control socket isNULL then default /var/run/sdp path will be used.

Thesdp_close () function terminates active SDP session and deletes SDP session object.Thexs parame-
ter should point to a valid SDP session object created withsdp_open () or sdp_open_local ().

The sdp_error () function returns last error that is stored inside SDP session object.The xs parameter
should point to a valid SDP session object created withsdp_open () or sdp_open_local (). Theerror
value returned can be converted to a human readable message by callingstrerror (3) function.

Thesdp_search () function is used to perform SDP Service Search Attribute Request.Thexs parameter
should point to a valid SDP session object created withsdp_open () or sdp_open_local (). The pp
parameter is a Service Search Pattern - an array of one or more Service Class IDs.The maximum number of
Service Class IDs in the array is 12.The plen parameter is the length of the Service Search pattern.The
ap parameter is an Attribute ID Range List - an array of one or more SDP Attribute ID Range.Each
attribute ID Range is encoded as a 32-bit unsigned integer data element, where the high order 16 bits are
interpreted as the beginning attribute ID of the range and the low order 16 bits are interpreted as the ending
attribute ID of the range. The attribute IDs contained in the Attribute ID Ranges List must be listed in
ascending order without duplication of any attribute ID values. Notethat all attributes may be requested by
specifying a range of 0x0000-0xFFFF. The alen parameter is the length of the Attribute ID Ranges List.
The SDP_ATTR_RANGE(lo , hi) macro can be used to prepare Attribute ID Range.The vp parameter
should be an array ofsdp_attr_t structures. Eachsdp_attr_t structure describes single SDP
attribute and defined as follows:

struct sdp_attr {
uint16_t flags;

#define SDP_ATTR_OK (0 << 0)
#define SDP_ATTR_INVALID (1 << 0)
#define SDP_ATTR_TRUNCATED (1 << 1)

uint16_t attr; / ∗ SDP_ATTR_xxx ∗/
uint32_t vlen; / ∗ length of the value[] in bytes ∗/
uint8_t ∗value; / ∗ base pointer ∗/

};

NetBSD 3.0 May 27, 2005 2

SDP (3) NetBSD Library Functions Manual SDP (3)

typedef struct sdp_attr sdp_attr_t;
typedef struct sdp_attr ∗ sdp_attr_p;

The caller of thesdp_search () function is expected to prepare the array ofsdp_attr structures and for
each element of the array bothvlen and value must be set.The sdp_search () function will fill each
sdp_attr_t structure with attribute and value, i.e., it will setflags, attr andvlen fields. Theactual value
of the attribute will be copied intovaluebuffer. Note: attributes are returned in the order they appear in the
Service Search Attribute Response. SDP server could return several attributes for the same record. In this
case the order of the attributes will be: all attributes for the first records, then all attributes for the secord
record etc.

The sdp_attr2desc () andsdp_uuid2desc () functions each take a numeric attribute ID/UUID value
and convert it to a human readable description.

Thesdp_register_service () function is used to register service with the local SDP server. Thexss
parameter should point to a valid SDP session object obtained fromsdp_open_local (). The uuid
parameter is a SDP Service Class ID for the service to be registered. Thebdaddr parameter should point to
a valid BD_ADDR. The service will be only advertised if request was received by the local device with
bdaddr . If bdaddr is set toBDADDR_ANYthen the service will be advertised to any remote devices that
queries for it. Thedata anddatalen parameters specify data and size of the data for the service.Upon
successful returnsdp_register_service () will populatehandle with the SDP record handle.This
parameter is optional and can be set toNULL.

Thesdp_unregister_service () function is used to unregister service with the local SDP server. The
xss parameter should point to a valid SDP session object obtained fromsdp_open_local (). The
handle parameter should contain a valid SDP record handle of the service to be unregistered.

The sdp_change_service () function is used to change data associated with the existing service on the
local SDP server. The xss parameter should point to a valid SDP session object obtained from
sdp_open_local (). Thehandle parameter should contain a valid SDP record handle of the service to
be changed. Thedata anddatalen parameters specify data and size of the data for the service.

CAVEAT
When registering services with the local SDP server the application must keep the SDP session open. If SDP
session is closed then the local SDP server will remove all services that were registered over the session.The
application is allowed to change or unregister service if it was registered over the same session.

EXAMPLES
The following example shows how to get SDP_ATTR_PROTOCOL_DESCRIPTOR_LISTattribute for the
SDP_SERVICE_CLASS_SERIAL_PORTservice from the remote device.

bdaddr_t remote;
uint8_t buffer[1024];
void ∗ss = NULL;
uint16_t serv = SDP_SERVICE_CLASS_SERIAL_PORT;
uint32_t attr = SDP_ATTR_RANGE(

SDP_ATTR_PROTOCOL_DESCRIPTOR_LIST,
SDP_ATTR_PROTOCOL_DESCRIPTOR_LIST);

sdp_attr_t proto = { S DP_ATTR_INVALID,0,sizeof(buffer),buffer };

/ ∗ Obtain/set remote BDADDR here ∗/

if ((ss = sdp_open(BDADDR_ANY, remote)) == NULL)
/ ∗ exit ENOMEM ∗/

if (sdp_error(ss) != 0)

NetBSD 3.0 May 27, 2005 3

SDP (3) NetBSD Library Functions Manual SDP (3)

/ ∗ exit sdp_error(ss) ∗/

if (sdp_search(ss, 1, &serv, 1, &attr, 1, &proto) != 0)
/ ∗ exit sdp_error(ss) ∗/

if (proto.flags != SDP_ATTR_OK)
/ ∗ exit see proto.flags for details ∗/

/ ∗ If we got here then we have attribute value in proto.value ∗/

DIAGNOSTICS
Both sdp_open () andsdp_open_local () will return NULL if memory allocation for the new SDP ses-
sion object fails. If the new SDP object was created then caller is still expected to callsdp_error () to
check if there was connection error.

The sdp_search (), sdp_register_service (), sdp_unregister_service () and
sdp_change_service () functions return non-zero value on error. The caller is expected to call
sdp_error () to find out more about error.

SEE ALSO
bluetooth (3), sdpquery (1), sdpd (8), strerror (3)

AUTHORS
Maksim Yevmenkin〈m_evmenkin@yahoo.com〉

BUGS
Most likely. Please report bugs if found.

HISTORY
libsdp first appeared inFreeBSDand was ported toNetBSD 4.0 by Iain Hibbert.

NetBSD 3.0 May 27, 2005 4

SECURE_PATH (3) NetBSDLibrary Functions Manual SECURE_PATH (3)

NAME
secure_path — determine if a file appears to be ‘‘secure’’

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
secure_path (const char ∗path);

DESCRIPTION
Thesecure_path () function takes a path name and returns zero if the referenced file is “secure”, non-zero
if not. Any “ insecurity”, other than failure to access the referenced file, will be logged to the system log.

To be “secure”, the referenced file must exist, be a regular file (and not a directory), owned by the super-user,
and writable only by the super-user.

SEE ALSO
openlog (3)

HISTORY
Thesecure_path function is based on theBSD/OSimplementation of same, and appeared inNetBSD 1.5
by kind permission.

NetBSD 3.0 July 16, 1996 1

SEM_DESTROY (3) NetBSDLibrary Functions Manual SEM_DESTROY (3)

NAME
sem_destroy — destroy an unnamed semaphore

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <semaphore.h>

int
sem_destroy (sem_t ∗sem);

DESCRIPTION
Thesem_destroy () function destroys the unnamed semaphore pointed to bysem. After a successful call
to sem_destroy (), sem is unusable until re-initialized by another call tosem_init ().

RETURN VALUES
The sem_destroy () function returns the value 0 if successful; otherwise the value −1 is returned and the
global variableerrno is set to indicate the error.

ERRORS
sem_destroy () will fail if:

[EBUSY] There are currently threads blocked on the semaphore thatsem points to.

[EINVAL] sem points to an invalid semaphore.

SEE ALSO
sem_init (3)

STANDARDS
sem_destroy () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

POSIX does not define the behavior ofsem_destroy () if called while there are threads blocked onsem,
but this implementation is guaranteed to return −1 and seterrno to EBUSYif there are threads blocked on
sem.

NetBSD 3.0 January 22, 2003 1

SEM_GETVALUE (3) NetBSD Library Functions Manual SEM_GETVALUE (3)

NAME
sem_getvalue — get the value of a semaphore

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <semaphore.h>

int
sem_getvalue (sem_t ∗ restrict sem , int ∗ restrict sval);

DESCRIPTION
Thesem_getvalue () function sets the variable pointed to bysval to the current value of the semaphore
pointed to bysem, as of the time that the call tosem_getvalue () is actually run.

RETURN VALUES
Thesem_getvalue () function returns the value 0 if successful; otherwise the value −1 is returned and the
global variableerrno is set to indicate the error.

ERRORS
sem_getvalue () will fail if:

[EINVAL] sem points to an invalid semaphore.

SEE ALSO
sem_post (3), sem_trywait (3), sem_wait (3)

STANDARDS
sem_getvalue () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

The value of the semaphore is never neg ative, even if there are threads blocked on the semaphore. POSIX is
somewhat ambiguous in its wording with regard to what the value of the semaphore should be if there are
blocked waiting threads, but this behavior is conformant, given the wording of the specification.

NetBSD 3.0 January 22, 2003 1

SEM_INIT (3) NetBSD Library Functions Manual SEM_INIT (3)

NAME
sem_init — initialize an unnamed semaphore

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <semaphore.h>

int
sem_init (sem_t ∗sem, int pshared , unsigned int value);

DESCRIPTION
Thesem_init () function initializes the unnamed semaphore pointed to bysem to have the valuevalue .
A non-zero value forpshared specifies a shared semaphore that can be used by multiple processes, which
this implementation is not capable of.

Following a successful call tosem_init (), sem can be used as an argument in subsequent calls to
sem_wait , sem_trywait , sem_post , and sem_destroy . sem is no longer valid after a successful
call tosem_destroy .

RETURN VALUES
Thesem_init () function returns the value 0 if successful; otherwise the value −1 is returned and the global
variableerrno is set to indicate the error.

ERRORS
sem_init () will fail if:

[EINVAL] value exceeds SEM_VALUE_MAX.

[ENOSPC] Memory allocation error.

[EPERM] Unable to initialize a shared semaphore.

SEE ALSO
sem_destroy (3), sem_post (3), sem_trywait (3), sem_wait (3)

STANDARDS
sem_init () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

This implementation does not support shared semaphores, and reports this fact by settingerrno to EPERM.
This is perhaps a stretch of the intention of POSIX, but is compliant, with the caveat thatsem_init ()
always reports a permissions error when an attempt to create a shared semaphore is made.

NetBSD 3.0 January 22, 2003 1

SEM_OPEN (3) NetBSD Library Functions Manual SEM_OPEN (3)

NAME
sem_open , sem_close , sem_unlink — named semaphore operations

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <semaphore.h>

sem_t ∗
sem_open (const char ∗name, int oflag , . . .);

int
sem_close (sem_t ∗sem);

int
sem_unlink (const char ∗name);

DESCRIPTION
The sem_open () function creates or opens the named semaphore specified byname. The returned sema-
phore may be used in subsequent calls tosem_getvalue (3), sem_wait (3), sem_trywait (3),
sem_post (3), andsem_close ().

The following bits may be set in theoflag argument:

O_CREATCreate the semaphore if it does not already exist.

The third argument to the call tosem_open () must be of typemode_t and specifies the mode
for the semaphore. Only theS_IWUSR, S_IWGRP, and S_IWOTHbits are examined; it is not
possible to grant only “read” permission on a semaphore.The mode is modified according to the
process’s file creation mask; seeumask(2).

The fourth argument must be anunsigned int and specifies the initial value for the sema-
phore, and must be no greater thanSEM_VALUE_MAX.

O_EXCL Create the semaphore if it does not exist. If the semaphore already exists,sem_open () will f ail.
This flag is ignored unlessO_CREATis also specified.

Thesem_close () function closes a named semaphore that was opened by a call tosem_open ().

The sem_unlink () function removes the semaphore namedname. Resources allocated to the semaphore
are only deallocated when all processes that have the semaphore open close it.

RETURN VALUES
If successful, thesem_open () function returns the address of the opened semaphore. If the samename
argument is given to multiple calls tosem_open () by the same process without an intervening call to
sem_close (), the same address is returned each time. If the semaphore cannot be opened,sem_open ()
returnsSEM_FAILEDand the global variableerrno is set to indicate the error.

Thesem_close () andsem_unlink () functions return the value 0 if successful; otherwise the value −1 is
returned and the global variableerrno is set to indicate the error.

ERRORS
Thesem_open () function will fail if:

[EACCES] The semaphore exists and the permissions specified byoflag at the time it was cre-
ated deny access to this process.

NetBSD 3.0 January 21, 2005 1

SEM_OPEN (3) NetBSD Library Functions Manual SEM_OPEN (3)

[EACCES] The semaphore does not exist, but permission to create it is denied.

[EEXIST] O_CREATandO_EXCLare set but the semaphore already exists.

[EINTR] The call was interrupted by a signal.

[EINVAL] Thesem_open () operation is not supported for the given name.

[EINVAL] Thevalue argument is greater thanSEM_VALUE_MAX.

[ENAMETOOLONG] Thename argument is too long.

[ENFILE] The system limit on semaphores has been reached.

[ENOENT] O_CREATis not set and the named semaphore does not exist.

[ENOSPC] There is not enough space to create the semaphore.

Thesem_close () function will fail if:

[EINVAL] Thesem argument is not a valid semaphore.

Thesem_unlink () function will fail if:

[EACCES] Permission is denied to unlink the semaphore.

[ENAMETOOLONG] The specifiedname is too long.

[ENOENT] The named semaphore does not exist.

SEE ALSO
close (2), open (2), umask(2), unlink (2), sem_getvalue (3), sem_post (3), sem_trywait (3),
sem_wait (3), sem(4)

STANDARDS
The sem_open (), sem_close (), and sem_unlink () functions conform toISO/IEC 9945-1:1996
(“POSIX.1”).

HISTORY
Support for named semaphores first appeared inNetBSD 2.0.

BUGS
This implementation places strict requirements on the value ofname: it must begin with a slash(‘ / ’) , con-
tain no other slash characters, and be less than 14 characters in length not including the terminating null char-
acter.

NetBSD 3.0 January 21, 2005 2

SEM_POST (3) NetBSD Library Functions Manual SEM_POST (3)

NAME
sem_post — increment (unlock) a semaphore

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <semaphore.h>

int
sem_post (sem_t ∗sem);

DESCRIPTION
The sem_post () function increments (unlocks) the semaphore pointed to bysem. If there are threads
blocked on the semaphore whensem_post () is called, then the highest priority thread that has been
blocked the longest on the semaphore will be allowed to return fromsem_wait ().

sem_post () is signal-reentrant and may be called within signal handlers.

RETURN VALUES
Thesem_post () function returns the value 0 if successful; otherwise the value −1 is returned and the global
variableerrno is set to indicate the error.

ERRORS
sem_post () will fail if:

[EINVAL] sem points to an invalid semaphore.

SEE ALSO
sem_trywait (3), sem_wait (3)

STANDARDS
sem_post () conforms toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 22, 2003 1

SEM_WAIT (3) NetBSD Library Functions Manual SEM_WAIT (3)

NAME
sem_wait , sem_trywait — decrement (lock) a semaphore

LIBRARY
POSIXReal-time Library (librt, −lrt)

SYNOPSIS
#include <semaphore.h>

int
sem_wait (sem_t ∗sem);

int
sem_trywait (sem_t ∗sem);

DESCRIPTION
The sem_wait () function decrements (locks) the semaphore pointed to bysem, but blocks if the value of
sem is zero, until the value is non-zero and the value can be decremented.

The sem_trywait () function decrements (locks) the semaphore pointed to bysem only if the value is
non-zero. Otherwise,the semaphore is not decremented and an error is returned.

RETURN VALUES
Thesem_wait () function returns the value 0 if successful; otherwise the value −1 is returned and the global
variableerrno is set to indicate the error.

ERRORS
sem_wait () andsem_trywait () will fail if:

[EINVAL] sem points to an invalid semaphore.

Additionally, sem_trywait () will fail if:

[EAGAIN] The semaphore value was zero, and thus could not be decremented.

SEE ALSO
sem_post (3)

STANDARDS
sem_wait () andsem_trywait () conform toISO/IEC9945-1:1996 (“POSIX.1”).

NetBSD 3.0 January 22, 2003 1

SETBUF (3) NetBSD Library Functions Manual SETBUF (3)

NAME
setbuf , setbuffer , setlinebuf , setvbuf — stream buffering operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

void
setbuf (FILE ∗ restrict stream , char ∗ restrict buf);

void
setbuffer (FILE ∗stream , char ∗buf , size_t size);

int
setlinebuf (FILE ∗stream);

int
setvbuf (FILE ∗ restrict stream , char ∗ restrict buf , int mode , size_t size);

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buffered. Whenan output
stream is unbuffered, information appears on the destination file or terminal as soon as written; when it is
block buffered many characters are saved up and written as a block; when it is line buffered characters are
saved up until a newline is output or input is read from any stream attached to a terminal device (typically
stdin). Thefunctionfflush (3) may be used to force the block out early. (Seefclose (3).)

Normally all files are block buffered. Whenthe firstI/O operation occurs on a file,malloc (3) is called, and
an optimally-sized buffer is obtained. If a stream refers to a terminal (asstdoutnormally does) it is line
buffered. Thestandard error streamstderr is initially unbuffered.

Thesetvbuf () function may be used to alter the buffering behavior of a stream.Themode parameter must
be one of the following three macros:

_IONBF unbuffered

_IOLBF line buffered

_IOFBF fully buffered

Thesize parameter may be given as zero to obtain deferred optimal-size buffer allocation as usual. If it is
not zero, then except for unbuffered files, thebuf argument should point to a buffer at leastsize bytes
long; this buffer will be used instead of the current buffer. (If the size argument is not zero but buf is
NULL, abuffer of the given size will be allocated immediately, and released on close. This is an extension to
ANSI C; portable code should use a size of 0 with anyNULLbuffer.)

The setvbuf () function may be used at any time, but may have peculiar side effects (such as discarding
input or flushing output) if the stream is ‘‘active’’ . Portable applications should call it only once on any
given stream, and before anyI/O is performed.

The other three calls are, in effect, simply aliases for calls tosetvbuf (). Exceptfor the lack of a return
value, thesetbuf () function is exactly equivalent to the call

setvbuf(stream, buf, buf ? _IOFBF : _IONBF, BUFSIZ);

The setbuffer () function is the same, except that the size of the buffer is up to the caller, rather than
being determined by the defaultBUFSIZ. Thesetlinebuf () function is exactly equivalent to the call:

NetBSD 3.0 June 4, 1993 1

SETBUF (3) NetBSD Library Functions Manual SETBUF (3)

setvbuf(stream, (char ∗)NULL, _IOLBF, 0);

RETURN VALUES
Thesetvbuf () function returns 0 on success, orEOFif the request cannot be honored (note that the stream
is still functional in this case).

Thesetlinebuf () function returns what the equivalentsetvbuf () would have returned.

SEE ALSO
fclose (3), fopen (3), fread (3), malloc (3), printf (3), puts (3)

STANDARDS
Thesetbuf () andsetvbuf () functions conform toANSI X3.159-1989 (“ANSI C89”).

BUGS
The setbuffer () andsetlinebuf () functions are not portable to versions ofBSD before 4.2BSD. On
4.2BSD and 4.3BSD systems,setbuf () always uses a suboptimal buffer size and should be avoided.

NetBSD 3.0 June 4, 1993 2

SETJMP (3) NetBSD Library Functions Manual SETJMP (3)

NAME
sigsetjmp , siglongjmp , setjmp , longjmp , _setjmp , _longjmp , longjmperror — non-local
jumps

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <setjmp.h>

int
sigsetjmp (sigjmp_buf env , int savemask);

void
siglongjmp (sigjmp_buf env , int val);

int
setjmp (jmp_buf env);

void
longjmp (jmp_buf env , int val);

int
_setjmp (jmp_buf env);

void
_longjmp (jmp_buf env , int val);

void
longjmperror (void);

DESCRIPTION
The sigsetjmp (), setjmp (), and_setjmp () functions save their calling environment inenv . Each of
these functions returns 0.

The correspondinglongjmp () functions restore the environment saved by the most recent invocation of the
respective setjmp () function. They then return so that program execution continues as if the corresponding
invocation of thesetjmp () call had just returned the value specified byval , instead of 0.

Pairs of calls may be intermixed, i.e., bothsigsetjmp () andsiglongjmp () as well assetjmp () and
longjmp () combinations may be used in the same program.However, individual calls may not, e.g., the
env argument tosetjmp () may not be passed tosiglongjmp ().

The longjmp () routines may not be called after the routine which called thesetjmp () routines returns.

All accessible objects have values as of the timelongjmp () routine was called, except that the values of
objects of automatic storage invocation duration that do not have the volatile type and have been
changed between thesetjmp () invocation andlongjmp () call are indeterminate.

Thesetjmp ()/longjmp () function pairs save and restore the signal mask while_setjmp ()/_longjmp ()
function pairs save and restore only the register set and the stack. (Seesigprocmask (2).)

The sigsetjmp ()/siglongjmp () function pairs save and restore the signal mask if the argument
savemask is non-zero. Otherwise, only the register set and the stack are saved.

In other words,setjmp ()/longjmp () are functionally equivalent tosigsetjmp ()/siglongjmp () when
sigsetjmp () is called with a non-zerosavemask argument. Conversely,_setjmp ()/_longjmp () are
functionally equivalent to sigsetjmp ()/siglongjmp () whensigsetjmp () is called with a zero-value
savemask .

NetBSD 3.0 June 1, 2008 1

SETJMP (3) NetBSD Library Functions Manual SETJMP (3)

Thesigsetjmp ()/siglongjmp () interfaces are preferred for maximum portability.

ERRORS
If the contents of theenv are corrupted or correspond to an environment that has already returned, the
longjmp () routine calls the routinelongjmperror (3). If longjmperror () returns, the program is
aborted (seeabort (3)). The default version of longjmperror () prints the message “longjmp
botch ” to standard error and returns. User programs wishing to exit more gracefully should write their own
versions oflongjmperror ().

SEE ALSO
sigaction (2), sigaltstack (2), sigprocmask (2), pthread_sigmask (3), signal (3)

STANDARDS
Thesetjmp () andlongjmp () functions conform toANSI X3.159-1989 (“ANSI C89”). The sigsetjmp ()
andsiglongjmp () functions conform toISO/IEC9945-1:1990 (“POSIX.1”).

CAVEATS
Historically, on AT&T System VUNIX , the setjmp ()/longjmp () functions have been equivalent to the
BSD _setjmp ()/_longjmp () functions and do not restore the signal mask. Because of this discrepancy,
thesigsetjmp ()/siglongjmp () interfaces should be used if portability is desired.

Use oflongjmp () or siglongjmp () from inside a signal handler is not as easy as it might seem.Gener-
ally speaking, all possible code paths between thesetjmp () andlongjmp () must be signal race safe.Fur-
thermore, the code paths must not do resource management (such asopen (2) or close (2)) without block-
ing the signal in question, or resources might be mismanaged.Obviously this makeslongjmp () much less
useful than previously thought.

NetBSD 3.0 June 1, 2008 2

SETLOCALE (3) NetBSD Library Functions Manual SETLOCALE (3)

NAME
setlocale , localeconv — natural language formatting for C

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <locale.h>

char ∗
setlocale (int category , const char ∗locale);

struct lconv ∗
localeconv (void);

DESCRIPTION
The setlocale () function sets the C library’s notion of natural language formatting style for particular
sets of routines. Each such style is called a ‘locale’ and is invoked using an appropriate name passed as a C
string. Thelocaleconv () routine returns the current locale’s parameters for formatting numbers.

Thesetlocale () function recognizes several categories of routines. These are the categories and the sets
of routines they select:

LC_ALL Set the entire locale generically.

LC_COLLATE Set a locale for string collation routines.This controls alphabetic ordering instrcoll ()
andstrxfrm ().

LC_CTYPE Set a locale for thectype (3) functions. This controls recognition of upper and lower
case, alphabetic or non-alphabetic characters, and so on. The real work is done by the
setrunelocale () function.

LC_MESSAGESSet a locale for message catalogs.This controls the selection of message catalogs by the
catgets (3) andgettext (3) families of functions.

LC_MONETARYSet a locale for formatting monetary values; this affects thelocaleconv () function.

LC_NUMERIC Set a locale for formatting numbers.This controls the formatting of decimal points in input
and output of floating point numbers in functions such asprintf () andscanf (), as well
as values returned bylocaleconv ().

LC_TIME Set a locale for formatting dates and times using thestrftime () function.

Only three locales are defined by default, the empty string" " which denotes the native environment, and the
"C" and "POSIX" locales, which denote the C language environment. A locale argument ofNULL
causessetlocale () to return the current locale. By default, C programs start in the"C" locale. Thefor-
mat of the locale string is described innls (7).

The only function in the library that sets the locale issetlocale (); the locale is never changed as a side
effect of some other routine.

Changing the setting ofLC_MESSAGEShas no effect on catalogs that have already been opened by
catopen (3).

The localeconv () function returns a pointer to a structure which provides parameters for formatting num-
bers, especially currency values:

struct lconv {
char ∗decimal_point;

NetBSD 3.0 May 30, 2003 1

SETLOCALE (3) NetBSD Library Functions Manual SETLOCALE (3)

char ∗thousands_sep;
char ∗grouping;
char ∗int_curr_symbol;
char ∗currency_symbol;
char ∗mon_decimal_point;
char ∗mon_thousands_sep;
char ∗mon_grouping;
char ∗positive_sign;
char ∗negative_sign;
char int_frac_digits;
char frac_digits;
char p_cs_precedes;
char p_sep_by_space;
char n_cs_precedes;
char n_sep_by_space;
char p_sign_posn;
char n_sign_posn;
char int_p_cs_precedes;
char int_n_cs_precedes;
char int_p_sep_by_space;
char int_n_sep_by_space;
char int_p_sign_posn;
char int_n_sign_posn;

};

The individual fields have the following meanings:

decimal_point The decimal point character, except for monetary values.

thousands_sep The separator between groups of digits before the decimal point, except for mon-
etary values.

grouping The sizes of the groups of digits, except for monetary values. Thisis a pointer to
a vector of integers, each of sizechar, representing group size from low order
digit groups to high order (right to left). The list may be terminated with 0 or
CHAR_MAX. If the list is terminated with 0, the last group size before the 0 is
repeated to account for all the digits.If the list is terminated withCHAR_MAX,
no more grouping is performed.

int_curr_symbol The standardized (ISO 4217:1995) international currency symbol.

currency_symbol The local currency symbol.

mon_decimal_point The decimal point character for monetary values.

mon_thousands_sep The separator for digit groups in monetary values.

mon_grouping Like grouping but for monetary values.

positive_sign The character used to denote nonnegative monetary values, usually the empty
string.

negative_sign The character used to denote negative monetary values, usually a minus sign.

int_frac_digits The number of digits after the decimal point in an internationally formatted mon-
etary value.

NetBSD 3.0 May 30, 2003 2

SETLOCALE (3) NetBSD Library Functions Manual SETLOCALE (3)

frac_digits The number of digits after the decimal point in an locally formatted monetary
value.

p_cs_precedes 1 if the currency symbol precedes the monetary value for nonnegative values, 0
if it follows.

p_sep_by_space 1 if a space is inserted between the currency symbol and the monetary value for
nonnegative values, 0 otherwise.

n_cs_precedes Like p_cs_precedes but for negative values.

n_sep_by_space Like p_sep_by_space but for negative values.

p_sign_posn The location of thepositive_sign with respect to a nonnegative quantity
and thecurrency_symbol .

n_sign_posn Like p_sign_posn but for negative currency values.

int_p_cs_precedes 1 if the currency symbol precedes the internationally formatted monetary value
for nonnegative values, 0 if it follows.

int_n_cs_precedes Like int_p_cs_precedes but for negative values.

int_p_sep_by_space 1 if a space is inserted between the currency symbol and the internationally for-
matted monetary value for nonnegative values, 0 otherwise.

int_n_sep_by_space Like int_p_sep_by_space but for negative values.

int_p_sign_posn The location of thepositive_sign with respect to a nonnegative quantity
and thecurrency_symbol , for internationally formatted nonnegative mone-
tary values.

int_n_sign_posn Like int_p_sign_posn but for negative values.

The positional parameters inp_sign_posn , n_sign_posn , int_p_sign_posn and
int_n_sign_posn are encoded as follows:
0 Parentheses around the entire string.
1 Before the string.
2 After the string.
3 Just beforecurrency_symbol .
4 Just aftercurrency_symbol .

Unless mentioned above, an empty string as a value for a field indicates a zero length result or a value that is
not in the current locale. ACHAR_MAXresult similarly denotes an unavailable value.

RETURN VALUES
The setlocale () function returnsNULL and fails to change the locale if the given combination of
category andlocale makes no sense.The localeconv () function returns a pointer to a static object
which may be altered by later calls tosetlocale () or localeconv ().

EXAMPLES
The following code illustrates how a program can initialize the international environment for one language,
while selectively modifying the program’s locale such that regular expressions and string operations can be
applied to text recorded in a different language:

setlocale(LC_ALL, "de");
setlocale(LC_COLLATE, "fr");

NetBSD 3.0 May 30, 2003 3

SETLOCALE (3) NetBSD Library Functions Manual SETLOCALE (3)

When a process is started, its current locale is set to the C or POSIX locale. An internationalized program
that depends on locale data not defined in the C or POSIX locale must invoke the setlocale subroutine in the
following manner before using any of the locale-specific information:

setlocale(LC_ALL, "");

SEE ALSO
catopen (3), gettext (3), nl_langinfo (3), nls (7)

STANDARDS
The setlocale () and localeconv () functions conform toANSI X3.159-1989 (“ANSI C89”) and
ISO/IEC9899:1990 (“ISO C90”).

The int_p_cs_precedes , int_n_cs_precedes , int_p_sep_by_space ,
int_n_sep_by_space , int_p_sign_posn andint_n_sign_posn members ofstruct lconv
were introduced inISO/IEC9899:1999 (“ISO C99”).

HISTORY
Thesetlocale () andlocaleconv () functions first appeared in 4.4BSD.

BUGS
The current implementation supports only the"C" and"POSIX" locales for all but theLC_CTYPElocale.

In spite of the gnarly currency support inlocaleconv (), the standards don’t include any functions for gen-
eralized currency formatting.

LC_COLLATEdoes not make sense for many languages. Useof LC_MONETARYcould lead to misleading
results until we have a real time currency conversion function. LC_NUMERICandLC_TIME are personal
choices and should not be wrapped up with the other categories.

Multibyte locales aren’t supported for static binaries.

NetBSD 3.0 May 30, 2003 4

SETMODE (3) NetBSD Library Functions Manual SETMODE (3)

NAME
getmode , setmode — modify mode bits

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

mode_t
getmode (const void ∗set , mode_t mode);

void ∗
setmode (const char ∗mode_str);

DESCRIPTION
Thegetmode () function returns a copy of the file permission bitsmode as altered by the values pointed to
by set . While only the mode bits are altered, other parts of the file mode may be examined.

Thesetmode () function takes an absolute (octal) or symbolic value, as described inchmod(1), as an argu-
ment and returns a pointer to mode values to be supplied togetmode (). Becausesome of the symbolic val-
ues are relative to the file creation mask,setmode () may callumask(2). If this occurs, the file creation
mask will be restored beforesetmode () returns. If the calling program changes the value of its file creation
mask after callingsetmode (), setmode () must be called again ifgetmode () is to modify future file
modes correctly.

If the mode passed tosetmode () is invalid, setmode () returnsNULL.

ERRORS
The setmode () function may fail and seterrno for any of the errors specified for the library routines
malloc (3) orstrtol (3). Inaddition,setmode () will fail and seterrno to:

[EINVAL] Themode argument does not represent a valid mode.

SEE ALSO
chmod(1), stat (2), umask(2), malloc (3)

HISTORY
Thegetmode () andsetmode () functions first appeared in 4.4BSD.

NetBSD 3.0 October 1, 2005 1

SETPROCTITLE (3) NetBSD Library Functions Manual SETPROCTITLE (3)

NAME
setproctitle — set process title

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

void
setproctitle (const char ∗fmt , . . .);

DESCRIPTION
Thesetproctitle () function sets the invoking process’s title. Theprocess title is set to the last compo-
nent of the program name, followed by a colon and the formatted string specified byfmt. If fmt is NULL, the
colon and formatted string are omitted. The length of a process title is limited to 2048 bytes.

EXAMPLES
Set the process title to the program name, with no further information:

setproctitle(NULL);

Set the process title to the program name, an informational string, and the process id:

setproctitle("foo! (%d)", getpid());

SEE ALSO
ps (1), w(1), getprogname (3), printf (3)

HISTORY
Thesetproctitle () function first appeared inNetBSD 1.0.

CAVEATS
It is important never to pass a string with user-supplied data as a format without using ‘%s’. An attacker can
put format specifiers in the string to mangle your stack, leading to a possible security hole.This holds true
ev en if you have built the string “by hand” using a function like snprintf (), as the resulting string may
still contain user-supplied conversion specifiers for later interpolation bysetproctitle ().

Always be sure to use the proper secure idiom:

setproctitle("%s", string);

NetBSD 3.0 April 13, 1994 1

SETRUID (3) NetBSD Library Functions Manual SETRUID (3)

NAME
setruid , setrgid — set user and group ID

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>

int
setruid (uid_t ruid);

int
setrgid (gid_t rgid);

DESCRIPTION
Thesetruid () function (setrgid ()) sets the real user ID (group ID) of the current process.

RETURN VALUES
Upon success, these functions return 0; otherwise −1 is returned.

If the user is not the super user, or the uid specified is not the real or effective ID, these functions return −1.

The use of these calls is not portable. Their use is discouraged; they will be removed in the future.

SEE ALSO
getgid (2), getuid (2), setegid (2), seteuid (2), setgid (2), setuid (2)

HISTORY
Thesetruid () andsetrgid () syscalls appeared in 4.2BSD and were dropped in 4.4BSD.

NetBSD 3.0 June 2, 1993 1

SHA1 (3) NetBSD Library Functions Manual SHA1 (3)

NAME
SHA1Init , SHA1Update , SHA1Final , SHA1Transform , SHA1End, SHA1File , SHA1Data — cal-
culate the NIST Secure Hash Algorithm

SYNOPSIS
#include <sys/types.h>
#include <sha1.h>

void
SHA1Init (SHA1_CTX ∗context);

void
SHA1Update (SHA1_CTX ∗context , const u_char ∗data , u_int len);

void
SHA1Final (u_char digest[20] , SHA1_CTX ∗context);

void
SHA1Transform (uint32_t state[5] , u_char buffer[64]);

char ∗
SHA1End(SHA1_CTX ∗context , char ∗buf);

char ∗
SHA1File (char ∗filename , char ∗buf);

char ∗
SHA1Data(u_char ∗data , size_t len , char ∗buf);

DESCRIPTION
The SHA1 functions implement the NIST Secure Hash Algorithm (SHA-1), FIPS PUB 180-1.SHA-1 is
used to generate a condensed representation of a message called a message digest. The algorithm takes a
message less than 2ˆ64 bits as input and produces a 160-bit digest suitable for use as a digital signature.

The SHA1 functions are considered to be more secure than themd4(3) andmd5(3) functions with which
they share a similar interface.

The SHA1Init () function initializes a SHA1_CTXcontext for use with SHA1Update (), and
SHA1Final (). The SHA1Update () function addsdata of length len to the SHA1_CTX specified by
context . SHA1Final () is called when all data has been added viaSHA1Update () and stores a message
digest in thedigest parameter. When a null pointer is passed toSHA1Final () as first argument only the
final padding will be applied and the current context can still be used withSHA1Update ().

The SHA1Transform () function is used bySHA1Update () to hash 512-bit blocks and forms the core of
the algorithm. Most programs should use the interface provided bySHA1Init (), SHA1Update () and
SHA1Final () instead of callingSHA1Transform () directly.

TheSHA1End() function is a front end forSHA1Final () which converts the digest into anASCII represen-
tation of the 160 bit digest in hexadecimal.

The SHA1File () function calculates the digest for a file and returns the result viaSHA1End(). If
SHA1File () is unable to open the file a NULL pointer is returned.

TheSHA1Data() function calculates the digest of an arbitrary string and returns the result viaSHA1End().

For each of theSHA1End(), SHA1File (), andSHA1Data() functions thebuf parameter should either be
a string of at least 41 characters in size or a NULL pointer. In the latter case, space will be dynamically allo-
cated viamalloc (3) and should be freed usingfree (3) when it is no longer needed.

NetBSD 3.0 July 10, 1997 1

SHA1 (3) NetBSD Library Functions Manual SHA1 (3)

EXAMPLES
The follow code fragment will calculate the digest for the string "abc" which is
‘‘ 0xa9993e36476816aba3e25717850c26c9cd0d89d’’.

SHA1_CTX sha;
u_char results[20];
char ∗buf;
int n;

buf = "abc";
n = s trlen(buf);
SHA1Init(&sha);
SHA1Update(&sha, (u_char ∗)buf, n);
SHA1Final(results, &sha);

/ ∗ Print the digest as one long hex value ∗/
printf("0x");
for (n = 0; n < 20; n++)

printf("%02x", results[n]);
putchar(’\n’);

Alternately, the helper functions could be used in the following way:

SHA1_CTX sha;
u_char output[41];
char ∗buf = "abc";

printf("0x%s", SHA1Data(buf, strlen(buf), output));

SEE ALSO
md5(1), md4(3), md5(3)

J. Burrows,The Secure Hash Standard, FIPS PUB 180-1.

HISTORY
The SHA-1 functions appeared inNetBSD 1.4.

AUTHORS
This implementation of SHA-1 was written by Steve Reid.

The SHA1End(), SHA1File (), andSHA1Data() helper functions are derived from code written by Poul-
Henning Kamp.

BUGS
This implementation of SHA-1 has not been validated by NIST and as such is not in official compliance with
the standard.

If a message digest is to be copied to a multi-byte type (ie: an array of five 32-bit integers) it will be neces-
sary to perform byte swapping on little endian machines such as the i386, alpha, and VAX.

NetBSD 3.0 July 10, 1997 2

SHA2 (3) NetBSD Library Functions Manual SHA2 (3)

NAME
SHA256_Init , SHA256_Update , SHA256_Pad, SHA256_Final , SHA256_Transform ,
SHA256_End, SHA256_File , SHA256_FileChunk , SHA256_Data — calculate the NIST Secure
Hash Standard (version 2)

SYNOPSIS
#include <sys/types.h>
#include <sha2.h>

void
SHA256_Init (SHA256_CTX ∗context);

void
SHA256_Update (SHA256_CTX ∗context , const uint8_t ∗data , size_t len);

void
SHA256_Pad(SHA256_CTX ∗context);

void
SHA256_Final (uint8_t digest[SHA256_DIGEST_LENGTH] , SHA256_CTX ∗context);

void
SHA256_Transform (uint32_t state[8] ,

const uint8_t buffer[SHA256_BLOCK_LENGTH]);

char ∗
SHA256_End(SHA256_CTX ∗context , char ∗buf);

char ∗
SHA256_File (const char ∗filename , char ∗buf);

char ∗
SHA256_FileChunk (const char ∗filename , char ∗buf , off_t offset ,

off_t length);

char ∗
SHA256_Data (uint8_t ∗data , size_t len , char ∗buf);

void
SHA384_Init (SHA384_CTX ∗context);

void
SHA384_Update (SHA384_CTX ∗context , const uint8_t ∗data , size_t len);

void
SHA384_Pad(SHA384_CTX ∗context);

void
SHA384_Final (uint8_t digest[SHA384_DIGEST_LENGTH] , SHA384_CTX ∗context);

void
SHA384_Transform (uint64_t state[8] ,

const uint8_t buffer[SHA384_BLOCK_LENGTH]);

char ∗
SHA384_End(SHA384_CTX ∗context , char ∗buf);

char ∗
SHA384_File (char ∗filename , char ∗buf);

NetBSD 3.0 April 24, 2003 1

SHA2 (3) NetBSD Library Functions Manual SHA2 (3)

char ∗
SHA384_FileChunk (char ∗filename , char ∗buf , off_t offset , off_t length);

char ∗
SHA384_Data (uint8_t ∗data , size_t len , char ∗buf);

void
SHA512_Init (SHA512_CTX ∗context);

void
SHA512_Update (SHA512_CTX ∗context , const uint8_t ∗data , size_t len);

void
SHA512_Pad(SHA512_CTX ∗context);

void
SHA512_Final (uint8_t digest[SHA512_DIGEST_LENGTH] , SHA512_CTX ∗context);

void
SHA512_Transform (uint64_t state[8] ,

const uint8_t buffer[SHA512_BLOCK_LENGTH]);

char ∗
SHA512_End(SHA512_CTX ∗context , char ∗buf);

char ∗
SHA512_File (char ∗filename , char ∗buf);

char ∗
SHA512_FileChunk (char ∗filename , char ∗buf , off_t offset , off_t length);

char ∗
SHA512_Data (uint8_t ∗data , size_t len , char ∗buf);

DESCRIPTION
The SHA2 functions implement the NIST Secure Hash Standard, FIPS PUB 180-2.The SHA2 functions are
used to generate a condensed representation of a message called a message digest, suitable for use as a digital
signature. Thereare three families of functions, with names corresponding to the number of bits in the
resulting message digest.The SHA-256 functions are limited to processing a message of less than 2ˆ64 bits
as input. The SHA-384 and SHA-512 functions can process a message of at most 2ˆ128 - 1 bits as input.

The SHA2 functions are considered to be more secure than thesha1 (3) functions with which they share a
similar interface. The256, 384, and 512-bit versions of SHA2 share the same interface. For brevity, only the
256-bit variants are described below.

The SHA256_Init () function initializes a SHA256_CTXcontext for use withSHA256_Update (),
andSHA256_Final (). TheSHA256_Update () function addsdata of lengthlen to the SHA256_CTX
specified bycontext . SHA256_Final () is called when all data has been added viaSHA256_Update ()
and stores a message digest in thedigest parameter.

TheSHA256_Pad() function can be used to apply padding to the message digest as inSHA256_Final (),
but the current context can still be used withSHA256_Update ().

TheSHA256_Transform () function is used bySHA256_Update () to hash 512-bit blocks and forms the
core of the algorithm. Most programs should use the interface provided bySHA256_Init (),
SHA256_Update (), andSHA256_Final () instead of callingSHA256_Transform () directly.

TheSHA256_End() function is a front end forSHA256_Final () which converts the digest into anASCII
representation of the digest in hexadecimal.

NetBSD 3.0 April 24, 2003 2

SHA2 (3) NetBSD Library Functions Manual SHA2 (3)

TheSHA256_File () function calculates the digest for a file and returns the result viaSHA256_End(). If
SHA256_File () is unable to open the file, aNULLpointer is returned.

SHA256_FileChunk () behaves like SHA256_File () but calculates the digest only for that portion of the
file starting atoffset and continuing forlength bytes or until end of file is reached, whichever comes
first. A zero length can be specified to read until end of file.A neg ative length or offset will be
ignored.

The SHA256_Data () function calculates the digest of an arbitrary string and returns the result via
SHA256_End().

For each of theSHA256_End(), SHA256_File (), SHA256_FileChunk (), andSHA256_Data () func-
tions the buf parameter should either be a string large enough to hold the resulting digest (e.g.,
SHA256_DIGEST_STRING_LENGTH, SHA384_DIGEST_STRING_LENGTH, or
SHA512_DIGEST_STRING_LENGTH, depending on the function being used) or aNULL pointer. In the
latter case, space will be dynamically allocated viamalloc (3) and should be freed usingfree (3) when it is
no longer needed.

EXAMPLES
The following code fragment will calculate the SHA-256 digest for the string "abc", which is
“0xba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad”.

SHA256_CTX ctx;
uint8_t results[SHA256_DIGEST_LENGTH];
char ∗buf;
int n;

buf = "abc";
n = s trlen(buf);
SHA256_Init(&ctx);
SHA256_Update(&ctx, (uint8_t ∗)buf, n);
SHA256_Final(results, &ctx);

/ ∗ Print the digest as one long hex value ∗/
printf("0x");
for (n = 0; n < SHA256_DIGEST_LENGTH; n++)

printf("%02x", results[n]);
putchar(’\n’);

Alternately, the helper functions could be used in the following way:

SHA256_CTX ctx;
uint8_t output[SHA256_DIGEST_STRING_LENGTH];
char ∗buf = "abc";

printf("0x%s\n", SHA256_Data(buf, strlen(buf), output));

SEE ALSO
cksum (1), md4(3), md5(3), rmd160 (3), sha1 (3)

Secure Hash Standard, FIPS PUB 180-2.

HISTORY
The SHA2 functions appeared inOpenBSD3.4 andNetBSD 3.0.

NetBSD 3.0 April 24, 2003 3

SHA2 (3) NetBSD Library Functions Manual SHA2 (3)

AUTHORS
This implementation of the SHA functions was written by Aaron D. Gifford.

The SHA256_End(), SHA256_File (), SHA256_FileChunk (), andSHA256_Data () helper functions
are derived from code written by Poul-Henning Kamp.

CAVEATS
This implementation of the Secure Hash Standard has not been validated by NIST and as such is not in offi-
cial compliance with the standard.

If a message digest is to be copied to a multi-byte type (i.e.: an array of five 32-bit integers) it will be neces-
sary to perform byte swapping on little endian machines such as the i386, alpha, and vax.

NetBSD 3.0 April 24, 2003 4

SHQUOTE (3) NetBSD Library Functions Manual SHQUOTE (3)

NAME
shquote , shquotev — quote argument strings for use with the shell

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

size_t
shquote (const char ∗arg , char ∗buf , size_t bufsize);

size_t
shquotev (int argc , char ∗ const ∗argv , char ∗buf , size_t bufsize);

DESCRIPTION
The shquote () andshquotev () functions copy strings and transform the copies by adding shell escape
and quoting characters.They are used to encapsulate arguments to be included in command strings passed to
the system () andpopen () functions, so that the arguments will have the correct values after being evalu-
ated by the shell.

The exact method of quoting and escaping may vary, and is intended to match the conventions of the shell
used bysystem () andpopen (). It may not match the conventions used by other shells. In this implemen-
tation, the following transformation is applied to each input string:

• it is surrounded by single quotes(’) ,

• any single quotes in the input are escaped by replacing them with the four-character sequence:
’\’’ , and

• extraneous pairs of single quotes (caused by multiple adjacent single quotes in the input string, or
by single quotes at the beginning or end of the input string) are elided.

Theshquote () function transforms the string specified by itsarg argument, and places the result into the
memory pointed to bybuf .

Theshquotev () function transforms each of theargc strings specified by the arrayargv independently.
The transformed strings are placed in the memory pointed to bybuf , separated by spaces.It does not mod-
ify the pointer array specified byargv or the strings pointed to by the pointers in the array.

Both functions write up tobufsize - 1 characters of output into the buffer pointed to bybuf , then add a
NULcharacter to terminate the output string.If bufsize is given as zero, thebuf parameter is ignored and
no output is written.

RETURN VALUES
The shquote () andshquotev () functions return the number of characters necessary to hold the result
from operating on their input strings, not including the terminatingNUL. That is, they return the length of
the string that would have been written to the output buffer, if it w ere large enough. If an error occurs during
processing, the value ((size_t)−1) is returned anderrno is set appropriately.

EXAMPLES
The following code fragment demonstrates how you might useshquotev () to construct a command string
to be used withsystem (). The command uses an environment variable (which will be expanded by the
shell) to determine the actual program to run. Note that the environment variable may be expanded by the
shell into multiple words. Thefirst word of the expansion will be used by the shell as the name of the pro-
gram to run, and the rest will be passed as arguments to the program.

NetBSD 3.0 March 1, 2001 1

SHQUOTE (3) NetBSD Library Functions Manual SHQUOTE (3)

char ∗∗argv, c, ∗cmd;
size_t cmdlen, len, qlen;
int argc;

...

/ ∗
∗ Size buffer to hold the command string, and allocate it.
∗ Buffer of length one given to snprintf() for portability.
∗/

cmdlen = snprintf(&c, 1, "${PROG-%s} ", PROG_DEFAULT);
qlen = shquotev(argc, argv, NULL, 0) + 1;
if (qlen == (size_t)-1) {

...
}
cmdlen += qlen;
cmd = malloc(cmdlen);
if (cmd == NULL) {

...
}

/ ∗ Create the command string. ∗/
len = snprintf(cmd, cmdlen, "${PROG-%s} ", PROG_DEFAULT);
qlen = shquotev(argc, argv, cmd + len, cmdlen - len);
if (qlen == (size_t)-1) {

/ ∗ Should not ever happen. ∗/
...

}
len += qlen;

/ ∗ "cmd" can now be passed to system(). ∗/

The following example shows how you would implement the same functionality using theshquote () func-
tion directly.

char ∗∗argv, c, ∗cmd;
size_t cmdlen, len, qlen;
int argc, i;

...

/ ∗
∗ Size buffer to hold the command string, and allocate it.
∗ Buffer of length one given to snprintf() for portability.
∗/

cmdlen = snprintf(&c, 1, "${PROG-%s} ", PROG_DEFAULT);
for (i = 0; i < argc; i++) {

qlen = shquote(argv[i], NULL, 0) + 1;
if (qlen == (size_t)-1) {

...
}
cmdlen += qlen;

}

NetBSD 3.0 March 1, 2001 2

SHQUOTE (3) NetBSD Library Functions Manual SHQUOTE (3)

cmd = malloc(cmdlen);
if (cmd == NULL) {

...
}

/ ∗ Start the command string with the env var reference. ∗/
len = snprintf(cmd, cmdlen, "${PROG-%s} ", PROG_DEFAULT);

/ ∗ Quote all of the arguments when copying them. ∗/
for (i = 0; i < argc; i++) {

qlen = shquote(argv[i], cmd + len, cmdlen - len);
if (qlen == (size_t)-1) {

/ ∗ Should not ever happen. ∗/
...

}
len += qlen;
cmd[len++] = ’ ’;

}
cmd[--len] = ’ ’;

/ ∗ "cmd" can now be passed to system(). ∗/

SEE ALSO
sh (1), popen (3), system (3)

BUGS
This implementation does not currently handle strings containing multibyte characters properly. To address
this issue,/bin/sh (the shell used bysystem () andpopen ()) must first be fixed to handle multibyte
characters. Whenthat has been done, these functions can have multibyte character support enabled.

NetBSD 3.0 March 1, 2001 3

SIGBLOCK (3) NetBSD Library Functions Manual SIGBLOCK (3)

NAME
sigblock — block signals

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sigblock (int mask);

int
sigmask (signum);

DESCRIPTION
This interface is made obsolete by:sigprocmask (2).

sigblock () adds the signals specified inmask to the set of signals currently being blocked from delivery.
Signals are blocked if the corresponding bit inmask is a 1; the macrosigmask () is provided to construct
the mask for a given signum .

It is not possible to blockSIGKILL or SIGSTOP; this restriction is silently imposed by the system.

RETURN VALUES
The previous set of masked signals is returned.

EXAMPLES
The following example usingsigblock ():

int omask;

omask = sigblock(sigmask(SIGINT) | sigmask(SIGHUP));

Becomes:

sigset_t set, oset;

sigemptyset(&set);
sigaddset(&set, SIGINT);
sigaddset(&set, SIGHUP);
sigprocmask(SIG_BLOCK, &set, &oset);

Another use ofsigblock () is to get the current set of masked signals without changing what is actually
blocked. Insteadof:

int set;

set = sigblock(0);

Use the following:

sigset_t set;

sigprocmask(SIG_BLOCK, NULL, &set);

NetBSD 3.0 August 10, 2002 1

SIGBLOCK (3) NetBSD Library Functions Manual SIGBLOCK (3)

SEE ALSO
kill (2), sigaction (2), sigprocmask (2), sigsetmask (3), sigsetops (3)

HISTORY
Thesigblock () function call appeared in 4.2BSD and has been deprecated.

NetBSD 3.0 August 10, 2002 2

SIGHOLD (3) NetBSD Library Functions Manual SIGHOLD (3)

NAME
sighold — manipulate current signal mask

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sighold (int sig);

DESCRIPTION
This interface is made obsolete bysigprocmask (2).

Thesighold () function adds the signalsig to the calling process’ signal mask.

RETURN VALUES
If successful, thesighold () function returns 0. Otherwise −1 is returned anderrno is set to indicate the
error.

ERRORS
Thesighold () function will fail if:

[EINVAL] The argumentsig is not a valid signal number.

SEE ALSO
sigprocmask (2), sigrelse (3)

STANDARDS
Thesighold () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 January 16, 2003 1

SIGIGNORE (3) NetBSD Library Functions Manual SIGIGNORE (3)

NAME
sigignore — manipulate signal dispositions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sigignore (int sig);

DESCRIPTION
This interface is made obsolete bysigaction (2).

Thesigignore () function sets the disposition of the signalsig to SIG_IGN .

RETURN VALUES
If successful, thesigignore () function returns 0. Otherwise −1 is returned anderrno is set to indicate the
error.

ERRORS
Thesigignore () function will fail if:

[EINVAL] The argumentsig is not a valid signal number.

[EINVAL] An attempt is made to ignore a signal that cannot be ignored, such asSIGKILL or
SIGSTOP.

SEE ALSO
sigaction (2)

STANDARDS
Thesigignore () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 January 16, 2003 1

SIGINTERRUPT (3) NetBSD Library Functions Manual SIGINTERRUPT (3)

NAME
siginterrupt — allow signals to interrupt system calls

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
siginterrupt (int sig , int flag);

DESCRIPTION
The siginterrupt () function is used to change the system call restart behavior when a system call is
interrupted by the specified signal. If the flag is false (0), then system calls will be restarted if they are inter-
rupted by the specified signal and no data has been transferred yet.System call restart is the default behavior
on 4.2BSD.

If the flag is true (1), then restarting of system calls is disabled. If a system call is interrupted by the speci-
fied signal and no data has been transferred, the system call will return −1 with the global variableerrno set
to EINTR. Interrupted system calls that have started transferring data will return the amount of data actually
transferred. Systemcall interrupt is the signal behavior found on 4.1BSD andAT&T System VUNIX sys-
tems.

Note that the new 4.2BSD signal handling semantics are not altered in any other way. Most notably, signal
handlers always remain installed until explicitly changed by a subsequentsigaction (2) call, and the sig-
nal mask operates as documented insigaction (2). Programsmay switch between restartable and inter-
ruptible system call operation as often as desired in the execution of a program.

Issuing asiginterrupt (3) call during the execution of a signal handler will cause the new action to take
place on the next signal to be caught.

NOTES
This library routine uses an extension of thesigaction (2) system call that is not available in 4.2BSD,
hence it should not be used if backward compatibility is needed.

RETURN VALUES
A 0 value indicates that the call succeeded.A −1 value indicates that an invalid signal number has been sup-
plied.

SEE ALSO
sigaction (2), sigprocmask (2), sigsuspend (2)

HISTORY
Thesiginterrupt () function appeared in 4.3BSD.

NetBSD 3.0 June 4, 1993 1

SIGNAL (3) NetBSD Library Functions Manual SIGNAL (3)

NAME
signal — simplified software signal facilities

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

void (∗
signal (int sig , void (∗func)(int)))(int);

DESCRIPTION
Thissignal () facility is a simplified interface to the more generalsigaction (2) facility.

Signals allow the manipulation of a process from outside its domain as well as allowing the process to
manipulate itself or copies of itself (children). There are two general types of signals: those that cause termi-
nation of a process and those that do not.Signals which cause termination of a program might result from an
irrecoverable error or might be the result of a user at a terminal typing the ‘interrupt’ character. Signals are
used when a process is stopped because it wishes to access its control terminal while in the background (see
tty (4)). Signalsare optionally generated when a process resumes after being stopped, when the status of
child processes changes, or when input is ready at the control terminal. Most signals result in the termination
of the process receiving them if no action is taken; some signals instead cause the process receiving them to
be stopped, or are simply discarded if the process has not requested otherwise.Except for theSIGKILL and
SIGSTOPsignals, thesignal () function allows for a signal to be caught, to be ignored, or to generate an
interrupt. Seesignal (7) for comprehensive list of supported signals.

The func procedure allows a user to choose the action upon receipt of a signal.To set the default action of
the signal to occur as listed above, func should beSIG_DFL. A SIG_DFL resets the default action.To
ignore the signalfunc should beSIG_IGN . This will cause subsequent instances of the signal to be
ignored and pending instances to be discarded.If SIG_IGN is not used, further occurrences of the signal are
automatically blocked andfunc is called.

The handled signal is unblocked when the function returns and the process continues from where it left off
when the signal occurred.Unlik e pre vious signal facilities, the handler func() remains installed after a
signal has been delivered.

For some system calls, if a signal is caught while the call is executing and the call is prematurely terminated,
the call is automatically restarted.(The handler is installed using theSA_RESTART flag with
sigaction (2)). The affected system calls includeread (2), write (2), sendto (2), recvfrom (2),
sendmsg (2) andrecvmsg (2) on a communications channel or a low speed device and during aioctl (2)
or wait (2). However, calls that have already committed are not restarted, but instead return a partial success
(for example, a short read count).

When a process which has installed signal handlers forks, the child process inherits the signals. All caught
signals may be reset to their default action by a call to theexecve (2) function; ignored signals remain
ignored.

Only functions that are async-signal-safe can safely be used in signal handlers, seesignal (7) for a com-
plete list.

RETURN VALUES
The previous action is returned on a successful call.Otherwise,SIG_ERR is returned and the global vari-
ableerrno is set to indicate the error.

NetBSD 3.0 June 11, 2004 1

SIGNAL (3) NetBSD Library Functions Manual SIGNAL (3)

ERRORS
signal () will fail and no action will take place if one of the following occur:

[EINVAL] Specifiedsig is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler forSIGKILL or SIGSTOP.

SEE ALSO
kill (1), kill (2), ptrace (2), sigaction (2), sigaltstack (2), sigprocmask (2),
sigsuspend (2), psignal (3), setjmp (3), strsignal (3), tty (4), signal (7)

HISTORY
Thissignal () facility appeared in 4.0BSD.

NetBSD 3.0 June 11, 2004 2

SIGNBIT (3) NetBSD Library Functions Manual SIGNBIT (3)

NAME
signbit — test sign

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <math.h>

int
signbit (real-floating x);

DESCRIPTION
Thesignbit () macro determines whether the sign of its argument valuex is negative. An argument repre-
sented in a format wider than its semantic type is converted to its semantic type first. The determination is
then based on the type of the argument.

IEEE754
The sign is determined for all values, including infinities, zeroes, and NaNs

VAX
The sign is determined for finites, true zeros, and dirty zeroes; for ROPs the sign is reported negative.

RETURN VALUES
The signbit () macro returns a non-zero value if the sign of its value x is negative. Otherwise 0 is
returned.

ERRORS
No errors are defined.

SEE ALSO
fpclassify (3), isfinite (3), isnormal (3), math (3)

STANDARDS
Thesignbit () macro conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 October 29, 2003 1

SIGPAUSE (3) NetBSD Library Functions Manual SIGPAUSE (3)

NAME
sigpause — atomically release blocked signals and wait for interrupt

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sigpause (int sigmask);

DESCRIPTION
This interface is made obsolete bysigsuspend (2).

sigpause () assignssigmask to the set of masked signals and then waits for a signal to arrive; on return
the set of masked signals is restored.sigmask is usually 0 to indicate that no signals are to be blocked.
sigpause () always terminates by being interrupted, returning -1 witherrnoset toEINTR.

SEE ALSO
kill (2), sigaction (2), sigprocmask (2), sigsuspend (2), sigblock (3), sigvec (3)

HISTORY
Thesigpause () function call appeared in 4.2BSD and has been deprecated.

NetBSD 3.0 June 2, 1993 1

SIGRELSE (3) NetBSD Library Functions Manual SIGRELSE (3)

NAME
sigrelse — manipulate current signal mask

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sigrelse (int sig);

DESCRIPTION
This interface is made obsolete bysigprocmask (2).

Thesigrelse () function removes the signalsig from the calling process’ signal mask.

RETURN VALUES
If successful, thesigrelse () function returns 0. Otherwise −1 is returned anderrno is set to indicate the
error.

ERRORS
Thesigrelse () function will fail if:

[EINVAL] The argumentsig is not a valid signal number.

SEE ALSO
sigprocmask (2), sighold (3)

STANDARDS
Thesigrelse () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 January 16, 2003 1

SIGSET (3) NetBSD Library Functions Manual SIGSET (3)

NAME
sigset — manipulate signal dispositions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

void (∗
sigset (int sig , void (∗disp)(int)))(int);

DESCRIPTION
This interface is made obsolete bysigaction (2) and sigprocmask (2).

The sigset () function manipulates the disposition of the signalsig . The new disposition is given in
disp .

If disp is one ofSIG_DFL, SIG_IGN , or the address of a handler function, the disposition ofsig is
changed accordingly, and sig is removed from the process’ signal mask. Also, ifdisp is the address of a
handler function,sig will be added to the process’ signal mask during execution of the handler.

If disp is equal toSIG_HOLD, sig is added to the calling process’ signal mask and the disposition ofsig
remains unchanged.

RETURN VALUES
If successful, thesigset () function returnsSIG_HOLDif sig had been blocked, and the previous disposi-
tion of sig if it had not been blocked. OtherwiseSIG_ERRis returned anderrno is set to indicate the error.

ERRORS
Thesigset () function will fail if:

[EINVAL] The argumentsig is not a valid signal number.

[EINVAL] An attempt is made to ignore a signal that cannot be ignored, such asSIGKILL or
SIGSTOP.

SEE ALSO
sigaction (2), sigprocmask (2)

STANDARDS
Thesigset () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 July 24, 2005 1

SIGSETMASK (3) NetBSD Library Functions Manual SIGSETMASK (3)

NAME
sigsetmask — set current signal mask

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sigsetmask (int mask);

sigmask (signum);

DESCRIPTION
This interface is made obsolete by:sigprocmask (2).

sigsetmask () sets the current signal mask Signals are blocked from delivery if the corresponding bit in
mask is a 1; the macrosigmask () is provided to construct the mask for a given signum .

The system quietly disallowsSIGKILL or SIGSTOPto be blocked.

RETURN VALUES
The previous set of masked signals is returned.

EXAMPLES
The following example usingsigsetmask ():

int omask;

omask = sigblock(sigmask(SIGINT) | sigmask(SIGHUP));

...

sigsetmask(omask & ˜(sigmask(SIGINT) | sigmask(SIGHUP)));

Could be converted literally to:

sigset_t set, oset;

sigemptyset(&set);
sigaddset(&set, SIGINT);
sigaddset(&set, SIGHUP);
sigprocmask(SIG_BLOCK, &set, &oset);

...

sigdelset(&oset, SIGINT);
sigdelset(&oset, SIGHUP);
sigprocmask(SIG_SETMASK, &oset, NULL);

Another, clearer, alternative is:

sigset_t set;

sigemptyset(&set);

NetBSD 3.0 August 10, 2002 1

SIGSETMASK (3) NetBSD Library Functions Manual SIGSETMASK (3)

sigaddset(&set, SIGINT);
sigaddset(&set, SIGHUP);
sigprocmask(SIG_BLOCK, &set, NULL);

...

sigprocmask(SIG_UNBLOCK, &set, NULL);

To completely clear the signal mask usingsigsetmask () one can do:

(void) sigsetmask(0);

Which can be expressed viasigprocmask (2) as:

sigset_t eset;

sigemptyset(&eset);
(void) sigprocmask(SIG_SETMASK, &eset, NULL);

SEE ALSO
kill (2), sigaction (2), sigprocmask (2), sigsuspend (2), sigblock (3), sigsetops (3),
sigvec (3)

HISTORY
Thesigsetmask () function call appeared in 4.2BSD and has been deprecated.

NetBSD 3.0 August 10, 2002 2

SIGSETOPS (3) NetBSD Library Functions Manual SIGSETOPS (3)

NAME
sigemptyset , sigfillset , sigaddset , sigdelset , sigismember — manipulate signal sets

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

int
sigemptyset (sigset_t ∗set);

int
sigfillset (sigset_t ∗set);

int
sigaddset (sigset_t ∗set , int signo);

int
sigdelset (sigset_t ∗set , int signo);

int
sigismember (sigset_t ∗set , int signo);

DESCRIPTION
These functions manipulate signal sets stored in asigset_t . Either sigemptyset () or sigfillset ()
must be called for every object of typesigset_t before any other use of the object.

Thesigemptyset () function initializes a signal set to be empty.

Thesigfillset () function initializes a signal set to contain all signals.

Thesigaddset () function adds the specified signalsigno to the signal set.

Thesigdelset () function deletes the specified signalsigno from the signal set.

Thesigismember () function returns whether a specified signalsigno is contained in the signal set.

sigemptyset () and sigfillset () are provided as macros, but actual functions are available if their
names are undefined (with #undefname).

RETURN VALUES
Thesigismember () function returns 1 if the signal is a member of the set, a 0 otherwise.The other func-
tions return 0 upon success.A −1 return value indicates an error occurred and the global variableerrno is set
to indicate the reason.

ERRORS
These functions could fail if one of the following occurs:

[EINVAL] signo has an invalid value.

SEE ALSO
kill (2), sigaction (2), sigsuspend (2), signal (7)

STANDARDS
These functions conform toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 1

SIGVEC (3) NetBSD Library Functions Manual SIGVEC (3)

NAME
sigvec — software signal facilities

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <signal.h>

struct sigvec {
void (∗sv_handler)();
int sv_mask;
int sv_flags;

};

int
sigvec (int sig , struct sigvec ∗vec , struct sigvec ∗ovec);

DESCRIPTION
This interface is made obsolete bysigaction (2). The structure, flags, and function declaration have
been removed from the header files but the function is kept in the c library for binary compatibility.

The system defines a set of signals that may be delivered to a process.Signal delivery resembles the occur-
rence of a hardware interrupt: the signal is blocked from further occurrence, the current process context is
saved, and a new one is built. A process may specify ahandlerto which a signal is delivered, or specify that
a signal is to beignored. A process may also specify that a default action is to be taken by the system when a
signal occurs.A signal may also beblocked, in which case its delivery is postponed until it isunblocked.
The action to be taken on delivery is determined at the time of delivery. Normally, signal handlers execute
on the current stack of the process. This may be changed, on a per-handler basis, so that signals are taken on
a specialsignal stack.

Signal routines execute with the signal that caused their invocationblocked, but other signals may yet occur.
A global signal maskdefines the set of signals currently blocked from delivery to a process. The signal mask
for a process is initialized from that of its parent (normally 0). It may be changed with asigblock (3) or
sigsetmask (3) call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for the process.If
the signal is not currentlyblocked by the process then it is delivered to the process. When a caught signal is
delivered, the current state of the process is saved, a new signal mask is calculated (as described below), and
the signal handler is invoked. Thecall to the handler is arranged so that if the signal handling routine returns
normally the process will resume execution in the context from before the signal’s delivery. If the process
wishes to resume in a different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the process’ signal
handler (or until asigblock (3) or sigsetmask (3) call is made).This mask is formed by taking the
union of the current signal mask, the signal to be delivered, and the signal mask associated with the handler
to be invoked.

sigvec () assigns a handler for a specific signal.If vec is non-zero, it specifies an action (SIG_DFL,
SIG_IGN , or a handler routine) and mask to be used when delivering the specified signal.Further, if the
SV_ONSTACKbit is set insv_flags , the system will deliver the signal to the process on asignal stack,
specified withsigaltstack (2). If ovec is non-zero, the previous handling information for the signal is
returned to the user.

NetBSD 3.0 December 3, 2005 1

SIGVEC (3) NetBSD Library Functions Manual SIGVEC (3)

Once a signal handler is installed, it remains installed until anothersigvec () call is made, or anexecve (2)
is performed. A signal-specific default action may be reset by settingsv_handler to SIG_DFL. The
defaults are process termination, possibly with core dump; no action; stopping the process; or continuing the
process. Seethe signal list below for each signal’s default action. If sv_handler is set toSIG_DFL, the
default action for the signal is to discard the signal, and if a signal is pending, the pending signal is discarded
ev en if the signal is masked. If sv_handler is set toSIG_IGN , current and pending instances of the sig-
nal are ignored and discarded.

Options may be specified by settingsv_flags. If theSV_ONSTACKbit is set insv_flags , the system will
deliver the signal to the process on asignal stack, specified withsigstack (2).

If a signal is caught during the system calls listed below, the call may be restarted, the call may return with a
data transfer shorter than requested, or the call may be forced to terminate with the errorEINTR. Interrupt-
ing of pending calls is requested by setting theSV_INTERRUPTbit in sv_flags . The affected system
calls includeopen (2), read (2), write (2), sendto (2), recvfrom (2), sendmsg (2) andrecvmsg (2) on
a communications channel or a slow device (such as a terminal, but not a regular file) and during await (2)
or ioctl (2). However, calls that have already committed are not restarted, but instead return a partial suc-
cess (for example, a short read count).

After a fork (2) or vfork (2) all signals, the signal mask, the signal stack, and the interrupt/restart flags are
inherited by the child.

Theexecve (2) system call reinstates the default action for all signals which were caught and resets all sig-
nals to be caught on the user stack.Ignored signals remain ignored; the signal mask remains the same; sig-
nals that interrupt pending system calls continue to do so.

Seesignal (7) for comprehensive list of supported signals.

NOTES
The mask specified invec is not allowed to blockSIGKILL or SIGSTOP. This is enforced silently by the
system.

TheSV_INTERRUPTflag is not available in 4.2BSD, hence it should not be used if backward compatibility
is needed.

RETURN VALUES
A 0 value indicated that the call succeeded.A −1 return value indicates an error occurred anderrno is set to
indicated the reason.

EXAMPLES
The handler routine can be declared:

void
handler(sig, code, scp)

int sig, code;
struct sigcontext ∗scp;

Heresig is the signal number, into which the hardware faults and traps are mapped as defined below. code
is a parameter that is either a constant or the code provided by the hardware. scp is a pointer to the
sigcontext structure (defined in〈signal.h 〉), used to restore the context from before the signal.

ERRORS
sigvec () will fail and no new signal handler will be installed if one of the following occurs:

NetBSD 3.0 December 3, 2005 2

SIGVEC (3) NetBSD Library Functions Manual SIGVEC (3)

[EFAULT] Either vec or ovec points to memory that is not a valid part of the process address
space.

[EINVAL] sig is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler forSIGKILL or SIGSTOP.

SEE ALSO
kill (1), kill (2), ptrace (2), sigaction (2), sigaltstack (2), sigprocmask (2), sigstack (2),
sigsuspend (2), setjmp (3), sigblock (3), siginterrupt (3), signal (3), sigpause (3),
sigsetmask (3), sigsetops (3), tty (4), signal (7)

NetBSD 3.0 December 3, 2005 3

SIN (3) NetBSD Library Functions Manual SIN (3)

NAME
sin , sinf — sine function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
sin (double x);

float
sinf (float x);

DESCRIPTION
Thesin () function computes the sine ofx (measured in radians).A large magnitude argument may yield a
result with little or no significance.

RETURN VALUES
Thesin () function returns the sine value.

SEE ALSO
acos (3), asin (3), atan (3), atan2 (3), cos (3), cosh (3), math (3), sinh (3), tan (3), tanh (3)

STANDARDS
Thesin () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 April 19, 1991 1

SINH (3) NetBSD Library Functions Manual SINH (3)

NAME
sinh , sinhf — hyperbolic sine function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
sinh (double x);

float
sinhf (float x);

DESCRIPTION
Thesinh () function computes the hyperbolic sine ofx .

RETURN VALUES
The sinh () function returns the hyperbolic sine value unless the magnitude ofx is too large; in this event,
the global variableerrno is set toERANGE.

SEE ALSO
acos (3), asin (3), atan (3), atan2 (3), cos (3), cosh (3), math (3), sin (3), tan (3), tanh (3)

STANDARDS
Thesinh () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 April 19, 1991 1

SKEY (3) NetBSD Library Functions Manual SKEY (3)

NAME
skey , skeychallenge , skeylookup , skeygetnext , skeyverify , skeyzero ,
getskeyprompt , skey_set_algorithm , skey_get_algorithm , skey_haskey ,
skey_keyinfo , skey_passcheck , skey_authenticate — one-time password (OTP) library

LIBRARY
S/key One-Time Password Library (libskey, -lskey)

SYNOPSIS
#include <skey.h>

int
skeychallenge (struct skey ∗mp, const char ∗name, char ∗ss , size_t sslen);

int
skeylookup (struct skey ∗mp, const char ∗name);

int
skeygetnext (struct skey ∗mp);

int
skeyverify (struct skey ∗mp, char ∗response);

int
skeyzero (struct skey ∗mp, char ∗response);

int
getskeyprompt (struct skey ∗mp, char ∗name, char ∗prompt);

const char ∗
skey_set_algorithm (const char ∗new);

const char ∗
skey_get_algorithm (void);

int
skey_haskey (const char ∗username);

const char ∗
skey_keyinfo (const char ∗username);

int
skey_passcheck (const char ∗username , char ∗passwd);

int
skey_authenticate (const char ∗username);

void
f (char ∗x);

int
keycrunch (char ∗result , const char ∗seed , const char ∗passwd);

void
rip (char ∗buf);

char ∗
readpass (char ∗buf , int n);

NetBSD 3.0 November 10, 2001 1

SKEY (3) NetBSD Library Functions Manual SKEY (3)

char ∗
readskey (char ∗buf , int n);

int
atob8 (char ∗out , const char ∗in);

int
btoa8 (char ∗out , const char ∗in);

int
htoi (int c);

const char ∗
skipspace (const char ∗cp);

void
backspace (char ∗buf);

void
sevenbit (char ∗buf);

char ∗
btoe (char ∗engout , const char ∗c);

int
etob (char ∗out , const char ∗e);

char ∗
put8 (char ∗out , const char ∗s);

DESCRIPTION
Theskey library provides routines for accessingNetBSD’s one-time password (OTP) authentication system.

Most S/Key operations take a pointer to astruct skey, which should be considered as an opaque identifier.

FUNCTIONS
The following high-level functions are available:

skeychallenge (mp, name, ss , sslen)
Return a S/Key challenge for username. If successful, the caller’s skey structuremp is filled and
0 is returned. Ifunsuccessful (e.g. if name is unknown), −1 is returned.

skeylookup (mp, name)
Find an entry for username in the one-time password database.Returns 0 if the entry is found
and 1 if the entry is not found. If an error occurs accessing the database, −1 is returned.

skeygetnext (mp)
Get the next entry in the one-time password database. Returns 0 on success and the entry is
stored inmpand 1 if no more entries are available. If an error occurs accessing the database, −1
is returned.

skeyverify (mp, response)
Verify responseresponse to a S/Key challenge. Returns0 if the verification is successful and
1 if the verification failed. If an error occurs accessing the database, −1 is returned.

skeyzero (mp, response)
Comment out user’s entry in the S/Key database. Returns0 on success and the database is
updated, otherwise −1 is returned and the database remains unchanged.

NetBSD 3.0 November 10, 2001 2

SKEY (3) NetBSD Library Functions Manual SKEY (3)

getskeyprompt (mp, name, prompt)
Issue a S/Key challenge for username. If successful, fill in the caller’s skey structuremp and
return 0. If unsuccessful (e.g. if name is unknown) −1 is returned.

The following lower-level functions are available:

skey_set_algorithm (new)
Set hash algorithm type.Valid values fornew are "md4", "md5" and "sha1".

skey_get_algorithm (void)
Get current hash type.

skey_haskey (username)
Returns 0 if the userusername exists and 1 if the user doesn’t exist. Returns−1 on file error.

skey_keyinfo (username)
Returns the current sequence number and seed for userusername .

skey_passcheck (username , passwd)
Checks to see if answer is the correct one to the current challenge.

skey_authenticate (username)
Used when calling program will allow input of the user’s response to the challenge. Returns zero
on success or −1 on failure.

The following miscellaneous functions are available:

f (x) One-way function to take 8 bytes pointed to byx and return 8 bytes in place.

keycrunch (char ∗result , const char ∗seed , const char ∗passwd)
Crunch a key.

rip (buf)
Strip trailing CR/LF characters from a line of textbuf .

readpass (buf , n)
Read in secret passwd (turns off echo).

readskey (buf , n)
Read in an s/key OTP (does not turn off echo).

atob8 (out , in)
Convert 8-byte hex-ascii stringin to binary arrayout . Returns 0 on success, −1 on error.

btoa8 (out , in)
Convert 8-byte binary arrayin to hex-ascii stringout . Returns 0 on success, −1 on error.

htoi (int c)
Convert hex digit to binary integer.

skipspace (cp)
Skip leading spaces from the stringcp .

backspace (buf)
Remove backspaced over characters from the stringbuf .

sevenbit (buf)
Ensure linebuf is all seven bits.

btoe (engout , c)
Encode 8 bytes inc as a string of English words. Returnsa pointer to a static buffer in engout .

NetBSD 3.0 November 10, 2001 3

SKEY (3) NetBSD Library Functions Manual SKEY (3)

etob (out , e)
Convert English to binary. Returns 0 if the word is not in the database, 1 if all good words and
parity is valid, −1 if badly formed input (i.e. > 4 char word) and -2 if words are valid but parity is
wrong.

put8 (out , s)
Display 8 bytess as a series of 16-bit hex digits.

FILES
/usr/lib/libskey.a static skey library
/usr/lib/libskey.so dynamic skey library
/usr/lib/libskey_p.a static skey library compiled for profiling

SEE ALSO
skey (1), skeyaudit (1), skeyinfo (1)

BUGS
Theskey library functions are not re-entrant or thread-safe.

Theskey library defines many poorly named functions which pollute the name space.

NetBSD 3.0 November 10, 2001 4

SLEEP (3) NetBSD Library Functions Manual SLEEP (3)

NAME
sleep — suspend process execution for interval of seconds

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

unsigned int
sleep (unsigned int seconds);

DESCRIPTION
Thesleep () function suspends execution of the calling process until either the number of seconds specified
by seconds have elapsed or a signal is delivered to the calling process and its action is to invoke a signal-
catching function or to terminate the process.The suspension time may be longer than requested due to the
scheduling of other activity by the system.

RETURN VALUES
If the sleep () function returns because the requested time has elapsed, the value returned will be zero.If
the sleep () function returns due to the delivery of a signal, the value returned will be the unslept amount
(the request time minus the time actually slept) in seconds.

SEE ALSO
nanosleep (2), usleep (3)

STANDARDS
Thesleep () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
A sleep () function appeared in Version 7AT&T UNIX .

NetBSD 3.0 June 4, 1993 1

SNPRINTB (3) NetBSD Library Functions Manual SNPRINTB (3)

NAME
snprintb — bitmask output conversion

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
snprintb (char ∗buf , size_t buflen , const char ∗fmt , uint64_t val);

DESCRIPTION
Thesnprintb () function formats a bitmask into a mnemonic form suitable for printing.

This conversion is useful for decoding bit fields in device registers. Itformats the integerval into the buffer
buf , of size buflen , using a specified radix and an interpretation of the bits within that integer as though
they were flags.

The decoding directive string fmt describes how the bitfield is to be interpreted and displayed. The first
character offmt is a binary character representation of the output numeral base in which the bitfield will be
printed before it is decoded. Recognized radix values (in C escape-character format) are \10 (octal) ,
\12 (decimal) ,and\20 (hexadecimal) .

The remaining characters infmt are interpreted as a list of bit-position–description pairs.A bit-posi-
tion–description pair begins with a binary character value that represents the position of the bit being
described. Abit position value of one describes the least significant bit. Whereas a position value of 32
(octal 40, hexadecimal 20, the ASCII space character) describes the most significant bit.

The remaining characters in a bit-position–description pair are the characters to print should the bit being
described be set. Description strings are delimited by the next bit position value character encountered
(distinguishable by its value being≤ 32) ,or the end of the decoding directive string itself.

RETURN VALUES
Thesnprintb () function returns the number of characters that are required to format the valueval given
the format stringfmt excluding the terminating NUL. The returned string inbuf is always NUL-termi-
nated.

EXAMPLES
Tw o examples of the old formatting style:

snprintb(buf, buflen, "\10\2BITTWO\1BITONE", 3)
⇒ "3<BITTWO,BITONE>"

snprintb(buf, buflen
"\20\x10NOTBOOT\x0fFPP\x0eSDVMA\x0cVIDEO"
"\x0bLORES\x0aFPA\x09DIAG\x07CACHE"
"\x06IOCACHE\x05LOOPBACK\x04DBGCACHE",
0xe860)

⇒ "0xe860<NOTBOOT,FPP,SDVMA,VIDEO,CACHE,IOCACHE>"

ERRORS
If the buffer buf is too small to hold the formatted output,snprintb () will still return the buffer, contain-
ing a truncated string.

NetBSD 3.0 July 28, 2000 1

SNPRINTB (3) NetBSD Library Functions Manual SNPRINTB (3)

SEE ALSO
snprintf (3)

HISTORY
The snprintb () function was originally implemented as a non-standard%b format string for the kernel
printf () function inNetBSD 1.5 and earlier releases.It got implemented asbitmap_snprintf () for
NetBSD 1.6 and this version was used to implementsnprintb ().

BUGS
snprintb () supports a new extended form of formatting string, which is not yet described here.

NetBSD 3.0 July 28, 2000 2

SOCKADDR_SNPRINTF (3) NetBSD Library Functions Manual SOCKADDR_SNPRINTF (3)

NAME
sockaddr_snprintf — formatting function for socket address structures

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
sockaddr_snprintf (char ∗buf , size_t buflen , const char ∗fmt ,

const struct sockaddr ∗sa);

DESCRIPTION
Thesockaddr_snprintf () function formats a socket address into a form suitable for printing.

This function is convenient because it is protocol independent, i.e. one does not need to know the address
family of the sockaddr in order to print it.The printf (3) like format string specifies how the address is
going to be printed.Some formatting characters are only supported by some address families. If a certain
formatting character is not supported, then the string “N/A” is printed.

The resulting formatted string is placed intobuf . Up to buflen characters are placed inbuf .

The following formatting characters are supported (immediately after a percent(‘%’) sign):

a The node address portion of the socket address is printed numerically. For AF_INET the address is
printed as: “A.B.C.D” and for AF_INET6 the address is printed as: “A:B...[%if]” using
getnameinfo (3) internally withNI_NUMERICHOST. For AF_APPLETALKthe address is printed
as: “A.B” For AF_LOCAL (AF_UNIX) the address is printed as: “socket-path” For AF_LINK the
address is printed as: “a.b.c.d.e.f” using link_ntoa (3), but the interface portion is skipped (see
below). For AF_UNSPECnothing is printed.

A The symbolic name of the address is printed.For AF_INET and this is the hostname associated with the
address. For all other address families, it is the same as the “a” format.

f The numeric value of the family of the address is printed.

l The length of the socket address is printed.

p For AF_INET , AF_INET6 , and AF_APPLETALKthe numeric value of the port portion of the address
is printed.

P For AF_INET andAF_INET6 this is the name of the service associated with the port number, if avail-
able. For all other address families, it is the same as the “p” format.

I For AF_LINK addresses, the interface name portion is printed.

F For AF_INET6 addresses, the flowinfo portion of the address is printed numerically.

R For AF_APPLETALK addresses, the netrange portion of the address is printed as:
“phase:[firstnet,lastnet]”

S For AF_INET6 addresses, the scope portion of the address is printed numerically.

? If present between “%” and the format character, and the selected format does not apply to the given
address family, the “N/A” string is elided and no output results.

NetBSD 3.0 April 9, 2005 1

SOCKADDR_SNPRINTF (3) NetBSD Library Functions Manual SOCKADDR_SNPRINTF (3)

RETURN VALUES
The sockaddr_snprintf () function returns the number of characters that are required to format the
value val given the format stringfmt excluding the terminating NUL. The returned string inbuf is
always NUL-terminated. If the address family is not supported,sockaddr_snprintf () returns −1 and
setserrno to EAFNOSUPPORT. For AF_INET and addressessockaddr_snprintf () returns −1 if the
getnameinfo (3) conversion failed, anderrno is set to the error value fromgetnameinfo (3).

ERRORS
If the buffer buf is too small to hold the formatted output,sockaddr_snprintf () will still return the
buffer, containing a truncated string.

SEE ALSO
getaddrinfo (3), getnameinfo (3), link_ntoa (3), snprintf (3)

HISTORY
Thesockaddr_snprintf () first appeared inNetBSD 3.0.

BUGS
Thesockaddr_snprintf () interface is experimental and might change in the future.

There is no way to specify different formatting styles for particular addresses.For example it would be use-
ful to printAF_LINK addresses as “%.2x:%.2x...” instead of “%x.%x...”

This function is supposed to be quick, but getnameinfo (3) might use system calls to convert the scope
number to an interface name and the “A” and “P” format characters callgetaddrinfo (3) which may
block for a noticeable period of time.

Not all formatting characters are supported by all address families and printing “N/A” is not very convenient.
The “?” character can suppress this, but other formatting (e.g., spacing or punctuation) will remain.

NetBSD 3.0 April 9, 2005 2

SOCKATMARK (3) NetBSD Library Functions Manual SOCKATMARK (3)

NAME
sockatmark — determine whether a socket is at the out-of-band mark

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/socket.h>

int
sockatmark (int s);

DESCRIPTION
The sockatmark function determines whether the socket referenced by the file descriptors is at the out-
of-band mark.

RETURN VALUES
If successful, thesockatmark function returns 1 to indicate that the socket is at an out-of-band mark; 0 is
returned if there is no out-of-band mark or the mark is preceded by in-band data. Otherwise, -1 is returned
anderrno is set to indicate the error.

ERRORS
Thesockatmark function will fail if:

[EBADF] The arguments is not a valid file descriptor.

[ENOTTY] The file descriptors does not refer to a socket.

SEE ALSO
ioctl (2), recv (2), socket (2)

Stuart Sechrest,An Introductory 4.4BSD Interprocess Communication Tutorial. (see
/usr/share/doc/psd/20.ipctut)

Samuel J. Leffler, Robert S. Fabry, William N. Joy, Phil Lapsley, Steve Miller, and Chris Torek,Advanced
4.4BSD IPC Tutorial. (see/usr/share/doc/psd/21.ipc)

STANDARDS
Thesockatmark function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

HISTORY
The sockatmark function appeared inIEEE Std 1003.1g-2000 (“POSIX.1”) as a replacement for the
SIOCATMARK ioctl (2) interface.

NetBSD 3.0 May 15, 2003 1

SQRT (3) NetBSDLibrary Functions Manual SQRT (3)

NAME
cbrt , cbrtf , sqrt , sqrtf — cube root and square root functions

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
cbrt (double x);

float
cbrtf (float x);

double
sqrt (double x);

float
sqrtf (float x);

DESCRIPTION
Thecbrt () andcbrtf () functions compute the cube root ofx .

Thesqrt () andsqrtf () functions compute the non-negative square root of x.

RETURN VALUES
If x is negative, sqrt (x) andsqrtf (x) set the global variableerrno to EDOM.

SEE ALSO
math (3)

STANDARDS
Thesqrt () function conforms toANSI X3.159-1989 (“ANSI C89”).

HISTORY
Thecbrt () function appeared in 4.3BSD.

NetBSD 3.0 May 6, 1991 1

ssl(3) OpenSSL ssl(3)

NAME
SSL − OpenSSL SSL/TLS library

LIBRARY
libcrypto, -lcrypto

SYNOPSIS
DESCRIPTION

The OpenSSLssl library implements the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security
(TLS v1) protocols. It provides a richAPI which is documented here.

At first the library must be initialized; seeSSL_library_init(3).

Then anSSL_CTX object is created as a framework to establishTLS/SSL enabled connections (see
SSL_CTX_new(3)). Various options regarding certificates, algorithms etc. can be set in this object.

When a network connection has been created, it can be assigned to anSSL object. After theSSL object has
been created usingSSL_new(3), SSL_set_fd(3) or SSL_set_bio(3) can be used to associate the network
connection with the object.

Then the TLS/SSL handshake is performed usingSSL_accept(3) or SSL_connect(3) respectively.
SSL_read(3) andSSL_write(3) are used to read and write data on theTLS/SSL connection. SSL_shut-
down(3) can be used to shut down theTLS/SSLconnection.

DATA STRUCTURES
Currently the OpenSSLssl library functions deals with the following data structures:

SSL_METHOD (SSLMethod)
That’s a dispatch structure describing the internalssl library methods/functions which implement the
various protocol versions (SSLv1, SSLv2 and TLSv1). It’s needed to create anSSL_CTX.

SSL_CIPHER (SSLCipher)
This structure holds the algorithm information for a particular cipher which are a core part of the
SSL/TLSprotocol. The available ciphers are configured on aSSL_CTX basis and the actually used ones
are then part of theSSL_SESSION.

SSL_CTX (SSLContext)
That’s the global context structure which is created by a server or client once per program life-time
and which holds mainly default values for theSSL structures which are later created for the connec-
tions.

SSL_SESSION(SSLSession)
This is a structure containing the currentTLS/SSL session details for a connection:SSL_CIPHERs,
client and server certificates, keys, etc.

SSL (SSLConnection)
That’s the mainSSL/TLS structure which is created by a server or client per established connection.
This actually is the core structure in theSSL API. Under run-time the application usually deals with
this structure which has links to mostly all other structures.

HEADER FILES
Currently the OpenSSLssl library provides the following C header files containing the prototypes for the
data structures and and functions:

ssl.h
That’s the common header file for theSSL/TLS API. Include it into your program to make the API of
the ssl library available. It internally includes both more private SSL headers and headers from the
crypto library. Whenever you need hard-core details on the internals of theSSL API, look inside this
header file.

ssl2.h
That’s the sub header file dealing with the SSLv2 protocol only. Usually you don’t have to include it
explicitly because it’s already included by ssl.h.

0.9.9-dev 2008-05-09 1

ssl(3) OpenSSL ssl(3)

ssl3.h
That’s the sub header file dealing with the SSLv3 protocol only. Usually you don’t have to include it
explicitly because it’s already included by ssl.h.

ssl23.h
That’s the sub header file dealing with the combined use of the SSLv2 and SSLv3 protocols.Usually
you don’t have to include it explicitly because it’s already included by ssl.h.

tls1.h
That’s the sub header file dealing with the TLSv1 protocol only. Usually you don’t have to include it
explicitly because it’s already included by ssl.h.

API FUNCTIONS
Currently the OpenSSLssl library exports 214API functions. They are documented in the following:

DEALING WITH PR OT OCOL METHODS

Here we document the variousAPI functions which deal with theSSL/TLS protocol methods defined in
SSL_METHOD structures.

constSSL_METHOD*SSLv2_client_method(void);
Constructor for the SSLv2SSL_METHODstructure for a dedicated client.

constSSL_METHOD*SSLv2_server_method(void);
Constructor for the SSLv2SSL_METHODstructure for a dedicated server.

constSSL_METHOD*SSLv2_method(void);
Constructor for the SSLv2SSL_METHODstructure for combined client and server.

constSSL_METHOD*SSLv3_client_method(void);
Constructor for the SSLv3SSL_METHODstructure for a dedicated client.

constSSL_METHOD*SSLv3_server_method(void);
Constructor for the SSLv3SSL_METHODstructure for a dedicated server.

constSSL_METHOD*SSLv3_method(void);
Constructor for the SSLv3SSL_METHODstructure for combined client and server.

constSSL_METHOD*TLSv1_client_method(void);
Constructor for the TLSv1SSL_METHODstructure for a dedicated client.

constSSL_METHOD*TLSv1_server_method(void);
Constructor for the TLSv1SSL_METHODstructure for a dedicated server.

constSSL_METHOD*TLSv1_method(void);
Constructor for the TLSv1SSL_METHODstructure for combined client and server.

DEALING WITH CIPHERS

Here we document the variousAPI functions which deal with theSSL/TLSciphers defined inSSL_CIPHER
structures.

char *SSL_CIPHER_description(SSL_CIPHER*cipher, char *buf, int len);
Write a string tobuf (with a maximum size oflen) containing a human readable description ofcipher.
Returnsbuf.

int SSL_CIPHER_get_bits(SSL_CIPHER*cipher, int *alg_bits);
Determine the number of bits incipher. Because of export crippled ciphers there are two bits: The bits
the algorithm supports in general (stored toalg_bits) and the bits which are actually used (the return
value).

const char *SSL_CIPHER_get_name(SSL_CIPHER*cipher);
Return the internal name ofcipher as a string. These are the various strings defined by the
SSL2_TXT_xxx, SSL3_TXT_xxxandTLS1_TXT_xxxdefinitions in the header files.

0.9.9-dev 2008-05-09 2

ssl(3) OpenSSL ssl(3)

char *SSL_CIPHER_get_version(SSL_CIPHER*cipher);
Returns a string like "TLSv1/SSLv3 ‘‘ o r ’’SSLv2" which indicates theSSL/TLSprotocol version to
whichcipherbelongs (i.e. where it was defined in the specification the first time).

DEALING WITH PR OT OCOL CONTEXTS

Here we document the variousAPI functions which deal with theSSL/TLSprotocol context defined in the
SSL_CTX structure.

int SSL_CTX_add_client_CA(SSL_CTX*ctx, X509 *x);
longSSL_CTX_add_extra_chain_cert(SSL_CTX*ctx, X509 *x509);
int SSL_CTX_add_session(SSL_CTX*ctx, SSL_SESSION*c);
int SSL_CTX_check_private_key(constSSL_CTX*ctx);
longSSL_CTX_ctrl(SSL_CTX*ctx, int cmd, long larg, char *parg);
void SSL_CTX_flush_sessions(SSL_CTX*s, long t);
void SSL_CTX_free(SSL_CTX*a);
char *SSL_CTX_get_app_data(SSL_CTX*ctx);
X509_STORE *SSL_CTX_get_cert_store(SSL_CTX*ctx);
STACK *SSL_CTX_get_client_CA_list(constSSL_CTX*ctx);
int (*SSL_CTX_get_client_cert_cb(SSL_CTX*ctx))(SSL*ssl, X509 **x509,EVP_PKEY**pk ey);
char *SSL_CTX_get_ex_data(constSSL_CTX*s, int idx);
int SSL_CTX_get_ex_new_index(long argl, char *argp, int (*new_func);(void), int (*dup_func)(void),
void (*free_func)(void))
void (*SSL_CTX_get_info_callback(SSL_CTX*ctx))(SSL*ssl, int cb, int ret);
int SSL_CTX_get_quiet_shutdown(constSSL_CTX*ctx);
int SSL_CTX_get_session_cache_mode(SSL_CTX*ctx);
longSSL_CTX_get_timeout(constSSL_CTX*ctx);
int (*SSL_CTX_get_verify_callback(constSSL_CTX*ctx))(int ok, X509_STORE_CTX *ctx);
int SSL_CTX_get_verify_mode(SSL_CTX*ctx);
int SSL_CTX_load_verify_locations(SSL_CTX*ctx, char *CAfile, char *CApath);
longSSL_CTX_need_tmp_RSA(SSL_CTX*ctx);
SSL_CTX*SSL_CTX_new(constSSL_METHOD*meth);
int SSL_CTX_remove_session(SSL_CTX*ctx, SSL_SESSION*c);
int SSL_CTX_sess_accept(SSL_CTX*ctx);
int SSL_CTX_sess_accept_good(SSL_CTX*ctx);
int SSL_CTX_sess_accept_renegotiate(SSL_CTX*ctx);
int SSL_CTX_sess_cache_full(SSL_CTX*ctx);
int SSL_CTX_sess_cb_hits(SSL_CTX*ctx);
int SSL_CTX_sess_connect(SSL_CTX*ctx);
int SSL_CTX_sess_connect_good(SSL_CTX*ctx);
int SSL_CTX_sess_connect_renegotiate(SSL_CTX*ctx);
int SSL_CTX_sess_get_cache_size(SSL_CTX*ctx);
SSL_SESSION*(* SSL_CTX_sess_get_get_cb(SSL_CTX *ctx))(SSL *ssl, unsigned char *data, int len, int
*copy);
int (*SSL_CTX_sess_get_new_cb(SSL_CTX*ctx)(SSL*ssl, SSL_SESSION*sess);
void (*SSL_CTX_sess_get_remove_cb(SSL_CTX*ctx)(SSL_CTX*ctx, SSL_SESSION*sess);
int SSL_CTX_sess_hits(SSL_CTX*ctx);
int SSL_CTX_sess_misses(SSL_CTX*ctx);
int SSL_CTX_sess_number(SSL_CTX*ctx);
void SSL_CTX_sess_set_cache_size(SSL_CTX*ctx,t);
void SSL_CTX_sess_set_get_cb(SSL_CTX *ctx, SSL_SESSION*(*cb)(SSL *ssl, unsigned char *data, int
len, int *copy));
void SSL_CTX_sess_set_new_cb(SSL_CTX*ctx, int (*cb)(SSL*ssl, SSL_SESSION*sess));
void SSL_CTX_sess_set_remove_cb(SSL_CTX*ctx, void (*cb)(SSL_CTX*ctx, SSL_SESSION*sess));

0.9.9-dev 2008-05-09 3

ssl(3) OpenSSL ssl(3)

int SSL_CTX_sess_timeouts(SSL_CTX*ctx);
LHASH *SSL_CTX_sessions(SSL_CTX*ctx);
void SSL_CTX_set_app_data(SSL_CTX*ctx, void *arg);
void SSL_CTX_set_cert_store(SSL_CTX*ctx, X509_STORE *cs);
void SSL_CTX_set_cert_verify_cb(SSL_CTX*ctx, int (*cb)(), char *arg)
int SSL_CTX_set_cipher_list(SSL_CTX*ctx, char *str);
void SSL_CTX_set_client_CA_list(SSL_CTX*ctx, STACK *list);
void SSL_CTX_set_client_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, X509 **x509, EVP_PKEY
**pk ey));
void SSL_CTX_set_default_passwd_cb(SSL_CTX*ctx, int (*cb);(void))
void SSL_CTX_set_default_read_ahead(SSL_CTX*ctx, int m);
int SSL_CTX_set_default_verify_paths(SSL_CTX*ctx);
int SSL_CTX_set_ex_data(SSL_CTX*s, int idx, char *arg);
void SSL_CTX_set_info_callback(SSL_CTX*ctx, void (*cb)(SSL*ssl, int cb, int ret));
void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type,
const void *buf, size_t len,SSL*ssl, void *arg));
void SSL_CTX_set_msg_callback_arg(SSL_CTX*ctx, void *arg);
void SSL_CTX_set_options(SSL_CTX*ctx, unsigned long op);
void SSL_CTX_set_quiet_shutdown(SSL_CTX*ctx, int mode);
void SSL_CTX_set_session_cache_mode(SSL_CTX*ctx, int mode);
int SSL_CTX_set_ssl_version(SSL_CTX*ctx, constSSL_METHOD*meth);
void SSL_CTX_set_timeout(SSL_CTX*ctx, long t);
longSSL_CTX_set_tmp_dh(SSL_CTX* ctx,DH *dh);
longSSL_CTX_set_tmp_dh_callback(SSL_CTX*ctx, DH *(*cb)(void));
longSSL_CTX_set_tmp_rsa(SSL_CTX*ctx, RSA *rsa);
SSL_CTX_set_tmp_rsa_callback

long SSL_CTX_set_tmp_rsa_callback (SSL_CTX * ctx , R SA *(* cb)(SSL * ssl ,
int export , i nt keylength));

Sets the callback which will be called when a temporary private key is required. Theexport flag will
be set if the reason for needing a temp key is that an export ciphersuite is in use, in which case,
keylength will contain the required keylength in bits. Generate a key of appropriate size (using ???)
and return it.

SSL_set_tmp_rsa_callback
longSSL_set_tmp_rsa_callback(SSL*ssl, RSA *(*cb)(SSL*ssl, int export, int keylength));

The same asSSL_CTX_set_tmp_rsa_callback, except it operates on anSSLsession instead of a con-
text.

void SSL_CTX_set_verify(SSL_CTX*ctx, int mode, int (*cb);(void))
int SSL_CTX_use_PrivateKey(SSL_CTX*ctx, EVP_PKEY*pkey);
int SSL_CTX_use_PrivateKey_ASN1(int type,SSL_CTX*ctx, unsigned char *d, long len);
int SSL_CTX_use_PrivateKey_file(SSL_CTX*ctx, char *file, int type);
int SSL_CTX_use_RSAPrivateKey(SSL_CTX*ctx, RSA *rsa);
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX*ctx, unsigned char *d, long len);
int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX*ctx, char *file, int type);
int SSL_CTX_use_certificate(SSL_CTX*ctx, X509 *x);
int SSL_CTX_use_certificate_ASN1(SSL_CTX*ctx, int len, unsigned char *d);
int SSL_CTX_use_certificate_file(SSL_CTX*ctx, char *file, int type);
void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, unsigned int (*callback)(SSL *ssl, const char
*hint, char *identity, unsigned int max_identity_len, unsigned char *psk, unsigned int max_psk_len));
int SSL_CTX_use_psk_identity_hint(SSL_CTX*ctx, const char *hint);
void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, unsigned int (*callback)(SSL *ssl, const char
*identity, unsigned char *psk, int max_psk_len));

0.9.9-dev 2008-05-09 4

ssl(3) OpenSSL ssl(3)

DEALING WITH SESSIONS

Here we document the variousAPI functions which deal with theSSL/TLSsessions defined in theSSL_SES-
SION structures.

int SSL_SESSION_cmp(constSSL_SESSION*a, constSSL_SESSION*b);
void SSL_SESSION_free(SSL_SESSION*ss);
char *SSL_SESSION_get_app_data(SSL_SESSION*s);
char *SSL_SESSION_get_ex_data(constSSL_SESSION*s, int idx);
int SSL_SESSION_get_ex_new_index(long argl, char *argp, int (*new_func);(void), int
(*dup_func)(void), void (*free_func)(void))
longSSL_SESSION_get_time(constSSL_SESSION*s);
longSSL_SESSION_get_timeout(constSSL_SESSION*s);
unsigned longSSL_SESSION_hash(constSSL_SESSION*a);
SSL_SESSION*SSL_SESSION_new(void);
int SSL_SESSION_print(BIO *bp, constSSL_SESSION*x);
int SSL_SESSION_print_fp(FILE *fp, constSSL_SESSION*x);
void SSL_SESSION_set_app_data(SSL_SESSION*s, char *a);
int SSL_SESSION_set_ex_data(SSL_SESSION*s, int idx, char *arg);
longSSL_SESSION_set_time(SSL_SESSION*s, long t);
longSSL_SESSION_set_timeout(SSL_SESSION*s, long t);

DEALING WITH CONNECTIONS

Here we document the variousAPI functions which deal with theSSL/TLS connection defined in theSSL
structure.

int SSL_accept(SSL*ssl);
int SSL_add_dir_cert_subjects_to_stack(STACK *stack, const char *dir);
int SSL_add_file_cert_subjects_to_stack(STACK *stack, const char *file);
int SSL_add_client_CA(SSL*ssl, X509 *x);
char *SSL_alert_desc_string(int value);
char *SSL_alert_desc_string_long(int value);
char *SSL_alert_type_string(int value);
char *SSL_alert_type_string_long(int value);
int SSL_check_private_key(constSSL*ssl);
void SSL_clear(SSL*ssl);
longSSL_clear_num_renegotiations(SSL*ssl);
int SSL_connect(SSL*ssl);
void SSL_copy_session_id(SSL*t, constSSL*f);
longSSL_ctrl(SSL*ssl, int cmd, long larg, char *parg);
int SSL_do_handshake(SSL*ssl);
SSL*SSL_dup(SSL*ssl);
STACK *SSL_dup_CA_list(STACK *sk);
void SSL_free(SSL*ssl);
SSL_CTX*SSL_get_SSL_CTX(constSSL*ssl);
char *SSL_get_app_data(SSL*ssl);
X509 *SSL_get_certificate(constSSL*ssl);
const char *SSL_get_cipher(constSSL*ssl);
int SSL_get_cipher_bits(constSSL*ssl, int *alg_bits);
char *SSL_get_cipher_list(constSSL*ssl, int n);
char *SSL_get_cipher_name(constSSL*ssl);
char *SSL_get_cipher_version(constSSL*ssl);
STACK *SSL_get_ciphers(constSSL*ssl);
STACK *SSL_get_client_CA_list(constSSL*ssl);

0.9.9-dev 2008-05-09 5

ssl(3) OpenSSL ssl(3)

SSL_CIPHER*SSL_get_current_cipher(SSL*ssl);
longSSL_get_default_timeout(constSSL*ssl);
int SSL_get_error(constSSL*ssl, int i);
char *SSL_get_ex_data(constSSL*ssl, int idx);
int SSL_get_ex_data_X509_STORE_CTX_idx(void);
int SSL_get_ex_new_index(long argl, char *argp, int (*new_func);(void), int (*dup_func)(void), void
(*free_func)(void))
int SSL_get_fd(constSSL*ssl);
void (*SSL_get_info_callback(constSSL*ssl);)()
STACK *SSL_get_peer_cert_chain(constSSL*ssl);
X509 *SSL_get_peer_certificate(constSSL*ssl);
EVP_PKEY*SSL_get_privatekey(SSL*ssl);
int SSL_get_quiet_shutdown(constSSL*ssl);
BIO *SSL_get_rbio(constSSL*ssl);
int SSL_get_read_ahead(constSSL*ssl);
SSL_SESSION*SSL_get_session(constSSL*ssl);
char *SSL_get_shared_ciphers(constSSL*ssl, char *buf, int len);
int SSL_get_shutdown(constSSL*ssl);
constSSL_METHOD*SSL_get_ssl_method(SSL*ssl);
int SSL_get_state(constSSL*ssl);
longSSL_get_time(constSSL*ssl);
longSSL_get_timeout(constSSL*ssl);
int (*SSL_get_verify_callback(constSSL*ssl))(int,X509_STORE_CTX *)
int SSL_get_verify_mode(constSSL*ssl);
longSSL_get_verify_result(constSSL*ssl);
char *SSL_get_version(constSSL*ssl);
BIO *SSL_get_wbio(constSSL*ssl);
int SSL_in_accept_init(SSL*ssl);
int SSL_in_before(SSL*ssl);
int SSL_in_connect_init(SSL*ssl);
int SSL_in_init(SSL*ssl);
int SSL_is_init_finished(SSL*ssl);
STACK *SSL_load_client_CA_file(char *file);
void SSL_load_error_strings(void);
SSL*SSL_new(SSL_CTX*ctx);
longSSL_num_renegotiations(SSL*ssl);
int SSL_peek(SSL*ssl, void *buf, int num);
int SSL_pending(constSSL*ssl);
int SSL_read(SSL*ssl, void *buf, int num);
int SSL_renegotiate(SSL*ssl);
char *SSL_rstate_string(SSL*ssl);
char *SSL_rstate_string_long(SSL*ssl);
longSSL_session_reused(SSL*ssl);
void SSL_set_accept_state(SSL*ssl);
void SSL_set_app_data(SSL*ssl, char *arg);
void SSL_set_bio(SSL*ssl, BIO *rbio, BIO *wbio);
int SSL_set_cipher_list(SSL*ssl, char *str);
void SSL_set_client_CA_list(SSL*ssl, STACK *list);
void SSL_set_connect_state(SSL*ssl);
int SSL_set_ex_data(SSL*ssl, int idx, char *arg);
int SSL_set_fd(SSL*ssl, int fd);
void SSL_set_info_callback(SSL*ssl, void (*cb);(void))

0.9.9-dev 2008-05-09 6

ssl(3) OpenSSL ssl(3)

void SSL_set_msg_callback(SSL *ctx, void (*cb)(int write_p, int version, int content_type, const void
*buf, size_t len,SSL*ssl, void *arg));
void SSL_set_msg_callback_arg(SSL*ctx, void *arg);
void SSL_set_options(SSL*ssl, unsigned long op);
void SSL_set_quiet_shutdown(SSL*ssl, int mode);
void SSL_set_read_ahead(SSL*ssl, int yes);
int SSL_set_rfd(SSL*ssl, int fd);
int SSL_set_session(SSL*ssl, SSL_SESSION*session);
void SSL_set_shutdown(SSL*ssl, int mode);
int SSL_set_ssl_method(SSL*ssl, constSSL_METHOD*meth);
void SSL_set_time(SSL*ssl, long t);
void SSL_set_timeout(SSL*ssl, long t);
void SSL_set_verify(SSL*ssl, int mode, int (*callback);(void))
void SSL_set_verify_result(SSL*ssl, long arg);
int SSL_set_wfd(SSL*ssl, int fd);
int SSL_shutdown(SSL*ssl);
int SSL_state(constSSL*ssl);
char *SSL_state_string(constSSL*ssl);
char *SSL_state_string_long(constSSL*ssl);
longSSL_total_renegotiations(SSL*ssl);
int SSL_use_PrivateKey(SSL*ssl, EVP_PKEY*pkey);
int SSL_use_PrivateKey_ASN1(int type,SSL*ssl, unsigned char *d, long len);
int SSL_use_PrivateKey_file(SSL*ssl, char *file, int type);
int SSL_use_RSAPrivateKey(SSL*ssl, RSA *rsa);
int SSL_use_RSAPrivateKey_ASN1(SSL*ssl, unsigned char *d, long len);
int SSL_use_RSAPrivateKey_file(SSL*ssl, char *file, int type);
int SSL_use_certificate(SSL*ssl, X509 *x);
int SSL_use_certificate_ASN1(SSL*ssl, int len, unsigned char *d);
int SSL_use_certificate_file(SSL*ssl, char *file, int type);
int SSL_version(constSSL*ssl);
int SSL_want(constSSL*ssl);
int SSL_want_nothing(constSSL*ssl);
int SSL_want_read(constSSL*ssl);
int SSL_want_write(constSSL*ssl);
int SSL_want_x509_lookup(constSSL*ssl);
int SSL_write(SSL*ssl, const void *buf, int num);
void SSL_set_psk_client_callback(SSL *ssl, unsigned int (*callback)(SSL *ssl, const char *hint, char
*identity, unsigned int max_identity_len, unsigned char *psk, unsigned int max_psk_len));
int SSL_use_psk_identity_hint(SSL*ssl, const char *hint);
void SSL_set_psk_server_callback(SSL *ssl, unsigned int (*callback)(SSL *ssl, const char *identity,
unsigned char *psk, int max_psk_len));
const char *SSL_get_psk_identity_hint(SSL*ssl);
const char *SSL_get_psk_identity(SSL*ssl);

SEE ALSO
openssl(1), crypto(3), SSL_accept(3), SSL_clear(3), SSL_connect(3), SSL_CIPHER_get_name(3),
SSL_COMP_add_compression_method(3), SSL_CTX_add_extra_chain_cert(3), SSL_CTX_add_ses-
sion(3), SSL_CTX_ctrl(3), SSL_CTX_flush_sessions(3), SSL_CTX_get_ex_new_index(3),
SSL_CTX_get_verify_mode(3), SSL_CTX_load_verify_locations(3) SSL_CTX_new(3),
SSL_CTX_sess_number(3), SSL_CTX_sess_set_cache_size(3), SSL_CTX_sess_set_get_cb(3),
SSL_CTX_sessions(3), SSL_CTX_set_cert_store(3), SSL_CTX_set_cert_verify_callback(3),
SSL_CTX_set_cipher_list(3), SSL_CTX_set_client_CA_list(3), SSL_CTX_set_client_cert_cb(3),
SSL_CTX_set_default_passwd_cb(3), SSL_CTX_set_generate_session_id(3), SSL_CTX_set_info_call-
back(3), SSL_CTX_set_max_cert_list(3), SSL_CTX_set_mode(3), SSL_CTX_set_msg_callback(3),
SSL_CTX_set_options(3), SSL_CTX_set_quiet_shutdown(3), SSL_CTX_set_session_cache_mode(3),

0.9.9-dev 2008-05-09 7

ssl(3) OpenSSL ssl(3)

SSL_CTX_set_session_id_context(3), SSL_CTX_set_ssl_version(3), SSL_CTX_set_timeout(3),
SSL_CTX_set_tmp_rsa_callback(3), SSL_CTX_set_tmp_dh_callback(3), SSL_CTX_set_verify(3),
SSL_CTX_use_certificate(3), SSL_alert_type_string(3), SSL_do_handshake(3), SSL_get_SSL_CTX(3),
SSL_get_ciphers(3), SSL_get_client_CA_list(3), SSL_get_default_timeout(3), SSL_get_error(3),
SSL_get_ex_data_X509_STORE_CTX_idx(3), SSL_get_ex_new_index(3), SSL_get_fd(3),
SSL_get_peer_cert_chain(3), SSL_get_rbio(3), SSL_get_session(3), SSL_get_verify_result(3),
SSL_get_version(3), SSL_library_init(3), SSL_load_client_CA_file(3), SSL_new(3), SSL_pending(3),
SSL_read(3), SSL_rstate_string(3), SSL_session_reused(3), SSL_set_bio(3), SSL_set_connect_state(3),
SSL_set_fd(3), SSL_set_session(3), SSL_set_shutdown(3), SSL_shutdown(3), SSL_state_string(3),
SSL_want(3), SSL_write(3), SSL_SESSION_free(3), SSL_SESSION_get_ex_new_index(3), SSL_SES-
SION_get_time(3), d2i_SSL_SESSION(3), SSL_CTX_set_psk_client_callback(3),
SSL_CTX_use_psk_identity_hint(3), SSL_get_psk_identity(3)

HISTORY
Thessl(3) document appeared in OpenSSL 0.9.2

0.9.9-dev 2008-05-09 8

SSP (3) NetBSD Library Functions Manual SSP (3)

NAME
ssp — bounds checked libc functions

LIBRARY
library “libssp”

SYNOPSIS
#include <ssp/stdio.h>

int
sprintf (char ∗str , const char ∗fmt , . . .);

int
vsprintf (char ∗str , const char ∗fmt , va_list ap);

int
snprintf (char ∗str , size_t len , const char ∗fmt , . . .);

int
vsnprintf (char ∗str , size_t len , const char ∗fmt , va_list ap);

char ∗
gets (char ∗str);

char ∗
fgets (char ∗str , int len , FILE ∗fp);

#include <ssp/string.h>

void ∗
memcpy(void ∗str , const void ∗ptr , size_t len);

void ∗
memmove(void ∗str , const void ∗ptr , size_t len);

void ∗
memset(void ∗str , int val , size_t len);

char ∗
strcpy (char ∗str , const char ∗ptr , size_t len);

char ∗
strcat (char ∗str , const char ∗ptr , size_t len);

char ∗
strncpy (char ∗str , const char ∗ptr , size_t len);

char ∗
strncat (char ∗str , const char ∗ptr , size_t len);

#include <ssp/strings.h>

void ∗
bcopy (const void ∗ptr , void ∗str , size_t len);

void ∗
bzero (void ∗str , size_t len);

#include <ssp/unistd.h>

NetBSD 3.0 May 23, 2007 1

SSP (3) NetBSD Library Functions Manual SSP (3)

ssize_t
read (int fd , void ∗str , size_t len);

int
readlink (const char ∗ restrict path , char ∗ restrict str , size_t len);

int
getcwd (char ∗str , size_t len);

DESCRIPTION
When_FORTIFY_SOURCEbounds checking is enabled as described below, the above functions get over-
written to use thegcc (1) __builtin_object_size (3) function to compute the size ofstr if known at
compile time and perform bounds check on it in order to avoid data buffer or stack buffer overflows. If an
overflow is detected the routines will callabort (3).

To enable these function overrides the following should be added to thegcc (1) command line:
“−I/usr/include/ssp” to override the standard include files and “−D_FORTIFY_SOURCE=1” or
“−D_FORTIFY_SOURCE=2”.

If _FORTIFY_SOURCE is set to 1 the code will compute the maximum possible buffer size forstr ,
and if set to2 it will compute the minimum buffer size.

SEE ALSO
gcc (1), read (2), readlink (2), __builtin_object_size (3), abort (3), getcwd (3), stdio (3),
string (3)

HISTORY
Thessp library appearedNetBSD 4.0.

NetBSD 3.0 May 23, 2007 2

STAT_FLAGS (3) NetBSD Library Functions Manual STAT_FLAGS (3)

NAME
string_to_flags , flags_to_string — Stat flags parsing and printing functions

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

char ∗
flags_to_string (u_long flags , const char ∗def);

int
string_to_flags (char ∗∗stringp , u_long ∗setp , u_long clrp);

DESCRIPTION
The flags_to_string () and string_to_flags () functions are used by programs such asls (1),
mtree (8), makefs (8), etc., to parse and/or print thest_flags field in the stat (2) structure.

They recognize the following flags:

arch (SF_ARCHIVED) file is archived.

nodump (UF_NODUMP) do not dump file.

opaque (UF_OPAQUE) directory is opaque in union filesystems.

sappnd (SF_APPEND) writes to the file may only append (superuser only).

schg (SF_IMMUTABLE)
file cannot be changed, is immutable (superuser only).

snap (SF_SNAPSHOT) file is snapshot inode.

uappnd (UF_APPEND) writes to the file may only append (user only).

uchg (UF_IMMUTABLE)
file cannot be changed, is immutable (user only).

The flags_to_string () function converts the bits set in theflags argument to a comma-separated
string and returns it. If no flags are set, then thedef string is returned. The returned string is allocated via
malloc (3) and it is the responsibility of the caller tofree (3) it.

The string_to_flags () function takes astringp of space, comma, or tab separated flag names and
places their bit value on thesetp argument. If the flag name is prefixed by: “no”, then the bit value is
placed on theclrp argument.

RETURN VALUES
flags_to_string () returns the symbolic representation of flags, the default string, orNULL if allocation
failed.

string_to_flags () returns0 on success and1 if it fails to parse the string, settingstringp to point to
the first string that it failed to parse.

SEE ALSO
stat (2)

NetBSD 3.0 December 14, 2006 1

STDARG (3) NetBSD Library Functions Manual STDARG (3)

NAME
stdarg , va_arg , va_copy , va_end , va_start — variable argument lists

SYNOPSIS
#include <stdarg.h>

void
va_start (va_list ap , last);

type
va_arg (va_list ap , type);

void
va_copy (va_list dest , va_list src);

void
va_end (va_list ap);

DESCRIPTION
A function may be called with a varying number of arguments of varying types. The include file
〈stdarg.h 〉 declares a type(va_list) and defines three macros for stepping through a list of arguments
whose number and types are not known to the called function.

The called function must declare an object of typeva_list which is used by the macrosva_start (),
va_arg (), va_end (), and, optionally,va_copy ().

The va_start () macro initializesap for subsequent use byva_arg (), va_copy () andva_end (), and
must be called first.

The parameterlast is the name of the last parameter before the variable argument list, i.e. the last parame-
ter of which the calling function knows the type.

Because the address of this parameter is used in theva_start () macro, it should not be declared as a regis-
ter variable, or as a function or an array type.

Theva_start () macro returns no value.

Theva_arg () macro expands to an expression that has the type and value of the next argument in the call.
The parameterap is theva_listap initialized byva_start (). Eachcall to va_arg () modifiesap so that
the next call returns the next argument. Theparametertype is a type name specified so that the type of a
pointer to an object that has the specified type can be obtained simply by adding a∗ to type .

If there is no next argument, or iftype is not compatible with the type of the actual next argument (as pro-
moted according to the default argument promotions), random errors will occur.

If the type in question is one that gets promoted, the promoted type should be used as the argument to
va_arg (). Thefollowing describes which types are promoted (and to what):
− short is promoted toint
− float is promoted todouble
− char is promoted toint

The first use of theva_arg () macro after that of theva_start () macro returns the argument afterlast .
Successive inv ocations return the values of the remaining arguments.

Theva_copy () macro makesdest a copy of src as if theva_start () macro had been applied to it fol-
lowed by the same sequence of uses of theva_arg () macro as had previously been used to reach the present
state ofsrc .

NetBSD 3.0 August 18, 2002 1

STDARG (3) NetBSD Library Functions Manual STDARG (3)

Theva_copy () macro returns no value.

Theva_end () macro handles a normal return from the function whose variable argument list was initialized
by va_start () or va_copy ().

Theva_end () macro returns no value.

EXAMPLES
The functionfoo () takes a string of format characters and prints out the argument associated with each for-
mat character based on the type.

void
foo(char ∗fmt, ...)
{

va_list ap;
int d, c;
char ∗s;
double f;

va_start(ap, fmt);
while (∗fmt)

switch (∗fmt++) {
case ’s’: / ∗ string ∗/

s = v a_arg(ap, char ∗);
printf("string %s\n", s);
break;

case ’d’: / ∗ int ∗/
d = v a_arg(ap, int);
printf("int %d\n", d);
break;

case ’c’: / ∗ char ∗/
c = v a_arg(ap, int); / ∗ promoted ∗/
printf("char %c\n", c);
break;

case ’f’: / ∗ float ∗/
f = v a_arg(ap, double); / ∗ promoted ∗/
printf("float %f\n", f);

}
va_end(ap);

}

STANDARDS
The va_start (), va_arg (), va_copy (), and va_end () macros conform toISO/IEC 9899:1999
(“ ISO C99”).

HISTORY
The va_start (), va_arg () andva_end () macros were introduced inANSI X3.159-1989 (“ANSI C89”).
Theva_copy () macro was introduced inISO/IEC9899:1999 (“ISO C99”).

COMPATIBILITY
These macros arenot compatible with the historic macros they replace. Abackward compatible version can
be found in the include file〈varargs.h 〉.

NetBSD 3.0 August 18, 2002 2

STDARG (3) NetBSD Library Functions Manual STDARG (3)

BUGS
Unlike thevarargsmacros, thestdarg macros do not permit programmers to code a function with no fixed
arguments. Thisproblem generates work mainly when converting varargscode tostdarg code, but it also
creates difficulties for variadic functions that wish to pass all of their arguments on to a function that takes a
va_listargument, such asvfprintf (3).

NetBSD 3.0 August 18, 2002 3

STDIO (3) NetBSD Library Functions Manual STDIO (3)

NAME
stdio — standard input/output library functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>
FILE ∗stdin;
FILE ∗stdout;
FILE ∗stderr;

DESCRIPTION
The standardI/O library provides a simple and efficient buffered streamI/O interface. Inputand output is
mapped into logical data streams and the physical I/O characteristics are concealed. The functions and
macros are listed below; more information is available from the individual man pages.

A stream is associated with an external file (which may be a physical device) byopeninga file, which may
involve creating a new file. Creatingan existing file causes its former contents to be discarded. If a file can
support positioning requests (such as a disk file, as opposed to a terminal) then afile position indicatorasso-
ciated with the stream is positioned at the start of the file (byte zero), unless the file is opened with append
mode. Ifappend mode is used, the position indicator will be placed the end-of-file.The position indicator is
maintained by subsequent reads, writes and positioning requests.All input occurs as if the characters were
read by successive calls to thefgetc (3) function; all output takes place as if all characters were read by suc-
cessive calls to thefputc (3) function.

A fi le is disassociated from a stream byclosing the file. Output streams are flushed (any unwritten buffer
contents are transferred to the host environment) before the stream is disassociated from the file. The value
of a pointer to aFILE object is indeterminate after a file is closed (garbage).

A fi le may be subsequently reopened, by the same or another program execution, and its contents reclaimed
or modified (if it can be repositioned at the start). If the main function returns to its original caller, or the
exit (3) function is called, all open files are closed (hence all output streams are flushed) before program
termination. Othermethods of program termination, such asabort (3) do not bother about closing files
properly.

This implementation needs and makes no distinction between “text” and “binary” streams.In effect, all
streams are binary. No translation is performed and no extra padding appears on any stream.

At program startup, three streams are predefined and need not be opened explicitly:
• standard input(for reading conventional input),
• standard output(for writing conventional output), and
• standard error (for writing diagnostic output).

These streams are abbreviatedstdin, stdoutandstderr. Initially, the standard error stream is unbuffered; the
standard input and output streams are fully buffered if and only if the streams do not refer to an interactive or
“terminal” device, as determined by theisatty (3) function. In fact,all freshly-opened streams that refer
to terminal devices default to line buffering, and pending output to such streams is written automatically
whenever an such an input stream is read.Note that this applies only to “true reads”; if the read request can
be satisfied by existing buffered data, no automatic flush will occur. In these cases, or when a large amount
of computation is done after printing part of a line on an output terminal, it is necessary tofflush (3) the
standard output before going off and computing so that the output will appear. Alternatively, these defaults
may be modified via thesetvbuf (3) function.

NetBSD 3.0 January 28, 2003 1

STDIO (3) NetBSD Library Functions Manual STDIO (3)

Thestdio library is a part of the librarylibc.a and routines are automatically loaded as needed by com-
pilers such ascc (1). TheSYNOPSISsections of the following manual pages indicate which include files are
to be used, what the compiler declaration for the function looks like and which external variables are of inter-
est.

In multi-threaded applications, operations on streams perform implicit locking, except for the
getc_unlocked , getchar_unlocked , putc_unlocked , and putchar_unlocked functions.
Explicit control of stream locking is available through the flockfile , ftrylockfile , and
funlockfile functions .

The following are defined as macros; these names may not be re-used without first removing their current
definitions with #undef : BUFSIZ, EOF, FILENAME_MAX, FOPEN_MAX, L_cuserid , L_ctermid ,
L_tmpnam, NULL, SEEK_END, SEEK_SET, SEE_CUR, TMP_MAX, clearerr (), feof (), ferror (),
fileno (), freopen (), fwopen (), getc (), getc_unlocked (), getchar (), getchar_unlocked (),
putc (), putc_unlocked (), putchar (), putchar_unlocked (), stderr , stdin , stdout . Func-
tion versions of the macro functionsfeof (), ferror (), clearerr (), fileno (), getc (),
getc_unlocked (), getchar (), getchar_unlocked (), putc (), putc_unlocked (), putchar (),
andputchar_unlocked () exist and will be used if the macros definitions are explicitly removed.

SEE ALSO
close (2), open (2), read (2), write (2)

STANDARDS
Thestdio library conforms toANSI X3.159-1989 (“ANSI C89”).

LIST OF FUNCTIONS
Function Description
clearerr checkand reset stream status
fclose closea stream
fdopen streamopen functions
feof checkand reset stream status
ferror checkand reset stream status
fflush flusha stream
fgetc getnext character or word from input stream
fgetln geta line from a stream
fgetpos repositiona stream
fgets geta line from a stream
fgetwc getnext wide character from input stream
fileno checkand reset stream status
flockfile locka stream
fopen streamopen functions
fprintf formattedoutput conversion
fpurge flusha stream
fputc outputa character or word to a stream
fputs outputa line to a stream
fputwc outputa wide character to a stream
fread binarystream input/output
freopen streamopen functions
fropen opena stream
fscanf inputformat conversion
fseek repositiona stream
fsetpos repositiona stream
ftell repositiona stream

NetBSD 3.0 January 28, 2003 2

STDIO (3) NetBSD Library Functions Manual STDIO (3)

ftrylockfile lock a stream (non-blocking)
funlockfile unlocka stream
funopen opena stream
fwide set/getorientation of a stream
fwopen opena stream
fwrite binarystream input/output
getc getnext character or word from input stream
getc_unlocked getnext character or word from input stream

(no implicit locking)
getchar getnext character or word from input stream
getchar_unlocked getnext character or word from input stream

(no implicit locking)
gets geta line from a stream
getw getnext character or word from input stream
getwc getnext wide character from input stream
getwchar getnext wide character from input stream
mkstemp createunique temporary file
mktemp createunique temporary file
perror systemerror messages
printf formattedoutput conversion
putc outputa character or word to a stream
putc_unlocked outputa character or word to a stream

(no implicit locking)
putchar outputa character or word to a stream
putchar_unlocked outputa character or word to a stream

(no implicit locking)
puts outputa line to a stream
putw outputa character or word to a stream
putwc outputa wide character to a stream
putwchar outputa wide character to a stream
remove remove directory entry
rewind repositiona stream
scanf inputformat conversion
setbuf streambuffering operations
setbuffer streambuffering operations
setlinebuf streambuffering operations
setvbuf streambuffering operations
snprintf formattedoutput conversion
sprintf formattedoutput conversion
sscanf inputformat conversion
strerror systemerror messages
sys_errlist systemerror messages
sys_nerr systemerror messages
tempnam temporaryfile routines
tmpfile temporaryfile routines
tmpnam temporaryfile routines
ungetc un-getcharacter from input stream
ungetwc un-getwide character from input stream
vfprintf formattedoutput conversion
vfscanf inputformat conversion
vprintf formattedoutput conversion
vscanf inputformat conversion

NetBSD 3.0 January 28, 2003 3

STDIO (3) NetBSD Library Functions Manual STDIO (3)

vsnprintf formattedoutput conversion
vsprintf formattedoutput conversion
vsscanf inputformat conversion

BUGS
The standard buffered functions do not interact well with certain other library and system functions, espe-
cially vfork (2) andabort (3).

NetBSD 3.0 January 28, 2003 4

STRCASECMP (3) NetBSD Library Functions Manual STRCASECMP (3)

NAME
strcasecmp , strncasecmp — compare strings, ignoring case

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <strings.h>

int
strcasecmp (const char ∗s1 , const char ∗s2);

int
strncasecmp (const char ∗s1 , const char ∗s2 , size_t len);

DESCRIPTION
The strcasecmp () andstrncasecmp () functions compare the nul-terminated stringss1 and s2 and
return an integer greater than, equal to, or less than 0, according to whethers1 is lexicographically greater
than, equal to, or less thans2 after translation of each corresponding character to lower-case. Thestrings
themselves are not modified.The comparison is done using unsigned characters, so that ‘\200 ’ is greater
than ‘\0 ’.

Thestrncasecmp () compares at mostlen characters.

SEE ALSO
bcmp(3), memcmp(3), strcmp (3), strcoll (3), strxfrm (3)

HISTORY
Thestrcasecmp () andstrncasecmp () functions first appeared in 4.4BSD.

NOTES
If len is zerostrncasecmp () returns always 0.

NetBSD 3.0 June 9, 1993 1

STRCAT (3) NetBSDLibrary Functions Manual STRCAT (3)

NAME
strcat , strncat — concatenate strings

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

char ∗
strcat (char ∗ restrict s , const char ∗ restrict append);

char ∗
strncat (char ∗ restrict s , const char ∗ restrict append , size_t count);

DESCRIPTION
Thestrcat () andstrncat () functions append a copy of the nul-terminated stringappend to the end of
the nul-terminated strings , then add a terminating ‘\0 ’. The strings must have sufficient space to hold the
result.

The strncat () function appends not more thancount characters where space for the terminating ‘\0 ’
should not be included incount .

RETURN VALUES
Thestrcat () andstrncat () functions return the pointers .

EXAMPLES
The following appends “abc ” to “ chararray ”:

char ∗letters = "abcdefghi";

(void)strncat(chararray, letters, 3);

The following example shows how to usestrncat () safely in conjunction withstrncpy (3).

char buf[BUFSIZ];
char ∗input, ∗suffix;

(void)strncpy(buf, input, sizeof(buf) - 1);
buf[sizeof(buf) - 1] = ’\0’;
(void)strncat(buf, suffix, sizeof(buf) - 1 - strlen(buf));

The above will copy as many characters from “input ” to “ buf ” as will fit. It then appends as many char-
acters from suffix as will fit (or none if there is no space).For operations like this, thestrlcpy (3) and
strlcat (3) functions are a better choice, as shown below.

(void)strlcpy(buf, input, sizeof(buf));
(void)strlcat(buf, suffix, sizeof(buf));

SEE ALSO
bcopy (3), memccpy(3), memcpy(3), memmove(3), strcpy (3), strlcat (3), strlcpy (3)

STANDARDS
Thestrcat () andstrncat () functions conform toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 August 11, 2002 1

STRCHR (3) NetBSD Library Functions Manual STRCHR (3)

NAME
strchr — locate character in string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

char ∗
strchr (const char ∗s , int c);

DESCRIPTION
Thestrchr () function locates the first occurrence ofc in the string pointed to bys . The terminatingNUL
character is considered part of the string. Ifc is ‘\0 ’, strchr () locates the terminating ‘\0 ’.

RETURN VALUES
The functionstrchr () returns a pointer to the located character, or NULL if the character does not appear in
the string.

EXAMPLES
After the following call tostrchr (), p will point to the string "oobar":

char ∗p;
char ∗s = " foobar";

p = s trchr(s, ’o’);

SEE ALSO
index (3), memchr(3), rindex (3), strcspn (3), strpbrk (3), strrchr (3), strsep (3), strspn (3),
strstr (3), strtok (3)

STANDARDS
Thestrchr () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 August 11, 2002 1

STRCMP (3) NetBSD Library Functions Manual STRCMP (3)

NAME
strcmp , strncmp — compare strings

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

int
strcmp (const char ∗s1 , const char ∗s2);

int
strncmp (const char ∗s1 , const char ∗s2 , size_t len);

DESCRIPTION
Thestrcmp () andstrncmp () functions lexicographically compare the nul-terminated stringss1 ands2 .

RETURN VALUES
Thestrcmp () andstrncmp () return an integer greater than, equal to, or less than 0, according to whether
the strings1 is greater than, equal to, or less than the strings2 . The comparison is done using unsigned
characters, so that\200 is greater than ‘\0 ’.

Thestrncmp () compares not more thanlen characters.

SEE ALSO
bcmp(3), memcmp(3), strcasecmp (3), strcoll (3), strxfrm (3)

STANDARDS
Thestrcmp () andstrncmp () functions conform toANSI X3.159-1989 (“ANSI C89”).

NOTES
If len is zerostrncmp () returns always 0.

NetBSD 3.0 June 4, 1993 1

STRCOLL (3) NetBSD Library Functions Manual STRCOLL (3)

NAME
strcoll — compare strings according to current collation

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

int
strcoll (const char ∗s1 , const char ∗s2);

DESCRIPTION
Thestrcoll () function lexicographically compares the nul-terminated stringss1 ands2 according to the
current locale collation and returns an integer greater than, equal to, or less than 0, according to whethers1
is greater than, equal to, or less thans2 .

SEE ALSO
bcmp(3), memcmp(3), setlocale (3), strcasecmp (3), strcmp (3), strxfrm (3)

STANDARDS
Thestrcoll () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

STRCPY (3) NetBSD Library Functions Manual STRCPY (3)

NAME
strcpy , strncpy — copy strings

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

char ∗
strcpy (char ∗ restrict dst , const char ∗ restrict src);

char ∗
strncpy (char ∗ restrict dst , const char ∗ restrict src , size_t len);

DESCRIPTION
Thestrcpy () andstrncpy () functions copy the stringsrc to dst (including the terminating ‘\0 ’ char-
acter).

Thestrncpy () function copies not more thanlen characters intodst , appending ‘\0 ’ characters ifsrc
is less thanlen characters long, andnot terminatingdst if src is len or more characters long.

RETURN VALUES
Thestrcpy () andstrncpy () functions returndst .

EXAMPLES
The following sets “chararray ” to “ abc\0\0\0 ”.

(void)strncpy(chararray, "abc", 6);

The following sets “chararray ” to “ abcdef ” and doesnot nul-terminatechararray because the source
string is >= the length parameter. strncpy () only nul-terminates the destination string when the length of
the source string is less than the length parameter.

(void)strncpy(chararray, "abcdefgh", 6);

The following copies as many characters frominput to buf as will fit and nul-terminates the result.Because
strncpy () doesnotguarantee to nul-terminate the string itself, we must do this by hand.

char buf[BUFSIZ];

(void)strncpy(buf, input, sizeof(buf) - 1);
buf[sizeof(buf) - 1] = ’\0’;

Note thatstrlcpy (3) is a better choice for this kind of operation. The equivalent usingstrlcpy (3) is
simply:

(void)strlcpy(buf, input, sizeof(buf));

SEE ALSO
bcopy (3), memccpy(3), memcpy(3), memmove(3), strlcpy (3)

STANDARDS
Thestrcpy () andstrncpy () functions conform toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 May 6, 2002 1

STRCSPN (3) NetBSD Library Functions Manual STRCSPN (3)

NAME
strcspn — span the complement of a string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

size_t
strcspn (const char ∗s , const char ∗charset);

DESCRIPTION
Thestrcspn () function spans the initial part of the nul-terminated strings as long as the characters froms
do not occur in stringcharset (it spans thecomplementof charset).

RETURN VALUES
Thestrcspn () function returns the number of characters spanned.

EXAMPLES
The following call tostrcspn () will return 3, since the first three characters of strings do not occur in
stringcharset :

char ∗s = " foobar";
char ∗charset = "bar";
size_t span;

span = strcspn(s, charset);

SEE ALSO
index (3), memchr(3), rindex (3), strchr (3), strpbrk (3), strrchr (3), strsep (3), strspn (3),
strstr (3), strtok (3)

STANDARDS
Thestrcspn () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 August 11, 2002 1

STRDUP (3) NetBSD Library Functions Manual STRDUP (3)

NAME
strdup , strndup — sav ea copy of a string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

char ∗
strdup (const char ∗str);

char ∗
strndup (const char ∗str , size_t len);

DESCRIPTION
Thestrdup () function allocates sufficient memory for a copy of the stringstr , does the copy, and returns
a pointer to it. The pointer may subsequently be used as an argument to the functionfree (3).

If insufficient memory is available,NULL is returned.

The strndup () function copies at mostlen characters from the stringstr always NUL terminating the
copied string.

EXAMPLES
The following will pointp to an allocated area of memory containing the nul-terminated string "foobar":

char ∗p;

if ((p = strdup("foobar")) == NULL) {
fprintf(stderr, "Out of memory.\n");
exit(1);

}

ERRORS
The strdup () function may fail and set the external variableerrno for any of the errors specified for the
library functionmalloc (3).

SEE ALSO
free (3), malloc (3), strcpy (3), strlen (3)

HISTORY
Thestrdup () function first appeared in 4.4BSD.

NetBSD 3.0 August 12, 2006 1

STRERROR (3) NetBSD Library Functions Manual STRERROR (3)

NAME
perror , strerror , strerror_r , sys_errlist , sys_nerr — system error messages

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

void
perror (const char ∗string);

#include <errno.h>

extern const char ∗ const sys_errlist[] ;
extern const int sys_nerr ;

#include <string.h>

char ∗
strerror (int errnum);

int
strerror_r (int errnum , char ∗strerrbuf , size_t buflen);

DESCRIPTION
Thestrerror (), strerror_r (), andperror () functions look up the language-dependent error message
string corresponding to an error number.

The strerror () function accepts an error number argumenterrnum and returns a pointer to the corre-
sponding message string.

Thestrerror_r () function renders the same result intostrerrbuf for a maximum ofbuflen charac-
ters and returns 0 upon success.

The perror () function finds the error message corresponding to the current value of the global variable
errno (intro (2)) and writes it, followed by a newline, to the standard error file descriptor. If the argument
string is non-NULLand does not point to the nul character, this string is prepended to the message string
and separated from it by a colon and space(“ : ”) ; otherwise, only the error message string is printed.

If the error number is not recognized, these functions pass an error message string containing “Unknown
error: ” f ollowed by the error number in decimal.To warn about this,strerror () setserrno to
EINVAL, and strerror_r () returnsEINVAL. Error numbers recognized by this implementation fall in
the range 0 <errnum < sys_nerr .

If insufficient storage is provided instrerrbuf (as specified inbuflen) to contain the error string,
strerror_r () returnsERANGEandstrerrbuf will contain an error message that has been truncated
andNULterminated to fit the length specified bybuflen .

The message strings can be accessed directly using the external arraysys_errlist. The external value
sys_nerr contains a count of the messages insys_errlist. The use of these variables is deprecated;
strerror () or strerror_r () should be used instead.

SEE ALSO
intro (2), psignal (3)

NetBSD 3.0 May 22, 2006 1

STRERROR (3) NetBSD Library Functions Manual STRERROR (3)

STANDARDS
The perror () and strerror () functions conform to ISO/IEC 9899:1999 (“ISO C99”). The
strerror_r () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

HISTORY
The strerror () and perror () functions first appeared in 4.4BSD. The strerror_r () function first
appeared inNetBSD 4.0.

BUGS
For unknown error numbers, thestrerror () function will return its result in a static buffer which may be
overwritten by subsequent calls.

The return type forstrerror () is missing a type-qualifier; it should actually beconst char ∗.

Programs that use the deprecatedsys_errlistvariable often fail to compile because they declare it inconsis-
tently.

NetBSD 3.0 May 22, 2006 2

STRFMON (3) NetBSD Library Functions Manual STRFMON (3)

NAME
strfmon — convert monetary value to string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <monetary.h>

ssize_t
strfmon (char ∗ restrict s , size_t maxsize , const char ∗ restrict format ,

. . .);

DESCRIPTION
Thestrfmon () function places characters into the array pointed to bys as controlled by the string pointed
to by format . No more thanmaxsize bytes are placed into the array.

The format string is composed of zero or more directives: ordinary characters (not%), which are copied
unchanged to the output stream; and conversion specifications, each of which results in fetching zero or more
subsequent arguments. Eachconversion specification is introduced by the%character. After the%, the fol-
lowing appear in sequence:

• Zero or more of the following flags:

=f A ‘ =’ character followed by another characterf which is used as the numeric fill character.

ˆ Do not use grouping characters, regardless of the current locale default.

+ Represent positive values by prefixing them with a positive sign, and negative values by prefixing
them with a negative sign. Thisis the default.

(Enclose negative values in parentheses.

! Do not include a currency symbol in the output.

− Left justify the result. Only valid when a field width is specified.

• An optional minimum field width as a decimal number. By default, there is no minimum width.

• A ‘ #’ sign followed by a decimal number specifying the maximum expected number of digits after the
radix character.

• A ‘ . ’ character followed by a decimal number specifying the number of digits after the radix character.

• One of the following conversion specifiers:

i Thedouble argument is formatted as an international monetary amount.

n Thedouble argument is formatted as a national monetary amount.

% A ‘ %’ character is written.

RETURN VALUES
If the total number of resulting bytes including the terminatingNULL byte is not more thanmaxsize ,
strfmon () returns the number of bytes placed into the array pointed to bys , not including the terminating
NULL byte. Otherwise,−1 is returned, the contents of the array are indeterminate, anderrno is set to indi-
cate the error.

NetBSD 3.0 October 12, 2002 1

STRFMON (3) NetBSD Library Functions Manual STRFMON (3)

ERRORS
Thestrfmon () function will fail if:

[E2BIG] Conversion stopped due to lack of space in the buffer.

[EINVAL] The format string is invalid.

[ENOMEM] Not enough memory for temporary buffers.

SEE ALSO
localeconv (3)

STANDARDS
Thestrfmon () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

AUTHORS
Thestrfmon () function was implemented by Alexey Zelkin 〈phantom@FreeBSD.org〉.

This manual page was written by Jeroen Ruigrok van der Werven 〈asmodai@FreeBSD.org〉 based on the
standard’s text.

BUGS
Thestrfmon () function does not correctly handle multibyte characters in theformat argument.

NetBSD 3.0 October 12, 2002 2

STRFTIME (3) NetBSD Library Functions Manual STRFTIME (3)

NAME
strftime — format date and time

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>

size_t
strftime (char ∗ restrict buf , size_t maxsize , const char ∗ restrict format ,

const struct tm ∗ restrict timeptr);

DESCRIPTION
The strftime () function formats the information fromtimeptr into the buffer buf according to the
string pointed to byformat .

The format string consists of zero or more conversion specifications and ordinary characters. All ordinary
characters are copied directly into the buffer. A conversion specification consists of a percent sign ‘%’ and
one other character.

No more thanmaxsize characters will be placed into the array. If the total number of resulting characters,
including the terminating null character, is not more thanmaxsize , strftime () returns the number of
characters in the array, not counting the terminating null. Otherwise, zero is returned and the contents of the
array are undefined.

Each conversion specification is replaced by the characters as follows which are then copied into the buffer.

%A is replaced by the locale’s full weekday name.

%a is replaced by the locale’s abbreviated weekday name.

%B is replaced by the locale’s full month name.

%b or %h
is replaced by the locale’s abbreviated month name.

%C is replaced by the century (a year divided by 100 and truncated to an integer) as a decimal number
[00,99].

%c is replaced by the locale’s appropriate date and time representation.

%D is replaced by the date in the format “%m/%d/%y”.

%d is replaced by the day of the month as a decimal number [01,31].

%e is replaced by the day of month as a decimal number [1,31]; single digits are preceded by a blank.

%F is replaced by the date in the format “%Y-%m-%d” (the ISO 8601 date format).

%G is replaced by the ISO 8601 year with century as a decimal number.

%g is replaced by the ISO 8601 year without century as a decimal number (00-99). This is the year that
includes the greater part of the week. (Monday as the first day of a week). See also the ‘%V’ conver-
sion specification.

%H is replaced by the hour (24-hour clock) as a decimal number [00,23].

%I is replaced by the hour (12-hour clock) as a decimal number [01,12].

NetBSD 3.0 April 14, 2004 1

STRFTIME (3) NetBSD Library Functions Manual STRFTIME (3)

%j is replaced by the day of the year as a decimal number [001,366].

%k is replaced by the hour (24-hour clock) as a decimal number [0,23]; single digits are preceded by a
blank.

%l is replaced by the hour (12-hour clock) as a decimal number [1,12]; single digits are preceded by a
blank.

%M is replaced by the minute as a decimal number [00,59].

%m is replaced by the month as a decimal number [01,12].

%n is replaced by a newline.

%p is replaced by the locale’s equivalent of either “AM” or “ PM”.

%R is replaced by the time in the format “%H:%M”.

%r is replaced by the locale’s representation of 12-hour clock time using AM/PM notation.

%S is replaced by the second as a decimal number [00,61]. The range of seconds is (00-61) instead of
(00-59) to allow for the periodic occurrence of leap seconds and double leap seconds.

%s is replaced by the number of seconds since the Epoch, UTC (seemktime (3)).

%T is replaced by the time in the format “%H:%M:%S”.

%t is replaced by a tab.

%U is replaced by the week number of the year (Sunday as the first day of the week) as a decimal number
[00,53].

%u is replaced by the weekday (Monday as the first day of the week) as a decimal number [1,7].

%V is replaced by the week number of the year (Monday as the first day of the week) as a decimal num-
ber [01,53]. According to ISO 8601 the week containing January 1 is week 1 if it has four or more
days in the new year, otherwise it is week 53 of the previous year, and the next week is week 1.The
year is given by the ‘%G’ conversion specification.

%v is replaced by the date in the format “%e-%b-%Y”.

%W is replaced by the week number of the year (Monday as the first day of the week) as a decimal num-
ber [00,53].

%w is replaced by the weekday (Sunday as the first day of the week) as a decimal number [0,6].

%X is replaced by the locale’s appropriate time representation.

%x is replaced by the locale’s appropriate date representation.

%Y is replaced by the year with century as a decimal number.

%y is replaced by the year without century as a decimal number [00,99].

%Z is replaced by the time zone name.

%z is replaced by the offset from ITC in the ISO 8601 format “[-]hhmm ”.

%% is replaced by ‘%’.

SEE ALSO
date (1), printf (1), ctime (3), printf (3), strptime (3)

NetBSD 3.0 April 14, 2004 2

STRFTIME (3) NetBSD Library Functions Manual STRFTIME (3)

STANDARDS
Thestrftime () function conforms toISO/IEC 9899:1999 (“ISO C99”). The ‘%C’, ‘ %D’, ‘ %e’, ‘ %g’, ‘ %G’,
‘%h’, ‘ %k’, ‘ %l ’, ‘ %n’, ‘ %r’, ‘ %R’, ‘ %s’, ‘ %t’, ‘ %T’, ‘ %u’, ‘ %V’, and ‘%v’ conversion specifications are
extensions.

Use of the ISO 8601 conversions may produce non-intuitive results. Week 01 of a year is per definition the
first week which has the Thursday in this year, which is equivalent to the week which contains the fourth day
of January. In other words, the first week of a new year is the week which has the majority of its days in the
new year. Week 01 might also contain days from the previous year and the week before week 01 of a year is
the last week (52 or 53) of the previous year even if it contains days from the new year. A week starts with
Monday (day 1) and ends with Sunday (day 7).For example, the first week of the year 1997 lasts from
1996-12-30 to 1997-01-05.

BUGS
There is no conversion specification for the phase of the moon.

NetBSD 3.0 April 14, 2004 3

STRING (3) NetBSD Library Functions Manual STRING (3)

NAME
strcat , strlcat , strncat , strchr , strrchr , strcmp , strncmp , strcoll , strcpy ,
strlcpy , strncpy , strerror , strerror_r , strlen , strpbrk , strsep , stresep , strspn ,
strcspn , strdup , strndup , strstr , strcasestr , strtok , strtok_r , strxfrm — string spe-
cific functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

char ∗
strcat (char ∗s , const char ∗ append);

size_t
strlcat (char ∗dst , const char ∗src , size_t size);

char ∗
strncat (char ∗s , const char ∗append , size_t count);

char ∗
strchr (const char ∗s , int c);

char ∗
strrchr (const char ∗s , int c);

int
strcmp (const char ∗s1 , const char ∗s2);

int
strncmp (const char ∗s1 , const char ∗s2 , size_t count);

int
strcoll (const char ∗s1 , const char ∗s2);

char ∗
strcpy (char ∗dst , const char ∗src);

size_t
strlcpy (char ∗dst , const char ∗src , size_t size);

char ∗
strncpy (char ∗dst , const char ∗src , size_t count);

char ∗
strerror (int errno);

int
strerror_r (int errnum , char ∗strerrbuf , size_t buflen);

size_t
strlen (const char ∗s);

char ∗
strpbrk (const char ∗s , const char ∗charset);

char ∗
strsep (char ∗∗stringp , const char ∗delim);

NetBSD 3.0 February 17, 2007 1

STRING (3) NetBSD Library Functions Manual STRING (3)

char ∗
stresep (char ∗∗stringp , const char ∗delim , int escape);

size_t
strspn (const char ∗s , const char ∗charset);

size_t
strcspn (const char ∗s , const char ∗charset);

char ∗
strdup (const char ∗str);

char ∗
strndup (const char ∗str , size_t len);

char ∗
strstr (const char ∗big , const char ∗little);

char ∗
strcasestr (const char ∗big , const char ∗little);

char ∗
strtok (char ∗s , const char ∗delim);

char ∗
strtok_r (char ∗s , const char ∗delim , char ∗∗lasts);

size_t
strxfrm (char ∗dst , const char ∗src , size_t n);

DESCRIPTION
The string functions manipulate strings terminated by a nul byte.

See the specific manual pages for more information.For manipulating variable length generic objects as
byte strings (without the nul byte check), seebstring (3).

Except as noted in their specific manual pages, the string functions do not test the destination for size limita-
tions.

SEE ALSO
bstring (3), strcat (3), strchr (3), strcmp (3), strcoll (3), strcpy (3), strcspn (3), strdup (3),
strerror (3), strings (3), strlcat (3), strlen (3), strpbrk (3), strrchr (3), strsep (3),
strspn (3), strstr (3), strtok (3), strxfrm (3)

STANDARDS
The strcat (), strncat (), strchr (), strrchr (), strcmp (), strncmp (), strcpy (), strncpy (),
strcoll (), strerror (), strlen (), strpbrk (), strsep (), strspn (), strcspn (), strstr (),
strtok (), andstrxfrm () functions conform toANSI X3.159-1989 (“ANSI C89”).

Thestrtok_r () function conforms toIEEE Std 1003.1c-1995 (“POSIX.1”).

Thestrerror_r () function conform toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 February 17, 2007 2

STRINGLIST (3) NetBSD Library Functions Manual STRINGLIST (3)

NAME
stringlist , sl_init , sl_add , sl_free , sl_find , sl_delete — stringlist manipulation func-
tions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stringlist.h>

StringList ∗
sl_init ();

int
sl_add (StringList ∗sl , char ∗item);

void
sl_free (StringList ∗sl , int freeall);

char ∗
sl_find (StringList ∗sl , const char ∗item);

int
sl_delete (StringList ∗sl , const char ∗item , int freeit);

DESCRIPTION
The stringlist functions manipulate stringlists, which are lists of strings that extend automatically if
necessary.

TheStringList structure has the following definition:

typedef struct _stringlist {
char ∗∗sl_str;
size_t sl_max;
size_t sl_cur;

} S tringList;

sl_str a pointer to the base of the array containing the list.

sl_max the size ofsl_str .

sl_cur the offset insl_str of the current element.

The following stringlist manipulation functions are available:

sl_init () Create a stringlist. Returns a pointer to aStringList , or NULL in case of failure.

sl_free () Releases memory occupied bysl and thesl->sl_str array. If freeall is non-zero,
then each of the items withinsl->sl_str is released as well.

sl_add () Add item to sl->sl_str at sl->sl_cur , extending the size ofsl->sl_str . Returns
zero upon success, −1 upon failure.

sl_find () Find item in sl , returningNULL if it’ s not found.

sl_delete ()
Remove item from the list. If freeit is non-zero, the string is freed.Returns0 if the
name is found and−1 if the name is not found.

NetBSD 3.0 July 27, 2006 1

STRINGLIST (3) NetBSD Library Functions Manual STRINGLIST (3)

SEE ALSO
free (3), malloc (3)

HISTORY
Thestringlist functions appeared inNetBSD 1.3.

NetBSD 3.0 July 27, 2006 2

STRINGS (3) NetBSD Library Functions Manual STRINGS (3)

NAME
bcmp, bcopy , bzero , ffs , index , rindex , strcasecmp , strncasecmp — string operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <strings.h>

int
bcmp(const void ∗b1 , const void ∗b2 , size_t len);

void
bcopy (const void ∗src , void ∗dst , size_t len);

void
bzero (void ∗b , size_t len);

int
ffs (int value);

char ∗
index (const char ∗s , int c);

char ∗
rindex (const char ∗s , int c);

int
strcasecmp (const char ∗s1 , const char ∗s2);

int
strncasecmp (const char ∗s1 , const char ∗s2 , size_t len);

DESCRIPTION
These functions all live in the strings.h header file. Except forffs (), they operate on strings.
index (), rindex (), andstrcasecmp () need nul-terminated strings.

See the specific manual pages for more information.

Seestring (3) for string functions that follow ANSI X3.159-1989 (“ANSI C89”) or ISO/IEC 9899:1999
(“ ISO C99”), bstring (3) for functions that operate on strings that are not nul-terminated, and
bitstring (3) for bit-string manipulation macros.

SEE ALSO
bcmp(3), bcopy (3), bitstring (3), bstring (3), bzero (3), ffs (3), index (3), rindex (3),
strcasecmp (3), string (3)

NetBSD 3.0 February 17, 2007 1

STRLCPY (3) NetBSD Library Functions Manual STRLCPY (3)

NAME
strlcpy , strlcat — size-bounded string copying and concatenation

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

size_t
strlcpy (char ∗dst , const char ∗src , size_t size);

size_t
strlcat (char ∗dst , const char ∗src , size_t size);

DESCRIPTION
Thestrlcpy () andstrlcat () functions copy and concatenate strings respectively. They are designed to
be safer, more consistent, and less error prone replacements forstrncpy (3) andstrncat (3). Unlike
those functions,strlcpy () andstrlcat () take the full size of the buffer (not just the length) and guaran-
tee to NUL-terminate the result (as long assize is larger than 0 or, in the case ofstrlcat (), as long as
there is at least one byte free indst). Notethat you should include a byte for the NUL insize . Also note
that strlcpy () andstrlcat () only operate on true “C” strings. This means that forstrlcpy () src
must be NUL-terminated and forstrlcat () bothsrc anddst must be NUL-terminated.

The strlcpy () function copies up tosize - 1 characters from the NUL-terminated stringsrc to dst ,
NUL-terminating the result.

Thestrlcat () function appends the NUL-terminated stringsrc to the end ofdst . It will append at most
size - strlen(dst) - 1 bytes, NUL-terminating the result.

RETURN VALUES
The strlcpy () and strlcat () functions return the total length of the string they tried to create.For
strlcpy () that means the length ofsrc . For strlcat () that means the initial length ofdst plus the
length ofsrc . While this may seem somewhat confusing it was done to make truncation detection simple.

Note however, that if strlcat () traversessize characters without finding a NUL, the length of the string
is considered to besize and the destination string will not be NUL-terminated (since there was no space for
the NUL). This keepsstrlcat () from running off the end of a string. In practice this should not happen
(as it means that eithersize is incorrect or thatdst is not a proper “C” string). The check exists to prevent
potential security problems in incorrect code.

EXAMPLES
The following code fragment illustrates the simple case:

char ∗s, ∗p, buf[BUFSIZ];

...

(void)strlcpy(buf, s, sizeof(buf));
(void)strlcat(buf, p, sizeof(buf));

To detect truncation, perhaps while building a pathname, something like the following might be used:

char ∗dir, ∗file, pname[MAXPATHLEN];

...

NetBSD 3.0 March 1, 2001 1

STRLCPY (3) NetBSD Library Functions Manual STRLCPY (3)

if (strlcpy(pname, dir, sizeof(pname)) ≥ sizeof(pname))
goto toolong;

if (strlcat(pname, file, sizeof(pname)) ≥ sizeof(pname))
goto toolong;

Since we know how many characters we copied the first time, we can speed things up a bit by using a copy
instead of an append:

char ∗dir, ∗file, pname[MAXPATHLEN];
size_t n;

...

n = s trlcpy(pname, dir, sizeof(pname));
if (n ≥ sizeof(pname))

goto toolong;
if (strlcpy(pname + n, file, sizeof(pname) - n) ≥ sizeof(pname) - n)

goto toolong;

However, one may question the validity of such optimizations, as they defeat the whole purpose of
strlcpy () andstrlcat ().

SEE ALSO
snprintf (3), strncat (3), strncpy (3)

HISTORY
strlcpy () andstrlcat () first appeared inOpenBSD2.4, then inNetBSD 1.4.3 andFreeBSD3.3.

NetBSD 3.0 March 1, 2001 2

STRLEN (3) NetBSD Library Functions Manual STRLEN (3)

NAME
strlen — find length of string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

size_t
strlen (const char ∗s);

DESCRIPTION
Thestrlen () function computes the length of the strings .

RETURN VALUES
Thestrlen () function returns the number of characters that precede the terminatingNULcharacter.

SEE ALSO
string (3)

STANDARDS
Thestrlen () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

STRMODE (3) NetBSD Library Functions Manual STRMODE (3)

NAME
strmode — convert inode status information into a symbolic string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

void
strmode (mode_t mode , char ∗bp);

DESCRIPTION
The strmode () function converts a file mode (the type and permission information associated with an
inode, seestat (2)) into a symbolic string which is stored in the location referenced bybp . This stored
string is eleven characters in length plus a trailing nul byte.

The first character is the inode type, and will be one of the following:

− regular file
a regular file in archive state 1
A regular file in archive state 2
b block special
c character special
d directory
l symbolic link
p fifo
s socket
w whiteout
? unknown inode type

The next nine characters encode three sets of permissions, in three characters each.The first three characters
are the permissions for the owner of the file, the second three for the group the file belongs to, and the third
for the ‘‘other’’, or default, set of users.

Permission checking is done as specifically as possible. If read permission is denied to the owner of a file in
the first set of permissions, the owner of the file will not be able to read the file. This is true even if the
owner is in the file’s group and the group permissions allow reading or the ‘‘other’’ permissions allow read-
ing.

If the first character of the three character set is an ‘‘r’ ’, the file is readable for that set of users; if a dash ‘‘−’’,
it is not readable.

If the second character of the three character set is a ‘‘w’ ’, the file is writable for that set of users; if a dash
‘‘ −’’, it is not writable.

The third character is the first of the following characters that apply:

S If the character is part of the owner permissions and the file is not executable or the directory is not
searchable by the owner, and the set-user-id bit is set.

S If the character is part of the group permissions and the file is not executable or the directory is not
searchable by the group, and the set-group-id bit is set.

T If the character is part of the other permissions and the file is not executable or the directory is not
searchable by others, and the ‘‘sticky’’ (S_ISVTX) bit is set.

NetBSD 3.0 July 28, 1994 1

STRMODE (3) NetBSD Library Functions Manual STRMODE (3)

s If the character is part of the owner permissions and the file is executable or the directory searchable
by the owner, and the set-user-id bit is set.

s If the character is part of the group permissions and the file is executable or the directory searchable
by the group, and the set-group-id bit is set.

t If the character is part of the other permissions and the file is executable or the directory searchable
by others, and the ‘‘sticky’’ (S_ISVTX) bit is set.

x The file is executable or the directory is searchable.

− None of the above apply.

The last character is a plus sign ‘‘+’ ’ if t here are any alternative or additional access control methods associ-
ated with the inode, otherwise it will be a space.

Archive state 1 and archive state 2 represent file system dependent archive state for a file. Most file systems
do not retain file archive state, and so will not report files in either archive state. msdosfswill report a file in
archive state 1 if it has been archived more recently than modified. Hierarchical storage systems may have
multiple archive states for a file and may define archive states 1 and 2 as appropriate.

SEE ALSO
chmod(1), find (1), stat (2), getmode (3), setmode (3)

HISTORY
Thestrmode () function first appeared in 4.4BSD.

NetBSD 3.0 July 28, 1994 2

STRPBRK (3) NetBSD Library Functions Manual STRPBRK (3)

NAME
strpbrk — locate multiple characters in string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

char ∗
strpbrk (const char ∗s , const char ∗charset);

DESCRIPTION
The strpbrk () function locates in the nul-terminated strings the first occurrence of any character in the
stringcharset and returns a pointer to this character. If no characters fromcharset occur anywhere in
s strpbrk () returnsNULL.

SEE ALSO
index (3), memchr(3), rindex (3), strchr (3), strcspn (3), strrchr (3), strsep (3), strspn (3),
strstr (3), strtok (3)

STANDARDS
Thestrpbrk () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

STRPTIME (3) NetBSD Library Functions Manual STRPTIME (3)

NAME
strptime — converts a character string to a time value

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>

char ∗
strptime (const char ∗ restrict buf , const char ∗ restrict format ,

struct tm ∗ restrict tm);

DESCRIPTION
Thestrptime () function converts the character string pointed to bybuf to values which are stored in the
tm structure pointed to bytm , using the format specified byformat .

The format string consists of zero or more conversion specifications, whitespace characters as defined by
isspace (), and ordinary characters. All ordinary characters informat are compared directly against the
corresponding characters inbuf ; comparisons which fail will causestrptime () to fail. Whitespacechar-
acters informat match any number of whitespace characters inbuf , including none.

A conversion specification consists of a percent sign ‘%’ f ollowed by one or two conversion characters which
specify the replacement required.There must be white-space or other non-alphanumeric characters between
any two conversion specifications.

Conversion of alphanumeric strings (such as month and weekday names) is done without regard to case.
Conversion specifications which cannot be matched will causestrptime () to fail.

The LC_TIME category defines the locale values for the conversion specifications. The following conver-
sion specifications are supported:

%a the day of week, using the locale’s weekday names; either the abbreviated or full name may be speci-
fied.

%A the same as%a.

%b the month, using the locale’s month names; either the abbreviated or full name may be specified.

%B the same as%b.

%c the date and time, using the locale’s date and time format.

%C the century number [0,99]; leading zeros are permitted but not required. This conversion should be
used in conjunction with the %y conversion.

%d the day of month [1,31]; leading zeros are permitted but not required.

%D the date as %m/%d/%y.

%e the same as%d.

%F the date as %Y-%m-%d (the ISO 8601 date format).

%h the same as%b.

%H the hour (24-hour clock) [0,23]; leading zeros are permitted but not required.

%I the hour (12-hour clock) [1,12]; leading zeros are permitted but not required.

NetBSD 3.0 April 25, 2008 1

STRPTIME (3) NetBSD Library Functions Manual STRPTIME (3)

%j the day number of the year [1,366]; leading zeros are permitted but not required.

%k the same as%H.

%l the same as%I.

%m the month number [1,12]; leading zeros are permitted but not required.

%M the minute [0,59]; leading zeros are permitted but not required.

%n any white-space, including none.

%p the locale’s equivalent of a.m. or p.m.

%r the time (12-hour clock) with %p, using the locale’s time format.

%R the time as %H:%M.

%S the seconds [0,61]; leading zeros are permitted but not required.

%t any white-space, including none.

%T the time as %H:%M:%S.

%U the week number of the year (Sunday as the first day of the week) as a decimal number [0,53]; lead-
ing zeros are permitted but not required. All days in a year preceding the first Sunday are considered
to be in week 0.

%w the weekday as a decimal number [0,6], with 0 representing Sunday; leading zeros are permitted but
not required.

%W the week number of the year (Monday as the first day of the week) as a decimal number [0,53]; lead-
ing zeros are permitted but not required. All days in a year preceding the first Monday are considered
to be in week 0.

%x the date, using the locale’s date format.

%X the time, using the locale’s time format.

%y the year within the 20th century [69,99] or the 21st century [0,68]; leading zeros are permitted but not
required. Ifspecified in conjunction with %C, specifies the year [0,99] within that century.

%Y the year, including the century (i.e., 1996).

%Z timezone name or no characters when time zone information is unavailable. (A NetBSD extension.)

%% matches a literal ‘%’. No argument is converted.

Modified conversion specifications
For compatibility, certain conversion specifications can be modified by theE andO modifier characters to
indicate that an alternative format or specification should be used rather than the one normally used by the
unmodified conversion specification.As there are currently neither alternative formats nor specifications
supported by the system, the behavior will be as if the unmodified conversion specification were used.

Case is ignored when matching string items inbuf , such as month and weekday names.

RETURN VALUES
If successful, thestrptime () function returns a pointer to the character following the last character parsed.
Otherwise, a null pointer is returned.

NetBSD 3.0 April 25, 2008 2

STRPTIME (3) NetBSD Library Functions Manual STRPTIME (3)

SEE ALSO
ctime (3), isspace (3), localtime (3), strftime (3)

STANDARDS
Thestrptime () function conforms toX/OpenPortability Guide Issue 4 (“XPG4”).

BUGS
The %Z format specifier only accepts timezone abbreviations of the local timezone, or the value “GMT”.
This limitation is caused by the ambiguity of overloaded timezone abbreviations, for example EST is both
Eastern Standard Time and Eastern Australia Summer Time.

NetBSD 3.0 April 25, 2008 3

STRRCHR (3) NetBSD Library Functions Manual STRRCHR (3)

NAME
strrchr — locate character in string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

char ∗
strrchr (const char ∗s , int c);

DESCRIPTION
Thestrrchr () function locates the last occurrence ofc (converted to a char) in the strings . If c is ‘\0 ’,
strrchr () locates the terminating ‘\0 ’.

RETURN VALUES
Thestrrchr () function returns a pointer to the character, or a null pointer if c does not occur anywhere in
s .

EXAMPLES
After the following call tostrrchr (), p will point to the string "obar":

char ∗p;
char ∗s = " foobar";

p = s trrchr(s, ’o’);

SEE ALSO
index (3), memchr(3), rindex (3), strchr (3), strcspn (3), strpbrk (3), strsep (3), strspn (3),
strstr (3), strtok (3)

STANDARDS
Thestrrchr () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 August 11, 2002 1

STRSEP (3) NetBSD Library Functions Manual STRSEP (3)

NAME
strsep , stresep — separate strings

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

char ∗
strsep (char ∗∗stringp , const char ∗delim);

char ∗
stresep (char ∗∗stringp , const char ∗delim , int escape);

DESCRIPTION
The strsep () function locates, in the nul-terminated string referenced by∗stringp , the first occurrence
of any character in the stringdelim (or the terminating ‘\0 ’ character) and replaces it with a ‘\0 ’. The
location of the next character after the delimiter character (orNULL, if the end of the string was reached) is
stored in∗stringp . The original value of∗stringp is returned.

An “empty” field, i.e., one caused by two adjacent delimiter characters, can be detected by comparing the
location referenced by the pointer returned bystrsep () to ‘\0 ’.

If ∗stringp is initially NULL, strsep () returnsNULL. The stresep () function also takes an escape
character that allows quoting the delimiter character so that it can be part of the source string.

EXAMPLES
The following usesstrsep () to parse a string, containing tokens delimited by white space, into an argu-
ment vector:

char ∗∗ap, ∗argv[10], ∗inputstring;

for (ap = argv; ap < &argv[9] &&
(∗ap = strsep(&inputstring, " \t")) != NULL;) {

if (∗∗ap != ’\0’)
ap++;

}

HISTORY
Thestrsep () function is intended as a replacement for thestrtok () function. While thestrtok () func-
tion should be preferred for portability reasons (it conforms toANSI X3.159-1989 (“ANSI C89”)) it is unable
to handle empty fields, i.e., detect fields delimited by two adjacent delimiter characters, or to be used for
more than a single string at a time. Thestrsep () function first appeared in 4.4BSD.

NetBSD 3.0 August 12, 2006 1

STRSIGNAL (3) NetBSD Library Functions Manual STRSIGNAL (3)

NAME
strsignal — get signal description string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

char ∗
strsignal (int sig);

DESCRIPTION
Thestrsignal () function returns a pointer to the language-dependent string describing a signal.

The array pointed to is not to be modified by the program, but may be overwritten by subsequent calls to
strsignal ().

SEE ALSO
intro (2), psignal (3), setlocale (3)

NetBSD 3.0 June 29, 1991 1

STRSPN (3) NetBSD Library Functions Manual STRSPN (3)

NAME
strspn — span a string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

size_t
strspn (const char ∗s , const char ∗charset);

DESCRIPTION
Thestrspn () function spans the initial part of the nul-terminated strings as long as the characters froms
occur in stringcharset .

RETURN VALUES
Thestrspn () function returns the number of characters spanned.

EXAMPLES
The following call tostrspn () will return 3, since the first three characters of strings are part of string
charset :

char ∗s = " foobar";
char ∗charset = "of";
size_t span;

span = strspn(s, charset);

SEE ALSO
index (3), memchr(3), rindex (3), strchr (3), strcspn (3), strpbrk (3), strrchr (3), strsep (3),
strstr (3), strtok (3)

STANDARDS
Thestrspn () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 August 11, 2002 1

STRSTR (3) NetBSD Library Functions Manual STRSTR (3)

NAME
strstr , strcasestr — locate a substring in a string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

char ∗
strstr (const char ∗big , const char ∗little);

char ∗
strcasestr (const char ∗big , const char ∗little);

DESCRIPTION
The strstr () function locates the first occurrence of the nul-terminated stringlittle in the nul-termi-
nated stringbig .

Thestrcasestr () function is similar tostrstr (), but ignores the case of both strings.

RETURN VALUES
If little is an empty string,big is returned; iflittle occurs nowhere inbig , NULL is returned; other-
wise a pointer to the first character of the first occurrence oflittle is returned.

EXAMPLES
The following sets the pointerptr to the "Bar Baz " portion of largestring:

const char ∗largestring = "Foo Bar Baz";
const char ∗smallstring = "Bar";
char ∗ptr;

ptr = strstr(largestring, smallstring);

SEE ALSO
index (3), memchr(3), rindex (3), strchr (3), strcspn (3), strpbrk (3), strrchr (3), strsep (3),
strspn (3), strtok (3)

STANDARDS
Thestrstr () function conforms toISO/IEC9899:1990 (“ISO C90”).

NetBSD 3.0 July 3, 2004 1

STRSUFTOLL (3) NetBSD Library Functions Manual STRSUFTOLL (3)

NAME
strsuftoll , strsuftollx — convert a string to a long long, with suffix parsing

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

long long
strsuftoll (const char ∗desc , const char ∗val , long long min , long long max);

long long
strsuftollx (const char ∗desc , const char ∗val , long long min ,

long long max , char ∗errbuf , size_t errbuflen);

DESCRIPTION
The functionsstrsuftoll () andstrsuftollx () convert val into a long long number, checking that
the result is not smaller thanmin or larger thanmax. Two or more decimal numbers may be separated by an
“x” to indicate a product. Each decimal number may have one of the following optional suffixes:

b Block; multiply by 512
k Kibi; multiply by 1024 (1 KiB)
m Mebi; multiply by 1048576 (1 MiB)
g Gibi; multiply by 1073741824 (1 GiB)
t Tebi; multiply by 1099511627776 (1 TiB)
w Word; multiply by the number of bytes in an integer

In the case of an error (range overflow or an inv alid number),strsuftollx () places an error message into
errbuf (which iserrbuflen bytes long) and returns 0, andstrsuftoll () displays that error and ter-
minates the process.

RETURN VALUES
The functionsstrsuftoll () andstrsuftollx () return either the result of the conversion, unless the
value overflows or is not a number; in the latter case,strsuftoll () displays an error message and termi-
nates the process with exit code 1, andstrsuftollx () returns with 0 anderrbuf contains a non-empty
error message.

ERRORS
[ERANGE] The given string was out of range; the value converted has been clamped.

SEE ALSO
errx (3), strtoll (3)

BUGS
Ignores the current locale.

NetBSD 3.0 April 12, 2007 1

STRTOD (3) NetBSDLibrary Functions Manual STRTOD (3)

NAME
strtod , strtof , strtold — convert ASCII string to double, float, or long double

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

double
strtod (const char ∗ restrict nptr , char ∗∗ restrict endptr);

float
strtof (const char ∗ restrict nptr , char ∗∗ restrict endptr);

long double
strtold (const char ∗ restrict nptr , char ∗∗ restrict endptr);

DESCRIPTION
The strtod () function converts the initial portion of the string pointed to bynptr to doublerepresenta-
tion.

Thestrtof () function converts the initial portion of the string pointed to bynptr to float representation.

Thestrtold () function converts the initial portion of the string pointed to bynptr to long doublerepre-
sentation.

The expected form of the string is an optional plus(‘+’) or minus sign(‘−’) followed by one of the fol-
lowing:

− a sequence of digits optionally containing a decimal-point character, optionally followed by an exponent.
An exponent consists of an ‘E’ or ‘e’, followed by an optional plus or minus sign, followed by a sequence
of digits.

− one ofINF or INFINITY , ignoring case.

− one ofNANor NAN(n-char-sequence-opt) , ignoring case. This implementation currently does
not interpret such a sequence.

Leading white-space characters in the string (as defined by theisspace (3) function) are skipped.

RETURN VALUES
Thestrtod (), strtof (), andstrtold () functions return the converted value, if any.

A character sequenceINF or INFINITY is converted to∞, if supported, else to the largest finite floating-
point number representable on the machine (i.e.,VAX).

A character sequenceNANor NAN(n-char-sequence-opt) is converted to a quietNaN, if supported,
else remains unrecognized (i.e.,VAX).

If endptr is notNULL, a pointer to the character after the last character used in the conversion is stored in
the location referenced byendptr .

If no conversion is performed, zero is returned and the value ofnptr is stored in the location referenced by
endptr .

If the correct value would cause overflow, plus or minusHUGE_VAL, HUGE_VALF, or HUGE_VALLis
returned (according to the return type and sign of the value), andERANGEis stored inerrno. If the correct
value would cause underflow, zero is returned andERANGEis stored inerrno.

NetBSD 3.0 March 12, 2006 1

STRTOD (3) NetBSDLibrary Functions Manual STRTOD (3)

ERRORS
[ERANGE] Overflow or underflow occurred.

SEE ALSO
atof (3), atoi (3), atol (3), math (3), strtol (3), strtoul (3)

STANDARDS
The strtod () function conforms toANSI X3.159-1989 (“ANSI C89”). The strtof () and strtold ()
functions conform toISO/IEC9899:1999 (“ISO C99”).

HISTORY
Thestrtof () andstrtold () functions appeared inNetBSD 4.0.

NetBSD 3.0 March 12, 2006 2

STRTOK (3) NetBSDLibrary Functions Manual STRTOK (3)

NAME
strtok, strtok_r — string tokens

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

char ∗
strtok (char ∗ restrict str , const char ∗ restrict sep);

char ∗
strtok_r (char ∗str , const char ∗sep , char ∗∗lasts);

DESCRIPTION
The strtok () function is used to isolate sequential tokens in a nul-terminated string,str . These tokens
are separated in the string by at least one of the characters insep . The first time thatstrtok () is called,
str should be specified; subsequent calls, wishing to obtain further tokens from the same string, should pass
a null pointer instead. The separator string,sep , must be supplied each time, and may change between calls.

The strtok () function returns a pointer to the beginning of each subsequent token in the string, after
replacing the separator character itself with aNUL character. Separator characters at the beginning of the
string or at the continuation point are skipped so that zero length tokens are not returned. When no more
tokens remain, a null pointer is returned.

Thestrtok_r () function implements the functionality ofstrtok () but is passed an additional argument,
lasts , which points to a user-provided pointer which is used bystrtok_r () to store state which needs to
be kept between calls to scan the same string; unlike strtok (), it is not necessary to delineate tokenizing to
a single string at a time when usingstrtok_r ().

EXAMPLES
The following will construct an array of pointers to each individual word in the strings:

#define MAXTOKENS 128

char s[512], ∗p, ∗tokens[MAXTOKENS];
char ∗last;
int i = 0;

snprintf(s, sizeof(s), "cat dog horse cow");

for ((p = strtok_r(s, " ", &last)); p;
(p = strtok_r(NULL, " ", &last)), i++) {

if (i < MAXTOKENS - 1)
tokens[i] = p;

}
tokens[i] = NULL;

That is, tokens[0] will point to "cat", tokens[1] will point to "dog", tokens[2] will point to
"horse", andtokens[3] will point to "cow".

NetBSD 3.0 August 11, 2002 1

STRTOK (3) NetBSDLibrary Functions Manual STRTOK (3)

SEE ALSO
index (3), memchr(3), rindex (3), strchr (3), strcspn (3), strpbrk (3), strrchr (3), strsep (3),
strspn (3), strstr (3)

STANDARDS
The strtok () function conforms toANSI X3.159-1989 (“ANSI C89”). The strtok_r () function con-
forms toIEEE Std 1003.1c-1995 (“POSIX.1”).

BUGS
The System Vstrtok (), if handed a string containing only delimiter characters, will not alter the next start-
ing point, so that a call tostrtok () with a different (or empty) delimiter string may return a non-NULL
value. Sincethis implementation always alters the next starting point, such a sequence of calls would always
returnNULL.

NetBSD 3.0 August 11, 2002 2

STRTOL (3) NetBSDLibrary Functions Manual STRTOL (3)

NAME
strtol , strtoll , strtoimax , strtoq — convert string value to a long, long long, intmax_t or
quad_t integer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>
#include <limits.h>

long int
strtol (const char ∗ restrict nptr , char ∗∗ restrict endptr , int base);

long long int
strtoll (const char ∗ restrict nptr , char ∗∗ restrict endptr , int base);

#include <inttypes.h>

intmax_t
strtoimax (const char ∗ restrict nptr , char ∗∗ restrict endptr , int base);

#include <sys/types.h>
#include <stdlib.h>
#include <limits.h>

quad_t
strtoq (const char ∗ restrict nptr , char ∗∗ restrict endptr , int base);

DESCRIPTION
Thestrtol () function converts the string innptr to a long int value. Thestrtoll () function converts
the string innptr to a long long intvalue. Thestrtoimax () function converts the string innptr to an
intmax_tvalue. Thestrtoq () function converts the string innptr to aquad_tvalue. Theconversion is
done according to the given base , which must be between 2 and 36 inclusive, or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined byisspace (3)) followed by a
single optional ‘+’ or ‘ - ’ sign. If base is zero or 16, the string may then include a ‘0x ’ prefix, and the num-
ber will be read in base 16; otherwise, a zerobase is taken as 10 (decimal) unless the next character is ‘0’,
in which case it is taken as 8 (octal).

The remainder of the string is converted to along value in the obvious manner, stopping at the first character
which is not a valid digit in the given base. (Inbases above 10, the letter ‘A’ in either upper or lower case
represents 10, ‘B’ represents 11, and so forth, with ‘Z’ representing 35.)

If endptr is non nil,strtol () stores the address of the first invalid character in∗endptr . If there were
no digits at all, however, strtol () stores the original value ofnptr in ∗endptr . (Thus, if∗nptr is not
‘ \0 ’ but ∗∗endptr is ‘\0 ’ on return, the entire string was valid.)

RETURN VALUES
The strtol () function returns the result of the conversion, unless the value would underflow or overflow.
If an underflow occurs, strtol () returns LONG_MIN, strtoll () returns LLONG_MIN, and
strtoimax () returnsINTMAX_MIN. If an overflow occurs,strtol () returnsLONG_MAX, strtoll ()
returnsLLONG_MAX, andstrtoimax () returnsINTMAX_MAX. In these cases,errno is set toERANGE.

NetBSD 3.0 August 11, 2002 1

STRTOL (3) NetBSDLibrary Functions Manual STRTOL (3)

EXAMPLES
Ensuring that a string is a valid number (i.e., in range and containing no trailing characters) requires clearing
errno beforehand explicitly sinceerrno is not changed on a successful call tostrtol (), and the return value
of strtol () cannot be used unambiguously to signal an error:

char ∗ep;
long lval;

...

errno = 0;
lval = strtol(buf, &ep, 10);
if (buf[0] == ’\0’ || ∗ep != ’\0’)

goto not_a_number;
if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))

goto out_of_range;

This example will accept “12” but not “12foo” or “12\n”.If trailing whitespace is acceptable, further checks
must be done on∗ep; alternately, usesscanf (3).

If strtol () is being used instead ofatoi (3), error checking is further complicated because the desired
return value is anint rather than along ; howev er, on some architectures integers and long integers are the
same size. Thus the following is necessary:

char ∗ep;
int ival;
long lval;

...

errno = 0;
lval = strtol(buf, &ep, 10);
if (buf[0] == ’\0’ || ∗ep != ’\0’)

goto not_a_number;
if ((errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) ||

(lval > INT_MAX || lval < INT_MIN))
goto out_of_range;

ival = lval;

ERRORS
[ERANGE] The given string was out of range; the value converted has been clamped.

SEE ALSO
atof (3), atoi (3), atol (3), atoll (3), strtod (3), strtoul (3), strtoull (3), strtoumax (3)

STANDARDS
Thestrtol () function conforms toANSI X3.159-1989 (“ANSI C89”). The strtoll () andstrtoimax ()
functions conform toISO/IEC9899:1999 (“ISO C99”).

BUGS
Ignores the current locale.

NetBSD 3.0 August 11, 2002 2

STRTOUL (3) NetBSD Library Functions Manual STRTOUL (3)

NAME
strtoul , strtoull , strtoumax , strtouq — convert a string to an unsigned long, unsigned long
long, uintmax_t or uquad_t integer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>
#include <limits.h>

unsigned long int
strtoul (const char ∗ restrict nptr , char ∗∗ restrict endptr , int base);

unsigned long long int
strtoull (const char ∗ restrict nptr , char ∗∗ restrict endptr , int base);

#include <inttypes.h>

uintmax_t
strtoumax (const char ∗ restrict nptr , char ∗∗ restrict endptr , int base);

#include <sys/types.h>
#include <stdlib.h>
#include <limits.h>

u_quad_t
strtouq (const char ∗ restrict nptr , char ∗∗ restrict endptr , int base);

DESCRIPTION
Thestrtoul () function converts the string innptr to anunsigned long intvalue. Thestrtoull () func-
tion converts the string innptr to anunsigned long long intvalue. Thestrtoumax () function converts
the string innptr to an uintmax_tvalue. Thestrtouq () function converts the string innptr to a
u_quad_tvalue. Theconversion is done according to the given base , which must be between 2 and 36
inclusive, or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined byisspace (3)) followed by a
single optional ‘+’ or ‘ - ’ sign. If base is zero or 16, the string may then include a ‘0x ’ prefix, and the num-
ber will be read in base 16; otherwise, a zerobase is taken as 10 (decimal) unless the next character is ‘0’,
in which case it is taken as 8 (octal).

The remainder of the string is converted to anunsigned longvalue in the obvious manner, stopping at the end
of the string or at the first character that does not produce a valid digit in the given base. (Inbases above 10,
the letter ‘A’ in either upper or lower case represents 10, ‘B’ represents 11, and so forth, with ‘Z’ represent-
ing 35.)

If endptr is non nil,strtoul () stores the address of the first invalid character in∗endptr . If there were
no digits at all, however, strtoul () stores the original value ofnptr in ∗endptr . (Thus, if∗nptr is not
‘ \0 ’ but ∗∗endptr is ‘\0 ’ on return, the entire string was valid.)

RETURN VALUES
Thestrtoul () function returns either the result of the conversion or, if there was a leading minus sign, the
negation of the result of the conversion, unless the original (non-negated) value would overflow; in the latter
case, strtoul () returns ULONG_MAX, strtoull () returns ULLONG_MAX, strtoumax () returns
UINTMAX_MAX, and the global variableerrno is set toERANGE.

NetBSD 3.0 August 11, 2002 1

STRTOUL (3) NetBSD Library Functions Manual STRTOUL (3)

There is no way to determine ifstrtoul () has processed a negative number (and returned an unsigned
value) short of examining the string innptr directly.

EXAMPLES
Ensuring that a string is a valid number (i.e., in range and containing no trailing characters) requires clearing
errno beforehand explicitly sinceerrno is not changed on a successful call tostrtoul (), and the return
value ofstrtoul () cannot be used unambiguously to signal an error:

char ∗ep;
unsigned long ulval;

...

errno = 0;
ulval = strtoul(buf, &ep, 10);
if (buf[0] == ’\0’ || ∗ep != ’\0’)

goto not_a_number;
if (errno == ERANGE && ulval == ULONG_MAX)

goto out_of_range;

This example will accept “12” but not “12foo” or “12\n”. If trailing whitespace is acceptable, further checks
must be done on∗ep; alternately, usesscanf (3).

ERRORS
[ERANGE] The given string was out of range; the value converted has been clamped.

SEE ALSO
strtoimax (3), strtol (3), strtoll (3)

STANDARDS
The strtoul () function conforms toANSI X3.159-1989 (“ANSI C89”). The strtoull () and
strtoumax () functions conform toISO/IEC9899:1999 (“ISO C99”).

BUGS
Ignores the current locale.

NetBSD 3.0 August 11, 2002 2

STRXFRM (3) NetBSD Library Functions Manual STRXFRM (3)

NAME
strxfrm — transform a string under locale

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <string.h>

size_t
strxfrm (char ∗ restrict dst , const char ∗ restrict src , size_t n);

DESCRIPTION
The idea ofstrxfrm () is to “un-localize” a string: the function transformssrc , storing the result indst ,
such thatstrcmp (3) on transformed strings returns whatstrcoll (3) on the original untransformed strings
would return.

SEE ALSO
bcmp(3), memcmp(3), strcasecmp (3), strcmp (3), strcoll (3)

STANDARDS
Thestrxfrm () function conforms toANSI X3.159-1989 (“ANSI C89”).

BUGS
Since locales are not fully implemented onNetBSD, strxfrm () just returns a copy of the original string.

NetBSD 3.0 February 18, 2007 1

STTY (3) NetBSD Library Functions Manual STTY (3)

NAME
stty , gtty — set and get terminal state (defunct)

LIBRARY
Compatibility Library (libcompat, −lcompat)

SYNOPSIS
#include <sgtty.h>

stty (int fd , struct sgttyb ∗buf);

gtty (int fd , struct sgttyb ∗buf);

DESCRIPTION
These interfaces are obsoleted by ioctl (2). They are available from the compatibility library , lib-
compat.

The stty () function sets the state of the terminal associated withfd . The gtty () function retrieves the
state of the terminal associated withfd . To set the state of a terminal the call must have write permission.

The stty () call is actuallyioctl(fd, TIOCSETP, buf) , while the gtty () call is ioctl(fd,
TIOCGETP, buf) . Seeioctl (2) andtty (4) for an explanation.

DIAGNOSTICS
If the call is successful 0 is returned, otherwise −1 is returned and the global variableerrno contains the rea-
son for the failure.

SEE ALSO
ioctl (2), tty (4)

HISTORY
Thestty () andgtty () functions appeared in 4.2BSD.

NetBSD 3.0 June 4, 1993 1

SWAB (3) NetBSD Library Functions Manual SWAB (3)

NAME
swab — swap adjacent bytes

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

void
swab(const void ∗src , void ∗dst , size_t len);

DESCRIPTION
The functionswab() copieslen bytes from the location referenced bysrc to the location referenced by
dst , swapping adjacent bytes.

The argumentlen must be even number.

SEE ALSO
bzero (3), memset(3)

HISTORY
A swab() function appeared in Version 7AT&T UNIX .

NetBSD 3.0 June 4, 1993 1

SWAPON (3) NetBSD Library Functions Manual SWAPON (3)

NAME
swapon — add a swap device for interleaved paging/swapping

SYNOPSIS
#include <unistd.h>

int
swapon (const char ∗special);

DESCRIPTION
This interface is provided for compatibility only and has been obsoleted byswapctl (2).

swapon () makes the block device special available to the system for allocation for paging and swapping.
The names of potentially available devices are known to the system and defined at system configuration time.
The size of the swap area onspecial is calculated at the time the device is first made available for swap-
ping.

RETURN VALUES
If an error has occurred, a value of −1 is returned anderrno is set to indicate the error.

ERRORS
swapon () succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]
A component of a pathname exceeded{NAME_MAX}characters, or an entire path name
exceeded{PATH_MAX} characters.

[ENOENT] The named device does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The caller is not the super-user.

[ENOTBLK] special is not a block device.

[EBUSY] The device specified byspecial has already been made available for swapping

[EINVAL] The device configured byspecial was not configured into the system as a swap device.

[ENXIO] The major device number ofspecial is out of range (this indicates no device driver
exists for the associated hardware).

[EIO] An I/O error occurred while opening the swap device.

[EFAULT] special points outside the process’s allocated address space.

SEE ALSO
swapctl (2), swapctl (8), swapon (8)

HISTORY
Theswapon () function call appeared in 4.0BSD and was removed NetBSD 1.3

NetBSD 3.0 June 4, 1993 1

SWAPON (3) NetBSD Library Functions Manual SWAPON (3)

BUGS
This call will be upgraded in future versions of the system.

NetBSD 3.0 June 4, 1993 2

SYSCONF (3) NetBSD Library Functions Manual SYSCONF (3)

NAME
sysconf — get configurable system variables

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

long
sysconf (int name);

DESCRIPTION
This interface is defined byIEEE Std 1003.1-1988 (“POSIX.1”). A far more complete interface is available
usingsysctl (3).

Thesysconf () function provides a method for applications to determine the current value of a configurable
system limit or option variable. Thename argument specifies the system variable to be queried.Symbolic
constants for each name value are found in the include file〈unistd.h 〉.

The available values are as follows:

_SC_ARG_MAX
The maximum bytes of argument toexecve (2).

_SC_ATEXIT_MAX
The maxmimum number of functions that may be registered withatexit (3).

_SC_BARRIERS
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Barriers option to which the system attempts
to conform, otherwise −1.

_SC_CLOCK_SELECTION
Return thePOSIX version the implementation of the Clock Selection Option on this system con-
forms to, or −1 if unavailable.

_SC_CHILD_MAX
The maximum number of simultaneous processes per user id.

_SC_CLK_TCK
The number of clock ticks per second.

_SC_FSYNC
Return 1 if the File Synchronization Option is available on this system, otherwise −1.

_SC_IOV_MAX
The maximum number ofiovecstructures that a process has available for use withpreadv (2),
pwritev (2), readv (2), recvmsg (2), sendmsg (2) orwritev (2).

_SC_JOB_CONTROL
Return 1 if job control is available on this system, otherwise −1.

_SC_LOGIN_NAME_MAX
Returns the size of the storage required for a login name, in bytes, including the terminating NUL.

_SC_MAPPED_FILES
Return 1 if the Memory Mapped Files Option is available on this system, otherwise −1.

NetBSD 3.0 August 14, 2006 1

SYSCONF (3) NetBSD Library Functions Manual SYSCONF (3)

_SC_MEMLOCK
Return 1 if the Process Memory Locking Option is available on this system, otherwise −1.

_SC_MEMLOCK_RANGE
Return 1 if the Range Memory Locking Option is available on this system, otherwise −1.

_SC_MEMORY_PROTECTION
Return 1 if the Memory Protection Option is available on this system, otherwise −1.

_SC_MONOTONIC_CLOCK
Return thePOSIX version the implementation of the Monotonic Clock Option on this system con-
forms to, or −1 if unavailable.

_SC_NGROUPS_MAX
The maximum number of supplemental groups.

_SC_OPEN_MAX
The maximum number of open files per process.

_SC_PAGESIZE
The size of a system page in bytes.

_SC_READER_WRITER_LOCKS
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Read-Write Locks option to which the system
attempts to conform, otherwise −1.

_SC_SEMAPHORES
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Semaphores option to which the system
attempts to conform, otherwise −1.

Av ailability of the Semaphores option depends on theP1003_1B_SEMAPHOREkernel option.

_SC_SPIN_LOCKS
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Spin Locks option to which the system
attempts to conform, otherwise −1.

_SC_STREAM_MAX
The minimum maximum number of streams that a process may have open at any one time.

_SC_SYNCHRONIZED_IO
Return 1 if the Synchronized I/O Option is available on this system, otherwise −1.

_SC_THREADS
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Threads option to which the system attempts
to conform, otherwise −1.

_SC_TIMERS
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Timers option to which the system attempts to
conform, otherwise −1.

_SC_TZNAME_MAX
The minimum maximum number of types supported for the name of a timezone.

_SC_SAVED_IDS
Returns 1 if saved set-group and saved set-user ID is available, otherwise −1.

_SC_VERSION
The version of ISO/IEC 9945 (POSIX 1003.1) with which the system attempts to comply.

NetBSD 3.0 August 14, 2006 2

SYSCONF (3) NetBSD Library Functions Manual SYSCONF (3)

_SC_XOPEN_SHM
Return 1 if theX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”) Shared Memory option is
available on this system, otherwise −1.

Av ailability of the Shared Memory option depends on theSYSVSHMkernel option.

_SC_BC_BASE_MAX
The maximum ibase/obase values in thebc (1) utility.

_SC_BC_DIM_MAX
The maximum array size in thebc (1) utility.

_SC_BC_SCALE_MAX
The maximum scale value in thebc (1) utility.

_SC_BC_STRING_MAX
The maximum string length in thebc (1) utility.

_SC_COLL_WEIGHTS_MAX
The maximum number of weights that can be assigned to any entry of the LC_COLLATE order
keyword in the locale definition file.

_SC_EXPR_NEST_MAX
The maximum number of expressions that can be nested within parenthesis by theexpr (1) utility.

_SC_LINE_MAX
The maximum length in bytes of a text-processing utility’s input line.

_SC_RE_DUP_MAX
The maximum number of repeated occurrences of a regular expression permitted when using inter-
val notation.

_SC_2_VERSION
The version of POSIX 1003.2 with which the system attempts to comply.

_SC_2_C_BIND
Return 1 if the system’s C-language development facilities support the C-Language Bindings
Option, otherwise −1.

_SC_2_C_DEV
Return 1 if the system supports the C-Language Development Utilities Option, otherwise −1.

_SC_2_CHAR_TERM
Return 1 if the system supports at least one terminal type capable of all operations described in
POSIX 1003.2, otherwise −1.

_SC_2_FORT_DEV
Return 1 if the system supports the FORTRAN Development Utilities Option, otherwise −1.

_SC_2_FORT_RUN
Return 1 if the system supports the FORTRAN Runtime Utilities Option, otherwise −1.

_SC_2_LOCALEDEF
Return 1 if the system supports the creation of locales, otherwise −1.

_SC_2_SW_DEV
Return 1 if the system supports the Software Development Utilities Option, otherwise −1.

_SC_2_UPE
Return 1 if the system supports the User Portability Utilities Option, otherwise −1.

NetBSD 3.0 August 14, 2006 3

SYSCONF (3) NetBSD Library Functions Manual SYSCONF (3)

_SC_GETGR_R_SIZE_MAX
The minimum size of thebuffer passed togetgrgid_r (3) andgetgrnam_r (3).

_SC_GETPW_R_SIZE_MAX
The minimum size of thebuffer passed togetpwnam_r (3) andgetpwuid_r (3).

_SC_NPROCESSORS_CONF
The number of processors configured.

_SC_NPROCESSORS_ONLN
The number of processors online (capable of running processes).

RETURN VALUES
If the call tosysconf is not successful, −1 is returned anderrno is set appropriately. Otherwise, if the vari-
able is associated with functionality that is not supported, −1 is returned anderrno is not modified.Other-
wise, the current variable value is returned.

ERRORS
The sysconf () function may fail and seterrno for any of the errors specified for the library functions
sysctl (3). Inaddition, the following error may be reported:

[EINVAL] The value of thename argument is invalid.

SEE ALSO
sysctl (3)

STANDARDS
The sysconf () function conforms to ISO/IEC 9945-1:1990 (“POSIX.1”). The constants
_SC_NPROCESSORS_CONFand _SC_NPROCESSORS_ONLNare not part of the standard, but are pro-
vided by many systems.

HISTORY
Thesysconf function first appeared in 4.4BSD.

BUGS
The value for _SC_STREAM_MAX is a minimum maximum, and required to be the same as ANSI C’s
FOPEN_MAX, so the returned value is a ridiculously small and misleading number.

NetBSD 3.0 August 14, 2006 4

SYSCTL (3) NetBSD Library Functions Manual SYSCTL (3)

NAME
sysctl , sysctlbyname , sysctlgetmibinfo , sysctlnametomib — get or set system informa-
tion

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/param.h>
#include <sys/sysctl.h>

int
sysctl (const int ∗name, u_int namelen , void ∗oldp , size_t ∗oldlenp ,

const void ∗newp , size_t newlen);

int
sysctlbyname (const char ∗sname , void ∗oldp , size_t ∗oldlenp , void ∗newp ,

size_t newlen);

int
sysctlgetmibinfo (const char ∗sname , int ∗name, u_int ∗namelenp , char ∗cname ,

size_t ∗csz , struct sysctlnode ∗∗rnode , int v);

int
sysctlnametomib (const char ∗sname , int ∗name, size_t ∗namelenp);

DESCRIPTION
The sysctl function retrieves system information and allows processes with appropriate privileges to set
system information. The information available fromsysctl consists of integers, strings, and tables.Infor-
mation may be retrieved and set from the command interface using thesysctl (8) utility.

Unless explicitly noted below, sysctl returns a consistent snapshot of the data requested.Consistency is
obtained by locking the destination buffer into memory so that the data may be copied out without blocking.
Calls tosysctl are serialized to avoid deadlock.

The state is described using a ‘‘Management Information Base’’ (MIB) style name, listed inname, which is
anamelen length array of integers.

Thesysctlbyname () function accepts a string representation of a MIB entry and internally maps it to the
appropriate numeric MIB representation. Its semantics are otherwise no different fromsysctl ().

The information is copied into the buffer specified byoldp . The size of the buffer is given by the location
specified byoldlenp before the call, and that location gives the amount of data copied after a successful
call. If the amount of data available is greater than the size of the buffer supplied, the call supplies as much
data as fits in the buffer provided and returns with the error code ENOMEM. If the old value is not desired,
oldp andoldlenp should be set toNULL.

The size of the available data can be determined by callingsysctl with aNULLparameter foroldp . The
size of the available data will be returned in the location pointed to byoldlenp . For some operations, the
amount of space may change often.For these operations, the system attempts to round up so that the
returned size is large enough for a call to return the data shortly thereafter.

To set a new value,newp is set to point to a buffer of lengthnewlen from which the requested value is to
be taken. If a new value is not to be set,newp should be set toNULLandnewlen set to 0.

The sysctlnametomib () function can be used to map the string representation of a MIB entry to the
numeric version. Thename argument should point to an array of integers large enough to hold the MIB, and

NetBSD 3.0 December 4, 2006 1

SYSCTL (3) NetBSD Library Functions Manual SYSCTL (3)

namelenp should indicate the number of integer slots available. Following a successful translation, the
size_t indicated bynamelenp will be changed to show the number of slots consumed.

The sysctlgetmibinfo () function performs name translation similar tosysctlnametomib (), but
also canonicalizes the name (or returns the first erroneous token from the string being parsed) into the space
indicated bycname and csz . csz should indicate the size of the buffer pointed to bycname and on
return, will indicate the size of the returned string including the trailing ‘nul’ character.

The rnode andv arguments tosysctlgetmibinfo () are used to provide a tree for it to parse into, and
to get back either a pointer to, or a copy of, the terminal node.If rnode is NULL, sysctlgetmibinfo ()
uses its own internal tree for parsing, and checks it against the kernel at each call, to make sure that the
name-to-number mapping is kept up to date.Thev argument is ignored in this case.If rnode is notNULL
but the pointer it references is, on a successful return,rnode will be adjusted to point to a copy of the termi-
nal node. The v argument indicates which version of thesysctl node structure the caller wants. The
application must laterfree () this copy. If neitherrnode nor the pointer it references areNULL, the pointer
is used as the address of a tree over which the parsing is done. In this last case, the tree is not checked
against the kernel, no refreshing of the mappings is performed, and the value given by v must agree with the
version indicated by the tree.It is recommended that applications always useSYSCTL_VERSIONas the
value forv , as defined in the include filesys/sysctl.h .

The numeric and text names of sysctl variables are described insysctl (7). Thenumeric names are defined
as preprocessor macros. The top level names are defined with a CTL_ prefix in〈sys/sysctl.h 〉. The
next and subsequent levels down have different prefixes for each subtree.

For example, the following retrieves the maximum number of processes allowed in the system - the
kern.maxproc variable:

int mib[2], maxproc;
size_t len;

mib[0] = CTL_KERN;
mib[1] = KERN_MAXPROC;
len = sizeof(maxproc);
sysctl(mib, 2, &maxproc, &len, NULL, 0);

To retrieve the standard search path for the system utilities -user.cs_path :
int mib[2];
size_t len;
char ∗p;

mib[0] = CTL_USER;
mib[1] = USER_CS_PATH;
sysctl(mib, 2, NULL, &len, NULL, 0);
p = malloc(len);
sysctl(mib, 2, p, &len, NULL, 0);

DYNAMIC OPERATIONS
Several meta-identifiers are provided to perform operations on thesysctl tree itself, or support alternate
means of accessing the data instrumented by thesysctl tree.

Name Description
CTL QUERY Retrieve a mapping of names to numbers below a giv en node
CTL CREATE Createa new node

NetBSD 3.0 December 4, 2006 2

SYSCTL (3) NetBSD Library Functions Manual SYSCTL (3)

CTL CREATESYM Createa new node by its kernel symbol
CTL DESTROY Destroy a node
CTL DESCRIBE Retrieve node descriptions

The core interface to all of these meta-functions is the structure that the kernel uses to describe the tree inter-
nally, as defined in〈sys/sysctl.h 〉 as:

struct sysctlnode {
uint32_t sysctl_flags; / ∗ flags and type ∗/
int32_t sysctl_num; / ∗ mib number ∗/
char sysctl_name[SYSCTL_NAMELEN]; / ∗ node name ∗/
uint32_t sysctl_ver; / ∗ node’s version vs. rest of tree ∗/
uint32_t __rsvd;
union {

struct {
uint32_t suc_csize; / ∗ size of child node array ∗/
uint32_t suc_clen; / ∗ number of valid children ∗/
struct sysctlnode ∗ suc_child; / ∗ array of child nodes ∗/

} s cu_child;
struct {

void ∗sud_data; / ∗ pointer to external data ∗/
size_t sud_offset; / ∗ offset to data ∗/

} s cu_data;
int32_t scu_alias; / ∗ node this node refers to ∗/
int32_t scu_idata; / ∗ immediate "int" data ∗/
u_quad_t scu_qdata; / ∗ immediate "u_quad_t" data ∗/

} s ysctl_un;
size_t _sysctl_size; / ∗ size of instrumented data ∗/
sysctlfn _sysctl_func; / ∗ access helper function ∗/
struct sysctlnode ∗sysctl_parent; / ∗ parent of this node ∗/
const char ∗sysctl_desc; / ∗ description of node ∗/

};

#define sysctl_csize sysctl_un.scu_child.suc_csize
#define sysctl_clen sysctl_un.scu_child.suc_clen
#define sysctl_child sysctl_un.scu_child.suc_child
#define sysctl_data sysctl_un.scu_data.sud_data
#define sysctl_offset sysctl_un.scu_data.sud_offset
#define sysctl_alias sysctl_un.scu_alias
#define sysctl_idata sysctl_un.scu_idata
#define sysctl_qdata sysctl_un.scu_qdata

Querying the tree to discover the name to number mapping permits dynamic discovery of all the data that the
tree currently has instrumented.For example, to discover all the nodes below the CTL_VFS node:

struct sysctlnode query, vfs[128];
int mib[2];
size_t len;

mib[0] = CTL_VFS;
mib[1] = CTL_QUERY;
memset(&query, 0, sizeof(query));
query.sysctl_flags = SYSCTL_VERSION;
len = sizeof(vfs);

NetBSD 3.0 December 4, 2006 3

SYSCTL (3) NetBSD Library Functions Manual SYSCTL (3)

sysctl(mib, 2, &vfs[0], &len, &query, sizeof(query));

Note that a reference to an empty node withsysctl_flags set toSYSCTL_VERSIONis passed to sysctl
in order to indicate the version that the program is using.All dynamic operations passing nodes into sysctl
require that the version be explicitly specified.

Creation and destruction of nodes works by constructing part of a new node description (or a description of
the existing node) and invoking CTL_CREATE (or CTL_CREATESYM) or CTL_DESTROY at the parent
of the new node, with a pointer to the new node passed via thenew andnewlen arguments. Ifvalid values
for old andoldlenp are passed, a copy of the new node once in the tree will be returned. If the create
operation fails because a node with the same name or MIB number exists, a copy of the conflicting node will
be returned.

The minimum requirements for creating a node are setting thesysctl_flags to indicate the new node’s
type,sysctl_num to either the new node’s number (or CTL_CREATE or CTL_CREATESYM if a dynam-
ically allocated MIB number is acceptable),sysctl_size to the size of the data to be instrumented
(which must agree with the given type), andsysctl_name must be set to the new node’s name. Nodes
that are not of type “node” must also have some description of the data to be instrumented, which will vary
depending on what is to be instrumented.

If existing kernel data is to be covered by this new node, its address should be given in sysctl_data or, if
CTL_CREATESYM is used,sysctl_data should be set to a string containing its name from the kernel’s
symbol table. If new data is to be instrumented and an initial value is available, the new integer or quad type
data should be placed into eithersysctl_idata or sysctl_qdata , respectively, along with the
SYSCTL_IMMEDIATE flag being set, orsysctl_data should be set to point to a copy of the new data,
and the SYSCTL_OWNDAT A flag must be set. This latter method is the only way that new string and struct
type nodes can be initialized.Invalid kernel addresses are accepted, but any attempt to access those nodes
will return an error.

The sysctl_csize , sysctl_clen , sysctl_child , sysctl_parent , and sysctl_alias
members are used by the kernel to link the tree together and must beNULLor 0. Nodes created in this man-
ner cannot have helper functions, sosysctl_func must also beNULL. If the sysctl_ver member is
non-zero, it must match either the version of the parent or the version at the root of the MIB or an error is
returned. Thiscan be used to ensure that nodes are only added or removed from a known state of the tree.
Note: It may not be possible to determine the version at the root of the tree.

This example creates a new subtree and adds a node to it that controls theaudiodebug kernel variable,
thereby making it tunable at at any time, without needing to useddb (4) orkvm(3) to alter the kernel’s mem-
ory directly.

struct sysctlnode node;
int mib[2];
size_t len;

mib[0] = CTL_CREATE; / ∗ create at top-level ∗/
len = sizeof(node);
memset(&node, 0, len);
node.sysctl_flags = SYSCTL_VERSION|CTLFLAG_READWRITE|CTLTYPE_NODE;
snprintf(node.sysctl_name, sizeof(node.sysctl_name), "local");
node.sysctl_num = CTL_CREATE; / ∗ request dynamic MIB number ∗/
sysctl(&mib[0], 1, &node, &len, &node, len);

mib[0] = node.sysctl_num; / ∗ use new MIB number ∗/
mib[1] = CTL_CREATESYM; / ∗ create at second level ∗/
len = sizeof(node);

NetBSD 3.0 December 4, 2006 4

SYSCTL (3) NetBSD Library Functions Manual SYSCTL (3)

memset(&node, 0, len);
node.sysctl_flags = SYSCTL_VERSION|CTLFLAG_READWRITE|CTLTYPE_INT;
snprintf(node.sysctl_name, sizeof(node.sysctl_name), "audiodebug");
node.sysctl_num = CTL_CREATE;
node.sysctl_data = "audiodebug"; / ∗ kernel symbol to be used ∗/
sysctl(&mib[0], 2, NULL, NULL, &node, len);

The process for deleting nodes is similar, but less data needs to be supplied. Only thesysctl_num field
needs to be filled in; almost all other fields must be left blank.The sysctl_name and/orsysctl_ver
fields can be filled in with the name and version of the existing node as additional checks on what will be
deleted. Ifall the given data fail to match any node, nothing will be deleted. If valid values forold and
oldlenp are supplied and a node is deleted, a copy of what was in the MIB tree will be returned.

This sample code shows the deletion of the two nodes created in the above example:

int mib[2];

len = sizeof(node);
memset(&node, 0, len);
node.sysctl_flags = SYSCTL_VERSION;

mib[0] = 3214; / ∗ assumed number for "local" ∗/
mib[1] = CTL_DESTROY;
node.sysctl_num = 3215; / ∗ assumed number for "audiodebug" ∗/
sysctl(&mib[0], 2, NULL, NULL, &node, len);

mib[0] = CTL_DESTROY;
node.sysctl_num = 3214; / ∗ now deleting "local" ∗/
sysctl(&mib[0], 1, NULL, NULL, &node, len);

Descriptions of each of the nodes can also be retrieved, if they are available. Descriptionscan be retrieved in
bulk at each level or on a per-node basis. The layout of the buffer into which the descriptions are returned is
a series of variable length structures, each of which describes its own size. The length indicated includes the
terminating ‘nul’ character. Nodes that have no description or where the description is not available are indi-
cated by an empty string.The descr_ver will match thesysctl_ver value for a given node, so that
descriptions for nodes whose number have been recycled can be detected and ignored or discarded.

struct sysctldesc {
int32_t descr_num; / ∗ mib number of node ∗/
uint32_t descr_ver; / ∗ version of node ∗/
uint32_t descr_len; / ∗ length of description string ∗/
char descr_str[1]; / ∗ not really 1...see above ∗/

};

TheNEXT_DESCR() macro can be used to skip to the next description in the retrieved list.

struct sysctlnode desc;
struct sysctldesc ∗d;
char buf[1024];
int mib[2];
size_t len;

/ ∗ retrieve kern-level descriptions ∗/
mib[0] = CTL_KERN;
mib[1] = CTL_DESCRIBE;

NetBSD 3.0 December 4, 2006 5

SYSCTL (3) NetBSD Library Functions Manual SYSCTL (3)

d = (struct sysctldesc ∗)&buf[0];
len = sizeof(buf);
sysctl(mib, 2, d, &len, NULL, 0);
while ((caddr_t)d < (caddr_t)&buf[len]) {

printf("node %d: %. ∗s\n", d->descr_num, d->descr_len,
d->descr_str);

d = NEXT_DESCR(d);
}

/ ∗ retrieve description for kern.securelevel ∗/
memset(&desc, 0, sizeof(desc));
desc.sysctl_flags = SYSCTL_VERSION;
desc.sysctl_num = KERN_SECURELEVEL;
d = (struct sysctldesc ∗)&buf[0];
len = sizeof(buf);
sysctl(mib, 2, d, &len, &desc, sizeof(desc));
printf("kern.securelevel: %. ∗s\n", d->descr_len, d->descr_str);

Descriptions can also be set as follows, subject to the following rules:

• The kernel securelevel is at zero or lower
• The caller has super-user privileges
• The node does not currently have a description
• The node is not marked as “permanent”

struct sysctlnode desc;
int mib[2];

/ ∗ presuming the given top-level node was just added... ∗/
mib[0] = 3214; / ∗ mib numbers taken from previous examples ∗/
mib[1] = CTL_DESCRIBE;
memset(&desc, 0, sizeof(desc));
desc.sysctl_flags = SYSCTL_VERSION;
desc.sysctl_num = 3215;
desc.sysctl_desc = "audio debug control knob";
sysctl(mib, 2, NULL, NULL, &desc, sizeof(desc));

Upon successfully setting a description, the new description will be returned in the space indicated by the
oldp andoldlenp arguments.

Thesysctl_flags field in the struct sysctlnode contains the sysctl version, node type information, and a
number of flags. The macrosSYSCTL_VERS(), SYSCTL_TYPE(), andSYSCTL_FLAGS() can be used to
access the different fields.Valid flags are:

Name Description
CTLFLAG READONLY Node is read-only
CTLFLAG READONLY1 Nodebecomes read-only at securelevel 1
CTLFLAG READONLY2 Nodebecomes read-only at securelevel 2
CTLFLAG READWRITE Nodeis writable by the superuser
CTLFLAG ANYWRITE Nodeis writable by anyone
CTLFLAG PRIVATE Node is readable only by the superuser
CTLFLAG PERMANENT Nodecannot be removed (cannot be set by processes)

NetBSD 3.0 December 4, 2006 6

SYSCTL (3) NetBSD Library Functions Manual SYSCTL (3)

CTLFLAG OWNDAT A Node owns data and does not instrument existing data
CTLFLAG IMMEDIATE Nodecontains instrumented data and does not instrument existing data
CTLFLAG HEX Node’s contents should be displayed in a hexadecimal form
CTLFLAG ROOT Node is the root of a tree (cannot be set at any time)
CTLFLAG ANYNUMBER Nodematches any MIB number (cannot be set by processes)
CTLFLAG HIDDEN Nodenot displayed by default
CTLFLAG ALIAS Noderefers to a sibling node (cannot be set by processes)
CTLFLAG OWNDESC Nodeowns its own description string space

RETURN VALUES
If the call tosysctl is successful, the number of bytes copied out is returned.Otherwise −1 is returned and
errno is set appropriately.

FILES
〈sys/sysctl.h 〉 definitions for top level identifiers, second level kernel and hardware identi-

fiers, and user level identifiers
〈sys/socket.h 〉 definitions for second level network identifiers
〈sys/gmon.h 〉 definitions for third level profiling identifiers
〈uvm/uvm_param.h 〉 definitions for second level virtual memory identifiers
〈netinet/in.h 〉 definitions for third level IPv4/v6 identifiers and fourth level IPv4/v6 identi-

fiers
〈netinet/icmp_var.h 〉 definitions for fourth level ICMP identifiers
〈netinet/icmp6.h 〉 definitions for fourth level ICMPv6 identifiers
〈netinet/tcp_var.h 〉 definitions for fourth level TCP identifiers
〈netinet/udp_var.h 〉 definitions for fourth level UDP identifiers
〈netinet6/udp6_var.h 〉 definitions for fourth level IPv6 UDP identifiers
〈netinet6/ipsec.h 〉 definitions for fourth level IPsec identifiers
〈netkey/key_var.h 〉 definitions for third level PF_KEY identifiers
〈machine/cpu.h 〉 definitions for second level machdep identifiers

ERRORS
The following errors may be reported:

[EFAULT] The buffer name, oldp , newp, or length pointeroldlenp contains an invalid
address, or the requested value is temporarily unavailable.

[EINVAL] Thename array is zero or greater than CTL_MAXNAME.

[EINVAL] A non-null newp is given and its specified length innewlen is too large or too small,
or the given value is not acceptable for the given node.

[EISDIR] Thename array specifies an intermediate rather than terminal name.

[ENOENT] Thename array specifies a node that does not exist in the tree.

[ENOENT] An attempt was made to destroy a node that does not exist, or to create or destroy a
node below a node that does not exist.

[ENOMEM] The length pointed to byoldlenp is too short to hold the requested value.

[ENOTDIR] Thename array specifies a node below a node that addresses data.

[ENOTEMPTY] An attempt was made to destroy a node that still has children.

[EOPNOTSUPP] The name array specifies a value that is unknown or a meta-operation was attempted
that the requested node does not support.

NetBSD 3.0 December 4, 2006 7

SYSCTL (3) NetBSD Library Functions Manual SYSCTL (3)

[EPERM] An attempt is made to set a read-only value.

[EPERM] A process without appropriate privilege attempts to set a value or to create or destroy a
node.

[EPERM] An attempt to change a value protected by the current kernel security level is made.

SEE ALSO
sysctl (7), sysctl (8)

HISTORY
Thesysctl function first appeared in 4.4BSD.

NetBSD 3.0 December 4, 2006 8

SYSEXITS (3) NetBSD Library Functions Manual SYSEXITS (3)

NAME
sysexits — preferable exit codes for programs

SYNOPSIS
#include <sysexits.h>

DESCRIPTION
It is not a good practice to callexit (3) with arbitrary values to indicate a failure condition when ending a
program. Instead,the pre-defined exit codes fromsysexits should be used, so the caller of the process
can get a rough estimation about the failure class without looking up the source code.

The successful exit is always indicated by a status of 0, orEX_OK. Error numbers begin atEX__BASEto
reduce the possibility of clashing with other exit statuses that random programs may already return.The
meaning of the codes is approximately as follows:

EX_USAGE (64) The command was used incorrectly, e.g., with the wrong number of argu-
ments, a bad flag, a bad syntax in a parameter, or whatever.

EX_DATAERR(65) The input data was incorrect in some way. This should only be used for
user’s data and not system files.

EX_NOINPUT (66) An input file (not a system file) did not exist or was not readable. This could
also include errors like “No message” to a mailer (if it cared to catch it).

EX_NOUSER(67) The user specified did not exist. This might be used for mail addresses or
remote logins.

EX_NOHOST(68) The host specified did not exist. This is used in mail addresses or network
requests.

EX_UNAVAILABLE (69) A service is unavailable. Thiscan occur if a support program or file does not
exist. This can also be used as a catchall message when something you
wanted to do does not work, but you do not know why.

EX_SOFTWARE(70) An internal software error has been detected.This should be limited to non-
operating system related errors as possible.

EX_OSERR (71) An operating system error has been detected. This is intended to be used for
such things as “cannot fork”, “cannot create pipe”, or the like. It includes
things like getuid returning a user that does not exist in the passwd file.

EX_OSFILE (72) Some system file (e.g.,/etc/passwd , /var/run/utmp , etc.) does not
exist, cannot be opened, or has some sort of error (e.g., syntax error).

EX_CANTCREAT(73) A (user specified) output file cannot be created.

EX_IOERR (74) An error occurred while doing I/O on some file.

EX_TEMPFAIL (75) Temporary failure, indicating something that is not really an error. In send-
mail, this means that a mailer (e.g.) could not create a connection, and the
request should be reattempted later.

EX_PROTOCOL(76) The remote system returned something that was “not possible” during a pro-
tocol exchange.

EX_NOPERM(77) You did not have sufficient permission to perform the operation. This is not
intended for file system problems, which should useEX_NOINPUT or
EX_CANTCREAT, but rather for higher level permissions.

NetBSD 3.0 March 31, 1996 1

SYSEXITS (3) NetBSD Library Functions Manual SYSEXITS (3)

EX_CONFIG (78) Something was found in an unconfigured or misconfigured state.

The numerical values corresponding to the symbolical ones are given in parenthesis for easy reference.

SEE ALSO
err (3), exit (3)

HISTORY
Thesysexits file appeared somewhere after 4.3BSD. Thesysexits man page appeared inNetBSD 4.0.

AUTHORS
This manual page was written by Jörg Wunsch after the comments in <sysexits.h >.

BUGS
The choice of an appropriate exit value is often ambiguous.

NetBSD 3.0 March 31, 1996 2

SYSLOG (3) NetBSD Library Functions Manual SYSLOG (3)

NAME
syslog , syslog_r , vsyslog , vsyslog_r , openlog , openlog_r , closelog , closelog_r ,
setlogmask , setlogmask_r — control system log

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <syslog.h>

void
syslog (int priority , const char ∗message , . . .);

void
syslog_r (int priority , struct syslog_data ∗data , const char ∗message , . . .);

void
openlog (const char ∗ident , int logopt , int facility);

void
openlog_r (const char ∗ident , int logopt , int facility ,

struct syslog_data ∗data);

void
closelog (void);

void
closelog_r (struct syslog_data ∗data);

int
setlogmask (int maskpri);

int
setlogmask_r (int maskpri , struct syslog_data ∗data);

#include <stdarg.h>

void
vsyslog (int priority , const char ∗message , va_list args);

void
vsyslog_r (int priority , struct syslog_data ∗data , const char ∗message ,

va_list args);

struct syslog_data {
int log_file;
int connected;
int opened;
int log_stat;
const char ∗log_tag;
int log_fac;
int log_mask;

};

#define SYSLOG_DATA_INIT { \
.log_file = -1, \
.log_fac = LOG_USER, \

NetBSD 3.0 November 22, 2006 1

SYSLOG (3) NetBSD Library Functions Manual SYSLOG (3)

.log_mask = 0xff, \
}

DESCRIPTION
Thesyslog () function writesmessage to the system message logger. The message is then written to the
system console, log files, logged-in users, or forwarded to other machines as appropriate (Seesyslogd (8)).

The message is identical to aprintf (3) format string, except that ‘%m’ is replaced by the current error mes-
sage. (Asdenoted by the global variableerrno; seestrerror (3).) A trailing newline is added if none is
present. Thesyslog_r () function is a multithread-safe version of thesyslog () function. It takes a
pointer to asyslog_data structure which is used to store information.This parameter must be initialized
before syslog_r () is called. The SYSLOG_DATA_INIT constant is used for this purpose.The
syslog_data structure is composed of the following elements:

log_file contains the file descriptor of the file where the message is logged

connected indicates if connect has been done

opened indicates ifopenlog_r () has been called

log_stat status bits, set byopenlog_r ()

log_tag string to tag the entry with

log_fac facility code

log_mask mask of priorities to be logged

Thevsyslog () function is an alternative form in which the arguments have already been captured using the
variable-length argument facilities ofvarargs (3).

The message is tagged withpriority . Priorities are encoded as afacility and alevel. The facility
describes the part of the system generating the message. The level is selected from the following ordered
(high to low) list:

LOG_EMERG A panic condition. This is normally broadcast to all users.

LOG_ALERT A condition that should be corrected immediately, such as a corrupted system database.

LOG_CRIT Critical conditions, e.g., hard device errors.

LOG_ERR Errors.

LOG_WARNING Warning messages.

LOG_NOTICE Conditions that are not error conditions, but should possibly be handled specially.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use only when debugging a program.

The vsyslog_r () is used the same way asvsyslog () except that it takes an additional pointer to a
syslog_data structure. Itis a multithread-safe version of thevsyslog () function described above.

The openlog () function provides for more specialized processing of the messages sent bysyslog () and
vsyslog (). Theparameterident is a string that will be prepended to every message.The logopt argu-
ment is a bit field specifying logging options, which is formed byOR’ing one or more of the following val-
ues:

LOG_CONS If syslog () cannot pass the message tosyslogd (8) it will attempt to write the mes-
sage to the console(“ /dev/console ”) .

NetBSD 3.0 November 22, 2006 2

SYSLOG (3) NetBSD Library Functions Manual SYSLOG (3)

LOG_NDELAY Open the connection tosyslogd (8) immediately. Normally the open is delayed until
the first message is logged.Useful for programs that need to manage the order in which
file descriptors are allocated.

LOG_PERROR Write the message to standard error output as well to the system log.

LOG_PID Log the process id with each message: useful for identifying instantiations of daemons.
(This PID is placed within brackets between the ident and the message.)

The facility parameter encodes a default facility to be assigned to all messages that do not have an
explicit facility encoded:

LOG_AUTH The authorization system:login (1), su (1), getty (8), etc.

LOG_AUTHPRIVThe same asLOG_AUTH, but logged to a file readable only by selected individuals.

LOG_CRON The cron daemon:cron (8).

LOG_DAEMON System daemons, such asrouted (8), that are not provided for explicitly by other facili-
ties.

LOG_FTP The file transfer protocol daemon:ftpd (8).

LOG_KERN Messages generated by the kernel. Thesecannot be generated by any user processes.

LOG_LPR The line printer spooling system:lpr (1), lpc (8), lpd (8), etc.

LOG_MAIL The mail system.

LOG_NEWS The network news system.

LOG_SYSLOG Messages generated internally bysyslogd (8).

LOG_USER Messages generated by random user processes. This is the default facility identifier if
none is specified.

LOG_UUCP The uucp system.

LOG_LOCAL0 Reserved for local use. Similarly forLOG_LOCAL1throughLOG_LOCAL7.

The openlog_r () function is the multithread-safe version of theopenlog () function. It takes an addi-
tional pointer to asyslog_data structure. Thisfunction must be used in conjunction with the other multi-
thread-safe functions.

Thecloselog () function can be used to close the log file.

Thecloselog_r () does the same thing ascloselog (3) but in a multithread-safe way and takes an addi-
tional pointer to asyslog_data structure.

The setlogmask () function sets the log priority mask tomaskpri and returns the previous mask.Calls
to syslog () with a priority not set inmaskpri are rejected. The mask for an individual prioritypri is
calculated by the macroLOG_MASK(pri); the mask for all priorities up to and includingtoppri is given
by the macroLOG_UPTO(toppri). Thedefault allows all priorities to be logged.

The setlogmask_r () function is the multithread-safe version ofsetlogmask (). It takes an additional
pointer to asyslog_data structure.

RETURN VALUES
The routines closelog (), closelog_r (), openlog (), openlog_r (), syslog (), syslog_r (),
vsyslog (), andvsyslog_r () return no value.

NetBSD 3.0 November 22, 2006 3

SYSLOG (3) NetBSD Library Functions Manual SYSLOG (3)

The routinessetlogmask () andsetlogmask_r () always return the previous log mask level.

EXAMPLES
syslog(LOG_ALERT, "who: internal error 23");

openlog("ftpd", LOG_PID | LOG_NDELAY, LOG_FTP);

setlogmask(LOG_UPTO(LOG_ERR));

syslog(LOG_INFO, "Connection from host %d", CallingHost);

syslog(LOG_INFO|LOG_LOCAL2, "foobar error: %m");

For the multithread-safe functions:

struct syslog_data sdata = SYSLOG_DATA_INIT;

syslog_r(LOG_INFO|LOG_LOCAL2, &sdata, "foobar error: %m");

SEE ALSO
logger (1), syslogd (8)

HISTORY
These non-multithread-safe functions appeared in 4.2BSD. The multithread-safe functions appeared in
OpenBSD3.1 and then inNetBSD 4.0. Theasync-signal-safe functions appeared inNetBSD 4.0.

CAVEATS
It is important never to pass a string with user-supplied data as a format without using ‘%s’. An attacker can
put format specifiers in the string to mangle your stack, leading to a possible security hole. This holds true
ev en if you have built the string “by hand” using a function like snprintf (), as the resulting string may
still contain user-supplied conversion specifiers for later interpolation bysyslog ().

Always be sure to use the proper secure idiom:

syslog(priority, "%s", string);

NetBSD 3.0 November 22, 2006 4

SYSTEM (3) NetBSD Library Functions Manual SYSTEM (3)

NAME
system — pass a command to the shell

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
system (const char ∗string);

DESCRIPTION
The system () function hands the argument string to the command interpretersh (1). The calling
process waits for the shell to finish executing the command, ignoringSIGINT andSIGQUIT , and blocking
SIGCHLD.

If string is a NULL pointer,system () will return non-zero.Otherwise,system () returns the termina-
tion status of the shell in the format specified bywaitpid (2).

RETURN VALUES
If a child process cannot be created, or the termination status of the shell cannot be obtained,system ()
returns -1 and setserrno to indicate the error. If execution of the shell fails, system () returns the termina-
tion status for a program that terminates with a call ofexit (127).

SEE ALSO
sh (1), execve (2), waitpid (2), popen (3), shquote (3)

STANDARDS
The system () function conforms toANSI X3.159-1989 (“ANSI C89”) and IEEE Std 1003.2-1992
(“POSIX.2”).

CAVEATS
Never supply thesystem () function with a command containing any part of an unsanitized user-supplied
string. Shellmeta-characters present will be honored by thesh (1) command interpreter.

NetBSD 3.0 August 2, 2007 1

TAN (3) NetBSDLibrary Functions Manual TAN (3)

NAME
tan , tanf — tangent function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
tan (double x);

float
tanf (float x);

DESCRIPTION
The tan () andtanf () functions compute the tangent ofx (measured in radians).A large magnitude argu-
ment may yield a result with little or no significance.For a discussion of error due to roundoff, seemath (3).

RETURN VALUES
Thetan () function returns the tangent value.

SEE ALSO
acos (3), asin (3), atan (3), atan2 (3), cos (3), cosh (3), math (3), sin (3), sinh (3), tanh (3)

STANDARDS
Thetan () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 May 2, 1991 1

TANH (3) NetBSD Library Functions Manual TANH (3)

NAME
tanh , tanhf — hyperbolic tangent function

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
tanh (double x);

float
tanhf (float x);

DESCRIPTION
The tanh () andtanhf () functions compute the hyperbolic tangent ofx . For a discussion of error due to
roundoff, seemath (3).

RETURN VALUES
Thetanh () function returns the hyperbolic tangent value.

SEE ALSO
acos (3), asin (3), atan (3), atan2 (3), cos (3), cosh (3), math (3), sin (3), sinh (3), tan (3)

STANDARDS
Thetanh () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 May 2, 1991 1

TCGETPGRP (3) NetBSD Library Functions Manual TCGETPGRP (3)

NAME
tcgetpgrp — get foreground process group ID

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

pid_t
tcgetpgrp (int fd);

DESCRIPTION
The tcgetpgrp function returns the value of the process group ID of the foreground process group associ-
ated with the terminal device. If there is no foreground process group,tcgetpgrp returns an invalid
process ID.

ERRORS
If an error occurs,tcgetpgrp returns -1 and the global variableerrno is set to indicate the error, as fol-
lows:

[EBADF] The fd argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling terminal or the underlying terminal
device represented byfd is not the controlling terminal.

SEE ALSO
setpgid (2), setsid (2), tcsetpgrp (3)

STANDARDS
Thetcgetpgrp function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 1

TCGETSID (3) NetBSD Library Functions Manual TCGETSID (3)

NAME
tcgetsid — get session ID associated with a controlling terminal

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t
tcgetsid (int fd);

DESCRIPTION
The tcgetsid function returns the value of the session ID associated with the specified controlling termi-
nal device. Thesession ID is defined as the process group ID of the session leader.

ERRORS
If an error occurs,tcgetsid returns -1 and the global variableerrno is set to indicate the error, as follows:

[EBADF] The fd argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling terminal or the underlying terminal
device represented byfd is not the controlling terminal.

SEE ALSO
getsid (2), setsid (2), tcgetpgrp (3)

STANDARDS
Thetcgetsid function conforms toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

NetBSD 3.0 February 13, 1998 1

TCSENDBREAK (3) NetBSD Library Functions Manual TCSENDBREAK (3)

NAME
tcsendbreak , tcdrain , tcflush , tcflow — line control functions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <termios.h>

int
tcdrain (int fd);

int
tcflow (int fd , int action);

int
tcflush (int fd , int action);

int
tcsendbreak (int fd , int len);

DESCRIPTION
The tcdrain function waits until all output written to the terminal referenced byfd has been transmitted
to the terminal.

The tcflow function suspends transmission of data to or the reception of data from the terminal referenced
by fd depending on the value ofaction . The value ofaction must be one of the following:

TCOOFFSuspend output.

TCOON Restart suspended output.

TCIOFF Transmit a STOP character, which is intended to cause the terminal to stop transmitting data to the
system. (Seethe description of IXOFF in theInput Modes section oftermios (4)).

TCION Transmit a START character, which is intended to cause the terminal to start transmitting data to
the system. (See the description of IXOFF in theInput Modes section oftermios (4)).

The tcflush function discards any data written to the terminal referenced byfd which has not been trans-
mitted to the terminal, or any data received from the terminal but not yet read, depending on the value of
action . The value ofaction must be one of the following:

TCIFLUSH Flush data received but not read.

TCOFLUSH Flush data written but not transmitted.

TCIOFLUSH Flush both data received but not read and data written but not transmitted.

The tcsendbreak function transmits a continuous stream of zero-valued bits for four-tenths of a second to
the terminal referenced byfd . The len parameter is ignored in this implementation.

RETURN VALUES
Upon successful completion, all of these functions return a value of zero.

ERRORS
If any error occurs, a value of -1 is returned and the global variableerrno is set to indicate the error, as fol-
lows:

NetBSD 3.0 June 4, 1993 1

TCSENDBREAK (3) NetBSD Library Functions Manual TCSENDBREAK (3)

[EBADF] The fd argument is not a valid file descriptor.

[EINVAL] Theaction argument is not a proper value.

[ENOTTY] The file associated withfd is not a terminal.

[EINTR] A signal interrupted thetcdrain function.

SEE ALSO
tcsetattr (3), termios (4)

STANDARDS
The tcsendbreak , tcdrain , tcflush and tcflow functions are expected to be compliant with the
IEEE Std 1003.1-1988 (“POSIX.1”) specification.

NetBSD 3.0 June 4, 1993 2

TCSETATTR (3) NetBSD Library Functions Manual TCSETATTR (3)

NAME
cfgetispeed , cfsetispeed , cfgetospeed , cfsetospeed , cfsetspeed , cfmakeraw ,
tcgetattr , tcsetattr — manipulating the termios structure

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <termios.h>

speed_t
cfgetispeed (const struct termios ∗t);

int
cfsetispeed (struct termios ∗t , speed_t speed);

speed_t
cfgetospeed (const struct termios ∗t);

int
cfsetospeed (struct termios ∗t , speed_t speed);

int
cfsetspeed (struct termios ∗t , speed_t speed);

void
cfmakeraw (struct termios ∗t);

int
tcgetattr (int fd , struct termios ∗t);

int
tcsetattr (int fd , int action , const struct termios ∗t);

DESCRIPTION
Thecfmakeraw , tcgetattr andtcsetattr functions are provided for getting and setting the termios
structure.

The cfgetispeed , cfsetispeed , cfgetospeed , cfsetospeed andcfsetspeed functions are
provided for getting and setting the baud rate values in the termios structure.The effects of the functions on
the terminal as described below do not become effective, nor are all errors detected, until thetcsetattr
function is called. Certain values for baud rates set in the termios structure and passed totcsetattr have
special meanings. These are discussed in the portion of the manual page that describes thetcsetattr
function.

GETTING AND SETTING THE B AUD RATE
The input and output baud rates are found in the termios structure.The unsigned integer speed_t is
typdef ’d in the include file〈termios.h 〉. The value of the integer corresponds directly to the baud rate
being represented, however, the following symbolic values are defined.

#define B0 0
#define B50 50
#define B75 75
#define B110 110
#define B134 134
#define B150 150
#define B200 200

NetBSD 3.0 May 1, 2004 1

TCSETATTR (3) NetBSD Library Functions Manual TCSETATTR (3)

#define B300 300
#define B600 600
#define B1200 1200
#define B1800 1800
#define B2400 2400
#define B4800 4800
#define B9600 9600
#define B19200 19200
#define B38400 38400
#ifndef _POSIX_SOURCE
#define EXTA 19200
#define EXTB 38400
#endif / ∗_POSIX_SOURCE∗/

Thecfgetispeed function returns the input baud rate in the termios structure referenced bytp .

Thecfsetispeed function sets the input baud rate in the termios structure referenced bytp to speed .

Thecfgetospeed function returns the output baud rate in the termios structure referenced bytp .

Thecfsetospeed function sets the output baud rate in the termios structure referenced bytp to speed .

The cfsetspeed function sets both the input and output baud rate in the termios structure referenced by
tp to speed .

Upon successful completion, the functionscfsetispeed , cfsetospeed , and cfsetspeed return a
value of 0. Otherwise, a value of -1 is returned and the global variableerrno is set to indicate the error.

GETTING AND SETTING THE TERMIOS ST ATE
This section describes the functions that are used to control the general terminal interface. Unlessotherwise
noted for a specific command, these functions are restricted from use by background processes.Attempts to
perform these operations shall cause the process group to be sent a SIGTTOU signal. If the calling process
is blocking or ignoring SIGTTOU signals, the process is allowed to perform the operation and the SIGTTOU
signal is not sent.

In all the functions, althoughfd is an open file descriptor, the functions affect the underlying terminal file,
not just the open file description associated with the particular file descriptor.

The cfmakeraw function sets the flags stored in the termios structure (initialized bytcgetattr) to a
state disabling all input and output processing, giving a “raw I/O path”. It should be noted that there is no
function to reverse this effect. Thisis because there are a variety of processing options that could be re-
enabled and the correct method is for an application to snapshot the current terminal state using the function
tcgetattr , setting raw mode withcfmakeraw and the subsequenttcsetattr , and then using another
tcsetattr with the saved state to revert to the previous terminal state.

The tcgetattr function copies the parameters associated with the terminal referenced byfd to the
termios structure referenced bytp . This function is allowed from a background process, however, the termi-
nal attributes may be subsequently changed by a foreground process.

The tcsetattr function sets the parameters associated with the terminal from the termios structure refer-
enced bytp . The action field is created byor’ing the following values, as specified in the include file
〈termios.h 〉.

TCSANOW The change occurs immediately.

TCSADRAINThe change occurs after all output written tofd has been transmitted to the terminal.This
value ofaction should be used when changing parameters that affect output.

NetBSD 3.0 May 1, 2004 2

TCSETATTR (3) NetBSD Library Functions Manual TCSETATTR (3)

TCSAFLUSHThe change occurs after all output written tofd has been transmitted to the terminal.Addi-
tionally, any input that has been received but not read is discarded.

TCSASOFT If this value isor’ed into theaction value, the values of thec_cflag, c_ispeed, and c_ospeed
fields are ignored.

The 0 baud rate is used to terminate the connection. If 0 is specified as the output speed to the function
tcsetattr , modem control will no longer be asserted on the terminal, disconnecting the terminal.

If zero is specified as the input speed to the functiontcsetattr , the input baud rate will be set to the same
value as that specified by the output baud rate.

RETURN VALUES
If tcsetattr is unable to make any of the requested changes, it returns -1 and sets errno.Otherwise, it
makes all of the requested changes it can. If the specified input and output baud rates differ and are a combi-
nation that is not supported, neither baud rate is changed.

Upon successful completion, the functionstcgetattr and tcsetattr return a value of 0.Otherwise,
they return -1 and the global variableerrno is set to indicate the error, as follows:

[EBADF] The fd argument totcgetattr or tcsetattr was not a valid file descriptor.

[EINTR] The tcsetattr function was interrupted by a signal.

[EINVAL] The action argument to thetcsetattr function was not valid, or an attempt was
made to change an attribute represented in the termios structure to an unsupported
value.

[ENOTTY] The file associated with thefd argument totcgetattr or tcsetattr is not a ter-
minal.

SEE ALSO
tcsendbreak (3), termios (4)

STANDARDS
The cfgetispeed , cfsetispeed , cfgetospeed , cfsetospeed , tcgetattr and tcsetattr
functions are expected to be compliant with theIEEE Std 1003.1-1988 (“POSIX.1”) specification. The
cfmakeraw andcfsetspeed functions, as well as theTCSASOFToption to thetcsetattr function
are extensions to theIEEE Std 1003.1-1988 (“POSIX.1”) specification.

NetBSD 3.0 May 1, 2004 3

TCSETPGRP (3) NetBSD Library Functions Manual TCSETPGRP (3)

NAME
tcsetpgrp — set foreground process group ID

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
tcsetpgrp (int fd , pid_t pgrp_id);

DESCRIPTION
If the process has a controlling terminal, thetcsetpgrp function sets the foreground process group ID
associated with the terminal device topgrp_id . The terminal device associated withfd must be the con-
trolling terminal of the calling process and the controlling terminal must be currently associated with the ses-
sion of the calling process.The value ofpgrp_id must be the same as the process group ID of a process in
the same session as the calling process.

Upon successful completion,tcsetpgrp returns a value of zero.

ERRORS
If an error occurs,tcgetpgrp returns -1 and the global variableerrno is set to indicate the error, as fol-
lows:

[EBADF] The fd argument is not a valid file descriptor.

[EINVAL] An invalid value ofpgrp_id was specified.

[ENOTTY] The calling process does not have a controlling terminal, or the file represented byfd
is not the controlling terminal, or the controlling terminal is no longer associated with
the session of the calling process.

[EPERM] The pgrp_id argument does not match the process group ID of a process in the same
session as the calling process.

SEE ALSO
setpgid (2), setsid (2), tcgetpgrp (3)

STANDARDS
Thetcsetpgprp function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 1

TERMCAP (3) NetBSD Library Functions Manual TERMCAP (3)

NAME
tgetent , tgetnum , tgetflag , tgetstr , tgoto , tputs — terminal independent operation routines

LIBRARY
Termcap Access Library (libtermcap, −ltermcap)

SYNOPSIS
#include <termcap.h>

char PC;
char ∗BC;
char ∗UP;
short ospeed;
struct tinfo ∗info;

int
tgetent (char ∗bp , const char ∗name);

int
tgetnum (const char ∗id);

int
tgetflag (const char ∗id);

char ∗
tgetstr (const char ∗id , char ∗∗area);

char ∗
tgoto (const char ∗cm, int destcol , int destline);

void
tputs (const char ∗cp , int affcnt , int (∗outc)(int));

int
t_getent (struct tinfo ∗∗info , const char ∗name);

int
t_getnum (struct tinfo ∗info , const char ∗id);

int
t_getflag (struct tinfo ∗info , const char ∗id);

char ∗
t_getstr (struct tinfo ∗info , const char ∗id , char ∗∗area , size_t ∗limit);

char ∗
t_agetstr (struct tinfo ∗info , const char ∗id);

int
t_getterm (struct tinfo ∗info , char ∗∗area , size_t ∗limit);

int
t_goto (struct tinfo ∗info , const char ∗id , int destcol , int destline ,

char ∗buffer , size_t limit);

int
t_puts (struct tinfo ∗info , const char ∗cp , int affcnt ,

void (∗outc)(char, void ∗) , void ∗args);

NetBSD 3.0 December 17, 2006 1

TERMCAP (3) NetBSD Library Functions Manual TERMCAP (3)

void
t_freent (struct tinfo ∗info);

int
t_setinfo (struct tinfo ∗∗info , const char ∗entry);

#include <wchar.h>

int
t_putws (struct tinfo ∗info , const wchar_t ∗cp , int affcnt ,

void (∗outc)(wchar_t, void ∗) , void ∗args);

DESCRIPTION
These functions extract and use capabilities from a terminal capability data base, usually
/usr/share/misc/termcap , the format of which is described intermcap (5). Theseare low lev el
routines; seecurses (3) for a higher level package.

The tgetent () function extracts the entry for terminalname into the buffer at bp . The bp argument
should be a character buffer of size 1024 and must be retained through all subsequent calls totgetnum (),
tgetflag (), andtgetstr (). Thetgetent () function returns −1 if none of thetermcap data base files
could be opened, 0 if the terminal name given does not have an entry, and 1 if all goes well.It will look in
the environment for aTERMCAPvariable. If found, and the value does not begin with a slash, the value does
not contain the ZZ capability (seeNOTESfor a description of this capability), and the terminal typename is
the same as the environment stringTERM, theTERMCAPstring is used instead of reading atermcap file. If
the value does contain the ZZ capability then theTERMenvironment string is used to readtermcap , if the
read fails for any reason the value ofTERMCAPwill be used despite it containing ZZ.If TERMCAPdoes
begin with a slash, the string is used as a path name of thetermcap file to search.If TERMCAPdoes not
begin with a slash andname is different fromTERM, tgetent () searches the files$HOME/.termcap and
/usr/share/misc/termcap , in that order, unless the environment variable TERMPATHexists, in
which case it specifies a list of file pathnames (separated by spaces or colons) to be searched instead.When-
ev er multiple files are searched and atc field occurs in the requested entry, the entry it names must be found
in the same file or one of the succeeding files. This can speed up entry into programs that calltgetent (),
as well as help debug new terminal descriptions or make one for your terminal if you can’t write the file
/usr/share/misc/termcap .

The tgetnum () function gets the numeric value of capabilityid , returning −1 if it is not given for the ter-
minal. Thetgetflag () function returns 1 if the specified capability is present in the terminal’s entry, 0 if it
is not. The tgetstr () function returns the string value of the capabilityid ; if area does not point to
NULLand does not point to a pointer toNULL, it copies the string value into the buffer pointed to by∗area ,
and advances the∗area pointer past the copy of the string. It decodes the abbreviations for this field
described intermcap (5), except for cursor addressing and padding information.The tgetstr () function
returnsNULL if the capability was not found.

The tgoto () function returns a cursor addressing string decoded fromcm to go to columndestcol in line
destline . It uses the external variablesUP (from theup capability) andBC (if bc is given rather thanbs)
if necessary to avoid placing\n, ˆD or ˆ@ in the returned string. (Programs which calltgoto () should be
sure to turn off the XTABSbit(s), sincetgoto () may now output a tab. Note that programs using termcap
should in general turn off XTABSanyway since some terminals use control-I for other functions, such as
nondestructive space.) Ifa% sequence is given which is not understood, thentgoto () returns (OOPS) .

The tputs () function decodes the leading padding information of the stringcp ; affcnt gives the number
of lines affected by the operation, or 1 if this is not applicable,outc is a routine which is called with each
character in turn. The external variableospeedshould contain the output speed of the terminal as encoded by
stty (3). Theexternal variablePC should contain a pad character to be used (from thepc capability) if a
null (ˆ@) is inappropriate.

NetBSD 3.0 December 17, 2006 2

TERMCAP (3) NetBSD Library Functions Manual TERMCAP (3)

The t_getent () function operates in a similar manner to thetgetent () function excepting that theinfo
argument is a pointer to a pointer of the opaque typetinfo. If the call tot_getent () succeeds then the
argumentinfo will be updated with the address of an object that contains the termcap entry. This pointer
can then be passed to calls oft_getnum (), t_getflag () and t_getstr (). When the information
pointed to byinfo is no longer required any storage associated with the object can be released by calling
t_freent ().

The functions t_getnum () and t_getflag () operate in the same manner astgetnum () and
tgetflag () with the exception that the pointer to the termcap object is passed along with the id of the
capability required.

The functiont_getstr () performs the same function astgetstr () but has alimit parameter that gives
the number of characters that can be inserted in to the array pointed to byarea . The limit argument is
updated by thet_getstr () call to give the number of characters that remain available in area . If the
t_getstr call fails thenNULL will be returned and errno set to indicate the failure, ENOENTindicates there
was no termcap entry for the given id , E2BIG indicates the retrieved entry would have overflowedarea . If
t_getstr is called witharea beingNULL then the size required to hold the capability string will be returned
in limit so the caller can allocate enough storage to hold the capability.

The functiont_agetstr () performs the same function ast_getstr () except it handles memory alloca-
tion automatically. The memory thatt_agetstr () allocates will be freed whent_freent () is called.

The functiont_getterm () returns a copy of the termcap name string of the termcap entry associated with
info in the buffer pointed to byarea . t_getterm () returns 0 on success and −1 on error. On error errno
will be set toEINVAL if the termcap entry ininfo is malformed orE2BIG if the size of the name exceeds
the size specified bylimit . If area is NULL then the size required to hold the terminal name will be
returned inlimit allowing sufficient storage to be allocated.If limit is NULL then no bounds checking
will be performed.

The t_goto () function is the same as thetgoto () function excepting that the capabilities forup andbc are
extracted from theinfo object and that the string formed byt_goto () is placed in thebuffer argument,
the number of characters allowed to be placed inbuffer is controlled bylimit . If the expansion per-
formed byt_goto () would exceed the space inbuffer then t_goto () will return −1 and set errno to
E2BIG. The functiont_puts () is similar to thetputs () function excepting thatinfo holds a pointer to
the termcap object that was returned by a previous t_getent () call, this object will be used to retrieve the
pc attribute for the terminal. The functiont_putws () is similar tot_puts () but it operates on a string of
wide characters.The outc function is a pointer to a function that will be called byt_puts () to output
each character in thecp string. Theoutc function will be called with two parameters. Thefirst is the char-
acter to be printed and the second is an optional argument that was passed tot_puts () in theargs argu-
ment. Theinterpretation of the contents ofargs is dependent solely on the implementation ofoutc .

The t_setinfo () function allows the termcap entry contained in theentry string to be inserted into the
info structure. Memorysufficient to hold the contents ofentry is automatically allocated. This allows
the programmer to provide a fail over terminal capability string if fetching the termcap entry from the term-
cap database fails. Theformat of the stringentry is assumed to be a valid termcap entry.

NOTE: A special capability ofZZ is added to the end of the termcap entry retrieved. Thenumber that fol-
lows this entry is the address of the buffer allocated to hold the full termcap entry. The caller may retrieve
the pointer to the extended buffer by performing atgetstr () to retrieve theZZ capability, the string is the
output of aprintf () %p and may be converted back to a pointer usingsscanf () or similar. The ZZ capa-
bility is only necessary if the caller wishes to directly manipulate the termcap entry, all the termcap function
calls automatically use the extended buffer to retrieve terminal capabilities.

NetBSD 3.0 December 17, 2006 3

TERMCAP (3) NetBSD Library Functions Manual TERMCAP (3)

FILES
/usr/lib/libtermcap.a −l termcap library (also known as−l termlib)
/usr/share/misc/termcap standard terminal capability data base
$HOME/.termcap user’s terminal capability data base

SEE ALSO
ex (1), curses (3), termcap (5)

HISTORY
The termcap t_∗() functions appeared inNetBSD 1.5. Therest of thetermcap functions appeared in
4.0BSD.

NetBSD 3.0 December 17, 2006 4

TEXTDOMAIN(3) TEXTDOMAIN(3)

NAME
textdomain − set domain for future gettext() calls

SYNOPSIS
#include <libintl.h>

char * textdomain (const char *domainname);

DESCRIPTION
Thetextdomain function sets or retrieves the current message domain.

A message domain is a set of translatablemsgidmessages. Usually, every software package has its own
message domain. The domain name is used to determine the message catalog where a translation is looked
up; it must be a non-empty string.

The current message domain is used by thegettext, ngettext functions, and by thedgettext, dcgettext,
dngettextanddcngettextfunctions when called with a NULL domainname argument.

If domainnameis not NULL, the current message domain is set todomainname. The string the function
stores internally is a copy of thedomainnameargument.

If domainnameis NULL, the function returns the current message domain.

RETURN VALUE
If successful, thetextdomain function returns the current message domain, after possibly changing it. The
resulting string is valid until the next textdomain call and must not be modified or freed. If a memory allo-
cation failure occurs, it setserrno to ENOMEM and returns NULL.

ERRORS
The following error can occur, among others:

ENOMEM
Not enough memory available.

BUGS
The return type ought to beconst char *, but ischar * to avoid warnings in C code predating ANSI C.

SEE ALSO
gettext(3), ngettext(3), bindtextdomain(3), bind_textdomain_codeset(3)

GNU gettext 0.14.4 May 2001 1

TIME (3) NetBSD Library Functions Manual TIME (3)

NAME
time — get time of day

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>

time_t
time (time_t ∗tloc);

DESCRIPTION
The time () function returns the value of time in seconds since 0 hours, 0 minutes, 0 seconds, January 1,
1970, Coordinated Universal Time.

A copy of the time value may be saved to the area indicated by the pointertloc . If tloc is a NULL
pointer, no value is stored.

Upon successful completion,time () returns the value of time.Otherwise a value of((time_t) −1) is
returned and the global variableerrno is set to indicate the error.

ERRORS
The following error codes may be set inerrno:

[EFAULT] An argument address referenced invalid memory.

SEE ALSO
gettimeofday (2), ctime (3)

STANDARDS
Thetime () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
A time () function appeared in Version 6AT&T UNIX .

NetBSD 3.0 June 4, 1993 1

TIME2POSIX (3) NetBSD Library Functions Manual TIME2POSIX (3)

NAME
time2posix , posix2time — convert seconds since the Epoch

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>

time_t
time2posix (time_t t);

time_t
posix2time (time_t t);

DESCRIPTION
IEEE Std 1003.1 (“POSIX.1”) legislates that atime_tvalue of 536457599 shall correspond to

Wed Dec 31 23:59:59 UTC 1986 .
This effectively implies that POSIXtime_t’s cannot include leap seconds and, therefore, that the system time
must be adjusted as each leap occurs.

If the time package is configured with leap-second support enabled, however, no such adjustment is needed
and time_tvalues continue to increase over leap events (as a true ‘seconds since...’ value). Thismeans that
these values will differ from those required by POSIX by the net number of leap seconds inserted since the
Epoch.

Typically this is not a problem as the typetime_t is intended to be (mostly) opaque —time_tvalues should
only be obtained-from and passed-to functions such astime (3), localtime (3), mktime (3), and
difftime (3). However, POSIX gives an arithmetic expression for directly computing atime_tvalue from
a giv en date/time, and the same relationship is assumed by some (usually older) applications.Any programs
creating/dissectingtime_t’s using such a relationship will typically not handle intervals over leap seconds
correctly.

The time2posix () andposix2time () functions are provided to address thistime_tmismatch by con-
verting between localtime_tvalues and their POSIX equivalents. Thisis done by accounting for the number
of time-base changes that would have taken place on a POSIX system as leap seconds were inserted or
deleted. Theseconverted values can then be used in lieu of correcting the older applications, or when com-
municating with POSIX-compliant systems.

time2posix () is single-valued. Thatis, every local time_t corresponds to a single POSIXtime_t.
posix2time () is less well-behaved: for a positive leap second hit the result is not unique, and for a neg-
ative leap second hit the corresponding POSIXtime_tdoesn’t exist so an adjacent value is returned.Both of
these are good indicators of the inferiority of the POSIX representation.

The following table summarizes the relationship between atime_tand its conversion to, and back from, the
POSIX representation over the leap second inserted at the end of June, 1993.

DATE TIME T X=time2posix(T) posix2time(X)
93/06/30 23:59:59 A+0 B+0 A+0
93/06/30 23:59:60 A+1 B+1 A+1 or A+2
93/07/01 00:00:00 A+2 B+1 A+1 or A+2
93/07/01 00:00:01 A+3 B+2 A+3

A leap second deletion would look like...

NetBSD 3.0 April 1, 2001 1

TIME2POSIX (3) NetBSD Library Functions Manual TIME2POSIX (3)

DATE TIME T X=time2posix(T) posix2time(X)
??/06/30 23:59:58 A+0 B+0 A+0
??/07/01 00:00:00 A+1 B+2 A+1
??/07/01 00:00:01 A+2 B+3 A+2
[Note: posix2time(B+1) => A+0 or A+1]

If leap-second support is not enabled, localtime_t’s and POSIX time_t’s are equivalent, and both
time2posix () andposix2time () degenerate to the identity function.

SEE ALSO
difftime (3), localtime (3), mktime (3), time (3)

NetBSD 3.0 April 1, 2001 2

TIMES (3) NetBSD Library Functions Manual TIMES (3)

NAME
times — process times

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/times.h>

clock_t
times (struct tms ∗tp);

DESCRIPTION
This interface is obsoleted bygetrusage (2) and gettimeofday (2).

The times () function returns the value of time in clock ticks since 0 hours, 0 minutes, 0 seconds, January 1,
1970, Coordinated Universal Time (UTC).

The number of clock ticks per second may be determined by callingsysconf (3) with the_SC_CLK_TCK
request. Itis generally (but not always) between 60 and 1024.

Note that at the common rate of 100 ticks per second on many NetBSD ports, and with a 32-bit unsigned
clock_t, this value first wrapped in 1971.

Thetimes () call also fills in the structure pointed to bytp with time-accounting information.

Thetms structure is defined as follows:

typedef struct {
clock_t tms_utime;
clock_t tms_stime;
clock_t tms_cutime;
clock_t tms_cstime;

}

The elements of this structure are defined as follows:

tms_utime TheCPU time charged for the execution of user instructions.

tms_stime TheCPU time charged for execution by the system on behalf of the process.

tms_cutime The sum of thetms_utime s andtms_cutime s of the child processes.

tms_cstime The sum of thetms_stime s and tms_cstime s of the child processes.

All times are measured in clock ticks, as defined above. Note that at 100 ticks per second, and with a 32-bit
unsigned clock_t, the values wrap after 497 days.

The times of a terminated child process are included in thetms_cutime and tms_cstime elements of
the parent when one of thewait (2) functions returns the process ID of the terminated child to the parent.If
an error occurs,times () returns the value ((clock_t)−1) ,and setserrno to indicate the error.

ERRORS
The times () function may fail and set the global variableerrno for any of the errors specified for the library
routinesgetrusage (2) andgettimeofday (2).

NetBSD 3.0 June 4, 1993 1

TIMES (3) NetBSD Library Functions Manual TIMES (3)

SEE ALSO
time (1), getrusage (2), gettimeofday (2), wait (2), sysconf (3)

STANDARDS
Thetimes () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

NetBSD 3.0 June 4, 1993 2

TIMEZONE (3) NetBSD Library Functions Manual TIMEZONE (3)

NAME
timezone — return the timezone abbreviation

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
char ∗
timezone (int zone , int dst);

DESCRIPTION
This interface is available for compatibility only and will disappear in a futur e software release; it is
impossible to reliably map timezone’s arguments to a time zone abbreviation. Seectime (3); see
tzset (3) for t he new definition of this interface.

The timezone () function returns a pointer to a time zone abbreviation for the specifiedzone anddst val-
ues. Zone is the number of minutes west of GMT anddst is non-zero if daylight savings time is in effect.

SEE ALSO
ctime (3), tzset (3)

HISTORY
A timezone () function appeared in Version 7AT&T UNIX .

NetBSD 3.0 April 19, 1994 1

TMPFILE (3) NetBSD Library Functions Manual TMPFILE (3)

NAME
tempnam, tmpfile , tmpnam — temporary file routines

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

FILE ∗
tmpfile (void);

char ∗
tmpnam(char ∗str);

char ∗
tempnam(const char ∗tmpdir , const char ∗prefix);

DESCRIPTION
The tmpfile () function returns a pointer to a stream associated with a file descriptor returned by the rou-
tine mkstemp (3). Thecreated file is unlinked beforetmpfile () returns, causing the file to be automati-
cally deleted when the last reference to it is closed. The file is opened with the access value ‘w+’.

The tmpnam() function returns a pointer to a file name, in theP_tmpdir directory, which did not reference
an existing file at some indeterminate point in the past.P_tmpdir is defined in the include file
〈stdio.h 〉. If the arguments is non-NULL, the file name is copied to the buffer it references.Otherwise,
the file name is copied to a static buffer. In either case,tmpnam() returns a pointer to the file name.

The buffer referenced bys is expected to be at leastL_tmpnam bytes in length.L_tmpnam is defined in
the include file〈stdio.h 〉.

The tempnam() function is similar totmpnam(), but provides the ability to specify the directory which will
contain the temporary file and the file name prefix.

The environment variableTMPDIR(if set), the argumenttmpdir (if non-NULL), the directoryP_tmpdir ,
and the directory/tmp are tried, in the listed order, as directories in which to store the temporary file.

The argumentprefix , if non-NULL, is used to specify a file name prefix, which will be the first part of the
created file name.tempnam() allocates memory in which to store the file name; the returned pointer may be
used as a subsequent argument tofree (3).

RETURN VALUES
Thetmpfile () function returns a pointer to an open file stream on success, and aNULLpointer on error.

The tmpnam() andtempnam() functions return a pointer to a file name on success, and aNULLpointer on
error.

ERRORS
The tmpfile () function may fail and set the global variableerrno for any of the errors specified for the
library functionsfdopen (3) ormkstemp (3).

The tmpnam() function may fail and seterrno for any of the errors specified for the library function
mktemp(3).

The tempnam() function may fail and seterrno for any of the errors specified for the library functions
malloc (3) ormktemp(3).

NetBSD 3.0 June 18, 2005 1

TMPFILE (3) NetBSD Library Functions Manual TMPFILE (3)

SEE ALSO
mkstemp (3), mktemp(3)

STANDARDS
Thetmpfile () andtmpnam() functions conform toANSI X3.159-1989 (“ANSI C89”).

BUGS
These interfaces are provided forAT&T System VUNIX and ANSI compatibility only. The mkstemp (3)
interface is strongly preferred.

SECURITY CONSIDERATIONS
There are four important problems with these interfaces (as well as with the historicmktemp(3) interface).
First, there is an obvious race between file name selection and file creation and deletion: the program is typi-
cally written to calltmpnam(), tempnam(), or mktemp(3). Subsequently, the program callsopen (2) or
fopen (3) and erroneously opens a file (or symbolic link, or fifo or other device) that the attacker has placed
in the expected file location. Hencemkstemp (3) is recommended, since it atomically creates the file.

Second, most historic implementations provide only a limited number of possible temporary file names (usu-
ally 26) before file names will start being recycled. Third,the AT&T System VUNIX implementations of
these functions (and ofmktemp(3)) use theaccess (2) system call to determine whether or not the tempo-
rary file may be created. This has obvious ramifications for setuid or setgid programs, complicating the por-
table use of these interfaces in such programs.Finally, there is no specification of the permissions with
which the temporary files are created.

This implementation oftmpfile () does not have these flaws, and that oftmpnam() andtempnam() only
have the first limitation, but portable software cannot depend on that. In particular, the tmpfile () interface
should not be used in software expected to be used on other systems if there is any possibility that the user
does not wish the temporary file to be publicly readable and writable.

A l ink-time warning will be issued iftmpnam() or tempnam() is used, and advises the use ofmkstemp ()
instead.

NetBSD 3.0 June 18, 2005 2

TOASCII (3) NetBSD Library Functions Manual TOASCII (3)

NAME
toascii — convert a byte to 7-bit ASCII

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
toascii (int c);

DESCRIPTION
Thetoascii () function returns the argument with all but the lower 7 bits cleared.

RETURN VALUES
The toascii () function always returns a valid ASCII character. The result is a non-negative integer in the
range from 0 to 127, inclusive.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), iscntrl (3), isdigit (3), isgraph (3),
islower (3), isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
tolower (3), toupper (3), ascii (7)

STANDARDS
Thetoascii () function conforms toX/OpenPortability Guide Issue 4 (“XPG4”).

NetBSD 3.0 April 17, 2008 1

TOLOWER (3) NetBSD Library Functions Manual TOLOWER (3)

NAME
tolower — upper case to lower case letter conversion

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
tolower (int c);

DESCRIPTION
Thetolower () function converts an upper-case letter to the corresponding lower-case letter.

RETURN VALUES
If the argument is an upper-case letter, the tolower () function returns the corresponding lower-case letter if
there is one; otherwise the argument is returned unchanged.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), iscntrl (3), isdigit (3), isgraph (3),
islower (3), isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), toupper (3), ascii (7)

STANDARDS
Thetolower () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument totolower () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

TOUPPER (3) NetBSD Library Functions Manual TOUPPER (3)

NAME
toupper — lower case to upper case letter conversion

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ctype.h>

int
toupper (int c);

DESCRIPTION
Thetoupper () function converts a lower-case letter to the corresponding upper-case letter.

RETURN VALUES
If the argument is a lower-case letter, the toupper () function returns the corresponding upper-case letter if
there is one; otherwise the argument is returned unchanged.

SEE ALSO
ctype (3), isalnum (3), isalpha (3), isascii (3), iscntrl (3), isdigit (3), isgraph (3),
islower (3), isprint (3), ispunct (3), isspace (3), isupper (3), isxdigit (3), stdio (3),
toascii (3), ascii (7)

STANDARDS
Thetoupper () function conforms toANSI X3.159-1989 (“ANSI C89”).

CAVEATS
The argument totoupper () must beEOFor representable as anunsigned char ; otherwise, the behav-
ior is undefined. See theCAVEATS section ofctype (3) for more details.

NetBSD 3.0 April 17, 2008 1

TOWCTRANS (3) NetBSD Library Functions Manual TOWCTRANS (3)

NAME
towctrans — convert a wide character with a specified map

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wctype.h>

wint_t
towctrans (wint_t wc , wctrans_t charmap);

DESCRIPTION
Thetowctrans () function converts a wide characterwc with a character mappingcharmap .

The behaviour oftowctrans () is undefined if thetowctrans () function is called with an invalid
charmap (changes ofLC_CTYPEcategory invalidatecharmap) or inv alid wide characterwc.

The behaviour oftowctrans () is affected by theLC_CTYPEcategory of the current locale.

RETURN VALUES
towctrans () returns the resulting character of the conversion.

ERRORS
No errors are defined.

SEE ALSO
iswctype (3), setlocale (3), wctrans (3), wctype (3)

STANDARDS
Thetowctrans () function conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”).

NetBSD 3.0 March 4, 2003 1

TOWLOWER (3) NetBSD Library Functions Manual TOWLOWER (3)

NAME
towlower — wide character case letter conversion utilities

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wctype.h>

wint_t
towlower (wint_t wc);

wint_t
towupper (wint_t wc);

DESCRIPTION
The towlower () function converts an upper-case wide character to the corresponding lower-case letter.
Thetowupper () function converts an lower-case wide character to the corresponding upper-case letter.

RETURN VALUES
If the argument is an upper/lower-case letter, the tolower () function returns the corresponding counterpart
if there is one; otherwise the argument is returned unchanged.

SEE ALSO
tolower (3), toupper (3)

STANDARDS
The functions conform toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 December 22, 2000 1

TREE (3) NetBSD Library Functions Manual TREE (3)

NAME
SPLAY_PROTOTYPE, SPLAY_GENERATE, SPLAY_ENTRY, SPLAY_HEAD, SPLAY_INITIALIZER ,
SPLAY_ROOT, SPLAY_EMPTY, SPLAY_NEXT, SPLAY_MIN, SPLAY_MAX, SPLAY_FIND,
SPLAY_LEFT, SPLAY_RIGHT, SPLAY_FOREACH, SPLAY_INIT , SPLAY_INSERT, SPLAY_REMOVE,
RB_PROTOTYPE, RB_GENERATE, RB_ENTRY, RB_HEAD, RB_INITIALIZER , RB_ROOT, RB_EMPTY,
RB_NEXT, RB_MIN, RB_MAX, RB_FIND, RB_LEFT, RB_RIGHT, RB_PARENT, RB_FOREACH,
RB_INIT , RB_INSERT, RB_REMOVE— implementations of splay and red-black trees

SYNOPSIS
#include <sys/tree.h>

SPLAY_PROTOTYPE(NAME, TYPE, FIELD , CMP);

SPLAY_GENERATE(NAME, TYPE, FIELD , CMP);

SPLAY_ENTRY(TYPE);

SPLAY_HEAD(HEADNAME, TYPE);

struct TYPE ∗
SPLAY_INITIALIZER (SPLAY_HEAD∗head);

SPLAY_ROOT(SPLAY_HEAD∗head);

bool
SPLAY_EMPTY(SPLAY_HEAD∗head);

struct TYPE ∗
SPLAY_NEXT(NAME, SPLAY_HEAD∗head , struct TYPE ∗elm);

struct TYPE ∗
SPLAY_MIN(NAME, SPLAY_HEAD∗head);

struct TYPE ∗
SPLAY_MAX(NAME, SPLAY_HEAD∗head);

struct TYPE ∗
SPLAY_FIND(NAME, SPLAY_HEAD∗head , struct TYPE ∗elm);

struct TYPE ∗
SPLAY_LEFT(struct TYPE ∗elm , SPLAY_ENTRY NAME);

struct TYPE ∗
SPLAY_RIGHT(struct TYPE ∗elm , SPLAY_ENTRY NAME);

SPLAY_FOREACH(VARNAME, NAME, SPLAY_HEAD∗head);

void
SPLAY_INIT (SPLAY_HEAD∗head);

struct TYPE ∗
SPLAY_INSERT(NAME, SPLAY_HEAD∗head , struct TYPE ∗elm);

struct TYPE ∗
SPLAY_REMOVE(NAME, SPLAY_HEAD∗head , struct TYPE ∗elm);

RB_PROTOTYPE(NAME, TYPE, FIELD , CMP);

RB_GENERATE(NAME, TYPE, FIELD , CMP);

NetBSD 3.0 February 24, 2002 1

TREE (3) NetBSD Library Functions Manual TREE (3)

RB_ENTRY(TYPE);

RB_HEAD(HEADNAME, TYPE);

RB_INITIALIZER (RB_HEAD∗head);

struct TYPE ∗
RB_ROOT(RB_HEAD∗head);

bool
RB_EMPTY(RB_HEAD∗head);

struct TYPE ∗
RB_NEXT(NAME, RB_HEAD∗head , struct TYPE ∗elm);

struct TYPE ∗
RB_MIN(NAME, RB_HEAD∗head);

struct TYPE ∗
RB_MAX(NAME, RB_HEAD∗head);

struct TYPE ∗
RB_FIND(NAME, RB_HEAD∗head , struct TYPE ∗elm);

struct TYPE ∗
RB_LEFT(struct TYPE ∗elm , RB_ENTRY NAME);

struct TYPE ∗
RB_RIGHT(struct TYPE ∗elm , RB_ENTRY NAME);

struct TYPE ∗
RB_PARENT(struct TYPE ∗elm , RB_ENTRY NAME);

RB_FOREACH(VARNAME, NAME, RB_HEAD∗head);

void
RB_INIT (RB_HEAD∗head);

struct TYPE ∗
RB_INSERT(NAME, RB_HEAD∗head , struct TYPE ∗elm);

struct TYPE ∗
RB_REMOVE(NAME, RB_HEAD∗head , struct TYPE ∗elm);

DESCRIPTION
These macros define data structures for different types of trees: splay trees and red-black trees.

In the macro definitions,TYPE is the name tag of a user defined structure that must contain a field of type
SPLAY_ENTRY, or RB_ENTRY, namedENTRYNAME. The argumentHEADNAMEis the name tag of a user
defined structure that must be declared using the macrosSPLAY_HEAD() or RB_HEAD(). The argument
NAMEhas to be a unique name prefix for every tree that is defined.

The function prototypes are declared with eitherSPLAY_PROTOTYPEor RB_PROTOTYPE. The function
bodies are generated with eitherSPLAY_GENERATEor RB_GENERATE. See the examples below for fur-
ther explanation of how these macros are used.

SPLAY TREES
A splay tree is a self-organizing data structure.Every operation on the tree causes a splay to happen.The
splay moves the requested node to the root of the tree and partly rebalances it.

NetBSD 3.0 February 24, 2002 2

TREE (3) NetBSD Library Functions Manual TREE (3)

This has the benefit that request locality causes faster lookups as the requested nodes move to the top of the
tree. Onthe other hand, every lookup causes memory writes.

The Balance Theorem bounds the total access time for m operations and n inserts on an initially empty tree
as O((m + n)lg n). The amortized cost for a sequence of m accesses to a splay tree is O(lg n).

A splay tree is headed by a structure defined by theSPLAY_HEAD() macro. A SPLAY_HEADstructure is
declared as follows:

SPLAY_HEAD(HEADNAME, TYPE) head;

whereHEADNAMEis the name of the structure to be defined, and structTYPE is the type of the elements to
be inserted into the tree.

TheSPLAY_ENTRY() macro declares a structure that allows elements to be connected in the tree.

In order to use the functions that manipulate the tree structure, their prototypes need to be declared with the
SPLAY_PROTOTYPE() macro, whereNAMEis a unique identifier for this particular tree.The TYPEargu-
ment is the type of the structure that is being managed by the tree.TheFIELD argument is the name of the
element defined bySPLAY_ENTRY().

The function bodies are generated with theSPLAY_GENERATE() macro. It takes the same arguments as the
SPLAY_PROTOTYPE() macro, but should be used only once.

Finally, theCMPargument is the name of a function used to compare trees noded with each other. The func-
tion takes two arguments of typestruct TYPE ∗. If the first argument is smaller than the second, the
function returns a value smaller than zero. If they are equal, the function returns zero. Otherwise, it should
return a value greater than zero. The compare function defines the order of the tree elements.

TheSPLAY_INIT () macro initializes the tree referenced byhead .

The splay tree can also be initialized statically by using theSPLAY_INITIALIZER () macro like this:

SPLAY_HEAD(HEADNAME, TYPE) head = SPLAY_INITIALIZER(&head);

TheSPLAY_INSERT() macro inserts the new elementelm into the tree.

TheSPLAY_REMOVE() macro removes the elementelm from the tree pointed byhead .

TheSPLAY_FIND() macro can be used to find a particular element in the tree.

struct TYPE find, ∗res;
find.key = 30;
res = SPLAY_FIND(NAME, head, &find);

The SPLAY_ROOT(), SPLAY_MIN(), SPLAY_MAX(), andSPLAY_NEXT() macros can be used to traverse
the tree:

for (np = SPLAY_MIN(NAME, &head); np != NULL; np = SPLAY_NEXT(NAME, &head, np))

Or, for simplicity, one can use theSPLAY_FOREACH() macro:

SPLAY_FOREACH(np, NAME, head)

TheSPLAY_EMPTY() macro should be used to check whether a splay tree is empty.

RED-BLACK TREES
A red-black tree is a binary search tree with the node color as an extra attribute. It fulfills a set of conditions:

1. every search path from the root to a leaf consists of the same number of black nodes,

NetBSD 3.0 February 24, 2002 3

TREE (3) NetBSD Library Functions Manual TREE (3)

2. eachred node (except for the root) has a black parent,
3. eachleaf node is black.

Every operation on a red-black tree is bounded as O(lg n). The maximum height of a red-black tree is 2lg
(n+1).

A red-black tree is headed by a structure defined by theRB_HEAD() macro. A RB_HEADstructure is
declared as follows:

RB_HEAD(HEADNAME, TYPE) head;

whereHEADNAMEis the name of the structure to be defined, and structTYPE is the type of the elements to
be inserted into the tree.

TheRB_ENTRY() macro declares a structure that allows elements to be connected in the tree.

In order to use the functions that manipulate the tree structure, their prototypes need to be declared with the
RB_PROTOTYPE() macro, whereNAMEis a unique identifier for this particular tree.TheTYPEargument is
the type of the structure that is being managed by the tree.TheFIELD argument is the name of the element
defined byRB_ENTRY().

The function bodies are generated with theRB_GENERATE() macro. It takes the same arguments as the
RB_PROTOTYPE() macro, but should be used only once.

Finally, theCMPargument is the name of a function used to compare trees noded with each other. The func-
tion takes two arguments of typestruct TYPE ∗. If the first argument is smaller than the second, the
function returns a value smaller than zero. If they are equal, the function returns zero. Otherwise, it should
return a value greater than zero. The compare function defines the order of the tree elements.

TheRB_INIT () macro initializes the tree referenced byhead .

The redblack tree can also be initialized statically by using theRB_INITIALIZER () macro like this:

RB_HEAD(HEADNAME, TYPE) head = RB_INITIALIZER(&head);

TheRB_INSERT() macro inserts the new elementelm into the tree.

TheRB_REMOVE() macro removes the elementelm from the tree pointed byhead .

TheRB_FIND() macro can be used to find a particular element in the tree.

struct TYPE find, ∗res;
find.key = 30;
res = RB_FIND(NAME, head, &find);

TheRB_ROOT(), RB_MIN(), RB_MAX(), andRB_NEXT() macros can be used to traverse the tree:

for (np = RB_MIN(NAME, &head); np != NULL; np = RB_NEXT(NAME, &head, np))

Or, for simplicity, one can use theRB_FOREACH() macro:

RB_FOREACH(np, NAME, head)

TheRB_EMPTY() macro should be used to check whether a red-black tree is empty.

NOTES
Trying to free a tree in the following way is a common error:

SPLAY_FOREACH(var, NAME, head) {
SPLAY_REMOVE(NAME, head, var);
free(var);

}

NetBSD 3.0 February 24, 2002 4

TREE (3) NetBSD Library Functions Manual TREE (3)

free(head);

Sincevar is free’d, theFOREACH() macro refers to a pointer that may have been reallocated already. Proper
code needs a second variable.

for (var = SPLAY_MIN(NAME, head); var != NULL; var = nxt) {
nxt = SPLAY_NEXT(NAME, head, var);
SPLAY_REMOVE(NAME, head, var);
free(var);

}

Both RB_INSERT() andSPLAY_INSERT() returnNULL if the element was inserted in the tree success-
fully, otherwise they return a pointer to the element with the colliding key.

Accordingly, RB_REMOVE() andSPLAY_REMOVE() return the pointer to the removed element, otherwise
they returnNULL to indicate an error.

AUTHORS
The author of the tree macros is Niels Provos.

NetBSD 3.0 February 24, 2002 5

TRUNC (3) NetBSD Library Functions Manual TRUNC (3)

NAME
trunc , truncf — nearest integral value with magnitude less than or equal to |x|

LIBRARY
Math Library (libm, −lm)

SYNOPSIS
#include <math.h>

double
trunc (double x);

float
truncf (float x);

DESCRIPTION
The trunc () andtruncf () functions return the nearest integral value with magnitude less than or equal to
|x |. They are equivalent torint () andrintf () respectively, in theFP_RZrounding mode.

SEE ALSO
ceil (3), floor (3), fpsetround (3), math (3), nextafter (3), rint (3), round (3)

STANDARDS
Thetrunc () andtruncf () functions conform toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 March 31, 2006 1

TSEARCH (3) NetBSD Library Functions Manual TSEARCH (3)

NAME
tsearch, tfind, tdelete, twalk — manipulate binary search trees

SYNOPSIS
#include <search.h>

void ∗
tdelete (const void ∗ restrict key , void ∗∗ restrict rootp ,

int (∗compar) (const void ∗, c onst void ∗));

void ∗
tfind (const void ∗key , const void ∗ const ∗rootp ,

int (∗compar) (const void ∗, c onst void ∗));

void ∗
tsearch (const void ∗key , void ∗∗rootp ,

int (∗compar) (const void ∗, c onst void ∗));

void
twalk (const void ∗root , void (∗action) (const void ∗, V ISIT, int));

DESCRIPTION
The tdelete (), tfind (), tsearch (), andtwalk () functions manage binary search trees based on algo-
rithms T and D from Knuth (6.2.2).The comparison function passed in by the user has the same style of
return values asstrcmp (3).

tfind () searches for the datum matched by the argumentkey in the binary tree rooted atrootp , returning
a pointer to the datum if it is found and NULL if it is not.

tsearch () is identical totfind () except that if no match is found,key is inserted into the tree and a
pointer to it is returned. Ifrootp points to a NULL value a new binary search tree is created.

tdelete () deletes a node from the specified binary search tree and returns a pointer to the parent of the
node to be deleted. It takes the same arguments astfind () andtsearch (). If the node to be deleted is the
root of the binary search tree,rootp will be adjusted.

twalk () walks the binary search tree rooted in and calls the functionaction on each node.Action is
called with three arguments: a pointer to the current node, a value from the enumtypedef enum { preorder,
postorder, endorder, leaf } VISIT; specifying the traversal type, and a node level (where level zero is the
root of the tree).

RETURN VALUES
The tsearch () function returns NULL if allocation of a new node fails (usually due to a lack of free mem-
ory).

tfind (), tsearch (), andtdelete () return NULL if rootp is NULL or the datum cannot be found.

Thetwalk () function returns no value.

SEE ALSO
bsearch (3), hsearch (3), lsearch (3)

NetBSD 3.0 November 26, 2006 1

TTYACTION (3) NetBSD Library Functions Manual TTYACTION (3)

NAME
ttyaction — ttyaction utility function

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

int
ttyaction (char ∗ttyname , char ∗action , char ∗username);

DESCRIPTION
The ttyaction () function is used bylogin (1), getty (8), telnetd (8) andrlogind (8) to execute
site-specific commands when a login session begins and ends.

The ttyaction () function scans the/etc/ttyaction file for any records that match the current
ttyname andaction parameters, and for each matching record, runs the shell command shown in that
record. Therecord format is described inttyaction (5). Theparameterusername is the name of the
new owner of thettyname device. Notethat thettyname parameter may be passed as a fully qualified
pathname, and thettyaction () function will skip the leading "/dev/" part of the string. (This is a con-
venience for login and getty.)

RETURN VALUES
ttyaction () returns the status of the last command it executed, or zero if no matching commands were
found.

FILES
/dev/ ∗
/etc/ttyaction

SEE ALSO
ttyaction (5)

AUTHORS
Gordon W. Ross〈gwr@NetBSD.org〉,
Chris G. Demetriou〈cgd@NetBSD.org〉,
Ty Sarna〈tsarna@endicor.com〉.

BUGS
There should be someother mechanism to allow selection of different access control policies on a per-line
basis. Ithas been suggested that the samettyaction mechanism should also be used for determining
access control, but it was decided (after much discussion) thatttyaction should only describe actions to
be performedafter the system has decided to change the ownership of some tty. Access control policies will
be handled by a separate mechanism.

NetBSD 3.0 August 24, 1996 1

TTYMSG (3) NetBSD Library Functions Manual TTYMSG (3)

NAME
ttymsg — ttymsg utility function

LIBRARY
System Utilities Library (libutil, −lutil)

SYNOPSIS
#include <util.h>

char ∗
ttymsg (struct iovec ∗iov , int iovlen , const char ∗tty , int tmout);

DESCRIPTION
The ttymsg () function is used by programs such astalkd (8), syslogd (8), wall (1), etc., to display the
contents of a uio structure on a terminal.ttymsg () forks and finishes in the child if the write would block
after waiting up totmout seconds.

RETURN VALUES
ttymsg () returns a pointer to an error string on unexpected error; the string is not newline-terminated. Vari-
ous "normal" errors are ignored (exclusive-use, lack of permission, etc.).

SEE ALSO
writev (2)

NetBSD 3.0 June 29, 1997 1

TTYNAME (3) NetBSD Library Functions Manual TTYNAME (3)

NAME
ttyname , ttyname_r , isatty , ttyslot — get name of associated terminal (tty) from file descriptor

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

char ∗
ttyname (int fd);

int
ttyname_r (int fd , char ∗buf , size_t len);

int
isatty (int fd);

#include <stdlib.h>

int
ttyslot ();

DESCRIPTION
These functions operate on the system file descriptors for terminal type devices. Thesedescriptors are not
related to the standardI/O FILE typedef, but refer to the special device files found in/dev and named
/dev/tty xx and for which an entry exists in the initialization file/etc/ttys (see ttys (5)), or for
pseudo-terminal devices created in ptyfs and named/dev/pts/ n.

The isatty () function determines if the file descriptorfd refers to a valid terminal type device.

The ttyname () function gets the related device name of a file descriptor for whichisatty () is true. The
ttyname_r () is the reentrant version of the above, and it places the results inbuf . If there is not enough
space to place the results (indicated bylen), then it returns −1 anderrno is set to indicate the error.

The ttyslot () function fetches the current process’ control terminal number from thettys (5) file entry.
If the terminal is a pseudo-terminal, and there is no special entry in thettys (5) file for it, the slot number
returned is 1 + (last slot number) + minor(tty). This will return a consistent and unique number for each
pseudo-terminal device without requiring one to enumerate all of them inttys (5).

IMPLEMENT ATION NOTES
As an optimisation, these functions attempt to obtain information about all devices from the
/var/run/dev.db database, if it exists. If the database exists but is out of date, then these functions may
produce incorrect results. The database should be updated using thedev_mkdb (8) command.

RETURN VALUES
The ttyname () function returns the NUL-terminated name if the device is found andisatty () is true;
otherwise aNULLpointer is returned anderrno is set to indicate the error.

Thettyname_r () functions returns 0 on success and −1 on failure witherrnoset to indicate the error.

The isatty () function returns 1 iffd is associated with a terminal device; otherwise it returns 0 anderrno
is set to indicate the error.

The ttyslot () function returns the unit number of the device file if found; otherwise the value zero is
returned.

NetBSD 3.0 January 30, 2008 1

TTYNAME (3) NetBSD Library Functions Manual TTYNAME (3)

FILES
/dev/ ∗
/etc/ttys

ERRORS
Thettyname (), ttyname_r (), andisatty () functions will fail if:

[EBADF] The fd argument is not a valid file descriptor.

[ENOTTY] The fd argument does not refer to a terminal device.
Thettyname_r () function will also fail if:

[ERANGE] The buffer provided is not large enough to fit the result.

[ENOENT] The terminal device is not found. This can happen if the device node has been
removed after it was opened.

SEE ALSO
ioctl (2), ttys (5), dev_mkdb (8)

STANDARDS
Thettyname () andisatty () functions conform toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
isatty (), ttyname (), andttyslot () functions appeared in Version 7AT&T UNIX .

BUGS
The ttyname () function leaves its result in an internal static object and returns a pointer to that object.
Subsequent calls tottyname () will modify the same object.

NetBSD 3.0 January 30, 2008 2

TZSET (3) NetBSD Library Functions Manual TZSET (3)

NAME
tzset — initialize time conversion information

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <time.h>

void
tzset (void);

DESCRIPTION
The tzset () function uses the value of the environment variableTZ to set time conversion information used
by localtime (3). If TZ does not appear in the environment, the best available approximation to local wall
clock time, as specified by thetzfile (5) format file/etc/localtime is used bylocaltime (3). If
TZ appears in the environment but its value is a null string, Coordinated Universal Time (UTC) is used (with-
out leap second correction). IfTZ appears in the environment and its value is not a null string:

− if the value begins with a colon, it is used as a pathname of a file from which to read the time conversion
information;

− if the value does not begin with a colon, it is first used as the pathname of a file from which to read the
time conversion information, and, if that file cannot be read, is used directly as a specification of the time
conversion information.

WhenTZ is used as a pathname, if it begins with a slash, it is used as an absolute pathname; otherwise, it is
used as a pathname relative to /usr/share/zoneinfo . The file must be in the format specified in
tzfile (5).

WhenTZ is used directly as a specification of the time conversion information, it must have the following
syntax (spaces inserted for clarity):

stdoffset [dst [offset][, rule]]

where:
std anddst Three or more bytes that are the designation for the standard (std) or summer (dst) time

zone. Onlystd is required; ifdst is missing, then summer time does not apply in this
locale. Upper- and lowercase letters are explicitly allowed. Any characters except a lead-
ing colon (:), digits, comma (,), minus (-), plus (+), and ASCII NUL are allowed.

offset Indicates the value one must add to the local time to arrive at Coordinated Universal Time.
Theoffset has the form:

hh [:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh) is required and may be a
single digit. The offset following std is required. If nooffset follows dst , sum-
mer time is assumed to be one hour ahead of standard time.One or more digits may be
used; the value is always interpreted as a decimal number. The hour must be between zero
and 24, and the minutes (and seconds) — if present — between zero and 59.If preceded
by a “-” the time zone shall be east of the Prime Meridian; otherwise it shall be west
(which may be indicated by an optional preceding “+”).

rule Indicates when to change to and back from summer time. Therule has the form:

date /time , date /time

NetBSD 3.0 April 1, 2001 1

TZSET (3) NetBSD Library Functions Manual TZSET (3)

where the firstdate describes when the change from standard to summer time occurs and
the seconddate describes when the change back happens.Each time field describes
when, in current local time, the change to the other time is made.The format ofdate is
one of the following:
Jn The Julian dayn (1 ≤ n ≤ 365). Leapdays are not counted; that is,

in all years — including leap years — February 28 is day 59 and
March 1 is day 60. It is impossible to explicitly refer to the occa-
sional February 29.

n The zero-based Julian day (0≤ n ≤ 365). Leapdays are counted, and
it is possible to refer to February 29.

Mm.n.d The d’th day (0 ≤ d ≤ 6) of weekn of monthmof the year (1≤ n
≤ 5, 1 ≤ m≤ 12, where week 5 means “thelast d day in monthm”
which may occur in either the fourth or the fifth week).Week 1 is
the first week in which thed’th day occurs. Day zero is Sunday.

The time has the same format asoffset except that no leading sign “-” or “+” is
allowed. Thedefault, iftime is not given, is02:00:00 .

If no rule is present inTZ, the rules specified by thetzfile (5) format file posixrules in
/usr/share/zoneinfo are used, with the standard and summer time offsets from UTC replaced by
those specified by theoffset values inTZ.

For compatibility with System V Release 3.1, a semicolon (;) may be used to separate therule from the rest
of the specification.

If the TZ environment variable does not specify atzfile (5) format file and cannot be interpreted as a
direct specification, UTC is used.

FILES
/etc/localtime local time zone file
/usr/share/zoneinfo time zone information directory
/usr/share/zoneinfo/posixrules used with POSIX-style TZ’s
/usr/share/zoneinfo/GMT for UTC leap seconds

If /usr/share/zoneinfo/GMT is absent, UTC leap seconds are loaded from
/usr/share/zoneinfo/posixrules .

SEE ALSO
ctime (3), getenv (3), strftime (3), time (3), tzfile (5)

STANDARDS
The tzset() function conforms toIEEE Std 1003.1-1988 (“POSIX.1”).

NetBSD 3.0 April 1, 2001 2

UALARM (3) NetBSD Library Functions Manual UALARM (3)

NAME
ualarm — schedule signal after specified time

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

useconds_t
ualarm (useconds_t microseconds , useconds_t interval);

DESCRIPTION
This is a simplified interface tosetitimer (2).

The ualarm () function waits a count ofmicroseconds before asserting the terminating signal
SIGALRM. System activity or time used in processing the call may cause a slight delay.

If the interval argument is non-zero, theSIGALRMsignal will be sent to the process every interval
microseconds after the timer expires (e.g. aftermicroseconds microseconds have passed).

RETURN VALUES
When the signal has successfully been caught,ualarm () returns the amount of time left on the clock.The
maximum number ofmicroseconds allowed is 2147483647. If there is an error setting the timer,
ualarm () returns ((useconds_t) -1).

SEE ALSO
getitimer (2), setitimer (2), sigaction (2), sigsuspend (2), alarm (3), signal (3),
sigvec (3), sleep (3), usleep (3)

STANDARDS
Theualarm () functions conforms toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

HISTORY
Theualarm () function appeared in 4.3BSD.

NetBSD 3.0 April 19, 1994 1

ULIMIT (3) NetBSD Library Functions Manual ULIMIT (3)

NAME
ulimit — get and set process limits

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <ulimit.h>

long int
ulimit (int cmd , . . .);

DESCRIPTION
The ulimit () function provides a method to query or alter resource limits of the calling process.The
method to be performed is specified by thecmd argument; possible values are:

UL_GETFSIZE Return the soft file size limit of the process. The value returned is in units of 512-byte
blocks. If the result cannot be represented in an object of typelong int , the result is
unspecified.

UL_SETFSIZE Set the hard and soft file size limits of the process to the value of the second argument
passed, which is in units of 512-byte blocks, and which is expected to be of typelong
int . The new file size limit of the process is returned.Any process may decrease the
limit, but raising it is only permitted if the caller is the super-user.

If successful, theulimit () function will not change the setting oferrno.

The ulimit () function is an obsolete interface; applications are encouraged to usegetrlimit (2) and
setrlimit (2) instead.

RETURN VALUES
If successful, theulimit () function returns the value of the requested limit. Otherwise, it returns −1, sets
errno to indicate an error, and the limit is not changed. Therefore, to detect an error condition applications
should seterrno to 0, callulimit (), and check if −1 is returned anderrno is non-zero.

ERRORS
Theulimit () function will fail if:

[EINVAL] Thecmd argument is not valid.

[EPERM] It was attempted to increase a limit, and the caller is not the super-user.

SEE ALSO
getrlimit (2), setrlimit (2)

STANDARDS
Theulimit () function conforms toX/OpenSystem Interfaces and Headers Issue 5 (“XSH5”).

NetBSD 3.0 September 13, 1999 1

UNAME (3) NetBSD Library Functions Manual UNAME (3)

NAME
uname — get system identification

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/utsname.h>

int
uname(struct utsname ∗name);

DESCRIPTION
The uname() function stores nul-terminated strings of information identifying the current system into the
structure referenced byname.

Theutsname structure is defined in the<sys/utsname.h> header file, and contains the following mem-
bers:

sysname Name of the operating system implementation.

nodename Network name of this machine.

release Release level of the operating system.

version Version level of the operating system.

machine Machine hardware platform.

RETURN VALUES
If uname is successful, 0 is returned, otherwise, −1 is returned anderrno is set appropriately.

ERRORS
The uname() function may fail and seterrno for any of the errors specified for the library functions
sysctl (3).

SEE ALSO
uname(1), sysctl (3)

STANDARDS
Theuname() function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
Theuname function first appeared in 4.4BSD.

NetBSD 3.0 January 4, 1994 1

UNGETC (3) NetBSD Library Functions Manual UNGETC (3)

NAME
ungetc — un-get character from input stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>

int
ungetc (int c , FILE ∗stream);

DESCRIPTION
The ungetc () function pushes the characterc (converted to an unsigned char) back onto the input stream
pointed to bystream . The pushed-backed characters will be returned by subsequent reads on the stream
(in reverse order).A successful intervening call, using the same stream, to one of the file positioning func-
tions (fseek (3), fsetpos (3), orrewind (3)) will discard the pushed back characters.

One character of push-back is guaranteed, but as long as there is sufficient memory, an effectively infinite
amount of pushback is allowed.

If a character is successfully pushed-back, the end-of-file indicator for the stream is cleared.

RETURN VALUES
Theungetc () function returns the character pushed-back after the conversion, orEOFif the operation fails.
If the value of the argumentc character equalsEOF, the operation will fail and the stream will remain
unchanged.

SEE ALSO
fseek (3), getc (3), setvbuf (3)

STANDARDS
Theungetc () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 June 4, 1993 1

UNGETWC (3) NetBSD Library Functions Manual UNGETWC (3)

NAME
ungetwc — un-get wide-character from input stream

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t
ungetwc (wint_t wc , FILE ∗stream);

DESCRIPTION
Theungetwc () function pushes the wide-characterwc (converted to an wchar_t) back onto the input stream
pointed to bystream . The pushed-backed wide-characters will be returned by subsequent reads on the
stream (in reverse order).A successful intervening call, using the same stream, to one of the file positioning
functionsfseek (3), fsetpos (3), orrewind (3) will discard the pushed back wide-characters.

One wide-character of push-back is guaranteed, but as long as there is sufficient memory, an effectively infi-
nite amount of pushback is allowed.

If a character is successfully pushed-back, the end-of-file indicator for the stream is cleared.

RETURN VALUES
Theungetwc () function returns the wide-character pushed-back after the conversion, orWEOFif the opera-
tion fails. If the value of the argumentc character equalsWEOF, the operation will fail and the stream will
remain unchanged.

SEE ALSO
fseek (3), getwc (3)

STANDARDS
Theungetwc () function conforms toISO/IEC9899:1999 (“ISO C99”).

BUGS
The current implementation uses a fixed sized ungetwc-buffer.

NetBSD 3.0 October 24, 2001 1

UNLOCKPT (3) NetBSD Library Functions Manual UNLOCKPT (3)

NAME
unlockpt — unlock the slave pseudo-terminal device

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
unlockpt (int fildes);

DESCRIPTION
Theunlockpt () unlocks access to the pseudo-terminal device corresponding to the master pseudo-terminal
device associated withfildes . Conforming applications must call this function before opening the slave
pseudo-terminal device.

RETURN VALUES
If successful,unlockpt () returns 0; otherwise a value of −1 is returned anderrno is set to indicate the
error.

ERRORS
Theunlockpt () function will fail if:

[EACCESS] the corresponding pseudo-terminal device could not be accessed.

[EBADF] fildes is not a valid descriptor.

[EINVAL] fildes is not associated with a master pseudo-terminal device.

NOTES
In NetBSD unlockpt () does nothing.

SEE ALSO
ioctl (2), grantpt (3), posix_openpt (3), ptsname (3)

STANDARDS
The unlockpt () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”). Its first release was inX/Open
Portability Guide Issue 4, Version 2 (“XPG4.2”).

NetBSD 3.0 May 25, 2004 1

UNVIS (3) NetBSD Library Functions Manual UNVIS (3)

NAME
unvis , strunvis — decode a visual representation of characters

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <vis.h>

int
unvis (char ∗cp , int c , int ∗astate , int flag);

int
strunvis (char ∗dst , const char ∗src);

int
strunvisx (char ∗dst , const char ∗src , int flag);

DESCRIPTION
Theunvis (), strunvis () andstrunvisx () functions are used to decode a visual representation of char-
acters, as produced by thevis (3) function, back into the original form.

Theunvis () function is called with successive characters inc until a valid sequence is recognized, at which
time the decoded character is available at the character pointed to bycp .

Thestrunvis () function decodes the characters pointed to bysrc into the buffer pointed to bydst . The
strunvis () function simply copiessrc to dst , decoding any escape sequences along the way, and returns
the number of characters placed intodst , or −1 if an inv alid escape sequence was detected. The size ofdst
should be equal to the size ofsrc (that is, no expansion takes place during decoding).

Thestrunvisx () function does the same as thestrunvis () function, but it allows you to add a flag that
specifies the style the stringsrc is encoded with. Currently, the only supported flag isVIS_HTTPSTYLE.

The unvis () function implements a state machine that can be used to decode an arbitrary stream of bytes.
All state associated with the bytes being decoded is stored outside theunvis () function (that is, a pointer to
the state is passed in), so calls decoding different streams can be freely intermixed. To start decoding a
stream of bytes, first initialize an integer to zero.Call unvis () with each successive byte, along with a
pointer to this integer, and a pointer to a destination character. The unvis () function has several return
codes that must be handled properly. They are:

0 (zero) Another character is necessary; nothing has been recognized yet.

UNVIS_VALID A valid character has been recognized and is available at the location pointed to by
cp.

UNVIS_VALIDPUSH A valid character has been recognized and is available at the location pointed to by
cp; however, the character currently passed in should be passed in again.

UNVIS_NOCHAR A valid sequence was detected, but no character was produced.This return code is
necessary to indicate a logical break between characters.

UNVIS_SYNBAD An invalid escape sequence was detected, or the decoder is in an unknown state.The
decoder is placed into the starting state.

When all bytes in the stream have been processed, callunvis () one more time with flag set toUNVIS_END
to extract any remaining character (the character passed in is ignored).

NetBSD 3.0 November 11, 2005 1

UNVIS (3) NetBSD Library Functions Manual UNVIS (3)

The flag argument is also used to specify the encoding style of the source. If set toVIS_HTTPSTYLE,
unvis () will decode URI strings as specified in RFC 1808.

The following code fragment illustrates a proper use ofunvis ().

int state = 0;
char out;

while ((ch = getchar()) != EOF) {
again:

switch(unvis(&out, ch, &state, 0)) {
case 0:
case UNVIS_NOCHAR:

break;
case UNVIS_VALID:

(void)putchar(out);
break;

case UNVIS_VALIDPUSH:
(void)putchar(out);
goto again;

case UNVIS_SYNBAD:
errx(EXIT_FAILURE, "Bad character sequence!");

}
}
if (unvis(&out, ’\0’, &state, UNVIS_END) == UNVIS_VALID)

(void)putchar(out);

SEE ALSO
unvis (1), vis (1), vis (3)

R. Fielding,Relative Uniform Resource Locators, RFC1808.

HISTORY
Theunvis () function first appeared in 4.4BSD.

NetBSD 3.0 November 11, 2005 2

USBHID (3) NetBSD Library Functions Manual USBHID (3)

NAME
usbhid , hid_get_report_desc , hid_use_report_desc , hid_dispose_report_desc ,
hid_start_parse , hid_end_parse , hid_get_item , hid_report_size , hid_locate ,
hid_usage_page , hid_usage_in_page , hid_init , hid_get_data , hid_set_data — USB
HID access routines

LIBRARY
USB Human Interface Devices Library (libusbhid, −lusbhid)

SYNOPSIS
#include <usbhid.h>

report_desc_t
hid_get_report_desc (int file);

report_desc_t
hid_use_report_desc (const uint8_t ∗data , unsigned int size);

void
hid_dispose_report_desc (report_desc_t d);

hid_data_t
hid_start_parse (report_desc_t d , int kindset , int id);

void
hid_end_parse (hid_data_t s);

int
hid_get_item (hid_data_t s , hid_item_t ∗h);

int
hid_report_size (report_desc_t d , hid_kind_t k , int id);

int
hid_locate (report_desc_t d , u_int usage , hid_kind_t k , hid_item_t ∗h ,

int id);

char ∗
hid_usage_page (int i);

char ∗
hid_usage_in_page (u_int u);

int
hid_parse_usage_page (const char ∗);

char ∗
hid_parse_usage_in_page (const char ∗);

void
hid_init (char ∗file);

int
hid_get_data (void ∗data , hid_item_t ∗h);

void
hid_set_data (void ∗data , hid_item_t ∗h , u_int data);

NetBSD 3.0 December 29, 2001 1

USBHID (3) NetBSD Library Functions Manual USBHID (3)

DESCRIPTION
Theusbhid library provides routines to extract data from USB Human Interface Devices.

INTRODUCTION
USB HID devices send and receive data laid out in a device dependent way. The usbhid library contains
routines to extract thereport descriptorwhich contains the data layout information and then use this infor-
mation.

The routines can be divided into four parts: extraction of the descriptor, parsing of the descriptor, translating
to/from symbolic names, and data manipulation.

DESCRIPTOR FUNCTIONS
A report descriptor can be obtained by callinghid_get_report_desc () with a file descriptor obtained
by opening auhid (4) device. Alternatively a data buffer containing the report descriptor can be passed into
hid_use_report_desc (). Thedata is copied into an internal structure.When the report descriptor is
no longer needed it should be freed by callinghid_dispose_report_desc (). The type
report_desc_t is opaque and should be used when calling the parsing functions.If
hid_dispose_report_desc () fails it will returnNULL.

DESCRIPTOR PARSING FUNCTIONS
To parse the report descriptor thehid_start_parse () function should be called with a report descriptor
and a set that describes which items that are interesting.The set is obtained by or-ing together values(1 <<
k) wherek is an item of typehid_kind_t . The report ID (if present) is given by id . The function
returnsNULL if the initialization fails, otherwise an opaque value to be used in subsequent calls. After pars-
ing thehid_end_parse () function should be called to free internal data structures.

To iterate through all the items in the report descriptor, hid_get_item () should be called while it returns a
value greater than 0.When the report descriptor ends it will return 0; a syntax error within the report
descriptor will cause a return value less than 0. The struct pointed to byh will be filled with the relevant data
for the item. The definition ofhid_item_t can be found in〈usbhid.h 〉 and the meaning of the compo-
nents in the USB HID documentation.

Data should be read/written to the device in the size of the report.The size of a report (of a certain kind) can
be computed by thehid_report_size () function. If the report is prefixed by an ID byte it is given by
id .

To locate a single item thehid_locate () function can be used. It should be given the usage code of the
item and its kind and it will fill the item and return non-zero if the item was found.

NAME TRANSLATION FUNCTIONS
The function hid_usage_page () will return the symbolic name of a usage page, and the function
hid_usage_in_page () will return the symbolic name of the usage within the page.Both these functions
may return a pointer to static data.

The functionshid_parse_usage_page () and hid_parse_usage_in_page () are the inverses of
hid_usage_page () andhid_usage_in_page (). They take a usage string and return the number of
the usage, or -1 if it cannot be found.

Before any of these functions can be called the usage table must be parsed, this is done by calling
hid_init () with the name of the table.PassingNULL to this function will cause it to use the default table.

DATA EXTRACTION FUNCTIONS
Given the data obtained from a HID device and an item in the report descriptor thehid_get_data () func-
tion extracts the value of the item.Conversely hid_set_data () can be used to put data into a report
(which must be zeroed first).

NetBSD 3.0 December 29, 2001 2

USBHID (3) NetBSD Library Functions Manual USBHID (3)

FILES
/usr/share/misc/usb_hid_usages The default HID usage table.

SEE ALSO
uhid (4), usb (4)

TheUSB specifications can be found athttp://www.usb.org/developers/docs.html .

HISTORY
The usbhid library first appeared inNetBSD 1.5 asusb library and was renamed tousbhid for
NetBSD 1.6.

BUGS
This man page is woefully incomplete.

NetBSD 3.0 December 29, 2001 3

USLEEP (3) NetBSD Library Functions Manual USLEEP (3)

NAME
usleep — suspend execution for interval of microseconds

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <unistd.h>

int
usleep (useconds_t microseconds);

DESCRIPTION
The usleep () function suspends execution of the calling process until either the number of microseconds
specified bymicroseconds have elapsed or a signal is delivered to the calling process and its action is to
invoke a signal catching function or to terminate the process.The suspension time may be longer than
requested due to the scheduling of other activity by the system.

Themicroseconds argument must be less than 1,000,000.If the value ofmicroseconds is 0, then the
call has no effect.

RETURN VALUES
On successful completion,usleep () returns 0. Otherwise, it returns −1 and setserrno to indicate the error.

ERRORS
Theusleep () function may fail if:

[EINVAL] Themicroseconds interval specified 1,000,000 or more microseconds.

SEE ALSO
nanosleep (2), sleep (3)

STANDARDS
Theusleep () function conforms toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

HISTORY
Theusleep () function appeared in 4.3BSD.

NetBSD 3.0 June 4, 1993 1

UTIL (3) NetBSD Library Functions Manual UTIL (3)

NAME
util — system utilities library

LIBRARY
System Utilities Library (libutil, −lutil)

DESCRIPTION
The util library is the system utilities library and contains various system-dependent utility routines used
in a wide variety of system daemons.The abstracted functions are mostly related to pseudo-terminals and
login accounting. These routines areNetBSD-specific and are not portable. Their use should be restricted.
Declarations for these functions may be obtained from the include file<util.h> .

LIST OF FUNCTIONS
Name/Page Description

disklabel_dkcksum.3 computethe checksum for a disklabel
disklabel_scan.3 scana buffer for a valid disklabel
forkpty.3 ttyutility function
getbootfile.3 getthe name of the booted kernel file
getlabeloffset.3 getthe sector number and offset of the disklabel
getlabelsector.3 getthe sector number and offset of the disklabel
getmaxpartitions.3 getthe maximum number of partitions allowed per disk
getrawpartition.3 getthe system ‘‘raw’’ partition
login.3 loginutility function
login_cap.3 querylogin.conf database about a user class
login_close.3 querylogin.conf database about a user class
login_getcapbool.3 querylogin.conf database about a user class
login_getcapnum.3 querylogin.conf database about a user class
login_getcapsize.3 querylogin.conf database about a user class
login_getcapstr.3 querylogin.conf database about a user class
login_getcaptime.3 querylogin.conf database about a user class
login_getclass.3 querylogin.conf database about a user class
login_tty.3 ttyutility function
loginx.3 loginutility function
logout.3 loginutility function
logoutx.3 loginutility function
logwtmp.3 loginutility function
logwtmpx.3 loginutility function
opendisk.3 opena disk partition
openpty.3 ttyutility function
pidfile.3 writea daemon pid file
pidlock.3 locksbased on files containing PIDs
pw_abort.3 passwdfile update function
pw_copy.3 utility function for interactive passwd file updates
pw_edit.3 utilityfunction for interactive passwd file updates
pw_error.3 utility function for interactive passwd file updates
pw_getconf.3 password encryption configuration access function
pw_getprefix.3 passwdfile update function
pw_init.3 utility function for interactive passwd file updates
pw_lock.3 passwdfile update function
pw_mkdb.3 passwdfile update function
pw_prompt.3 utilityfunction for interactive passwd file updates
pw_scan.3 utilityfunction for interactive passwd file updates

NetBSD 3.0 December 22, 2002 1

UTIL (3) NetBSD Library Functions Manual UTIL (3)

pw_setprefix.3 passwdfile update function
secure_path.3 determineif a file appears to be ‘‘secure’’
setclasscontext.3 querylogin.conf database about a user class
setusercontext.3 querylogin.conf database about a user class
snprintb.3 bitmaskoutput conversion
sockaddr_snprintf.3 socket address formatting function
ttyaction.3 ttyactionutility function
ttylock.3 locksbased on files containing PIDs
ttymsg.3 ttymsgutility function
ttyunlock.3 locksbased on files containing PIDs

FILES
/usr/lib/libutil.a static util library
/usr/lib/libutil.so dynamic util library
/usr/lib/libutil_p.a static util library compiled for profiling

NetBSD 3.0 December 22, 2002 2

UTIME (3) NetBSD Library Functions Manual UTIME (3)

NAME
utime — set file times

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <utime.h>

int
utime (const char ∗file , const struct utimbuf ∗timep);

DESCRIPTION
This interface is obsoleted byutimes (2).

Theutime () function sets the access and modification times of the named file.

If timep is NULL, the access and modification times are set to the current time. The calling process must be
the owner of the file or have permission to write the file.

If timep is non-NULL, time is assumed to be a pointer to a utimbuf structure, as defined in〈utime.h 〉:

struct utimbuf {
time_t actime; / ∗ Access time ∗/
time_t modtime; / ∗ Modification time ∗/

};

The access time is set to the value of the actime member, and the modification time is set to the value of the
modtime member. The times are measured in seconds since 0 hours, 0 minutes, 0 seconds, January 1, 1970
Coordinated Universal Time (UTC). The calling process must be the owner of the file or be the super-user.

In either case, the inode-change-time of the file is set to the current time.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned anderrno is set to
indicate the error.

ERRORS
utime () will fail if:

[EACCES] Search permission is denied for a component of the path prefix; or thetimes argu-
ment isNULLand the effective user ID of the process does not match the owner of the
file, and is not the super-user, and write access is denied.

[EFAULT] file or times points outside the process’s allocated address space.

[EINVAL] The pathname contains a character with the high-order bit set.

[EIO] An I/O error occurred while reading or writing the affected inode.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire path name exceeded
1023 characters.

[ENOENT] The named file does not exist.

NetBSD 3.0 August 13, 1993 1

UTIME (3) NetBSD Library Functions Manual UTIME (3)

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The times argument is notNULLand the calling process’s effective user ID does not
match the owner of the file and is not the super-user.

[EROFS] The file system containing the file is mounted read-only.

SEE ALSO
stat (2), utimes (2)

STANDARDS
Theutime () function conforms toISO/IEC9945-1:1990 (“POSIX.1”).

HISTORY
A utime () function appeared in Version 7AT&T UNIX .

NetBSD 3.0 August 13, 1993 2

UUID (3) NetBSD Library Functions Manual UUID (3)

NAME
uuid_compare , uuid_create , uuid_create_nil , uuid_equal , uuid_from_string ,
uuid_hash , uuid_is_nil , uuid_to_string , uuid_enc_le , uuid_dec_le ,
uuid_enc_be , uuid_dec_be — Universally Unique Identifier routines

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <uuid.h>

int32_t
uuid_compare (const uuid_t ∗uuid1 , const uuid_t ∗uuid2 , uint32_t ∗status);

void
uuid_create (uuid_t ∗uuid , uint32_t ∗status);

void
uuid_create_nil (uuid_t ∗uuid , uint32_t ∗status);

int32_t
uuid_equal (const uuid_t ∗uuid1 , const uuid_t ∗uuid2 , uint32_t ∗status);

void
uuid_from_string (const char ∗str , uuid_t ∗uuid , uint32_t ∗status);

uint16_t
uuid_hash (const uuid_t ∗uuid , uint32_t ∗status);

int32_t
uuid_is_nil (const uuid_t ∗uuid , uint32_t ∗status);

void
uuid_to_string (const uuid_t ∗uuid , char ∗∗str , uint32_t ∗status);

void
uuid_enc_le (void ∗buf , const uuid_t ∗uuid);

void
uuid_dec_le (const void ∗buf , uuid_t ∗);

void
uuid_enc_be (void ∗buf , const uuid_t ∗uuid);

void
uuid_dec_be (const void ∗buf , uuid_t ∗);

DESCRIPTION
These routines provide for the creation and manipulation of Universally Unique Identifiers(UUIDs) , also
referred to as Globally Unique Identifiers(GUIDs) .

The uuid_compare () function compares two UUIDs. It returns −1 ifuuid1 precedesuuid2 , 0 if they
are equal, or 1 ifuuid1 follows uuid2 .

The uuid_create () function creates a new UUID. Storagefor the new UUID must be pre-allocated by
the caller.

The uuid_create_nil () function creates a nil-valued UUID. Storage for the new UUID must be pre-
allocated by the caller.

NetBSD 3.0 April 22, 2008 1

UUID (3) NetBSD Library Functions Manual UUID (3)

The uuid_equal () function compares two UUIDs to determine if they are equal. It returns 1 if they are
equal, and 0 if they are not equal.

Theuuid_from_string () function parses a 36-character string representation of a UUID and converts it
to binary representation. Storage for the UUID must be pre-allocated by the caller.

Theuuid_hash () function generates a hash value for the specified UUID.Note that the hash value is not a
cryptographic hash, and should not be assumed to be unique given two different UUIDs.

Theuuid_is_nil () function returns 1 if the UUID is nil-valued and 0 if it is not.

The uuid_to_string () function converts a UUID from binary representation to string representation.
Storage for the string is dynamically allocated and returned via thestr argument. Thispointer should be
passed tofree (3) to release the allocated storage when it is no longer needed.

The uuid_enc_le () anduuid_enc_be () functions encode a binary representation of a UUID into an
octet stream in little-endian and big-endian byte-order, respectively. The destination buffer must be pre-allo-
cated by the caller, and must be large enough to hold the 16-octet binary UUID.

Theuuid_dec_le () anduuid_dec_be () functions decode a UUID from an octet stream in little-endian
and big-endian byte-order, respectively.

RETURN VALUES
The uuid_compare (), uuid_create (), uuid_create_nil (), uuid_equal (),
uuid_from_string (), uuid_hash (), uuid_is_nil (), and uuid_to_string () functions return
successful or unsuccessful completion status in thestatus argument. Possiblevalues are:

uuid_s_ok The function completed successfully.

uuid_s_bad_version The UUID does not have a known version.

uuid_s_invalid_string_uuid The string representation of a UUID is not valid.

uuid_s_no_memory Memory could not be allocated for the operation.

SEE ALSO
uuidgen (1), uuidgen (2)

STANDARDS
The uuid_compare (), uuid_create (), uuid_create_nil (), uuid_equal (),
uuid_from_string (), uuid_hash (), uuid_is_nil (), anduuid_to_string () functions are com-
patible with the DCE 1.1 RPC specification.

HISTORY
The UUID functions first appeared inNetBSD 3.0.

NetBSD 3.0 April 22, 2008 2

VALLOC (3) NetBSD Library Functions Manual VALLOC (3)

NAME
valloc — aligned memory allocation function

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

void ∗
valloc (size_t size);

DESCRIPTION
Valloc is obsoleted by the current version ofmalloc (3), which aligns page-sized and larger alloca-
tions.

The valloc () function allocatessize bytes aligned on a page boundary. It is implemented by calling
malloc (3) with a slightly larger request, saving the true beginning of the block allocated, and returning a
properly aligned pointer.

RETURN VALUES
The valloc () function returns a pointer to the allocated space if successful; otherwise a null pointer is
returned

HISTORY
Thevalloc () function appeared in 3.0BSD.

BUGS
A vfreefunction has not been implemented.

NetBSD 3.0 June 4, 1993 1

VARARGS (3) NetBSD Library Functions Manual VARARGS (3)

NAME
varargs — variable argument lists

SYNOPSIS
#include <varargs.h>

void
va_start (va_list ap);

type
va_arg (va_list ap , type);

void
va_end (va_list ap);

DESCRIPTION
These historic interfaces are pro vided to support compilation of existing programs only. New code
should use thestdarg (3) interfaces.

A function may be called with a varying number of arguments of varying types. The include file
〈varargs.h 〉 declares a type(va_list) and defines three macros for stepping through a list of arguments
whose number and types are not known to the called function.

The called function must name an argumentva_alist , which marks the start of the variable argument list,
and which is naturally the last argument named. It is declared byva_dcl , which should not be followed by
a semicolon. Thecalled function also must declare an object of typeva_list which is used by the macros
va_start (), va_arg (), andva_end ().

Theva_start () macro initializesap for subsequent use byva_arg () andva_end (), and must be called
first.

It is possible forva_alist to be the only parameter to a function, resulting in it being possible for a func-
tion to have no fixed arguments preceding the variable argument list.

Theva_start () macro returns no value.

Theva_arg () macro expands to an expression that has the type and value of the next argument in the call.
The parameterap is theva_listap initialized byva_start (). Eachcall to va_arg () modifiesap so that
the next call returns the next argument. Theparametertype is a type name specified so that the type of a
pointer to an object that has the specified type can be obtained simply by adding a∗ to type .

If there is no next argument, or iftype is not compatible with the type of the actual next argument (as pro-
moted according to the default argument promotions), random errors will occur.

The first use of theva_arg () macro after that of theva_start () macro returns the argument afterlast .
Successive inv ocations return the values of the remaining arguments.

Theva_end () macro handles a normal return from the function whose variable argument list was initialized
by va_start ().

Theva_end () macro returns no value.

EXAMPLES
The functionfoo takes a string of format characters and prints out the argument associated with each format
character based on the type.

void foo(fmt, va_alist)
char ∗fmt;
va_dcl

NetBSD 3.0 February 4, 2002 1

VARARGS (3) NetBSD Library Functions Manual VARARGS (3)

{
va_list ap;
int d;
char c, ∗p, ∗s;

va_start(ap);
while (∗fmt) {

switch (∗fmt++) {
case ’s’: / ∗ string ∗/

s = v a_arg(ap, char ∗);
printf("string %s\n", s);
break;

case ’d’: / ∗ int ∗/
d = v a_arg(ap, int);
printf("int %d\n", d);
break;

case ’c’: / ∗ char ∗/
c = v a_arg(ap, char);
printf("char %c\n", c);
break;

}
}
va_end(ap);

}

SEE ALSO
stdarg (3)

STANDARDS
These historic macros were replaced inANSI X3.159-1989 (“ANSI C89”) by the include file〈stdarg.h 〉;
seestdarg (3) for its description.

COMPATIBILITY
These macros arenot compatible with the new macros they were replaced by. In particular, it is not possible
for astdargfunction to have no fixed arguments.

NetBSD 3.0 February 4, 2002 2

VIRTDIR (3) NetBSD Library Functions Manual VIRTDIR (3)

NAME
virtdir — Utility routines for virtual directories for refuse operations

SYNOPSIS
#include <virtdir.h>

int
virtdir_init (virtdir_t ∗tree , struct stat ∗dir , struct stat ∗file ,

struct stat ∗symlink);

int
virtdir_add (virtdir_t ∗tree , const char ∗name, size_t namesize ,

uint8_t type , char ∗target);

int
virtdir_del (virtdir_t ∗tree , const char ∗name, size_t namesize);

int
virtdir_find (virtdir_t ∗tree , const char ∗name, size_t namesize);

int
virtdir_find_tgt (virtdir_t ∗tree , const char ∗name, size_t namesize);

void
virtdir_drop (virtdir_t ∗tree);

VIRTDIR ∗
openvirtdir (virtdir_t ∗tree , const char ∗directory);

virt_dirent_t ∗
readvirtdir (VIRTDIR ∗dirp);

void
closevirtdir (VIRTDIR ∗dirp);

DESCRIPTION
virtdir provides virtual directory functionality for the benefit ofrefuse (3) file systems (and also for
FUSE-based file systems).

It uses the framework provided by thepuffs (3) subsystem, and, through that, the kernel interface provided
by puffs (4).

Thevirtdir routines build up and manage a list of virtual directory entries.Each virtual directory entry is
indexed by its full pathname within the file system. This is consistent with the way thatrefuse (3) locates
directory entries - by full pathname.

The list of paths is sorted alphabetically. Each of these virtual directory entries has a distinct type - file
(‘ f’) , directory (‘d’) , or symbolic link (‘ l’) . Additionally, an entry can point to a target - this is useful
when modeling virtual directory entries which are symbolic links.The list contains three basicstat (2)
structures, which contain basic information for file, directory and symbolic link entries.This information
can be specified at initialization time, and customized within the individual getattr operation routines as spec-
ified by the individual file systems.The virtdir functionality can also make virtual directory entries
available on a per-directory basis to the caller by means of routines analogous toopendir (3),
readdir (3), andclosedir (3). Theseareopenvirtdir (), readvirtdir (), andclosevirtdir (),
respectively.

NetBSD 3.0 January 23, 2007 1

VIRTDIR (3) NetBSD Library Functions Manual VIRTDIR (3)

SEE ALSO
puffs (3), refuse (3), puffs (4)

HISTORY
An unsupported experimental version ofvirtdir first appeared inNetBSD 5.0.

AUTHORS
Alistair Crooks〈agc@NetBSD.org〉

NetBSD 3.0 January 23, 2007 2

VIS (3) NetBSD Library Functions Manual VIS (3)

NAME
vis , strvis , strvisx , svis , strsvis , strsvisx — visually encode characters

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <vis.h>

char ∗
vis (char ∗dst , int c , int flag , int nextc);

int
strvis (char ∗dst , const char ∗src , int flag);

int
strvisx (char ∗dst , const char ∗src , size_t len , int flag);

char ∗
svis (char ∗dst , int c , int flag , int nextc , const char ∗extra);

int
strsvis (char ∗dst , const char ∗src , int flag , const char ∗extra);

int
strsvisx (char ∗dst , const char ∗src , size_t len , int flag ,

const char ∗extra);

DESCRIPTION
Thevis () function copies intodst a string which represents the characterc . If c needs no encoding, it is
copied in unaltered.The string is null terminated, and a pointer to the end of the string is returned.The
maximum length of any encoding is four characters (not including the trailingNUL); thus, when encoding a
set of characters into a buffer, the size of the buffer should be four times the number of characters encoded,
plus one for the trailingNUL. The flag parameter is used for altering the default range of characters consid-
ered for encoding and for altering the visual representation. The additional character, nextc , is only used
when selecting theVIS_CSTYLE encoding format (explained below).

The strvis () and strvisx () functions copy into dst a visual representation of the stringsrc . The
strvis () function encodes characters fromsrc up to the firstNUL. The strvisx () function encodes
exactly len characters fromsrc (this is useful for encoding a block of data that may containNUL’s). Both
formsNULterminatedst . The size ofdst must be four times the number of characters encoded fromsrc
(plus one for theNUL). Bothforms return the number of characters in dst (not including the trailingNUL).

The functionssvis (), strsvis (), andstrsvisx () correspond tovis (), strvis (), andstrvisx () but
have an additional argumentextra , pointing to aNUL terminated list of characters. These characters will
be copied encoded or backslash-escaped intodst . These functions are useful e.g. to remove the special
meaning of certain characters to shells.

The encoding is a unique, invertible representation composed entirely of graphic characters; it can be
decoded back into the original form using theunvis (3) orstrunvis (3) functions.

There are two parameters that can be controlled: the range of characters that are encoded (applies only to
vis (), strvis (), andstrvisx ()), and the type of representation used. By default, all non-graphic char-
acters, except space, tab, and newline are encoded. (Seeisgraph (3).) Thefollowing flags alter this:

NetBSD 3.0 April 9, 2006 1

VIS (3) NetBSD Library Functions Manual VIS (3)

VIS_SP Also encode space.

VIS_TAB Also encode tab.

VIS_NL Also encode newline.

VIS_WHITE Synonym forVIS_SP | VIS_TAB | VIS_NL .

VIS_SAFE Only encode "unsafe" characters. Unsafe means control characters which may cause com-
mon terminals to perform unexpected functions.Currently this form allows space, tab, new-
line, backspace, bell, and return - in addition to all graphic characters - unencoded.

(The above flags have no effect for svis (), strsvis (), andstrsvisx (). Whenusing these functions,
place all graphic characters to be encoded in an array pointed to byextra . In general, the backslash char-
acter should be included in this array, see the warning on the use of theVIS_NOSLASHflag below).

There are four forms of encoding. All forms use the backslash character ‘\ ’ to introduce a special sequence;
two backslashes are used to represent a real backslash, exceptVIS_HTTPSTYLE that uses ‘%’. Theseare
the visual formats:

(default) Use an ‘M’ to represent meta characters (characters with the 8th bit set), and use caret ‘ˆ ’ to
represent control characters see (iscntrl (3)). Thefollowing formats are used:

\ˆC Represents the control character ‘C’. Spanscharacters\000 through \037 , and
\177 (as\ˆ?).

\M-C Represents character ‘C’ w ith the 8th bit set.Spans characters\241 through
\376 .

\MˆC Represents control character ‘C’ w ith the 8th bit set. Spans characters\200
through\237 , and \377 (as\Mˆ?).

\040 RepresentsASCII space.

\240 Represents Meta-space.

VIS_CSTYLE Use C-style backslash sequences to represent standard non-printable characters. The follow-
ing sequences are used to represent the indicated characters:

\a - BEL (007)
\b - BS (010)
\f - NP (014)
\n - NL (012)
\r - CR (015)
\s - SP (040)
\t - HT (011)
\v - VT (013)
\0 - NUL (000)

When using this format, the nextc parameter is looked at to determine if aNULcharacter can
be encoded as ‘\0 ’ i nstead of\000 . If nextc is an octal digit, the latter representation is
used to avoid ambiguity.

VIS_OCTAL Use a three digit octal sequence. The form is\ddd whered represents an octal digit.

VIS_HTTPSTYLE
Use URI encoding as described in RFC 1738.The form is%xx wherex represents a hexa-
decimal digit.

NetBSD 3.0 April 9, 2006 2

VIS (3) NetBSD Library Functions Manual VIS (3)

There is one additional flag,VIS_NOSLASH, which inhibits the doubling of backslashes and the backslash
before the default format (that is, control characters are represented by ‘ˆC ’ and meta characters asM-C).
With this flag set, the encoding is ambiguous and non-invertible.

SEE ALSO
unvis (1), vis (1), unvis (3)

T. Berners-Lee,Uniform Resource Locators (URL), RFC1738.

HISTORY
The vis , strvis , and strvisx functions first appeared in 4.4BSD. The svis , strsvis , and
strsvisx functions appeared inNetBSD 1.5.

NetBSD 3.0 April 9, 2006 3

WCRTOMB (3) NetBSD Library Functions Manual WCRTOMB (3)

NAME
wcrtomb — converts a wide character to a multibyte character (restartable)

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

size_t
wcrtomb (char ∗ restrict s , wchar_t wc , mbstate_t ∗ restrict ps);

DESCRIPTION
wcrtomb () converts the wide character given by wc to the corresponding multibyte character, and stores it
in the array pointed to bys unlesss is a null pointer. This function will modify the first at most
MB_CUR_MAXbytes of the array pointed to bys .

The behaviour ofwcrtomb () is affected by theLC_CTYPEcategory of the current locale.

These are the special cases:

wc == 0 For state-dependent encodings,wcrtomb () stores a nul byte preceded by special byte
sequence (if any) to return to an initial state in the array pointed to bys , and the state
object pointed to byps also returns to an initial state.

s == NULL wcrtomb () just placesps into an initial state. It is equivalent to the following call:

wcrtomb(buf, L’\0’, ps);

Here,buf is a dummy buffer. In this case,wc is ignored.

ps == NULL mbrtowc () uses its own internal state object to keep the conversion state, instead ofps
mentioned in this manual page.

Calling any other functions in Standard C Library (libc, −lc) never changes the internal
state ofmbrtowc (), which is initialized at startup time of the program.

RETURN VALUES
wcrtomb () returns:

positive The number of bytes (including any shift sequences) which are stored in the array.

(size_t)-1 wc is not a valid wide character. In this case,wcrtomb () also setserrno to indicate the
error.

ERRORS
wcrtomb () may cause an error in the following case:

[EILSEQ] wc is not a valid wide character.

[EINVAL] ps points to an invalid or uninitialized mbstate_t object.

SEE ALSO
setlocale (3), wctomb (3)

STANDARDS
Thewcrtomb () function conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”). The restrict qual-
ifier is added atISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 February 4, 2002 1

WCSCASECMP (3) NetBSD Library Functions Manual WCSCASECMP (3)

NAME
wcscasecmp , wcsncasecmp — compare wide character strings, ignoring case

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

int
wcscasecmp (const wchar_t ∗s1 , const wchar_t ∗s2);

int
wcsncasecmp (const wchar_t ∗s1 , const wchar_t ∗s2 , size_t len);

DESCRIPTION
The wcscasecmp () andwcsncasecmp () functions compare the nul-terminated stringss1 and s2 and
return an integer greater than, equal to, or less than 0, according to whethers1 is lexicographically greater
than, equal to, or less thans2 after translation of each corresponding character to lower-case. Thestrings
themselves are not modified.

Thewcsncasecmp () compares at mostlen characters.

SEE ALSO
wcscmp(3)

HISTORY
Thewcscasecmp () andwcsncasecmp () functions first appeared inNetBSD 4.0.

NOTES
If len is zero,wcsncasecmp () returns always 0.

NetBSD 3.0 August 26, 2006 1

WCSCOLL (3) NetBSD Library Functions Manual WCSCOLL (3)

NAME
wcscoll — compare wide strings according to current collation

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

int
wcscoll (const wchar_t ∗s1 , const wchar_t ∗s2);

DESCRIPTION
Thewcscoll () function compares the nul-terminated stringss1 ands2 according to the current locale col-
lation order. In the “C” l ocale,wcscoll () is equivalent towcscmp().

RETURN VALUES
Thewcscoll () function returns an integer greater than, equal to, or less than 0, ifs1 is greater than, equal
to, or less thans2 .

No return value is reserved to indicate errors; callers should seterrno to 0 before callingwcscoll (). If it is
non-zero upon return fromwcscoll (), an error has occurred.

ERRORS
Thewcscoll () function will fail if:

[EILSEQ] An invalid wide character code was specified.

[ENOMEM] Cannot allocate enough memory for temporary buffers.

SEE ALSO
setlocale (3), strcoll (3), wcscmp(3), wcsxfrm (3)

STANDARDS
Thewcscoll () function conforms toISO/IEC9899:1999 (“ISO C99”).

BUGS
The current implementation ofwcscoll () function disregards LC_COLLATElocales, and falls back to
using thewcscmp() function.

NetBSD 3.0 October 13, 2006 1

WCSDUP (3) NetBSD Library Functions Manual WCSDUP (3)

NAME
wcsdup — sav ea copy of a string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

wchar_t ∗
wcsdup (const wchar_t ∗str);

DESCRIPTION
The wcsdup () function allocates sufficient memory for a copy of the wide character stringstr , does the
copy, and returns a pointer to it. The pointer may subsequently be used as an argument to the function
free (3).

If insufficient memory is available,NULL is returned.

EXAMPLES
The following will pointp to an allocated area of memory containing the nul-terminated string "foobar":

wchar_t ∗p;

if (p = wcsdup(L"foobar"), p == NULL) {
fprintf(stderr, "Out of memory.\n");
exit(1);

}

ERRORS
The wcsdup () function may fail and set the external variableerrno for any of the errors specified for the
library functionmalloc (3).

SEE ALSO
free (3), malloc (3), strdup (3)

HISTORY
Thewcsdup () function first appeared inNetBSD 4.0.

NetBSD 3.0 August 25, 2006 1

WCSFTIME (3) NetBSD Library Functions Manual WCSFTIME (3)

NAME
wcsftime — convert date and time to a wide-character string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

size_t
wcsftime (wchar_t ∗ restrict wcs , size_t maxsize ,

const wchar_t ∗ restrict format , const struct tm ∗ restrict timeptr);

DESCRIPTION
The wcsftime () function is equivalent to thestrftime () function except for the types of its arguments
and the return value indicating the number of wide characters.Refer tostrftime (3) for a detailed descrip-
tion.

COMPATIBILITY
Some early implementations ofwcsftime () had aformat argument with typeconst char ∗ instead
of const wchar_t ∗.

SEE ALSO
strftime (3)

STANDARDS
Thewcsftime () function conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 September 8, 2002 1

WCSRTOMBS (3) NetBSD Library Functions Manual WCSRTOMBS (3)

NAME
wcsrtombs — converts a wide character string to a multibyte character string (restartable)

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

size_t
wcsrtombs (char ∗ restrict s , const wchar_t ∗∗ restrict pwcs , size_t n ,

mbstate_t ∗ restrict ps);

DESCRIPTION
The wcsrtombs () converts the nul-terminated wide character string indirectly pointed to bypwcs to the
corresponding multibyte character string, and stores it in the array pointed to bys . The conversion stops due
to the following reasons:

• The conversion reaches a nul wide character. In this case, the nul wide character is also converted.

• Thewcsrtombs () has already storedn bytes in the array pointed to bys .

• The conversion encounters an invalid character.

Each character will be converted as ifwcrtomb (3) is continuously called, except the internal state of
wcrtomb (3) will not be affected.

After conversion, if s is not a null pointer, the pointer object pointed to bypwcs is a null pointer (if the con-
version is stopped due to reaching a nul wide character) or the first byte of the character just after the last
character converted.

If s is not a null pointer and the conversion is stopped due to reaching a nul wide character, wcsrtombs ()
places the state object pointed to byps to an initial state after the conversion is taken place.

The behaviour ofwcsrtombs () is affected by theLC_CTYPEcategory of the current locale.

These are the special cases:

s == NULL wcsrtombs () returns the number of bytes to store the whole multibyte character string
corresponding to the wide character string pointed to bypwcs , not including the termi-
nating nul byte. In this case,n is ignored.

pwcs == NULL ||∗pwcs == NULL
Undefined (may cause the program to crash).

ps == NULL wcsrtombs () uses its own internal state object to keep the conversion state, instead of
ps mentioned in this manual page.

Calling any other functions in Standard C Library (libc, −lc) never changes the internal
state ofwcsrtombs (), which is initialized at startup time of the program.

RETURN VALUES
wcsrtombs () returns:

0 or positive Number of bytes stored in the array pointed to bys , except for a nul byte. There are no
cases that the value returned is greater thann (unlesss is a null pointer). If the return
value is equal ton, the string pointed to bys will not be nul-terminated.

NetBSD 3.0 August 8, 2006 1

WCSRTOMBS (3) NetBSD Library Functions Manual WCSRTOMBS (3)

(size_t)-1 pwcs points to a string containing an invalid wide character. The wcsrtombs () also
setserrno to indicate the error.

ERRORS
wcsrtombs () may cause an error in the following case:

[EILSEQ] pwcs points to a string containing an invalid wide character.

SEE ALSO
setlocale (3), wcrtomb (3), wcstombs (3)

STANDARDS
Thewcsrtombs () function conforms toANSI X3.159-1989 (“ANSI C89”). The restrict qualifier is added at
ISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 August 8, 2006 2

WCSTOD (3) NetBSD Library Functions Manual WCSTOD (3)

NAME
wcstof , wcstod , wcstold — convert string tofloat , double , or long double

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

float
wcstof (const wchar_t ∗ restrict nptr , wchar_t ∗∗ restrict endptr);

long double
wcstold (const wchar_t ∗ restrict nptr , wchar_t ∗∗ restrict endptr);

double
wcstod (const wchar_t ∗ restrict nptr , wchar_t ∗∗ restrict endptr);

DESCRIPTION
The wcstof (), wcstod (), andwcstold () functions are the wide-character versions of thestrtof (),
strtod (), andstrtold () functions. Refer tostrtod (3) for details.

SEE ALSO
strtod (3), wcstol (3)

STANDARDS
The wcstod () function conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”). The wcstof ()
andwcstold () functions conform toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 February 22, 2003 1

WCSTOK (3) NetBSD Library Functions Manual WCSTOK (3)

NAME
wcstok — split wide-character string into tokens

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

wchar_t ∗
wcstok (wchar_t ∗ restrict str , const wchar_t ∗ restrict sep ,

wchar_t ∗∗ restrict last);

DESCRIPTION
The wcstok () function is used to isolate sequential tokens in a nul-terminated wide character string,str .
These tokens are separated in the string by at least one of the characters insep . The first time that
wcstok () is called,str should be specified; subsequent calls, wishing to obtain further tokens from the
same string, should pass a null pointer instead. The separator string,sep , must be supplied each time, and
may change between calls. The context pointerlast must be provided on each call.

Thewcstok () function is the wide character counterpart of thestrtok_r () function.

RETURN VALUES
The wcstok () function returns a pointer to the beginning of each subsequent token in the string, after
replacing the token itself with a nul wide character (L’\0’). When no more tokens remain, a null pointer is
returned.

EXAMPLES
The following code fragment splits a wide character string onASCII space, tab and newline characters and
writes the tokens to standard output:

const wchar_t ∗seps = L" \t\n";
wchar_t ∗last, ∗tok, text[] = L" \none\ttwo\t\tthree \n";

for (tok = wcstok(text, seps, &last); tok != NULL;
tok = wcstok(NULL, seps, &last))

wprintf(L"%ls\n", tok);

SEE ALSO
strtok (3), wcschr (3), wcscspn (3), wcspbrk (3), wcsrchr (3), wcsspn (3)

STANDARDS
Thewcstok () function conforms toISO/IEC9899:1999 (“ISO C99”).

Some early implementations ofwcstok () omit the context pointer argument,last , and maintain state
across calls in a static variable likestrtok (3) does.

NetBSD 3.0 October 3, 2002 1

WCSTOL (3) NetBSD Library Functions Manual WCSTOL (3)

NAME
wcstol , wcstoul , wcstoll , wcstoull , wcstoimax , wcstoumax — convert a wide character
string value to along , unsigned long , long long , unsigned long long , intmax_t or
uintmax_t integer

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

long
wcstol (const wchar_t ∗ restrict nptr , wchar_t ∗∗ restrict endptr , int base);

unsigned long
wcstoul (const wchar_t ∗ restrict nptr , wchar_t ∗∗ restrict endptr ,

int base);

long long
wcstoll (const wchar_t ∗ restrict nptr , wchar_t ∗∗ restrict endptr ,

int base);

unsigned long long
wcstoull (const wchar_t ∗ restrict nptr , wchar_t ∗∗ restrict endptr ,

int base);

#include <inttypes.h>

intmax_t
wcstoimax (const wchar_t ∗ restrict nptr , wchar_t ∗∗ restrict endptr ,

int base);

uintmax_t
wcstoumax (const wchar_t ∗ restrict nptr , wchar_t ∗∗ restrict endptr ,

int base);

DESCRIPTION
The wcstol (), wcstoul (), wcstoll (), wcstoull (), wcstoimax () andwcstoumax () functions are
wide-character versions of thestrtol (), strtoul (), strtoll (), strtoull (), strtoimax () and
strtoumax () functions, respectively. Refer to their manual pages (for examplestrtol (3)) for details.

SEE ALSO
strtol (3), strtoul (3)

STANDARDS
Thewcstol (), wcstoul (), wcstoll (), wcstoull (), wcstoimax () andwcstoumax () functions con-
form to ISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 September 7, 2002 1

WCSTOMBS (3) NetBSD Library Functions Manual WCSTOMBS (3)

NAME
wcstombs — converts a wide character string to a multibyte character string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

size_t
wcstombs (char ∗ restrict s , const wchar_t ∗ restrict pwcs , size_t n);

DESCRIPTION
wcstombs () converts the nul-terminated wide character string pointed to bypwcs to the corresponding
multibyte character string, and stores it in the array pointed to bys . This function may modify the first at
mostn bytes of the array pointed to bys . Each character will be converted as ifwctomb (3) is continuously
called, except the internal state ofwctomb (3) will not be affected.

For state-dependent encoding, thewcstombs () implies the result multibyte character string pointed to bys
always to begin with an initial state.

The behaviour ofwcstombs () is affected by theLC_CTYPEcategory of the current locale.

These are the special cases:

s == NULL The wcstombs () returns the number of bytes to store the whole multibyte character
string corresponding to the wide character string pointed to bypwcs . In this case,n is
ignored.

pwcs == NULL Undefined (may cause the program to crash).

RETURN VALUES
wcstombs () returns:

0 or positive Number of bytes stored in the array pointed to bys . There are no cases that the value
returned is greater thann (unlesss is a null pointer). If the return value is equal ton, the
string pointed to bys will not be nul-terminated.

(size_t)-1 pwcs points to a string containing an invalid wide character. wcstombs () also sets
errno to indicate the error.

ERRORS
wcstombs () may cause an error in the following case:

[EILSEQ] pwcs points to a string containing an invalid wide character.

SEE ALSO
setlocale (3), wctomb (3)

STANDARDS
The wcstombs () function conforms toANSI X3.159-1989 (“ANSI C89”). The restrict qualifier is added at
ISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 August 8, 2006 1

WCSWIDTH (3) NetBSD Library Functions Manual WCSWIDTH (3)

NAME
wcswidth — number of column positions in wide-character string

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

int
wcswidth (const wchar_t ∗pwcs , size_t n);

DESCRIPTION
Thewcswidth () function determines the number of column positions required for the firstn characters of
pwcs , or until a nul wide character (L’\0’) is encountered.

RETURN VALUES
Thewcswidth () function returns 0 ifpwcs is an empty string (L""), −1 if a non-printing wide character is
encountered, otherwise it returns the number of column positions occupied.

SEE ALSO
iswprint (3), wcwidth (3)

STANDARDS
Thewcswidth () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 August 20, 2002 1

WCSXFRM (3) NetBSD Library Functions Manual WCSXFRM (3)

NAME
wcsxfrm — transform a wide string under locale

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

size_t
wcsxfrm (wchar_t ∗ restrict dst , const wchar_t ∗ restrict src , size_t n);

DESCRIPTION
Thewcsxfrm () function transforms a nul-terminated wide character string pointed to bysrc according to
the current locale collation order then copies the transformed string intodst . No more thann wide charac-
ters are copied intodst , including the terminating nul character added.If n is set to 0 (it helps to determine
an actual size needed for transformation),dst is permitted to be a null pointer.

Comparing two strings usingwcscmp() after wcsxfrm () is equivalent to comparing two original strings
with wcscoll ().

RETURN VALUES
Upon successful completion,wcsxfrm () returns the length of the transformed string not including the ter-
minating nul character. If this value isn or more, the contents ofdst are indeterminate.

SEE ALSO
setlocale (3), strxfrm (3), wcscmp(3), wcscoll (3)

STANDARDS
Thewcsxfrm () function conforms toISO/IEC9899:1999 (“ISO C99”).

BUGS
The current implementation ofwcsxfrm () function disregards LC_COLLATElocales, and falls back to
using thewcsncpy () function.

NetBSD 3.0 October 13, 2006 1

WCTOB (3) NetBSD Library Functions Manual WCTOB (3)

NAME
wctob — convert a wide character to a single byte character

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

int
wctob (wint_t wc);

DESCRIPTION
The wctob () function converts a wide characterwc to a corresponding single byte character in the initial
shift state of the current locale.

The behaviour ofwctob () is affected by theLC_CTYPEcategory of the current locale.

RETURN VALUES
Thewctob () function returns:

EOF If wc is WEOFor if wc does not correspond to a valid single byte character representation.

(otherwise) A single byte character corresponding towc.

ERRORS
No errors are defined.

SEE ALSO
btowc (3), setlocale (3), wcrtomb (3)

STANDARDS
Thewctob () function conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”).

NetBSD 3.0 March 3, 2003 1

WCTOMB (3) NetBSD Library Functions Manual WCTOMB (3)

NAME
wctomb — converts a wide character to a multibyte character

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdlib.h>

int
wctomb (char ∗ s , const wchar_t wchar);

DESCRIPTION
Thewctomb () converts the wide characterwchar to the corresponding multibyte character, and stores it in
the array pointed to bys . wctomb () may store at mostMB_CUR_MAXbytes in the array.

In state-dependent encoding,wctomb () may store the special sequence to change the conversion state before
an actual multibyte character into the array pointed to bys . If wchar is a nul wide character(‘ \0’) , this
function sets its own internal state to an initial conversion state.

Calling any other functions in Standard C Library (libc, −lc) never changes the internal state ofwctomb (),
except changing theLC_CTYPE category of the current locale by callingsetlocale (3). Such
setlocale (3) calls cause the internal state of this function to be indeterminate.

The behaviour ofwctomb () is affected by theLC_CTYPEcategory of the current locale.

There is one special case:

s == NULL wctomb () initializes its own internal state to an initial state, and determines whether the
current encoding is state-dependent. This function returns 0 if the encoding is state-inde-
pendent, otherwise non-zero. In this case,wchar is completely ignored.

RETURN VALUES
Normally,wctomb () returns:

positive Number of bytes for the valid multibyte character pointed to bys . There are no cases
that the value returned is greater thann or the value of theMB_CUR_MAXmacro.

-1 wchar is an invalid wide character.

If s is equal toNULL, mbtowc () returns:

0 The current encoding is state-independent.

non-zero The current encoding is state-dependent.

ERRORS
No errors are defined.

SEE ALSO
setlocale (3)

STANDARDS
Thewctomb () function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 February 3, 2002 1

WCTRANS (3) NetBSD Library Functions Manual WCTRANS (3)

NAME
wctrans — get character mapping identifier by name

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wctype.h>

wctrans_t
wctrans (const char ∗charmap);

DESCRIPTION
Thewctrans () function returns a character mapping identifier corresponding to the locale-specific charac-
ter mapping namecharmap . This identifier can be used on the subsequent calls oftowctrans (). The
following names are defined in all locales:

tolower toupper

The behaviour ofwctrans () is affected by theLC_CTYPEcategory of the current locale.

RETURN VALUES
wctrans () returns:

0 If the stringcharmap does not corresponding to a valid character mapping name.

non-zero A character mapping identifier corresponding tocharmap .

Note: wctype_t is a scalar type, e.g., a pointer.

ERRORS
No errors are defined.

SEE ALSO
iswctype (3), setlocale (3), wctype (3)

STANDARDS
Thetowctrans () function conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”).

NetBSD 3.0 March 4, 2003 1

WCTYPE (3) NetBSD Library Functions Manual WCTYPE (3)

NAME
wctype — get character class identifier by name

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wctype.h>

wctype_t
wctype (const char ∗charclass);

DESCRIPTION
The wctype () function returns a character class identifier corresponding to the locale-specific character
class namecharclass . This identifier can be used in subsequent calls ofiswctype (). The following
names are defined in all locales:

alnum alpha blank cntrl digit graph
lower print punct space upper xdigit

The behaviour ofwctype () is affected by theLC_CTYPEcategory of the current locale.

RETURN VALUES
wctype () returns:

0 If charclass does not correspond to a valid character class name.

non-zero A character class identifier corresponding tocharclass .

Note: wctype_t is a scalar type, e.g., a pointer.

ERRORS
No errors are defined.

SEE ALSO
iswctype (3), setlocale (3), towctrans (3), wctrans (3)

STANDARDS
Thewctype () function conforms toISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”).

NetBSD 3.0 March 4, 2003 1

WCWIDTH (3) NetBSD Library Functions Manual WCWIDTH (3)

NAME
wcwidth — number of column positions of a wide-character code

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

int
wcwidth (wchar_t wc);

DESCRIPTION
Thewcwidth () function determines the number of column positions required to display the wide character
wc.

RETURN VALUES
Thewcwidth () function returns 0 if thewc argument is a nul wide character (L’\0’), −1 ifwc is not print-
able, otherwise it returns the number of column positions the character occupies.

EXAMPLES
This code fragment reads text from standard input and breaks lines that are more than 20 column positions
wide, similar to thefold (1) utility:

wint_t ch;
int column, w;

column = 0;
while ((ch = getwchar()) != WEOF) {

w = wcwidth(ch);
if (w > 0 && column + w >= 20) {

putwchar(L’\n’);
column = 0;

}
putwchar(ch);
if (ch == L’\n’)

column = 0;
else if (w > 0)

column += w;
}

SEE ALSO
iswprint (3), wcswidth (3)

STANDARDS
Thewcwidth () function conforms toIEEE Std 1003.1-2001 (“POSIX.1”).

NetBSD 3.0 August 17, 2004 1

WMEMCHR (3) NetBSD Library Functions Manual WMEMCHR (3)

NAME
wmemchr, wmemcmp, wmemcpy, wmemmove, wmemset, wcscat , wcschr , wcscmp, wcscpy ,
wcscspn , wcslcat , wcslcpy , wcslen , wcsncat , wcsncmp, wcsncpy , wcspbrk , wcsrchr ,
wcsspn , wcsstr wcswcs — wide character string manipulation operations

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wchar.h>

wchar_t ∗
wmemchr(const wchar_t ∗s , wchar_t c , size_t n);

int
wmemcmp(const wchar_t ∗s1 , const wchar_t ∗s2 , size_t n);

wchar_t ∗
wmemcpy(wchar_t ∗ restrict s1 , const wchar_t ∗ restrict s2 , size_t n);

wchar_t ∗
wmemmove(wchar_t ∗s1 , const wchar_t ∗s2 , size_t n);

wchar_t ∗
wmemset(wchar_t ∗s , wchar_t c , size_t n);

wchar_t ∗
wcscat (wchar_t ∗ restrict s1 , const wchar_t ∗ restrict s2);

wchar_t ∗
wcschr (const wchar_t ∗s , wchar_t c);

int
wcscmp(const wchar_t ∗s1 , const wchar_t ∗s2);

wchar_t ∗
wcscpy (wchar_t ∗ restrict s1 , const wchar_t ∗ restrict s2);

size_t
wcscspn (const wchar_t ∗s1 , const wchar_t ∗s2);

size_t
wcslcat (wchar_t ∗s1 , const wchar_t ∗s2 , size_t n);

size_t
wcslcpy (wchar_t ∗s1 , const wchar_t ∗s2 , size_t n);

size_t
wcslen (const wchar_t ∗s);

wchar_t ∗
wcsncat (wchar_t ∗ restrict s1 , const wchar_t ∗ restrict s2 , size_t n);

int
wcsncmp(const wchar_t ∗s1 , const wchar_t ∗ s2 , size_t n);

wchar_t ∗
wcsncpy (wchar_t ∗ restrict s1 , const wchar_t ∗ restrict s2 , size_t n);

NetBSD 3.0 October 13, 2006 1

WMEMCHR (3) NetBSD Library Functions Manual WMEMCHR (3)

wchar_t ∗
wcspbrk (const wchar_t ∗s1 , const wchar_t ∗s2);

wchar_t ∗
wcsrchr (const wchar_t ∗s , wchar_t c);

size_t
wcsspn (const wchar_t ∗s1 , const wchar_t ∗s2);

wchar_t ∗
wcsstr (const wchar_t ∗s1 , const wchar_t ∗s2);

wchar_t ∗
wcswcs (const wchar_t ∗s1 , const wchar_t ∗s2);

DESCRIPTION
These functions implement string manipulation operations over wide character strings.For a detailed
description, refer to the documents for the respective single-byte counterpart, such asmemchr(3). The
wcswcs () function is not a part ofISO/IEC 9899:1990 (“ISO C90”) and ISO/IEC 9899/AMD1:1995 (“ISO C90,
Amendment 1”), thewcsstr () function is strongly recommended to be used.

SEE ALSO
memchr(3), memcmp(3), memcpy(3), memmove(3), memset(3), strcat (3), strchr (3), strcmp (3),
strcpy (3), strcspn (3), strlcat (3), strlcpy (3), strlen (3), strncat (3), strncmp (3),
strncpy (3), strpbrk (3), strrchr (3), strspn (3), strstr (3)

STANDARDS
These functions conform toISO/IEC 9899:1999 (“ISO C99”) and were first introduced inISO/IEC
9899/AMD1:1995 (“ISO C90, Amendment 1”), with the exception ofwcslcat () andwcslcpy (), which are
extensions. Thewcswcs () function conforms toX/OpenPortability Guide Issue 4, Version 2 (“XPG4.2”).

NetBSD 3.0 October 13, 2006 2

WORDEXP (3) NetBSD Library Functions Manual WORDEXP (3)

NAME
wordexp — perform shell-style word expansions

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <wordexp.h>

int
wordexp (const char ∗ restrict words , wordexp_t ∗ restrict pwordexp ,

int flags);

void
wordfree (wordexp_t ∗pwordexp);

DESCRIPTION
The wordexp () function performs shell-style word expansion onwords and places the list of expanded
words into the structure pointed to bypwordexp .

Theflags argument is the bitwise inclusive OR of any of the following constants:

WRDE_APPENDAppend the words to those generated by a previous call towordexp ().

WRDE_DOOFFSAs many NULL pointers as are specified by thewe_offsmember ofwe are added to the
front of we_wordv.

WRDE_NOCMD Disallow command substitution inwords . See the note inBUGS before using this.

WRDE_REUSE Thewe argument was passed to a previous successful call towordexp () but has not been
passed towordfree (). Theimplementation may reuse the space allocated to it.

WRDE_SHOWERRDo not redirect shell error messages to/dev/null .

WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

The structure typewordexp_t includes the following members:

size_t we_wordc
char ∗∗we_wordv
size_t we_offs

Thewe_wordc member is the count of generated words.

Thewe_wordv member points to a list of pointers to expanded words.

Thewe_offs member is the number of slots to reserve at the beginning of thewe_wordv member.

It is the caller’s responsibility to allocate the storage pointed to bypwordexp . The wordexp () function
allocates other space as needed, including memory pointed to by thewe_wordv member.

Thewordfree () function frees the memory allocated bywordexp ().

IMPLEMENT ATION NOTES
The wordexp () function is implemented as a wrapper around the undocumentedwordexp shell built-in
command.

NetBSD 3.0 July 13, 2004 1

WORDEXP (3) NetBSD Library Functions Manual WORDEXP (3)

RETURN VALUES
Thewordexp () function returns zero if successful, otherwise it returns one of the following error codes:

WRDE_BADCHARThe words argument contains one of the following unquoted characters:〈newline〉, ‘ |’,
‘&’, ‘ ; ’, ‘ <’, ‘ >’, ‘ (’, ‘) ’, ‘ { ’, ‘ } ’.

WRDE_BADVAL An attempt was made to expand an undefined shell variable andWRDE_UNDEFis set in
flags .

WRDE_CMDSUBAn attempt was made to use command substitution andWRDE_NOCMDis set inflags .

WRDE_NOSPACENot enough memory to store the result.

WRDE_SYNTAXShell syntax error inwords .

WRDE_ERRNO An internal error occured anderrno is set to indicate the error.

Thewordfree () function returns no value.

ENVIRONMENT
IFS Field separator.

EXAMPLES
Invoke the editor on all.c files in the current directory and/etc/motd (error checking omitted):

wordexp_t we;

wordexp("${EDITOR:-vi} ∗.c /etc/motd", &we, 0);
execvp(we->we_wordv[0], we->we_wordv);

DIAGNOSTICS
Diagnostic messages from the shell are written to the standard error output ifWRDE_SHOWERRis set in
flags .

SEE ALSO
sh (1), fnmatch (3), glob (3), popen (3), system (3)

STANDARDS
The wordexp () and wordfree () functions conform toIEEE Std 1003.1-2001 (“POSIX.1”). Their first
release was inIEEE Std 1003.2-1992 (“POSIX.2”). Thereturn valueWRDE_ERRNOis an extension.

BUGS
Do not pass untrusted user data towordexp (), regardless of whether theWRDE_NOCMDflag is set. The
wordexp () function attempts to detect input that would cause commands to be executed before passing it to
the shell but it does not use the same parser so it may be fooled.

NetBSD 3.0 July 13, 2004 2

WPRINTF (3) NetBSD Library Functions Manual WPRINTF (3)

NAME
wprintf , fwprintf , swprintf , vwprintf , vfwprintf , vswprintf — formatted wide char-
acter output conversion

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int
fwprintf (FILE ∗ restrict stream , const wchar_t ∗ restrict format , . . .);

int
swprintf (wchar_t ∗ restrict ws , size_t n , const wchar_t ∗ restrict format ,

. . .);

int
wprintf (const wchar_t ∗ restrict format , . . .);

#include <stdarg.h>

int
vfwprintf (FILE ∗ restrict stream , const wchar_t ∗ restrict , va_list ap);

int
vswprintf (wchar_t ∗ restrict ws , size_t n , const wchar_t ∗restrict format ,

va_list ap);

int
vwprintf (const wchar_t ∗ restrict format , va_list ap);

DESCRIPTION
The wprintf () family of functions produces output according to aformat as described below. The
wprintf () andvwprintf () functions write output tostdout , the standard output stream;fwprintf ()
andvfwprintf () write output to the given outputstream ; swprintf () andvswprintf () write to the
wide character stringws.

These functions write the output under the control of aformat string that specifies how subsequent argu-
ments (or arguments accessed via the variable-length argument facilities of stdarg (3)) are converted for
output.

These functions return the number of characters printed (not including the trailing ‘\0 ’ used to end output to
strings).

The swprintf () andvswprintf () functions will fail if n or more wide characters were requested to be
written,

The format string is composed of zero or more directives: ordinary characters (not%), which are copied
unchanged to the output stream; and conversion specifications, each of which results in fetching zero or more
subsequent arguments. Eachconversion specification is introduced by the%character. The arguments must
correspond properly (after type promotion) with the conversion specifier. After the%, the following appear
in sequence:

• An optional field, consisting of a decimal digit string followed by a$, specifying the next argument to
access. Ifthis field is not provided, the argument following the last argument accessed will be used.
Arguments are numbered starting at1. If unaccessed arguments in the format string are interspersed

NetBSD 3.0 July 5, 2003 1

WPRINTF (3) NetBSD Library Functions Manual WPRINTF (3)

with ones that are accessed the results will be indeterminate.

• Zero or more of the following flags:

‘#’ The value should be converted to an “alternate form”.For c , d, i , n, p, s , and u conver-
sions, this option has no effect. For o conversions, the precision of the number is increased to
force the first character of the output string to a zero (except if a zero value is printed with an
explicit precision of zero).For x andX conversions, a non-zero result has the string ‘0x ’ (or
‘0X’ f or X conversions) prepended to it.For a, A, e, E, f , F, g, and Gconversions, the
result will always contain a decimal point, even if no digits follow it (normally, a decimal
point appears in the results of those conversions only if a digit follows). For g andGconver-
sions, trailing zeros are not removed from the result as they would otherwise be.

‘0’ (zero) Zero padding.For all conversions exceptn, the converted value is padded on the left with
zeros rather than blanks. If a precision is given with a numeric conversion (d, i , o, u, i ,
x , andX), the0 flag is ignored.

‘−’ A neg ative field width flag; the converted value is to be left adjusted on the field boundary.
Except forn conversions, the converted value is padded on the right with blanks, rather than
on the left with blanks or zeros. A− overrides a0 if both are given.

‘ ’ (space) A blank should be left before a positive number produced by a signed conversion (a, A, d,
e, E, f , F, g, G, or i).

‘+’ A sign must always be placed before a number produced by a signed conversion. A+ over-
rides a space if both are used.

‘ ’ ’ Decimal conversions (d, u, or i) or the integral portion of a floating point conversion (f or
F) should be grouped and separated by thousands using the non-monetary separator returned
by localeconv (3).

• An optional decimal digit string specifying a minimum field width.If the converted value has fewer
characters than the field width, it will be padded with spaces on the left (or right, if the left-adjustment
flag has been given) to fill out the field width.

• An optional precision, in the form of a period. followed by an optional digit string. If the digit string is
omitted, the precision is taken as zero. This gives the minimum number of digits to appear ford, i , o,
u, x , and X conversions, the number of digits to appear after the decimal-point fora, A, e, E, f , and
F conversions, the maximum number of significant digits forg andGconversions, or the maximum num-
ber of characters to be printed from a string fors conversions.

• An optional length modifier, that specifies the size of the argument. Thefollowing length modifiers are
valid for thed, i , n, o, u, x , or X conversion:

Modifier d, i o , u, x , X n
hh signed char unsigned char signed char ∗
h short unsigned short short ∗
l (ell) long unsigned long long ∗
ll (ell ell) long long unsigned long long long long ∗
j intmax_t uintmax_t intmax_t ∗
t ptrdiff_t (see note) ptrdiff_t ∗
z (see note) size_t (see note)
q (deprecated) quad_t u_quad_t quad_t ∗

Note: thet modifier, when applied to ao, u, x , or X conversion, indicates that the argument is of an
unsigned type equivalent in size to aptrdiff_t . Thez modifier, when applied to ad or i conversion,
indicates that the argument is of a signed type equivalent in size to asize_t . Similarly, when applied
to ann conversion, it indicates that the argument is a pointer to a signed type equivalent in size to a

NetBSD 3.0 July 5, 2003 2

WPRINTF (3) NetBSD Library Functions Manual WPRINTF (3)

size_t .

The following length modifier is valid for thea, A, e, E, f , F, g, or Gconversion:

Modifier a, A, e, E, f , F, g, G
L long double

The following length modifier is valid for thec or s conversion:

Modifier c s
l (ell) wint_t wchar_t ∗

• A character that specifies the type of conversion to be applied.

A field width or precision, or both, may be indicated by an asterisk ‘∗’ or an asterisk followed by one or
more decimal digits and a ‘$’ i nstead of a digit string. In this case, anint argument supplies the field width
or precision.A neg ative field width is treated as a left adjustment flag followed by a positive field width; a
negative precision is treated as though it were missing. If a single format directive mixes positional(nn$)
and non-positional arguments, the results are undefined.

The conversion specifiers and their meanings are:

diouxX The int (or appropriate variant) argument is converted to signed decimal (d and i), unsigned
octal (o) , unsigned decimal(u) , or unsigned hexadecimal (x and X) notation. Theletters
“abcdef ” are used forx conversions; the letters “ABCDEF” are used forX conversions. Thepre-
cision, if any, giv es the minimum number of digits that must appear; if the converted value requires
fewer digits, it is padded on the left with zeros.

DOU The long int argument is converted to signed decimal, unsigned octal, or unsigned decimal, as
if the format had beenld , lo , or lu respectively. These conversion characters are deprecated,
and will eventually disappear.

eE The double argument is rounded and converted in the style [−]d. ddde±dd where there is one
digit before the decimal-point character and the number of digits after it is equal to the precision; if
the precision is missing, it is taken as 6; if the precision is zero, no decimal-point character
appears. AnE conversion uses the letter ‘E’ (rather than ‘e’) to introduce the exponent. The
exponent always contains at least two digits; if the value is zero, the exponent is 00.

For a, A, e, E, f , F, g, and G conversions, positive and negative infinity are represented as
inf and -inf respectively when using the lowercase conversion character, and INF and -INF
respectively when using the uppercase conversion character. Similarly, NaN is represented asnan
when using the lowercase conversion, andNANwhen using the uppercase conversion.

fF The double argument is rounded and converted to decimal notation in the style [−]ddd . ddd ,
where the number of digits after the decimal-point character is equal to the precision specification.
If the precision is missing, it is taken as 6; if the precision is explicitly zero, no decimal-point char-
acter appears. If a decimal point appears, at least one digit appears before it.

gG The double argument is converted in stylef or e (or F or E for G conversions). Theprecision
specifies the number of significant digits. If the precision is missing, 6 digits are given; if the pre-
cision is zero, it is treated as 1.Stylee is used if the exponent from its conversion is less than −4
or greater than or equal to the precision.Trailing zeros are removed from the fractional part of the
result; a decimal point appears only if it is followed by at least one digit.

aA The double argument is converted to hexadecimal notation in the style [−]0x h. hhhp [±]d,
where the number of digits after the hexadecimal-point character is equal to the precision specifi-
cation. If the precision is missing, it is taken as enough to exactly represent the floating-point
number; if the precision is explicitly zero, no hexadecimal-point character appears. This is an
exact conversion of the mantissa+exponent internal floating point representation; the [−]0x h. hhh

NetBSD 3.0 July 5, 2003 3

WPRINTF (3) NetBSD Library Functions Manual WPRINTF (3)

portion represents exactly the mantissa; only denormalized mantissas have a zero value to the left
of the hexadecimal point.Thep is a literal character ‘p’; the exponent is preceded by a positive or
negative sign and is represented in decimal, using only enough characters to represent the expo-
nent. TheA conversion uses the prefix “0X” (rather than “0x ”), the letters “ABCDEF” (rather than
“abcdef ”) to represent the hex digits, and the letter ‘P’ (rather than ‘p’) to separate the mantissa
and exponent.

C Treated asc with thel (ell) modifier.

c The int argument is converted to anunsigned char , then to awchar_t as if bybtowc (3),
and the resulting character is written.

If the l (ell) modifier is used, thewint_t argument is converted to awchar_t and written.

S Treated ass with thel (ell) modifier.

s Thechar ∗ argument is expected to be a pointer to an array of character type (pointer to a string)
containing a multibyte sequence. Characters from the array are converted to wide characters and
written up to (but not including) a terminatingNULcharacter; if a precision is specified, no more
than the number specified are written. If a precision is given, no null character need be present; if
the precision is not specified, or is greater than the size of the array, the array must contain a termi-
natingNULcharacter.

If the l (ell) modifier is used, thewchar_t ∗ argument is expected to be a pointer to an array of
wide characters (pointer to a wide string).Each wide character in the string is written.Wide char-
acters from the array are written up to (but not including) a terminating wideNULcharacter; if a
precision is specified, no more than the number specified are written (including shift sequences).
If a precision is given, no null character need be present; if the precision is not specified, or is
greater than the number of characters in the string, the array must contain a terminating wideNUL
character.

p Thevoid ∗ pointer argument is printed in hexadecimal (as if by%#xor %#lx).

n The number of characters written so far is stored into the integer indicated by theint ∗ (or vari-
ant) pointer argument. Noargument is converted.

% A ‘ %’ is written. Noargument is converted. Thecomplete conversion specification is ‘%%’.

The decimal point character is defined in the program’s locale (categoryLC_NUMERIC).

In no case does a non-existent or small field width cause truncation of a numeric field; if the result of a con-
version is wider than the field width, the field is expanded to contain the conversion result.

SEE ALSO
btowc (3), fputws (3), printf (3), putwc (3), setlocale (3), wcsrtombs (3), wscanf (3)

STANDARDS
Subject to the caveats noted in the

SECURITY CONSIDERATIONS
Refer to printf (3). BUGS section of printf (3), the wprintf (), fwprintf (), swprintf (),
vwprintf (), vfwprintf () andvswprintf () functions conform toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 July 5, 2003 4

WSCANF (3) NetBSD Library Functions Manual WSCANF (3)

NAME
wscanf , fwscanf , swscanf , vwscanf , vswscanf , vfwscanf — wide character input format con-
version

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int
wscanf (const wchar_t ∗ restrict format , . . .);

int
fwscanf (FILE ∗ restrict stream , const wchar_t ∗ restrict format , . . .);

int
swscanf (const wchar_t ∗ restrict str , const wchar_t ∗ restrict format ,

. . .);

#include <stdarg.h>

int
vwscanf (const wchar_t ∗ restrict format , va_list ap);

int
vswscanf (const wchar_t ∗ restrict str , const wchar_t ∗ restrict format ,

va_list ap);

int
vfwscanf (FILE ∗ restrict stream , const wchar_t ∗ restrict format ,

va_list ap);

DESCRIPTION
Thewscanf () family of functions scans input according to aformat as described below. This format may
containconversion specifiers; the results from such conversions, if any, are stored through thepointer argu-
ments. Thewscanf () function reads input from the standard input streamstdin , fwscanf () reads input
from the stream pointerstream , and swscanf () reads its input from the wide character string pointed to
by str . Thevfwscanf () function is analogous tovfwprintf (3) and reads input from the stream pointer
stream using a variable argument list of pointers (seestdarg (3)). Thevwscanf () function scans a vari-
able argument list from the standard input and thevswscanf () function scans it from a wide character
string; these are analogous to thevwprintf () andvswprintf () functions respectively. Each successive
pointerargument must correspond properly with each successive conversion specifier (but see the∗ conver-
sion below). All conversions are introduced by the%(percent sign) character. The format string may also
contain other characters.White space (such as blanks, tabs, or newlines) in theformat string match any
amount of white space, including none, in the input.Everything else matches only itself. Scanning stops
when an input character does not match such a format character. Scanning also stops when an input conver-
sion cannot be made (see below).

CONVERSIONS
Following the%character introducing a conversion there may be a number offlagcharacters, as follows:

∗ Suppresses assignment. The conversion that follows occurs as usual, but no pointer is used; the
result of the conversion is simply discarded.

NetBSD 3.0 July 5, 2003 1

WSCANF (3) NetBSD Library Functions Manual WSCANF (3)

hh Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to achar
(rather thanint).

h Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to ashort
int (rather thanint).

l (ell) Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to along
int (rather thanint), that the conversion will be one ofa, e, f , or g and the next pointer is a
pointer todouble (rather thanfloat), or that the conversion will be one ofc or s and the next
pointer is a pointer to an array ofwchar_t (rather thanchar).

ll (ell ell)
Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to along
long int (rather thanint).

L Indicates that the conversion will be one ofa, e, f , or g and the next pointer is a pointer tolong
double .

j Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to a
intmax_t (rather thanint).

t Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to a
ptrdiff_t (rather thanint).

z Indicates that the conversion will be one ofdioux or n and the next pointer is a pointer to a
size_t (rather thanint).

q (deprecated.) Indicatesthat the conversion will be one ofdioux or n and the next pointer is a
pointer to along long int (rather thanint).

In addition to these flags, there may be an optional maximum field width, expressed as a decimal integer,
between the%and the conversion. If no width is given, a default of “infinity” is used (with one exception,
below); otherwise at most this many characters are scanned in processing the conversion. Beforeconversion
begins, most conversions skip white space; this white space is not counted against the field width.

The following conversions are available:

% Matches a literal ‘%’. That is, “%%” in the format string matches a single input ‘%’ character. No con-
version is done, and assignment does not occur.

d Matches an optionally signed decimal integer; the next pointer must be a pointer toint .

i Matches an optionally signed integer; the next pointer must be a pointer toint . The integer is read
in base 16 if it begins with ‘0x ’ or ‘ 0X’, in base 8 if it begins with ‘0’, and in base 10 otherwise.
Only characters that correspond to the base are used.

o Matches an octal integer; the next pointer must be a pointer tounsigned int .

u Matches an optionally signed decimal integer; the next pointer must be a pointer tounsigned int .

x , X Matches an optionally signed hexadecimal integer; the next pointer must be a pointer tounsigned
int .

a, A, e, E, f , F, g, G
Matches a floating-point number in the style ofwcstod (3). Thenext pointer must be a pointer to
float (unlessl or L is specified.)

s Matches a sequence of non-white-space wide characters; the next pointer must be a pointer tochar ,
and the array must be large enough to accept the multibyte representation of all the sequence and the
terminatingNUL character. The input string stops at white space or at the maximum field width,
whichever occurs first.

NetBSD 3.0 July 5, 2003 2

WSCANF (3) NetBSD Library Functions Manual WSCANF (3)

If an l qualifier is present, the next pointer must be a pointer towchar_t , into which the input will
be placed.

S The same asls .

c Matches a sequence ofwidth count wide characters (default 1); the next pointer must be a pointer to
char , and there must be enough room for the multibyte representation of all the characters (no termi-
natingNUL is added).The usual skip of leading white space is suppressed.To skip white space first,
use an explicit space in the format.

If an l qualifier is present, the next pointer must be a pointer towchar_t , into which the input will
be placed.

C The same aslc .

[Matches a nonempty sequence of characters from the specified set of accepted characters; the next
pointer must be a pointer tochar , and there must be enough room for the multibyte representation of
all the characters in the string, plus a terminatingNUL character. The usual skip of leading white
space is suppressed.The string is to be made up of characters in (or not in) a particular set; the set is
defined by the characters between the open bracket [character and a close bracket] character. The set
excludesthose characters if the first character after the open bracket is a circumflex ˆ . To include a
close bracket in the set, make it the first character after the open bracket or the circumflex; any other
position will end the set.To include a hyphen in the set, make it the last character before the final
close bracket; some implementations ofwscanf () use “A-Z ” to represent the range of characters
between ‘A’ and ‘Z’. The string ends with the appearance of a character not in the (or, with a circum-
flex, in) set or when the field width runs out.

If an l qualifier is present, the next pointer must be a pointer towchar_t , into which the input will
be placed.

p Matches a pointer value (as printed by ‘%p’ i n wprintf (3)); the next pointer must be a pointer to
void .

n Nothing is expected; instead, the number of characters consumed thus far from the input is stored
through the next pointer, which must be a pointer toint . This isnot a conversion, although it can be
suppressed with the∗ flag.

The decimal point character is defined in the program’s locale (categoryLC_NUMERIC).

For backwards compatibility, a “conversion” of %\0 causes an immediate return ofEOF.

RETURN VALUES
These functions return the number of input items assigned, which can be fewer than provided for, or even
zero, in the event of a matching failure. Zeroindicates that, while there was input available, no conversions
were assigned; typically this is due to an invalid input character, such as an alphabetic character for a ‘%d’
conversion. Thevalue EOFis returned if an input failure occurs before any conversion such as an end-of-file
occurs. Ifan error or end-of-file occurs after conversion has begun, the number of conversions which were
successfully completed is returned.

SEE ALSO
fgetwc (3), scanf (3), wcrtomb (3), wcstod (3), wcstol (3), wcstoul (3), wprintf (3)

STANDARDS
The fwscanf (), wscanf (), swscanf (), vfwscanf (), vwscanf () andvswscanf () functions conform
to ISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 July 5, 2003 3

WSCANF (3) NetBSD Library Functions Manual WSCANF (3)

BUGS
In addition to the bugs documented inscanf (3), wscanf () does not support the “A-Z ” notation for speci-
fying character ranges with the character class conversion (‘%[’) .

NetBSD 3.0 July 5, 2003 4

XDR (3) NetBSD Library Functions Manual XDR (3)

NAME
xdr , xdr_array , xdr_bool , xdr_bytes , xdr_char , xdr_destroy , xdr_double , xdr_enum ,
xdr_float , xdr_free , xdr_getpos , xdr_hyper , xdr_inline , xdr_int , xdr_long ,
xdr_longlong_t , xdrmem_create , xdr_opaque , xdr_pointer , xdrrec_create ,
xdrrec_endofrecord , xdrrec_eof , xdrrec_skiprecord , xdr_reference , xdr_setpos ,
xdr_short , xdrstdio_create , xdr_string , xdr_u_char , xdr_u_hyper , xdr_u_long ,
xdr_u_longlong_t , xdr_u_short , xdr_union , xdr_vector , xdr_void , xdr_wrapstring
— library routines for external data representation

SYNOPSIS
int
xdr_array (XDR ∗xdrs , char ∗∗arrp , u_int ∗sizep , u_int maxsize , u_int elsize ,

xdrproc_t elproc);

int
xdr_bool (XDR ∗xdrs , bool_t ∗bp);

int
xdr_bytes (XDR ∗xdrs , char ∗∗sp , u_int ∗sizep , u_int maxsize);

int
xdr_char (XDR ∗xdrs , char ∗cp);

void
xdr_destroy (XDR ∗xdrs);

int
xdr_double (XDR ∗xdrs , double ∗dp);

int
xdr_enum (XDR ∗xdrs , enum_t ∗ep);

int
xdr_float (XDR ∗xdrs , float ∗fp);

void
xdr_free (xdrproc_t proc , char ∗objp);

u_int
xdr_getpos (XDR ∗xdrs);

int
xdr_hyper (XDR ∗xdrs , longlong_t ∗llp);

long ∗
xdr_inline (XDR ∗xdrs , int len);

int
xdr_int (XDR ∗xdrs , int ∗ip);

int
xdr_long (XDR ∗xdrs , long ∗lp);

int
xdr_longlong_t (XDR ∗xdrs , longlong_t ∗llp);

void
xdrmem_create (XDR ∗xdrs , char ∗addr , u_int size , enum xdr_op op);

NetBSD 3.0 April 17, 2003 1

XDR (3) NetBSD Library Functions Manual XDR (3)

int
xdr_opaque (XDR ∗xdrs , char ∗cp , u_int cnt);

int
xdr_pointer (XDR ∗xdrs , char ∗∗objpp , u_int objsize , xdrproc_t xdrobj);

void
xdrrec_create (XDR ∗xdrs , u_int sendsize , u_int recvsize , char ∗handle ,

int (∗readit)() , int (∗writeit)());

int
xdrrec_endofrecord (XDR ∗xdrs , int sendnow);

int
xdrrec_eof (XDR ∗xdrs);

int
xdrrec_skiprecord (XDR ∗xdrs);

int
xdr_reference (XDR ∗xdrs , char ∗∗pp , u_int size , xdrproc_t proc);

int
xdr_setpos (XDR ∗xdrs , u_int pos);

int
xdr_short (XDR ∗xdrs , short ∗sp);

void
xdrstdio_create (XDR ∗xdrs , FILE ∗file , enum xdr_op op);

int
xdr_string (XDR ∗xdrs , char ∗∗sp , u_int maxsize);

int
xdr_u_char (XDR ∗xdrs , unsigned char ∗ucp);

int
xdr_u_hyper (XDR ∗xdrs , u_longlong_t ∗ullp);

int
xdr_u_int (XDR ∗xdrs , unsigned ∗up);

int
xdr_u_long (XDR ∗xdrs , unsigned long ∗ulp);

int
xdr_u_longlong_t (XDR ∗xdrs , u_longlong_t ∗ullp);

int
xdr_u_short (XDR ∗xdrs , unsigned short ∗usp);

int
xdr_union (XDR ∗xdrs , int ∗dscmp , char ∗unp , struct xdr_discrim ∗choices ,

bool_t (∗defaultarm)());

int
xdr_vector (XDR ∗xdrs , char ∗arrp , u_int size , u_int elsize ,

xdrproc_t elproc);

NetBSD 3.0 April 17, 2003 2

XDR (3) NetBSD Library Functions Manual XDR (3)

int
xdr_void (void);

int
xdr_wrapstring (XDR ∗xdrs , char ∗∗sp);

DESCRIPTION
These routines allow C programmers to describe arbitrary data structures in a machine-independent fashion.
Data for remote procedure calls are transmitted using these routines.

xdr_array ()
A fi lter primitive that translates between variable-length arrays and their corresponding external repre-
sentations. Theparameterarrp is the address of the pointer to the array, while sizep is the address
of the element count of the array; this element count cannot exceed maxsize . The parameter
elsize is the sizeofeach of the array’s elements, andelproc is an XDR filter that translates
between the array elements’ C form, and their external representation. This routine returns one if it
succeeds, zero otherwise.

xdr_bool ()
A fi lter primitive that translates between booleans (C integers) and their external representations.
When encoding data, this filter produces values of either one or zero.This routine returns one if it suc-
ceeds, zero otherwise.

xdr_bytes ()
A fi lter primitive that translates between counted byte strings and their external representations.The
parametersp is the address of the string pointer. The length of the string is located at addresssizep ;
strings cannot be longer thanmaxsize . This routine returns one if it succeeds, zero otherwise.

xdr_char ()
A fi lter primitive that translates between C characters and their external representations. This routine
returns one if it succeeds, zero otherwise. Note: encoded characters are not packed, and occupy 4 bytes
each. For arrays of characters, it is worthwhile to considerxdr_bytes (), xdr_opaque () or
xdr_string ().

xdr_destroy ()
A macro that invokes the destroy routine associated with the XDR stream,xdrs . Destruction usually
involves freeing private data structures associated with the stream.Using xdrs after invoking
xdr_destroy () is undefined.

xdr_double ()
A fi lter primitive that translates between C double precision numbers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_enum ()
A fi lter primitive that translates between C enums (actually integers) and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_float ()
A fi lter primitive that translates between C floats and their external representations. This routine
returns one if it succeeds, zero otherwise.

xdr_free ()
Generic freeing routine. The first argument is the XDR routine for the object being freed. The second
argument is a pointer to the object itself.Note: the pointer passed to this routine isnot freed, but what
it points tois freed (recursively).

NetBSD 3.0 April 17, 2003 3

XDR (3) NetBSD Library Functions Manual XDR (3)

xdr_getpos ()
A macro that invokes the get-position routine associated with the XDR stream,xdrs . The routine
returns an unsigned integer, which indicates the position of the XDR byte stream.A desirable feature
of XDR streams is that simple arithmetic works with this number, although the XDR stream instances
need not guarantee this.

xdr_hyper ()
A fi lter primitive that translates between ANSI C long long integers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_inline ()
A macro that invokes the in-line routine associated with the XDR stream,xdrs . The routine returns a
pointer to a contiguous piece of the stream’s buffer; len is the byte length of the desired buffer. Note:
pointer is cast tolong ∗.

Warning: xdr_inline () may returnNULL if it cannot allocate a contiguous piece of a buffer. There-
fore the behavior may vary among stream instances; it exists for the sake of efficiency.

xdr_int ()
A fi lter primitive that translates between C integers and their external representations. This routine
returns one if it succeeds, zero otherwise.

xdr_long ()
A fi lter primitive that translates between C long integers and their external representations. This rou-
tine returns one if it succeeds, zero otherwise.

xdr_longlong_t ()
A fi lter primitive that translates between ANSI C long long integers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdrmem_create ()
This routine initializes the XDR stream object pointed to byxdrs . The stream’s data is written to, or
read from, a chunk of memory at locationaddr whose length is no more thansize bytes long.The
op determines the direction of the XDR stream (eitherXDR_ENCODE, XDR_DECODE, or
XDR_FREE).

xdr_opaque ()
A fi lter primitive that translates between fixed size opaque data and its external representation.The
parametercp is the address of the opaque object, andcnt is its size in bytes.This routine returns one
if it succeeds, zero otherwise.

xdr_pointer ()
Like xdr_reference () except that it serializesNULL pointers, whereasxdr_reference () does
not. Thus,xdr_pointer () can represent recursive data structures, such as binary trees or linked
lists.

xdrrec_create ()
This routine initializes the XDR stream object pointed to byxdrs . The stream’s data is written to a
buffer of sizesendsize ; a value of zero indicates the system should use a suitable default. The
stream’s data is read from a buffer of sizerecvsize ; it too can be set to a suitable default by passing
a zero value. Whena stream’s output buffer is full, writeit is called. Similarly, when a stream’s
input buffer is empty, readit is called. The behavior of these two routines is similar to the system
calls read (2) andwrite (2), except thathandle is passed to the former routines as the first parame-
ter. Note: the XDR stream’sop field must be set by the caller.

Warning: this XDR stream implements an intermediate record stream.Therefore there are additional
bytes in the stream to provide record boundary information.

NetBSD 3.0 April 17, 2003 4

XDR (3) NetBSD Library Functions Manual XDR (3)

xdrrec_endofrecord ()
This routine can be invoked only on streams created byxdrrec_create (). Thedata in the output
buffer is marked as a completed record, and the output buffer is optionally written out ifsendnow is
non-zero. Thisroutine returns one if it succeeds, zero otherwise.

xdrrec_eof ()
This routine can be invoked only on streams created byxdrrec_create (). After consuming the rest
of the current record in the stream, this routine returns one if the stream has no more input, zero other-
wise.

xdrrec_skiprecord ()
This routine can be invoked only on streams created byxdrrec_create (). It tells the XDR imple-
mentation that the rest of the current record in the stream’s input buffer should be discarded. This rou-
tine returns one if it succeeds, zero otherwise.

xdr_reference ()
A primitive that provides pointer chasing within structures. The parameterpp is the address of the
pointer;size is thesizeofthe structure that∗pp points to; andproc is an XDR procedure that filters
the structure between its C form and its external representation. This routine returns one if it succeeds,
zero otherwise.

Warning: this routine does not understandNULLpointers. Usexdr_pointer () instead.

xdr_setpos ()
A macro that invokes the set position routine associated with the XDR streamxdrs . The parameter
pos is a position value obtained fromxdr_getpos (). This routine returns one if the XDR stream
could be repositioned, and zero otherwise.

Warning: it is difficult to reposition some types of XDR streams, so this routine may fail with one type
of stream and succeed with another.

xdr_short ()
A fi lter primitive that translates between C short integers and their external representations. This rou-
tine returns one if it succeeds, zero otherwise.

xdrstdio_create ()
This routine initializes the XDR stream object pointed to byxdrs . The XDR stream data is written to,
or read from, the Standard I/O streamfile . The parameterop determines the direction of the XDR
stream (eitherXDR_ENCODE, XDR_DECODE, or XDR_FREE).

Warning: the destroy routine associated with such XDR streams callsfflush (3) on the file stream,
but nev er fclose (3).

xdr_string ()
A fi lter primitive that translates between C strings and their corresponding external representations.
Strings cannot be longer thanmaxsize . Note:sp is the address of the string’s pointer. This routine
returns one if it succeeds, zero otherwise.

xdr_u_char ()
A fi lter primitive that translates between unsigned C characters and their external representations.This
routine returns one if it succeeds, zero otherwise.

xdr_u_hyper ()
A fi lter primitive that translates between unsigned ANSI C long long integers and their external repre-
sentations. Thisroutine returns one if it succeeds, zero otherwise.

NetBSD 3.0 April 17, 2003 5

XDR (3) NetBSD Library Functions Manual XDR (3)

xdr_u_int ()
A fi lter primitive that translates between C unsigned integers
and their external representations. This routine returns one if it succeeds, zero otherwise.

xdr_u_long ()
A fi lter primitive that translates between C unsigned long integers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_u_longlong_t ()
A fi lter primitive that translates between unsigned ANSI C long long integers and their external repre-
sentations. Thisroutine returns one if it succeeds, zero otherwise.

xdr_u_short ()
A fi lter primitive that translates between C unsigned short integers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_union ()
A fi lter primitive that translates between a discriminated C union and its corresponding external repre-
sentation. Itfirst translates the discriminant of the union located atdscmp. This discriminant is
always an enum_t.Next the union located atunp is translated. The parameterchoices is a pointer
to an array ofxdr_discrim () structures. Each structure contains an ordered pair of [value ,
proc]. If the union’s discriminant is equal to the associatedvalue , then theproc is called to trans-
late the union.The end of thexdr_discrim () structure array is denoted by a routine of valueNULL.
If the discriminant is not found in thechoices array, then thedefaultarm procedure is called (if it
is notNULL). Returnsone if it succeeds, zero otherwise.

xdr_vector ()
A fi lter primitive that translates between fixed-length arrays and their corresponding external represen-
tations. Theparameterarrp is the address of the pointer to the array, while size is the element
count of the array. The parameterelsize is thesizeofeach of the array’s elements, andelproc is
an XDR filter that translates between the array elements’ C form, and their external representation.
This routine returns one if it succeeds, zero otherwise.

xdr_void ()
This routine always returns one. It may be passed to RPC routines that require a function parameter,
where nothing is to be done.

xdr_wrapstring ()
A primitive that callsxdr_string (xdrs , sp , MAXUN.UNSIGNED); whereMAXUN.UNSIGNED
is the maximum value of an unsigned integer. xdr_wrapstring () is handy because the RPC pack-
age passes a maximum of two XDR routines as parameters, andxdr_string (), one of the most fre-
quently used primitives, requires three. Returns one if it succeeds, zero otherwise.

SEE ALSO
rpc (3)

The following manuals:

eXternal Data Representation Standard: Protocol Specification.

Sun Microsystems, Inc., USC-ISI,XDR: External Data Representation Standard, RFC 1014, USC-ISI, 1014.

NetBSD 3.0 April 17, 2003 6

YPCLNT (3) NetBSD Library Functions Manual YPCLNT (3)

NAME
yp_all , yp_bind , yp_first , yp_get_default_domain , yp_master , yp_match , yp_next ,
yp_order , yp_unbind , yperr_string , ypprot_err — Interface to the YP subsystem

LIBRARY
Standard C Library (libc, −lc)

SYNOPSIS
#include <sys/types.h>
#include <rpc/rpc.h>
#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

int
yp_all (const char ∗indomain , const char ∗inmap ,

struct ypall_callback ∗incallback);

int
yp_bind (const char ∗dom);

int
yp_first (const char ∗indomain , const char ∗inmap , char ∗∗outkey ,

int ∗outkeylen , char ∗∗outval , int ∗outvallen);

int
yp_get_default_domain (char ∗∗outdomain);

int
yp_master (const char ∗indomain , const char ∗inmap , char ∗∗outname);

int
yp_match (const char ∗indomain , const char ∗inmap , const char ∗inkey ,

int inkeylen , char ∗∗outval , int ∗outvallen);

int
yp_next (const char ∗indomain , const char ∗inmap , const char ∗inkey ,

int inkeylen , char ∗∗outkey , int ∗outkeylen , char ∗∗outval ,
int ∗outvallen);

int
yp_order (const char ∗indomain , const char ∗inmap , int ∗outorder);

void
yp_unbind (const char ∗dom);

char ∗
yperr_string (int incode);

int
ypprot_err (unsigned int incode);

DESCRIPTION
Theypclnt suite provides an interface to theYP subsystem. For a general description of theYP subsystem,
seeyp (8).

For all functions, input values begin within and output values begin without .

NetBSD 3.0 May 21, 1997 1

YPCLNT (3) NetBSD Library Functions Manual YPCLNT (3)

Any output values of typechar ∗∗ should be the addresses of uninitialized character pointers. These values
will be reset to the null pointer (unless the address itself is the null pointer, in which case the error
YPERR_BADARGSwill be returned). If necessary, memory will be allocated by theYP client routines using
malloc (), and the result will be stored in the appropriate output value. If the invocation of aYP client rou-
tine doesn’t return an error, and an output value is not the null pointer, then this memory should be freed by
the user when there is no additional need for the data stored there.For outkey andoutval , two extra
bytes of memory are allocated for a ‘\n ’ and ‘\0 ’, which are not reflected in the values ofoutkeylen or
outvallen .

All occurrences ofindomain and inmap must be non-null, NUL-terminated strings.All input strings
which also have a corresponding length parameter cannot be the null pointer unless the corresponding length
value is zero. Such strings need not be NUL-terminated.

All YP lookup calls (the functionsyp_all (), yp_first (), yp_master (), yp_match (), yp_next (),
yp_order ()) require aYP domain name and aYP map name.The default domain name may be obtained
by callingyp_get_default_domain (), and should thus be used before all otherYP calls in a client pro-
gram. Thevalue it placesoutdomain is suitable for use as theindomain parameter to all subsequentYP
calls.

In order forYP lookup calls to succeed, the client process must be bound to aYP server process. The client
process need not explicitly bind to the server, as it happens automatically whenever a lookup occurs.The
functionyp_bind () is provided for a backup strategy, e.g. a local file, when aYP server process is not avail-
able. Eachbinding uses one socket descriptor on the client process, which may be explicitly freed using
yp_unbind (), which frees all per-process and per-node resources to bind the domain and marks the domain
unbound.

If, during a YP lookup, an RPC failure occurs, the domain used in the lookup is automatically marked
unbound and theypclnt layer retries the lookup as long asypbind (8) is running and either the client
process cannot bind to a server for the domain specified in the lookup, or RPC requests to theYP server
process fail. If an error is not RPC-related, one of theYP error codes described below is returned and control
given back to the user code.

Theypclnt suite provides the following functionality:

yp_match () Provides the value associated with the given key.

yp_first () Provides the first key-value pair from the given map in the named domain.

yp_next () Provides the next key-value pair in the given map. To obtain the second pair, the inkey
value should be theoutkey value provided by the initial call toyp_first (). In the
general case, the next key-value pair may be obtained by using theoutkey value from
the previous call toyp_next () as the value forinkey .

Of course, the notions of “first” and “next” are particular to the type ofYP map being
accessed, and thus there is no guarantee of lexical order. The only guarantees provided
with yp_first () andyp_next (), providing that the same map on the same server is
polled repeatedly untilyp_next () returns YPERR_NOMORE, are that all key-value
pairs in that map will be accessed exactly once, and if the entire procedure is repeated, the
order will be the same.

If the server is heavily loaded or the server fails for some reason, the domain being used
may become unbound.If this happens, and the client process re-binds, the retrieval rules
will break: some entries may be seen twice, and others not at all.For this reason, the
functionyp_all () provides a better solution for reading all of the entries in a particular
map.

NetBSD 3.0 May 21, 1997 2

YPCLNT (3) NetBSD Library Functions Manual YPCLNT (3)

yp_all () This function provides a way to transfer an entire map from the server to the client
process with a single request.This transfer uses TCP, unlike all other functions in the
ypclnt suite, which use UDP. The entire transaction occurs in a single RPC request-
response. Thethird argument to this function provides a way to supply the name of a
function to process each key-value pair in the map.yp_all () returns after the entire
transaction is complete, or theforeach function decides that it does not want any more
key-value pairs. The third argument toyp_all () is:

struct ypall_callback ∗incallback {
int (∗foreach)();
char ∗data;

};

The char ∗data argument is an opaque pointer for use by the callback function.The
foreach function should return non-zero when it no longer wishes to process key-value
pairs, at which timeyp_all () returns a value of 0, and is called with the following argu-
ments:

int foreach (
int instatus,
char ∗inkey,
int inkeylen,
char ∗inval,
int invallen,
char ∗indata

);

Where:

instatus Holds one of the return status values described in
〈rpcsvc/yp_prot.h 〉: see ypprot_err () below for a function
that will translateYP protocol errors into aypclnt layer error code
as described in〈rpcsvc/ypclnt.h 〉.

inkey, inval The key and value arguments are somewhat different here than
described above. In this case, the memory pointed to byinkey and
inval is private to yp_all (), and is overwritten with each subse-
quent key-value pair, thus theforeach function should do something
useful with the contents of that memory during each iteration.If the
key-value pairs are not terminated with either ‘\n ’ or ‘ \0 ’ in the map,
then they will not be terminated as such when given to the foreach
function, either.

indata This is the contents of theincallback->data element of the call-
back structure. It is provided as a means to share state between the
foreach function and the user code. Its use is completely optional:
cast it to something useful or simply ignore it.

yp_order () Returns the order number for a map.

yp_master () Returns the hostname for the machine on which the masterYP server process for a map is
running.

yperr_string ()
Returns a pointer to a NUL-terminated error string that does not contain a ‘. ’ or ‘ \n ’.

NetBSD 3.0 May 21, 1997 3

YPCLNT (3) NetBSD Library Functions Manual YPCLNT (3)

ypprot_err () Converts a YP protocol error code to aypclnt error code suitable for
yperr_string ().

RETURN VALUES
All functions in theypclnt suite which are of typeint return 0 upon success or one of the following error
codes upon failure:

[YPERR_BADARGS] The passed arguments to the function are invalid.

[YPERR_BADDB] The YP map that was polled is defective.

[YPERR_DOMAIN] Client process cannot bind to server on thisYP domain.

[YPERR_KEY] The key passed does not exist.

[YPERR_MAP] There is no such map in the server’s domain.

[YPERR_DOM] The localYP domain is not set.

[YPERR_NOMORE] There are no more records in the queried map.

[YPERR_PMAP] Cannot communicate with portmapper (seerpcbind (8)).

[YPERR_RESRC] A resource allocation failure occurred.

[YPERR_RPC] An RPC failure has occurred. The domain has been marked unbound.

[YPERR_VERS] Client/server version mismatch.If the server is running version 1 of theYP proto-
col, yp_all () functionality does not exist.

[YPERR_BIND] Cannot communicate withypbind (8).

[YPERR_YPERR] An internal server or client error has occurred.

[YPERR_YPSERV] The client cannot communicate with theYP server process.

SEE ALSO
malloc (3), yp (8), ypbind (8), ypserv (8)

AUTHORS
Theo De Raadt

NetBSD 3.0 May 21, 1997 4

ZLIB(3) ZLIB(3)

NAME
zlib − compression/decompression library

SYNOPSIS
[seezlib.h for full description]

DESCRIPTION
The zlib library is a general purpose data compression library. The code is thread safe. It provides in-
memory compression and decompression functions, including integrity checks of the uncompressed data.
This version of the library supports only one compression method (deflation) but other algorithms will be
added later and will have the same stream interface.

Compression can be done in a single step if the buffers are large enough (for example if an input file is
mmap’ed), or can be done by repeated calls of the compression function. In the latter case, the application
must provide more input and/or consume the output (providing more output space) before each call.

The library also supports reading and writing files ingzip(1) (.gz) format with an interface similar to that of
stdio.

The library does not install any signal handler. The decoder checks the consistency of the compressed data,
so the library should never crash even in case of corrupted input.

All functions of the compression library are documented in the filezlib.h. The distribution source includes
examples of use of the library in the filesexample.candminigzip.c.

Changes to this version are documented in the fileChangeLogthat accompanies the source, and are con-
cerned primarily with bug fixes and portability enhancements.

A Java implementation ofzlib is available in the Java Dev elopment Kit 1.1:

http://www.javasoft.com/products/JDK/1.1/docs/api/Package-java.util.zip.html

A Perl interface tozlib, written by Paul Marquess (pmqs@cpan.org), is available at CPAN (Comprehensive
Perl Archive Network) sites, including:

http://www.cpan.org/modules/by-module/Compress/

A Python interface tozlib, written by A.M. Kuchling (amk@magnet.com), is available in Python 1.5 and
later versions:

http://www.python.org/doc/lib/module-zlib.html

A zlib binding fortcl(1), written by Andreas Kupries (a.kupries@westend.com), is availlable at:

http://www.westend.com/˜kupries/doc/trf/man/man.html

An experimental package to read and write files in .zip format, written on top ofzlib by Gilles Vollant
(info@winimage.com), is available at:

http://www.winimage.com/zLibDll/unzip.html and also in thecontrib/minizip directory of the
mainzlib web site.

SEE ALSO
Thezlib web site can be found at either of these locations:

http://www.zlib.org
http://www.gzip.org/zlib/

The data format used by the zlib library is described by RFC (Request for Comments) 1950 to 1952 in the
files:

http://www.ietf.org/rfc/rfc1950.txt (concerning zlib format)
http://www.ietf.org/rfc/rfc1951.txt (concerning deflate format)
http://www.ietf.org/rfc/rfc1952.txt (concerning gzip format)

These documents are also available in other formats from:

18 July 2005 1

ZLIB(3) ZLIB(3)

ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html

Mark Nelson (markn@ieee.org) wrote an article aboutzlib for the Jan. 1997 issue ofDr. Dobb’s Journal; a
copy of the article is available at:

http://dogma.net/markn/articles/zlibtool/zlibtool.htm

REPORTING PROBLEMS
Before reporting a problem, please check thezlib web site to verify that you have the latest version ofzlib;
otherwise, obtain the latest version and see if the problem still exists. Pleaseread thezlib FA Q at:

http://www.gzip.org/zlib/zlib_faq.html

before asking for help. Send questions and/or comments to zlib@gzip.org, or (for the Windows DLL ver-
sion) to Gilles Vollant (info@winimage.com).

AUTHORS
Version 1.2.3 Copyright (C) 1995-2005 Jean-loup Gailly (jloup@gzip.org) and Mark Adler
(madler@alumni.caltech.edu).

This software is provided "as-is," without any express or implied warranty. In no event will the authors be
held liable for any damages arising from the use of this software. Seethe distribution directory with respect
to requirements governing redistribution. Thedeflate format used byzlib was defined by Phil Katz.The
deflate andzlib specifications were written by L. Peter Deutsch.Thanks to all the people who reported
problems and suggested various improvements inzlib; who are too numerous to cite here.

UNIX manual page by R. P. C. Rodgers, U.S. National Library of Medicine (rodgers@nlm.nih.gov).

18 July 2005 2

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

NAME
zlib — general purpose compression library

SYNOPSIS
#include <zlib.h>

Basic functions
const char ∗
zlibVersion (void);

int
deflateInit (z_streamp strm , int level);

int
deflate (z_streamp strm , int flush);

int
deflateEnd (z_streamp strm);

int
inflateInit (z_streamp strm);

int
inflate (z_streamp strm , int flush);

int
inflateEnd (z_streamp strm);

Advanced functions
int
deflateInit2 (z_streamp strm , int level , int method , int windowBits ,

int memLevel , int strategy);

int
deflateSetDictionary (z_streamp strm , const Bytef ∗dictionary ,

uInt dictLength);

int
deflateCopy (z_streamp dest , z_streamp source);

int
deflateReset (z_streamp strm);

int
deflateParams (z_streamp strm , int level , int strategy);

int
inflateInit2 (z_streamp strm , int windowBits);

int
inflateSetDictionary (z_streamp strm , const Bytef ∗dictionary ,

uInt dictLength);

int
inflateSync (z_streamp strm);

int
inflateReset (z_streamp strm);

NetBSD 3.0 May 1, 2004 1

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

Utility functions
typedef voidp gzFile ;

int
compress (Bytef ∗dest , uLongf ∗destLen , const Bytef ∗source ,

uLong sourceLen);

int
compress2 (Bytef ∗dest , uLongf ∗destLen , const Bytef ∗source ,

uLong sourceLen , int level);

int
uncompress (Bytef ∗dest , uLongf ∗destLen , const Bytef ∗source ,

uLong sourceLen);

gzFile
gzopen (const char ∗path , const char ∗mode);

gzFile
gzdopen (int fd , const char ∗mode);

int
gzsetparams (gzFile file , int level , int strategy);

int
gzread (gzFile file , voidp buf , unsigned len);

int
gzwrite (gzFile file , const voidp buf , unsigned len);

int
gzprintf (gzFile file , const char ∗format , . . .);

int
gzputs (gzFile file , const char ∗s);

char ∗
gzgets (gzFile file , char ∗buf , int len);

int
gzputc (gzFile file , int c);

int
gzgetc (gzFile file);

int
gzflush (gzFile file , int flush);

z_off_t
gzseek (gzFile file , z_off_t offset , int whence);

int
gzrewind (gzFile file);

z_off_t
gztell (gzFile file);

int
gzeof (gzFile file);

NetBSD 3.0 May 1, 2004 2

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

int
gzclose (gzFile file);

const char ∗
gzerror (gzFile file , int ∗errnum);

Checksum functions
uLong
adler32 (uLong adler , const Bytef ∗buf , uInt len);

uLong
crc32 (uLong crc , const Bytef ∗buf , uInt len);

DESCRIPTION
This manual page describes thezlib general purpose compression library, version 1.1.4.

The zlib compression library provides in-memory compression and decompression functions, including
integrity checks of the uncompressed data.This version of the library supports only one compression
method (deflation)but other algorithms will be added later and will have the same stream interface.

Compression can be done in a single step if the buffers are large enough(for example if an input file is
mmap’ed) ,or can be done by repeated calls of the compression function. In the latter case, the application
must provide more input and/or consume the output(providing more output space) before each call.

The library also supports reading and writing files ingzip (1) (.gz) format with an interface similar to that
of stdio (3).

The library does not install any signal handler. The decoder checks the consistency of the compressed data,
so the library should never crash even in case of corrupted input.

The functions within the library are divided into the following sections:

− Basic functions
− Advanced functions
− Utility functions
− Checksum functions

BASIC FUNCTIONS
const char ∗ zlibVersion (void);

The application can comparezlibVersion () andZLIB_VERSION for consistency. If the first
character differs, the library code actually used is not compatible with the〈zlib.h 〉 header file
used by the application.This check is automatically made bydeflateInit () and
inflateInit ().

int deflateInit (z_streamp strm , int level);

The deflateInit () function initializes the internal stream state for compression. The fields
zalloc , zfree , and opaque must be initialized before by the caller. If zalloc andzfree are
set toZ_NULL, deflateInit () updates them to use default allocation functions.

The compression level must beZ_DEFAULT_COMPRESSION, or between 0 and 9: 1 gives best
speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a
block at a time).

Z_DEFAULT_COMPRESSIONrequests a default compromise between speed and compression
(currently equivalent to level 6) .

NetBSD 3.0 May 1, 2004 3

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

deflateInit () returnsZ_OK if successful,Z_MEM_ERRORif there was not enough memory,
Z_STREAM_ERRORif level is not a valid compression level, Z_VERSION_ERRORif the zlib
library version (zlib_version) is incompatible with the version assumed by the caller
(ZLIB_VERSION) . msg is set to null if there is no error message.deflateInit () does not
perform any compression: this will be done bydeflate ().

int deflate (z_streamp strm , int flush);

deflate () compresses as much data as possible, and stops when the input buffer becomes empty
or the output buffer becomes full. It may introduce some output latency (reading input without
producing any output) except when forced to flush.

The detailed semantics are as follows.deflate () performs one or both of the following actions:

Compress more input starting atnext_in and updatenext_in andavail_in accordingly. If
not all input can be processed (because there is not enough room in the output buffer), next_in
and avail_in are updated and processing will resume at this point for the next call to
deflate ().

Provide more output starting atnext_out and updatenext_out andavail_out accordingly.
This action is forced if the parameterflush is non-zero.Forcing flush frequently degrades the
compression ratio, so this parameter should be set only when necessary(in interactive
applications) .Some output may be provided even if flush is not set.

Before the call todeflate (), the application should ensure that at least one of the actions is possi-
ble, by providing more input and/or consuming more output, and updatingavail_in or
avail_out accordingly;avail_out should never be zero before the call. The application can
consume the compressed output when it wants, for example when the output buffer is full
(avail_out == 0) , or after each call todeflate (). If deflate () returnsZ_OK and with zero
avail_out , it must be called again after making room in the output buffer because there might be
more output pending.

If the parameterflush is set toZ_SYNC_FLUSH, all pending output is flushed to the output buffer
and the output is aligned on a byte boundary, so that the decompressor can get all input data avail-
able so far. (In particular, avail_in is zero after the call if enough output space has been pro-
vided before the call.)Flushing may degrade compression for some compression algorithms and so
it should be used only when necessary.

If flush is set toZ_FULL_FLUSH, all output is flushed as withZ_SYNC_FLUSH, and the com-
pression state is reset so that decompression can restart from this point if previous compressed data
has been damaged or if random access is desired.Using Z_FULL_FLUSHtoo often can seriously
degrade the compression.

If deflate () returns with avail_out == 0, this function must be called again with the same value of
the flush parameter and more output space (updatedavail_out), until the flush is complete
(deflate () returns with non-zeroavail_out).

If the parameterflush is set toZ_FINISH , pending input is processed, pending output is flushed
and deflate () returns withZ_STREAM_ENDif there was enough output space; ifdeflate ()
returns withZ_OK, this function must be called again with Z_FINISH and more output space
(updatedavail_out but no more input data, until it returns withZ_STREAM_ENDor an error.
After deflate () has returnedZ_STREAM_END, the only possible operations on the stream are
deflateReset () or deflateEnd ().

Z_FINISH can be used immediately afterdeflateInit () if all the compression is to be done in
a single step.In this case,avail_out must be at least 0.1% larger thanavail_in plus 12 bytes.
If deflate () does not returnZ_STREAM_END, then it must be called again as described above.

NetBSD 3.0 May 1, 2004 4

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

deflate () sets strm->adler to the Adler-32 checksum of all input read so far (that is,total_in
bytes).

deflate () may updatedata_type if it can make a good guess about the input data type
(Z_ASCII or Z_BINARY) . If in doubt, the data is considered binary. This field is only for infor-
mation purposes and does not affect the compression algorithm in any manner.

deflate () returnsZ_OK if some progress has been made(more input processed or more output
produced) ,Z_STREAM_ENDif all input has been consumed and all output has been produced
(only whenflush is set toZ_FINISH), Z_STREAM_ERRORif the stream state was inconsistent
(for example, ifnext_in or next_out was NULL), Z_BUF_ERRORif no progress is possible
(for example,avail_in or avail_out was zero).

int deflateEnd (z_streamp strm);

All dynamically allocated data structures for this stream are freed. This function discards any
unprocessed input and does not flush any pending output.

deflateEnd () returnsZ_OK if successful,Z_STREAM_ERRORif the stream state was inconsis-
tent,Z_DATA_ERRORif the stream was freed prematurely(some input or output was discarded) .
In the error case,msg may be set but then points to a static string(which must not be deallocated) .

int inflateInit (z_streamp strm);
The inflateInit () function initializes the internal stream state for decompression. The fields
next_in , avail_in , zalloc , zfree , and opaque must be initialized before by the caller. If
next_in is not Z_NULL and avail_in is large enough(the exact value depends on the
compression method) , inflateInit () determines the compression method from thezlib
header and allocates all data structures accordingly; otherwise the allocation will be deferred to the
first call to inflate (). If zalloc and zfree are set toZ_NULL, inflateInit () updates
them to use default allocation functions.

inflateInit () returnsZ_OK if successful,Z_MEM_ERRORif there was not enough memory,
Z_VERSION_ERRORif the zlib library version is incompatible with the version assumed by the
caller. msg is set to null if there is no error message.inflateInit () does not perform any
decompression apart from reading thezlib header if present: this will be done byinflate ().
(So next_in and avail_in may be modified, but next_out and avail_out are
unchanged.)

int inflate (z_streamp strm , int flush);
inflate () decompresses as much data as possible, and stops when the input buffer becomes
empty or the output buffer becomes full. It may introduce some output latency (reading input
without producing any output) except when forced to flush.

The detailed semantics are as follows.inflate () performs one or both of the following actions:

Decompress more input starting atnext_in and updatenext_in andavail_in accordingly.
If not all input can be processed (because there is not enough room in the output buffer), next_in
is updated and processing will resume at this point for the next call toinflate ().

Provide more output starting atnext_out and updatenext_out andavail_out accordingly.
inflate () provides as much output as possible, until there is no more input data or no more space
in the output buffer (see below about the flush parameter) .

Before the call toinflate (), the application should ensure that at least one of the actions is possi-
ble, by providing more input and/or consuming more output, and updating the next_∗ and avail_∗
values accordingly. The application can consume the uncompressed output when it wants, for
example when the output buffer is full (avail_out == 0), or after each call toinflate (). If
inflate () returnsZ_OKand with zeroavail_out , it must be called again after making room in

NetBSD 3.0 May 1, 2004 5

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

the output buffer because there might be more output pending.

If the parameterflush is set toZ_SYNC_FLUSH, inflate () flushes as much output as possible
to the output buffer. The flushing behavior ofinflate () is not specified for values of the flush
parameter other thanZ_SYNC_FLUSHand Z_FINISH , but the current implementation actually
flushes as much output as possible anyway.

inflate () should normally be called until it returnsZ_STREAM_ENDor an error. Howev er if all
decompression is to be performed in a single step(a single call to inflate) , the parameterflush
should be set toZ_FINISH . In this case all pending input is processed and all pending output is
flushed;avail_out must be large enough to hold all the uncompressed data.(The size of the
uncompressed data may have been saved by the compressor for this purpose.) The next operation
on this stream must beinflateEnd () to deallocate the decompression state. The use of
Z_FINISH is never required, but can be used to informinflate () that a faster routine may be
used for the singleinflate () call.

If a preset dictionary is needed at this point (seeinflateSetDictionary () below),
inflate () sets strm->adler to the Adler-32 checksum of the dictionary chosen by the compressor
and returnsZ_NEED_DICT; otherwise it sets strm->adler to the Adler-32 checksum of all output
produced so far (that is,total_out bytes) and returnsZ_OK, Z_STREAM_END, or an error code
as described below. At the end of the stream,inflate () checks that its computed Adler-32 check-
sum is equal to that saved by the compressor and returnsZ_STREAM_ENDonly if the checksum is
correct.

inflate () returnsZ_OK if some progress has been made(more input processed or more output
produced) ,Z_STREAM_ENDif the end of the compressed data has been reached and all uncom-
pressed output has been produced,Z_NEED_DICT if a preset dictionary is needed at this point,
Z_DATA_ERRORif the input data was corrupted (input stream not conforming to thezlib format
or incorrect Adler-32 checksum),Z_STREAM_ERRORif the stream structure was inconsistent (for
example, ifnext_in or next_out was NULL), Z_MEM_ERRORif there was not enough mem-
ory, Z_BUF_ERRORif no progress is possible or if there was not enough room in the output buffer
when Z_FINISH is used. In the Z_DATA_ERRORcase, the application may then call
inflateSync () to look for a good compression block.

int inflateEnd (z_streamp strm);
All dynamically allocated data structures for this stream are freed. This function discards any
unprocessed input and does not flush any pending output.

inflateEnd () returnsZ_OK if successful, orZ_STREAM_ERRORif the stream state was incon-
sistent. Inthe error case,msg may be set but then points to a static string(which must not be
deallocated) .

ADVANCED FUNCTIONS
The following functions are needed only in some special applications.

int deflateInit2 (z_streamp strm , int level , int method , int windowBits , int
memLevel , int strategy);

This is another version ofdeflateInit () with more compression options. The fieldsnext_in ,
zalloc , zfree , andopaque must be initialized before by the caller.

Themethod parameter is the compression method. It must beZ_DEFLATEDin this version of the
library.

ThewindowBits parameter is the base two logarithm of the window size (the size of the history
buffer) . It should be in the range 8..15 for this version of the library. Larger values of this parame-
ter result in better compression at the expense of memory usage. The default value is 15 if

NetBSD 3.0 May 1, 2004 6

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

deflateInit () is used instead.

The memLevel parameter specifies how much memory should be allocated for the internal com-
pression state.memLevel=1 uses minimum memory but is slow and reduces compression ratio;
memLevel=9 uses maximum memory for optimal speed.The default value is 8.See〈zconf.h 〉
for total memory usage as a function ofwindowBits andmemLevel .

The strategy parameter is used to tune the compression algorithm.Use the value
Z_DEFAULT_STRATEGYfor normal data;Z_FILTERED for data produced by a filter(or
predictor) ;or Z_HUFFMAN_ONLYto force Huffman encoding only(no string match) . Filtered
data consists mostly of small values with a somewhat random distribution. In this case, the com-
pression algorithm is tuned to compress them better. The effect ofZ_FILTERED is to force more
Huffman coding and less string matching; it is somewhat intermediate betweenZ_DEFAULTand
Z_HUFFMAN_ONLY. Thestrategy parameter only affects the compression ratio but not the cor-
rectness of the compressed output, even if it is not set appropriately.

deflateInit2 () returnsZ_OK if successful,Z_MEM_ERRORif there was not enough memory,
Z_STREAM_ERRORif a parameter is invalid (such as an invalid method) . msg is set to null if
there is no error message.deflateInit2 () does not perform any compression: this will be done
by deflate ().

int deflateSetDictionary (z_streamp strm , const Bytef ∗dictionary , uInt
dictLength);

Initializes the compression dictionary from the given byte sequence without producing any com-
pressed output. This function must be called immediately afterdeflateInit (),
deflateInit2 (), or deflateReset (), before any call to deflate (). The compressor and
decompressor must use exactly the same dictionary (seeinflateSetDictionary ()).

The dictionary should consist of strings(byte sequences) that are likely to be encountered later in
the data to be compressed, with the most commonly used strings preferably put towards the end of
the dictionary. Using a dictionary is most useful when the data to be compressed is short and can be
predicted with good accuracy; the data can then be compressed better than with the default empty
dictionary.

Depending on the size of the compression data structures selected bydeflateInit () or
deflateInit2 (), a part of the dictionary may in effect be discarded, for example if the dictionary
is larger than the window size in deflate () or deflate2 (). Thusthe strings most likely to be
useful should be put at the end of the dictionary, not at the front.

Upon return of this function, strm->adler is set to the Adler-32 value of the dictionary; the decom-
pressor may later use this value to determine which dictionary has been used by the compressor.
(The Adler-32 value applies to the whole dictionary even if only a subset of the dictionary is actu-
ally used by the compressor.)

deflateSetDictionary () returnsZ_OKif successful, orZ_STREAM_ERRORif a parameter is
invalid (such as NULL dictionary) or the stream state is inconsistent (for example ifdeflate ()
has already been called for this stream or if the compression method is bsort).
deflateSetDictionary () does not perform any compression: this will be done by
deflate ().

int deflateCopy (z_streamp dest , z_streamp source);

ThedeflateCopy () function sets the destination stream as a complete copy of the source stream.

This function can be useful when several compression strategies will be tried, for example when
there are several ways of pre-processing the input data with a filter. The streams that will be dis-
carded should then be freed by callingdeflateEnd (). NotethatdeflateCopy () duplicates the

NetBSD 3.0 May 1, 2004 7

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

internal compression state which can be quite large, so this strategy is slow and can consume lots of
memory.

deflateCopy () returnsZ_OK if successful,Z_MEM_ERRORif there was not enough memory,
Z_STREAM_ERRORif the source stream state was inconsistent (such aszalloc being NULL).
msg is left unchanged in both source and destination.

int deflateReset (z_streamp strm);

This function is equivalent todeflateEnd () followed bydeflateInit (), but does not free and
reallocate all the internal compression state. The stream will keep the same compression level and
any other attributes that may have been set bydeflateInit2 ().

deflateReset () returnsZ_OK if successful, orZ_STREAM_ERRORif the source stream state
was inconsistent (such aszalloc or state being NULL).

int deflateParams (z_streamp strm , int level , int strategy);

The deflateParams () function dynamically updates the compression level and compression
strategy. The interpretation of level and strategy is as indeflateInit2 (). This can be used to
switch between compression and straight copy of the input data, or to switch to a different kind of
input data requiring a different strategy. If the compression level is changed, the input available so
far is compressed with the old level (and may be flushed) ; the new lev el will take effect only at the
next call todeflate ().

Before the call todeflateParams (), the stream state must be set as for a call todeflate (),
since the currently available input may have to be compressed and flushed. In particular,
strm->avail_out must be non-zero.

deflateParams () returnsZ_OKif successful,Z_STREAM_ERRORif the source stream state was
inconsistent or if a parameter was invalid, or Z_BUF_ERRORif strm->avail_out was zero.

int inflateInit2 (z_streamp strm , int windowBits);

This is another version ofinflateInit () with an extra parameter. The fields next_in ,
avail_in , zalloc , zfree , andopaque must be initialized before by the caller.

ThewindowBits parameter is the base two logarithm of the maximum window size (the size of
the history buffer) . It should be in the range 8..15 for this version of the library. The default value
is 15 if inflateInit () is used instead. If a compressed stream with a larger window size is given
as input,inflate () will return with the error codeZ_DATA_ERRORinstead of trying to allocate a
larger window.

inflateInit2 () returnsZ_OK if successful,Z_MEM_ERRORif there was not enough memory,
Z_STREAM_ERRORif a parameter is invalid (such as a negative memLevel). msg is set to null if
there is no error message.inflateInit2 () does not perform any decompression apart from
reading thezlib header if present: this will be done byinflate (). (So next_in and
avail_in may be modified, butnext_out andavail_out are unchanged.)

int inflateSetDictionary (z_streamp strm , const Bytef ∗dictionary , uInt
dictLength);

Initializes the decompression dictionary from the given uncompressed byte sequence. This function
must be called immediately after a call toinflate () if this call returnedZ_NEED_DICT. The
dictionary chosen by the compressor can be determined from the Adler-32 value returned by this
call to inflate (). Thecompressor and decompressor must use exactly the same dictionary (see
deflateSetDictionary ()).

NetBSD 3.0 May 1, 2004 8

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

inflateSetDictionary () returnsZ_OK if successful,Z_STREAM_ERRORif a parameter is
invalid (such as NULL dictionary) or the stream state is inconsistent,Z_DATA_ERRORif the
given dictionary doesn’t match the expected one (incorrect Adler-32 value) .
inflateSetDictionary () does not perform any decompression: this will be done by subse-
quent calls ofinflate ().

int inflateSync (z_streamp strm);

Skips invalid compressed data until a full flush point (see above the description ofdeflate () with
Z_FULL_FLUSH) can be found, or until all available input is skipped. No output is provided.

inflateSync () returnsZ_OK if a full flush point has been found,Z_BUF_ERRORif no more
input was provided, Z_DATA_ERRORif no flush point has been found, orZ_STREAM_ERRORif
the stream structure was inconsistent.In the success case, the application may save the current
value of total_in which indicates where valid compressed data was found.In the error case, the
application may repeatedly callinflateSync (), providing more input each time, until success or
end of the input data.

int inflateReset (z_streamp strm);

This function is equivalent to inflateEnd () followed byinflateInit (), but does not free and
reallocate all the internal decompression state. The stream will keep attributes that may have been
set byinflateInit2 ().

inflateReset () returnsZ_OK if successful, orZ_STREAM_ERRORif the source stream state
was inconsistent (such aszalloc or state being NULL).

UTILITY FUNCTIONS
The following utility functions are implemented on top of the basic stream-oriented functions.To simplify
the interface, some default options are assumed (compression level and memory usage, standard memory
allocation functions).The source code of these utility functions can easily be modified if you need special
options.

int compress (Bytef ∗dest , uLongf ∗destLen , const Bytef ∗source , uLong
sourceLen);

Thecompress () function compresses the source buffer into the destination buffer. sourceLen is
the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer,
which must be at least 0.1% larger thansourceLen plus 12 bytes. Upon exit, destLen is the
actual size of the compressed buffer. This function can be used to compress a whole file at once if
the input file is mmap’ed.

compress () returnsZ_OK if successful,Z_MEM_ERRORif there was not enough memory, or
Z_BUF_ERRORif there was not enough room in the output buffer.

int compress2 (Bytef ∗dest , uLongf ∗destLen , const Bytef ∗source , uLong
sourceLen , int level);

The compress2 () function compresses the source buffer into the destination buffer. The level
parameter has the same meaning as indeflateInit (). sourceLen is the byte length of the
source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at
least 0.1% larger thansourceLen plus 12 bytes. Upon exit, destLen is the actual size of the
compressed buffer.

compress2 () returns Z_OK if successful,Z_MEM_ERRORif there was not enough memory,
Z_BUF_ERRORif there was not enough room in the output buffer, or Z_STREAM_ERRORif the
level parameter is invalid.

NetBSD 3.0 May 1, 2004 9

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

int uncompress (Bytef ∗dest , uLongf ∗destLen , const Bytef ∗source , uLong
sourceLen);

The uncompress () function decompresses the source buffer into the destination buffer.
sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the
destination buffer, which must be large enough to hold the entire uncompressed data. (The size of
the uncompressed data must have been saved previously by the compressor and transmitted to the
decompressor by some mechanism outside the scope of this compression library.) Upon exit,
destLen is the actual size of the compressed buffer. This function can be used to decompress a
whole file at once if the input file is mmap’ed.

uncompress () returnsZ_OK if successful,Z_MEM_ERRORif there was not enough memory,
Z_BUF_ERRORif there was not enough room in the output buffer, or Z_DATA_ERRORif the input
data was corrupted.

gzFile gzopen (const char ∗path , const char ∗mode);

Thegzopen () function opens a gzip(.gz) file for reading or writing.The mode parameter is as in
fopen (3) ("rb" or "wb") but can also include a compression level ("wb9") or a strategy: ‘f’ for
filtered data, as in "wb6f"; ‘h’ for Huffman only compression, as in "wb1h".(See the description of
deflateInit2 () for more information about the strategy parameter.)

gzopen () can be used to read a file which is not in gzip format; in this casegzread () will directly
read from the file without decompression.

gzopen () returnsNULL if the file could not be opened or if there was insufficient memory to allo-
cate the (de)compression state; errno can be checked to distinguish the two cases (if errno is zero,
thezlib error isZ_MEM_ERROR).

gzFile gzdopen (int fd , const char ∗mode);

The gzdopen () function associates a gzFile with the file descriptorfd . File descriptors are
obtained from calls like open (2), dup (2), creat (3), pipe (2), or fileno (3) (if the file has been
previously opened withfopen (3)). Themode parameter is as ingzopen ().

The next call togzclose () on the returned gzFile will also close the file descriptor fd, just like
fclose(fdopen(fd), mode) closes the file descriptor fd. If you want to keep fd open, use
gzdopen(dup(fd), mode).

gzdopen () returnsNULL if there was insufficient memory to allocate the (de)compression state.

int gzsetparams (gzFile file , int level , int strategy);

The gzsetparams () function dynamically updates the compression level or strategy. See the
description ofdeflateInit2 () for the meaning of these parameters.

gzsetparams () returnsZ_OK if successful, orZ_STREAM_ERRORif the file was not opened for
writing.

int gzread (gzFile file , voidp buf , unsigned len);

Thegzread () function reads the given number of uncompressed bytes from the compressed file.If
the input file was not in gzip format,gzread () copies the given number of bytes into the buffer.

gzread () returns the number of uncompressed bytes actually read (0 for end of file, −1 for error).

int gzwrite (gzFile file , const voidp buf , unsigned len);

Thegzwrite () function writes the given number of uncompressed bytes into the compressed file.
gzwrite () returns the number of uncompressed bytes actually written(0 in case of error) .

NetBSD 3.0 May 1, 2004 10

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

int gzprintf (gzFile file , const char ∗format , . . .);

Thegzprintf () function converts, formats, and writes the args to the compressed file under con-
trol of the format string, as infprintf (3). gzprintf () returns the number of uncompressed
bytes actually written(0 in case of error) .

int gzputs (gzFile file , const char ∗s);

Thegzputs () function writes the given null-terminated string to the compressed file, excluding the
terminating null character.

gzputs () returns the number of characters written, or −1 in case of error.

char ∗ gzgets (gzFile file , char ∗buf , int len);

The gzgets () function reads bytes from the compressed file until len−1 characters are read, or a
newline character is read and transferred tobuf , or an end-of-file condition is encountered.The
string is then terminated with a null character.

gzgets () returnsbuf , or Z_NULL in case of error.

int gzputc (gzFile file , int c);

The gzputc () function writes c , converted to an unsigned char, into the compressed file.
gzputc () returns the value that was written, or −1 in case of error.

int gzgetc (gzFile file);

Thegzgetc () function reads one byte from the compressed file.gzgetc () returns this byte or −1
in case of end of file or error.

int gzflush (gzFile file , int flush);

The gzflush () function flushes all pending output into the compressed file.The parameter
flush is as in thedeflate () function. The return value is thezlib error number (see function
gzerror () below). gzflush () returnsZ_OK if the flush parameter isZ_FINISH and all output
could be flushed.

gzflush () should be called only when strictly necessary because it can degrade compression.

z_off_t gzseek (gzFile file , z_off_t offset , int whence);

Sets the starting position for the next gzread () or gzwrite () on the given compressed file.The
offset represents a number of bytes in the uncompressed data stream.The whence parameter is
defined as inlseek (2); the valueSEEK_ENDis not supported.

If the file is opened for reading, this function is emulated but can be extremely slow. If the file is
opened for writing, only forward seeks are supported;gzseek () then compresses a sequence of
zeroes up to the new starting position.

gzseek () returns the resulting offset location as measured in bytes from the beginning of the
uncompressed stream, or −1 in case of error, in particular if the file is opened for writing and the
new starting position would be before the current position.

int gzrewind (gzFile file);

Thegzrewind () function rewinds the given file . This function is supported only for reading.

gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET).

z_off_t gztell (gzFile file);

NetBSD 3.0 May 1, 2004 11

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

The gztell () function returns the starting position for the next gzread () or gzwrite () on the
given compressed file. This position represents a number of bytes in the uncompressed data stream.

gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR).

int gzeof (gzFile file);

The gzeof () function returns 1 whenEOFhas previously been detected reading the given input
stream, otherwise zero.

int gzclose (gzFile file);

The gzclose () function flushes all pending output if necessary, closes the compressed file and
deallocates all the (de)compression state. The return value is thezlib error number (see function
gzerror () below).

const char ∗ gzerror (gzFile file , int ∗errnum);

The gzerror () function returns the error message for the last error which occurred on the given
compressedfile . errnum is set to thezlib error number. If an error occurred in the file system
and not in the compression library, errnum is set toZ_ERRNOand the application may consult
errno to get the exact error code.

CHECKSUM FUNCTIONS
These functions are not related to compression but are exported anyway because they might be useful in
applications using the compression library.

uLong adler32 (uLong adler , const Bytef ∗buf , uInt len);
The adler32 () function updates a running Adler-32 checksum with the bytes buf[0..len-1] and
returns the updated checksum.If buf is NULL, this function returns the required initial value for
the checksum.

An Adler-32 checksum is almost as reliable as a CRC32 but can be computed much faster. Usage
example:

uLong adler = adler32(0L, Z_NULL, 0);

while (read_buffer(buffer, length) != EOF) {
adler = adler32(adler, buffer, length);
}
if (adler != original_adler) error();

uLong crc32 (uLong crc , const Bytef ∗buf , uInt len);
The crc32 () function updates a running CRC with the bytes buf[0..len-1] and returns the updated
CRC. If buf is NULL, this function returns the required initial value for the CRC. Pre- and post-
conditioning (one’s complement)is performed within this function so it shouldn’t be done by the
application. Usageexample:

uLong crc = crc32(0L, Z_NULL, 0);

while (read_buffer(buffer, length) != EOF) {
crc = crc32(crc, buffer, length);
}
if (crc != original_crc) error();

NetBSD 3.0 May 1, 2004 12

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

STRUCTURES
struct internal_state;

typedef struct z_stream_s {
Bytef ∗next_in; / ∗ next input byte ∗/
uInt avail_in; / ∗ number of bytes available at next_in ∗/
uLong total_in; / ∗ total nb of input bytes read so far ∗/

Bytef ∗next_out; / ∗ next output byte should be put there ∗/
uInt avail_out; / ∗ remaining free space at next_out ∗/
uLong total_out; / ∗ total nb of bytes output so far ∗/

char ∗msg; / ∗ last error message, NULL if no error ∗/
struct internal_state FAR ∗state; / ∗ not visible by applications ∗/

alloc_func zalloc; / ∗ used to allocate the internal state ∗/
free_func zfree; / ∗ used to free the internal state ∗/
voidpf opaque; / ∗ private data object passed to zalloc and zfree ∗/

int data_type; / ∗best guess about the data type: ascii or binary ∗/
uLong adler; / ∗ Adler-32 value of the uncompressed data ∗/
uLong reserved; / ∗ reserved for future use ∗/

} z _stream;

typedef z_stream FAR ∗ z_streamp;

The application must updatenext_in and avail_in when avail_in has dropped to zero. It must
updatenext_out andavail_out whenavail_out has dropped to zero. The application must initial-
ize zalloc , zfree , and opaque before calling the init function.All other fields are set by the compres-
sion library and must not be updated by the application.

The opaque value provided by the application will be passed as the first parameter for calls tozalloc ()
and zfree (). This can be useful for custom memory management. The compression library attaches no
meaning to theopaque value.

zalloc must returnZ_NULL if there is not enough memory for the object.If zlib is used in a multi-
threaded application,zalloc andzfree must be thread safe.

On 16-bit systems, the functionszalloc andzfree must be able to allocate exactly 65536 bytes, but will
not be required to allocate more than this if the symbol MAXSEG_64K is defined (see〈zconf.h 〉).

WARNING: On MSDOS, pointers returned byzalloc for objects of exactly 65536 bytes∗must∗ have their
offset normalized to zero.The default allocation function provided by this library ensures this (see
zutil.c). To reduce memory requirements and avoid any allocation of 64K objects, at the expense of
compression ratio, compile the library with -DMAX_WBITS=14 (see〈zconf.h 〉).

The fieldstotal_in and total_out can be used for statistics or progress reports.After compression,
total_in holds the total size of the uncompressed data and may be saved for use in the decompressor (par-
ticularly if the decompressor wants to decompress everything in a single step).

CONSTANTS
#define Z_NO_FLUSH 0
#define Z_PARTIAL_FLUSH 1 / ∗ will be removed, use Z_SYNC_FLUSH instead ∗/
#define Z_SYNC_FLUSH 2
#define Z_FULL_FLUSH 3

NetBSD 3.0 May 1, 2004 13

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

#define Z_FINISH 4
/ ∗ Allowed flush values; see deflate() below for details ∗/

#define Z_OK 0
#define Z_STREAM_END 1
#define Z_NEED_DICT 2
#define Z_ERRNO (-1)
#define Z_STREAM_ERROR (-2)
#define Z_DATA_ERROR (-3)
#define Z_MEM_ERROR (-4)
#define Z_BUF_ERROR (-5)
#define Z_VERSION_ERROR (-6)
/ ∗ Return codes for the compression/decompression functions.

∗ Negative values are errors,
∗ positive values are used for special but normal events.
∗/

#define Z_NO_COMPRESSION 0
#define Z_BEST_SPEED 1
#define Z_BEST_COMPRESSION 9
#define Z_DEFAULT_COMPRESSION (-1)
/ ∗ compression levels ∗/

#define Z_FILTERED 1
#define Z_HUFFMAN_ONLY 2
#define Z_DEFAULT_STRATEGY 0
/ ∗ compression strategy; see deflateInit2() below for details ∗/

#define Z_BINARY 0
#define Z_ASCII 1
#define Z_UNKNOWN 2
/ ∗ Possible values of the data_type field ∗/

#define Z_DEFLATED 8
/ ∗ The deflate compression method

∗ (the only one supported in this version)
∗/

#define Z_NULL 0 / ∗ for initializing zalloc, zfree, opaque ∗/

#define zlib_version zlibVersion()
/ ∗ for compatibility with versions < 1.0.2 ∗/

VARIOUS HACKS
deflateInit and inflateInit are macros to allow checking thezlib version and the compiler’s view of
z_stream .

int deflateInit_ (z_stream strm , int level , const char ∗version , int
stream_size);

int inflateInit_ (z_stream strm , const char ∗version , int stream_size);

NetBSD 3.0 May 1, 2004 14

ZLIB (3) NetBSD Library Functions Manual ZLIB (3)

int deflateInit2_ (z_stream strm , int level , int method , int windowBits ,
int memLevel , int strategy , const char ∗version , int stream_size)

int inflateInit2_ (z_stream strm , int windowBits , const char ∗version , int
stream_size);

const char ∗ zError (int err);

int inflateSyncPoint (z_streamp z);

const uLongf ∗ get_crc_table (void);

SEE ALSO
RFC 1950 ZLIB Compressed Data Format Specification.
RFC 1951 DEFLATE Compressed Data Format Specification.
RFC 1952 GZIP File Format Specification.

http://www.gzip.org/zlib/

HISTORY
This manual page is based on an HTML version of〈zlib.h 〉 converted by piaip〈piaip@csie.ntu.edu.tw〉
and was converted to mdoc format by theOpenBSDproject.

AUTHORS
Jean-loup Gailly〈jloup@gzip.org〉
Mark Adler 〈madler@alumni.caltech.edu〉

NetBSD 3.0 May 1, 2004 15

ZOPEN (3) NetBSD Library Functions Manual ZOPEN (3)

NAME
zopen — compressed stream open function

SYNOPSIS
#include <stdio.h>

FILE ∗
zopen (const char ∗path , const char ∗mode, int bits);

DESCRIPTION
The zopen () function opens the compressed file whose name is the string pointed to bypath and asso-
ciates a stream with it.

The argumentmode points to one of the following one-character strings:

“ r ” Open compressed file for reading. The stream is positioned at the beginning of the file.

“w” Truncate file to zero length or create compressed file for writing. The stream is positioned at the
beginning of the file.

Any created files will have mode "S_IRUSR | S_IWUSR| S_IRGRP | S_IWGRP| S_IROTH | S_IWOTH"
(0666) , as modified by the process’ umask value (seeumask(2)).

Files may only be read or written. Seek operations are not allowed.

Thebits argument, if non-zero, is set to the bits code limit.If zero, the default is 16.Seecompress (1)
for more information.

RETURN VALUES
Upon successful completionzopen () returns aFILE pointer. Otherwise,NULL is returned and the global
variableerrno is set to indicate the error.

ERRORS
[EINVAL] Themode or bits arguments specified tozopen () were invalid.

[EFTYPE] The compressed file starts with an invalid header, or the compressed file is compressed with
more bits than can be handled.

Thezopen () function may also fail and seterrno for any of the errors specified for the routinesfopen (3)
or funopen (3).

SEE ALSO
compress (1), fopen (3), funopen (3)

HISTORY
Thezopen function first appeared in 4.4BSD.

BUGS
Thezopen () function may not be portable to systems other thanBSD.

NetBSD 3.0 June 9, 1993 1

