
INTRO (7) NetBSDMiscellaneous Information Manual INTRO (7)

NAME
intro — miscellaneous information pages

DESCRIPTION
This section contains miscellaneous documentation, including information ontroff (1) macro packages.

ascii map of ASCII character set

environ user environment

hier file system hierarchy

hostname host name resolution description

mailaddr mail addressing description

mdoc macros for typesetting−mdoc style manual pages

mdoc.samples
tutorial for writing BSD manuals with−mdoc

operator C operator precedence and order of evaluation

release layout ofNetBSD releases and snapshots

script how interpreter scripts are executed

signal available signals underNetBSD

sticky sticky bit (S_ISVTX) handling

symlink symbolic link handling

HISTORY
intro appeared in 4.2BSD.

NetBSD 3.0 May 6, 2005 1

ASCII (7) NetBSD Miscellaneous Information Manual ASCII (7)

NAME
ascii — octal, hexadecimal and decimalASCII character sets

DESCRIPTION
Theoctal set:

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel
010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 017 si
020 dle 021 dc1 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us
040 sp 041 ! 042 " 043 # 044 $ 045 % 046 & 047 ’
050 (051) 052 ∗ 053 + 054 , 055 - 056 . 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 O
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 135] 136 ˆ 137 _
140 ‘ 141 a 142 b 143 c 144 d 145 e 146 f 147 g
150 h 151 i 152 j 153 k 154 l 155 m 156 n 157 o
160 p 161 q 162 r 163 s 164 t 165 u 166 v 167 w
170 x 171 y 172 z 173 { 174 | 175 } 176 ˜ 177 del

Thehexadecimal set:

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel
08 bs 09 ht 0a nl 0b vt 0c np 0d cr 0e so 0f si
10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em 1a sub 1b esc 1c fs 1d gs 1e rs 1f us
20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ’
28 (29) 2a ∗ 2b + 2c , 2d - 2e . 2f /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3a : 3b ; 3c < 3d = 3e > 3f ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5a Z 5b [5c \ 5d] 5e ˆ 5f _
60 ` 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6a j 6b k 6c l 6d m 6e n 6f o
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7a z 7b { 7c | 7d } 7e ˜ 7f del

Thedecimal set:

0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel
8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si

16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb
24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us
32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ’
40 (41) 42 ∗ 43 + 44 , 45 - 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

NetBSD 3.0 June 5, 1993 1

ASCII (7) NetBSD Miscellaneous Information Manual ASCII (7)

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [92 \ 93] 94 ˆ 95 _
96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 } 126 ˜ 127 del

FILES
/usr/share/misc/ascii

HISTORY
An ascii manual page appeared in Version 7AT&T UNIX .

NetBSD 3.0 June 5, 1993 2

DES_MODES(7) OpenSSL DES_MODES(7)

NAME
des_modes − the variants of DES and other crypto algorithms of OpenSSL

DESCRIPTION
Several crypto algorithms for OpenSSL can be used in a number of modes. Those are used for using block
ciphers in a way similar to stream ciphers, among other things.

OVERVIEW
Electronic Codebook Mode (ECB)

Normally, this is found as the functionalgorithm_ecb_encrypt().

• 64 bits are enciphered at a time.

• The order of the blocks can be rearranged without detection.

• The same plaintext block always produces the same ciphertext block (for the same key) making it vulner-
able to a ’dictionary attack’.

• An error will only affect one ciphertext block.

Cipher Block Chaining Mode (CBC)

Normally, this is found as the functionalgorithm_cbc_encrypt(). Be aware thatdes_cbc_encrypt()is not
really DES CBC(it does not update theIV); usedes_ncbc_encrypt()instead.

• amultiple of 64 bits are enciphered at a time.

• The CBC mode produces the same ciphertext whenever the same plaintext is encrypted using the same
key and starting variable.

• The chaining operation makes the ciphertext blocks dependent on the current and all preceding plaintext
blocks and therefore blocks can not be rearranged.

• The use of different starting variables prevents the same plaintext enciphering to the same ciphertext.

• An error will affect the current and the following ciphertext blocks.

Cipher Feedback Mode (CFB)

Normally, this is found as the functionalgorithm_cfb_encrypt().

• anumber of bits (j) <= 64 are enciphered at a time.

• The CFB mode produces the same ciphertext whenever the same plaintext is encrypted using the same
key and starting variable.

• The chaining operation makes the ciphertext variables dependent on the current and all preceding vari-
ables and therefore j−bit variables are chained together and can not be rearranged.

• The use of different starting variables prevents the same plaintext enciphering to the same ciphertext.

• The strength of theCFB mode depends on the size of k (maximal if j == k). In my implementation this is
always the case.

• Selection of a small value for j will require more cycles through the encipherment algorithm per unit of
plaintext and thus cause greater processing overheads.

• Only multiples of j bits can be enciphered.

• An error will affect the current and the following ciphertext variables.

Output Feedback Mode (OFB)

Normally, this is found as the functionalgorithm_ofb_encrypt().

• anumber of bits (j) <= 64 are enciphered at a time.

• TheOFB mode produces the same ciphertext whenever the same plaintext enciphered using the same key
and starting variable. Moreover, in theOFB mode the same key stream is produced when the same key

0.9.9-dev 2008-05-09 1

DES_MODES(7) OpenSSL DES_MODES(7)

and start variable are used.Consequently, for security reasons a specific start variable should be used
only once for a given key.

• The absence of chaining makes theOFB more vulnerable to specific attacks.

• The use of different start variables values prevents the same plaintext enciphering to the same ciphertext,
by producing different key streams.

• Selection of a small value for j will require more cycles through the encipherment algorithm per unit of
plaintext and thus cause greater processing overheads.

• Only multiples of j bits can be enciphered.

• OFB mode of operation does not extend ciphertext errors in the resultant plaintext output.Every bit error
in the ciphertext causes only one bit to be in error in the deciphered plaintext.

• OFB mode is not self−synchronizing.If the two operation of encipherment and decipherment get out of
synchronism, the system needs to be re−initialized.

• Each re-initialization should use a value of the start variable different from the start variable values used
before with the same key. The reason for this is that an identical bit stream would be produced each time
from the same parameters. This would be susceptible to a ’known plaintext’ attack.

Tr iple ECB Mode

Normally, this is found as the functionalgorithm_ecb3_encrypt().

• Encrypt with key1, decrypt with key2 and encrypt with key3 again.

• As for ECB encryption but increases the key length to 168 bits. There are theoretic attacks that can be
used that make the effective key length 112 bits, but this attack also requires 2ˆ56 blocks of memory, not
very likely, even for theNSA.

• If both keys are the same it is equivalent to encrypting once with just one key.

• If the first and last key are the same, the key length is 112 bits.There are attacks that could reduce the
effective key strength to only slightly more than 56 bits, but these require a lot of memory.

• If all 3 keys are the same, this is effectively the same as normal ecb mode.

Tr iple CBC Mode

Normally, this is found as the functionalgorithm_ede3_cbc_encrypt().

• Encrypt with key1, decrypt with key2 and then encrypt with key3.

• As for CBC encryption but increases the key length to 168 bits with the same restrictions as for triple ecb
mode.

NOTES
This text was been written in large parts by Eric Young in his original documentation for SSLeay, the pre-
decessor of OpenSSL. In turn, he attributed it to:

AS 2805.5.2
Australian Standard
Electronic funds transfer - Requirements for interfaces,
Part 5.2: Modes of operation for an n-bit block cipher algorithm
Appendix A

SEE ALSO
blowfish(3), des(3), idea(3), rc2 (3)

0.9.9-dev 2008-05-09 2

des_modes(7) libdes des_modes(7)

NN AAMM EE
Modes ofDES− the variants ofDESand other crypto algorithms of OpenSSL

DDEESSCCRRII PPTTII OONN
Several crypto algorithms for OpenSSL can be used in a number of modes. Those are used for using block
ciphers in a way similar to stream ciphers, among other things.

OO VVEERRVVIIEEWW
EElleecctt rr oonniicc CCooddeebbooookk MMooddee ((EECCBB))

Normally, this is found as the functionalgorithm_ecb_encrypt().

• 64 bits are enciphered at a time.

• The order of the blocks can be rearranged without detection.

• The same plaintext block always produces the same ciphertext block (for the same key) making it vulner-
able to a ’dictionary attack’.

• An error will only affect one ciphertext block.

CCiipphheerr BBlloocckk CChhaaiinniinngg MMooddee ((CCBBCC))

Normally, this is found as the functionalgorithm_cbc_encrypt(). Be aware thatdes_cbc_encrypt()is not
really DES CBC(it does not update theIV); usedes_ncbc_encrypt()instead.

• amultiple of 64 bits are enciphered at a time.

• The CBC mode produces the same ciphertext whenever the same plaintext is encrypted using the same
key and starting variable.

• The chaining operation makes the ciphertext blocks dependent on the current and all preceding plaintext
blocks and therefore blocks can not be rearranged.

• The use of different starting variables prevents the same plaintext enciphering to the same ciphertext.

• An error will affect the current and the following ciphertext blocks.

CCiipphheerr FFeeeeddbbaacckk MMooddee ((CCFFBB))

Normally, this is found as the functionalgorithm_cfb_encrypt().

• anumber of bits (j) <= 64 are enciphered at a time.

• The CFB mode produces the same ciphertext whenever the same plaintext is encrypted using the same
key and starting variable.

• The chaining operation makes the ciphertext variables dependent on the current and all preceding vari-
ables and therefore j-bit variables are chained together and can not be rearranged.

• The use of different starting variables prevents the same plaintext enciphering to the same ciphertext.

• The strength of theCFB mode depends on the size of k (maximal if j == k). In my implementation this is
always the case.

• Selection of a small value for j will require more cycles through the encipherment algorithm per unit of
plaintext and thus cause greater processing overheads.

• Only multiples of j bits can be enciphered.

• An error will affect the current and the following ciphertext variables.

OOuuttppuutt FFeeeeddbbaacckk MMooddee ((OOFFBB))

Normally, this is found as the functionalgorithm_ofb_encrypt().

• anumber of bits (j) <= 64 are enciphered at a time.

2003-07-23 0.9.6j 1

des_modes(7) libdes des_modes(7)

• TheOFB mode produces the same ciphertext whenever the same plaintext enciphered using the same key
and starting variable. Moreover, in theOFB mode the same key stream is produced when the same key
and start variable are used.Consequently, for security reasons a specific start variable should be used
only once for a given key.

• The absence of chaining makes theOFB more vulnerable to specific attacks.

• The use of different start variables values prevents the same plaintext enciphering to the same ciphertext,
by producing different key streams.

• Selection of a small value for j will require more cycles through the encipherment algorithm per unit of
plaintext and thus cause greater processing overheads.

• Only multiples of j bits can be enciphered.

• OFB mode of operation does not extend ciphertext errors in the resultant plaintext output.Every bit error
in the ciphertext causes only one bit to be in error in the deciphered plaintext.

• OFB mode is not self-synchronizing.If the two operation of encipherment and decipherment get out of
synchronism, the system needs to be re-initialized.

• Each re-initialization should use a value of the start variable different from the start variable values used
before with the same key. The reason for this is that an identical bit stream would be produced each time
from the same parameters. This would be susceptible to a ’known plaintext’ attack.

TT rriippllee EECCBB MM ooddee

Normally, this is found as the functionalgorithm_ecb3_encrypt().

• Encrypt with key1, decrypt with key2 and encrypt with key3 again.

• As for ECB encryption but increases the key length to 168 bits. There are theoretic attacks that can be
used that make the effective key length 112 bits, but this attack also requires 2ˆ56 blocks of memory, not
very likely, even for theNSA.

• If both keys are the same it is equivalent to encrypting once with just one key.

• If the first and last key are the same, the key length is 112 bits.There are attacks that could reduce the
effective key strength to only slightly more than 56 bits, but these require a lot of memory.

• If all 3 keys are the same, this is effectively the same as normal ecb mode.

TT rriippllee CCBBCC MM ooddee

Normally, this is found as the functionalgorithm_ede3_cbc_encrypt().

• Encrypt with key1, decrypt with key2 and then encrypt with key3.

• As for CBC encryption but increases the key length to 168 bits with the same restrictions as for triple ecb
mode.

NNOO TTEESS
This text was been written in large parts by Eric Young in his original documentation for SSLeay, the pre-
decessor of OpenSSL. In turn, he attributed it to:

AS 2805.5.2
Australian Standard
Electronic funds transfer - Requirements for interfaces,
Part 5.2: Modes of operation for an n-bit block cipher algorithm
Appendix A

SSEEEE AALLSSOO
blowfish(3), des(3), idea(3), rc2(3)

2003-07-23 0.9.6j 2

ENVIRON (7) NetBSD Miscellaneous Information Manual ENVIRON (7)

NAME
environ — user process environment

SYNOPSIS
extern char ∗∗environ;

DESCRIPTION
An array of strings called theenvironmentis made available byexecve (2) when a process begins. Bycon-
vention these strings have the form “name=value”. The following names are used by various commands:

AUDIOCTLDEVICE The name of the audio control device to be used byaudioctl (1), audioplay (1)
andaudiorecord (1).

AUDIODEVICE The name of the audio device to be used byaudioplay (1) andaudiorecord (1).

BLOCKSIZE The size of the block units used by several commands, most notablydf (1), du(1)
andls (1). BLOCKSIZEmay be specified in units of a byte by specifying a number,
in units of a kilobyte by specifying a number followed by “K” or “k”, in units of a
megabyte by specifying a number followed by “M” or “m” and in units of a gigabyte
by specifying a number followed by “G” or “g”. Sizes less than 512 bytes or greater
than a gigabyte are ignored.

EXINIT A startup list of commands read byex (1) andvi (1).

HOME A user’s login directory, set bylogin (1) from the password filepasswd (5).

LANG Default for all NLS categories. Onlyused ifLC_ALL or the environment variable
for a particular NLS category is not provided (LC_COLLATE, LC_CTYPE,
LC_MESSAGES, LC_MONETARY, LC_NUMERIC, or LC_TIME).

LC_ALL Override for all NLS categories. If set, overrides the values ofLC_COLLATE,
LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, andLC_TIME.

LC_COLLATE NLS string-collation order information.

LC_CTYPE NLS character classification, case conversion, and other character attributes.

LC_MESSAGES NLS format for affirmative and negative responses.

LC_MONETARY NLS rules and symbols for formatting monetary numeric information.

LC_NUMERIC NLS rules and symbols for formatting nonmonetary numeric information.

LC_TIME NLS rules and symbols for formatting time and date information.

LIBC_DIAGASSERT Control how the _DIAGASSERT() macro (from〈assert.h 〉) behaves once the
assertion is raised. Refer to_DIAGASSERT(3) for more information.

LOGNAME The login name of the user.

MALLOC_OPTIONS Control the behaviour of themalloc () function. Refer tomalloc (3) for more
information.

MIXERDEVICE The name of the audio mixer device to be used bymixerctl (1).

PAGER The program used for paginating the output of several commands such asman(1). If
null or not set, the standard pagination programmore (1) will be used.

PATH The sequence of directories, separated by colons, searched bycsh (1), sh (1),
system (3), execvp (3), etc, when looking for an executable file. PATH is set to
“/usr/bin:/bin:/usr/pkg/bin:/usr/local/bin” initially bylogin (1).

NetBSD 3.0 July 5, 2005 1

ENVIRON (7) NetBSD Miscellaneous Information Manual ENVIRON (7)

PRINTER The name of the default printer to be used bylpr (1), lpq (1), andlprm (1).

RCMD_CMD When using thercmd (3) function, this variable is used as the program to run instead
of rcmd (1).

SHELL The full pathname of the user’s login shell.

TERM The kind of terminal for which output is to be prepared. This information is used by
commands, such asnroff (1) which may exploit special terminal capabilities.See
/usr/share/misc/termcap (termcap (5)) for a list of terminal types.

TERMCAP The string describing the terminal in TERM, or, if it begins with a ’/’, the name of the
termcap file. SeeTERMPATHbelow, termcap (5), andtermcap (3).

TERMPATH A sequence of pathnames of termcap files, separated by colons or spaces, which are
searched for terminal descriptions in the order listed.Having no TERMPATHis
equivalent to a TERMPATH of
“$HOME/.termcap:/usr/share/misc/termcap ”. TERMPATHis ignored
if TERMCAPcontains a full pathname.

TIMEFORMAT A strftime (3) format string that may be used by programs such asdump(8) for
formatting timestamps.

TMPDIR The directory in which to store temporary files. Most applications use either/tmp
or /var/tmp . Setting this variable will make them use another directory.

TZ The timezone to use when displaying dates. The normal format is a pathname rela-
tive to /usr/share/zoneinfo . For example, the commandenv
TZ=US/Pacific date displays the current time in California.Seetzset (3) for
more information.

USER The login name of the user. It is recommended that portable applications use
LOGNAMEinstead.

Further names may be placed in the environment by theexport command andname=value arguments in
sh (1), or by thesetenv command if you usecsh (1). It is unwise to change certainsh (1) variables that
are frequently exported by.profile files, such asMAIL, PS1, PS2, and IFS , unless you know what you
are doing.

SEE ALSO
audioctl (1), audioplay (1), audiorecord (1), csh (1), ex (1), login (1), man(1), more (1), sh (1),
execve (2), _DIAGASSERT(3), execle (3), malloc (3), rcmd (3), system (3), termcap (3), audio (4),
termcap (5), nls (7), dump(8)

HISTORY
Theenviron manual page appeared in 4.2BSD.

NetBSD 3.0 July 5, 2005 2

HIER (7) NetBSD Miscellaneous Information Manual HIER (7)

NAME
hier — layout of filesystems

DESCRIPTION
An outline of the filesystem hierarchy.

Naming is very important.TheUNIX System relies on filename conventions for much of its power as a sys-
tem. Thefollowing file system layout describes generally where things are and what they are, with refer-
ences to other man pages for more detailed documentation.

Not all files will be in every system.

/ root directory of the system

/COPYRIGHT
system copyright notice, most often put onCD-ROM distributions.

/[a-z]/ user filesystems

/altroot/ alternate root filesystem, in case of disaster

/bin/ utilities used in both single and multi-user environments

/boot∗ second-stage boot loader(s) for some platforms; seeinstallboot (8)

/dev/ block, character and other special device files

MAKEDEV
script for creating device files; seemakedev (8)

console the computer’s console device
drum system swap space; seedrum (4)
fd/ file descriptor files; seefd (4)
klog kernel logging device; seesyslog (3)
kmem kernel virtual memory device; seemem(4)
log UNIX domain datagram log socket; seesyslogd (8)
mem kernel physical memory device; seemem(4)
null the null device; seenull (4)
stderr
stdin
stdout file descriptor files; seefd (4)
tty process’ controlling terminal device; seetty (4)
zero the zero device; seezero (4)

/etc/ system configuration files and scripts

amd∗ configuration files foramd(8)
changelist files backed up by the security script
crontab schedule used by thecron (8) daemon
csh.cshrc
csh.login
csh.logout system-wide scripts forcsh (1)
daily script run each day bycron (8)
daily.conf configuration file fordaily; seedaily.conf (5)
defaults/ default configuration files read by various/etc/ ∗.conf files
disktab disk description file, seedisktab (5)

NetBSD 3.0 May 22, 2008 1

HIER (7) NetBSD Miscellaneous Information Manual HIER (7)

dm.conf dungeon master configuration; seedm.conf (5)
dumpdates dump history; seedump(8)
exports filesystem export information; seemountd (8)
fstab filesystem information; seefstab (5) andmount (8)
ftpusers users deniedftp (1) access; seeftpd (8)
ftpwelcome ftp (1) initial message; seeftpd (8)
gettytab terminal configuration database; seegettytab (5)
group group permissions file; seegroup (5)
hosts host name database backup fornamed(8); seehosts (5)
hosts.equiv trusted machines with equivalent user ID’s
hosts.lpd trusted machines with printing privileges
inetd.conf Internet server configuration file; seeinetd (8)
kerberosV/ configuration files for the kerberos version V; seekerberos (8)
localtime local timezone information; seectime (3)
mail/ configuration files forsendmail (8)

aliases∗ name alias files
sendmail.∗ sendmail (8) configuration information

mail.rc system-wide initialization script formail (1)
man.conf configuration file forman(1); seeman.conf (5)
master.passwd Main password file, readable only by root; seepasswd (5)
mk.conf optional file containingmake(1) variables, read by pkgsrc and the system

sources.
monthly script run each month bycron (8)
monthly.conf configuration file formonthly; seemonthly.conf (5)
motd system message of the day
mtree/ mtree configuration files; seemtree (8)
named.∗
namedb/ named configuration files and databases; seenamed(8)
netgroup network groups; seenetgroup (5)
netstart network startup script
networks network name data base; seenetworks (5)
passwd World readable password file generated from master.passwd; see

passwd (5), pwd_mkdb(8)
phones remote host phone number data base; seephones (5)
printcap system printer configuration; seeprintcap (5)
protocols protocol name database; seeprotocols (5)
pwd.db database form of passwd file; seepwd_mkdb(8)
rc master system startup script invoked by init (8); seerc (8)
rc.conf configuration file for system startup and shutdown scripts; see

rc.conf (5)
rc.d/ directory containing per-subsystem startup and shutdown scripts; see

rc (8)
rc.local locally editable system startup script
rc.shutdown master system shutdown script invoked by shutdown (8); seerc (8)
remote remote host description file; seeremote (5)
security daily (in)security script run bycron (8)
security.conf configuration file forsecurity; seesecurity.conf (5)
services service name data base; seeservices (5)
shells list of permitted shells; seeshells (5)

NetBSD 3.0 May 22, 2008 2

HIER (7) NetBSD Miscellaneous Information Manual HIER (7)

sliphome/ SLIP login/logout scripts; seesliplogin (8)
spwd.db database form of master.passwd file; seepwd_mkdb(8)
syslog.conf syslogd (8) configuration file; seesyslog.conf (5)
termcap terminal type database; seetermcap (3)
ttys terminal initialization information; seettys (5)
uucp/ UUCP configuration files; seeuucp (1) anduucico (8).
weekly script run each week bycron (8)
weekly.conf configuration file forweekly; seeweekly.conf (5)

/home/ mount point for the automounter; seeamd(8)

/lib/ dynamic linked libraries used by dynamic linked programs (such as those in/bin/ and
/sbin/) that cannot rely upon/usr/lib/ being available.

/libexec/ system utilities (such as the dynamic linker) required by programs and libraries that cannot
rely upon/usr/libexec/ being available.

/mnt/ empty directory commonly used by system administrators as a temporary mount point

/netbsd pure kernel executable (the operating system loaded into memory at boot time).

/rescue/ statically linked rescue tools, for use in system recovery

/root/ home directory for the super-user

.cshrc super-user start-up file

.login super-user start-up file

.profile super-user start-up file

.rhosts super-user id mapping between machines

/sbin/ system programs and administration utilities used in both single-user and multi-user environ-
ments

/stand/ programs used in a standalone environment

/tmp/ temporary files, usually amfs (8) memory-based filesystem (the contents of/tmp are usually
notpreserved across a system reboot)

/usr/ contains the majority of the system utilities and files

X11R6/ X11 files

bin/ X11 binaries
include/ X11 include files
lib/ X11 libraries

bin/ common utilities, programming tools, and applications
games/ the important stuff
include/ standard C include files

arpa/ include files for Internet service protocols
atf/ include files for the Automated Testing Framework; seeatf (1)
g++/ include files for the C++ compiler
machine/ machine specific include files
net/
netatalk/ C include files for AppleTalk protocols miscellaneous network

include files; seeatalk (4)

NetBSD 3.0 May 22, 2008 3

HIER (7) NetBSD Miscellaneous Information Manual HIER (7)

netinet/ include files for Internet standard protocols; seeinet (4)
netinet6/ include files for Internet protocol version 6; seeinet6 (4)
netiso/ include files for ISO standard protocols; seeiso (4)
netkey/ include files for secret key management, used for security proto-

cols; seeipsec (4)
netnatm/ C include files for native mode ATM
nfs/ C include files for NFS (Network File System)
protocols/ C include files for Berkeley service protocols
sys/ system C include files (kernel data structures)
ufs/ C include files for UFS (The U-word File System)

lib/ archive, profiled, position independent archive, and shared libraries
libdata/ miscellaneous utility data files
libexec/ system daemons & system utilities (executed by other programs)

uucp/ UUCP binaries and scripts (historically placed; to be moved)

lkm/ loadable kernel modules
mdec/ boot blocks, etc.
obj/ architecture-specific target tree produced by building the /usr/src tree; nor-

mally a symbolic link or mounted filesystem
pkg/ packages maintained by groups other than theNetBSD Project.

bin/ contributed binaries
include/ contributed include files
lib/ contributed libraries
libdata/ contributed data files
libexec/ contributed daemons
sbin/ contributed system utilities

pkgsrc/ build descriptions ("packages") for theNetBSD packages system.

distfiles/ Where unchanged source archives are fetched to/stored
packages/ Where compiled binary packages are stored

There are also several other subdirectories which contain packages of a certain
category, e.g., archivers, graphics, ...

sbin/ system daemons and system utilities (normally executed by the super-user)
share/ architecture-independent text files

calendar/ a variety of calendar files; seecalendar (1)
dict/ word lists; seelook (1) andspell (1)

words common words
web2 words of Webster’s 2nd International
papers/ reference databases; seerefer (1)
special/ custom word lists; seespell (1)

doc/ miscellaneous documentation; source for most of the printed
4.3BSD manuals (available from theUSENIX association)

games/ text files used by various games
i18n/ internationalization databases; seeiconv (3)
lkm/ documentation on the loadable kernel modules interface
locale/ locale databases and gettext message catalogs; see

setlocale (3) andgettext (3)

NetBSD 3.0 May 22, 2008 4

HIER (7) NetBSD Miscellaneous Information Manual HIER (7)

man/ formatted manual pages
me/ macros for use with theme(7) macro package
misc/ miscellaneous system-wide text files

termcap terminal characteristics database; seetermcap (5)

mk/ include files formake(1)
ms/ macros for use with thems(7) macro package
nls/ message catalogs; seecatgets (3)
skel/ sample initialization files for new user accounts
tabset/ tab description files for a variety of terminals, used in the termcap

file; seetermcap (5)
tmac/ text processing macros; seenroff (1) andtroff (1)
zoneinfo/ timezone configuration information; seetzfile (5)

tests/ test programs; seeatf-run (1) for information on how to run them

/usr/src/ NetBSD and local source files

bin/ source for utilities/files in/bin
common/ sources shared between kernel and userland
crypto/ cryptographic source, which may have import or export restrictions
dist/ third-party ‘virgin’ source code, referenced by other parts of the source tree
distrib/ tools and data-files for making distributions
doc/ documentation about the source tree (i.e., about the tree, not about how to use

the built software.)
etc/ source (usually example files) for files in/etc
external/ source for programs from external third parties (whereNetBSD is the not the

primary maintainer), grouped by license, and then products per license

bsd/ BSD (or equivalent) licensed software, possibly with the “advertising
clause”

games/ source for utilities/files in/usr/games
gnu/ source for programs covered by theGNU license (or similar)
include/ source for files in/usr/include
lib/ source for libraries in/usr/lib
libexec/ source for utilities/files in/usr/libexec
regress/ various regression tests
rescue/ source/makefiles for /rescue
sbin/ source for utilities/files in/sbin
share/ source for files in/usr/share

doc/

papers/ source for various Berkeley technical papers
psd/ source for Programmer’s Supplementary Documents
smm/ source for System Manager’s Manual
usd/ source for User’s Supplementary Documents

sys/ kernel source files

arch/ architecture-specific support

acorn26/ Acorn Archimedes, A-series and R-
series systems

NetBSD 3.0 May 22, 2008 5

HIER (7) NetBSD Miscellaneous Information Manual HIER (7)

acorn32/ Acorn RiscPC/A7000 and VLSI RC7500
algor/ Algorithmics Ltd. MIPS evaluations

boards
alpha/ Digital/Compaq Alpha
amd64/ Computers with x86_64 capable CPUs
amiga/ Commodore Amiga and MacroSystem

DraCo
amigappc/ PowerPC based Amiga boards
arc/ MIPS-based machines following the

Advanced RISC Computing spec
arm/ ARM processor general support
atari/ Atari TT030, Falcon and Hades
bebox/ Be Inc. BeBox
cats/ Chalice Technology’s CATS and Intel’s

EBSA-285 evaluation boards
cesfic/ CES FIC8234 VME processor board
cobalt/ Cobalt Networks’ MIPS-based

Microserver
dreamcast/ Sega Dreamcast game console
evbarm/ ARM based evaluation boards
evbmips/ MIPS based evaluation boards
evbppc/ PowerPC based evaluation boards and

appliances
evbsh3/ SH3/SH4 based evaluation boards
ews4800mips/ NEC’s MIPS based EWS4800 worksta-

tions
hp300/ Hewlett-Packard 9000/300 and 400

680x0-based workstations
hp700/ Hewlett-Packard 9000/700 HPPA based

workstations
hpcarm/ StrongARM based WinCE PDA

machines
hpcmips/ MIPS based WinCE PDA machines
hpcsh/ Hitachi SH3/4 based WinCE PDA

machines
hppa/ HPPA processor general support
i386/ 80x86-based IBM PCs and clones
ibmnws/ IBM Network Station 1000
iyonix/ Castle Technology’s Iyonix ARM based

PCs
luna68k/ Omron Tateishi Electric’s 680x0-based

LUNA workstations
m68k/ 680x0 processor general support
mac68k/ Apple Macintosh with 68k CPU
macppc/ Apple Power Macintosh and clones
mips/ MIPS processor general support
mipsco/ MIPS Computer Systems Inc. family of

workstations and servers
mmeye/ Brains Inc. SH3 based mmEye multime-

dia server

NetBSD 3.0 May 22, 2008 6

HIER (7) NetBSD Miscellaneous Information Manual HIER (7)

mvme68k/ Motorola MVME 680x0-based SBCs
mvmeppc/ Motorola PowerPC VME SBCs
netwinder/ StrongARM based NetWinder machines
news68k/ Sony’s 680x0-based NEWS workstations
newsmips/ Sony’s MIPS-based NEWS workstations
next68k/ NeXT 68k "black" hardware
ofppc/ Open Firmware PowerPC workstations
playstation2/ SONY PlayStation 2
pmax/ Digital MIPS-based DECstations and

DECsystems
powerpc/ PowerPC processor support
prep/ PReP (PowerPC Reference Platform)

and CHRP machines
sandpoint/ Motorola Sandpoint reference platform
sbmips/ Broadcom/SiByte evaluation boards
sgimips/ Silicon Graphics’ MIPS-based worksta-

tions
sh3/ SH3/SH4 processor general support
shark/ Digital DNARD ("Shark")
sparc/ Sun Microsystems SPARC (32-bit) and

UltraSPARC (in 32-bit mode)
sparc64/ Sun Microsystems UltraSPARC (in

native 64-bit mode)
sun2/ Sun Microsystems 68010-based Sun 2

architecture
sun3/ Sun Microsystems 68020/68030-based

Sun 3/3x architecture
sun68k/ 680x0-based Sun architecture general

support
vax/ Digital VAX
x68k/ Sharp X680x0 680x0-based workstations
x86/ General support for PC/AT compatibles

with ia32 or x86_64 CPUs
xen/ The Xen virtual machine monitor
zaurus/ Sharp C3x00 Arm based PDA

compat/ kernel compatibility modules directory

common/ common compatibility routines, old 4BSD and
NetBSD routines.

freebsd/ support for FreeBSD binaries; see
compat_freebsd (8)

hpux/ support for 68000 HP-UX binaries
ibcs2/ support for Intel Binary binaries
linux/ support for Linux binaries; see

compat_linux (8)
m68k4k/ support for 4KB page 68000 binaries
netbsd32/ support forNetBSD 32-bit binaries on 64 bit

platforms with compatible CPU families
osf1/ support for Digital UNIX (formerly OSF/1)

binaries

NetBSD 3.0 May 22, 2008 7

HIER (7) NetBSD Miscellaneous Information Manual HIER (7)

ossaudio/ support for OSS audio
pecoff/ support for Win32 binaries; see

compat_pecoff (8)
sunos/ support for SunOS 4.x binaries; see

compat_sunos (8)
svr4/ support for System V Release 4 binaries; see

compat_svr4 (8)
ultrix/ support forULTRIX binaries
vax1k/ support for older VAX binaries that started on

a 1 KB boundary

conf/ architecture independent configuration directory
crypto/ cryptographic kernel source, which may have import or

export restrictions
ddb/ in kernel debugger
dev/ architecture independent device support
fs/ miscellaneous file systems

adosfs/ AmigaDOS file-system support; see
mount_ados (8)

cd9660/ support for the ISO-9660 filesystem; see
mount_cd9660 (8)

filecorefs/ support for the Acorn RISC OS filecore
filesystem; seemount_filecore (8)

msdosfs/ MS-DOSfile system; seemount_msdos (8)
ntfs/ NTFS filesystem support; see

mount_ntfs (8)
ptyfs/ pseudo-terminal device filesystem; see

mount_ptyfs (8)
smbfs/ SMB/CIFS filesystem support; see

mount_smbfs (8)
union/ union file system; seemount_union (8)

gdbscripts/ support for accessing kernel structures from within the debug-
gergdb (1).

ipkdb/ support for kernel debugging over the network

kern/ support for the high kernel (system calls)
lib/ kernel libraries

libkern/ C library routines used in the kernel
libsa/ machine independent stand alone kernel library
libz/ compression library

lkm/ loadable kernel modules

compat/ LKM support compatibility modules;cur-
rently unsupported.

netinet/ LKM support networking modules

if_ipl/ LKM for IP-Filter

vfs/ LKM support for file systems.

miscfs/ miscellaneous file systems

NetBSD 3.0 May 22, 2008 8

HIER (7) NetBSD Miscellaneous Information Manual HIER (7)

deadfs/ kernel only dead file system
fdesc/ file descriptor file system; seemount_fdesc (8)
fifofs/ POSIX FIFO support
genfs/ kernel only generic file system
kernfs/ kernel namespace file system; see

mount_kernfs (8)
nullfs/ loop back file system; seemount_null (8)
overlay/ overlay file system; seemount_overlay (8)
portal/ portal file system; seemount_portal (8)
procfs/ process file system; seemount_procfs (8)
specfs/ kernel only special file system
syncfs/ kernel trickle sync algorithm
umapfs/ user and group re-mapping file system; see

mount_umap (8)

net/ miscellaneous networking support
netatalk/ AppleTalk networking support
netinet/ IP networking support
netinet6/ IPv6 networking support
netiso/ ISO networking support
netkey/ Ke y database for IPsec networking support
netnatm/ ATM networking support
nfs/ NFS support
stand/ kernel standalone support
sys/ kernel (and system) include files
ufs/ local filesystem support

ffs/ the Berkeley Fast File System
lfs/ the log-structured file system
mfs/ the in-memory file system
ufs/ sharedUNIX file system support

uvm/ UVM virtual memory system
tests/ source for test programs in/usr/tests
usr.bin/ source for utilities/files in/usr/bin
usr.sbin/ source for utilities/files in/usr/sbin

/var/ multi-purpose log, temporary, transient, and spool files

account/ system accounting files

acct execution accounting file; seeacct (5)

at/ timed command scheduling files; seeat (1)
backups/ miscellaneous backup files, largely of files found in/etc
chroot/ home directories of applications which are run in achroot (8) “cage”.
crash/ system crash dumps; seesavecore (8)
cron/ scheduled commands configuration files; seecron (8)
db/ miscellaneous automatically generated system-specific database files, and per-

sistent files used in the maintenance of third party software.

pkg default location for metadata related to third party software
packages. Seepkg_install (1) for more details of the
NetBSD Packages Collection, or pkgsrc.

NetBSD 3.0 May 22, 2008 9

HIER (7) NetBSD Miscellaneous Information Manual HIER (7)

games/ miscellaneous game status and log files
heimdal/ Kerberos 5 KDC database; seekdc (8)
log/ miscellaneous system log files

amd.∗ amd(8) logs
daily.out output of the last run of the/etc/daily script
ftp.∗ ftp (1) logs
kerberos.∗ kerberos (8) logs
lastlog system last time logged in log; seeutmp (5)
lpd-errs.∗ printer daemon error logs; seelpd (8)
maillog.∗ sendmail (8) log files
messages.∗ general system information log
monthly.out output of the last run of the/etc/monthly script
secure sensitive security information log
sendmail.st sendmail (8) statistics
timed.∗ timed (8) logs
weekly.out output of the last run of the/etc/weekly script
wtmp login/logout log; seeutmp (5)

mail/ user system mailboxes
msgs/ system messages; seemsgs(1)
preserve/ temporary home of files preserved after an accidental death ofex (1) orvi (1)
quotas/ filesystem quota information
run/ system information files, rebuilt after each reboot

utmp database of current users; seeutmp (5)

rwho/ rwho data files; seerwhod (8), rwho (1), andruptime (1)
spool/ miscellaneous printer and mail system spooling directories

ftp/ commonly “˜ftp”, the anonymous ftp root directory; see
ftpd (8)

mqueue/ sendmail mail queue; seesendmail (8)
news/ Network news archival and spooling directories
output/ printer spooling directories
postfix/ postfix mail queue; seepostfix (1)
uucp/ uucp spool directory
uucppublic/ commonly “˜uucp”, the uucp public temporary directory; see

uucp (1)

tmp/ temporary files that are not discarded between system reboots

vi.recover/ recovery directory for newvi (1)

yp/ Databases and configuration for the NIS (YP) system; seenis (8).

SEE ALSO
apropos (1), ls (1), whatis (1), whereis (1), which (1)

HISTORY
A hier manual page appeared in Version 7AT&T UNIX .

NetBSD 3.0 May 22, 2008 10

HOSTNAME (7) NetBSD Miscellaneous Information Manual HOSTNAME (7)

NAME
hostname — host name resolution description

DESCRIPTION
Hostnames are domains, where a domain is a hierarchical, dot-separated list of subdomains; for example, the
machine monet, in the Berkeley subdomain of the EDU subdomain of the Internet would be represented as

monet.Berkeley.EDU

(with no trailing dot).

Hostnames are often used with network client and server programs, which must generally translate the name
to an address for use. (This function is generally performed by the library routinegethostbyname (3).)
Hostnames are resolved by the Internet name resolver in the following fashion.

If the name consists of a single component, i.e. contains no dot, and if the environment variable
“HOSTALIASES” i s set to the name of a file, that file is searched for any string matching the input host-
name. Thefile should consist of lines made up of two white-space separated strings, the first of which is the
hostname alias, and the second of which is the complete hostname to be substituted for that alias.If a case-
insensitive match is found between the hostname to be resolved and the first field of a line in the file, the sub-
stituted name is looked up with no further processing.

If the input name ends with a trailing dot, the trailing dot is removed, and the remaining name is looked up
with no further processing.

If the input name does not end with a trailing dot, it is looked up by searching through a list of domains until
a match is found. The default search list includes first the local domain, then its parent domains with at least
2 name components (longest first).For example, in the domain CS.Berkeley.EDU, the name lithium.CChem
will be checked first as lithium.CChem.CS.Berkeley.EDU and then as lithium.CChem.Berkeley.EDU.
Lithium.CChem.EDU will not be tried, as there is only one component remaining from the local domain.
The search path can be changed from the default by a system-wide configuration file (see
resolv.conf (5)).

SEE ALSO
gethostbyname (3), resolv.conf (5), mailaddr (7), named(8)

HISTORY
hostname appeared in 4.2BSD.

NetBSD 3.0 December 30, 1993 1

MAILADDR (7) NetBSD Miscellaneous Information Manual MAILADDR (7)

NAME
mailaddr — mail addressing description

DESCRIPTION
Mail addresses are based on the Internet protocol listed at the end of this manual page. These addresses are
in the general format

user@domain

where a domain is a hierarchical dot separated list of subdomains.For example, a valid address is:

eric@CS.Berkeley.EDU

Unlike some other (now obsolete) forms of addressing, domains do not imply any routing, or the existence of
a particular host. Simply because mail may be sent to ‘‘user@somedomain.com’’ does not imply that there is
any actual host named ‘‘somedomain.com’’, and does not imply a particular routing of the message.Routing
is performed by Mail Transport Agents, such assendmail (8), based on policies set in the MTA’ s configu-
ration.

Abbr eviation
Under certain circumstances it may not be necessary to type the entire domain name. In general, anything
following the first dot may be omitted if it is the same as the domain from which you are sending the mes-
sage. For example, a user on ‘‘calder.berkeley.edu’’ could send to ‘‘eric@CS’’ without adding the ‘‘berke-
ley.edu’’ since it is the same on both sending and receiving hosts.Whether abbreviation is permitted depends
on how your site is configured.

Case Distinctions
Domain names (i.e., anything after the ‘‘@’’ sign) may be given in any mixture of upper and lower case.
Most hosts accept any combination of case in user names, although there are exceptions.

Postmaster
Every site is required to have a user or user alias designated ‘‘postmaster’’ to which problems with the mail
system may be addressed, for example:

postmaster@CS.Berkeley.EDU

Obsolete Formats
Certain old address formats, such as UUCP ‘‘bang path’’ addresses, explicitly routed internet addresses (so-
called ‘‘route-addrs’’ and the ‘‘percent hack’’) and others have been used historically. All these addressing
formats are now considered obsolete, and should no longer be used.

To some extent,sendmail (8) (when running with normal configuration files) attempts to provide backward
compatibility for these addressing forms, but in practice many of them no longer work. Usersshould always
use standard Internet style addresses.

SEE ALSO
mail (1), sendmail (8)

D. H. Crocker,Standard for the Format of Arpa Internet Text Messages, RFC, 822, August 1982.

HISTORY
mailaddr appeared in 4.2BSD.

NetBSD 3.0 June 16, 1998 1

MAILADDR (7) NetBSD Miscellaneous Information Manual MAILADDR (7)

BUGS
The RFC 822 group syntax (‘‘group:user1,user2,user3;’’) is not supported except in the special case of
‘‘ group:;’’ because of a conflict with old berknet-style addresses, not that anyone cares about either berknet
or group syntax style addresses any longer.

NetBSD 3.0 June 16, 1998 2

MDOC (7) NetBSD Miscellaneous Information Manual MDOC (7)

NAME
mdoc — quick reference guide for the−mdoc macro package

SYNOPSIS
groff −m doc files ...

DESCRIPTION
The−mdoc package is a set of content-based and domain-based macros used to format theBSD man pages.
The macro names and their meanings are listed below for quick reference; for a detailed explanation on using
the package, see the tutorial samplermdoc.samples (7).

The macros are described in two groups, the first includes the structural and physical page layout macros.
The second contains the manual and general text domain macros which differentiate the-oc package from
othertroff (1) formatting packages.

PA GE STRUCTURE DOMAIN
Ti tle Macros

To create a valid manual page, these three macros, in this order, are required:
.Dd Month day, year Document date.
.Dt DOCUMENT_TITLE [section] [volume] Title, in upper case.
.Os OPERATING_SYSTEM [version/release] Operating system (BSD) .

Page Layout Macros
Section headers, paragraph breaks, lists and displays.
.Sh Section Headers.Valid headers, in the order of presentation:

NAME Name section, should include the.Nm or .Fn and the.Nd macros.
LIBRARY Sections two and three function calls.
SYNOPSIS Usage.
DESCRIPTION General description, should include options and parameters.
EXIT STATUS Sections one and eight commands and utilities.
RETURN VALUES Sections two and three function calls.
ENVIRONMENT Describe environment variables.
FILES Files associated with the subject.
EXAMPLES Examples and suggestions.
DIAGNOSTICS Normally used for section four device interface diagnostics.
ERRORS Sections two and three error and signal handling.
SEE ALSO Cross references and citations.
STANDARDS Conformance to standards if applicable.
HISTORY If a standard is not applicable, the history of the subject should be given.
BUGS Gotchas and caveats.
SECURITY CONSIDERATIONS

Security issues to be aware of.
other Customized headers may be added at the author’s discretion.

.Ss Subsection Headers.

.Pp Paragraph Break.Vertical space (one line).

.D1 (D-one) Display-one Indent and display one text line.

.Dl (D-ell) Display-one literal. Indent and display one line of literal text.

.Bd Begin-display block. Display options:
−ragged Unjustified (ragged edges).
−filled Filled, and iftroff (1), also justified.

NetBSD 3.0 April 16, 2003 1

MDOC (7) NetBSD Miscellaneous Information Manual MDOC (7)

−unfilled Unfilled, unjustified.
−literal Literal text or code.
−file name Read in namedfile and display.
−offset string Offset display. Acceptablestring values:

left Align block on left (default).
center Approximate center margin.
indent Six constant width spaces (a tab).
indent-two Tw o tabs.
right Left aligns block 2 inches from right.
xxn Wherexx is a number from 4n to 99n.
Aa WhereAa is a callable macro name.
string The width ofstring is used.

.Ed End-display (matches .Bd).

.Bl Begin-list. Createlists or columns. Options:
List-types

−bullet Bullet Item List
−dash Dash Item List
−hyphen (as per−dash)
−item Unlabeled List
−enum Enumerated List
−tag Tag Labeled List
−diag Diagnostic List
−hang Hanging Labeled List
−ohang Overhanging Labeled List
−inset Inset or Run-on Labeled List
−column Multiple Columns

List-parameters
−offset (All lists.) See.Bd begin-display above.
−width (−tag and −hang lists only.) See .Bd . This parameter is effectively

required for−tag lists.
−compact (All lists.) Suppresses blank lines.

.El End-list.

.It List item.

MANUAL AND GENERAL TEXT DOMAIN MA CROS
The manual and general text domain macros are special in that most of them are parsed for callable macros
for example:

.Op Fl s Ar file

Produces:

[−s file]

In this example, the option enclosure macro.Op is parsed, and calls the callable content macro ‘Fl ’ which
operates on the argument ‘s ’ and then calls the callable content macro ‘Ar ’ which operates on the argument
file . Some macros may be callable, but are not parsed and vice versa. Thesemacros are indicated in the
parsedandcallablecolumns below.

Unless stated, manual domain macros share a common syntax:

.Va argument [. , ; : () [] argument ...]

Note: Opening and closing punctuation characters are only recognized as such if they are presented one at a
time. Thestring ‘), ’ is not recognized as punctuation and will be output with a leading white space and in

NetBSD 3.0 April 16, 2003 2

MDOC (7) NetBSD Miscellaneous Information Manual MDOC (7)

whatever font the calling macro uses. The argument list]) , is recognized as three sequential closing
punctuation characters and a leading white space is not output between the characters and the previous argu-
ment (if any).

The special meaning of a punctuation character may be escaped with the string ‘\& ’. For example the fol-
lowing string:

.Ar file1 \&, file2 , file3) .

Produces:

file1 , file2, file3).

Manual Domain Macros
Name Parsed Callable Description
Ad Yes Yes Address.(This macro may be deprecated.)
Ar Yes Yes Commandline argument.
Cd No No Configuration declaration (section four only).
Cm Yes Yes Commandline argument modifier.
Dv Yes Yes Definedvariable (source code).
Er Yes Yes Errornumber (source code).
Ev Yes Yes Environment variable.
Fa Yes Yes Functionargument.
Fd No No Function declaration.
Fl Yes Yes Commandline flag.
Fn Yes Yes Functioncall (also .Fo and .Fc).
Ft Yes Yes Functiontype.
Ic Yes Yes Interactive command.
In No No Include header.
Lb Yes Yes Libraryname.
Li Yes Yes Literaltext.
Nd No No Name description.
Nm Yes Yes Commandname.
Op Yes Yes Option(also .Oo and .Oc).
Ot Yes Yes Oldstyle function type (Fortran only).
Pa Yes Yes Pathname or file name.
St Yes Yes Standards(-p1003.2, -p1003.1 or -ansiC)
Va Yes Yes Variable name.
Vt Yes Yes Variable type.
Xr Yes Yes ManualPage Cross Reference.

General Text Domain Macros
Name Parsed Callable Description
%A Yes No Reference author.
%B Yes Yes Referencebook title.
%C No No Reference place of publishing (city).
%D No No Reference date.
%J Yes Yes Referencejournal title.
%N No No Reference issue number.
%O No No Reference optional information.
%P No No Reference page number(s).

NetBSD 3.0 April 16, 2003 3

MDOC (7) NetBSD Miscellaneous Information Manual MDOC (7)

%R No No Reference report Name.
%T Yes Yes Referencearticle title.
%V No No Reference volume.
Ac Yes Yes Angleclose quote.
Ao Yes Yes Angleopen quote.
Ap Yes Yes Insertapostrophe; switch to .No mode
Aq Yes Yes Anglequote.
At No No AT&T UNIX.
Bc Yes Yes Bracket close quote.
Bf No No Begin font mode.
Bo Yes Yes Bracket open quote.
Bq Yes Yes Bracket quote.
Bsx Yes Yes BSD/OS.
Bx Yes Yes BSD.
Db No No Debug (default is "off").
Dc Yes Yes Doubleclose quote.
Do Yes Yes Doubleopen quote.
Dq Yes Yes Doublequote.
Ec Yes Yes Enclosestring close quote.
Ef No No End font mode.
Em Yes Yes Emphasis(traditional English).
Eo Yes Yes Enclosestring open quote.
Fx Yes Yes FreeBSD.
No Yes Yes Normaltext (no-op).
Ns Yes Yes Nospace.
Nx Yes Yes NetBSD.
Ox Yes Yes OpenBSD.
Pc Yes Yes Parenthesis close quote.
Pf Yes No Prefix string.
Po Yes Yes Parenthesis open quote.
Pq Yes Yes Parentheses quote.
Qc Yes Yes StraightDouble close quote.
Ql Yes Yes Quotedliteral.
Qo Yes Yes StraightDouble open quote.
Qq Yes Yes StraightDouble quote.
Re No No Reference end.
Rs No No Reference start.
Sc Yes Yes Singleclose quote.
So Yes Yes Singleopen quote.
Sm No No Space mode (default is "on").
Sq Yes Yes Singlequote.
Sx Yes Yes SectionCross Reference.
Sy Yes Yes Symbolic(traditional English).
Tn Yes Yes Trade or type name (small Caps).
Ux Yes Yes UNIX.
Xc Yes Yes Extendargument list close.
Xo Yes Yes Extendargument list open.

Macro names ending in ‘q’ quote remaining items on the argument list. Macro names ending in ‘o’ begin a
quote which may span more than one line of input and are close quoted with the matching macro name end-
ing in ‘c ’. Enclosuremacros may be nested and are limited to eight arguments.

NetBSD 3.0 April 16, 2003 4

MDOC (7) NetBSD Miscellaneous Information Manual MDOC (7)

Note: the extended argument list macros (.Xo , .Xc) and the function enclosure macros (.Fo , .Fc) are
irregular. The extended list macros are used when the number of macro arguments would exceed the
troff (1) limitation of nine arguments.

FILES
tmac.doc Manual and general text domain macros.
tmac.doc-common Common structural macros and definitions.
tmac.doc-nroff Site dependentnroff (1) style file.
tmac.doc-ditroff Site dependenttroff (1) style file.
tmac.doc-syms Special defines (such as the standards macro).

SEE ALSO
mdoc.samples (7)

NetBSD 3.0 April 16, 2003 5

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

NAME
mdoc.samples — tutorial sampler for writingBSD manuals with−mdoc

SYNOPSIS
man mdoc.samples

DESCRIPTION
A tutorial sampler for writingBSD manual pages with the−mdoc macro package, acontent−based and
domain−based formatting package fortroff (1). Itspredecessor, the -man package (seegroff_man (7)),
addressed page layout leaving the manipulation of fonts and other typesetting details to the individual author.
In −mdoc, page layout macros make up the page structure domainwhich consists of macros for titles, sec-
tion headers, displays and lists. Essentially items which affect the physical position of text on a formatted
page. Inaddition to the page structure domain, there are two more domains, the manual domain and the gen-
eral text domain. The general text domain is defined as macros which perform tasks such as quoting or
emphasizing pieces of text. The manual domain is defined as macros that are a subset of the day to day
informal language used to describe commands, routines and relatedBSD files. Macrosin the manual domain
handle command names, command line arguments and options, function names, function parameters, path-
names, variables, cross references to other manual pages, and so on. These domain items have value for both
the author and the future user of the manual page. It is hoped the consistency gained across the manual set
will provide easier translation to future documentation tools.

Throughout theUNIX manual pages, a manual entry is simply referred to as a man page, regardless of actual
length and without sexist intention.

GETTING STARTED
Since a tutorial document is normally read when a person desires to use the material immediately, the
assumption has been made that the user of this document may be impatient. The material presented in the
remainder of this document is outlined as follows:

1. TROFF IDIOSYNCRASIES
Macro Usage.
Passing Space Characters in an Argument.
Trailing Blank Space Characters (a warning).
Escaping Special Characters.

2. THE ANAT OMY OF A MAN PAGE
A manual page template.

3. INTRODUCTION OF TITLE MACROS.

4. INTRODUCTION OF MANUAL AND GENERAL TEXT DOMAINS.
What’s in a name....
General Syntax.

5. MANUAL DOMAIN
Addresses.
Arguments.
Configuration Declarations (section four only).
Command Modifier.
Defined Variables.
Errno’s (Section two only).
Environment Variables.

NetBSD 3.0 April 16, 2003 1

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

Function Argument.
Function Declaration.
Flags.
Functions (library routines).
Function Types.
Interactive Commands.
Literals.
Names.
Options.
Pathnames.
Variables.
Cross References.

6. GENERAL TEXT DOMAIN
AT&T Macro.
BSD Macro.
BSD/OS Macro.
FreeBSD Macro.
NetBSD Macro.
OpenBSD Macro.
UNIX Macro.
Emphasis Macro.
Enclosure/Quoting Macros

Angle Bracket Quote/Enclosure.
Bracket Quotes/Enclosure.
Double Quote macro/Enclosure.
Parenthesis Quote/Enclosure.
Single Quotes/Enclosure.
Prefix Macro.

Extended Arguments.
No−Op or Normal Text Macro.
No Space Macro.
Section Cross References.
Symbolic Macro.
References and Citations.
Trade Names (Acronyms and Type Names).

7. PA GE STRUCTURE DOMAIN
Section Headers.
Paragraphs and Line Spacing.
Keeps.
Displays.
Lists and Columns.

8. PREDEFINED STRINGS

9. DIAGNOSTICS

10. FORMATTING WITH GROFF, TROFF AND NROFF

11. BUGS

NetBSD 3.0 April 16, 2003 2

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

TROFF IDIOSYNCRASIES
The −mdoc package attempts to simplify the process of writing a man page.Theoretically, one should not
have to learn the dirty details oftroff (1) to use−mdoc; howev er, there are a few limitations which are
unavoidable and best gotten out of the way. And, too, be forewarned, this package isnot fast.

Macro Usage
As in troff (1), a macro is called by placing a ‘. ’ (dot character) at the beginning of a line followed by the
two character name for the macro.Arguments may follow the macro separated by spaces. It is the dot char-
acter at the beginning of the line which causestroff (1) to interpret the next two characters as a macro
name. To place a ‘. ’ (dot character) at the beginning of a line in some context other than a macro invocation,
precede the ‘. ’ (dot) with the ‘\& ’ escape sequence. The ‘\& ’ t ranslates literally to a zero width space, and
is never displayed in the output.

In general,troff (1) macros accept up to nine arguments, any extra arguments are ignored. Most macros in
−mdoc accept nine arguments and, in limited cases, arguments may be continued or extended on the next
line (SeeExtended Arguments). A few macros handle quoted arguments (seePassing Space Characters
in an Argument below).

Most of the−mdoc general text domain and manual domain macros are special in that their argument lists
areparsedfor callable macro names.This means an argument on the argument list which matches a general
text or manual domain macro name and is determined to be callable will be executed or called when it is pro-
cessed. Inthis case the argument, although the name of a macro, is not preceded by a ‘. ’ (dot). It is in this
manner that many macros are nested; for example the option macro,.Op , may call the flag and argument
macros, ‘Fl ’ and ‘Ar ’, to specify an optional flag with an argument:

[−s bytes] is produced by.Op Fl s Ar bytes

To prevent a two character string from being interpreted as a macro name, precede the string with the escape
sequence ‘\& ’:

[Fl s Ar bytes] is produced by.Op \&Fl s \&Ar bytes

Here the strings ‘Fl ’ and ‘Ar ’ are not interpreted as macros.Macros whose argument lists are parsed for
callable arguments are referred to as parsed and macros which may be called from an argument list are
referred to as callable throughout this document and in the companion quick reference manualmdoc(7).
This is a technicalfaux pasas almost all of the macros in−mdoc are parsed, but as it was cumbersome to
constantly refer to macros as being callable and being able to call other macros, the term parsed has been
used.

Passing Space Characters in an Argument
Sometimes it is desirable to give as one argument a string containing one or more blank space characters.
This may be necessary to defeat the nine argument limit or to specify arguments to macros which expect par-
ticular arrangement of items in the argument list.For example, the function macro.Fn expects the first
argument to be the name of a function and any remaining arguments to be function parameters.As ANSI C
stipulates the declaration of function parameters in the parenthesized parameter list, each parameter is guar-
anteed to be at minimum a two word string. For example,int foo.

There are two possible ways to pass an argument which contains an embedded space.Implementation note:
Unfortunately, the most convenient way of passing spaces in between quotes by reassigning individual argu-
ments before parsing was fairly expensive speed wise and space wise to implement in all the macros for
AT&T troff (1). It is not expensive for groff (1) but for the sake of portability, has been limited to the fol-
lowing macros which need it the most:

NetBSD 3.0 April 16, 2003 3

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

Cd Configuration declaration (section 4SYNOPSIS)
Bl Begin list (for the width specifier).
Em Emphasized text.
Fn Functions (sections two and four).
It List items.
Li Literal text.
Sy Symbolic text.
%B Book titles.
%J Journal names.
%O Optional notes for a reference.
%R Report title (in a reference).
%T Title of article in a book or journal.

One way of passing a string containing blank spaces is to use the hard or unpaddable space character ‘\ ’,
that is, a blank space preceded by the escape character ‘\ ’. This method may be used with any macro but
has the side effect of interfering with the adjustment of text over the length of a line.troff (1) sees the hard
space as if it were any other printable character and cannot split the string into blank or newline separated
pieces as one would expect. Themethod is useful for strings which are not expected to overlap a line bound-
ary. For example:

fetch (char ∗str) is created by.Fn fetch char\ ∗str

fetch (char ∗str) can also be created by.Fn fetch " ∗char ∗str"

If the ‘\ ’ or quotes were omitted,.Fn would see three arguments and the result would be:

fetch (char , ∗str)

For an example of what happens when the parameter list overlaps a newline boundary, see theBUGS sec-
tion.

Tr ailing Blank Space Characters
troff (1) can be confused by blank space characters at the end of a line.It is a wise preventive measure to
globally remove all blank spaces from <blank-space><end-of-line> character sequences.Should the need
arise to force a blank character at the end of a line, it may be forced with an unpaddable space and the ‘\& ’
escape character. For example,string\ \& .

Sentences
To recognize the end of a sentence,troff (1) needs two spaces or a newline character. Since it is easy to
forget about the second space, policy is to begin new sentences on a new line.

Escaping Special Characters
Special characters like the newline character ‘\n ’, are handled by replacing the ‘\ ’ w ith ‘\e ’ (e.g. \en) to
preserve the backslash.

THE ANAT OMY OF A MAN P AGE
The body of a man page is easily constructed from a basic template found in the file:

.\" /usr/share/misc/mdoc.template:

.\" The following six lines are required.

.Dd Month day, year

.Os

.Dt DOCUMENT_TITLE SECTION_NUMBER [MACHINE]

.Sh NAME

.\" This next request is for sections 2 and 3 only; see next comment.

NetBSD 3.0 April 16, 2003 4

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

.Sh LIBRARY

.Sh SYNOPSIS

.Sh DESCRIPTION

.\" The following requests should be uncommented and

.\" used where appropriate.

.\" This next request is for

.\" sections 1 and 8 exit statuses only.

.\" .Sh EXIT STATUS

.\" This next request is for sections 2 and 3 function return

.\" values only.

.\" .Sh RETURN VALUES

.\" This next request is for sections 1, 6, 7 & 8 only

.\" .Sh ENVIRONMENT

.\" .Sh FILES

.\" .Sh EXAMPLES

.\" This next request is for sections 1, 6, 7 & 8 only

.\" (command return values (to shell) and

.\" fprintf/stderr type diagnostics)

.\" .Sh DIAGNOSTICS

.\" The next request is for sections 2 and 3 error

.\" and signal handling only.

.\" .Sh ERRORS

.\" .Sh SEE ALSO

.\" .Sh STANDARDS

.\" .Sh HISTORY

.\" .Sh AUTHORS

.\" .Sh BUGS

.\" .Sh SECURITY CONSIDERATIONS

The first items in the template are the macros(.Dd , .Os , .Dt) ; the document date, the operating system
the man page or subject source is developed or modified for (should have no argument by default), and the
man page title(in upper case) along with the section of the manual the page belongs in, and optionally the
machine if it is machine specific. These macros identify the page, and are discussed below in TITLE
MACROS.

The remaining items in the template are section headers(.Sh) ; of which NAME , SYNOPSIS and
DESCRIPTION are mandatory. The headers are discussed inPA GE STRUCTURE DOMAIN , after pre-
sentation ofMANUAL DOMAIN . Sev eral content macros are used to demonstrate page layout macros;
reading about content macros before page layout macros is recommended.

TITLE MA CROS
The title macros are the first portion of the page structure domain, but are presented first and separate for
someone who wishes to start writing a man page yesterday. Three header macros designate the document
title or manual page title, the operating system, and the date of authorship. These macros are called once at
the very beginning of the document and are used to construct the headers and footers only.

.Dt DOCUMENT_TITLE SECTION_NUMBER [MACHINE]
The document title is the subject of the man page and must be inCAPITALS due to troff l imitations.
The section number may be 1,..., 9, and the machine should be the machine the man page is for
(that is, theNetBSD port to which it applies).

.Os operating_system release#
This should have no argument onNetBSD man pages by default. Otherwise,the name of the operat-
ing system should be the common acronym, e.g. BSD or ATT. The release should be the standard

NetBSD 3.0 April 16, 2003 5

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

release nomenclature for the system specified, e.g. 4.3, 4.3+Tahoe, V.3, V.4. Unrecognizedargu-
ments are displayed as given in the page footer. For instance, a typical footer might be:

.Os BSD 4.3

or for a locally produced set

.Os CS Department

The Berkeley default, .Os without an argument, has been defined as the currentNetBSD version,
see/usr/share/tmac/tmac.doc-common . Note, if the.Os macro is not present, the bot-
tom left corner of the page will be ugly.

.Dd month day, year
The date of the last significant revision to the manual page; the date should be written formally:

January 25, 1989

Note that the date must not be placed in quotes!

MANUAL DOMAIN
What’ s in a name...

The manual domain macro names are derived from the day to day informal language used to describe com-
mands, subroutines and related files. Slightly different variations of this language are used to describe the
three different aspects of writing a man page. First, there is the description of−mdoc macro request usage.
Second is the description of aUNIX commandwith −mdoc macros and third, the description of a command
to a user in the verbal sense; that is, discussion of a command in the text of a man page.

In the first case,troff (1) macros are themselves a type of command; the general syntax for a troff com-
mand is:

.Va argument1 argument2 ... argument9

The .Va is a macro command or request, and anything following it is an argument to be processed.In the
second case, the description of aUNIX command using the content macros is a bit more involved; a typical
SYNOPSIScommand line might be displayed as:

filter [−flag] infile outfile

Here, filter is the command name and the bracketed string−flag is a flag argument designated as
optional by the option brackets. In −mdoc terms,infile and outfile are calledarguments. The
macros which formatted the above example:

.Nm filter

.Op Fl flag

.Ar infile outfile

In the third case, discussion of commands and command syntax includes both examples above, but may add
more detail. The argumentsinfile and outfile from the example above might be referred to as
operandsor file arguments. Some command line argument lists are quite long:

make [−eiknqrstv] [−D variable] [−d flags] [−f makefile] [−I directory]
[−j max_jobs] [variable=value] [target ...]

Here one might talk about the commandmake and qualify the argumentmakefile, as an argument to the
flag, −f , or discuss the optional file operandtarget. In the verbal context, such detail can prevent confu-
sion, however the −mdoc package does not have a macro for an argumentto a flag. Insteadthe ‘Ar ’ argu-
ment macro is used for an operand or file argument like target as well as an argument to a flag like
variable. The make command line was produced from:

NetBSD 3.0 April 16, 2003 6

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

.Nm make

.Op Fl eiknqrstv

.Op Fl D Ar variable

.Op Fl d Ar flags

.Op Fl f Ar makefile

.Op Fl I Ar directory

.Op Fl j Ar max_jobs

.Op Ar variable=value

.Bk -words

.Op Ar target ...

.Ek

The.Bk and.Ek macros are explained inKeeps.

General Syntax
The manual domain and general text domain macros share a similar syntax with a few minor deviations:
.Ar , .Fl , .Nm, and .Pa differ only when called without arguments;.Fn and.Xr impose an order on their
argument lists and the.Op and.Fn macros have nesting limitations.All content macros are capable of rec-
ognizing and properly handling punctuation, provided each punctuation character is separated by a leading
space. Ifa request is given:

.Li sptr, ptr),

The result is:

sptr, ptr),

The punctuation is not recognized and all is output in the literal font. If the punctuation is separated by a
leading white space:

.Li sptr , ptr) ,

The result is:

sptr , ptr),

The punctuation is now recognized and is output in the default font distinguishing it from the strings in literal
font.

To remove the special meaning from a punctuation character escape it with ‘\& ’. troff (1) is limited as a
macro language, and has difficulty when presented with a string containing a member of the mathematical,
logical or quotation set:

{+,−,/, ∗,%,<,>, ≤, ≥,=,==,&,‘,’,"}

The problem is thattroff (1) may assume it is supposed to actually perform the operation or evaluation
suggested by the characters.To prevent the accidental evaluation of these characters, escape them with ‘\& ’.
Typical syntax is shown in the first content macro displayed below, .Ad .

Addr ess Macro
The address macro identifies an address construct of the form addr1[,addr2[,addr3]].

Usage: .Ad address . . .
.Ad addr1

addr1
.Ad addr1 .

addr1.

NetBSD 3.0 April 16, 2003 7

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

.Ad addr1 , file2
addr1, file2

.Ad f1 , f2 , f3 :
f1, f2, f3:

.Ad addr)) ,
addr)),

It is an error to call.Ad without arguments..Ad is callable by other macros and is parsed.

Ar gument Macro
The.Ar argument macro may be used whenever a command line argument is referenced.

Usage: .Ar argument . . .
.Ar file ...
.Ar file1 file1
.Ar file1 . file1.
.Ar file1 file2

file1 file2
.Ar f1 f2 f3 :

f1 f2 f3:
.Ar file)) ,

file)),

If .Ar is called without arguments ‘file ...’ is assumed. The.Ar macro is parsed and is callable.

Configuration Declaration (section four only)
The .Cd macro is used to demonstrate aconfig (1) declaration for a device interface in a section four man-
ual. Thismacro accepts quoted arguments (double quotes only).

device le0 at scode? produced by:.Cd device le0 at scode? .

Command Modifier
The command modifier is identical to the.Fl (flag) command with the exception the.Cm macro does not
assert a dash in front of every argument. Traditionally flags are marked by the preceding dash, some com-
mands or subsets of commands do not use them.Command modifiers may also be specified in conjunction
with interactive commands such as editor commands. SeeFlags.

Defined Variables
A variable which is defined in an include file is specified by the macro.Dv .

Usage: .Dv defined_variable . . .
.Dv MAXHOSTNAMELEN

MAXHOSTNAMELEN
.Dv TIOCGPGRP)

TIOCGPGRP)

It is an error to call.Dv without arguments..Dv is parsed and is callable.

Errno’ s (Section two only)
The .Er errno macro specifies the error return value for section two library routines. The second example
below shows.Er used with the.Bq general text domain macro, as it would be used in a section two manual
page.

Usage: .Er ERRNOTYPE . . .

NetBSD 3.0 April 16, 2003 8

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

.Er ENOENT
ENOENT

.Er ENOENT) ;
ENOENT);

.Bq Er ENOTDIR
[ENOTDIR]

It is an error to call.Er without arguments. The.Er macro is parsed and is callable.

Envir onment Variables
The.Ev macro specifies an environment variable.

Usage: .Ev argument . . .
.Ev DISPLAY

DISPLAY
.Ev PATH .

PATH.
.Ev PRINTER)) ,

PRINTER)),

It is an error to call.Ev without arguments. The.Ev macro is parsed and is callable.

Function Argument
The .Fa macro is used to refer to function arguments (parameters) outside of theSYNOPSISsection of the
manual or inside theSYNOPSIS section should a parameter list be too long for the.Fn macro and the
enclosure macros.Fo and.Fc must be used..Fa may also be used to refer to structure members.

Usage: .Fa function_argument . . .
.Fa d_namlen)) ,

d_namlen)),
.Fa iov_len iov_len

It is an error to call.Fa without arguments..Fa is parsed and is callable.

Function Declaration
The .Fd macro is used in theSYNOPSISsection with section two, three or nine functions.The .Fd macro
does not call other macros and is not callable by other macros.

Usage: .Fd include_file (or defined variable)

In theSYNOPSISsection a.Fd request causes a line break if a function has already been presented and a
break has not occurred. This leaves a nice vertical space in between the previous function call and the decla-
ration for the next function.

Flags
The .Fl macro handles command line flags. It prepends a dash, ‘−’, to the flag. For interactive command
flags, which are not prepended with a dash, the.Cm (command modifier) macro is identical, but without the
dash.

Usage: .Fl argument . . .
.Fl −
.Fl cfv −cfv
.Fl cfv . −cfv .

NetBSD 3.0 April 16, 2003 9

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

.Fl s v t −s −v −t

.Fl - , −− ,

.Fl xyz) , −xyz),

The .Fl macro without any arguments results in a dash representing stdin/stdout. Note that giving .Fl a
single dash, will result in two dashes. The.Fl macro is parsed and is callable.

Functions (library r outines)
The.Fn macro is modeled on ANSI C conventions.

Usage: .Fn [type] function [[type] parameters ...]
.Fn getchar getchar ()
.Fn strlen) , strlen ()),
.Fn "int align" "const ∗ char ∗sptrs" ,

int align (const ∗ char ∗sptrs),

It is an error to call.Fn without any arguments. The.Fn macro is parsed and is callable, note that any call
to another macro signals the end of the.Fn call (it will close-parenthesis at that point).

For functions that have more than eight parameters (and this is rare), the macros.Fo (function open) and
.Fc (function close) may be used with.Fa (function argument) to get around the limitation.For example:

.Ft "int"

.Fo "res_mkquery"

.Fa "int op"

.Fa "char ∗dname"

.Fa "int class"

.Fa "int type"

.Fa "char ∗data"

.Fa "int datalen"

.Fa "struct rrec ∗newrr"

.Fa "char ∗buf"

.Fa "int buflen"

.Fc

Produces:

int res_mkquery (int op , char ∗dname , int class , int type , char ∗data ,
int datalen , struct rrec ∗newrr , char ∗buf , int buflen)

The .Fo and .Fc macros are parsed and are callable. In theSYNOPSISsection, the function will always
begin at the beginning of line.If there is more than one function presented in theSYNOPSISsection and a
function type has not been given, a line break will occur, leaving a nice vertical space between the current
function name and the one prior. At the moment,.Fn does not check its word boundaries against troff l ine
lengths and may split across a newline ungracefully. This will be fixed in the near future.

Function Type
This macro is intended for theSYNOPSISsection. Itmay be used anywhere else in the man page without
problems, but its main purpose is to present the function type in kernel normal form for theSYNOPSISof
sections two and three (it causes a page break allowing the function name to appear on the next line).

Usage: .Ft type . . .
.Ft struct stat struct stat

The.Ft request is not callable by other macros.

NetBSD 3.0 April 16, 2003 10

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

The.In (#include statement) macro is the short form for
.Ft #include <header.h> .

It specifies the C header file as being included in a C program.It also causes a line break, and is neither
callable nor parsed.

Usage: .In 〈header file〉

.In stdio.h <stdio.h >

Interacti ve Commands
The.Ic macro designates an interactive or internal command.

Usage: .Ic command . . .
.Ic :wq :wq
.Ic do while {...} do while {...}
.Ic setenv , unsetenv

setenv , unsetenv

It is an error to call.Ic without arguments. The.Ic macro is parsed and is callable.

Literals
The .Li literal macro may be used for special characters, variable constants, anything which should be dis-
played as it would be typed.

Usage: .Li argument . . .
.Li \en \n
.Li M1 M2 M3 ;

M1 M2 M3;
.Li cntrl-D) ,

cntrl-D),
.Li 1024 ...

1024 . . .

The.Li macro is parsed and is callable.

Name Macro
The .Nm macro is used for the document title or subject name.It has the peculiarity of remembering the first
argument it was called with, which should always be the subject name of the page. When called without
arguments,.Nm regurgitates this initial name for the sole purpose of making less work for the author. If
trailing punctuation is required with this feature, use "" as a first argument to.Nm. Note: a section two, three
or nine document function name is addressed with the.Nm in the NAME section, and with.Fn in the
SYNOPSISand remaining sections.For interactive commands, such as thewhile command keyword in
csh (1), the.Ic macro should be used. While the.Ic is nearly identical to.Nm, it can not recall the first
argument it was invoked with.

Usage: .Nm argument . . .
.Nm mdoc.samples

mdoc.samples
.Nm \-mdoc −mdoc
.Nm foo)) ,

foo)),
.Nm mdoc.samples
.Nm "" : mdoc.samples :

NetBSD 3.0 April 16, 2003 11

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

The.Nm macro is parsed and is callable.

Options
The .Op macro places option brackets around the any remaining arguments on the command line, and places
any trailing punctuation outside the brackets. Themacros.Oc and .Oo may be used across one or more
lines.

Usage: .Op options . . .
.Op []
.Op Fl k [−k]
.Op Fl k) . [−k]).
.Op Fl k Ar kookfile [−k kookfile]
.Op Fl k Ar kookfile ,

[−k kookfile],
.Op Ar objfil Op Ar corfil

[objfil [corfil]]
.Op Fl c Ar objfil Op Ar corfil ,

[−c objfil [corfil]] ,
.Op word1 word2 [word1 word2]

The.Oc and.Oo macros:

.Oo

.Op Fl k Ar kilobytes

.Op Fl i Ar interval

.Op Fl c Ar count

.Oc

Produce: [[−k kilobytes] [−i interval] [−c count]]

The macros.Op , .Oc and.Oo are parsed and are callable.

Pathnames
The.Pa macro formats path or file names.

Usage: .Pa pathname
.Pa /usr/share /usr/share
.Pa /tmp/fooXXXXX) .

/tmp/fooXXXXX).

The.Pa macro is parsed and is callable.

Variables
Generic variable reference:

Usage: .Va variable . . .
.Va count

count
.Va settimer ,

settimer,
.Va int ∗prt) :

int ∗prt):
.Va char s])) ,

char s])),

NetBSD 3.0 April 16, 2003 12

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

It is an error to call.Va without any arguments. The.Va macro is parsed and is callable.

Manual Page Cross References
The .Xr macro expects the first argument to be a manual page name, and the second argument, if it exists, to
be either a section page number or punctuation. Any remaining arguments are assumed to be punctuation.

Usage: .Xr man_page [1,...,9]
.Xr mdoc mdoc
.Xr mdoc ,

mdoc,
.Xr mdoc 7

mdoc(7)
.Xr mdoc 7)) ,

mdoc(7))),

The.Xr macro is parsed and is callable. It is an error to call.Xr without any arguments.

GENERAL TEXT DOMAIN
AT&T Macr o

Usage: .At [v1 .. v7 | 32v | V.1 | V.4] ...
.At AT&T UNIX
.At v6 . Version 6AT&T UNIX .

The.At macro isnotparsed andnotcallable. Itaccepts at most two arguments.

BSD Macro
Usage: .Bx [Version/release] . . .

.Bx BSD

.Bx 4.3 .
4.3BSD.

The.Bx macro is parsed and is callable.

BSD/OS Macro
Usage: .Bsx [Version/release] . . .

.Bsx BSD/OS

.Bsx 4.1 .
BSD/OS4.1.

The.Bsx macro is parsed and is callable.

FreeBSD Macro
Usage: .Fx [Version/release] . . .

.Fx FreeBSD

.Fx 2.2 . FreeBSD2.2.

The.Fx macro is parsed and is callable.

NetBSD Macro
Usage: .Nx [Version/release] . . .

.Nx NetBSD

.Nx 1.4 . NetBSD 1.4.

The.Nx macro is parsed and is callable.

NetBSD 3.0 April 16, 2003 13

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

OpenBSD Macro
Usage: .Ox [Version/release] . . .

.Ox OpenBSD

.Ox 2.7 . OpenBSD2.7.

The.Ox macro is parsed and is callable.

UNIX Macr o
Usage: .Ux . . .

.Ux UNIX

The.Ux macro is parsed and is callable.

Emphasis Macro
Te xt may be stressed or emphasized with the.Em macro. Theusual font for emphasis is italic.

Usage: .Em argument . . .
.Em does not

does not
.Em exceed 1024 .

exceed 1024.
.Em vide infra)) ,

vide infra)),

The.Em macro is parsed and is callable. It is an error to call.Em without arguments.

Enclosure and Quoting Macros
The concept of enclosure is similar to quoting. The object being to enclose one or more strings between a
pair of characters like quotes or parentheses.The terms quoting and enclosure are used interchangeably
throughout this document. Most of the one line enclosure macros end in small letter ‘q’ to giv e a hint of
quoting, but there are a few irregularities. For each enclosure macro there is also a pair of open and close
macros which end in small letters ‘o’ and ‘c ’ respectively. These can be used across one or more lines of
text and while they hav enesting limitations, the one line quote macros can be used inside of them.

Quote Close Open Function Result
.Aq .Ac .Ao Angle Bracket Enclosure <string>
.Bq .Bc .Bo Bracket Enclosure [string]
.Dq .Dc .Do Double Quote ‘‘ string’’
.Ec .Eo Enclose String (in XX) XXstringXX
.Pq .Pc .Po Parenthesis Enclosure (string)
.Ql Quoted Literal ‘st’ or string
.Qq .Qc .Qo Straight Double Quote "string"
.Sq .Sc .So Single Quote ‘string’

Except for the irregular macros noted below, all of the quoting macros are parsed and callable.All handle
punctuation properly, as long as it is presented one character at a time and separated by spaces. The quoting
macros examine opening and closing punctuation to determine whether it comes before or after the enclosing
string. Thismakes some nesting possible.

.Ec , .Eo These macros expect the first argument to be the opening and closing strings respectively.

.Ql The quoted literal macro behaves differently for troff (1) thannroff (1). If formatted with
nroff (1), a quoted literal is always quoted.If formatted with troff, an item is only quoted if
the width of the item is less than three constant width characters.This is to make short strings
more visible where the font change to literal (constant width) is less noticeable.

NetBSD 3.0 April 16, 2003 14

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

.Pf The prefix macro is not callable, but it is parsed:

.Pf (Fa name2
becomes (name2.

.Ns The.Ns (no space) macro, whichis callable, performs the analogous suffix function.

.Ap The .Ap macro inserts an apostrophe and exits any special text modes, continuing in.No
mode.

Examples of quoting:
.Aq 〈〉
.Aq Ar ctype.h) , 〈ctype.h〉),
.Bq []
.Bq Em Greek , French .

[Greek, Fr ench].
.Dq “”
.Dq string abc . “string abc”.
.Dq ´ˆ[A-Z]´ “´ˆ[A-Z]´”
.Ql man mdoc man mdoc
.Qq ""
.Qq string) , "string"),
.Qq string Ns), "string),"
.Sq ‘’
.Sq string ‘string’
.Em or Ap ing or’ing

For a good example of nested enclosure macros, see the.Op option macro. It was created from the same
underlying enclosure macros as those presented in the list above. The .Xo and.Xc extended argument list
macros were also built from the same underlying routines and are a good example of−mdoc macro usage at
its worst.

No−Op or Normal Text Macro
The macro.No is a hack for words in a macro command line which shouldnot be formatted and follows the
conventional syntax for content macros.

Space Macro
The .Ns macro eliminates unwanted spaces in between macro requests. It is useful for old style argument
lists where there is no space between the flag and argument:

.Op Fl I Ns Ar directory
produces [−I directory]

Note: the.Ns macro always invokes the .No macro after eliminating the space unless another macro name
follows it. The macro.Ns is parsed and is callable.

Section Cross References
The .Sx macro designates a reference to a section header within the same document. It is parsed and is
callable.

.Sx FILES FILES

Symbolic
The symbolic emphasis macro is generally a boldface macro in either the symbolic sense or the traditional
English usage.

NetBSD 3.0 April 16, 2003 15

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

Usage: .Sy symbol . . .
.Sy Important Notice

Important Notice

The.Sy macro is parsed and is callable. Arguments to.Sy may be quoted.

References and Citations
The following macros make a modest attempt to handle references. At best, the macros make it convenient
to manually drop in a subset of refer style references.

.Rs Reference Start.Causes a line break and begins collection of reference information until the
reference end macro is read.

.Re Reference End. The reference is printed.

.%A Reference author name, one name per invocation.

.%B Book title.

.%C City/place.

.%D Date.

.%J Journal name.

.%N Issue number.

.%O Optional information.

.%P Page number.

.%R Report name.

.%T Title of article.

.%V Volume(s).

The macros beginning with ‘%’ are not callable, and are parsed only for the trade name macro which returns
to its caller. (And not very predictably at the moment either.) The purpose is to allow trade names to be
pretty printed introff (1)/ditroff output.

Tr ade Names (or Acronyms and Type Names)
The trade name macro is generally a small caps macro for all upper case words longer than two characters.

Usage: .Tn symbol . . .
.Tn DEC

DEC
.Tn ASCII

ASCII

The.Tn macro is parsed and is callable by other macros.

Extended Arguments
The .Xo and.Xc macros allow one to extend an argument list on a macro boundary. Argument lists cannot
be extended within a macro which expects all of its arguments on one line such as.Op .

Here is an example of.Xo using the space mode macro to turn spacing off:

.Sm off

.It Xo Sy I Ar operation

.No \en Ar count No \en

.Xc

.Sm on

Produces

NetBSD 3.0 April 16, 2003 16

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

Ioperation\ncount\n

Another one:

.Sm off

.It Cm S No / Ar old_pattern Xo

.No / Ar new_pattern

.No / Op Cm g

.Xc

.Sm on

Produces

S/old_pattern/new_pattern/[g]

Another example of.Xo and using enclosure macros: Test the value of an variable.

.It Xo

.Ic .ifndef

.Oo \&! Oc Ns Ar variable

.Op Ar operator variable ...

.Xc

Produces

.ifndef [!]variable [operator variable ...]

All of the above examples have used the.Xo macro on the argument list of the.It (list-item) macro.The
extend macros are not used very often, and when they are it is usually to extend the list-item argument list.
Unfortunately, this is also where the extend macros are the most finicky. In the first two examples, spacing
was turned off; in the third, spacing was desired in part of the output but not all of it.To make these macros
work in this situation make sure the.Xo and .Xc macros are placed as shown in the third example. If the
.Xo macro is not alone on the.It argument list, spacing will be unpredictable.The .Ns (no space macro)
must not occur as the first or last macro on a line in this situation.Out of 900 manual pages (about 1500
actual pages) currently released withBSD only fifteen use the.Xo macro.

PA GE STRUCTURE DOMAIN
Section Headers

The first three.Sh section header macros listed below are required in every man page.The remaining sec-
tion headers are recommended at the discretion of the author writing the manual page.The .Sh macro can
take up to nine arguments. Itis parsed but is not callable.

.Sh NAME The .Sh NAME macro is mandatory. If not specified, the headers, footers and page layout
defaults will not be set and things will be rather unpleasant.TheNAME section consists of at
least three items. The first is the.Nm name macro naming the subject of the man page.The
second is the Name Description macro,.Nd , which separates the subject name from the third
item, which is the description. The description should be the most terse and lucid possible, as
the space available is small.

.Sh SYNOPSIS
The SYNOPSIS section describes the typical usage of the subject of a man page.The
macros required are either.Nm, .Cd , .Fn , (and possibly.Fo , .Fc , .Fd , .Ft macros). The
function name macro.Fn is required for manual page sections 2 and 3, the command and
general name macro.Nm is required for sections 1, 5, 6, 7, 8. Section 4 manuals require a
.Nm, .Fd or a .Cd configuration device usage macro.Several other macros may be neces-
sary to produce the synopsis line as shown below:

NetBSD 3.0 April 16, 2003 17

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

cat [−benstuv] [−] file ...

The following macros were used:

.Nm cat

.Op Fl benstuv

.Op Fl

.Ar

Note: The macros.Op , .Fl , and .Ar recognize the pipe bar character ‘|’, so a command line
such as:

.Op Fl a | Fl b

will not go orbital. troff (1) normally interprets a | as a special operator. See
PREDEFINED STRINGS for a usable | character in other situations.

.Sh DESCRIPTION
In most cases the first text in theDESCRIPTION section is a brief paragraph on the com-
mand, function or file, followed by a lexical list of options and respective explanations. To
create such a list, the.Bl begin-list, .It list-item and.El end-list macros are used (see
Lists and Columnsbelow).

The following .Sh section headers are part of the preferred manual page layout and must be used appropri-
ately to maintain consistency. They are listed in the order in which they would be used.

.Sh ENVIRONMENT
The ENVIRONMENT section should reveal any related environment variables and clues to
their behavior and/or usage.

.Sh EXAMPLES
There are several ways to create examples. SeetheEXAMPLES section below for details.

.Sh FILES
Files which are used or created by the man page subject should be listed via the.Pa macro in
theFILES section.

.Sh SEE ALSO
References to other material on the man page topic and cross references to other relevant man
pages should be placed in theSEE ALSO section. Crossreferences are specified using the
.Xr macro. Atthis timerefer (1) style references are not accommodated.

It is recommended that the cross references are sorted on the section number, and then alphabet-
ically on the names within a section.

.Sh STANDARDS
If the command, library function or file adheres to a specific implementation such asIEEE Std
1003.2 (“POSIX.2”) or ANSI X3.159-1989 (“ANSI C89”) this should be noted here. If the com-
mand does not adhere to any standard, its history should be noted in theHISTORY section.

.Sh HISTORY
Any command which does not adhere to any specific standards should be outlined historically
in this section.

.Sh AUTHORS
Credits, if need be, should be placed here.

.Sh DIAGNOSTICS
Diagnostics from a command should be placed in this section.

NetBSD 3.0 April 16, 2003 18

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

.Sh ERRORS
Specific error handling, especially from library functions (man page sections 2 and 3) should go
here. The.Er macro is used to specify an errno.

.Sh BUGS Blatant problems with the topic go here...

User specified.Sh sections may be added, for example, this section was set with:

.Sh PAGE STRUCTURE DOMAIN

Paragraphs and Line Spacing.
.Pp The .Pp paragraph command may be used to specify a line space where necessary. The macro is

not necessary after a.Sh or .Ss macro or before a.Bl macro. (The.Bl macro asserts a vertical
distance unless the -compact flag is given).

Keeps
The only keep that is implemented at this time is for words. Themacros are.Bk (begin-keep) and.Ek
(end-keep). Theonly option that.Bk accepts is−words and is useful for preventing line breaks in the
middle of options.In the example for the make command line arguments (seeWhat’ s in a name), the keep
preventednroff (1) from placing the flag and the argument on separate lines.(Actually, the option macro
formerly prevented this from occurring, but was dropped when the decision (religious) was made to force
right justified margins in troff (1) as options in general look atrocious when spread across a sparse line.
More work needs to be done with the keep macros, a−line option needs to be added.)

Examples and Displays
There are six types of displays: a quickie, one-line indented display.D1 ; a quickie, one-line literal display
.Dl ; and block-literal, block-filled, block-unfilled, and block-ragged which use the.Bd begin-display and
.Ed end-display macros.

.D1 (D-one) Display one line of indented text. Thismacro is parsed, but it is not callable.

−ldghfstru

The above was produced by:.D1 Fl ldghfstru .

.Dl (D-ell) Display one line of indentedliteral text. The.Dl example macro has been used throughout
this file. It allows the indent (display) of one line of text. Its default font is set to constant width
(literal) however it is parsed and will recognize other macros. It is however not callable.

% ls - ldg /usr/local/bin

The above was produced by:.Dl % ls -ldg /usr/local/bin .

.Bd Begin-display. The .Bd display must be ended with the.Ed macro. Displaysmay be nested
within lists, but maynot contain other displays; this also prohibits nesting of.D1 and.Dl one-line
displays. .Bd has the following syntax:

.Bd display-type [-offset offset_value] [-compact]

The display-type must be one of the four types (−ragged , −unfilled , −filled ,
−literal) and may have an offset specifier for indentation:.Bd .

−ragged Fill, but do not adjust the right margin.
−unfilled Do not fill: display a block of text as typed, the right (and left) margin

edges are left ragged.
−filled Display a filled (formatted) block.The block of text is formatted (the

edges are filled − not left unjustified).

NetBSD 3.0 April 16, 2003 19

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

−literal Display a literal block, useful for source code or simple tabbed or spaced
text.

−file file_name The file name following the−file flag is read and displayed.Literal
mode is asserted and tabs are set at 8 constant width character intervals,
however any troff (1)/−mdoc commands in file will be processed.

−offset string If −offset is specified with one of the following strings, the string is
interpreted to indicate the level of indentation for the forthcoming block of
text:

left Align block on the current left margin, this is the default
mode of.Bd .

center Supposedly center the block.At this time unfortunately,
the block merely gets left aligned about an imaginary cen-
ter margin.

indent Indents by one default indent value or tab. The default
indent value is also used for the.D1 display so one is
guaranteed the two types of displays will line up.This
indent is normally set to 6n or about two thirds of an inch
(six constant width characters).

indent-two Indents two times the default indent value.
right This left aligns the block about two inches from the right

side of the page. This macro needs work and perhaps may
never do the right thing bytroff (1).

.Ed End-display.

Tagged Lists and Columns
There are several types of lists which may be initiated with the.Bl begin-list macro. Items within the list
are specified with the.It item macro and each list must end with the.El macro. Listsother than−enum
may be nested within themselves and within displays. The use of columns inside of lists or lists inside of
columns is unproven.

In addition, several list attributes may be specified such as the width of a tag, the list offset, and compactness
(blank lines between items allowed or disallowed). Mostof this document has been formatted with a tag
style list (−tag) . For a change of pace, the list-type used to present the list-types is an over-hanging list
(−ohang) . This type of list is quite popular withTeX users, but might look a bit funny after having read
many pages of tagged lists. The following list types are accepted by.Bl :

−bullet
−dash
−enum
−hyphen
−item
These five are the simplest types of lists. Once the.Bl macro has been given, items in the list are merely
indicated by a line consisting solely of the.It macro. For example, the source text for a simple enumerated
list would look like:

.Bl -enum -compact

.It
Item one goes here.
.It
And item two here.
.It
Lastly item three goes here.

NetBSD 3.0 April 16, 2003 20

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

.El

The results:

1. Itemone goes here.
2. Anditem two here.
3. Lastlyitem three goes here.

A simple bullet list construction:

.Bl -bullet -compact

.It
Bullet one goes here.
.It
Bullet two here.
.El

Produces:
• Bullet one goes here.
• Bullet two here.

−inset
−diag
−hang
−ohang
−tag
These list-types collect arguments specified with the.It macro and create a label which may beinset into
the forthcoming text, hangedfrom the forthcoming text, overhangedfrom above and not indented ortagged.
This list was constructed with the−ohang list-type. The.It macro is parsed only for the inset, hang and
tag list-types and is not callable. Here is an example of inset labels:

Ta g The tagged list (also called a tagged paragraph) is the most common type of list used in the
Berkeley manuals. Usea −width attribute as described below.

Diag Diag lists create section four diagnostic lists and are similar to inset lists except callable macros
are ignored.

HangHanged labels are a matter of taste.

OhangOverhanging labels are nice when space is constrained.

Inset Inset labels are useful for controlling blocks of paragraphs and are valuable for converting
−mdoc manuals to other formats.

Here is the source text which produced the above example:

.Bl -inset -offset indent

.It Em Tag
The tagged list (also called a tagged paragraph) is the
most common type of list used in the Berkeley manuals.
Use a
.Fl width
attribute as described below.
.It Em Diag
Diag lists create section four diagnostic lists
and are similar to inset lists except callable
macros are ignored.
.It Em Hang

NetBSD 3.0 April 16, 2003 21

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

Hanged labels are a matter of taste.
.It Em Ohang
Overhanging labels are nice when space is constrained.
.It Em Inset
Inset labels are useful for controlling blocks of
paragraphs and are valuable for converting
.Nm −mdoc
manuals to other formats.
.El

Here is a hanged list with just two items:

Hangedlabels appear similar to tagged lists when the label is smaller than the label width.

Longer hanged list labelsblend in to the paragraph unlike tagged paragraph labels.

And the unformatted text which created it:

.Bl -hang -offset indent

.It Em Hanged
labels appear similar to tagged lists when the
label is smaller than the label width.
.It Em Longer hanged list labels
blend in to the paragraph unlike
tagged paragraph labels.
.El

The tagged list which follows uses a width specifier to control the width of the tag.

SL sleep time of the process (seconds blocked)
PA GEIN number of diskI/O’s resulting from references by the process to pages not loaded in core.
UID numerical user-id of process owner
PPID numerical id of parent of process priority (non-positive when in non-interruptible wait)

The raw text:

.Bl -tag -width "PAGEIN" -compact -offset indent

.It SL
sleep time of the process (seconds blocked)
.It PAGEIN
number of disk
.Tn I/O Ns ’s
resulting from references
by the process to pages not loaded in core.
.It UID
numerical user-id of process owner
.It PPID
numerical id of parent of process priority
(non-positive when in non-interruptible wait)
.El

Acceptable width specifiers:

−width Fl sets the width to the default width for a flag. All callable macros have a default width
value. The.Fl , value is presently set to ten constant width characters or about five
sixth of an inch.

NetBSD 3.0 April 16, 2003 22

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

−width 24n
sets the width to 24 constant width characters or about two inches. The‘n’ is abso-
lutely necessary for the scaling to work correctly.

−width ENAMETOOLONG
sets width to the constant width length of the string given.

−width "int mkfifo"
again, the width is set to the constant width of the string given.

If a width is not specified for the tag list type, the first time.It is invoked, an attempt is made to determine
an appropriate width. If the first argument to.It is a callable macro, the default width for that macro will
be used as if the macro name had been supplied as the width.However, if another item in the list is given
with a different callable macro name, a new and nested list is assumed. This effectively means that−width
is required for the tag list type.

−column
This list type generates multiple columns.The number of columns and the width of each column is deter-
mined by the arguments to the−column list. Each.It argument is parsed to make a row, each column
within the row is a separate argument separated by a tab or the.Ta macro.
The table:

String Nroff Troff
≤ <= ≤
≥ >= ≥

was produced by:

.Bl -column "String" "Nroff" "Troff" -offset indent

.It Sy "String" Ta Sy "Nroff" Ta Sy "Troff"

.It Li " ≤" Ta \ &<\&= Ta \ ∗(≤

.It Li " ≥" Ta \ &>\&= Ta \ ∗(≥

.El

PREDEFINED STRINGS
The following strings are predefined and may be used by preceding with the troff string interpreting sequence
\ ∗(xx wherexx is the name of the defined string or as\ ∗x wherex is the name of the string. The interpret-
ing sequence may be used any where in the text.

String Nroff Troff
≤ <= ≤
≥ >= ≥
Rq ’’ ”
Lq ‘‘ “
ua ˆ ↑
aa ’ ´
ga ` `
q " "
Pi pi π
Ne != ≠
Le ≤ ≤
Ge ≥ ≥
Lt < >

NetBSD 3.0 April 16, 2003 23

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

Gt > <
Pm +- ±
If infinity ∞
Na NaN NaN
Ba | |

Note: The string named ‘q’ should be written as\ ∗q since it is only one char.

DIAGNOSTICS
The debugging facilities for−mdoc are limited, but can help detect subtle errors such as the collision of an
argument name with an internal register or macro name. (A what?)A register is an arithmetic storage class
for troff (1) with a one or two character name. All registers internal to−mdoc for troff (1) and
ditroff are two characters and of the form <upper_case><lower_case> such as ‘Ar ’,
<lower_case><upper_case> as ‘aR’ or <upper or lower letter><digit> as ‘C1’. And adding to the muddle,
troff (1) has its own internal registers all of which are either two lower case characters or a dot plus a letter
or meta-character character. In one of the introduction examples, it was shown how to prevent the interpreta-
tion of a macro name with the escape sequence ‘\& ’. This is sufficient for the internal register names also.

If a non-escaped register name is given in the argument list of a request unpredictable behavior will occur. In
general, any time huge portions of text do not appear where expected in the output, or small strings such as
list tags disappear, chances are there is a misunderstanding about an argument type in the argument list.
Your mother never intended for you to remember this evil stuff - so here is a way to find out whether or not
your arguments are valid: The.Db (debug) macro displays the interpretation of the argument list for most
macros. Macrossuch as the.Pp (paragraph) macro do not contain debugging information. All of the
callable macros do, and it is strongly advised whenever in doubt, turn on the.Db macro.

Usage: .Db [on | off]

An example of a portion of text with the debug macro placed above and below an artificially created problem
(a flag argument ‘aC’ which should be\&aC in order to work):

.Db on

.Op Fl aC Ar file)

.Db off

The resulting output:

DEBUGGING ON
DEBUG(argv) MACRO: ‘.Op’ Line #: 2

Argc: 1 Argv: ‘Fl’ Length: 2
Space: ‘’ Class: Executable
Argc: 2 Argv: ‘aC’ Length: 2
Space: ‘’ Class: Executable
Argc: 3 Argv: ‘Ar’ Length: 2
Space: ‘’ Class: Executable
Argc: 4 Argv: ‘file’ Length: 4
Space: ‘ ’ Class: String
Argc: 5 Argv: ‘)’ Length: 1
Space: ‘ ’ Class: Closing Punctuation or suffix
MACRO REQUEST: .Op Fl aC Ar file)

DEBUGGING OFF

The first line of information tells the name of the calling macro, here.Op , and the line number it appears on.
If one or more files are involved (especially if text from another file is included) the line number may be
bogus. Ifthere is only one file, it should be accurate.The second line gives the argument count, the argu-
ment (Fl) and its length. If the length of an argument is two characters, the argument is tested to see if it is

NetBSD 3.0 April 16, 2003 24

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

executable (unfortunately, any register which contains a non-zero value appears executable). Thethird line
gives the space allotted for a class, and the class type. The problem here is the argument ‘aC’ should not be
executable. Thefour types of classes are string, executable, closing punctuation and opening punctuation.
The last line shows the entire argument list as it was read. In this next example, the offending ‘aC’ i s
escaped:

.Db on

.Em An escaped \&aC

.Db off

DEBUGGING ON
DEBUG(fargv) MACRO: ‘.Em’ Line #: 2

Argc: 1 Argv: ‘An’ Length: 2
Space: ‘ ’ Class: String
Argc: 2 Argv: ‘escaped’ Length: 7
Space: ‘ ’ Class: String
Argc: 3 Argv: ‘aC’ Length: 2
Space: ‘ ’ Class: String
MACRO REQUEST: .Em An escaped &aC

DEBUGGING OFF

The argument\&aC shows up with the same length of 2 as the ‘\& ’ sequence produces a zero width, but a
register named\&aC was not found and the type classified as string.

Other diagnostics consist of usage statements and are self explanatory.

GROFF, TROFF AND NROFF
The−mdoc package does not need compatibility mode withgroff (1).

The package inhibits page breaks, and the headers and footers which normally occur at those breaks with
nroff (1), to make the manual more efficient for viewing on-line. At the moment,groff (1) with
−Tascii does eject the imaginary remainder of the page at end of file.The inhibiting of the page breaks
makesnroff (1)’d files unsuitable for hardcopy. There is a register named ‘cR’ which can be set to zero in
the site dependent style file/usr/src/share/tmac/doc-nroff to restore the old style behavior.

FILES
/usr/share/tmac/tmac.doc manual macro package
/usr/share/misc/mdoc.template template for writing a man page

SEE ALSO
man(1), troff (1), mdoc(7)

BUGS
Undesirable hyphenation on the dash of a flag argument is not yet resolved, and causes occasional mishaps in
theDESCRIPTION section. (linebreak on the hyphen).

Predefined strings are not declared in documentation.

Section 3f has not been added to the header routines.

.Nm font should be changed inNAME section.

.Fn needs to have a check to prevent splitting up if the line length is too short. Occasionally it separates the
last parenthesis, and sometimes looks ridiculous if a line is in fill mode.

NetBSD 3.0 April 16, 2003 25

MDOC.SAMPLES (7) NetBSD Miscellaneous Information Manual MDOC.SAMPLES (7)

The method used to prevent header and footer page breaks (other than the initial header and footer) when
usingnroff (1) occasionally places an unsightly partially filled line (blank) at the would be bottom of the
page.

If the outer-most list definition doesn’t hav ea −width argument, the.It elements of inner lists may not
work (producing a list where each successive element ‘walks’ to the right).

The list and display macros to not do any keeps and certainly should be able to.

NetBSD 3.0 April 16, 2003 26

ME(7) ME(7)

NAME
me − macros for formatting papers

SYNOPSIS
nroff −me [options] file ...
troff −me [options] file ...

DESCRIPTION
This package ofnroff andtroff macro definitions provides a canned formatting facility for technical papers
in various formats. When producing 2-column output on a terminal, filter the output throughcol(1).

The macro requests are defined below. Many nroff and troff requests are unsafe in conjunction with this
package, however, these requests may be used with impunity after the first .pp:

.bp begin new page

.br breakoutput line here

.sp n insert n spacing lines

.ls n (line spacing) n=1 single, n=2 double space

.na noalignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of theeqn, neqn,refer, andtbl(1) preprocessors for equations and tables is acceptable as input.

FILES
/usr/share/tmac/tmac.e
/usr/share/me/*

SEE ALSO
eqn(1), troff(1), refer(1), tbl(1)
−me Reference Manual, Eric P. Allman
Writing Papers with Nroff Using −me

REQUESTS
In the following list, “initialization” refers to the first .pp, .lp, .ip, .np, .sh, or .uh macro. This list is incom-
plete; seeThe −me Reference Manualfor interesting details.

Request InitialCause Explanation
Value Break

.(c - yes Begin centered block

.(d - no Begin delayed text

.(f - no Begin footnote

.(l - yes Begin list

.(q - yes Begin major quote

.(x x - no Begin indexed item in indexx

.(z - no Begin floating keep

.)c - yes Endcentered block

.)d - yes Enddelayed text

.)f - yes Endfootnote

.)l - yes Endlist

.)q - yes Endmajor quote

.)x - yes Endindex item

.)z - yes Endfloating keep

.++ m H - no Define paper section.m defines the part of the paper, and can beC (chapter),A (appen-
dix), P (preliminary, e.g., abstract, table of contents, etc.),B (bibliography),RC (chapters
renumbered from page one each chapter), orRA (appendix renumbered from page one).

.+c T - yes Begin chapter (or appendix, etc., as set by .++).T is the chapter title.

.1c 1 yes Onecolumn format on a new page.

.2c 1 yes Two column format.

June 5, 1993 1

ME(7) ME(7)

.EN - yes Spaceafter equation produced byeqnor neqn.

.EQ x y - yes Precedeequation; break out and add space. Equation number isy. The optional argument
x may beI to indent equation (default), L to left-adjust the equation, orC to center the
equation.

.GE - yes Endgremlinpicture.

.GS - yes Begin gremlinpicture.

.PE - yes Endpic picture.

.PS - yes Begin pic picture.

.TE - yes Endtable.

.TH - yes Endheading section of table.

.TSx - yes Begin table; ifx is H table has repeated heading.

.acA N - no Set up for ACM style output.A is the Author’s name(s),N is the total number of pages.
Must be given before the first initialization.

.b x no no Print x in boldface; if no argument switch to boldface.

.ba+n 0 yes Augmentsthe base indent byn. This indent is used to set the indent on regular text (like
paragraphs).

.bc no yes Begin new column

.bi x no no Print x in bold italics (nofill only)

.bu - yes Begin bulleted paragraph

.bx x no no Printx in a box (nofill only).

.ef ´x´y´z´ ´´´´ no Set even footer to x y z

.eh´x´y´z´ ´´´´ no Set even header to xy z

.fo ´x´y´z´ ´´´´ no Set footer to xy z

.hx - no Suppressheaders and footers on next page.

.he´x´y´z´ ´´´´ no Set header to xy z

.hl - yes Draw a horizontal line

.i x no no Italicize x; if x missing, italic text follows.

.ip x y no yes Start indented paragraph, with hanging tagx. Indentation isy ens (default 5).

.lp yes yes Startleft-blocked paragraph.

.lo - no Readin a file of local macros of the form.* x. Must be given before initialization.

.np 1 yes Startnumbered paragraph.

.of ´x´y´z´ ´´´´ no Set odd footer to xy z

.oh ´x´y´z´ ´´´´ no Set odd header to xy z

.pd - yes Printdelayed text.

.pp no yes Begin paragraph. First line indented.

.r yes no Romantext follows.

.re - no Resettabs to default values.

.sc no no Readin a file of special characters and diacritical marks.Must be given before initializa-
tion.

.shn x - yes Sectionhead follows, font automatically bold.n is level of section,x is title of section.

.sk no no Leave the next page blank. Only one page is remembered ahead.

.smx - no Set x in a smaller pointsize.

.sz+n 10p no Augment the point size byn points.

.th no no Producethe paper in thesis format. Must be given before initialization.

.tp no yes Begin title page.

.u x - no Underline argument (even in troff). (Nofill only).

.uh - yes Like .sh but unnumbered.

.xp x - no Print indexx.

June 5, 1993 2

NLS (7) NetBSD Miscellaneous Information Manual NLS (7)

NAME
NLS— Native Language Support Overview

DESCRIPTION
Native Language Support (NLS) provides commands for a single worldwide operating system base.An
internationalized system has no built-in assumptions or dependencies on language-specific or cultural-spe-
cific conventions such as:

• Character classifications
• Character comparison rules
• Character collation order
• Numeric and monetary formatting
• Date and time formatting
• Message-text language
• Character sets

All information pertaining to cultural conventions and language is obtained at program run time.

“Internationalization” (often abbreviated “i18n”) refers to the operation by which system software is devel-
oped to support multiple cultural-specific and language-specific conventions. Thisis a generalization process
by which the system is untied from calling only English strings or other English-specific conventions.
“Localization” (often abbreviated “l10n”) refers to the operations by which the user environment is cus-
tomized to handle its input and output appropriate for specific language and cultural conventions. Thisis a
specialization process, by which generic methods already implemented in an internationalized system are
used in specific ways. Theformal description of cultural conventions for some country, together with all
associated translations targeted to the native language, is called the “locale”.

NetBSD provides extensive support to programmers and system developers to enable internationalized soft-
ware to be developed. NetBSD also supplies a large variety of locales for system localization.

Localization of Information
All locale information is accessible to programs at run time so that data is processed and displayed correctly
for specific cultural conventions and language.

A locale is divided into categories. Acategory is a group of language-specific and culture-specific conven-
tions as outlined in the list above. ISO C specifies the following six standard categories supported by
NetBSD:

LC_COLLATE string-collation order information
LC_CTYPE character classification, case conversion, and other character attributes
LC_MESSAGES the format for affirmative and negative responses
LC_MONETARY rules and symbols for formatting monetary numeric information
LC_NUMERIC rules and symbols for formatting nonmonetary numeric information
LC_TIME rules and symbols for formatting time and date information

Localization of the system is achieved by setting appropriate values in environment variables to identify
which locale should be used.The environment variables have the same names as their respective locale cate-
gories. Additionally, the LANG, LC_ALL, and NLSPATHenvironment variables are used.The NLSPATH
environment variable specifies a colon-separated list of directory names where the message catalog files of
the NLS database are located.The LC_ALL and LANGenvironment variables also determine the current
locale.

The values of these environment variables contains a string format as:

language[_territory][.codeset][@modifier]

NetBSD 3.0 February 21, 2007 1

NLS (7) NetBSD Miscellaneous Information Manual NLS (7)

Valid values for the language field come from the ISO639 standard which defines two-character codes for
many languages. Somecommon language codes are:

Language Name Code Language Family

ABKHAZIAN AB IBERO-CAUCASIAN
AFAN (OROMO) OM HAMITIC
AFAR AA HAMITIC
AFRIKAANS AF GERMANIC
ALBANIAN SQ INDO-EUROPEAN (OTHER)
AMHARIC AM SEMITIC
ARABIC AR SEMITIC
ARMENIAN HY INDO-EUROPEAN (OTHER)
ASSAMESE AS INDIAN
AYMARA AY AMERINDIAN
AZERBAIJANI AZ TURKIC/ALTAIC
BASHKIR BA TURKIC/ALTAIC
BASQUE EU BASQUE
BENGALI BN INDIAN
BHUTANI DZ ASIAN
BIHARI BH INDIAN
BISLAMA BI
BRETON BR CELTIC
BULGARIAN BG SLAVIC
BURMESE MY ASIAN
BYELORUSSIAN BE SLAVIC
CAMBODIAN KM ASIAN
CATALAN CA ROMANCE
CHINESE ZH ASIAN
CORSICAN CO ROMANCE
CROATIAN HR SLAVIC
CZECH CS SLAVIC
DANISH DA GERMANIC
DUTCH NL GERMANIC
ENGLISH EN GERMANIC
ESPERANTO EO INTERNATIONAL AUX.
ESTONIAN ET FINNO-UGRIC
FAROESE FO GERMANIC
FIJI FJ OCEANIC/INDONESIAN
FINNISH FI FINNO-UGRIC
FRENCH FR ROMANCE
FRISIAN FY GERMANIC
GALICIAN GL ROMANCE
GEORGIAN KA IBERO-CAUCASIAN
GERMAN DE GERMANIC
GREEK EL LATIN/GREEK
GREENLANDIC KL ESKIMO
GUARANI GN AMERINDIAN
GUJARATI GU INDIAN
HAUSA HA NEGRO-AFRICAN
HEBREW HE SEMITIC
HINDI HI INDIAN
HUNGARIAN HU FINNO-UGRIC

NetBSD 3.0 February 21, 2007 2

NLS (7) NetBSD Miscellaneous Information Manual NLS (7)

ICELANDIC IS GERMANIC
INDONESIAN ID OCEANIC/INDONESIAN
INTERLINGUA IA INTERNATIONAL AUX.
INTERLINGUE IE INTERNATIONAL AUX.
INUKTITUT IU
INUPIAK IK ESKIMO
IRISH GA CELTIC
ITALIAN IT ROMANCE
JAPANESE JA ASIAN
JAVANESE JV OCEANIC/INDONESIAN
KANNADA KN DRAVIDIAN
KASHMIRI KS INDIAN
KAZAKH KK TURKIC/ALTAIC
KINYARWANDA RW NEGRO-AFRICAN
KIRGHIZ KY TURKIC/ALTAIC
KURUNDI RN NEGRO-AFRICAN
KOREAN KO ASIAN
KURDISH KU IRANIAN
LAOTHIAN LO ASIAN
LATIN LA LATIN/GREEK
LATVIAN LV BALTIC
LINGALA LN NEGRO-AFRICAN
LITHUANIAN LT BALTIC
MACEDONIAN MK SLAVIC
MALA GASY MG OCEANIC/INDONESIAN
MALAY MS OCEANIC/INDONESIAN
MALAYALAM ML DRAVIDIAN
MALTESE MT SEMITIC
MAORI MI OCEANIC/INDONESIAN
MARATHI MR INDIAN
MOLDAVIAN MO ROMANCE
MONGOLIAN MN
NAURU NA
NEPALI NE INDIAN
NORWEGIAN NO GERMANIC
OCCITAN OC ROMANCE
ORIYA OR INDIAN
PASHTO PS IRANIAN
PERSIAN (farsi) FA IRANIAN
POLISH PL SLAVIC
PORTUGUESE PT ROMANCE
PUNJABI PA INDIAN
QUECHUA QU AMERINDIAN
RHAETO-ROMANCE RM ROMANCE
ROMANIAN RO ROMANCE
RUSSIAN RU SLAVIC
SAMOAN SM OCEANIC/INDONESIAN
SANGHO SG NEGRO-AFRICAN
SANSKRIT SA INDIAN
SCOTS GAELIC GD CELTIC
SERBIAN SR SLAVIC
SERBO-CROATIAN SH SLAVIC

NetBSD 3.0 February 21, 2007 3

NLS (7) NetBSD Miscellaneous Information Manual NLS (7)

SESOTHO ST NEGRO-AFRICAN
SETSWANA TN NEGRO-AFRICAN
SHONA SN NEGRO-AFRICAN
SINDHI SD INDIAN
SINGHALESE SI INDIAN
SISWATI SS NEGRO-AFRICAN
SLOVAK SK SLAVIC
SLOVENIAN SL SLAVIC
SOMALI SO HAMITIC
SPANISH ES ROMANCE
SUNDANESE SU OCEANIC/INDONESIAN
SWAHILI SW NEGRO-AFRICAN
SWEDISH SV GERMANIC
TA GALOG TL OCEANIC/INDONESIAN
TAJIK TG IRANIAN
TAMIL TA DRAVIDIAN
TATAR TT TURKIC/ALTAIC
TELUGU TE DRAVIDIAN
THAI TH ASIAN
TIBETAN BO ASIAN
TIGRINYA TI SEMITIC
TONGA TO OCEANIC/INDONESIAN
TSONGA TS NEGRO-AFRICAN
TURKISH TR TURKIC/ALTAIC
TURKMEN TK TURKIC/ALTAIC
TWI TW NEGRO-AFRICAN
UIGUR UG
UKRAINIAN UK SLAVIC
URDU UR INDIAN
UZBEK UZ TURKIC/ALTAIC
VIETNAMESE VI ASIAN
VOLAPUK VO INTERNATIONAL AUX.
WELSH CY CELTIC
WOLOF WO NEGRO-AFRICAN
XHOSA XH NEGRO-AFRICAN
YIDDISH YI GERMANIC
YORUBA YO NEGRO-AFRICAN
ZHUANG ZA
ZULU ZU NEGRO-AFRICAN

For example, the locale for the Danish language spoken in Denmark using the ISO 8859-1 character set is
da_DK.ISO8859-1. Theda stands for the Danish language and the DK stands for Denmark. The short form
of da_DK is sufficient to indicate this locale.

The environment variable settings are queried by their priority level in the following manner:

• If the LC_ALL environment variable is set, all six categories use the locale it specifies.

• If the LC_ALL environment variable is not set, each individual category uses the locale specified by its
corresponding environment variable.

• If the LC_ALL environment variable is not set, and a value for a particularLC_∗ environment variable is
not set, the value of theLANGenvironment variable specifies the default locale for all categories. Only
the LANGenvironment variable should be set in /etc/profile, since it makes it most easy for the user to

NetBSD 3.0 February 21, 2007 4

NLS (7) NetBSD Miscellaneous Information Manual NLS (7)

override the system default using the individualLC_∗ variables.

• If the LC_ALL environment variable is not set, a value for a particularLC_∗ environment variable is not
set, and the value of theLANGenvironment variable is not set, the locale for that specific category
defaults to the C locale.The C or POSIX locale assumes the ASCII character set and defines information
for the six categories.

Character Sets
A character is any symbol used for the organization, control, or representation of data.A group of such sym-
bols used to describe a particular language make up a character set.It is the encoding values in a character
set that provide the interface between the system and its input and output devices.

The following character sets are supported inNetBSD:

ASCII The American Standard Code for Information Exchange (ASCII) standard specifies
128 Roman characters and control codes, encoded in a 7-bit character encoding
scheme.

ISO 8859 family Industry-standard character sets specified by the ISO/IEC 8859 standard. The stan-
dard is divided into 15 numbered parts, with each part specifying broad script simi-
larities. Examplesinclude Western European, Central European, Arabic, Cyrillic,
Hebrew, Greek, and Turkish. Thecharacter sets use an 8-bit character encoding
scheme which is compatible with the ASCII character set.

Unicode The Unicode character set is the full set of known abstract characters of all real-world
scripts. It can be used in environments where multiple scripts must be processed
simultaneously. Unicode is compatible with ISO 8859-1 (Western European) and
ASCII. Many character encoding schemes are available for Unicode, including
UTF-8, UTF-16 and UTF-32. These encoding schemes are multi-byte encodings.
The UTF-8 encoding scheme uses 8-bit, variable-width encodings which is compati-
ble with ASCII. The UTF-16 encoding scheme uses 16-bit, variable-width encod-
ings. TheUTF-32 encoding scheme using 32-bit, fixed-width encodings.

Font Sets
A font set contains the glyphs to be displayed on the screen for a corresponding character in a character set.
A display must support a suitable font to display a character set.If suitable fonts are available to the X
server, then X clients can include support for different character sets.xterm (1) includes support for Uni-
code with UTF-8 encoding.xfd (1) is useful for displaying all the characters in an X font.

TheNetBSD wscons (4) console provides support for loading fonts using thewsfontload (8) utility. Cur-
rently, only fonts for the ISO8859-1 family of character sets are supported.

Inter nationalization for Programmers
To facilitate translations of messages into various languages and to make the translated messages available to
the program based on a user’s locale, it is necessary to keep messages separate from the programs and pro-
vide them in the form of message catalogs that a program can access at run time.

Access to locale information is provided through thesetlocale (3) andnl_langinfo (3) interfaces.
See their respective man pages for further information.

Message source files containing application messages are created by the programmer and converted to mes-
sage catalogs. These catalogs are used by the application to retrieve and display messages, as needed.

NetBSD supports two message catalog interfaces: the X/Opencatgets (3) interface and the Uniforum
gettext (3) interface. Thecatgets (3) interface has the advantage that it belongs to a standard which is
well supported. Unfortunately the interface is complicated to use and maintenance of the catalogs is difficult.

NetBSD 3.0 February 21, 2007 5

NLS (7) NetBSD Miscellaneous Information Manual NLS (7)

The implementation also doesn’t support different character sets.The gettext (3) interface has not been
standardized yet, however it is being supported by an increasing number of systems. It also provides many
additional tools which make programming and catalog maintenance much easier.

Support for Multi-byte Encodings
Some character sets with multi-byte encodings may be difficult to decode, or may contain state (i.e., adjacent
characters are dependent). ISO C specifies a set of functions using ’wide characters’ which can handle
multi-byte encodings properly. The behaviour of these functions is affected by theLC_CTYPEcategory of
the current locale.

A wide character is specified in ISO C as being a fixed number of bits wide and is stateless. There are two
types for wide characters:wchar_tandwint_t. wchar_t is a type which can contain one wide character and
operates like ’char’ type does for one character. wint_t can contain one wide character or WEOF (wide
EOF).

There are functions that operate onwchar_t, and substitute for functions operating on ’char’.See
wmemchr(3) andtowlower (3) for details. There are some additional functions that operate onwchar_t.
Seewctype (3) andwctrans (3) for details.

Wide characters should be used for all I/O processing which may rely on locale-specific strings.The two
primary issues requiring special use of wide characters are:

• All I/O is performed using multibyte characters.Input data is converted into wide characters
immediately after reading and data for output is converted from wide characters to multi-byte
encoding immediately before writing.Conversion is controlled by thembstowcs (3),
mbsrtowcs (3), wcstombs (3), wcsrtombs (3), mblen (3), mbrlen (3), andmbsinit (3).

• Wide characters are used directly for I/O, usinggetwchar (3), fgetwc (3), getwc (3),
ungetwc (3), fgetws (3), putwchar (3), fputwc (3), putwc (3), andfputws (3). They are
also used for formatted I/O functions for wide characters such asfwscanf (3), wscanf (3),
swscanf (3), fwprintf (3), wprintf (3), swprintf (3), vfwprintf (3), vwprintf (3),
andvswprintf (3), and wide character identifier of %lc, %C, %ls, %S for conventional format-
ted I/O functions.

SEE ALSO
gencat (1), xfd (1), xterm (1), catgets (3), gettext (3), nl_langinfo (3), setlocale (3),
wsfontload (8)

BUGS
This man page is incomplete.

NetBSD 3.0 February 21, 2007 6

OPERATOR (7) NetBSDMiscellaneous Information Manual OPERATOR (7)

NAME
operator — C operator precedence and associativity

DESCRIPTION
Operator Associativity
-------- -------------
() [] -> . left to right
! ˜ ++ -- - (type)∗ & sizeof rightto left
∗ / % left to right
+ - left to right
<< >> left to right
< ≤ > ≥ left to right
== != left to right
& l eft to right
ˆ left to right
| left to right
&& left to right
|| left to right
?: rightto left
= += -= etc. rightto left
, left to right

FILES
/usr/share/misc/operator

NetBSD 3.0 June 9, 1993 1

PKGSRC (7) NetBSD Miscellaneous Information Manual PKGSRC (7)

NAME
pkgsrc — NetBSD packages collection (framework for third-party software)

DESCRIPTION
The NetBSD Packages Collection (pkgsrc) is a framework for building and maintaining third-party software
on NetBSD and otherUNIX-like systems. Itis used to enable freely available software to be configured and
built easily on supported platforms.

Tools are available to install ready-to-use packages and to perform various administrative tasks for the pack-
age system.

SEE ALSO
pkg_add (1), pkg_delete (1), pkg_info (1), http://www.netbsd.org/docs/pkgsrc/

NetBSD 3.0 March 2, 2007 1

PKGSRC (7) NetBSD Miscellaneous Information Manual PKGSRC (7)

NAME
pkgsrc — NetBSD packages collection (framework for third-party software)

DESCRIPTION
The NetBSD Packages Collection (pkgsrc) is a framework for building and maintaining third-party software
on NetBSD and otherUNIX-like systems. Itis used to enable freely available software to be configured and
built easily on supported platforms.

Tools are available to install ready-to-use packages and to perform various administrative tasks for the pack-
age system.

SEE ALSO
pkg_add (1), pkg_delete (1), pkg_info (1), http://www.NetBSD.org/docs/pkgsrc/

NetBSD 3.0 March 2, 2007 1

RE_FORMAT(7) RE_FORMAT(7)

NAME
re_format − POSIX 1003.2 regular expressions

DESCRIPTION
Regular expressions (‘‘RE’’s), as defined in POSIX 1003.2, come in two forms: modern REs (roughly those
of egrep; 1003.2 calls these ‘‘extended’’ REs) and obsolete REs (roughly those ofed; 1003.2 ‘‘basic’’ REs).
Obsolete REs mostly exist for backward compatibility in some old programs; they will be discussed at the
end. 1003.2leaves some aspects of RE syntax and semantics open; ‘†’ marks decisions on these aspects
that may not be fully portable to other 1003.2 implementations.

A (modern) RE is one† or more non-empty†branches, separated by ‘|’.It matches anything that matches
one of the branches.

A branch is one† or morepieces, concatenated. Itmatches a match for the first, followed by a match for the
second, etc.

A piece is anatompossibly followed by a single† ‘*’, ‘+’, ‘?’, orbound. An atom followed by ‘*’ matches
a sequence of 0 or more matches of the atom. An atom followed by ‘+’ matches a sequence of 1 or more
matches of the atom. An atom followed by ‘?’ matches a sequence of 0 or 1 matches of the atom.

A bound is ‘{’ followed by an unsigned decimal integer, possibly followed by ‘,’ possibly followed by
another unsigned decimal integer, always followed by ‘}’. The integers must lie between 0 and
RE_DUP_MAX (255†) inclusive, and if there are two of them, the first may not exceed the second.An
atom followed by a bound containing one integer i and no comma matches a sequence of exactly i matches
of the atom. An atom followed by a bound containing one integer i and a comma matches a sequence ofi
or more matches of the atom. An atom followed by a bound containing two integersi and j matches a
sequence ofi throughj (inclusive) matches of the atom.

An atom is a regular expression enclosed in ‘()’ (matching a match for the regular expression), an empty set
of ‘()’ (matching the null string)†, abracket expression(see below), ‘.’ (matching any single character), ‘ˆ’
(matching the null string at the beginning of a line), ‘$’ (matching the null string at the end of a line), a ‘\’
followed by one of the characters ‘ˆ.[$()|*+?{\’ (matching that character taken as an ordinary character), a
‘\’ followed by any other character† (matching that character taken as an ordinary character, as if the ‘\’ had
not been present†), or a single character with no other significance (matching that character).A ‘ {’ fol-
lowed by a character other than a digit is an ordinary character, not the beginning of a bound†. It is illegal
to end an RE with ‘\’.

A bracket expressionis a list of characters enclosed in ‘[]’.It normally matches any single character from
the list (but see below). If the list begins with ‘ˆ’, it matches any single character (but see below) not from
the rest of the list. If two characters in the list are separated by ‘−’, this is shorthand for the fullrangeof
characters between those two (inclusive) in the collating sequence, e.g. ‘[0-9]’ in ASCII matches any deci-
mal digit. It is illegal† for two ranges to share an endpoint, e.g. ‘a-c-e’.Ranges are very collating-
sequence-dependent, and portable programs should avoid relying on them.

To include a literal ‘]’ in the list, make it the first character (following a possible ‘ˆ’).To include a literal
‘−’, make it the first or last character, or the second endpoint of a range.To use a literal ‘−’ as the first end-
point of a range, enclose it in ‘[.’ and ‘.]’ to make it a collating element (see below). With the exception of
these and some combinations using ‘[’ (see next paragraphs), all other special characters, including ‘\’, lose
their special significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multi-character sequence that collates as if it
were a single character, or a collating-sequence name for either) enclosed in ‘[.’ and ‘.]’ stands for the
sequence of characters of that collating element.The sequence is a single element of the bracket expres-
sion’s list. A bracket expression containing a multi-character collating element can thus match more than
one character, e.g. if the collating sequence includes a ‘ch’ collating element, then the RE ‘[[.ch.]]*c’
matches the first five characters of ‘chchcc’.

Within a bracket expression, a collating element enclosed in ‘[=’ and ‘=]’ is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there are
no other equivalent collating elements, the treatment is as if the enclosing delimiters were ‘[.’ and ‘.]’.) For

March 16, 1994 1

RE_FORMAT(7) RE_FORMAT(7)

example, if o and oˆ are the members of an equivalence class, then ‘[[=o=]]’, ‘[[=oˆ=]]’, and ‘[oô]’ are all
synonymous. Anequivalence class may not† be an endpoint of a range.

Within a bracket expression, the name of acharacter classenclosed in ‘[:’ and ‘:]’ stands for the list of all
characters belonging to that class. Standard character class names are:

alnum digit punct
alpha graph space
blank lower upper
cntrl print xdigit

These stand for the character classes defined inctype(3). A locale may provide others.A character class
may not be used as an endpoint of a range.

There are two special cases† of bracket expressions: the bracket expressions ‘[[:<:]]’ and ‘[[:>:]]’ match the
null string at the beginning and end of a word respectively. A word is defined as a sequence of word char-
acters which is neither preceded nor followed by word characters.A word character is analnumcharacter
(as defined byctype(3)) or an underscore. This is an extension, compatible with but not specified by
POSIX 1003.2, and should be used with caution in software intended to be portable to other systems.

In the event that an RE could match more than one substring of a given string, the RE matches the one start-
ing earliest in the string. If the RE could match more than one substring starting at that point, it matches
the longest.Subexpressions also match the longest possible substrings, subject to the constraint that the
whole match be as long as possible, with subexpressions starting earlier in the RE taking priority over ones
starting later. Note that higher-level subexpressions thus take priority over their lower-level component
subexpressions.

Match lengths are measured in characters, not collating elements.A null string is considered longer than
no match at all. For example, ‘bb*’ matches the three middle characters of ‘abbbc’,
‘(wee|week)(knights|nights)’ matches all ten characters of ‘weeknights’, when ‘(.*).*’ is matched against
‘abc’ the parenthesized subexpression matches all three characters, and when ‘(a*)*’ is matched against
‘bc’ both the whole RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g. ‘x’
becomes ‘[xX]’. When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, so that (e.g.) ‘[x]’ becomes ‘[xX]’ and ‘[ˆx]’ becomes ‘[ˆxX]’.

No particular limit is imposed on the length of REs†. Programs intended to be portable should not employ
REs longer than 256 bytes, as an implementation can refuse to accept such REs and remain POSIX-compli-
ant.

Obsolete (‘‘basic’’) regular expressions differ in several respects. ‘|’, ‘+’, and ‘?’ are ordinary characters
and there is no equivalent for their functionality. The delimiters for bounds are ‘\{’ and ‘\}’, with ‘{’ and
‘}’ by themselves ordinary characters.The parentheses for nested subexpressions are ‘\(’ and ‘\)’, with ‘(’
and ‘)’ by themselves ordinary characters. ‘ˆ’ is an ordinary character except at the beginning of the RE or†
the beginning of a parenthesized subexpression, ‘$’ is an ordinary character except at the end of the RE or†
the end of a parenthesized subexpression, and ‘*’ is an ordinary character if it appears at the beginning of
the RE or the beginning of a parenthesized subexpression (after a possible leading ‘ˆ’).Finally, there is one
new type of atom, aback reference: ‘ \’ followed by a non-zero decimal digitd matches the same sequence
of characters matched by thedth parenthesized subexpression (numbering subexpressions by the positions
of their opening parentheses, left to right), so that (e.g.) ‘\([bc]\)\1’ matches ‘bb’ or ‘cc’ but not ‘bc’.

SEE ALSO
regex(3)

POSIX 1003.2, section 2.8 (Regular Expression Notation).

BUGS
Having two kinds of REs is a botch.

March 16, 1994 2

RE_FORMAT(7) RE_FORMAT(7)

The current 1003.2 spec says that ‘)’ is an ordinary character in the absence of an unmatched ‘(’; this was
an unintentional result of a wording error, and change is likely. Avoid relying on it.

Back references are a dreadful botch, posing major problems for efficient implementations.They are also
somewhat vaguely defined (does ‘a\(\(b\)*\2\)*d’ match ‘abbbd’?).Av oid using them.

1003.2’s specification of case-independent matching is vague. The‘‘ one case implies all cases’’ definition
given above is current consensus among implementors as to the right interpretation.

The syntax for word boundaries is incredibly ugly.

March 16, 1994 3

RE_FORMAT(7) RE_FORMAT(7)

NAME
re_format − POSIX 1003.2 regular expressions

DESCRIPTION
Regular expressions (‘‘RE’’s), as defined in POSIX 1003.2, come in two forms: modern REs (roughly those
of egrep; 1003.2 calls these ‘‘extended’’ REs) and obsolete REs (roughly those ofed; 1003.2 ‘‘basic’’ REs).
Obsolete REs mostly exist for backward compatibility in some old programs; they will be discussed at the
end. 1003.2leaves some aspects of RE syntax and semantics open; ‘†’ marks decisions on these aspects
that may not be fully portable to other 1003.2 implementations.

A (modern) RE is one† or more non-empty†branches, separated by ‘|’.It matches anything that matches
one of the branches.

A branch is one† or morepieces, concatenated. Itmatches a match for the first, followed by a match for the
second, etc.

A piece is anatompossibly followed by a single† ‘*’, ‘+’, ‘?’, orbound. An atom followed by ‘*’ matches
a sequence of 0 or more matches of the atom. An atom followed by ‘+’ matches a sequence of 1 or more
matches of the atom. An atom followed by ‘?’ matches a sequence of 0 or 1 matches of the atom.

A bound is ‘{’ followed by an unsigned decimal integer, possibly followed by ‘,’ possibly followed by
another unsigned decimal integer, always followed by ‘}’. The integers must lie between 0 and
RE_DUP_MAX (255†) inclusive, and if there are two of them, the first may not exceed the second.An
atom followed by a bound containing one integer i and no comma matches a sequence of exactly i matches
of the atom. An atom followed by a bound containing one integer i and a comma matches a sequence ofi
or more matches of the atom. An atom followed by a bound containing two integersi and j matches a
sequence ofi throughj (inclusive) matches of the atom.

An atom is a regular expression enclosed in ‘()’ (matching a match for the regular expression), an empty set
of ‘()’ (matching the null string)†, abracket expression(see below), ‘.’ (matching any single character), ‘ˆ’
(matching the null string at the beginning of a line), ‘$’ (matching the null string at the end of a line), a ‘\’
followed by one of the characters ‘ˆ.[$()|*+?{\’ (matching that character taken as an ordinary character), a
‘\’ followed by any other character† (matching that character taken as an ordinary character, as if the ‘\’ had
not been present†), or a single character with no other significance (matching that character).A ‘ {’ fol-
lowed by a character other than a digit is an ordinary character, not the beginning of a bound†. It is illegal
to end an RE with ‘\’.

A bracket expressionis a list of characters enclosed in ‘[]’.It normally matches any single character from
the list (but see below). If the list begins with ‘ˆ’, it matches any single character (but see below) not from
the rest of the list. If two characters in the list are separated by ‘−’, this is shorthand for the fullrangeof
characters between those two (inclusive) in the collating sequence, e.g. ‘[0-9]’ in ASCII matches any deci-
mal digit. It is illegal† for two ranges to share an endpoint, e.g. ‘a-c-e’.Ranges are very collating-
sequence-dependent, and portable programs should avoid relying on them.

To include a literal ‘]’ in the list, make it the first character (following a possible ‘ˆ’).To include a literal
‘−’, make it the first or last character, or the second endpoint of a range.To use a literal ‘−’ as the first end-
point of a range, enclose it in ‘[.’ and ‘.]’ to make it a collating element (see below). With the exception of
these and some combinations using ‘[’ (see next paragraphs), all other special characters, including ‘\’, lose
their special significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multi-character sequence that collates as if it
were a single character, or a collating-sequence name for either) enclosed in ‘[.’ and ‘.]’ stands for the
sequence of characters of that collating element.The sequence is a single element of the bracket expres-
sion’s list. A bracket expression containing a multi-character collating element can thus match more than
one character, e.g. if the collating sequence includes a ‘ch’ collating element, then the RE ‘[[.ch.]]*c’
matches the first five characters of ‘chchcc’.

Within a bracket expression, a collating element enclosed in ‘[=’ and ‘=]’ is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there are
no other equivalent collating elements, the treatment is as if the enclosing delimiters were ‘[.’ and ‘.]’.) For

March 20, 1994 1

RE_FORMAT(7) RE_FORMAT(7)

example, if o and oˆ are the members of an equivalence class, then ‘[[=o=]]’, ‘[[=oˆ=]]’, and ‘[oô]’ are all
synonymous. Anequivalence class may not† be an endpoint of a range.

Within a bracket expression, the name of acharacter classenclosed in ‘[:’ and ‘:]’ stands for the list of all
characters belonging to that class. Standard character class names are:

alnum digit punct
alpha graph space
blank lower upper
cntrl print xdigit

These stand for the character classes defined inctype(3). A locale may provide others.A character class
may not be used as an endpoint of a range.

There are two special cases† of bracket expressions: the bracket expressions ‘[[:<:]]’ and ‘[[:>:]]’ match the
null string at the beginning and end of a word respectively. A word is defined as a sequence of word char-
acters which is neither preceded nor followed by word characters.A word character is analnumcharacter
(as defined byctype(3)) or an underscore. This is an extension, compatible with but not specified by
POSIX 1003.2, and should be used with caution in software intended to be portable to other systems.

In the event that an RE could match more than one substring of a given string, the RE matches the one start-
ing earliest in the string. If the RE could match more than one substring starting at that point, it matches
the longest.Subexpressions also match the longest possible substrings, subject to the constraint that the
whole match be as long as possible, with subexpressions starting earlier in the RE taking priority over ones
starting later. Note that higher-level subexpressions thus take priority over their lower-level component
subexpressions.

Match lengths are measured in characters, not collating elements.A null string is considered longer than
no match at all. For example, ‘bb*’ matches the three middle characters of ‘abbbc’,
‘(wee|week)(knights|nights)’ matches all ten characters of ‘weeknights’, when ‘(.*).*’ is matched against
‘abc’ the parenthesized subexpression matches all three characters, and when ‘(a*)*’ is matched against
‘bc’ both the whole RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g. ‘x’
becomes ‘[xX]’. When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, so that (e.g.) ‘[x]’ becomes ‘[xX]’ and ‘[ˆx]’ becomes ‘[ˆxX]’.

No particular limit is imposed on the length of REs†. Programs intended to be portable should not employ
REs longer than 256 bytes, as an implementation can refuse to accept such REs and remain POSIX-compli-
ant.

Obsolete (‘‘basic’’) regular expressions differ in several respects. ‘|’, ‘+’, and ‘?’ are ordinary characters
and there is no equivalent for their functionality. The delimiters for bounds are ‘\{’ and ‘\}’, with ‘{’ and
‘}’ by themselves ordinary characters.The parentheses for nested subexpressions are ‘\(’ and ‘\)’, with ‘(’
and ‘)’ by themselves ordinary characters. ‘ˆ’ is an ordinary character except at the beginning of the RE or†
the beginning of a parenthesized subexpression, ‘$’ is an ordinary character except at the end of the RE or†
the end of a parenthesized subexpression, and ‘*’ is an ordinary character if it appears at the beginning of
the RE or the beginning of a parenthesized subexpression (after a possible leading ‘ˆ’).Finally, there is one
new type of atom, aback reference: ‘ \’ followed by a non-zero decimal digitd matches the same sequence
of characters matched by thedth parenthesized subexpression (numbering subexpressions by the positions
of their opening parentheses, left to right), so that (e.g.) ‘\([bc]\)\1’ matches ‘bb’ or ‘cc’ but not ‘bc’.

SEE ALSO
regex(3)

POSIX 1003.2, section 2.8 (Regular Expression Notation).

BUGS
Having two kinds of REs is a botch.

March 20, 1994 2

RE_FORMAT(7) RE_FORMAT(7)

The current 1003.2 spec says that ‘)’ is an ordinary character in the absence of an unmatched ‘(’; this was
an unintentional result of a wording error, and change is likely. Avoid relying on it.

Back references are a dreadful botch, posing major problems for efficient implementations.They are also
somewhat vaguely defined (does ‘a\(\(b\)*\2\)*d’ match ‘abbbd’?).Av oid using them.

1003.2’s specification of case-independent matching is vague. The‘‘ one case implies all cases’’ definition
given above is current consensus among implementors as to the right interpretation.

The syntax for word boundaries is incredibly ugly.

March 20, 1994 3

RELEASE (7) NetBSD Miscellaneous Information Manual RELEASE (7)

NAME
release — layout of NetBSD releases and snapshots

DESCRIPTION
This document describes the layout ofNetBSD releases and snapshots.This layout should be consistent
between FTP servers and CD-ROMs, except possibly the path that leads to the release hierarchy.

In this document, the following special words have these definitions:

<machine> The platform for which the release was built, corresponding to thehw.machinesysctl
variable, e.g.i386or amiga.

<machine_arch> The architecture for which a particular installation set was built, corresponding to the
hw.machine_archsysctl variable, e.g.i386or m68k.

<rel> The target release.

All README files are descriptions of the various files in directories that have “non-standard” contents.
There may also be aREADME file at the top-level, describing who built the snapshot and under what cir-
cumstances (e.g. whether it’s an official NetBSD snapshot, or not) .

All BSDSUM files are historicBSD checksums for the various files in that directory, in the format produced
by the command:cksum -o 1 <file>.

All CKSUM files are POSIX checksums for the various files in that directory, in the format produced by the
command:cksum <file>.

All MD5 files are MD5 digests for the various files in that directory, in the format produced by the com-
mand:cksum -m <file>.

All SYSVSUM files are historicAT&T System VUNIX checksums for the various files in that directory, in
the format produced by the command:cksum -o 2 <file>.

The MD5 digest is the safest checksum, followed by the POSIX checksum. The other two checksums are
provided only to ensure that the widest possible range of system can check the integrity of the release files.

Files that end in.tgz are gzipped tar archives. Thisis used in lieu of.tar.gz because the software used to
download the sets may incorrectly auto-unpack files ending in.gz and to accommodate systems which only
support 3 character extensions to file names.

All tar archives are relative to the target’s/ directory, anddo notinclude the leading “/”.

All compression of release files is to be performed with the command:gzip -9.

The root of the release hierarchy may be the root directory of a CD-ROM, but in all other cases it should be
.../NetBSD-<rel> /.

The root of the release hierarchy should contain the following files and subdirectories:

SOURCE_DATE
A file containing the date, in UTC, of the source code from which the release or snapshot was
built, in the default format produced by the command:date -u.

iso/ CDROM images in ISO 9660 format, usually created with “./build.sh .. . iso-image .. .” after
a “./build.sh -x . . . release .. .” i n src or created with “./build.sh .. . iso-image-source .. .”
after a “./build.sh -x. . . release sourcesets. . .” i n src .

Images in this directory, unlike images in the
.../NetBSD-<rel> /<machine>/installation/cdrom/ directory, should contain file systems that
have an internal layout that corresponds to a complete release for one or more machine types.
If built with “iso-image-source”, then it will also contain a “source” directory. These images

NetBSD 3.0 August 30, 2007 1

RELEASE (7) NetBSD Miscellaneous Information Manual RELEASE (7)

are usually bootable.

BSDSUM

CKSUM

MD5

README

SYSVSUM

<machine_arch>cd.iso

shared/ Files shared by two or more machine types.

<machine_arch> / Files which may be shared by all systems of the same<machine_arch>
will be located in .../NetBSD-<rel> /shared/<machine_arch> / with
symbolic links pointing to these files from the<machine>subdirectory.

ALL/ Files which are completely machine-independent will be located in
.../NetBSD-<rel> /shared/ALL/ with symbolic links pointing to these
files from the<machine>subdirectory.

source/ Source codes of the operating system and patches for it should be put into
.../NetBSD-<rel> /source/using the following layout:

patches/ This directory contains various patch files appropriate forpatch (1). Other
patches may exist for fixing critical problems.

BSDSUM

CKSUM

MD5

README

SYSVSUM

diff- <lastrel>-<rel> .gz Diff against the last release, usually generated
by cvs rdiff . For patch releases, diffs
against the last release are included. If the last
release was a patch release itself, the diff is
against that patch release is included.

sets/ Sources for the various system sets, based on their modules in the CVS server.

BSDSUM

CKSUM

MD5

README

SYSVSUM

gnusrc.tgz Contains sources for all GPLed and possibly other programs
that contains restrictions in their licensing that prevent others
from using these programs in closed-source environments.

NetBSD 3.0 August 30, 2007 2

RELEASE (7) NetBSD Miscellaneous Information Manual RELEASE (7)

pkgsrc.tgz Package-sources for third party software ready to compile.
See pkgsrc/README for more information.

sharesrc.tgz Contains machine-independent data files that can be shared
across architectures/systems.

src.tgz The operating system’s userland source code, including all
programs, tools, toolchain, etc.

syssrc.tgz Kernel sources for all architectures plus sources of the tools
needed to build kernels (likeconfig (1)).

xsrc.tgz Source code of the X Window System used on all NetBSD
architectures. IncludesX clients and servers.

<machine>/ The binary releases in.../NetBSD-<rel> /<machine>/ follow the following layout:

INSTALL.txt Installation notes, including complete descriptions of files contained
within the release hierarchy

INSTALL.more pretty version of this, suited for viewing withmore (1)

INSTALL.html HTML version of this

INSTALL.ps PostScript version of this

binary/ system binaries

sets/ installation sets

BSDSUM

CKSUM

MD5

SYSVSUM

base.tgz The base binary distribution. This set
contains the baseNetBSD utilities that
are necessary for the system to run and
be minimally functional. It includes
shared libraries for those architectures
that support them. This set excludes all
things listed in the sets described below.

comp.tgz The compiler tools distribution. Thisset
contains the C and C++ compilers,
assembler, linker, other toolchain compo-
nents, and their manual pages.It also
includes the system include files
(/usr/include) , and the static sys-
tem libraries.

etc.tgz This set contains the system configura-
tion files that reside in/etc and in sev-
eral other places throughout the file sys-
tem hierarchy.

NetBSD 3.0 August 30, 2007 3

RELEASE (7) NetBSD Miscellaneous Information Manual RELEASE (7)

games.tgz This set includes the games and their
manual pages.

kern.tgz This set includes a generic kernel.

man.tgz This set includes all of the manual pages
for the binaries and other software con-
tained in thebase set which are not
included in the other sets.

misc.tgz This set includes the system dictionaries
(which are rather large), the typesettable
document set, and manual pages for
other architectures, which happen to be
installed from the source tree by default.

text.tgz This set includes theNetBSD text pro-
cessing tools, includinggroff (1), all
related programs, and their manual
pages.

xbase.tgz This set includes the base X11 distribu-
tion, including manual pages and shared
libraries for those architectures that sup-
port them, and excluding everything con-
tained in the other X11 sets.

xcomp.tgz This set includes the X11 include files
and static X11 libraries.

xcontrib.tgz This set includes binaries and manual
pages for programs built from the X11
“contrib” sources.

xfont.tgz This set includes the X11 fonts.

xserver.tgz This set includes the X servers and man-
ual pages for <machine>.Note: this set
may not be available on some platforms.

kernel/ suitably named, gzipped kernels

BSDSUM

CKSUM

MD5

README

SYSVSUM

netbsd-GENERIC.gz A kernel built from the
GENERIC kernel configuration
file. This is meant as an example
only; different platforms may
have differently named kernels.

NetBSD 3.0 August 30, 2007 4

RELEASE (7) NetBSD Miscellaneous Information Manual RELEASE (7)

installation/ installation helper items

cdrom/ CDROM images in ISO 9660 format, usually created as
part of “build.sh .. . release .. .” i n src .

Images in this directory will typically be bootable, and
will contain one or more of a kernel, installation tools,
and rescue tools.They will not contain installation sets,
source sets, or other components of a complete release.

BSDSUM

CKSUM

MD5

README

SYSVSUM

netbsd-<machine_arch> .iso

diskimage/ disk images, for those platforms that provide them

BSDSUM

CKSUM

MD5

README

SYSVSUM

diskimage-rz25.gz

floppy/ floppy images, for those platforms that provide them

BSDSUM

CKSUM

MD5

README

SYSVSUM

floppy-144.gz

miniroot/ miniroot images, for those platforms that provide them

BSDSUM

CKSUM

MD5

README

SYSVSUM

miniroot.gz

misc/ miscellaneous installation helper utilities, including boot
selectors, floppy writing software, other software that
runs under foreign operating systems, etc.

NetBSD 3.0 August 30, 2007 5

RELEASE (7) NetBSD Miscellaneous Information Manual RELEASE (7)

BSDSUM

CKSUM

MD5

README

SYSVSUM

. . .

netboot/ network boot programs

BSDSUM

CKSUM

MD5

README

SYSVSUM

netboot.gz

tapeimage/ tape images, for those platforms that provide them

BSDSUM

CKSUM

MD5

README

SYSVSUM

tapeimage-hp9144.gz

SEE ALSO
cksum (1), date (1), gzip (1), split (1), tar (1)

HISTORY
Therelease manual page first appeared inNetBSD 1.3.

NetBSD 3.0 August 30, 2007 6

SCRIPT (7) NetBSD Miscellaneous Information Manual SCRIPT (7)

NAME
script — interpreter script execution

DESCRIPTION
The system is capable of treating a text file containing commands intended for an interpreter, such assh (1)
or awk(1), as an executable program.

An “interpreter script” is a file which has been set executable (seechmod(2)) and which has a first line of the
form:

#! pathname [argument]

The “#!” must appear as the first two characters of the file.A space between the “#!” andpathname is
optional. Atmost oneargument may follow pathname, and the length of the entire line is limited (see
below).

If such a file is executed (such as via theexecve (2) system call), the interpreter specified by the
pathname is executed by the system.(Thepathname is executed without regard to thePATHvariable, so
in generalpathname should be an absolute path.)

The arguments passed to the interpreter will be as follows. argv[0] will be the path to the interpreter itself,
as specified on the first line of the script. If there is anargument following pathname on the first line of
the script, it will be passed asargv[1]. The subsequent elements ofargv will be the path to the interpreter
script file itself (i.e. the originalargv[0]) followed by any further arguments passed whenexecve (2) was
invoked to execute the script file.

By convention, it is expected that an interpreter will open the script file passed as an argument and process
the commands within it.Typical interpreters treat ‘#’ as a comment character, and thus will ignore the initial
line of the script because it begins “#!”, but there is no requirement for this per se.

On NetBSD, the length of the “#!” line, excluding the “#!” itself, is limited toPATH_MAX(as defined in
〈limits.h 〉). Other operating systems impose much smaller limits on the length of the “#!” line (see
below).

Note that the interpreter may not itself be an interpreter script.If pathname does not point to an executable
binary, execution of the interpreter script will fail.

Tr ampolines and Portable Scripts
Different operating systems often have interpreters located in different locations, and the kernel executes the
passed interpreter without regard to the setting of environment variables such asPATH. This makes it some-
what challenging to set the “#!” line of a script so that it will run identically on different systems.

Since theenv (1) utility executes a command passed to it on its command line, it is often used as a
“trampoline” to render scripts portable. If the leading line of a script reads

#! /usr/bin/env interp
then theenv (1) command will execute the “interp” command it finds in itsPATH, passing on to it all subse-
quent arguments with which it itself was called.Since/usr/bin/env is found on almost allPOSIX style
systems, this trick is frequently exploited by authors who need a script to execute without change on multiple
systems.

Historical Note: Scripts without “#!”
Shell scripts predate the invention of the “#!” convention, which is implemented in the kernel. Inthe days of
Version 7AT&T UNIX , there was only one interpreter used on the system,/bin/sh , and the shell treated
any file that failed to execute with anENOEXECerror (seeintro (2)) as a shell script.

NetBSD 3.0 May 6, 2005 1

SCRIPT (7) NetBSD Miscellaneous Information Manual SCRIPT (7)

Most shells (such assh (1)) and certain other facilities (includingexeclp (3) andexecvp (3) but not other
types ofexec (3) calls) still pass interpreter scripts that do not include the “#!” (and thus fail to execute with
ENOEXEC) to /bin/sh .

As this behavior is implemented outside the kernel, there is no mechanism that forces it to be respected by all
programs that execute other programs.It is thus not completely reliable. It is therefore important to always
include

#!/bin/sh
in front of Bourne shell scripts, and to treat the traditional behavior as obsolete.

EXAMPLES
Suppose that an executable binary exists in/bin/interp and that the file/tmp/script contains:

#!/bin/interp -arg

[...]

and that/tmp/script is set mode 755.

Executing

$ / tmp/script one two three

at the shell will result in/bin/interp being executed, receiving the following arguments inargv (num-
bered from 0):

"/bin/interp", "-arg", "/tmp/script", "one", "two", "three"

Portability Note: Multiple ar guments
The behavior of multiple arguments on the “#!” line is highly non-portable between different systems.In
general, only one argument can be assumed to work consistently.

Consider the following variation on the previous example. Supposethat an executable binary exists in
/bin/interp and that the file/tmp/script contains:

#!/bin/interp -x -y

[...]

and that/tmp/script is set mode 755.

Executing

$ / tmp/script one two three

at the shell will result in/bin/interp being executed, receiving the following arguments inargv (num-
bered from 0):

"/bin/interp", "-x -y", "/tmp/script", "one", "two", "three"

Note that "-x -y" will be passed onNetBSD as a single argument.

Although mostPOSIX style operating systems will pass only oneargument, the behavior when multiple
arguments are included is not consistent between platforms. Some, such as current releases ofNetBSD, will
concatenate multiple arguments into a single argument (as above), some will truncate them, and at least one
will pass them as multiple arguments.

TheNetBSD behavior is common but not universal. Sun’s Solariswould present the above argument as "-x",
dropping the " -y" entirely. Perhaps uniquely, recent versions of Apple’s OS X will actually pass multiple
arguments properly, i.e.:

NetBSD 3.0 May 6, 2005 2

SCRIPT (7) NetBSD Miscellaneous Information Manual SCRIPT (7)

"/bin/interp", "-x", "-y", "/tmp/script", "one", "two", "three"

The behavior of the system in the face of multiple arguments is thus not currently standardized, should not be
relied on, and may be changed in future releases.In general, pass at most one argument, and do not rely on
multiple arguments being concatenated.

SEE ALSO
awk(1), csh (1), ksh (1), sh (1), chmod(2), execve (2), intro (2), execlp (3), execvp (3), fd (4),
options (4), setuid (7)

STANDARDS
The behavior of interpreter scripts is obliquely referred to, but never actually described in, IEEE Std
1003.1-2004 "(“POSIX.1”).

The behavior is partially (but not completely) described in the System V Interface Definition, Fourth Edition
(“SVID4”).

Although it has never been formally standardized, the behavior described is largely portable acrossPOSIX
style systems, with two significant exceptions: the maximum length of the “#!” line, and the behavior if mul-
tiple arguments are passed. Please be aware that some operating systems limit the line to 32 or 64 characters,
and that (as described above) the behavior in the face of multiple arguments is not consistent across systems.

HISTORY
The behavior of the kernel when encountering scripts that start in “#!” was not present in Version 7AT&T
UNIX . A Usenet posting to net.unix by Guy Harris on October 16, 1984 claims that the idea for the “#!”
behavior was first proposed by Dennis Ritchie but that the first implementation was onBSD.

Historical manuals (specifically the exec man page) indicate that the behavior was present in 4BSD at least as
early as April, 1981. Information on precisely when it was first implemented, and in which version ofUNIX ,
is solicited.

SECURITY CONSIDERATIONS
Numerous security problems are associated with setuid interpreter scripts.

In addition to the fact that many interpreters (and scripts) are simply not designed to be robust in a setuid
context, a race condition exists between the moment that the kernel examines the interpreter script file and
the moment that the newly invoked interpreter opens the file itself.

Because of these security issues,NetBSD does not allow setuid interpreter scripts by default. Inorder to turn
on setuid interpreter scripts,

options SETUIDSCRIPTS
must be set in the configuration of the running kernel. Settingthis option implies theFDSCRIPTSoption,
which causes the kernel to open the script file on behalf of the interpreter and pass it inargv as
/dev/fd/[fdnum] . (Seefd (4) for an explanation of the/dev/fd/[fdnum] devices.) Thisdesign
avoids the race condition, at the cost of denying the interpreter the actual name of the script file.See
options (4) for more information.

However, the FDSCRIPTSmechanism is not a cure-all for security issues in setuid interpreters and scripts.
Subtle techniques can be used to subvert even seemingly well written scripts. Scripts executed by Bourne
type shells can be subverted in numerous ways, such as by setting theIFS variable before executing the
script. Otherinterpreters possess their own vulnerabilities.Turning onSETUIDSCRIPTS is therefore very
dangerous, and should not be done lightly if at all.

NetBSD 3.0 May 6, 2005 3

SETUID (7) NetBSD Miscellaneous Information Manual SETUID (7)

NAME
setuid — checklist for security of setuid programs

DESCRIPTION
Please note: This manual page was written long ago, and is in need of updating to match today’s systems.
We think it is valuable enough to include, even though parts of it are outdated.A carefully-researched
updated version would be very useful, if anyone is feeling enthusiastic...

Writing a secure setuid (or setgid) program is tricky. There are a number of possible ways of subverting such
a program. Themost conspicuous security holes occur when a setuid program is not sufficiently careful to
avoid giving away access to resources it legitimately has the use of. Most of the other attacks are basically a
matter of altering the program’s environment in unexpected ways and hoping it will fail in some security-
breaching manner. There are generally three categories of environment manipulation: supplying a legal but
unexpected environment that may cause the program to directly do something insecure, arranging for error
conditions that the program may not handle correctly, and the specialized subcategory of giving the program
inadequate resources in hopes that it won’t respond properly.

The following are general considerations of security when writing a setuid program.

• The program should run with the weakest userid possible, preferably one used only by itself.A security
hole in a setuid program running with a highly-privileged userid can compromise an entire system.Secu-
rity-critical programs like passwd (1) should always have private userids, to minimize possible damage
from penetrations elsewhere.

• The result ofgetlogin (2) or ttyname (3) may be wrong if the descriptors have been meddled with.
There isno foolproof way to determine the controlling terminal or the login name (as opposed to uid) on
V7.

• On some systems, the setuid bit may not be honored if the program is run by root, so the program may
find itself running as root.

• Programs that attempt to usecreat (3) for locking can foul up when run by root; use oflink (2) is pre-
ferred when implementing locking. Usingchmod(2) for locking is an obvious disaster.

• Breaking an existing lock is very dangerous; the breakdown of a locking protocol may be symptomatic of
far worse problems.Doing so on the basis of the lock being ‘old’ is sometimes necessary, but programs
can run for surprising lengths of time on heavily-loaded systems.

• Care must be taken that user requests for I/O are checked for permissions using the user’s permissions,
not the program’s. Useof access (2) is recommended.

• Programs executed at user request (e.g. shell escapes) must not receive the setuid program’s permissions;
use of daughter processes and “setuid(getuid())” plus “setgid(getgid())” afterfork (2) but before
exec (3) is vital.

• Similarly, programs executed at user request must not receive other sensitive resources, notably file
descriptors.

Programs activated by one user but handling traffic on behalf of others (e.g. daemons) should avoid doing
“setuid(getuid())” or “setgid(getgid())”, since the original invoker’s identity is almost certainly inappro-
priate. Onsystems which permit it, use of “setuid(geteuid())” and “setgid(getegid())” is recommended
when performing work on behalf of the system as opposed to a specific user.

• There are inherent permission problems when a setuid program executes another setuid program, since
the permissions are not additive. Care should be taken that created files are not owned by the wrong per-
son. Useof “setuid(geteuid())” and its gid counterpart can help, if the system allows them.

NetBSD 3.0 February 10, 2003 1

SETUID (7) NetBSD Miscellaneous Information Manual SETUID (7)

• Care should be taken that newly-created files do not have the wrong permission or ownership even
momentarily. Permissions should be arranged by usingumask(2) in advance, rather than by creating the
file wide-open and then usingchmod(2). Ownershipcan get sticky due to the limitations of the setuid
concept, although using a daughter process connected by a pipe can help.

• Setuid programs should be especially careful about error checking, and the normal response to a strange
situation should be termination, rather than an attempt to carry on.

The following are ways in which the program may be induced to carelessly give away its special privileges.

• The directory the program is started in, or directories it may plausiblychdir (2) to, may contain pro-
grams with the same names as system programs, placed there in hopes that the program will activate a
shell with a permissive PATH setting. PATH should always be standardized before invoking a shell
(either directly or viapopen (3) orexecvp (3) orexeclp (3)).

• Similarly, a bizarre IFS setting may alter the interpretation of a shell command in really strange ways,
possibly causing a user-supplied program to be invoked. IFS too should always be standardized before
invoking a shell.

• Environment variables in general cannot be trusted. Their contents should never be taken for granted.

• Setuid shell files (on systems which implement such) simply cannot cope adequately with some of these
problems. They also have some nasty problems like trying to run a.profile when run under a suit-
able name. They are terminally insecure, and must be avoided.

• Relying on the contents of files placed in publically-writable directories, such as/tmp , is a nearly-incur-
able security problem. Setuid programs should avoid using /tmp entirely, if humanly possible.The
sticky-directories modification (sticky bit on for a directory means only owner of a file can remove it)
helps, but is not a complete solution.

• A related problem is that spool directories, holding information that the program will trust later, must
never be publically writable even if the files in the directory are protected. Among other sinister manipu-
lations that can be performed, note that on many Unixes, a core dump of a setuid program is owned by
the program’s owner and not by the user running it.

The following are unusual but possible error conditions that the program should cope with properly
(resource-exhaustion questions are considered separately, see below).

• The value ofargc might be 0.

• The setting of theumask(2) might not be sensible. In any case, it should be standardized when creating
files not intended to be owned by the user.

• One or more of the standard descriptors might be closed, so that an opened file might get (say) descriptor
1, causing chaos if the program tries to do aprintf (3).

• The current directory (or any of i ts parents) may be unreadable and unsearchable. On many systems
pwd(1) does not run setuid-root, so it can fail under such conditions.

• Descriptors shared by other processes (i.e., any that are open on startup) may be manipulated in strange
ways by said processes.

• The standard descriptors may refer to a terminal which has a bizarre mode setting, or which cannot be
opened again, or which gives end-of-file on any read attempt, or which cannot be read or written success-
fully.

• The process may be hit by interrupt, quit, hangup, or broken-pipe signals, singly or in fast succession.
The user may deliberately exploit the race conditions inherent in catching signals; ignoring signals is
safe, but catching them is not.

NetBSD 3.0 February 10, 2003 2

SETUID (7) NetBSD Miscellaneous Information Manual SETUID (7)

• Although non-keyboard signals cannot be sent by ordinary users in V7, they may perhaps be sent by the
system authorities (e.g. to indicate that the system is about to shut down), so the possibility cannot be
ignored.

• On some systems there may be analarm (3) signal pending on startup.

• The program may have children it did not create. This is normal when the process is part of a pipeline.

• In some non-V7 systems, users can change the ownerships of their files. Setuid programs should avoid
trusting the owner identification of a file.

• User-supplied arguments and input datamustbe checked meticulously. Overly-long input stored in an
array without proper bound checking can easily breach security. When software depends on a file being
in a specific format, user-supplied data should never be inserted into the file without being checked first.
Meticulous checking includes allowing for the possibility of non-ASCII characters.

• Temporary files left in public directories like/tmp might vanish at inconvenient times.

The following are resource-exhaustion possibilities that the program should respond properly to.

• The user might have used up all of his allowed processes, so any attempt to create a new one (via
fork (2) orpopen (3)) will fail.

• There might be many files open, exhausting the supply of descriptors.

• There might be many arguments.

• The arguments and the environment together might occupy a great deal of space.

Systems which impose other resource limitations can open setuid programs to similar resource-exhaustion
attacks.

Setuid programs which execute ordinary programs without reducing authority pass all the above problems on
to such unprepared children. Standardizing the execution environment is only a partial solution.

HISTORY
Written by Henry Spencer, and based on additional outside contributions.

AUTHORS
Henry Spencer〈henry@spsystems.net〉

BUGS
The list really is rather long... and probably incomplete.

NetBSD 3.0 February 10, 2003 3

SIGNAL (7) NetBSD Miscellaneous Information Manual SIGNAL (7)

NAME
signal — signal facilities

DESCRIPTION
The〈signal.h 〉 header file defines the following signals:

Value Name Default ActionDescription
1 SIGHUP terminate process terminal line hangup
2 SIGINT terminate process interrupt program
3 SIGQUIT create core image quit program
4 SIGILL create core image illegal instruction
5 SIGTRAP create core image trace trap
6 SIGABRT create core imageabort (3) call (formerlySIGIOT)
7 SIGEMT create core image emulate instruction executed
8 SIGFPE create core image floating-point exception
9 SIGKILL terminate process kill program (cannot be caught or ignored)
10 SIGBUS create core imagebus error
11 SIGSEGV create core image segmentation violation
12 SIGSYS create core image invalid system call argument
13 SIGPIPE terminate process write to a pipe with no reader
14 SIGALRM terminate process real-time timer expired
15 SIGTERM terminate process software termination signal
16 SIGURG discard signal urgent condition present on socket
17 SIGSTOP stop process stop (cannot be caught or ignored)
18 SIGTSTP stop process stop signal generated from keyboard
19 SIGCONT discard signal continue after stop
20 SIGCHLD discard signal child status has changed
21 SIGTTIN stop process background read attempted from control terminal
22 SIGTTOU stop process background write attempted to control terminal
23 SIGIO discard signal I/O is possible on a descriptor (seefcntl (2))
24 SIGXCPU terminate process CPU time limit exceeded (seesetrlimit (2))
25 SIGXFSZ terminate process file size limit exceeded (seesetrlimit (2))
26 SIGVTALRM terminate process virtual time alarm (seesetitimer (2))
27 SIGPROF terminate process profiling timer alarm (seesetitimer (2))
28 SIGWINCH discard signal window size change
29 SIGINFO discard signal status request from keyboard
30 SIGUSR1 terminate process user-defined signal 1
31 SIGUSR2 terminate process user-defined signal 2
32 SIGPWR discard signal power failure/restart

A function that is async-signal-safe is either reentrant or non-interruptible by signals. This means that they
can be used in signal handlers and in the child of threaded programs after doingfork (2).

The following functions are async-signal-safe.Any function not listed below is unsafe to use in signal han-
dlers.

_Exit (2), _exit (2), abort (3), accept (2), access (2), alarm (3), bind (2), cfgetispeed (3),
cfgetospeed (3), cfsetispeed (3), cfsetospeed (3), chdir (2), chmod(2), chown (2),
clock_gettime (2), close (2), connect (2), creat (3), dup (2), dup2 (2), execle (3), execve (2),
fchmod (2), fchown (2), fcntl (2), fdatasync (2), fork (2), fpathconf (2), fstat (2), fsync (2),
ftruncate (2), getegid (2), geteuid (2), getgid (2), getgroups (2), getpeername (2),
getpgrp (2), getpid (2), getppid (2), getsockname (2), getsockopt (2), getuid (2), kill (2),
link (2), listen (2), lseek (2), lstat (2), mkdir (2), mkfifo (2), open (2), pathconf (2), pause (3),
pipe (2), poll (2), raise (3), read (2), readlink (2), recv (2), recvfrom (2), recvmsg (2),

NetBSD 3.0 March 28, 2006 1

SIGNAL (7) NetBSD Miscellaneous Information Manual SIGNAL (7)

rename (2), rmdir (2), select (2), sem_post (3), send (2), sendmsg (2), sendto (2), setgid (2),
setpgid (2), setsid (2), setsockopt (2), setuid (2), shutdown (2), sigaction (2),
sigaddset (3), sigdelset (3), sigemptyset (3), sigfillset (3), sigismember (3), sleep (3),
signal (3), sigpause (3), sigpending (2), sigprocmask (2), sigset (3), sigsuspend (2),
sockatmark (3), socket (2), socketpair (2), stat (2), symlink (2), sysconf (3), tcdrain (3),
tcflow (3), tcflush (3), tcgetattr (3), tcgetpgrp (3), tcsendbreak (3), tcsetattr (3),
tcsetpgrp (3), time (3), timer_getoverrun (2), timer_gettime (2), timer_settime (2),
times (3), umask(2), uname(3), unlink (2), utime (3), wait (2), waitpid (2), write (2).

STANDARDS
These signals conform toISO/IEC 9945-1:1990 (“POSIX.1”), with the exception ofSIGTRAP, SIGEMT,
SIGBUS, SIGSYS, SIGURG, SIGIO , SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF, SIGWINCH, and
SIGINFO which are Berkeley extensions (available on mostBSD−derived systems), andSIGPWRwhich
comes from System V.

HISTORY
SIGPWRwas introduced inNetBSD 1.4.

NOTES
The currentNetBSD kernel never generates theSIGPWRsignal.

SEE ALSO
kill (1), kill (2), ptrace (2), sigaction (2), sigaltstack (2), sigprocmask (2), sigstack (2),
sigsuspend (2), fpgetmask (3), fpsetmask (3), setjmp (3), sigblock (3), siginterrupt (3),
signal (3), sigpause (3), sigsetmask (3), sigsetops (3), tty (4)

NetBSD 3.0 March 28, 2006 2

STICKY (7) NetBSD Miscellaneous Information Manual STICKY (7)

NAME
sticky — Description of the ‘sticky’ (S_ISVTX) bit functionality

DESCRIPTION
A special file mode, called thesticky bit (modeS_ISVTX), is used to indicate special treatment for directo-
ries. Seechmod(2) or the file/usr/include/sys/stat.h

STICKY FILES
For regular files, the use of modeS_ISVTX is reserved and can be set only by the super-user. NetBSD does
not currently treat regular files that have the sticky bit set specially, but this behavior might change in the
future.

STICKY DIRECT ORIES
A directory whose “sticky bit” is set becomes a directory in which the deletion of files is restricted.A fi le in
a sticky directory may only be removed or renamed by a user if the user has write permission for the direc-
tory and the user is the owner of the file, the owner of the directory, or the super-user. This feature is usefully
applied to directories such as/tmp which must be publicly writable but should deny users the license to
arbitrarily delete or rename each others’ files.

Any user may create a sticky directory. Seechmod(1) for details about modifying file modes.

HISTORY
The sticky bit first appeared in V7, and this manual page appeared in section 8. Its initial use was to mark
sharable executables that were frequently used so that they would stay in swap after the process exited.
Sharable executables were compiled in a special way so their text and read-only data could be shared
amongst processes.vi (1) andsh (1) were such executables. Thisis where the term “sticky” comes from -
the program would stick around in swap, and it would not have to be fetched again from the file system.Of
course as long as there was a copy in the swap area, the file was marked busy so it could not be overwritten.
On V7 this meant that the file could not be removed either, because busy executables could not be removed,
but this restriction was lifted in BSD releases.

To replace such executables was a cumbersome process. One had first to remove the sticky bit, then execute
the binary so that the copy from swap was flushed, overwrite the executable, and finally reset the sticky bit.

Later, on SunOS 4, the sticky bit got an additional meaning for files that had the bit set and were not
executable: read and write operations from and to those files would go directly to the disk and bypass the
buffer cache. This was typically used on swap files for NFS clients on an NFS server, so that swap I/O gen-
erated by the clients on the servers would not evict useful data from the server’s buffer cache.

BUGS
Neitheropen (2) normkdir (2) will create a file with the sticky bit set.

NetBSD 3.0 February 5, 2007 1

SYMLINK (7) NetBSD Miscellaneous Information Manual SYMLINK (7)

NAME
symlink — symbolic link handling

DESCRIPTION
Symbolic links are files that act as pointers to other files.To understand their behavior, you must first under-
stand how hard links work.

A hard link to a file is indistinguishable from the original file because it is a reference to the object underly-
ing the original file name. Changes to a file are independent of the name used to reference the file.Hard
links may not refer to directories and may not reference files on different file systems.

A symbolic link contains the name of the file to which it is linked, i.e. it is a pointer to another name, and
not to an underlying object.For this reason, symbolic links may reference directories and may span file sys-
tems.

Because a symbolic link and its referenced object coexist in the filesystem name space, confusion can arise
in distinguishing between the link itself and the referenced object.Historically, commands and system calls
have adopted their own link following conventions in a somewhat ad-hoc fashion. Rulesfor more a uniform
approach, as they are implemented in this system, are outlined here. It is important that local applications
conform to these rules, too, so that the user interface can be as consistent as possible.

Symbolic links are handled either by operating on the link itself, or by operating on the object referenced by
the link. In the latter case, an application or system call is said to "follow" the link.

Symbolic links may reference other symbolic links, in which case the links are dereferenced until an object
that is not a symbolic link is found, a symbolic link which references a file which doesn’t exist is found, or a
loop is detected.Loop detection is done by placing an upper limit on the number of links that may be fol-
lowed, and an error results if this limit is exceeded.

There are three separate areas that need to be discussed. They are as follows:

1. Symboliclinks used as file name arguments for system calls.
2. Symboliclinks specified as command line arguments to utilities that are not traversing a file tree.
3. Symboliclinks encountered by utilities that are traversing a file tree (either specified on the com-

mand line or encountered as part of the file hierarchy walk).

System calls
The first area is symbolic links used as file name arguments for system calls.

Except as noted below, all system calls follow symbolic links. For example, if there were a symbolic link
"slink " which pointed to a file named "afile ", the system call "open("slink" ...) " would return a
file descriptor to the file "afile".

There are eight system calls that do not follow links, and which operate on the symbolic link itself.They are:
lchflags (2), lchmod (2), lchown (2), lstat (2), lutimes (2), readlink (2), rename (2), and
unlink (2). Becauseremove (3) is an alias forunlink (2), it also does not follow symbolic links.

The 4.4BSD system differs from historical 4BSD systems in that the system callchown (2) has been changed
to follow symbolic links.

If the filesystem is mounted with thesympermmount (8) option, the symbolic link file permission bits have
the following effects:

Thereadlink (2) system call requires read permissions on the symbolic link.

System calls that follow symbolic links will fail without execute/search permissions on all the symbolic links
followed.

NetBSD 3.0 February 7, 2007 1

SYMLINK (7) NetBSD Miscellaneous Information Manual SYMLINK (7)

The write, sticky, set-user-ID-on-execution and set-group-ID-on-execution symbolic link mode bits have no
effect on any system calls(includingexecve (2)) .

Commands not traversing a file tree
The second area is symbolic links, specified as command line file name arguments, to commands which are
not traversing a file tree.

Except as noted below, commands follow symbolic links named as command line arguments. For example,
if there were a symbolic link "slink " which pointed to a file named "afile ", the command "cat
slink " would display the contents of the file "afile ".

It is important to realize that this rule includes commands which may optionally traverse file trees, e.g.the
command "chown file " is included in this rule, while the command "chown -R file " is not (The lat-
ter is described in the third area, below).

If it is explicitly intended that the command operate on the symbolic link instead of following the symbolic
link, e.g., it is desired that "file slink " display the type of file that "slink " is, whether it is a symbolic
link or not, the−h option should be used.In the above example, "file slink " would report the type of
the file referenced by "slink ", while "file -h slink " would report that "slink " was a symbolic link.

There are three exceptions to this rule.Themv(1) andrm(1) commands do not follow symbolic links named
as arguments, but respectively attempt to rename and delete them. (Note, if the symbolic link references a
file via a relative path, moving it to another directory may very well cause it to stop working, since the path
may no longer be correct).

The ls (1) command is also an exception to this rule.For compatibility with historic systems (whenls is
not doing a tree walk, i.e.the −R option is not specified), thels command follows symbolic links named as
arguments if the−L option is specified, or if the−F, −d or −l options are not specified.(If the −L option
is specified,ls always follows symbolic links.ls is the only command where the−L option affects its
behavior even though it is not doing a walk of a file tree).

The 4.4BSD system differs from historical 4BSD systems in that thechown , chgrp and file commands
follow symbolic links specified on the command line.

Commands traversing a file tree
The following commands either optionally or always traverse file trees:chflags (1), chgrp (1), chmod(1),
cp (1), du(1), find (1), ls (1), pax (1), rm(1), tar (1) andchown (8).

It is important to realize that the following rules apply equally to symbolic links encountered during the file
tree traversal and symbolic links listed as command line arguments.

The first rule applies to symbolic links that reference files that are not of type directory. Operations that
apply to symbolic links are performed on the links themselves, but otherwise the links are ignored.

For example, the command "chown -R user slink directory " will ignore "slink ", because the
−h flag must be used to change owners of symbolic links.Any symbolic links encountered during the tree
traversal will also be ignored. The command "rm -r slink directory " will remove "slink ", as
well as any symbolic links encountered in the tree traversal of "directory ", because symbolic links may
be removed. Inno case will eitherchown or rm affect the file which "slink " references in any way.

The second rule applies to symbolic links that reference files of type directory. Symbolic links which refer-
ence files of type directory are never "followed" by default. Thisis often referred to as a "physical" walk, as
opposed to a "logical" walk (where symbolic links referencing directories are followed).

As consistently as possible, you can make commands doing a file tree walk follow any symbolic links named
on the command line, regardless of the type of file they reference, by specifying the−H (for "half−logical")
flag. Thisflag is intended to make the command line name space look like the logical name space.(Note,

NetBSD 3.0 February 7, 2007 2

SYMLINK (7) NetBSD Miscellaneous Information Manual SYMLINK (7)

for commands that do not always do file tree traversals, the−H flag will be ignored if the−R flag is not also
specified).

For example, the command "chown -HR user slink " will traverse the file hierarchy rooted in the file
pointed to by "slink ". Note, the −H is not the same as the previously discussed−h flag. The −H flag
causes symbolic links specified on the command line to be dereferenced both for the purposes of the action
to be performed and the tree walk, and it is as if the user had specified the name of the file to which the sym-
bolic link pointed.

As consistently as possible, you can make commands doing a file tree walk follow any symbolic links named
on the command line, as well as any symbolic links encountered during the traversal, regardless of the type
of file they reference, by specifying the−L (for "logical") flag. This flag is intended to make the entire name
space look like the logical name space. (Note, for commands that do not always do file tree traversals, the
−L flag will be ignored if the−R flag is not also specified).

For example, the command "chown -LR user slink " will change the owner of the file referenced by
"slink ". If "slink " references a directory, chown will traverse the file hierarchy rooted in the directory
that it references. In addition, if any symbolic links are encountered in any file tree thatchown traverses,
they will be treated in the same fashion as "slink ".

As consistently as possible, you can specify the default behavior by specifying the−P (for "physical") flag.
This flag is intended to make the entire name space look like the physical name space.

For commands that do not by default do file tree traversals, the−H, −L and −P flags are ignored if the−R
flag is not also specified. In addition, you may specify the−H, −L and −P options more than once; the last
one specified determines the command’s behavior. This is intended to permit you to alias commands to
behave one way or the other, and then override that behavior on the command line.

The ls (1) andrm(1) commands have exceptions to these rules.The rm command operates on the symbolic
link, and not the file it references, and therefore never follows a symbolic link.The rm command does not
support the−H, −L or −P options.

To maintain compatibility with historic systems, thels command never follows symbolic links unless the
−L flag is specified. If the−L flag is specified,ls follows all symbolic links, regardless of their type,
whether specified on the command line or encountered in the tree walk. Thels command does not support
the −H or −P options.

MAGIC SYMLINKS
Magic symlinks can be enabled by setting “vfs.generic.magiclinks” withsysctl (8). Whenmagic symlinks
are enabled “magic” patterns in symlinks are expanded. Thosepatterns begin with “@”(an at-sign) ,and
end at the end of the pathname component(i.e. at the next “/”, or at the end of the symbolic link if there are
no more slashes) .

To illustrate the pattern matching rules, assume that “@foo” is a valid magic string:

@foo would be matched
@foo/bar would be matched
bar@foo would be matched
@foobar would not be matched

Magic strings may also be delimited with ‘{’ and ‘}’ characters, allowing for more complex patterns in sym-
bolic links such as:

@{var1}-@{var2}.@{var3}

The following patterns are supported:

NetBSD 3.0 February 7, 2007 3

SYMLINK (7) NetBSD Miscellaneous Information Manual SYMLINK (7)

@domainname Expands to the machine’s domain name, as set bysetdomainname (3).

@hostname Expands to the machine’s host name, as set bysethostname (3).

@emul Expands to the name of the current process’s emulation.

@kernel_ident Expands to the name of theconfig (1) file used to generate the running kernel.

@machine Expands to the value ofMACHINEfor the system(equivalent to the output of “uname
-m”) .

@machine_arch Expands to the value ofMACHINE_ARCHfor the system(equivalent to the output of
“uname -p”) .

@osrelease Expands to the operating system release of the running kernel (equivalent to the output
of “uname -r”) .

@ostype Expands to the operating system type of the running kernel (equivalent to the output of
“uname -s”) . This will always be “NetBSD” onNetBSD systems.

@ruid Exapnds to the real user-id of the process.

@uid Expands to the effective user-id of the process.

SEE ALSO
chflags (1), chgrp (1), chmod(1), cp (1), du(1), find (1), ln (1), ls (1), mv(1), pax (1), rm(1), tar (1),
uname(1), chown (2), execve (2), lchflags (2), lchmod (2), lchown (2), lstat (2), lutimes (2),
mount (2), readlink (2), rename (2), symlink (2), unlink (2), fts (3), remove (3), chown (8),
mount (8)

HISTORY
Magic symlinks appeared inNetBSD 4.0.

NetBSD 3.0 February 7, 2007 4

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

NAME
sysctl — system information variables

DESCRIPTION
The sysctl (3) library function and thesysctl (8) utility are used to get and set values of system vari-
ables, maintained by the kernel. Thevariables are organized in a tree and identified by a sequence of num-
bers, conventionally separated by dots with the topmost identifier at the left side. The numbers have corre-
sponding text names.The sysctlnametomib (3) function or the−Margument to thesysctl (8) utility
can be used to convert the text representation to the numeric one.

The individual sysctl variables are described below, both the textual and numeric form where applicable.
The textual names can be used as argument to thesysctl (8) utility and in the file/etc/sysctl.conf .
The numeric names are usually defined as preprocessor constants and are intended for use by programs.
Every such constant expands to one integer, which identifies the sysctl variable relative to the upper level of
the tree. See thesysctl (3) manual page for programming examples.

Top lev el names
The top level names are defined with a CTL_ prefix in〈sys/sysctl.h 〉, and are as follows. Thenext and
subsequent levels down are found in the include files listed here, and described in separate sections below.

Name Constant Next level names Description
kern CTL KERN sys/sysctl.h High kernel limits
vm CTL VM uvm/uvm_param.h Virtual memory
vfs CTL VFS sys/mount.h Filesystem
net CTL NET sys/socket.h Networking
debug CTL DEBUG sys/sysctl.h Debugging
hw CTL HW sys/sysctl.h Generic CPU, I/O
machdep CTLMACHDEP sys/sysctl.h Machine dependent
user CTL USER sys/sysctl.h User-level
ddb CTL DDB sys/sysctl.h In-kernel debugger
proc CTL PROC sys/sysctl.h Per-process
vendor CTL VENDOR ? Vendor specific
emul CTL EMUL sys/sysctl.h Emulation settings
security CTL SECURITY sys/sysctl.h Security settings

The debug.∗ subtree
The debugging variables vary from system to system.A debugging variable may be added or deleted with-
out need to recompilesysctl to know about it. Each time it runs,sysctl gets the list of debugging vari-
ables from the kernel and displays their current values. Thesystem defines twenty (struct ctldebug) variables
nameddebug0 throughdebug19 . They are declared as separate variables so that they can be individually
initialized at the location of their associated variable. Theloader prevents multiple use of the same variable
by issuing errors if a variable is initialized in more than one place.For example, to export the variable
dospecialcheck as a debugging variable, the following declaration would be used:

int dospecialcheck = 1;
struct ctldebug debug5 = { "dospecialcheck", &dospecialcheck };

Note that the dynamic implementation ofsysctl currently in use largely makes this particularsysctl
interface obsolete. Seesysctl (8) for more information.

The vfs.∗ subtree
A distinguished second level name,vfs.generic (VFS_GENERIC), is used to get general information
about all filesystems. One of its third level identifiers is vfs.generic.maxtypenum
(VFS_MAXTYPENUM) that gives the highest valid filesystem type number. Its other third level identifier is

NetBSD 3.0 December 27, 2007 1

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

vfs.generic.conf (VFS_CONF) that returns configuration information about the filesystem type given
as a fourth level identifier. The remaining second level identifiers are the filesystem type number returned by
a statvfs (2) call or fromvfs.generic.conf . The third level identifiers available for each filesystem
are given in the header file that defines the mount argument structure for that filesystem.

The hw.∗ subtree
The string and integer information available for thehw level is detailed below. The changeable column
shows whether a process with appropriate privilege may change the value.

Second level name Type Changeable
hw.alignbytes integer no
hw.byteorder integer no
hw.cnmagic string yes
hw.disknames string no
hw.diskstats struct no
hw.machine string no
hw.machine_arch string no
hw.model string no
hw.ncpu integer no
hw.pagesize integer no
hw.physmem integer no
hw.physmem64 quad no
hw.usermem integer no
hw.usermem64 quad no

hw.alignbytes (HW_ALIGNBYTES)
Alignment constraint for all possible data types. This shows the value ALIGNBYTES in
/usr/include/machine/param.h , at the kernel compilation time.

hw.byteorder (HW_BYTEORDER)
The byteorder (4,321, or 1,234).

hw.cnmagic (HW_CNMAGIC)
The console magic key sequence.

hw.disknames (HW_DISKNAMES)
The list of (space separated) disk device names on the system.

hw.iostatnames (HW_IOSTATNAMES)
A space separated list of devices that will have I/O statistics collected on them.

hw.iostats (HW_IOSTATS)
Return statistical information on the NFS mounts, disk and tape devices on the system. An array
of struct io_sysctlstructures is returned, whose size depends on the current number of such objects
in the system. The third level name is the size of thestruct io_sysctl. The type of object can be
determined by examining thetype element ofstruct io_sysctl. Which can beIOSTAT_DISK
(disk drive), IOSTAT_TAPE(tape drive), or IOSTAT_NFS(NFS mount).

hw.machine (HW_MACHINE)
The machine class.

hw.machine_arch (HW_MACHINE_ARCH)
The machine CPU class.

hw.model (HW_MODEL)
The machine model.

NetBSD 3.0 December 27, 2007 2

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

hw.ncpu (HW_NCPU)
The number of CPUs.

hw.pagesize (HW_PAGESIZE)
The software page size.

hw.physmem (HW_PHYSMEM)
The bytes of physical memory as a 32-bit integer.

hw.physmem64 (HW_PHYSMEM64)
The bytes of physical memory as a 64-bit integer.

hw.usermem (HW_USERMEM)
The bytes of non-kernel memory as a 32-bit integer.

hw.usermem64 (HW_USERMEM64)
The bytes of non-kernel memory as a 64-bit integer.

The kern.∗ subtree
The string and integer information available for thekern level is detailed below. The changeable column
shows whether a process with appropriate privilege may change the value. Thetypes of data currently avail-
able are process information, system vnodes, the open file entries, routing table entries, virtual memory sta-
tistics, load average history, and clock rate information.

Second level name Type Changeable
kern.argmax integer no
kern.autonicetime integer yes
kern.autoniceval integer yes
kern.boottime structtimeval no
kern.bufq node not applicable
kern.ccpu integer no
kern.clockrate structclockinfo no
kern.consdev integer no
kern.cp id struct no
kern.cp time uint64_t[] no
kern.defcorename string yes
kern.domainname string yes
kern.drivers structkinfo_drivers no
kern.file structfile no
kern.forkfsleep integer yes
kern.fscale integer no
kern.fsync integer no
kern.hardclockticks integer no
kern.hostid integer yes
kern.hostname string yes
kern.iov max integer no
kern.job control integer no
kern.labeloffset integer no
kern.labelsector integer no
kern.login name max integer no
kern.logsigexit integer yes
kern.mappedfiles integer no

NetBSD 3.0 December 27, 2007 3

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

kern.maxfiles integer yes
kern.maxpartitions integer no
kern.maxphys integer no
kern.maxproc integer yes
kern.maxptys integer yes
kern.maxvnodes integer yes
kern.mbuf node not applicable
kern.memlock integer no
kern.memlock range integer no
kern.memoryprotection integer no
kern.monotonicclock integer no
kern.msgbuf integer no
kern.msgbufsize integer no
kern.ngroups integer no
kern.ntptime structntptimeval no
kern.osrelease string no
kern.osrev integer no
kern.ostype string no
kern.pipe node not applicable
kern.posix1 integer no
kern.posix barriers integer no
kern.posix readerwriter locks integer no
kern.posix semaphores integer no
kern.posix spin locks integer no
kern.posix threads integer no
kern.posix timers integer no
kern.proc structkinfo_proc no
kern.proc2 structkinfo_proc2 no
kern.proc args string no
kern.prof node not applicable
kern.rawpartition integer no
kern.root device string no
kern.root partition integer no
kern.rtc offset integer yes
kern.saved ids integer no
kern.securelevel integer raiseonly
kern.synchronizedio integer no
kern.ipc node not applicable
kern.timex struct no
kern.tkstat node not applicable
kern.urandom integer no
kern.version string no
kern.vnode structvnode no

kern.argmax (KERN_ARGMAX)
The maximum bytes of argument toexecve (2).

kern.autonicetime (KERN_AUTONICETIME)
The number of seconds of CPU-time a non-root process may accumulate before having its priority
lowered from the default to the value of KERN_AUTONICEVAL. If set to 0, automatic lowering
of priority is not performed, and if set to −1 all non-root processes are immediately lowered.

NetBSD 3.0 December 27, 2007 4

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

kern.autoniceval (KERN_AUTONICEVAL)
The priority assigned for automatically niced processes.

kern.boottime (KERN_BOOTTIME)
A struct timeval structure is returned. This structure contains the time that the system was booted.

kern.ccpu (KERN_CCPU)
The scheduler exponential decay value.

kern.clockrate (KERN_CLOCKRATE)
A struct clockinfo structure is returned.This structure contains the clock, statistics clock and pro-
filing clock frequencies, the number of micro-seconds per hz tick, and the clock skew rate.

kern.consdev (KERN_CONSDEV)
Console device.

kern.cp_id (KERN_CP_ID)
Mapping of CPU number to CPU id.

kern.cp_time (KERN_CP_TIME)
Returns an array of CPUSTATES uint64_ts.This array contains the number of clock ticks spent in
different CPU states. On multi-processor systems, the sum across all CPUs is returned unless
appropriate space is given for one data set for each CPU.Data for a specific CPU can also be
obtained by adding the number of the CPU at the end of the MIB, enlarging it by one.

kern.defcorename (KERN_DEFCORENAME)
Default template for the name of core dump files (see alsoproc.pid.corename in the per-
process variablesproc. ∗, and core (5) for format of this template). The default value is
%n.core and can be changed with the kernel configuration optionoptions DEFCORENAME
(seeoptions (4)).

kern.domainname (KERN_DOMAINNAME)
Get or set the YP domain name.

kern.dump_on_panic (KERN_DUMP_ON_PANIC)
Perform a crash dump on system panic.

kern.drivers (KERN_DRIVERS)
Return an array ofstruct kinfo_drivers that contains the name and major device numbers of all the
device drivers in the current kernel. Thed_namefield is always a NUL terminated string.The
d_bmajorfield will be set to −1 if the driver doesn’t hav ea block device.

kern.file (KERN_FILE)
Return the entire file table.The returned data consists of a singlestruct filelist followed by an
array ofstruct file, whose size depends on the current number of such objects in the system.

kern.forkfsleep (KERN_FORKFSLEEP)
If fork (2) system call fails due to limit on number of processes (either the global maxproc limit
or user’s one), wait for this many milliseconds before returningEAGAINerror to process.Useful
to keep heavily forking runaway processes in bay. Default zero (no sleep).Maximum is 20 sec-
onds.

kern.fscale (KERN_FSCALE)
The kernel fixed-point scale factor.

kern.fsync (KERN_FSYNC)
Return 1 if the POSIX 1003.1b File Synchronization Option is available on this system, otherwise
0.

NetBSD 3.0 December 27, 2007 5

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

kern.hardclock_ticks (KERN_HARDCLOCK_TICKS)
Returns the number ofhardclock (9) ticks.

kern.hostid (KERN_HOSTID)
Get or set the host id.

kern.hostname (KERN_HOSTNAME)
Get or set the hostname.

kern.iov_max (KERN_IOV_MAX)
Return the maximum number ofiovec structures that a process has available for use with
preadv (2), pwritev (2), readv (2), recvmsg (2), sendmsg (2) andwritev (2).

kern.job_control (KERN_JOB_CONTROL)
Return 1 if job control is available on this system, otherwise 0.

kern.labeloffset (KERN_LABELOFFSET)
The offset within the sector specified by KERN_LABELSECTOR of thedisklabel (5).

kern.labelsector (KERN_LABELSECTOR)
The sector number containing thedisklabel (5).

kern.login_name_max (KERN_LOGIN_NAME_MAX)
The size of the storage required for a login name, in bytes, including the terminating NUL.

kern.logsigexit (KERN_LOGSIGEXIT)
If this flag is non-zero, the kernel willlog (9) all process exits due to signals which create a
core (5) file, and whether the coredump was created.

kern.mapped_files (KERN_MAPPED_FILES)
Returns 1 if the POSIX 1003.1b Memory Mapped Files Option is available on this system, other-
wise 0.

kern.maxfiles (KERN_MAXFILES)
The maximum number of open files that may be open in the system.

kern.maxpartitions (KERN_MAXPARTITIONS)
The maximum number of partitions allowed per disk.

kern.maxphys (KERN_MAXPHYS)
Maximum raw I/O transfer size.

kern.maxproc (KERN_MAXPROC)
The maximum number of simultaneous processes the system will allow.

kern.maxptys (KERN_MAXPTYS)
The maximum number of pseudo terminals. This value can be both raised and lowered, though it
cannot be set lower than number of currently used ptys. See alsopty (4).

kern.maxvnodes (KERN_MAXVNODES)
The maximum number of vnodes available on the system. This can only be raised.

kern.mbuf (KERN_MBUF)
Return information about the mbuf control variables. Mbufs are data structures which store net-
work packets and other data structures in the networking code, seembuf (9). The third level
names for the mbuf variables are detailed below. The changeable column shows whether a process
with appropriate privilege may change the value.

NetBSD 3.0 December 27, 2007 6

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

Third level name Type Changeable
kern.mbuf.mblowat integer yes
kern.mbuf.mclbytes integer yes
kern.mbuf.mcllowat integer yes
kern.mbuf.msize integer yes
kern.mbuf.nmbclusters integer yes

The variables are as follows:

kern.mbuf.mblowat (MBUF_MBLOWAT)
The mbuf low water mark.

kern.mbuf.mclbytes (MBUF_MCLBYTES)
The mbuf cluster size.

kern.mbuf.mcllowat (MBUF_MCLLOWAT)
The mbuf cluster low water mark.

kern.mbuf.msize (MBUF_MSIZE)
The mbuf base size.

kern.mbuf.nmbclusters (MBUF_NMBCLUSTERS)
The limit on the number of mbuf clusters. The variable can only be increased, and only
increased on machines with direct-mapped pool pages.

kern.memlock (KERN_MEMLOCK)
Returns 1 if the POSIX 1003.1b Process Memory Locking Option is available on this system, oth-
erwise 0.

kern.memlock_range (KERN_MEMLOCK_RANGE)
Returns 1 if the POSIX 1003.1b Range Memory Locking Option is available on this system, other-
wise 0.

kern.memory_protection (KERN_MEMORY_PROTECTION)
Returns 1 if the POSIX 1003.1b Memory Protection Option is available on this system, otherwise
0.

kern.monotonic_clock (KERN_MONOTONIC_CLOCK)
Returns the standard version the implementation of the POSIX 1003.1b Monotonic Clock Option
conforms to, otherwise 0.

kern.msgbuf (KERN_MSGBUF)
The kernel message buffer, rotated so that the head of the circular kernel message buffer is at the
start of the returned data. The returned data may contain NUL bytes.

kern.msgbufsize (KERN_MSGBUFSIZE)
The maximum number of characters that the kernel message buffer can hold.

kern.ngroups (KERN_NGROUPS)
The maximum number of supplemental groups.

kern.ntptime (KERN_NTPTIME)
A struct ntptimeval structure is returned. This structure contains data used by thentpd (8) pro-
gram.

kern.osrelease (KERN_OSRELEASE)
The system release string.

NetBSD 3.0 December 27, 2007 7

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

kern.osrevision (KERN_OSREV)
The system revision string.

kern.ostype (KERN_OSTYPE)
The system type string.

kern.pipe (KERN_PIPE)
Pipe settings. The third level names for theinteger pipe settings is detailed below. The change-
able column shows whether a process with appropriate privilege may change the value.

Third level name Type Changeable
kern.pipe.kvasiz integer yes
kern.pipe.maxbigpipes integer yes
kern.pipe.maxkvasz integer yes
kern.pipe.limitkva integer yes
kern.pipe.nbigpipes integer yes

The variables are as follows:

kern.pipe.kvasiz (KERN_PIPE_KVASIZ)
Amount of kernel memory consumed by pipe buffers.

kern.pipe.maxbigpipes (KERN_PIPE_MAXBIGPIPES)
Maximum number of "big" pipes.

kern.pipe.maxkvasz (KERN_PIPE_MAXKVASZ)
Maximum amount of kernel memory to be used for pipes.

kern.pipe.limitkva (KERN_PIPE_LIMITKVA)
Limit for direct transfers via page loan.

kern.pipe.nbigpipes (KERN_PIPE_NBIGPIPES)
Number of "big" pipes.

kern.posix1version (KERN_POSIX1)
The version of ISO/IEC 9945 (POSIX 1003.1) with which the system attempts to comply.

kern.posix_barriers (KERN_POSIX_BARRIERS)
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Barriers option to which the system attempts
to conform, otherwise 0.

kern.posix_reader_writer_locks (KERN_POSIX_READER_WRITER_LOCKS)
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Read-Write Locks option to which the system
attempts to conform, otherwise 0.

kern.posix_semaphores (KERN_POSIX_SEMAPHORES)
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Semaphores option to which the system
attempts to conform, otherwise 0.

kern.posix_spin_locks (KERN_POSIX_SPIN_LOCKS)
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Spin Locks option to which the system
attempts to conform, otherwise 0.

kern.posix_threads (KERN_POSIX_THREADS)
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Threads option to which the system attempts
to conform, otherwise 0.

kern.posix_timers (KERN_POSIX_TIMERS)
The version ofIEEE Std 1003.1 (“POSIX.1”) and its Timers option to which the system attempts to
conform, otherwise 0.

NetBSD 3.0 December 27, 2007 8

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

kern.proc (KERN_PROC)
Return the entire process table, or a subset of it. An array ofstruct kinfo_proc structures is
returned, whose size depends on the current number of such objects in the system. The third and
fourth level numeric names are as follows:

Third level name Fourth level is:
KERN PROC ALL None
KERN PROC GID A group ID
KERN PROC PID A process ID
KERN PROC PGRP Aprocess group
KERN PROC RGID A real group ID
KERN PROC RUID A real user ID
KERN PROC SESSION Asession ID
KERN PROC TTY A tty device
KERN PROC UID A user ID

kern.proc2 (KERN_PROC2)
As for KERN_PROC, but an array ofstruct kinfo_proc2 structures are returned. The fifth level
name is the size of thestruct kinfo_proc2 and the sixth level name is the number of structures to
return.

kern.proc_args (KERN_PROC_ARGS)
Return the argv or environment strings (or the number thereof) of a process. Multiple strings are
returned separated by NUL characters. The third level name is the process ID. The fourth level
name is as follows:

KERN PROC ARGV Theargv strings
KERN PROC ENV Theenviron strings
KERN PROC NARGV Thenumber of argv strings
KERN PROC NENV Thenumber of environ strings

kern.profiling (KERN_PROF)
Return profiling information about the kernel. If the kernel is not compiled for profiling, attempts
to retrieve any of the KERN_PROF values will fail withEOPNOTSUPP. The third level names for
the string and integer profiling information is detailed below. The changeable column shows
whether a process with appropriate privilege may change the value.

Third level name Type Changeable
kern.profiling.count u_short[] yes
kern.profiling.froms u_short[] yes
kern.profiling.gmonparam struct gmonparam no
kern.profiling.state integer yes
kern.profiling.tos structtostruct yes

The variables are as follows:

kern.profiling.count (GPROF_COUNT)
Array of statistical program counter counts.

kern.profiling.froms (GPROF_FROMS)
Array indexed by program counter of call-from points.

kern.profiling.gmonparams (GPROF_GMONPARAM)
Structure giving the sizes of the above arrays.

NetBSD 3.0 December 27, 2007 9

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

kern.profiling.state (GPROF_STATE)
Profiling state. If set to GMON_PROF_ON, starts profiling. If set to
GMON_PROF_OFF, stops profiling.

kern.profiling.tos (GPROF_TOS)
Array of struct tostructdescribing destination of calls and their counts.

kern.rawpartition (KERN_RAWPARTITION)
The raw partition of a disk (a == 0).

kern.root_device (KERN_ROOT_DEVICE)
The name of the root device (e.g., “wd0”).

kern.root_partition (KERN_ROOT_PARTITION)
The root partition on the root device (a == 0).

kern.rtc_offset (KERN_RTC_OFFSET)
Return the offset of real time clock from UTC in minutes.

kern.saved_ids (KERN_SAVED_IDS)
Returns 1 if saved set-group and saved set-user ID is available.

kern.sbmax (KERN_SBMAX)
Maximum socket buffer size.

kern.securelevel (KERN_SECURELVL)
The system security level. This level may be raised by processes with appropriate privilege. It
may only be lowered by process 1.

kern.somaxkva (KERN_SOMAXKVA)
Maximum amount of kernel memory to be used for socket buffers.

kern.synchronized_io (KERN_SYNCHRONIZED_IO)
Returns 1 if the POSIX 1003.1b Synchronized I/O Option is available on this system, otherwise 0.

kern.ipc (KERN_SYSVIPC)
Return information about the SysV IPC parameters.The third level names for the ipc variables are
detailed below.

Third level name Type Changeable
kern.ipc.sysvmsg integer no
kern.ipc.sysvsem integer no
kern.ipc.sysvshm integer no
kern.ipc.sysvipc_info struct no
kern.ipc.shmmax integer no
kern.ipc.shmmni integer yes
kern.ipc.shmseg integer yes
kern.ipc.shmmaxpgs integer yes
kern.ipc.shm_use_phys integer yes

kern.ipc.sysvmsg (KERN_SYSVIPC_MSG)
Returns 1 if System V style message queue functionality is available on this system, oth-
erwise 0.

kern.ipc.sysvsem (KERN_SYSVIPC_SEM)
Returns 1 if System V style semaphore functionality is available on this system, other-
wise 0.

NetBSD 3.0 December 27, 2007 10

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

kern.ipc.sysvshm (KERN_SYSVIPC_SHM)
Returns 1 if System V style share memory functionality is available on this system, oth-
erwise 0.

kern.ipc.sysvipc_info (KERN_SYSVIPC_INFO)
Return System V style IPC configuration and run-time information.The fourth level
name selects the System V style IPC facility.

Fourth level name Type
KERN SYSVIPC MSG INFO structmsg_sysctl_info
KERN SYSVIPC SEM INFO structsem_sysctl_info
KERN SYSVIPC SHM INFO structshm_sysctl_info

KERN_SYSVIPC_MSG_INFO
Return information on the System V style message facility. The
msg_sysctl_infostructure is defined in〈sys/msg.h 〉.

KERN_SYSVIPC_SEM_INFO
Return information on the System V style semaphore facility. The
sem_sysctl_infostructure is defined in〈sys/sem.h 〉.

KERN_SYSVIPC_SHM_INFO
Return information on the System V style shared memory facility. The
shm_sysctl_infostructure is defined in〈sys/shm.h 〉.

kern.ipc.shmmax (KERN_SYSVIPC_SHMMAX)
Max shared memory segment size in bytes.

kern.ipc.shmmni (KERN_SYSVIPC_SHMMNI)
Max number of shared memory identifiers.

kern.ipc.shmseg (KERN_SYSVIPC_SHMSEG)
Max shared memory segments per process.

kern.ipc.shmmaxpgs (KERN_SYSVIPC_SHMMAXPGS)
Max amount of shared memory in pages.

kern.ipc.shm_use_phys (KERN_SYSVIPC_SHMUSEPHYS)
Locking of shared memory in physical memory. If 0, memory can be swapped out, oth-
erwise it will be locked in physical memory.

kern.timex (KERN_TIMEX)
Not available.

kern.tkstat (KERN_TKSTAT)
Return information about the number of characters sent and received on ttys. Thethird level
names for the tty statistic variables are detailed below. The changeable column shows whether a
process with appropriate privilege may change the value.

Third level name Type Changeable
kern.tkstat.cancc quad no
kern.tkstat.nin quad no
kern.tkstat.nout quad no
kern.tkstat.rawcc quad no

The variables are as follows:

NetBSD 3.0 December 27, 2007 11

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

kern.tkstat.cancc (KERN_TKSTAT_CANCC)
The number of canonical input characters.

kern.tkstat.nin (KERN_TKSTAT_NIN)
The total number of input characters.

kern.tkstat.nout (KERN_TKSTAT_NOUT)
The total number of output characters.

kern.tkstat.rawcc (KERN_TKSTAT_RAWCC)
The number of raw input characters.

kern.urandom (KERN_URND)
Random integer value.

kern.veriexec
Tunings for Verixec.

kern.veriexec.algorithms
Returns a string with the supported algorithms in Veriexec.

kern.veriexec.count
Sub-nodes are added to this node as new mounts are monitored by Veriexec. Each
mount will be under its own tableN node. Under each node there will be three variables,
indicating the mount point, the file-system type, and the number of entries.

kern.veriexec.strict
Controls the strict level of Veriexec. Seesecurity (8) for more information on each
level’s implications.

kern.veriexec.verbose
Controls the verbosity level of Veriexec. If 0, only the minimal indication required will
be given about what’s happening - fingerprint mismatches, removal of entries from the
tables, modification of a fingerprinted file.If 1, more messages will be printed (ie.,
when a file with a valid fingerprint is accessed).Verbose level 2 is debug mode.

kern.version (KERN_VERSION)
The system version string.

kern.vnode (KERN_VNODE)
Return the entire vnode table. Note, the vnode table is not necessarily a consistent snapshot of the
system. Thereturned data consists of an array whose size depends on the current number of such
objects in the system. Each element of the array contains the kernel address of a vnodestruct
vnode∗ followed by the vnode itselfstruct vnode.

kern.coredump.setid
Settings related to set-id processes coredumps. By default, set-id processes do not dump core in
situations where other processes would. Thesettings in this node allows an administrator to
change this behavior.

kern.coredump.setid.dump
If non-zero, set-id processes will dump core.

kern.coredump.setid.group
The group-id for the set-id processes’ coredump.

kern.coredump.setid.mode
The mode for the set-id processes’ coredump. Seechmod(1).

NetBSD 3.0 December 27, 2007 12

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

kern.coredump.setid.owner
The user-id that will be used as the owner of the set-id processes’ coredump.

kern.coredump.setid.path
The path to which set-id processes’ coredumps will be saved to. Samesyntax as
kern.defcorename.

The machdep.∗ subtree
The set of variables defined is architecture dependent. Most architectures define at least the following vari-
ables.

Second level name Type Changeable
CPU_CONSDEV dev_t no

The net.∗ subtree
The string and integer information available for thenet level is detailed below. The changeable column
shows whether a process with appropriate privilege may change the value. Thesecond and third levels are
typically the protocol family and protocol number, though this is not always the case.

Second level name Type Changeable
net.route routingmessages no
net.inet IPv4values yes
net.inet6 IPv6values yes
net.key IPsec key management values yes

net.route (PF_ROUTE)
Return the entire routing table or a subset of it.The data is returned as a sequence of routing mes-
sages (seeroute (4) for the header file, format and meaning).The length of each message is con-
tained in the message header.

The third level name is a protocol number, which is currently always 0. The fourth level name is
an address family, which may be set to 0 to select all address families. Thefifth and sixth level
names are as follows:

Fifth level name Sixthlevel is:
NET RT FLAGS rtflags
NET RT DUMP None
NET RT IFLIST None

net.inet (PF_INET)
Get or set various global information about the IPv4(Internet Protocol version 4) . The third
level name is the protocol. The fourth level name is the variable name. The currently defined pro-
tocols and names are:

Protocol name Variable name Type Changeable
arp down integer yes
arp keep integer yes
arp prune integer yes
arp refresh integer yes
carp allow integer yes
carp preempt integer yes
carp log integer yes
carp arpbalance integer yes

NetBSD 3.0 December 27, 2007 13

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

icmp errppslimit integer yes
icmp maskrepl integer yes
icmp rediraccept integer yes
icmp redirtimeout integer yes
ip allowsrcrt integer yes
ip anonportmax integer yes
ip anonportmin integer yes
ip checkinterface integer yes
ip directed-broadcast integer yes
ip do_loopback_cksum integer yes
ip forwarding integer yes
ip forwsrcrt integer yes
ip gifttl integer yes
ip grettl integer yes
ip hashsize integer yes
ip hostzerobroadcast integer yes
ip lowportmin integer yes
ip lowportmax integer yes
ip maxflows integer yes
ip maxfragpackets integer yes
ip mtudisc integer yes
ip mtudisctimeout integer yes
ip random_id integer yes
ip redirect integer yes
ip subnetsarelocal integer yes
ip ttl integer yes
tcp rfc1323 integer yes
tcp sendspace integer yes
tcp recvspace integer yes
tcp mssdflt integer yes
tcp syn_cache_limit integer yes
tcp syn_bucket_limit integer yes
tcp syn_cache_interval integer yes
tcp init_win integer yes
tcp init_win_local integer yes
tcp mss_ifmtu integer yes
tcp win_scale integer yes
tcp timestamps integer yes
tcp compat_42 integer yes
tcp cwm integer yes
tcp cwm_burstsize integer yes
tcp ack_on_push integer yes
tcp keepidle integer yes
tcp keepintvl integer yes
tcp keepcnt integer yes
tcp slowhz integer no
tcp keepinit integer yes
tcp log_refused integer yes
tcp rstppslimit integer yes

NetBSD 3.0 December 27, 2007 14

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

tcp ident struct no
tcp drop struct no
tcp sack.enable integer yes
tcp sack.globalholes integer no
tcp sack.globalmaxholesinteger yes
tcp sack.maxholes integer yes
tcp ecn.enable integer yes
tcp ecn.maxretries integer yes
tcp congctl.selected string yes
tcp congctl.available string yes
tcp abc.enable integer yes
tcp abc.aggressive integer yes
udp checksum integer yes
udp do_loopback_cksuminteger yes
udp recvspace integer yes
udp sendspace integer yes

The variables are as follows:

arp.down
Failed ARP entry lifetime.

arp.keep
Valid ARP entry lifetime.

arp.prune
ARP cache pruning interval.

arp.refresh
ARP entry refresh interval.

carp.allow
If set to 0, incomingcarp (4) packets will not be processed.If set to any other value,
processing will occur. Enabled by default.

carp.arpbalance
If set to any value other than 0, the ARP balancing functionality ofcarp (4) is enabled.
When ARP requests are received for an IP address which is part of any virtual host, carp
will hash the source IP in the ARP request to select one of the virtual hosts from the set
of all the virtual hosts which have that IP address. The master of that host will respond
with the correct virtual MAC address. Disabledby default.

carp.log
If set to any value other than 0,carp (4) will log errors. Disabled by default.

carp.preempt
If set to 0,carp (4) will not attempt to become master if it is receiving advertisements
from another active master. If set to any other value, carp will become master of the vir-
tual host if it believes it can send advertisements more frequently than the current mas-
ter. Disabled by default.

ip.allowsrcrt
If set to 1, the host accepts source routed packets.

ip.anonportmax
The highest port number to use for TCP and UDP ephemeral port allocation.This can-
not be set to less than 1024 or greater than 65535, and must be greater than

NetBSD 3.0 December 27, 2007 15

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

ip.anonportmin .

ip.anonportmin
The lowest port number to use for TCP and UDP ephemeral port allocation. This cannot
be set to less than 1024 or greater than 65535.

ip.checkinterface
If set to non-zero, the host will reject packets addressed to it that arrive on an interface
not bound to that address.Currently, this must be disabled if ipnat is used to translate
the destination address to another local interface, or if addresses are added to the loop-
back interface instead of the interface where the packets for those packets are received.

ip.directed-broadcast
If set to 1, enables directed broadcast behavior for the host.

ip.do_loopback_cksum
Perform IP checksum on loopback.

ip.forwarding
If set to 1, enables IP forwarding for the host, meaning that the host is acting as a router.

ip.forwsrcrt
If set to 1, enables forwarding of source-routed packets for the host. This value may
only be changed if the kernel security level is less than 1.

ip.gifttl
The maximum time-to-live (hop count) value for an IPv4 packet generated bygif (4)
tunnel interface.

ip.grettl
The maximum time-to-live (hop count) value for an IPv4 packet generated bygre (4)
tunnel interface.

ip.hashsize
The size of IPv4 Fast Forward hash table. This value must be a power of 2 (64, 256...).
A larger hash table size results in fewer collisions. Also seeip.maxflows .

ip.hostzerobroadcast
All zeroes address is broadcast address.

ip.lowportmax
The highest port number to use for TCP and UDP reserved port allocation.This cannot
be set to less than 0 or greater than 1024, and must be greater thanip.lowportmin .

ip.lowportmin
The lowest port number to use for TCP and UDP reserved port allocation. This cannot
be set to less than 0 or greater than 1024, and must be smaller thanip.lowportmax .

ip.maxflows
IPv4 Fast Forwarding is enabled by default. If set to 0, IPv4 Fast Forwarding is dis-
abled. ip.maxflows controls the maximum amount of flows which can be created.
The default value is 256.

ip.maxfragpackets
The maximum number of fragmented packets the node will accept.0 means that the
node will not accept any fragmented packets. −1means that the node will accept as
many fragmented packets as it receives. Theflag is provided basically for avoiding pos-
sible DoS attacks.

NetBSD 3.0 December 27, 2007 16

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

ip.mtudisc
If set to 1, enables Path MTU Discovery (RFC 1191). When Path MTU Discovery is
enabled, the transmitted TCP segment size will be determined by the advertised maxi-
mum segment size (MSS) from the remote end, as constrained by the path MTU.If
MTU Discovery is disabled, the transmitted segment size will never be greater than
tcp.mssdflt (the local maximum segment size).

ip.mtudisctimeout
The number of seconds in which a route added by the Path MTU Discovery engine will
time out. When the route times out, the Path MTU Discovery engine will attempt to
probe a larger path MTU.

ip.random_id
Assign random ip_id values.

ip.redirect
If set to 1, ICMP redirects may be sent by the host.This option is ignored unless the
host is routing IP packets, and should normally be enabled on all systems.

ip.subnetsarelocal
If set to 1, subnets are to be considered local addresses.

ip.ttl The maximum time-to-live (hop count) value for an IP packet sourced by the system.
This value applies to normal transport protocols, not to ICMP.

icmp.errppslimit
The variable specifies the maximum number of outgoing ICMP error messages, per sec-
ond. ICMPerror messages that exceeded the value are subject to rate limitation and will
not go out from the node. Negative value disables rate limitation.

icmp.maskrepl
If set to 1, ICMP network mask requests are to be answered.

icmp.rediraccept
If set to non-zero, the host will accept ICMP redirect packets. Notethat routers will
never accept ICMP redirect packets, and the variable is meaningful on IP hosts only.

icmp.redirtimeout
The variable specifies lifetime of routing entries generated by incoming ICMP redirect.
This defaults to 600 seconds.

icmp.returndatabytes
Number of bytes to return in an ICMP error message.

tcp.ack_on_push
If set to 1, TCP is to immediately transmit an ACK upon reception of a packet with
PUSH set. This can avoid losing a round trip time in some rare situations, but has the
caveat of potentially defeating TCP’s delayed ACK algorithm. Use of this option is gen-
erally not recommended, but the variable exists in case your configuration really needs
it.

tcp.compat_42
If set to 1, enables work-arounds for bugs in the 4.2BSD TCP implementation. Use of
this option is not recommended, although it may be required in order to communicate
with extremely old TCP implementations.

NetBSD 3.0 December 27, 2007 17

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

tcp.cwm
If set to 1, enables use of the Hughes/Touch/Heidemann Congestion Window Monitor-
ing algorithm. This algorithm prevents line-rate bursts of packets that could otherwise
occur when data begins flowing on an idle TCP connection. These line-rate bursts can
contribute to network and router congestion.This can be particularly useful on World
Wide Web servers which support HTTP/1.1, which has lingering connections.

tcp.cwm_burstsize
The Congestion Window Monitoring allowed burst size, in terms of packet count.

tcp.delack_ticks
Number of ticks to delay sending an ACK.

tcp.do_loopback_cksum
Perform TCP checksum on loopback.

tcp.init_win
A value indicating the TCP initial congestion window. If this value is 0, an auto-tuning
algorithm designed to use an initial window of approximately 4K bytes is in use.Other-
wise, this value indicates a fixed number of packets.

tcp.init_win_local
Like tcp.init_win , but used when communicating with hosts on a local network.

tcp.keepcnt
Number of keepalive probes sent before declaring a connection dead.If set to zero,
there is no limit; keepalives will be sent until some kind of response is received from the
peer.

tcp.keepidle
Time a connection must be idle before keepalives are sent (if keepalives are enabled for
the connection). See also tcp.slowhz.

tcp.keepintvl
Time after a keepalive probe is sent until, in the absence of any response, another probe
is sent. See also tcp.slowhz.

tcp.log_refused
If set to 1, refused TCP connections to the host will be logged.

tcp.keepinit
Timeout in seconds during connection establishment.

tcp.mss_ifmtu
If set to 1, TCP calculates the outgoing maximum segment size based on the MTU of the
appropriate interface. Ifset to 0, it is calculated based on the greater of the MTU of the
interface, and the largest (non-loopback) interface MTU on the system.

tcp.mssdflt
The default maximum segment size both advertised to the peer and to use when either
the peer does not advertise a maximum segment size to us during connection setup or
Path MTU Discovery (ip.mtudisc) is disabled. Donot change this value unless you
really know what you are doing.

tcp.recvspace
The default TCP receive buffer size.

NetBSD 3.0 December 27, 2007 18

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

tcp.rfc1323
If set to 1, enables RFC 1323 extensions to TCP.

tcp.rstppslimit
The variable specifies the maximum number of outgoing TCP RST packets, per second.
TCP RST packet that exceeded the value are subject to rate limitation and will not go
out from the node. Negative value disables rate limitation.

tcp.ident
Return the user ID of a connected socket pair. (RFC1413 Identification Protocol
lookups.)

tcp.drop
Drop a TCP socket pair connection.

tcp.sack.enable
If set to 1, enables RFC 2018 Selective ACKnowledgement.

tcp.sack.globalholes
Global number of TCP SACK holes.

tcp.sack.globalmaxholes
Global maximum number of TCP SACK holes.

tcp.sack.maxholes
Maximum number of TCP SACK holes allowed per connection.

tcp.ecn.enable
If set to 1, enables RFC 3168 Explicit Congestion Notification.

tcp.ecn.maxretries
Number of times to retry sending the ECN-setup packet.

tcp.sendspace
The default TCP send buffer size.

tcp.slowhz
The units for tcp.keepidle and tcp.keepintvl; those variables are in ticks of a clock that
ticks tcp.slowhz times per second. (That is, their values must be divided by the
tcp.slowhz value to get times in seconds.)

tcp.syn_bucket_limit
The maximum number of entries allowed per hash bucket in the TCP compressed state
engine.

tcp.syn_cache_limit
The maximum number of entries allowed in the TCP compressed state engine.

tcp.timestamps
If rfc1323 is enabled, a value of 1 indicates RFC 1323 time stamp options, used for mea-
suring TCP round trip times, are enabled.

tcp.win_scale
If rfc1323 is enabled, a value of 1 indicates RFC 1323 window scale options, for
increasing the TCP window size, are enabled.

tcp.congctl.available
The available TCP congestion control algorithms.

NetBSD 3.0 December 27, 2007 19

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

tcp.congctl.selected
The currently selected TCP congestion control algorithm.

tcp.abc.enable
If set to 1, use RFC 3465 Appropriate Byte Counting (ABC).If set to 0, use traditional
Packet Counting.

tcp.abc.aggressive
Choose the L parameter found in RFC 3465.L is the maximum cwnd increase for an
ack during slow start. If set to 1, use L=2∗SMSS. Ifset to 0, use L=1∗SMSS. Ithas no
effect unless tcp.abc.enable is set to 1.

udp.checksum
If set to 1, UDP checksums are being computed.Received non-zero UDP checksums
are always checked. DisablingUDP checksums is strongly discouraged.

udp.sendspace
The default UDP send buffer size.

udp.recvspace
The default UDP receive buffer size.

For variables net.∗.ipsec, please refer toipsec (4).

net.inet6 (PF_INET6)
Get or set various global information about the IPv6(Internet Protocol version 6) . The third
level name is the protocol. The fourth level name is the variable name. The currently defined pro-
tocols and names are:

Protocol name Variable name Type Changeable
icmp6 errppslimit integer yes
icmp6 mtudisc_hiwat integer yes
icmp6 mtudisc_lowat integer yes
icmp6 nd6_debug integer yes
icmp6 nd6_delay integer yes
icmp6 nd6_maxnudhint integer yes
icmp6 nd6_mmaxtries integer yes
icmp6 nd6_prune integer yes
icmp6 nd6_umaxtries integer yes
icmp6 nd6_useloopback integer yes
icmp6 nodeinfo integer yes
icmp6 rediraccept integer yes
icmp6 redirtimeout integer yes
ip6 accept_rtadv integer yes
ip6 anonportmax integer yes
ip6 anonportmin integer yes
ip6 auto_flowlabel integer yes
ip6 dad_count integer yes
ip6 defmcasthlim integer yes
ip6 forwarding integer yes
ip6 gifhlim integer yes
ip6 hashsize integer yes
ip6 hlim integer yes

NetBSD 3.0 December 27, 2007 20

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

ip6 hdrnestlimit integer yes
ip6 kame_version string no
ip6 keepfaith integer yes
ip6 log_interval integer yes
ip6 lowportmax integer yes
ip6 lowportmin integer yes
ip6 maxflows integer yes
ip6 maxfragpackets integer yes
ip6 maxfrags integer yes
ip6 redirect integer yes
ip6 rr_prune integer yes
ip6 use_deprecated integer yes
ip6 v6only integer yes
udp6 do_loopback_cksum integeryes
udp6 recvspace integer yes
udp6 sendspace integer yes

The variables are as follows:

ip6.accept_rtadv
If set to non-zero, the node will accept ICMPv6 router advertisement packets and auto-
configures address prefixes and default routers. The node must be a host(not a router)
for the option to be meaningful.

ip6.anonportmax
The highest port number to use for TCP and UDP ephemeral port allocation.This can-
not be set to less than 1024 or greater than 65535, and must be greater than
ip6.anonportmin .

ip6.anonportmin
The lowest port number to use for TCP and UDP ephemeral port allocation.This cannot
be set to less than 1024 or greater than 65535.

ip6.auto_flowlabel
On connected transport protocol packets, fill IPv6 flowlabel field to help intermediate
routers to identify packet flows.

ip6.dad_count
The variable configures number of IPv6 DAD (duplicated address detection) probe
packets. Thepackets will be generated when IPv6 interface addresses are configured.

ip6.defmcasthlim
The default hop limit value for an IPv6 multicast packet sourced by the node. This value
applies to all the transport protocols on top of IPv6. There are APIs to override the
value, as documented inip6 (4).

ip6.forwarding
If set to 1, enables IPv6 forwarding for the node, meaning that the node is acting as a
router. If set to 0, disables IPv6 forwarding for the node, meaning that the node is acting
as a host. IPv6 specification defines node behavior for “router” case and “host” case
quite differently, and changing this variable during operation may cause serious trouble.
It is recommended to configure the variable at bootstrap time, and bootstrap time only.

ip6.gifhlim
The maximum hop limit value for an IPv6 packet generated bygif (4) tunnel interface.

NetBSD 3.0 December 27, 2007 21

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

ip6.hdrnestlimit
The number of IPv6 extension headers permitted on incoming IPv6 packets. If set to 0,
the node will accept as many extension headers as possible.

ip6.hashsize
The size of IPv6 Fast Forward hash table. This value must be a power of 2 (64, 256...).
A larger hash table size results in fewer collisions. Also seeip6.maxflows .

ip6.hlim
The default hop limit value for an IPv6 unicast packet sourced by the node. This value
applies to all the transport protocols on top of IPv6. There are APIs to override the
value, as documented inip6 (4).

ip6.kame_version
The string identifies the version of KAME IPv6 stack implemented in the kernel.

ip6.keepfaith
If set to non-zero, it enables “FAITH” TCP relay IPv6-to-IPv4 translator code in the ker-
nel. Referfaith (4) andfaithd (8) for detail.

ip6.log_interval
The variable controls amount of logs generated by IPv6 packet forwarding engine, by
setting interval between log output(in seconds) .

ip6.lowportmax
The highest port number to use for TCP and UDP reserved port allocation. This cannot
be set to less than 0 or greater than 1024, and must be greater thanip6.lowportmin .

ip6.lowportmin
The lowest port number to use for TCP and UDP reserved port allocation. This cannot
be set to less than 0 or greater than 1024, and must be smaller thanip6.lowportmax .

ip6.maxflows
IPv6 Fast Forwarding is enabled by default. If set to 0, IPv6 Fast Forwarding is dis-
abled. ip6.maxflows controls the maximum amount of flows which can be created.
The default value is 256.

ip6.maxfragpackets
The maximum number of fragmented packets the node will accept.0 means that the
node will not accept any fragmented packets. −1means that the node will accept as
many fragmented packets as it receives. Theflag is provided basically for avoiding pos-
sible DoS attacks.

ip6.maxfrags
The maximum number of fragments the node will accept.0 means that the node will not
accept any fragments. −1means that the node will accept as many fragments as it
receives. Theflag is provided basically for avoiding possible DoS attacks.

ip6.redirect
If set to 1, ICMPv6 redirects may be sent by the node.This option is ignored unless the
node is routing IP packets, and should normally be enabled on all systems.

ip6.rr_prune
The variable specifies interval between IPv6 router renumbering prefix babysitting, in
seconds.

NetBSD 3.0 December 27, 2007 22

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

ip6.use_deprecated
The variable controls use of deprecated address, specified in RFC 2462 5.5.4.

ip6.v6only
The variable specifies initial value forIPV6_V6ONLY socket option forAF_INET6
socket. Pleaserefer toip6 (4) for detail.

icmp6.errppslimit
The variable specifies the maximum number of outgoing ICMPv6 error messages, per
second. ICMPv6error messages that exceeded the value are subject to rate limitation
and will not go out from the node. Negative value disables rate limitation.

icmp6.mtudisc_hiwat

icmp6.mtudisc_lowat
The variables define the maximum number of routing table entries, created due to path
MTU discovery (prevents denial-of-service attacks with ICMPv6 too big messages) .
When IPv6 path MTU discovery happens, we keep path MTU information into the rout-
ing table. If the number of routing table entries exceed the value, the kernel will not
attempt to keep the path MTU information.icmp6.mtudisc_hiwat is used when
we have verified ICMPv6 too big messages.icmp6.mtudisc_lowat is used when
we have unv erified ICMPv6 too big messages.Verification is performed by using
address/port pairs kept in connected pcbs. Negative value disables the upper limit.

icmp6.nd6_debug
If set to non-zero, kernel IPv6 neighbor discovery code will generate debugging mes-
sages. Thedebug outputs are useful to diagnose IPv6 interoperability issues.The flag
must be set to 0 for normal operation.

icmp6.nd6_delay
The variable specifiesDELAY_FIRST_PROBE_TIMEtiming constant in IPv6 neighbor
discovery specification(RFC 2461) , in seconds.

icmp6.nd6_maxnudhint
IPv6 neighbor discovery permits upper layer protocols to supply reachability hints, to
avoid unnecessary neighbor discovery exchanges. Thevariable defines the number of
consecutive hints the neighbor discovery layer will take. For example, by setting the
variable to 3, neighbor discovery layer will take 3 consecutive hints in maximum.After
receiving 3 hints, neighbor discovery layer will perform normal neighbor discovery
process.

icmp6.nd6_mmaxtries
The variable specifiesMAX_MULTICAST_SOLICITconstant in IPv6 neighbor discov-
ery specification(RFC 2461) .

icmp6.nd6_prune
The variable specifies interval between IPv6 neighbor cache babysitting, in seconds.

icmp6.nd6_umaxtries
The variable specifiesMAX_UNICAST_SOLICIT constant in IPv6 neighbor discovery
specification (RFC 2461) .

icmp6.nd6_useloopback
If set to non-zero, kernel IPv6 stack will use loopback interface for local traffic.

icmp6.nodeinfo
The variable enables responses to ICMPv6 node information queries. If you set the vari-
able to 0, responses will not be generated for ICMPv6 node information queries.Since

NetBSD 3.0 December 27, 2007 23

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

node information queries can have a security impact, it is possible to fine tune which
responses should be answered.Tw o separate bits can be set.

1 Respond to ICMPv6 FQDN queries, e.g.ping6 -w .

2 Respond to ICMPv6 node addresses queries, e.g.ping6 -a .

icmp6.rediraccept
If set to non-zero, the host will accept ICMPv6 redirect packets. Notethat IPv6 routers
will never accept ICMPv6 redirect packets, and the variable is meaningful on IPv6 hosts
(non-router)only.

icmp6.redirtimeout
The variable specifies lifetime of routing entries generated by incoming ICMPv6 redi-
rect.

udp6.do_loopback_cksum
Perform UDP checksum on loopback.

udp6.recvspace
Default UDP receive buffer size.

udp6.sendspace
Default UDP send buffer size.

We reuse net.∗.tcp forTCP over IPv6, and therefore we do not have variables net.∗.tcp6. Variables
net.inet6.udp6 have identical meaning to net.inet.udp. Please refer toPF_INET section above.
For variables net.∗.ipsec6, please refer toipsec (4).

net.key (PF_KEY)
Get or set various global information about the IPsec key management. Thethird level name is the
variable name. The currently defined variable and names are:

Variable name Type Changeable
debug integer yes
spi_try integer yes
spi_min_value integer yes
spi_max_value integer yes
larval_lifetime integer yes
blockacq_count integer yes
blockacq_lifetime integer yes
esp_keymin integer yes
esp_auth integer yes
ah_keymin integer yes

The variables are as follows:

debug Turn on debugging message from within the kernel. Thevalue is a bitmap, as defined in
/usr/include/netkey/key_debug.h .

spi_try
The number of times the kernel will try to obtain an unique SPI when it generates it
from random number generator.

spi_min_value
Minimum SPI value when generating it within the kernel.

spi_max_value
Maximum SPI value when generating it within the kernel.

NetBSD 3.0 December 27, 2007 24

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

larval_lifetime
Lifetime for LARVAL SAD entries, in seconds.

blockacq_count
Number of ACQUIRE PF_KEY messages to be blocked after an ACQUIRE message.It
avoids flood of ACQUIRE PF_KEY from being sent from the kernel to the key manage-
ment daemon.

blockacq_lifetime
Lifetime of ACQUIRE PF_KEY message.

esp_keymin
Minimum ESP key length, in bits.The value is used when the kernel creates proposal
payload on ACQUIRE PF_KEY message.

esp_auth
Whether ESP authentication should be used or not.Non-zero value indicates that ESP
authentication should be used. The value is used when the kernel creates proposal pay-
load on ACQUIRE PF_KEY message.

ah_keymin
Minimum AH key length, in bits, The value is used when the kernel creates proposal
payload on ACQUIRE PF_KEY message.

The proc.∗ subtree
The string and integer information available for theproc level is detailed below. The changeable column
shows whether a process with appropriate privilege may change the value. Thesevalues are per-process, and
as such may change from one process to another. When a process is created, the default values are inherited
from its parent. When a set-user-ID or set-group-ID binary is executed, the value of PROC_PID_CORE-
NAME is reset to the system default value. Thesecond level name is either the magic value PROC_CUR-
PROC, which points to the current process, or the PID of the target process.

Third level name Type Changeable
proc.pid.corename string yes
proc.pid.rlimit node not applicable
proc.pid.stopfork int yes
proc.pid.stopexec int yes
proc.pid.stopexit int yes

proc.pid.corename (PROC_PID_CORENAME)
The template used for the core dump file name (seecore (5) for details). The base name must
either becore or end with the suffix ‘‘.core’’ (the super-user may set arbitrary names). By default
it points to KERN_DEFCORENAME.

proc.pid.rlimit (PROC_PID_LIMIT)
Return resources limits, as defined for thegetrlimit (2) andsetrlimit (2) system calls.The
fourth level name is one of:

proc.pid.rlimit.cputime (PROC_PID_LIMIT_CPU)
The maximum amount of CPU time (in seconds) to be used
by each process.

proc.pid.rlimit.filesize (PROC_PID_LIMIT_FSIZE)
The largest size (in bytes) file that may be created.

NetBSD 3.0 December 27, 2007 25

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

proc.pid.rlimit.datasize (PROC_PID_LIMIT_DATA)
The maximum size (in bytes) of the data segment for a
process; this defines how far a program may extend its break
with thesbrk (2) system call.

proc.pid.rlimit.stacksize (PROC_PID_LIMIT_STACK)
The maximum size (in bytes) of the stack segment for a
process; this defines how far a program’s stack segment may
be extended. Stackextension is performed automatically by
the system.

proc.pid.rlimit.coredumpsize (PROC_PID_LIMIT_CORE)
The largest size (in bytes)core file that may be created.

proc.pid.rlimit.memoryuse (PROC_PID_LIMIT_RSS)
The maximum size (in bytes) to which a process’s resident
set size may grow. This imposes a limit on the amount of
physical memory to be given to a process; if memory is tight,
the system will prefer to take memory from processes that are
exceeding their declared resident set size.

proc.pid.rlimit.memorylocked (PROC_PID_LIMIT_MEMLOCK)
The maximum size (in bytes) which a process may lock into
memory using themlock (2) function.

proc.pid.rlimit.maxproc (PROC_PID_LIMIT_NPROC)
The maximum number of simultaneous processes for this
user id.

proc.pid.rlimit.descriptors (PROC_PID_LIMIT_NOFILE)
The maximum number of open files for this process.

The fifth level name is one ofsoft (PROC_PID_LIMIT_TYPE_SOFT) or hard
(PROC_PID_LIMIT_TYPE_HARD), to select respectively the soft or hard limit. Both are of type
integer.

proc.pid.stopfork (PROC_PID_STOPFORK)
If non zero, the process’ children will be stopped afterfork (2) calls. The children is created in
the SSTOP state and is never scheduled for running before being stopped.This feature helps
attaching a process with a debugger such asgdb (1) before it had the opportunity to actually do
anything.

This value is inherited by the process’s children, and it also apply to emulation specific system
calls that fork a new process, such assproc () or clone ().

proc.pid.stopexec (PROC_PID_STOPEXEC)
If non zero, the process will be stopped on next exec (3) call. The process created byexec (3) is
created in the SSTOP state and is never scheduled for running before being stopped. This feature
helps attaching a process with a debugger such asgdb (1) before it had the opportunity to actually
do anything.

This value is inherited by the process’s children.

proc.pid.stopexit (PROC_PID_STOPEXIT)
If non zero, the process will be stopped on when it has cause to exit, either by way of calling
exit (3), _exit (2), or by the receipt of a specific signal.The process is stopped before any of its
resources or vm space is released allowing examination of the termination state of a process before
it disappears. This feature can be used to examine the final conditions of the process’s vmspace

NetBSD 3.0 December 27, 2007 26

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

via pmap(1) or its resource settings withsysctl (8) before it disappears.

This value is also inherited by the process’s children.

The user.∗ subtree (CTL_USER)
The string and integer information available for theuser level is detailed below. The changeable column
shows whether a process with appropriate privilege may change the value.

Second level name Type Changeable
user.atexit_max integer no
user.bc_base_max integer no
user.bc_dim_max integer no
user.bc_scale_max integer no
user.bc_string_max integer no
user.coll_weights_max integer no
user.cs_path string no
user.expr_nest_max integer no
user.line_max integer no
user.posix2_c_bind integer no
user.posix2_c_dev integer no
user.posix2_char_term integer no
user.posix2_fort_dev integer no
user.posix2_fort_run integer no
user.posix2_localedef integer no
user.posix2_sw_dev integer no
user.posix2_upe integer no
user.posix2_version integer no
user.re_dup_max integer no
user.stream_max integer no
user.stream_max integer no
user.tzname_max integer no

user.atexit_max (USER_ATEXIT_MAX)
The maximum number of functions that may be registered withatexit (3).

user.bc_base_max (USER_BC_BASE_MAX)
The maximum ibase/obase values in thebc (1) utility.

user.bc_dim_max (USER_BC_DIM_MAX)
The maximum array size in thebc (1) utility.

user.bc_scale_max (USER_BC_SCALE_MAX)
The maximum scale value in thebc (1) utility.

user.bc_string_max (USER_BC_STRING_MAX)
The maximum string length in thebc (1) utility.

user.coll_weights_max (USER_COLL_WEIGHTS_MAX)
The maximum number of weights that can be assigned to any entry of the LC_COLLATE order
keyword in the locale definition file.

user.cs_path (USER_CS_PATH)
Return a value for thePATHenvironment variable that finds all the standard utilities.

user.expr_nest_max (USER_EXPR_NEST_MAX)
The maximum number of expressions that can be nested within parenthesis by theexpr (1) utility.

NetBSD 3.0 December 27, 2007 27

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

user.line_max (USER_LINE_MAX)
The maximum length in bytes of a text-processing utility’s input line.

user.posix2_char_term (USER_POSIX2_CHAR_TERM)
Return 1 if the system supports at least one terminal type capable of all operations described in
POSIX 1003.2, otherwise 0.

user.posix2_c_bind (USER_POSIX2_C_BIND)
Return 1 if the system’s C-language development facilities support the C-Language Bindings
Option, otherwise 0.

user.posix2_c_dev (USER_POSIX2_C_DEV)
Return 1 if the system supports the C-Language Development Utilities Option, otherwise 0.

user.posix2_fort_dev (USER_POSIX2_FORT_DEV)
Return 1 if the system supports the FORTRAN Development Utilities Option, otherwise 0.

user.posix2_fort_run (USER_POSIX2_FORT_RUN)
Return 1 if the system supports the FORTRAN Runtime Utilities Option, otherwise 0.

user.posix2_localedef (USER_POSIX2_LOCALEDEF)
Return 1 if the system supports the creation of locales, otherwise 0.

user.posix2_sw_dev (USER_POSIX2_SW_DEV)
Return 1 if the system supports the Software Development Utilities Option, otherwise 0.

user.posix2_upe (USER_POSIX2_UPE)
Return 1 if the system supports the User Portability Utilities Option, otherwise 0.

user.posix2_version (USER_POSIX2_VERSION)
The version of POSIX 1003.2 with which the system attempts to comply.

user.re_dup_max (USER_RE_DUP_MAX)
The maximum number of repeated occurrences of a regular expression permitted when using inter-
val notation.

user.stream_max (USER_STREAM_MAX)
The minimum maximum number of streams that a process may have open at any one time.

user.tzname_max (USER_TZNAME_MAX)
The minimum maximum number of types supported for the name of a timezone.

The vm.∗ subtree (CTL_VM)
The string and integer information available for thevm level is detailed below. The changeable column
shows whether a process with appropriate privilege may change the value.

Second level name Type Changeable
vm.anonmax int yes
vm.anonmin int yes
vm.bufcache int yes
vm.bufmem int no
vm.bufmem_hiwater int yes
vm.bufmem_lowater int yes
vm.execmax int yes
vm.execmin int yes
vm.filemax int yes

NetBSD 3.0 December 27, 2007 28

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

vm.filemin int yes
vm.loadavg structloadavg no
vm.maxslp int no
vm.nkmempages int no
vm.uspace int no
vm.uvmexp structuvmexp no
vm.uvmexp2 structuvmexp_sysctl no
vm.vmmeter structvmtotal no

vm.anonmax (VM_ANONMAX)
The percentage of physical memory which will be reclaimed from other types of memory usage to
store anonymous application data.

vm.anonmin (VM_ANONMIN)
The percentage of physical memory which will be always be available for anonymous application
data.

vm.bufcache (VM_BUFCACHE)
The percentage of physical memory which will be available for the buffer cache.

vm.bufmem (VM_BUFMEM)
The amount of kernel memory that is being used by the buffer cache.

vm.bufmem_lowater (VM_BUFMEM_LOWATER)
The minimum amount of kernel memory to reserve for the buffer cache.

vm.bufmem_hiwater (VM_BUFMEM_HIWATER)
The maximum amount of kernel memory to be used for the buffer cache.

vm.execmax (VM_EXECMAX)
The percentage of physical memory which will be reclaimed from other types of memory usage to
store cached executable data.

vm.execmin (VM_EXECMIN)
The percentage of physical memory which will be always be available for cached executable data.

vm.filemax (VM_FILEMAX)
The percentage of physical memory which will be reclaimed from other types of memory usage to
store cached file data.

vm.filemin (VM_FILEMIN)
The percentage of physical memory which will be always be available for cached file data.

vm.loadavg (VM_LOADAVG)
Return the load average history. The returned data consists of astruct loadavg.

vm.maxslp (VM_MAXSLP)
The value of the maxslp kernel global variable.

vm.vmmeter (VM_METER)
Return system wide virtual memory statistics. The returned data consists of astruct vmtotal.

vm.uspace (VM_USPACE)
The number of bytes allocated for each kernel stack.

vm.uvmexp (VM_UVMEXP)
Return system wide virtual memory statistics. The returned data consists of astruct uvmexp.

NetBSD 3.0 December 27, 2007 29

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

vm.uvmexp2 (VM_UVMEXP2)
Return system wide virtual memory statistics.The returned data consists of astruct
uvmexp_sysctl.

The ddb.∗ subtree (CTL_DDB)
The integer information available for the ddb level is detailed below. The changeable column shows
whether a process with appropriate privilege may change the value.

Second level name Type Changeable
ddb.radix integer yes
ddb.maxoff integer yes
ddb.lines integer yes
ddb.tabstops integer yes
ddb.onpanic integer yes
ddb.fromconsole integer yes

ddb.radix (DBCTL_RADIX)
The input and output radix.

ddb.maxoff (DBCTL_MAXOFF)
The maximum symbol offset.

ddb.lines (DBCTL_LINES)
Number of display lines.

ddb.tabstops (DBCTL_TABSTOPS)
Tab width.

ddb.onpanic (DBCTL_ONPANIC)
If non-zero, DDB will be entered when the kernel panics.

ddb.fromconsole (DBCTL_FROMCONSOLE)
If not zero, DDB may be entered by sending a break on a serial console or by a special key
sequence on a graphics console.

These MIB nodes are also available as variables from within the DDB. Seeddb (4) for more details.

The security.∗ subtree (CTL_SECURITY)
The security level contains various security-related settings for the system.Av ailable settings are
detailed below.

security.curtain
If non-zero, will filter return objects according to the user-id requesting information about them,
preventing from users any access to objects they don’t own.

At the moment, it affectsps (1), netstat (1) (for PF_INET , PF_INET6 , and PF_UNIX PCBs),
andw(1).

security.models
NetBSD supports pluggable security models.Every security model used, whether if loaded as an
LKM or built with the system, is required to add an entry to this node with at least one element,
“name”, indicating the name of the security model.

In addition to the name, any settings and other information private to the security model will be
available under this node. Seesecmodel (9) for more information.

NetBSD 3.0 December 27, 2007 30

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

security.pax
Settings for PaX -- exploit mitigation features.For more information on any of the PaX features,
please seepaxctl (8) andsecurity (8).

security.pax.aslr.enable
Enable PaX ASLR (Address Space Layout Randomization).

The value of this knob must be non-zero for PaX ASLR to be enabled, even if a program
is set to explicit enable.

security.pax.aslr.global
Specifies the default global policy for programs without an explicit enable/disable flag.

When non-zero, all programs will get PaX ASLR, except those exempted with
paxctl (8). Otherwise,all programs will not get PaX ASLR, except those specifically
marked as such withpaxctl (8).

security.pax.mprotect.enable
Enable PaX MPROTECT restrictions.

These aremprotect (2) restrictions to better enforce a WˆX policy. The value of this
knob must be non-zero for PaX MPROTECT to be enabled, even if a program is set to
explicit enable.

security.pax.mprotect.global
Specifies the default global policy for programs without an explicit enable/disable flag.

When non-zero, all programs will get the PaX MPROTECT restrictions, except those
exempted withpaxctl (8). Otherwise,all programs will not get the PaX MPROTECT
restrictions, except those specifically marked as such withpaxctl (8).

security.pax.segvguard.enable
Enable PaX Segvguard.

PaX Segvguard can detect and prevent certain exploitation attempts, where an attacker
may try for example to brute-force function return addresses of respawning daemons.

Note: The NetBSD interface and implementation of the Segvguard is still experimental,
and may change in future releases.

security.pax.segvguard.global
Specifies the default global policy for programs without an explicit enable/disable flag.

When non-zero, all programs will get the PaX Segvguard, except those exempted with
paxctl (8). Otherwise,no program will get the PaX Segvguard restrictions, except
those specifically marked as such withpaxctl (8).

security.pax.segvguard.expiry_timeout
If the max number was not reached within this timeout (in seconds), the entry will
expire.

security.pax.segvguard.suspend_timeout
Number of seconds to suspend a user from running a faulting program when the limit
was exceeded.

security.pax.segvguard.max_crashes
Max number of segfaults a program can receive before suspension.

NetBSD 3.0 December 27, 2007 31

SYSCTL (7) NetBSD Miscellaneous Information Manual SYSCTL (7)

The vendor.∗ subtree (CTL_VENDOR)
Thevendor toplevel name is reserved to be used by vendors who wish to have their own private MIB tree.
Intended use is to store values under “vendor.<yourname>.∗”.

SEE ALSO
sysctl (3), ipsec (4), tcp (4), security (8), sysctl (8)

HISTORY
Thesysctl variables first appeared in 4.4BSD.

NetBSD 3.0 December 27, 2007 32

