
INTRO (9) NetBSDKernel Developer’s Manual INTRO (9)

NAME
intro — introduction to kernel internals

DESCRIPTION
This section contains information related to the internal operation of the system kernel. Itdescribes function
interfaces and variables of use to the systems and device driver programmer.

In addition to the normal man page format, the kernel pages include an additional section:

CODE REFERENCES
Contains the pathname(s) of the source file(s) which contain the definition and/or
source code of the variables or functions being documented.

MEMOR Y M ANAGEMENT
Machine-dependent swap interface. Seecpu_swapout (9).

Introduction to kernel memory allocators. Seememoryallocators (9).

Machine-dependent portion of the virtual memory system. Seepmap(9).

Vi rtual memory system external interface. Seeuvm(9).

I/O SUBSYSTEM
Buffer cache interfaces. Seebuffercache (9).

Device buffer queues. Seebufq (9).

Initiate I/O on raw devices. Seephysio (9).

I/O descriptor allocation interface. Seegetiobuf (9).

PROCESS CONTROL
Machine-dependent process exit. Seecpu_exit (9).

Idle CPU while waiting for work. Seecpu_idle (9).

Finish a fork operation. Seecpu_lwp_fork (9).

Switch to another light weight process. Seectxsw (9).

Current process and processor. Seecurproc (9).

Set process uid and gid. Seedo_setresuid (9).

New processes and kernel threads. Seefork1 (9), kthread (9).

Context switch notification. Seecpu_need_resched (9).

Process scheduling subsystem. Seescheduler (9).

Software signal facilities. Seesignal (9).

Suspend the scheduler. Seesuspendsched (9).

Return path to user-mode execution. Seeuserret (9).

FILE SYSTEM
High-level fi le operations. Seedofileread (9).

Convert an extended attribute namespace identifier to a string and vice versa. Seeextattr (9).

NetBSD 3.0 February 17, 2007 1

INTRO (9) NetBSDKernel Developer’s Manual INTRO (9)

Operations on file entries. Seefile (9).

In-kernel, file-system independent, file-meta data association. Seefileassoc (9).

File descriptor tables and operations. Seefiledesc (9).

File descriptor owner handling functions. Seefsetown (9).

File system suspension helper subsystem. Seefstrans (9).

Pathname lookup, cache and management. Seenamei (9), namecache (9), pathname (9).

Kernel interface to file systems. Seevfs (9).

Kernel representation of a file or directory and vnode attributes. Seevnode (9), vattr (9).

NETWORKING
Kernel interfaces for manipulating output queues on network interfaces. Seealtq (9).

Externally visible ARP functions. Seearp (9).

Ethernet and FDDI driver support functions and macros. Seeethersubr (9).

Core 802.11 network stack functions and rate adaptation based on received signal strength. See
ieee80211 (9), rssadapt (9).

Compute Internet checksum. Seein_cksum (9).

Look up the IPv4 source address best matching an IPv4 destination. Seein_getifa (9).

Functions and macros for managing memory used by networking code. Seembuf (9).

Packet filter interface. Seepfil (9).

Route callout functions. Seert_timer (9).

TCP congestion control API. Seetcp_congctl (9).

LOCKING AND INTERRUPT CONTR OL
Condition variables. Seecondvar (9).

Kernel lock functions. Seelock (9).

Memory barriers. Seemb(9).

Mutual exclusion primitives. Seemutex (9).

Restartable atomic sequences. Seeras (9).

Reader / writer lock primitives. Seerwlock (9).

Machine-independent software interrupt framework. Seesoftintr (9).

Functions to modify system interrupt priority level. Seespl (9).

Functions ro raise the system priority level. Seesplraiseipl (9).

SECURITY
Kernel authorization framework. Seekauth (9).

API for cryptographic services in the kernel. Seeopencrypto (9).

Security model development guidelines. Seesecmodel (9).

NetBSD 3.0 February 17, 2007 2

INTRO (9) NetBSDKernel Developer’s Manual INTRO (9)

SYSTEM TIME CONTR OL
Execute a function after a specified length of time. Seecallout (9).

Microsecond delay. Seedelay (9).

Real-time timer. Seehardclock (9).

System clock frequency. Seehz (9).

Initialization of system time and time-of-day clock support. Seeinittodr (9), todr (9).

Check that a timeval value is valid, and correct. Seeitimerfix (9).

System time variables. Seetimecounter (9).

Realtime system clock. Seemicrotime (9).

Get the time elapsed since boot. Seemicrouptime (9).

Convert milliseconds to system clock ticks. Seemstohz (9).

Function to help implement rate-limited actions. Seeppsratecheck (9).

Function to help implement rate-limited actions. Seeratecheck (9).

Set battery-backed clock from system time. Seeresettodr (9).

System time variables. Seetime_second (9).

KERNEL AND USER SPACE DAT A COPY FUNCTIONS
Kernel space to/from user space copy functions. Seecopy (9).

Store data to user-space. Seestore (9).

Fetch data from user-space. Seefetch (9).

Move data described by a struct uio. Seeuiomove (9).

MACHINE DEPENDENT KERNEL FUNCTIONS
Machine-dependent clock setup interface. Seecpu_initclocks (9).

Machine-dependent process core dump interface. Seecpu_coredump (9).

Machine-dependent kernel core dumps. Seecpu_dumpconf (9).

Unique CPU identification number Seecpu_number (9).

Halt or reboot the system Seecpu_reboot (9).

Machine-dependent root file system setup Seecpu_rootconf (9).

Machine-dependent CPU startup Seecpu_startup (9).

Disk label management routines. Seedisklabel (9).

DEVICE CONFIGURA TION
Autoconfiguration frame-work. Seeautoconf (9).

Description of a device driver. Seedriver (9).

The autoconfiguration framework ‘‘device definition’’ l anguage. Seeconfig (9).

Machine-dependent device autoconfiguration. Seecpu_configure (9).

NetBSD 3.0 February 17, 2007 3

INTRO (9) NetBSDKernel Developer’s Manual INTRO (9)

MI DEVICE DRIVER API
Bus and Machine Independent DMA Mapping Interface. Seebus_dma(9).

Bus space manipulation functions. Seebus_space (9).

Generic disk framework. Seedisk (9).

Hardware-assisted data mover interface. Seedmover (9). Generic ev ent counter framework. See
evcnt (9).

Firmware loader API for device drivers. Seefirmload (9).

How to implement a new ioctl call to access device drivers. Seeioctl (9).

Extensible line discipline framework. Seelinedisc (9).

CONSOLE DEVICES
Console magic key sequence management. Seecnmagic (9).

Console access interface. Seecons (9).

Raster display operations. Seerasops (9).

Generic virtual console framework. Seevcons (9).

Machine-independent console support. Seewscons (9).

DEVICE SPECIFIC IMPLEMENT ATION
Interface between low and high level audio drivers. Seeaudio (9).

Bluetooth Device/Protocol API. Seebluetooth (9).

Support for CardBus PC-Card devices. Seecardbus (9).

VESA Display Data Channel V2. Seeddc (9).

VESA Extended Display Identification Data. Seeedid (9).

Inter IC (I2C) bus. Seeiic (9).

Baseboard I/O control ASIC for DEC TURBOchannel systems. Seeioasic (9).

Industry-standard Architecture. Seeisa (9).

Introduction to ISA Plug-and-Play support. Seeisapnp (9).

MicroChannel Architecture bus. Seemca(9).

PPBUS microseqencer developer’s guide. Seemicroseq (9).

Peripheral Component Interconnect. Seepci (9).

Perform PCI bus configuration. Seepci_configure_bus (9).

PCI bus interrupt manipulation functions. Seepci_intr (9).

PC keyboard port interface. Seepckbport (9).

Support for PCMCIA PC-Card devices. Seepcmcia (9).

User-space interface to ppbus parallel port. Seeppi (9).

Interface between low and high level radio drivers. Seeradio (9).

NetBSD 3.0 February 17, 2007 4

INTRO (9) NetBSDKernel Developer’s Manual INTRO (9)

Functions to make a device available for entropy collection. Seernd (9).

SCSI/ATAPI middle-layer interface. Seescsipi (9).

TURBOchannel bus. Seetc (9).

USB tty support. Seeucom(9).

USB device drivers interface. Seeusbdi (9).

Versa Module Euroboard bus. Seevme(9).

Machine-independent IDE/ATAPI driver. Seewdc(9).

KERNEL EVENT
Functions to add or remove kernel event filters. Seekfilter_register (9).

Functions to raise kernel event. Seeknote (9).

Record and wakeup select requests. Seeselrecord (9).

Simple do-it-in-thread-context framework. Seeworkqueue (9).

KERNEL HELPER FUNCTIONS
Kernel expression verification macros. SeeKASSERT(9).

Convert a single byte between (unsigned) packed bcd and binary. Seebcdtobin (9).

Bitmask output conversion. Seebitmask_snprintf (9).

General purpose extent manager. Seeextent (9).

Compare integers. Seeimax (9).

Kernel formatted output conversion. Seekprintf (9).

Data comparing, moving, copying, setting and cleaning.See memcmp(9), memmove(9), memcpy(9),
memset(9), bcmp(9), bcopy (9), bzero (9), kcopy (9).

Log a message from the kernel through the /dev/klog device. Seelog (9).

Bring down system on fatal error. Seepanic (9).

MISC
Run all power hooks. Seedopowerhooks (9).

Run all shutdown hooks. Seedoshutdownhooks (9).

Kernel internal error numbers. Seeerrno (9).

Kernel hash functions, hash table construction and destruction. Seehash (9), hashinit (9).

Format a number into a human readable form. Seehumanize_number (9).

Machine-dependent interface to ipkdb. Seeipkdb (9).

Options string management. Seeoptstr (9).

Performs pattern matching on strings. Seepmatch (9).

Hardware Performance Monitoring Interface. Seepmc(9).

Add or remove a power change hook. Seepowerhook_establish (9).

NetBSD 3.0 February 17, 2007 5

INTRO (9) NetBSDKernel Developer’s Manual INTRO (9)

Add or remove a shutdown hook. Seeshutdownhook_establish (9).

Non-local jumps. Seesetjmp (9).

System variable control interfaces. Seesysctl (9).

HISTORY
TheNetBSD kernel internals section first appeared inNetBSD 1.2.

NetBSD 3.0 February 17, 2007 6

KASSERT (9) NetBSDKernel Developer’s Manual KASSERT (9)

NAME
KASSERT, KDASSERT — kernel expression verification macros

SYNOPSIS
void
KASSERT(expression);

void
KDASSERT(expression);

DESCRIPTION
These machine independent assertion-checking macros cause a kernelpanic (9) if the given expression
evaluates to false.

KASSERT() tests are included only in kernels compiled with theDIAGNOSTICconfiguration option. In a
kernel that does not have this configuration option, theKASSERT() macro is defined to be a no-op.

KDASSERT() tests are included only in kernels compiled with theDEBUG configuration option.
KDASSERT() andKASSERT() are identical except for the controlling option (DEBUGvs DIAGNOSTIC).

The panic message will display the style of assertion (debugging vs. diagnostic), the expression that failed
and the filename, and line number the failure happened on.

SEE ALSO
config (1), panic (9), printf (9)

AUTHORS
These macros were written by Chris G. Demetriou〈cgd@netbsd.org〉.

NetBSD 3.0 December 10, 2006 1

LWP_CACHE_CREDS (9) NetBSD Kernel Developer’s Manual LWP_CACHE_CREDS (9)

NAME
LWP_CACHE_CREDS — synchronize LWP credential with process credential

SYNOPSIS
#include <sys/lwp.h>

void
LWP_CACHE_CREDS(lwp_t ∗ l , struct proc ∗ p);

DESCRIPTION
LWP_CACHE_CREDS() updates the LWP’s cached credential to match with the process’ credential if the lat-
ter has been changed after the last synchronization.

Each LWPs have its cached credential so that it can be used without worrying about potential of other LWP
changing the process’ credential.kauth_cred_get() returns the cached credential.

LWP_CACHE_CREDS() is called by MD entry code for system call and various traps.LWPs which can live
in kernel for long period should callLWP_CACHE_CREDS() by itsself to refresh its credential.

LWP_CACHE_CREDS() takes the following arguments.

l The calling lwp.

p The process which the lwpl belongs to.

LWP_CACHE_CREDS() might be implemented as a macro.

SEE ALSO
intro (9), kauth (9)

NetBSD 3.0 December 9, 2007 1

RUN_ONCE (9) NetBSD Kernel Developer’s Manual RUN_ONCE (9)

NAME
RUN_ONCE — Run a function exactly once

SYNOPSIS
#include <sys/once.h>

ONCE_DECL(control);

int
RUN_ONCE(once_t ∗ control , int (∗ init_func)(void));

DESCRIPTION
RUN_ONCE() provides a functionality similar topthread_once(3). It ensures that, for a given
control, init_func() is executed (successfully) exactly once. It is considered as a successful execution
if and only ifinit_func() returned 0. As long as there was no successful execution,RUN_ONCE() will try
again each time it is called.

RUN_ONCE() can sleep if it’s called concurrently.

RETURN VALUES
On failure,RUN_ONCE() returns whatinit_func() returned. Otherwise, it returns 0.

EXAMPLES
The following example shows how RUN_ONCE() is used.Regardless of how many timessome_func() is
executed,init_func() will be executed exactly once.

static int
init_func(void)
{

/ ∗
∗ do some initialization.
∗ /

return 0; / ∗ success ∗ /
}

int
some_func(void)
{

static DECL_ONCE(control);

RUN_ONCE(&control, init_func);

/ ∗
∗ we are sure that init_func has already been completed here.
∗ /

}

SEE ALSO
pthread_once (3), condvar (9), intro (9)

NetBSD 3.0 January 17, 2006 1

ALTQ (9) NetBSD Kernel Developer’s Manual ALTQ (9)

NAME
ALTQ — kernel interfaces for manipulating output queues on network interfaces

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>

void
IFQ_ENQUEUE(struct ifaltq ∗ ifq , struct mbuf ∗ m , struct altq_pktattr ∗ pattr ,

int err);

void
IFQ_DEQUEUE(struct ifaltq ∗ ifq , struct mbuf ∗ m);

void
IFQ_POLL(struct ifaltq ∗ ifq , struct mbuf ∗ m);

void
IFQ_PURGE(struct ifaltq ∗ ifq);

void
IFQ_CLASSIFY(struct ifaltq ∗ ifq , struct mbuf ∗ m , int af ,

struct altq_pktattr ∗ pattr);

void
IFQ_IS_EMPTY(struct ifaltq ∗ ifq);

void
IFQ_SET_MAXLEN(struct ifaltq ∗ ifq , int len);

void
IFQ_INC_LEN(struct ifaltq ∗ ifq);

void
IFQ_DEC_LEN(struct ifaltq ∗ ifq);

void
IFQ_INC_DROPS(struct ifaltq ∗ ifq);

void
IFQ_SET_READY(struct ifaltq ∗ ifq);

DESCRIPTION
TheALTQ system is a framework to manage queueing disciplines on network interfaces.ALTQ introduces
new macros to manipulate output queues.The output queue macros are used to abstract queue operations
and not to touch the internal fields of the output queue structure. The macros are independent from theALTQ
implementation, and compatible with the traditionalifqueue macros for ease of transition.

IFQ_ENQUEUE() enqueues a packet m to the queueifq. The underlying queueing discipline may discard
the packet. err is set to 0 on success, orENOBUFSif the packet is discarded.m will be freed by the device
driver on success or by the queueing discipline on failure, so that the caller should not touchm after calling
IFQ_ENQUEUE().

IFQ_DEQUEUE() dequeues a packet from the queue. The dequeued packet is returned inm, or m is set to
NULL if no packet is dequeued.The caller must always checkm since a non-empty queue could returnNULL
under rate-limiting.

NetBSD 3.0 October 12, 2006 1

ALTQ (9) NetBSD Kernel Developer’s Manual ALTQ (9)

IFQ_POLL() returns the next packet without removing it from the queue.It is guaranteed by the underlying
queueing discipline thatIFQ_DEQUEUE() immediately afterIFQ_POLL() returns the same packet.

IFQ_PURGE() discards all the packets in the queue. The purge operation is needed since a non-work con-
serving queue cannot be emptied by a dequeue loop.

IFQ_CLASSIFY() classifies a packet to a scheduling class, and returns the result inpattr.

IFQ_IS_EMPTY() can be used to check if the queue is empty. Note thatIFQ_DEQUEUE() could still return
NULL if the queueing discipline is non-work conserving.

IFQ_SET_MAXLEN() sets the queue length limit to the default FIFO queue.

IFQ_INC_LEN() andIFQ_DEC_LEN() increment or decrement the current queue length in packets.

IFQ_INC_DROPS() increments the drop counter and is equal toIF_DROP(). It is defined for naming con-
sistency.

IFQ_SET_READY() sets a flag to indicate this driver is converted to use the new macros. ALTQ can be
enabled only on interfaces with this flag.

COMPATIBILITY
ifaltq structur e

In order to keep compatibility with the existing code, the new output queue structureifaltq has the same
fields. ThetraditionalIF_XXX() macros and the code directly referencing the fields withinif_snd still
work with ifaltq . (Once we finish conversions of all the drivers, we no longer need these fields.)

##old-style## ##new-style##
|

struct ifqueue { | s truct ifaltq {
struct mbuf ∗ ifq_head; | struct mbuf ∗ ifq_head;
struct mbuf ∗ ifq_tail; | struct mbuf ∗ ifq_tail;
int ifq_len; | i nt ifq_len;
int ifq_maxlen; | i nt ifq_maxlen;
int ifq_drops; | i nt ifq_drops;

}; | / ∗ altq related fields ∗ /
|
| } ;
|

The new structure replacesstruct ifqueue in struct ifnet .

##old-style## ##new-style##
|

struct ifnet { | s truct ifnet {
.... |

|
struct ifqueue if_snd; | s truct ifaltq if_snd;

|
.... |

}; | };
|

The (simplified) newIFQ_XXX() macros looks like:

#ifdef ALTQ
#define IFQ_DEQUEUE(ifq, m) \

if (ALTQ_IS_ENABLED((ifq)) \
ALTQ_DEQUEUE((ifq), (m)); \

NetBSD 3.0 October 12, 2006 2

ALTQ (9) NetBSD Kernel Developer’s Manual ALTQ (9)

else \
IF_DEQUEUE((ifq), (m));

#else
#define IFQ_DEQUEUE(ifq, m) IF_DEQUEUE((ifq), (m));
#endif

Enqueue operation
The semantics of the enqueue operation are changed.In the new style, enqueue and packet drop are com-
bined since they cannot be easily separated in many queueing disciplines.The new enqueue operation corre-
sponds to the following macro that is written with the old macros.

#define IFQ_ENQUEUE(ifq, m, pattr, err) \
do { \

if (ALTQ_IS_ENABLED((ifq))) \
ALTQ_ENQUEUE((ifq), (m), (pattr), (err)); \

else { \
if (IF_QFULL((ifq))) { \

m_freem((m)); \
(err) = ENOBUFS; \

} e lse { \
IF_ENQUEUE((ifq), (m)); \
(err) = 0; \

} \
} \
if ((err)) \

(ifq)->ifq_drops++; \
} w hile (/ ∗ CONSTCOND∗ / 0)

IFQ_ENQUEUE() does the following:
− queue a packet
− drop (and free) a packet if the enqueue operation fails
If the enqueue operation fails, err is set toENOBUFS. m is freed by the queueing discipline. The caller
should not touch mbuf after callingIFQ_ENQUEUE() so that the caller may need to copy m_pkthdr.len
or m_flags field beforehand for statistics. The caller should not usesenderr() since mbuf was already
freed.

The new style if_output() looks as follows:

##old-style## ##new-style##
|

int | int
ether_output(ifp, m0, dst, rt0) | e ther_output(ifp, m0, dst, rt0)
{ | {

...... |
|
| mflags = m->m_flags;
| l en = m->m_pkthdr.len;

s = s plimp(); | s = s plimp();
if (IF_QFULL(&ifp->if_snd)) { | I FQ_ENQUEUE(&ifp->if_snd, m,

| N ULL, error);
IF_DROP(&ifp->if_snd); | if (error != 0) {
splx(s); | splx(s);
senderr(ENOBUFS); | return (error);

} | }

NetBSD 3.0 October 12, 2006 3

ALTQ (9) NetBSD Kernel Developer’s Manual ALTQ (9)

IF_ENQUEUE(&ifp->if_snd, m); |
ifp->if_obytes += | i fp->if_obytes += len;

m->m_pkthdr.len; |
if (m->m_flags & M_MCAST) | i f (mflags & M_MCAST)

ifp->if_omcasts++; | ifp->if_omcasts++;
|

if ((ifp->if_flags & IFF_OACTIVE) | if ((ifp->if_flags & IFF_OACTIVE)
== 0) | = = 0)
(∗ ifp->if_start)(ifp); | (∗ ifp->if_start)(ifp);

splx(s); | splx(s);
return (error); | r eturn (error);

|
bad: | bad:

if (m) | i f (m)
m_freem(m); | m_freem(m);

return (error); | r eturn (error);
} | }

|

Classifier
The classifier mechanism is currently implemented inif_output(). struct altq_pktattr is used
to store the classifier result, and it is passed to the enqueue function.(We will change the method to tag the
classifier result to mbuf in the future.)

int
ether_output(ifp, m0, dst, rt0)
{

......
struct altq_pktattr pktattr;

......

/ ∗ classify the packet before prepending link-headers ∗ /
IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family, &pktattr);

/ ∗ prepend link-level headers ∗ /
......

IFQ_ENQUEUE(&ifp->if_snd, m, &pktattr, error);

......
}

HOW TO CONVERT THE EXISTING DRIVERS
First, make sure the correspondingif_output() is already converted to the new style.

Look forif_snd in the driver. You will probably need to make changes to the lines that includeif_snd.

Empty check operation
If the code checksifq_head to see whether the queue is empty or not, useIFQ_IS_EMPTY().

##old-style## ##new-style##
|

NetBSD 3.0 October 12, 2006 4

ALTQ (9) NetBSD Kernel Developer’s Manual ALTQ (9)

if (ifp->if_snd.ifq_head != NULL) | if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
|

Note thatIFQ_POLL() can be used for the same purpose, but IFQ_POLL() could be costly for a complex
scheduling algorithm sinceIFQ_POLL() needs to run the scheduling algorithm to select the next packet. On
the other hand,IFQ_IS_EMPTY() checks only if there is any packet stored in the queue. Another difference
is that even whenIFQ_IS_EMPTY() is false , IFQ_DEQUEUE() could still returnNULL if the queue is
under rate-limiting.

Dequeue operation
ReplaceIF_DEQUEUE() by IFQ_DEQUEUE(). Always check whether the dequeued mbuf isNULL or not.
Note that even whenIFQ_IS_EMPTY() is false , IFQ_DEQUEUE() could returnNULL due to rate-limit-
ing.

##old-style## ##new-style##
|

IF_DEQUEUE(&ifp->if_snd, m); | I FQ_DEQUEUE(&ifp->if_snd, m);
| if (m == N ULL)
| r eturn;
|

A driver is supposed to callif_start() from transmission complete interrupts in order to trigger the next
dequeue.

Poll-and-dequeue operation
If the code polls the packet at the head of the queue and actually uses the packet before dequeueing it, use
IFQ_POLL() andIFQ_DEQUEUE().

##old-style## ##new-style##
|

m = i fp->if_snd.ifq_head; | IFQ_POLL(&ifp->if_snd, m);
if (m != NULL) { | if (m != N ULL) {

|
/ ∗ use m to get resources ∗ / | / ∗ use m to get resources ∗ /
if (something goes wrong) | i f (something goes wrong)

return; | return;
|

IF_DEQUEUE(&ifp->if_snd, m); | I FQ_DEQUEUE(&ifp->if_snd, m);
|

/ ∗ kick the hardware ∗ / | / ∗ kick the hardware ∗ /
} | }

|
It is guaranteed thatIFQ_DEQUEUE() immediately afterIFQ_POLL() returns the same packet. Notethat
they need to be guarded bysplimp() if called from outside ofif_start().

Eliminating IF_PREPEND
If the code usesIF_PREPEND(), you have to eliminate it since the prepend operation is not possible for
many queueing disciplines.A common use ofIF_PREPEND() is to cancel the previous dequeue operation.
You hav eto convert the logic into poll-and-dequeue.

##old-style## ##new-style##
|

IF_DEQUEUE(&ifp->if_snd, m); | I FQ_POLL(&ifp->if_snd, m);
if (m != NULL) { | if (m != N ULL) {

|

NetBSD 3.0 October 12, 2006 5

ALTQ (9) NetBSD Kernel Developer’s Manual ALTQ (9)

if (something_goes_wrong) { | i f (something_goes_wrong) {
IF_PREPEND(&ifp->if_snd, m); |
return; | return;

} | }
|
| / ∗ at this point, the driver
| ∗ is committed to send this
| ∗ packet.
| ∗ /
| I FQ_DEQUEUE(&ifp->if_snd, m);
|

/ ∗ kick the hardware ∗ / | / ∗ kick the hardware ∗ /
} | }

|

Purge operation
UseIFQ_PURGE() to empty the queue. Note that a non-work conserving queue cannot be emptied by a
dequeue loop.

##old-style## ##new-style##
|

while (ifp->if_snd.ifq_head != NULL) {| IFQ_PURGE(&ifp->if_snd);
IF_DEQUEUE(&ifp->if_snd, m); |
m_freem(m); |

} |
|

Attach routine
UseIFQ_SET_MAXLEN() to setifq_maxlen to len. Add IFQ_SET_READY() to show this driver is
converted to the new style. (Thisis used to distinguish new-style drivers.)

##old-style## ##new-style##
|

ifp->if_snd.ifq_maxlen = qsize; | I FQ_SET_MAXLEN(&ifp->if_snd, qsize);
| I FQ_SET_READY(&ifp->if_snd);

if_attach(ifp); | if_attach(ifp);
|

Other issues
The new macros for statistics:

##old-style## ##new-style##
|

IF_DROP(&ifp->if_snd); | IFQ_INC_DROPS(&ifp->if_snd);
|

ifp->if_snd.ifq_len++; | IFQ_INC_LEN(&ifp->if_snd);
|

ifp->if_snd.ifq_len--; | IFQ_DEC_LEN(&ifp->if_snd);
|

Some drivers instruct the hardware to invoke transmission complete interrupts only when it thinks necessary.
Rate-limiting breaks its assumption.

NetBSD 3.0 October 12, 2006 6

ALTQ (9) NetBSD Kernel Developer’s Manual ALTQ (9)

How to convert dri vers using multiple ifqueues
Some (pseudo) devices (such as slip) have anotherifqueue to prioritize packets. Itis possible to eliminate
the second queue sinceALTQ provides more flexible mechanisms but the following shows how to keep the
original behavior.

struct sl_softc {
struct ifnet sc_if; / ∗ network-visible interface ∗ /
...
struct ifqueue sc_fastq; / ∗ interactive output queue ∗ /
...

};
The driver doesn’t compile in the new model since it has the following line(if_snd is no longer a type of
struct ifqueue) .

struct ifqueue ∗ ifq = &ifp->if_snd;
A simple way is to use the originalIF_XXX() macros forsc_fastq and use the new IFQ_XXX() macros
for if_snd. The enqueue operation looks like:

##old-style## ##new-style##
|

struct ifqueue ∗ ifq = &ifp->if_snd; | s truct ifqueue ∗ ifq = NULL;
|

if (ip->ip_tos & IPTOS_LOWDELAY) | if ((ip->ip_tos & IPTOS_LOWDELAY) &&
ifq = &sc->sc_fastq; | ! ALTQ_IS_ENABLED(&sc->sc_if.if_snd)) {

| i fq = &sc->sc_fastq;
if (IF_QFULL(ifq)) { | i f (IF_QFULL(ifq)) {

IF_DROP(ifq); | IF_DROP(ifq);
m_freem(m); | m_freem(m);
splx(s); | error = ENOBUFS;
sc->sc_if.if_oerrors++; | } e lse {
return (ENOBUFS); | I F_ENQUEUE(ifq, m);

} | error = 0;
IF_ENQUEUE(ifq, m); | }

| } e lse
| I FQ_ENQUEUE(&sc->sc_if.if_snd,
| m, N ULL, error);
|
| if (error) {
| s plx(s);
| s c->sc_if.if_oerrors++;
| r eturn (error);
| }

if ((sc->sc_oqlen = | if ((sc->sc_oqlen =
sc->sc_ttyp->t_outq.c_cc) == 0) | s c->sc_ttyp->t_outq.c_cc) == 0)

slstart(sc->sc_ttyp); | slstart(sc->sc_ttyp);
splx(s); | splx(s);

|
The dequeue operations looks like:

##old-style## ##new-style##
|

s = s plimp(); | s = s plimp();
IF_DEQUEUE(&sc->sc_fastq, m); | I F_DEQUEUE(&sc->sc_fastq, m);
if (m == NULL) | if (m == N ULL)

NetBSD 3.0 October 12, 2006 7

ALTQ (9) NetBSD Kernel Developer’s Manual ALTQ (9)

IF_DEQUEUE(&sc->sc_if.if_snd, m); | IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
splx(s); | splx(s);

|

QUEUEING DISCIPLINES
Queueing disciplines need to maintainifq_len (used byIFQ_IS_EMPTY()) . Queueing disciplines also
need to guarantee the same mbuf is returned ifIFQ_DEQUEUE() is called immediately afterIFQ_POLL().

SEE ALSO
pf (4), altq.conf (5), pf.conf (5), altqd (8), tbrconfig (8)

HISTORY
TheALTQ system first appeared in March 1997.

NetBSD 3.0 October 12, 2006 8

ARC4RANDOM (9) NetBSD Kernel Developer’s Manual ARC4RANDOM(9)

NAME
arc4random — arc4 random number generator

SYNOPSIS
#include <sys/types.h>
#include <sys/systm.h>

uint32_t
arc4random(void);

DESCRIPTION
The arc4random() function provides a high quality 32-bit pseudo-random number very quickly.
arc4random() seeds itself on a regular basis from the kernel strong random number subsystem described
in rnd (4). Oneach call, an ARC4 generator is used to generate a new result. Thearc4random() function
uses the ARC4 cipher key stream generator, which uses 8∗ 8 8 bit S-Boxes. TheS-Boxes can be in about
(2∗∗ 1700) states.

arc4random() fits into a middle ground not covered by other subsystems such as the strong, slow, and
resource expensive random devices described inrnd (4) versus the fast but poor quality interfaces such as
random().

SEE ALSO
arc4random (3), rnd (4)

HISTORY
An algorithm calledRC4was designed by RSA Data Security, Inc. It was considered a trade secret, but not
trademarked. Becauseit was a trade secret, it obviously could not be patented.A clone of this was posted
anonymously to USENET and confirmed to be equivalent by several sources who had access to the original
cipher. Because of the trade secret situation, RSA Data Security, Inc. can do nothing about the release of the
ARC4 algorithm. SinceRC4used to be a trade secret, the cipher is now referred to asARC4.

These functions first appeared inOpenBSD2.1.

NetBSD 3.0 April 15, 1997 1

ARP (9) NetBSD Kernel Developer’s Manual ARP(9)

NAME
arp, arp_ifinit, arpresolve, arpintr — externally visible ARP functions

SYNOPSIS
#include <netinet/if_inarp.h>

void
arp_ifinit(struct ifnet ∗ ifp , struct ifaddr ∗ ifa);

int
arpresolve(struct ifnet ∗ ifp , struct rtentry ∗ rt , struct mbuf ∗ m ,

struct sockaddr ∗ dst , u_char ∗ desten);

void
arpintr();

DESCRIPTION
Thearp functions provide the interface between thearp module and the network drivers which needarp
functionality. Such drivers must request thearp attribute in their "files" declaration.

arp_ifinit() Sets up thearp specific fields inifa. Additionally, it sends out a gratuitousarp
request onifp, so that other machines are warned that we have a (new) address and
duplicate addresses can be detected.

You must call this in your drivers’ ioctl function when you get a SIOCSIFADDR request
with an AF_INET address family.

arpresolve() is called by network output functions to resolve an IPv4 address. If nort is given, a new
one is looked up or created.If the passed or foundrt does not contain a valid gateway
link level address, a pointer to the packet inm is stored in the route entry, possibly replac-
ing older stored packets, and anarp request is sent instead. When anarp reply is
received, the last held packet is send. Otherwise, the looked up address is returned and
written into the storagedesten points to. arpresolve() returns 1, if a valid address
was stored todesten, and the packet can be sent immediately. Else a 0 is returned.

arpintr() When anarp packet is received, the network driver (class) input interrupt handler queues
the packet on the arpintrq queue, and requests anarpintr() soft interrupt callback.
arpintr() dequeues the packets, performs sanity checks and calls (for IPv4arp pack-
ets, which are the only ones supported currently) thein_arpinput() function.
in_arpinput() either generates a reply to request packets, and adds the sender address
translation to the routing table, if a matching route entry is found.If the route entry con-
tained a pointer to a held packet, that packet is sent.

SEE ALSO
ether_ifattach (9)
Plummer, D., "RFC826", An Ethernet Address Resolution Protocol.

AUTHORS
UCB CSRG (original implementation)
Ignatios Souvatzis (support for non-Ethernet)

CODE REFERENCES
The ARP code is implemented insys/net/if_arp.h , sys/netinet/if_inarp.h and
sys/netinet/if_arp.c .

NetBSD 3.0 March 3, 1997 1

ARP (9) NetBSD Kernel Developer’s Manual ARP(9)

STANDARDS
RFC 826

HISTORY
Rewritten to support other than Ethernet link level addresses inNetBSD 1.3.

NetBSD 3.0 March 3, 1997 2

AUDIO (9) NetBSD Kernel Developer’s Manual AUDIO (9)

NAME
audio — interface between low and high level audio drivers

DESCRIPTION
The audio device driver is divided into a high level, hardware independent layer, and a low lev el hardware
dependent layer. The interface between these is theaudio_hw_ifstructure.

struct audio_hw_if {
int (∗ open)(void ∗ , i nt);
void (∗ close)(void ∗);
int (∗ drain)(void ∗);

int (∗ query_encoding)(void ∗ , s truct audio_encoding ∗);
int (∗ set_params)(void ∗ , i nt, int,

audio_params_t ∗ , a udio_params_t ∗ ,
stream_filter_list_t ∗ , s tream_filter_list_t ∗);

int (∗ round_blocksize)(void ∗ , i nt, int, const audio_params_t ∗);

int (∗ commit_settings)(void ∗);

int (∗ init_output)(void ∗ , v oid ∗ , i nt);
int (∗ init_input)(void ∗ , v oid ∗ , i nt);
int (∗ start_output)(void ∗ , v oid ∗ , i nt, void (∗)(void ∗),

void ∗);
int (∗ start_input)(void ∗ , v oid ∗ , i nt, void (∗)(void ∗),

void ∗);
int (∗ halt_output)(void ∗);
int (∗ halt_input)(void ∗);

int (∗ speaker_ctl)(void ∗ , i nt);
#define SPKR_ON 1
#define SPKR_OFF 0

int (∗ getdev)(void ∗ , s truct audio_device ∗);
int (∗ setfd)(void ∗ , i nt);

int (∗ set_port)(void ∗ , mixer_ctrl_t ∗);
int (∗ get_port)(void ∗ , mixer_ctrl_t ∗);

int (∗ query_devinfo)(void ∗ , mixer_devinfo_t ∗);

void ∗ (∗ allocm)(void ∗ , i nt, size_t, struct malloc_type ∗ , i nt);
void (∗ freem)(void ∗ , v oid ∗ , s truct malloc_type ∗);
size_t (∗ round_buffersize)(void ∗ , i nt, size_t);
paddr_t (∗ mappage)(void ∗ , v oid ∗ , o ff_t, int);

int (∗ get_props)(void ∗);

int (∗ trigger_output)(void ∗ , v oid ∗ , v oid ∗ , i nt,
void (∗)(void ∗), void ∗ , c onst audio_params_t ∗);

int (∗ trigger_input)(void ∗ , v oid ∗ , v oid ∗ , i nt,
void (∗)(void ∗), void ∗ , c onst audio_params_t ∗);

NetBSD 3.0 November 10, 2007 1

AUDIO (9) NetBSD Kernel Developer’s Manual AUDIO (9)

int (∗ dev_ioctl)(void ∗ , u _long, void ∗ , i nt, struct lwp ∗);
int (∗ powerstate)(void ∗ , i nt);

#define AUDIOPOWER_ON 1
#define AUDIOPOWER_OFF 0
};

typedef struct audio_params {
u_int sample_rate; / ∗ sample rate ∗ /
u_int encoding; / ∗ e.g. mu-law, linear, etc ∗ /
u_int precision; / ∗ bits/subframe ∗ /
u_int validbits; / ∗ valid bits in a subframe ∗ /
u_int channels; / ∗ mono(1), stereo(2) ∗ /

} a udio_params_t;

The high level audio driver attaches to the low lev el driver when the latter callsaudio_attach_mi. This call
should be

void
audio_attach_mi(ahwp, hdl, dev)

struct audio_hw_if ∗ ahwp;
void ∗ hdl;
struct device ∗ dev;

Theaudio_hw_ifstruct is as shown above. Thehdl argument is a handle to some low lev el data structure.It
is sent as the first argument to all the functions inaudio_hw_ifwhen the high level driver calls them. dev is
the device struct for the hardware device.

The upper layer of the audio driver allocates one buffer for playing and one for recording. It handles the
buffering of data from the user processes in these.The data is presented to the lower level in smaller chunks,
called blocks. If, during playback, there is no data available from the user process when the hardware
request another block a block of silence will be used instead.Furthermore, if the user process does not read
data quickly enough during recording data will be thrown away.

The fields ofaudio_hw_ifare described in some more detail below. Some fields are optional and can be set
to 0 if not needed.

int open(void ∗ hdl, int flags)
optional, is called when the audio device is opened. It should initialize the hardware for I/O.
Every successful call toopenis matched by a call toclose. Return 0 on success, otherwise an error
code.

void close(void ∗ hdl)
optional, is called when the audio device is closed.

int drain(void ∗ hdl)
optional, is called before the device is closed or whenAUDIO_DRAIN is called. It should make
sure that no samples remain in to be played that could be lost whencloseis called. Return 0 on
success, otherwise an error code.

int query_encoding(void ∗ hdl, struct audio_encoding ∗ ae)
is used whenAUDIO_GETENCis called. It should fill theaudio_encodingstructure and return 0
or, if there is no encoding with the given number, return EINVAL.

int set_params(void ∗ hdl, int setmode, int usemode,
audio_params_t ∗ play, audio_params_t ∗ rec,

NetBSD 3.0 November 10, 2007 2

AUDIO (9) NetBSD Kernel Developer’s Manual AUDIO (9)

stream_filter_list_t ∗ pfil, stream_filter_list_t ∗ rfil)

Called to set the audio encoding mode.setmodeis a combination of theAUMODE_RECORDand
AUMODE_PLAYflags to indicate which mode(s) are to be set.usemodeis also a combination of
these flags, but indicates the current mode of the device (i.e., the value ofmodein theaudio_info
struct).

Theplay andrec structures contain the encoding parameters that should be set.The values of the
structures may also be modified if the hardware cannot be set to exactly the requested mode (e.g.,
if the requested sampling rate is not supported, but one close enough is).

If the hardware requires software assistance with some encoding (e.g., it might be lacking mu-law
support) it should fill thepfil for playing orrfil for recording with conversion information. For
example, if play requests [8000Hz, mu-law, 8/8bit, 1ch] and the hardware does not support 8bit
mu-law, but 16bit slinear_le, the driver should call pfil->append() with pfil,
mulaw_to_slinear16, and audio_params_t representing [8000Hz, slinear_le, 16/16bit, 2ch]. If the
driver needs multiple conversions, a conversion nearest to the hardware should be set to the head of
pfil or rfil . The definition ofstream_filter_list_t follows:

typedef struct stream_filter_list {
void (∗ append)(struct stream_filter_list ∗ ,

stream_filter_factory_t,
const audio_params_t ∗);

void (∗ prepend)(struct stream_filter_list ∗ ,
stream_filter_factory_t,
const audio_params_t ∗);

void (∗ set)(struct stream_filter_list ∗ , i nt,
stream_filter_factory_t,
const audio_params_t ∗);

int req_size;
struct stream_filter_req {

stream_filter_factory_t ∗ factory;
audio_params_t param; / ∗ from-param for recording,

to-param for playing ∗ /
} f ilters[AUDIO_MAX_FILTERS];

} s tream_filter_list_t;

For playing,pfil constructs conversions as follows:

(play) == write(2) input
| p fil->filters[pfil->req_size-1].factory

(pfil->filters[pfil->req_size-1].param)
| p fil->filters[pfil->req_size-2].factory
:
| p fil->filters[1].factory

(pfil->filters[1].param)
| p fil->filters[0].factory

(pfil->filters[0].param) == hardware input

For recording,rfil constructs conversions as follows:

(rfil->filters[0].param) == hardware output
| r fil->filters[0].factory

(rfil->filters[1].param)
| r fil->filters[1].factory
:

NetBSD 3.0 November 10, 2007 3

AUDIO (9) NetBSD Kernel Developer’s Manual AUDIO (9)

| r fil->filters[rfil->req_size-2].factory
(rfil->filters[rfil->req_size-1].param)

| r fil->filters[rfil->req_size-1].factory
(rec) == read(2) output

If the device does not have theAUDIO_PROP_INDEPENDENTproperty the same value is passed
in both play and rec and the encoding parameters fromplay is copied intorec after the call to
set_params. Return 0 on success, otherwise an error code.

int round_blocksize(void ∗ hdl, int bs, int mode,
const audio_params_t ∗ param)

optional, is called with the block size,bs, that has been computed by the upper layer, mode,
AUMODE_PLAYor AUMODE_RECORD, and param, encoding parameters for the hardware. It
should return a block size, possibly changed according to the needs of the hardware driver.

int commit_settings(void ∗ hdl)
optional, is called after all calls toset_params, and set_port, are done. A hardware driver that
needs to get the hardware in and out of command mode for each change can save all the changes
during previous calls and do them all here. Return 0 on success, otherwise an error code.

int init_output(void ∗ hdl, void ∗ buffer, int size)
optional, is called before any output starts, but when the totalsizeof the outputbuffer has been
determined. Itcan be used to initialize looping DMA for hardware that needs that. Return 0 on
success, otherwise an error code.

int init_input(void ∗ hdl, void ∗ buffer, int size)
optional, is called before any input starts, but when the totalsizeof the inputbuffer has been deter-
mined. Itcan be used to initialize looping DMA for hardware that needs that. Return 0 on suc-
cess, otherwise an error code.

int start_output(void ∗ hdl, void ∗ block, int blksize,
void (∗ intr)(void ∗), void ∗ intrarg)

is called to start the transfer ofblksizebytes fromblock to the audio hardware. Thecall should
return when the data transfer has been initiated (normally with DMA). When the hardware is
ready to accept more samples the functionintr should be called with the argumentintrarg. Calling
intr will normally initiate another call tostart_output. Return 0 on success, otherwise an error
code.

int start_input(void ∗ hdl, void ∗ block, int blksize,
void (∗ intr)(void ∗), void ∗ intrarg)

is called to start the transfer ofblksizebytes toblock from the audio hardware. Thecall should
return when the data transfer has been initiated (normally with DMA). When the hardware is
ready to deliver more samples the functionintr should be called with the argumentintrarg. Call-
ing intr will normally initiate another call tostart_input. Return 0 on success, otherwise an error
code.

int halt_output(void ∗ hdl)
is called to abort the output transfer (started bystart_output) in progress. Return0 on success, oth-
erwise an error code.

int halt_input(void ∗ hdl)
is called to abort the input transfer (started bystart_input) in progress. Return0 on success, other-
wise an error code.

NetBSD 3.0 November 10, 2007 4

AUDIO (9) NetBSD Kernel Developer’s Manual AUDIO (9)

int speaker_ctl(void ∗ hdl, int on)
optional, is called when a half duplex device changes between playing and recording.It can, e.g.,
be used to turn on and off the speaker. Return 0 on success, otherwise an error code.

int getdev(void ∗ hdl, struct audio_device ∗ ret)
Should fill theaudio_devicestruct with relevant information about the driver. Return 0 on success,
otherwise an error code.

int setfd(void ∗ hdl, int fd)
optional, is called when AUDIO_SETFD is used, but only if the device has
AUDIO_PROP_FULLDUPLEX set. Return 0 on success, otherwise an error code.

int set_port(void ∗ hdl, mixer_ctrl_t ∗ mc)
is called in whenAUDIO_MIXER_WRITEis used. It should take data from themixer_ctrl_tstruct
at set the corresponding mixer values. Return0 on success, otherwise an error code.

int get_port(void ∗ hdl, mixer_ctrl_t ∗ mc)
is called in whenAUDIO_MIXER_READis used. It should fill themixer_ctrl_tstruct. Return0
on success, otherwise an error code.

int query_devinfo(void ∗ hdl, mixer_devinfo_t ∗ di)
is called in whenAUDIO_MIXER_DEVINFOis used. It should fill themixer_devinfo_tstruct.
Return 0 on success, otherwise an error code.

void ∗ allocm(void ∗ hdl, int direction, size_t size, struct malloc_type
∗ type, int flags)

optional, is called to allocate the device buffers. If not presentmalloc (9) is used instead (with
the same arguments but the first two). Thereason for using a device dependent routine instead of
malloc (9) is that some buses need special allocation to do DMA. Returns the address of the
buffer, or 0 on failure.

void freem(void ∗ hdl, void ∗ addr, struct malloc_type ∗ type)
optional, is called to free memory allocated byalloc. If not suppliedfree (9) is used.

size_t round_buffersize(void ∗ hdl, int direction, size_t bufsize)
optional, is called at startup to determine the audio buffer size. The upper layer supplies the sug-
gested size inbufsize, which the hardware driver can then change if needed. E.g., DMA on the
ISA bus cannot exceed 65536 bytes.

paddr_t mappage(void ∗ hdl, void ∗ addr, off_t offs, int prot)

optional, is called formmap(2). Shouldreturn the map value for the page at offset offs from
addressaddr mapped with protectionprot. Returns -1 on failure, or a machine dependent opaque
value on success.

int get_props(void ∗ hdl)
Should return the device properties; i.e., a combination of AUDIO_PROP_xxx.

int trigger_output(void ∗ hdl, void ∗ start, void ∗ end,
int blksize, void (∗ intr)(void ∗), void ∗ intrarg,

const audio_params_t ∗ param)

optional, is called to start the transfer of data from the circular buffer delimited bystart andendto
the audio hardware, parameterized as inparam. The call should return when the data transfer has
been initiated (normally with DMA).When the hardware is finished transferring eachblksize
sized block, the functionintr should be called with the argumentintrarg (typically from the audio
hardware interrupt service routine). Once started the transfer may be stopped usinghalt_output.

NetBSD 3.0 November 10, 2007 5

AUDIO (9) NetBSD Kernel Developer’s Manual AUDIO (9)

Return 0 on success, otherwise an error code.

int trigger_input(void ∗ hdl, void ∗ start, void ∗ end,
int blksize, void (∗ intr)(void ∗), void ∗ intrarg,

const audio_params_t ∗ param)

optional, is called to start the transfer of data from the audio hardware, parameterized as inparam,
to the circular buffer delimited bystart andend. The call should return when the data transfer has
been initiated (normally with DMA). When the hardware is finished transferring eachblksize
sized block, the functionintr should be called with the argumentintrarg (typically from the audio
hardware interrupt service routine). Once started the transfer may be stopped usinghalt_input.
Return 0 on success, otherwise an error code.

int dev_ioctl(void ∗ hdl, u_long cmd, void ∗ addr,

int flag, struct lwp ∗ l)

optional, is called when anioctl (2) is not recognized by the generic audio driver. Return 0 on
success, otherwise an error code.

int powerstate(void ∗ hdl, int state)

optional, is called on the first open and last close of the audio device. state may be one of
AUDIOPOWER_ONor AUDIOPOWER_OFF. Returns 0 on success, otherwise an error code.

Thequery_devinfomethod should define certain mixer controls forAUDIO_SETINFOto be able to change
the port and gain, andAUDIO_GETINFOto read them, as follows.

If the record mixer is capable of input from more than one source, it should defineAudioNsource in class
AudioCrecord . This mixer control should be of typeAUDIO_MIXER_ENUMor AUDIO_MIXER_SET
and enumerate the possible input sources. Each of the named sources for which the recording level can be
set should have a control in the AudioCrecord class of typeAUDIO_MIXER_VALUE, except the
"mixerout" source is special, and will never hav eits own control. Its selection signifies, rather, that various
sources in classAudioCrecord will be combined and presented to the single recording output in the same
fashion that the sources of classAudioCinputs are combined and presented to the playback output(s).If
the overall recording level can be changed, regardless of the input source, then this control should be named
AudioNmaster and be of classAudioCrecord .

Controls for various sources that affect only the playback output, as opposed to recording, should be in the
AudioCinputs class, as of course should any controls that affect both playback and recording.

If the play mixer is capable of output to more than one destination, it should defineAudioNselect in class
AudioCoutputs . This mixer control should be of typeAUDIO_MIXER_ENUMor AUDIO_MIXER_SET
and enumerate the possible destinations.For each of the named destinations for which the output level can
be set, there should be a control in theAudioCoutputs class of typeAUDIO_MIXER_VALUE. If the
overall output level can be changed, which is invariably the case, then this control should be named
AudioNmaster and be of classAudioCoutputs .

There’s one additional source recognized specially byAUDIO_SETINFOandAUDIO_GETINFO, to be pre-
sented as monitor_gain, and that is a control namedAudioNmonitor , of classAudioCmonitor .

SEE ALSO
audio (4)

HISTORY
Thisaudio interface first appeared inNetBSD 1.3.

NetBSD 3.0 November 10, 2007 6

AUTOCONF (9) NetBSD Kernel Developer’s Manual AUTOCONF (9)

NAME
autoconf, config_search_loc, config_search_ia, config_found_sm_loc,
config_found_ia, config_found, config_match, config_attach_loc, config_attach,
config_attach_pseudo, config_detach, config_activate, config_deactivate,
config_defer, config_interrupts, config_pending_incr, config_pending_decr,
config_finalize_register — autoconfiguration framework

SYNOPSIS
#include <sys/param.h>
#include <sys/device.h>
#include <sys/errno.h>

cfdata_t
config_search_loc(cfsubmatch_t func , device_t parent , const char ∗ ia ,

const int ∗ locs , void ∗ aux);

cfdata_t
config_search_ia(cfsubmatch_t func , device_t parent , const char ∗ ia ,

void ∗ aux);

device_t
config_found_sm_loc(device_t parent , const char ∗ ia , const int ∗ locs ,

void ∗ aux , cfprint_t print , cfsubmatch_t submatch);

device_t
config_found_ia(device_t parent , const char ∗ ia , void ∗ aux ,

cfprint_t print);

device_t
config_found(device_t parent , void ∗ aux , cfprint_t print);

int
config_match(device_t parent , cfdata_t cf , void ∗ aux);

device_t
config_attach_loc(device_t parent , cfdata_t cf , const int ∗ locs , void ∗ aux ,

cfprint_t print);

device_t
config_attach(device_t parent , cfdata_t cf , void ∗ aux , cfprint_t print);

device_t
config_attach_pseudo(cfdata_t cf);

int
config_detach(device_t dev , int flags);

int
config_activate(device_t dev);

int
config_deactivate(device_t dev);

int
config_defer(device_t dev , void (∗ func)(device_t));

void
config_interrupts(device_t dev , void (∗ func)(device_t));

NetBSD 3.0 October 7, 2006 1

AUTOCONF (9) NetBSD Kernel Developer’s Manual AUTOCONF (9)

void
config_pending_incr();

void
config_pending_decr();

int
config_finalize_register(device_t dev , int (∗ func)(device_t));

DESCRIPTION
Autoconfiguration is the process of matching hardware devices with an appropriate device driver. In its most
basic form, autoconfiguration consists of the recursive process of finding and attaching all devices on a bus,
including other busses.

The autoconfiguration framework supportsdirect configuration where the bus driver can determine the
devices present. The autoconfiguration framework also supportsindirect configuration where the drivers
must probe the bus looking for the presence of a device. Directconfiguration is preferred since it can find
hardware regardless of the presence of proper drivers.

The autoconfiguration process occurs at system bootstrap and is driven by a table generated from a “machine
description” file byconfig (1). For a description of theconfig (1) “device definition” language, see
config (9).

Each device must have a name consisting of an alphanumeric string that ends with a unit number. The unit
number identifies an instance of the driver. Device data structures are allocated dynamically during autocon-
figuration, giving a unique address for each instance.

FUNCTIONS
config_search_loc(func , parent , ia , locs , aux)

Performs indirect configuration of physical devices. config_search_loc() iterates over all
potential children, calling the given function func for each one. If func is NULL,
config_search_loc() applies each child’s match function instead.The argumentparent
is the pointer to the parent’s device structure. The argumentia is the interface attribute on
which the potential children should attach. It can beNULL, in which case all children attaching
to any attribute are considered.Thelocs argument lists the locator values for the device and are
passed to functionfunc. The given aux argument describes the device that has been found and
is simply passed on throughfunc to the child. config_search_loc() returns a pointer to
the best-matched child orNULLotherwise.

The role of func is to call the match function for each device and call
config_attach_loc() for any positive matches. Iffunc is NULL, then the parent should
record the return value fromconfig_search_loc() and call config_attach_loc()
itself.

Note that this function is designed so that it can be used to apply an arbitrary function to all
potential children. In this case callers may choose to ignore the return value.

config_search_ia(func , parent , ia , aux)
This function is equivalent to callingconfig_search_loc(func , parent , ia , locs ,
aux) with locs set toNULL.

config_found_sm_loc(parent , ia , locs , aux , print , submatch)
Performs direct configuration on a physical device. config_found_sm_loc() is called by
the parent and in turn calls thesubmatch function to call the match function as determined by
the configuration table.If submatch is NULL, the driver match functions are called directly.
The argumentparent is the pointer to the parent’s device structure.The argumentia is the

NetBSD 3.0 October 7, 2006 2

AUTOCONF (9) NetBSD Kernel Developer’s Manual AUTOCONF (9)

name of the interface attribute on which the child will attach, perconfig (5) syntax. The argu-
mentlocs lists the locator values for the device. Thegiven aux argument describes the device
that has been found.config_found_sm_loc() internally usesconfig_search_loc(),
passing onsubmatch, ia, locs andaux. Thesoftcstructure for the matched device will be
allocated, and the appropriate driver attach function will be called. If the device is matched, the
system prints the name of the child and parent devices, and then calls theprint function to pro-
duce additional information if desired.If no driver takes a match, the sameprint function is
called to complain. The print function is called with theaux argument and, if the matches failed,
the full name (including unit number) of the parent device, otherwiseNULL. Theprint func-
tion must return an integer value.

Tw o special strings, “not configured” and “unsupported” will be appended automatically to non-
driver reports if the return value is UNCONF or UNSUPP respectively; otherwise the function
should return the value QUIET.

config_found_sm_loc() returns a pointer to the attached device’s softc structure if the
device is attached,NULL otherwise. Mostcallers can ignore this value, since the system will
already have printed a diagnostic.

config_found_ia(parent , ia , aux , print)
This function is equivalent to callingconfig_found_sm_loc(parent , ia , locs , aux ,
print , submatch) with locs andsubmatch set toNULL. It is provided for better source
code readability with locator-less device buses.

config_found(parent , aux , print)
This function is equivalent to callingconfig_found_sm_loc(parent , ia , locs , aux ,
print , submatch) with ia, locs andsubmatch set toNULLand is provided for compat-
ibility with older drivers. New code should either make the interface attribute explicit or prefer
an indirect method based onconfig_search_loc().

config_match(parent , cf , aux)
Match a device. Invokes the drivers match function according to the configuration table.The
config_match() function returns a nonzero integer indicating the confidence of supporting
this device and a value of 0 if the driver doesn’t support the device.

config_attach_loc(parent , locs , cf , aux , print)
Attach a found device. Allocatesthe memory for thesoftcstructure and calls the drivers attach
function according to the configuration table.If successful,config_attach_loc() returns
thesoftc. If unsuccessful, it returnsNULL.

config_attach(parent , cf , aux , print)
This function is equivalent to callingconfig_attach_loc(parent , cf , locs , aux ,
print) with locs set toNULL.

config_attach_pseudo(cf)
Create an instance of a pseudo-device driver. config (5) syntax allows the creation of pseudo-
devices from which regulardevice_t instances can be created. Such objects are similar to the
devices that attach at the root of the device tree.

The caller is expected to allocate and fill thecfdata_t object and pass it to
config_attach_pseudo(). The content of that object is similar to what is returned by
config_search_loc() for regular devices.

config_detach(dev , flags)
Called by the parent to detach the child device. Thesecond argumentflagscontains detachment
flags. Valid values are DETACH_FORCE (force detachment (e.g., because of hardware
removal)) and DETACH_QUIET (do not print a notice).config_detach() returns zero if

NetBSD 3.0 October 7, 2006 3

AUTOCONF (9) NetBSD Kernel Developer’s Manual AUTOCONF (9)

successful and an error code otherwise.config_detach() is always called from a thread con-
text, allowing condition variables to be used while the device detaches itself.

config_activate(dev)
Called by the parent to activate the child device dev. It is called to activate resources and ini-
tialise other kernel subsystems (such as the network subsystem).config_activate() is
called from interrupt context after the device has been attached.

config_deactivate(dev)
Called by the parent to deactivate the child device dev. config_deactivate() is called
from interrupt context to immediately relinquish resources and notify dependent kernel subsys-
tems that the device is about to be detached.At some later pointconfig_detach() will be
called to finalise the removal of the device.

config_defer(dev , func)
Called by the child to defer the remainder of its configuration until all its parent’s devices have
been attached. At this point, the functionfunc is called with the argumentdev.

config_interrupts(dev , func)
Called by the child to defer the remainder of its configuration until interrupts are enabled.At this
point, the functionfunc is called with the argumentdev.

config_pending_incr()
Increment theconfig_pendingsemaphore. Itis used to account for deferred configurations before
mounting the root file system.

config_pending_decr()
Decrement theconfig_pendingsemaphore. Itis used to account for deferred configurations
before mounting the root file system.

config_finalize_register(dev , func)
Register a function to be called after all real devices have been found.

Registered functions are all executed until all of them return 0. The callbacks should return 0 to
indicate they do not require to be called another time, but they should be aware that they still
might be in case one of them returns 1.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
autoconfiguration framework can be found. All pathnames are relative to /usr/src .

The autoconfiguration framework itself is implemented within the filesys/kern/subr_autoconf.c .
Data structures and function prototypes for the framework are located insys/sys/device.h .

SEE ALSO
config (1), config (5), condvar (9), config (9), driver (9)

HISTORY
Autoconfiguration first appeared in 4.1BSD. The autoconfiguration framework was completely revised in
4.4BSD. The detach and activate/deactivate interfaces appeared inNetBSD 1.5.

NetBSD 3.0 October 7, 2006 4

BCDTOBIN (9) NetBSD Kernel Developer’s Manual BCDTOBIN (9)

NAME
bcdtobin, bintobcd — convert a single byte between (unsigned) packed bcd and binary

SYNOPSIS
#include <sys/systm.h>

unsigned int
bcdtobin(unsigned int bcd);

unsigned int
bintobcd(unsigned int bin);

DESCRIPTION
The bcdtobin() andbintobcd() functions convert a single byte between (unsigned) packed bcd and
binary encodings.

RETURN VALUES
Thebcdtobin() function returns the binary value of its BCD-encoded argument,bcd. Thebintobcd()
function returns the BCD encoding of its binary argument,bin.

NetBSD 3.0 March 11, 2006 1

BCMP (9) NetBSD Kernel Developer’s Manual BCMP(9)

NAME
bcmp — compare byte string

SYNOPSIS
#include <sys/systm.h>

int
bcmp(const void ∗ b1 , const void ∗ b2 , size_t len);

DESCRIPTION
The bcmp() interface is obsolete. Do not add new code using it. It will soon be purged. Use
memcmp(9) instead. (Thebcmp() function is now a macro for memcmp(9).)

The bcmp() function compares byte stringb1 against byte stringb2, returning zero if they are identical,
non-zero otherwise. Both strings are assumed to belen bytes long.Zero-length strings are always identi-
cal.

The strings may overlap.

SEE ALSO
memcmp(9)

NetBSD 3.0 July 7, 2001 1

BCOPY (9) NetBSD Kernel Developer’s Manual BCOPY(9)

NAME
bcopy — copy byte string

SYNOPSIS
#include <sys/systm.h>

void
bcopy(const void ∗ src , void ∗ dst , size_t len);

DESCRIPTION
The bcopy() interface is obsolete. Do not add new code using it.It will soon be purged. Use
memcpy(9) instead. (Thebcopy() function is now a macro for memcpy(9).)

Thebcopy() function copieslen bytes from stringsrc to stringdst.

Unlike bcopy (3) the two strings must not overlap! In the traditionalBSD kernel, overlapping copies were
handled by the now-purgedovbcopy() function. If you need to copy overlapping data, seememmove(9).

If len is zero, no bytes are copied.

SEE ALSO
bcopy (3), memcpy(9), memmove(9)

NetBSD 3.0 July 7, 2001 1

BIOS32_SERVICE (9) NetBSD/i386 Kernel Developer’s Manual BIOS32_SERVICE (9)

NAME
bios32_service — locate BIOS32 service

SYNOPSIS
#include <i386/bios32.h>

int
bios32_service(uint32_t service , bios32_entry_t e , bios32_entry_info_t ei);

DESCRIPTION
Thebios32_service() function calls the BIOS32 to locate the specified BIOS32 serviceservice and
fills in the entry point informatione andei.

SEE ALSO
bioscall (9)

NetBSD 3.0 June 17, 2001 1

BIOSCALL (9) NetBSD/i386 Kernel Developer’s Manual BIOSCALL(9)

NAME
bioscall — call system BIOS function from real mode

SYNOPSIS
#include <i386/bioscall.h>

void
bioscall(int function , struct bioscallregs ∗ regs);

DESCRIPTION
The bioscall function switches the processor into real mode, calls the BIOS interrupt numbered
function, and returns to protected mode.

This function is intended to be called during the initial system bootstrap when necessary to probe devices or
pseudo-devices.

The register values specified by∗ regs (with one exception) are installed before the BIOS interrupt is called.
The processor flags are handled specially. Only the following flags are passed to the BIOS from the registers
in regs (the remainder come from the processor’s flags register at the time of the call):PSL_C, PSL_PF,
PSL_AF, PSL_Z, PSL_N, PSL_D, PSL_V.

Thebioscallregs structure is defined to contain structures for each register, to allow access to 32-, 16- or 8-bit
wide sections of the registers. Definitionsare provided which simplify access to the union members.

RETURN VALUES
bioscall fills in ∗ regs with the processor registers as returned from the BIOS call.

EXAMPLES
The Advanced Power Management driver calls bioscall by setting up a register structure with the APM
installation check and device types in registersax andbx, then calls the BIOS to fetch the details for calling
the APM support through a protected-mode interface. TheBIOS returns these details in the registers:

#include <i386/bioscall.h>
#include <i386/apmvar.h>
struct bioscallregs regs;

regs.AX = APM_BIOS_FN(APM_INSTALLATION_CHECK);
regs.BX = APM_DEV_APM_BIOS;
regs.CX = regs.DX = 0;
regs.ESI = regs.EDI = regs.EFLAGS = 0;
bioscall(APM_SYSTEM_BIOS, ®s);

CODE REFERENCES
sys/arch/i386/i386/bioscall.s , sys/arch/i386/bioscall/biostramp.S

REFERENCES
apm(4)

HISTORY
bioscall first appeared inNetBSD 1.3.

BUGS
Not all BIOS functions are safe to call through the trampoline, as they may depend on system state which has
been disturbed or used for other purposes once theNetBSD kernel is running.

NetBSD 3.0 October 1, 1998 1

BITMASK_SNPRINTF (9) NetBSD Kernel Developer’s Manual BITMASK_SNPRINTF(9)

NAME
bitmask_snprintf — bitmask output conversion

SYNOPSIS
#include <sys/systm.h>

char ∗
bitmask_snprintf(u_quad_t val , const char ∗ fmt , char ∗ buf , size_t buflen);

DESCRIPTION
Thebitmask_snprintf() function formats a bitmask into a mnemonic form suitable for printing.

This conversion is useful for decoding bit fields in device registers. Itformats the integerval into the buffer
buf, of size buflen, using a specified radix and an interpretation of the bits within that integer as though
they were flags.

The decoding directive string fmt describes how the bitfield is to be interpreted and displayed. It follows
two possible syntaxes, referred to as “old” and “new”. The main advantage of the “new” formatting is that it
is capable of handling multi-bit fields.

The first character offmt may be\177 , indicating that the remainder of the format string follows the “new”
syntax. Thesecond character(the first for the old format) is a binary character representation of the output
numeral base in which the bitfield will be printed before it is decoded.Recognized radix values (in C
escape-character format) are \10 (octal) ,\12 (decimal) ,and\20 (hexadecimal) .

The remaining characters infmt are interpreted as a list of bit-position–description pairs. From here the
syntaxes diverge.

The “old” format syntax is series of bit-position–description pairs.Each begins with a binary character value
that represents the position of the bit being described.A bit position value of one describes the least signifi-
cant bit. Whereas a position value of 32(octal 40, hexadecimal 20, the ASCII space character) describes
the most significant bit.

The remaining characters in a bit-position–description pair are the characters to print should the bit being
described be set. Description strings are delimited by the next bit position value character encountered
(distinguishable by its value being≤ 32) ,or the end of the decoding directive string itself.

For the “new” format syntax, a bit-position–description begins with a field type followed by a binary bit-
position and possibly a field length. The least significant bit is bit-position zero, unlike the “old” syntax
where it is one.

b\B Describes a bit position. The bit-positionB indicates the corresponding bit, as in the “old” format.

f\B\L Describes a multi-bit field beginning at bit-positionB and having a bit-length ofL. The remaining
characters are printed as a description of the field followed by ‘=’ and the value of the field.The
value of the field is printed in the base specified as the second character of the decoding directive
stringfmt.

F\B\L Describes a multi-bit field like ‘f’, but just extracts the value for use with the ‘=’ and ‘:’ formatting
directives described below.

=\V The field previously extracted by the last ‘f’ or ‘F’ operator is compared to the byte ‘V’ (for values
0 through 255) . If they are equal, ‘=’ followed by the string following ‘V’ is printed. Thisand the
‘:’ operator may be repeated to annotate multiple possible values.

:\V Operates like the ‘=’ operator, but omits the leading ‘=’.

NetBSD 3.0 July 29, 2007 1

BITMASK_SNPRINTF (9) NetBSD Kernel Developer’s Manual BITMASK_SNPRINTF(9)

Finally, each field is delimited by a NUL(‘ \0’) character. By convention, the format string has an addi-
tional NUL character at the end, following that delimiting the last bit-position–description pair.

The buffer buf passed tobitmask_snprintf must be at leastKPRINTF_BUFSIZE bytes in length.
See the source code for the definition of this macro.

RETURN VALUES
Thebitmask_snprintf() function returns the buffer buf. The returned string is always NULL-termi-
nated.

EXAMPLES
Tw o examples of the old formatting style:

bitmask_snprintf(3, "\10\2BITTWO\1BITONE", buf, buflen)
⇒ "3<BITTWO,BITONE>"

bitmask_snprintf(0xe860,
"\20\x10NOTBOOT\x0fFPP\x0eSDVMA\x0cVIDEO"
"\x0bLORES\x0aFPA\x09DIAG\x07CACHE"
"\x06IOCACHE\x05LOOPBACK\x04DBGCACHE",

buf, buflen)
⇒ "e860<NOTBOOT,FPP,SDVMA,VIDEO,CACHE,IOCACHE>"

An example of the new formatting style:

bitmask_snprintf(0x800f0701,
"\177\020b\0LSB\0b\1_BITONE\0f\4\4NIBBLE2\0"
"f\x10\4BURST\0=\4FOUR\0=\xfSIXTEEN\0"
"b\x1fMSB\0\0",

buf, buflen)
⇒ "800f0701<LSB,NIBBLE2=0,BURST=f=SIXTEEN,MSB>"

ERRORS
If the buffer buf is too small to hold the formatted output,bitmask_snprintf() will still return the
buffer, containing a truncated string.

SEE ALSO
printf (9)

CODE REFERENCES
sys/kern/subr_prf_bitmask.c

HISTORY
The bitmask_snprintf() function was originally implemented as a non-standard%b format string for
the kernelprintf() function inNetBSD 1.5 and earlier releases.

AUTHORS
The “new” format was the invention of Chris Torek.

NetBSD 3.0 July 29, 2007 2

BLUETOOTH (9) NetBSD Kernel Developer’s Manual BLUETOOTH (9)

NAME
BLUETOOTH — Bluetooth Device/Protocol API

SYNOPSIS
#include <netbt/bluetooth.h>
#include <netbt/hci.h>
#include <netbt/l2cap.h>
#include <netbt/rfcomm.h>

struct hci_unit ∗
hci_attach(const struct hci_if ∗ hci_if , device_t dev , uint16_t flags);

void
hci_detach(struct hci_unit ∗ unit);

void
hci_input_event(struct hci_unit ∗ unit , struct mbuf ∗ m);

void
hci_input_acl(struct hci_unit ∗ unit , struct mbuf ∗ m);

void
hci_input_sco(struct hci_unit ∗ unit , struct mbuf ∗ m);

int
btproto_attach(btproto_handle ∗ , const struct btproto ∗ proto , void ∗ ref);

int
btproto_bind(btproto_handle , struct sockaddr_bt ∗ addr);

int
btproto_sockaddr(btproto_handle , struct sockaddr_bt ∗ addr);

int
btproto_connect(btproto_handle , struct sockaddr_bt ∗ addr);

int
btproto_peeraddr(btproto_handle , struct sockaddr_bt ∗ addr);

int
btproto_disconnect(btproto_handle , int linger);

int
btproto_detach(btproto_handle ∗);

int
btproto_listen(btproto_handle);

int
btproto_send(btproto_handle , struct mbuf ∗ mbuf);

int
btproto_rcvd(btproto_handle , size_t space);

int
btproto_setopt(btproto_handle , int optarg , void ∗ arg);

int
btproto_getopt(btproto_handle , int optarg , void ∗ arg);

NetBSD 3.0 November 20, 2007 1

BLUETOOTH (9) NetBSD Kernel Developer’s Manual BLUETOOTH (9)

DESCRIPTION
The Bluetooth Protocol Stack provides socket based access to Bluetooth Devices. Thisdocument describes
device driver access to the stack from below, and also the general Bluetooth Protocol/Service API for layer-
ing above existing Bluetooth Protocols.

DATA T YPES
Device drivers attaching to the Bluetooth Protocol Stack should pass a pointer to astruct hci_if
defined in <netbt/hci.h > containing the driver information as follows:

struct hci_if {
int (∗ enable)(device_t);
void (∗ disable)(device_t);
void (∗ output_cmd)(device_t, struct mbuf ∗);
void (∗ output_acl)(device_t, struct mbuf ∗);
void (∗ output_sco)(device_t, struct mbuf ∗);
void (∗ get_stats)(device_t, struct bt_stats ∗ , i nt);
int ipl;

};

Statistics counters should be updated by the device after packets have been transmitted or received, or when
errors occur.

struct bt_stats {
uint32_t err_tx;
uint32_t err_rx;
uint32_t cmd_tx;
uint32_t evt_rx;
uint32_t acl_tx;
uint32_t acl_rx;
uint32_t sco_tx;
uint32_t sco_rx;
uint32_t byte_tx;
uint32_t byte_rx;

};

Bluetooth Protocol layers attaching above the Bluetooth Protocol Stack will make use of thestruct
btproto data type, which is defined in <netbt/bluetooth.h > and contains the following function
callbacks which should be initialized by the protocol layer before attaching to the protocol which it uses:

struct btproto {
void (∗ connecting)(void ∗);
void (∗ connected)(void ∗);
void (∗ disconnected)(void ∗ , i nt);
void ∗ (∗ newconn)(void ∗ , s truct sockaddr_bt ∗ , s truct sockaddr_bt ∗);
void (∗ complete)(void ∗ , i nt);
void (∗ linkmode)(void ∗ , i nt);
void (∗ input)(void ∗ , s truct mbuf ∗);

};

FUNCTIONS
The following functions are related to the Bluetooth Device API.

hci_attach(hci_if , dev)
Attach Bluetooth HCI devicedev to the protocol stack in the manner described byhci_if. Driver
quirks may be registered by passing the correspondingBTF_xxxx flag in theflags argument.

NetBSD 3.0 November 20, 2007 2

BLUETOOTH (9) NetBSD Kernel Developer’s Manual BLUETOOTH (9)

hci_attach() will return astruct hci_unit handle to be passed to the protocol stack in other
calls.

hci_detach(unit)
Detach Bluetooth HCIunit from the device.

hci_input_event(unit , mbuf)
This function should be called by the device when it has an event packet to present to the protocol
stack. Itmay be called from an interrupt routine at theipl value given in thehci_if descriptor.

hci_input_acl(unit , mbuf)
This function should be called by the device when it has an ACL data packet to present to the protocol
stack. Itmay be called from an interrupt routine at theipl value given in thehci_if descriptor.

hci_input_sco(unit , mbuf)
This function should be called by the device when it has an SCO data packet to present to the protocol
stack. Itmay be called from an interrupt routine at theipl value given in thehci_if descriptor.

(∗ enable)(dev)
This will be called when the protocol stack wishes to enable the device.

(∗ disable)(dev)
This will be called when the protocol stack wishes to disable the device.

(∗ output_cmd)(dev , mbuf)
Will be called to output command packets on the device. Thedevice is responsible for arbitrating
access to the output queue, and output commands should be sent asynchronously. The device owns
thembuf and should release it when sent.

(∗ output_acl)(dev , mbuf)
Will be called to output ACL data packets on the device. Thedevice is responsible for arbitrating
access to the output queue, and ACL data packets should be sent asynchronously. The device owns
thembuf and should release it when sent.

(∗ output_sco)(dev , mbuf)
Will be called to output SCO data packets on the device. Thedevice is responsible for arbitrating
access to the output queue, and SCO data packets should be sent asynchronously. When the SCO
data packet has been placed on the device and thembuf is no longer required, it should be returned to
the Bluetooth protocol stack via thehci_complete_sco() call.

(∗ get_stats)(dev , dest , flush)
Will be called when IO statistics are requested.Thebt_stats structuredest should be filled in,
and if theflush argument is true, statistics should be reset.

The following function definitions are related to the Bluetooth Protocol API. Note that the "btproto" prefix is
representative only, the protocol being used will have a more specific prefix with prototypes being declared
in the appropriate <netbt/btproto.h > file.

btproto_attach(handle_ptr , proto , ref)
Allocate and initialize a new protocol object at thehandle_ptr address that should subsequently
be passed into the other functions.proto is a pointer to thebtproto structure as described above
containing relevant callbacks, andref is the argument that will be supplied to those calls.

btproto_bind(handle , addr)
Set the local address of the protocol object described byhandle to addr.

btproto_sockaddr(handle , addr)
Copy the local address of the protocol object described byhandle into addr

NetBSD 3.0 November 20, 2007 3

BLUETOOTH (9) NetBSD Kernel Developer’s Manual BLUETOOTH (9)

btproto_connect(handle , addr)
Initiate a connection by the protocol object described byhandle to the remote device described by
addr. This will result in a call to eitherproto->connected() or proto->disconnected(),
and optionally proto->connecting() with the appropriate reference as given to
btproto_attach().

btproto_peeraddr(handle , addr)
Copy the remote address of the protocol object described byhandle into addr.

btproto_disconnect(handle , linger)
Schedule a disconnection by the protocol object described byhandle. This will result in a call to
proto->disconnected() with the appropriate reference when the connection is torn down. If
linger is zero, the disconnection will be initiated immediately and any outstanding data may be lost.

btproto_detach(handle_ptr)
Detach the protocol object described by the value in the location ofhandle_ptr, and free any
related memory. The pointer in the location is cleared.

btproto_listen(handle)
Use the protocol object described byhandle as a listening post. This will result in calls to the
proto->newconn() function when incoming connections are detected.

btproto_send(handle , mbuf)
Send data on the connection described by the protocol object.

btproto_rcvd(handle , space)
Indicate to the protocol thatspace is now available in the input buffers so that flow control may be
deasserted. Thisshould also be called to indicate initial buffer space. Note thatspace is an absolute
value.

btproto_setopt(handle , optarg , arg)
Set options on the protocol object described byhandle.

btproto_getopt(handle , optarg , arg)
Get options for the protocol object described byhandle.

(∗ connecting)(ref)
This function will be called when the protocol receives information that the connection described by
ref is pending.

(∗ connected)(ref)
This function will be called when the connection described byref is successful and indicates that
data may now be sent.

(∗ disconnected)(ref , error)
This function will be called when the connection described byref is disconnected.

∗ (∗ newconn)(ref , laddr , raddr)
This function will be called when the protocol receives a new incoming connection on the local
device described byladdr from the remote device described byraddr. The protocol should
decide if it wishes to accept the connection and should attach and return a new instance of the relevant
protocol handle or NULL.

(∗ complete)(ref , count)
This function will be called when the protocol has completed sending data.Complete will usually
mean that the data has successfully left the device though for guaranteed protocols it can mean that
the data has arrived at the other end and been acknowledged, and thatcount amount of data can be
removed from the socket buffer. The units of thecount value will be dependent on the protocol

NetBSD 3.0 November 20, 2007 4

BLUETOOTH (9) NetBSD Kernel Developer’s Manual BLUETOOTH (9)

being used (e.g. RFCOMM is bytes, but L2CAP is packets)

(∗ linkmode)(ref , mode)
This function will be called for established connections, when the link mode of the baseband link has
changed.mode is the new mode.

(∗ input)(ref , mbuf)
This function is called to supply new data on the connection described byref.

CODE REFERENCES
This section describes places in theNetBSD source tree where actual code implementing or using the Blue-
tooth Protocol Stack can be found. All pathnames are relative to /usr/src .

The Bluetooth Protocol Stack is contained in thesys/netbt directory.

The Bluetooth Device API as described above is contained in thesys/netbt/hci_unit.c file.

For examples of the Bluetooth Protocol API see the interaction between the L2CAP upper layer in
sys/netbt/l2cap_upper.c and either the L2CAP socket layer insys/netbt/l2cap_socket.c
or thebthidev (4) pseudo-device insys/dev/bluetooth/bthidev.c .

Also, the RFCOMM upper layer insys/netbt/rfcomm_upper.c and the RFCOMM socket layer in
sys/netbt/rfcomm_socket.c .

SEE ALSO
bluetooth (4), bt3c (4), bthidev (4), ubt (4)

HISTORY
This Bluetooth Protocol Stack was written forNetBSD 4.0 by Iain Hibbert, under the sponsorship of Itronix,
Inc.

NetBSD 3.0 November 20, 2007 5

BUFFERCACHE (9) NetBSD Kernel Developer’s Manual BUFFERCACHE (9)

NAME
buffercache, bread, breada, breadn, bwrite, bawrite, bdwrite, getblk, geteblk,
incore, allocbuf, brelse, biodone, biowait — buffer cache interfaces

SYNOPSIS
#include <sys/buf.h>

int
bread(struct vnode ∗ vp , daddr_t blkno , int size , struct kauth_cred ∗ cred ,

int flags , struct buf ∗∗ bpp);

int
breadn(struct vnode ∗ vp , daddr_t blkno , int size , daddr_t rablks[] ,

int rasizes[] , int nrablks , struct kauth_cred ∗ cred , int flags ,
struct buf ∗∗ bpp);

int
breada(struct vnode ∗ vp , daddr_t blkno , int size , daddr_t rablkno ,

int rabsize , struct kauth_cred ∗ cred , int flags , struct buf ∗∗ bpp);

int
bwrite(struct buf ∗ bp);

void
bawrite(struct buf ∗ bp);

void
bdwrite(struct buf ∗ bp);

struct buf ∗
getblk(struct vnode ∗ vp , daddr_t blkno , int size , int slpflag , int slptimeo);

struct buf ∗
geteblk(int size);

struct buf ∗
incore(struct vnode ∗ vp , daddr_t blkno);

void
allocbuf(struct buf ∗ bp , int size , int preserve);

void
brelse(struct buf ∗ bp);

void
biodone(struct buf ∗ bp);

int
biowait(struct buf ∗ bp);

DESCRIPTION
Thebuffercache interface is used by each filesystems to improve I/O performance using in-core caches
of filesystem blocks.

The kernel memory used to cache a block is called a buffer and described by abuf structure. Inaddition to
describing a cached block, abuf structure is also used to describe an I/O request as a part of the disk driver
interface.

NetBSD 3.0 May 16, 2008 1

BUFFERCACHE (9) NetBSD Kernel Developer’s Manual BUFFERCACHE (9)

FUNCTIONS
bread(vp , blkno , size , cred , flags , bpp)

Read a block corresponding tovp andblkno. The buffer is returned viabpp. The units of
blkno are specifically the units used by theVOP_STRATEGY() routine for thevp vnode. For
device special files,blkno is in units ofDEV_BSIZE and bothblkno andsize must be mul-
tiples of the underlying device’s block size. For other files,blkno is in units chosen by the file
system containingvp.

If the buffer is not found (i.e. the block is not cached in memory),bread() allocates a buffer
with enough pages forsize and reads the specified disk block into it using credentialcred.

The buffer returned bybread() is marked as busy. (TheB_BUSYflag is set.) After manipula-
tion of the buffer returned frombread(), the caller should unbusy it so that another thread can
get it. If the buffer contents are modified and should be written back to disk, it should be unbus-
ied using one of variants ofbwrite(). Otherwise,it should be unbusied usingbrelse().

breadn(vp , blkno , size , rablks , rasizes , nrablks , cred , flags , bpp)
Get a buffer asbread(). In addition,breadn() will start read-ahead of blocks specified by
rablks, rasizes, nrablks.

breada(vp , blkno , size , rablkno , rabsize , cred , flags , bpp)
Same asbreadn() with single block read-ahead. This function is for compatibility with old
filesystem code and shouldn’t be used by new ones.

bwrite(bp)
Write a block. Start I/O for write usingVOP_STRATEGY(). Then,unless theB_ASYNCflag is
set inbp, bwrite() waits for the I/O to complete.

bawrite(bp)
Write a block asynchronously. Set theB_ASYNCflag in bp and simply callVOP_BWRITE(),
which results inbwrite() for most filesystems.

bdwrite(bp)
Delayed write.Unlike bawrite(), bdwrite() won’t start any I/O. It only marks the buffer as
dirty (B_DELWRI) and unbusy it.

getblk(vp , blkno , size , slpflag , slptimeo)
Get a block of requested sizesize that is associated with a given vnode and block offset, speci-
fied byvp andblkno. If it is found in the block cache, make it busy and return it.Otherwise,
return an empty block of the correct size.It is up to the caller to ensure that the cached blocks
are of the correct size.

If getblk() needs to sleep,slpflag and slptimeo are used as arguments for
cv_timedwait().

geteblk(size)
Allocate an empty, disassociated block of a given sizesize.

incore(vp , blkno)
Determine if a block associated to a given vnode and block offset is in the cache. If it is there,
return a pointer to it. Note thatincore() doesn’t busy the buffer unlikegetblk().

allocbuf(bp , size , preserve)
Expand or contract the actual memory allocated to a buffer. If preserve is zero, the entire data
in the buffer will be lost. Otherwise, if the buffer shrinks, the truncated part of the data is lost, so
it is up to the caller to have written it outfirst if needed; this routine will not start a write. If the
buffer grows, it is the callers responsibility to fill out the buffer’s additional contents.

NetBSD 3.0 May 16, 2008 2

BUFFERCACHE (9) NetBSD Kernel Developer’s Manual BUFFERCACHE (9)

brelse(bp)
Unbusy a buffer and release it to the free lists.

biodone(bp)
Mark I/O complete on a buffer. If a callback has been requested byB_CALL, do so. Otherwise,
wakeup waiters.

biowait(bp)
Wait for operations on the buffer to complete.When they do, extract and return the I/O’s error
value.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing the buffer cache
subsystem can be found. All pathnames are relative to /usr/src .

The buffer cache subsystem is implemented within the filesys/kern/vfs_bio.c .

SEE ALSO
intro (9), vnode (9)

Maurice J. Bach,The Design of the UNIX Operating System, Prentice Hall, 1986.

Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman,The Design and
Implementation of the 4.4BSD Operating System, Addison Wesley, 1996.

BUGS
In the current implementation,bread() and its variants don’t use a specified credential.

Becausebiodone() and biowait() do not really belong tobuffercache, they shouldn’t be docu-
mented here.

NetBSD 3.0 May 16, 2008 3

BUFQ (9) NetBSD Kernel Developer’s Manual BUFQ (9)

NAME
bufq, bufq_state, bufq_alloc, bufq_drain, bufq_free, bufq_getstrategyname,
bufq_move, BUFQ_PUT, BUFQ_GET, BUFQ_PEEK, BUFQ_CANCEL — device buffer queues

SYNOPSIS
#include <sys/bufq.h>

int
bufq_alloc(struct bufq_state ∗∗ bufq , const char ∗ strategy , int flags);

void
bufq_drain(struct bufq_state ∗ bufq);

void
bufq_free(struct bufq_state ∗ bufq);

const char ∗
bufq_getstrategyname(struct bufq_state ∗ bufq);

void
bufq_move(struct bufq_state ∗ dst , struct bufq_state ∗ src);

void
BUFQ_PUT(struct bufq_state ∗ bufq , struct buf ∗ bp);

struct buf ∗
BUFQ_GET(struct bufq_state ∗ bufq);

struct buf ∗
BUFQ_PEEK(struct bufq_state ∗ bufq);

struct buf ∗
BUFQ_CANCEL(struct bufq_state ∗ bufq , struct buf ∗ bp);

DESCRIPTION
Thebufq subsystem is a set of operations for the management of device buffer queues.

The primary data type for using the operations is thebufq_statestructure, which is opaque for users.

FUNCTIONS
bufq_alloc(bufq , strategy , flags)

Allocate and initialize abufq_statedescriptor.

The argumentstrategy specifies a buffer queue strategy to be used for this buffer queue.The
following special values can be used:

BUFQ_STRAT_ANY Let bufq_alloc() select a strategy.
BUFQ_DISK_DEFAULT_STRATLet bufq_alloc() select a strategy, assuming it will

be used for a normal disk device.

Valid bits for theflags are:

BUFQ_SORT_RAWBLOCKsort byb_rawblkno
BUFQ_SORT_CYLINDERsort byb_cylinderand then byb_rawblkno
BUFQ_EXACT Fail if a strategy specified bystrategy is not available. In

that case,bufq_alloc returnsENOENT. If this flag is not
specified,bufq_alloc() will silently use one of available
strategies.

NetBSD 3.0 December 26, 2005 1

BUFQ (9) NetBSD Kernel Developer’s Manual BUFQ (9)

bufq_drain(bufq)
Drain abufq_statedescriptor.

bufq_free(bufq)
Destroy abufq_statedescriptor.

bufq_getstrategyname(bufq)
Get a strategy identifier of a buffer queue, the string returned will be NUL-terminated and it
always will be a valid strategy name.

bufq_move(dst , src)
Move all requests from the buffer queuesrc to the buffer queuedst.

BUFQ_PUT(bufq , bp)
Put the bufbp in the queue.

BUFQ_GET(bufq)
Get the next buf from the queue and remove it from the queue.ReturnsNULL if the queue is
empty.

BUFQ_PEEK(bufq)
Get the next buf from the queue without removal. The next buf will remain the same until
BUFQ_GET(), BUFQ_PUT(), orbufq_drain() is called. ReturnsNULL if the queue is empty.

BUFQ_CANCEL(bufq , bp)
Cancel the buf bp issued earlier on the queue.ReturnsNULL if the element can not be found on
the queue orbp if it has been found and removed.

CODE REFERENCES
The actual code implementing the device buffer queues can be found in the file
sys/kern/subr_bufq.c .

HISTORY
Thebufq subsystem appeared inNetBSD 2.0.

AUTHORS
Thebufq subsystem was written by Jürgen Hannken-Illjes〈hannken@NetBSD.org〉.

NetBSD 3.0 December 26, 2005 2

BUS_DMA (9) NetBSD Kernel Developer’s Manual BUS_DMA (9)

NAME
bus_dma, bus_dmamap_create, bus_dmamap_destroy, bus_dmamap_load,
bus_dmamap_load_mbuf, bus_dmamap_load_uio, bus_dmamap_load_raw,
bus_dmamap_unload, bus_dmamap_sync, bus_dmamem_alloc, bus_dmamem_free,
bus_dmamem_map, bus_dmamem_unmap, bus_dmamem_mmap, bus_dmatag_subregion,
bus_dmatag_destroy — Bus and Machine Independent DMA Mapping Interface

SYNOPSIS
#include <machine/bus.h>

int
bus_dmamap_create(bus_dma_tag_t tag , bus_size_t size , int nsegments ,

bus_size_t maxsegsz , bus_size_t boundary , int flags ,
bus_dmamap_t ∗ dmamp);

void
bus_dmamap_destroy(bus_dma_tag_t tag , bus_dmamap_t dmam);

int
bus_dmamap_load(bus_dma_tag_t tag , bus_dmamap_t dmam , void ∗ buf ,

bus_size_t buflen , struct lwp ∗ l , int flags);

int
bus_dmamap_load_mbuf(bus_dma_tag_t tag , bus_dmamap_t dmam ,

struct mbuf ∗ chain , int flags);

int
bus_dmamap_load_uio(bus_dma_tag_t tag , bus_dmamap_t dmam , struct uio ∗ uio ,

int flags);

int
bus_dmamap_load_raw(bus_dma_tag_t tag , bus_dmamap_t dmam ,

bus_dma_segment_t ∗ segs , int nsegs , bus_size_t size , int flags);

void
bus_dmamap_unload(bus_dma_tag_t tag , bus_dmamap_t dmam);

void
bus_dmamap_sync(bus_dma_tag_t tag , bus_dmamap_t dmam , bus_addr_t offset ,

bus_size_t len , int ops);

int
bus_dmamem_alloc(bus_dma_tag_t tag , bus_size_t size , bus_size_t alignment ,

bus_size_t boundary , bus_dma_segment_t ∗ segs , int nsegs , int ∗ rsegs ,
int flags);

void
bus_dmamem_free(bus_dma_tag_t tag , bus_dma_segment_t ∗ segs , int nsegs);

int
bus_dmamem_map(bus_dma_tag_t tag , bus_dma_segment_t ∗ segs , int nsegs ,

size_t size , void ∗∗ kvap , int flags);

void
bus_dmamem_unmap(bus_dma_tag_t tag , void ∗ kva , size_t size);

paddr_t
bus_dmamem_mmap(bus_dma_tag_t tag , bus_dma_segment_t ∗ segs , int nsegs ,

NetBSD 3.0 March 7, 2007 1

BUS_DMA (9) NetBSD Kernel Developer’s Manual BUS_DMA (9)

off_t off , int prot , int flags);

int
bus_dmatag_subregion(bus_dma_tag_t tag , bus_addr_t min_addr ,

bus_addr_t max_addr , bus_dma_tag_t ∗ newtag , int flags);

void
bus_dmatag_destroy(bus_dma_tag_t tag);

DESCRIPTION
Provide a bus- and machine-independent "DMA mapping interface."

NOTES
All data structures, function prototypes, and macros will be defined by the port-specific header
〈machine/bus.h 〉. Note that this document assumes the existence of types already defined by the current
"bus.h" interface.

Unless otherwise noted, all function calls in this interface may be defined ascpp (1) macros.

DATA T YPES
Individual implementations may name these structures whatever they wish, providing that the external repre-
sentations are:

bus_dma_tag_t
A machine-dependent opaque type describing the implementation of DMA for a given bus.

bus_dma_segment_t
A structure with at least the following members:

bus_addr_t ds_addr;
bus_size_t ds_len;

The structure may have machine-dependent members and arbitrary layout.The values in
ds_addr andds_len are suitable for programming into DMA controller address and length
registers.

bus_dmamap_t
A pointer to a structure with at least the following members:

bus_size_t dm_maxsegsz;
bus_size_t dm_mapsize;
int dm_nsegs;
bus_dma_segment_t ∗ dm_segs;

The structure may have machine-dependent members and arbitrary layout.Thedm_maxsegsz
member indicates the maximum number of bytes that may be transferred by any giv en DMA seg-
ment. Thedm_mapsize member indicates the size of the mapping.A value of 0 indicates the
mapping is invalid. Thedm_segs member may be an array of segments or a pointer to an array
of segments. Thedm_nsegs member indicates the number of segments indm_segs.

FUNCTIONS
bus_dmamap_create(tag , size , nsegments , maxsegsz , boundary , flags , dmamp)

Allocates a DMA handle and initializes it according to the parameters provided. Arguments are
as follows:

NetBSD 3.0 March 7, 2007 2

BUS_DMA (9) NetBSD Kernel Developer’s Manual BUS_DMA (9)

tag This is the bus_dma_tag_t passed down from the parent driver via
<bus>_attach_args.

size This is the maximum DMA transfer that can be mapped by the handle.
nsegments Number of segments the device can support in a single DMA transaction.This

may be the number of scatter-gather descriptors supported by the device.
maxsegsz The maximum number of bytes that may be transferred by any giv en DMA seg-

ment and will be assigned to thedm_maxsegsz member.
boundary Some DMA controllers are not able to transfer data that crosses a particular

boundary. This argument allows this boundary to be specified. The boundary
lines begin at 0, and occur every boundary bytes. Mappingsmay begin on a
boundary line but may not end on or cross a boundary line.If no boundary condi-
tion needs to be observed, aboundary argument of 0 should be used.

flags Flags are defined as follows:
BUS_DMA_WAITOK It is safe to wait (sleep) for resources during this call.
BUS_DMA_NOWAIT It is not safe to wait (sleep) for resources during this call.
BUS_DMA_ALLOCNOWPerform any resource allocation this handle may need

now. If this is not specified, the allocation may be
deferred tobus_dmamap_load(). If this flag is speci-
fied, bus_dmamap_load() will not block on resource
allocation.

BUS_DMA_BUS[1-4] These flags are placeholders, and may be used by busses
to provide bus-dependent functionality.

dmamp This is a pointer to a bus_dmamap_t. ADMA map will be allocated and pointed
to bydmamp upon successful completion of this routine.

Behavior is not defined if invalid arguments are passed tobus_dmamap_create().

Returns 0 on success, or an error code to indicate mode of failure.

bus_dmamap_destroy(tag , dmam)
Frees all resources associated with a given DMA handle. Arguments are as follows:
tag This is the bus_dma_tag_t passed down from the parent driver via

<bus>_attach_args.
dmam The DMA handle to destroy.

In the event that the DMA handle contains a valid mapping, the mapping will be unloaded via the
same mechanism used bybus_dmamap_unload().

Behavior is not defined if invalid arguments are passed tobus_dmamap_destroy().

If given valid arguments,bus_dmamap_destroy() always succeeds.

bus_dmamap_load(tag , dmam , buf , buflen , l , flags)
Loads a DMA handle with mappings for a DMA transfer. It assumes that all pages involved in a
DMA transfer are wired. Arguments are as follows:
tag This is the bus_dma_tag_t passed down from the parent driver via

<bus>_attach_args.
dmam The DMA handle with which to map the transfer.
buf The buffer to be used for the DMA transfer.
buflen The size of the buffer.
l Used to indicate the address space in which the buffer is located.If NULL, the buffer is

assumed to be in kernel space. Otherwise, the buffer is assumed to be in lwp l’s
address space.

NetBSD 3.0 March 7, 2007 3

BUS_DMA (9) NetBSD Kernel Developer’s Manual BUS_DMA (9)

flags are defined as follows:
BUS_DMA_WAITOK It is safe to wait (sleep) for resources during this call.
BUS_DMA_NOWAIT It is not safe to wait (sleep) for resources during this call.
BUS_DMA_STREAMINGBy default, the bus_dma API assumes that there is

coherency between memory and the device performing the
DMA transaction. Some platforms, however, hav e special
hardware, such as an “I/O cache”, which may improve per-
formance of some types of DMA transactions, but which
break the assumption that there is coherency between mem-
ory and the device performing the DMA transaction.This
flag allows the use of this special hardware, provided that
the device is doing sequential, unidirectional transfers which
conform to certain alignment and size constraints defined by
the platform. If the platform does not support the feature, or
if the buffer being loaded into the DMA map does not con-
form to the constraints required for use of the feature, then
this flag will be silently ignored. Also refer to the use of
this flag with thebus_dmamem_alloc() function.

BUS_DMA_READ This is a hint to the machine-dependent back-end that indi-
cates the mapping will be used only for adevice -> memory
transaction. Theback-end may perform optimizations based
on this information.

BUS_DMA_WRITE This is a hint to the machine-dependent back-end that indi-
cates the mapping will be used only for amemory -> device
transaction. Theback-end may perform optimizations based
on this information.

BUS_DMA_BUS[1-4] These flags are placeholders, and may be used by busses to
provide bus-dependent functionality.

As noted above, if a DMA handle is created with BUS_DMA_ALLOCNOW,
bus_dmamap_load() will never block.

If a call tobus_dmamap_load() fails, the mapping in the DMA handle will be invalid. It is
the responsibility of the caller to clean up any inconsistent device state resulting from incomplete
iteration through the uio.

Behavior is not defined if invalid arguments are passed tobus_dmamap_load().

Returns 0 on success, or an error code to indicate mode of failure.

bus_dmamap_load_mbuf(tag , dmam , chain , flags)
This is a variation ofbus_dmamap_load() which maps mbuf chains for DMA transfers.Mbuf
chains are assumed to be in kernel virtual address space.

bus_dmamap_load_uio(tag , dmam , uio , flags)
This is a variation ofbus_dmamap_load() which maps buffers pointed to byuio for DMA
transfers. Determinationif the buffers are in user or kernel virtual address space is done inter-
nally, according touio->uio_vmspace. Seeuiomove (9) for details of theuio structure.

bus_dmamap_load_raw(tag , dmam , segs , nsegs , size , flags)
This is a variation of bus_dmamap_load() which maps buffers allocated by
bus_dmamem_alloc() (see below). Thesegs argument is an array of bus_dma_segment_t’s
filled in by bus_dmamem_alloc(). Thensegs argument is the number of segments in the
array. Thesize argument is the size of the DMA transfer.

NetBSD 3.0 March 7, 2007 4

BUS_DMA (9) NetBSD Kernel Developer’s Manual BUS_DMA (9)

bus_dmamap_unload(tag , dmam)
Deletes the mappings for a given DMA handle. Arguments are as follows:
tag This is the bus_dma_tag_t passed down from the parent driver via

<bus>_attach_args.
dmam The DMA handle containing the mappings which are to be deleted.

If the DMA handle was created withBUS_DMA_ALLOCNOW, bus_dmamap_unload() will
not free the corresponding resources which were allocated bybus_dmamap_create(). This
is to ensure thatbus_dmamap_load() will never block on resources if the handle was created
with BUS_DMA_ALLOCNOW.

bus_dmamap_unload() will not perform any implicit synchronization of DMA buffers. This
must be done explicitly bybus_dmamap_sync().

bus_dmamap_unload() will restore thedm_maxsegsz member to its initial value assigned
by bus_dmamap_create().

Behavior is not defined if invalid arguments are passed tobus_dmamap_unload().

If given valid arguments,bus_dmamap_unload() always succeeds.

bus_dmamap_sync(tag , dmam , offset , len , ops)
Performs pre- and post-DMA operation cache and/or buffer synchronization.Arguments are as
follows:
tag This is the bus_dma_tag_t passed down from the parent driver via

<bus>_attach_args.
dmam The DMA mapping to be synchronized.
offset The offset into the DMA mapping to synchronize.
len The length of the mapping fromoffset to synchronize.
ops One or more synchronization operation to perform. The following DMA synchroniza-

tion operations are defined:
BUS_DMASYNC_PREREADPerform any pre-read DMA cache and/or bounce

operations.
BUS_DMASYNC_POSTREADPerform any post-read DMA cache and/or bounce

operations.
BUS_DMASYNC_PREWRITEPerform any pre-write DMA cache and/or bounce

operations.
BUS_DMASYNC_POSTWRITEPerform any post-write DMA cache and/or bounce

operations.

More than one operation may performed in a given synchronization call. Mixing of
PRE and POST operations is not allowed, and behavior is undefined if this is
attempted.

Synchronization operations are expressed from the perspective of the host RAM, e.g., adevice ->
memoryoperation is aREADand amemory -> deviceoperation is aWRITE.

bus_dmamap_sync() may consult state kept within the DMA map to determine if the memory
is mapped in a DMA coherent fashion. Ifso,bus_dmamap_sync() may elect to skip certain
expensive operations, such as flushing of the data cache.Seebus_dmamem_map() for more
information on this subject.

On platforms which implement a weak memory access ordering model,bus_dmamap_sync()
will always cause the appropriate memory barriers to be issued.

This function exists to ensure that the host and the device have a consistent view of a range of
DMA memory, before and after a DMA operation.

NetBSD 3.0 March 7, 2007 5

BUS_DMA (9) NetBSD Kernel Developer’s Manual BUS_DMA (9)

An example of usingbus_dmamap_sync(), involving multiple read-write use of a single map-
ping might look like this:

bus_dmamap_load(...);

while (not done) {
/ ∗ invalidate soon-to-be-stale cache blocks ∗ /
bus_dmamap_sync(..., BUS_DMASYNC_PREREAD);

[do r ead DMA]

/ ∗ copy from bounce ∗ /
bus_dmamap_sync(..., BUS_DMASYNC_POSTREAD);

/ ∗ read data now in driver-provided buffer ∗ /

[c omputation]

/ ∗ data to be written now in driver-provided buffer ∗ /

/ ∗ flush write buffers and writeback, copy to bounce ∗ /
bus_dmamap_sync(..., BUS_DMASYNC_PREWRITE);

[do w rite DMA]

/ ∗ probably a no-op, but provided for consistency ∗ /
bus_dmamap_sync(..., BUS_DMASYNC_POSTWRITE);

}

bus_dmamap_unload(...);

This functionmustbe called to synchronize DMA buffers before and after a DMA operation.
Otherbus_dma functions cannot be relied on to do this synchronization implicitly. If DMA
read and write operations are not preceded and followed by the appropriate synchronization oper-
ations, behavior is undefined.

Behavior is not defined if invalid arguments are passed tobus_dmamap_sync().

If given valid arguments,bus_dmamap_sync() always succeeds.

bus_dmamem_alloc(tag , size , alignment , boundary , segs , ...)
Allocates memory that is "DMA safe" for the bus corresponding to the given tag.

The mapping of this memory is machine-dependent (or "opaque"); machine-independent code is
not to assume that the addresses returned are valid in kernel virtual address space, or that the
addresses returned are system physical addresses. The address value returned as part ofsegs
can thus not be used to program DMA controller address registers. Onlythe values in the
dm_segs array of a successfully loaded DMA map (usingbus_dmamap_load()) can be used
for this purpose.

Allocations will always be rounded to the hardware page size. Callers may wish to take advan-
tage of this, and cluster allocation of small data structures. Arguments are as follows:
tag This is the bus_dma_tag_t passed down from the parent driver via

<bus>_attach_args.

NetBSD 3.0 March 7, 2007 6

BUS_DMA (9) NetBSD Kernel Developer’s Manual BUS_DMA (9)

size The amount of memory to allocate.
alignment Each segment in the allocated memory will be aligned to this value. If the align-

ment is less than a hardware page size, it will be rounded up to the hardware page
size. Thisvalue must be a power of two.

boundary Each segment in the allocated memory must not cross this boundary (relative to
zero). Thisvalue must be a power of two. A boundary value less than the size of
the allocation is invalid.

segs An array of bus_dma_segment_t’s, filled in as memory is allocated, representing
the opaque addresses of the memory chunks.

nsegs Specifies the number of segments insegs, and this is the maximum number of
segments that the allocated memory may contain.

rsegs Used to return the actual number of segments the memory contains.
flags Flags are defined as follows:

BUS_DMA_WAITOK It is safe to wait (sleep) for resources during this call.
BUS_DMA_NOWAIT It is not safe to wait (sleep) for resources during this

call.
BUS_DMA_STREAMINGAdjusts, if necessary, the size, alignment, and boundary

constrains to conform to the platform-dependent
requirements for the use of the
BUS_DMA_STREAMING flag with the
bus_dmamap_load() function. If the platform does
not support theBUS_DMA_STREAMINGfeature, or if
the size, alignment, and boundary constraints would
already satisfy the platform’s requirements, this flag is
silently ignored. The BUS_DMA_STREAMINGflag
will never relax the constraints specified in the call.

BUS_DMA_BUS[1-4] These flags are placeholders, and may be used by
busses to provide bus-dependent functionality.

All pages allocated bybus_dmamem_alloc() will be wired down until they are freed by
bus_dmamem_free().

Behavior is undefined if invalid arguments are passed tobus_dmamem_alloc().

Returns 0 on success, or an error code indicating mode of failure.

bus_dmamem_free(tag , segs , nsegs)
Frees memory previously allocated bybus_dmamem_alloc(). Any mappings will be invali-
dated. Arguments are as follows:
tag This is the bus_dma_tag_t passed down from the parent driver via

<bus>_attach_args.
segs The array of bus_dma_segment_t’s filled in bybus_dmamem_alloc().
nsegs The number of segments insegs.

Behavior is undefined if invalid arguments are passed tobus_dmamem_free().

If given valid arguments,bus_dmamem_free() always succeeds.

bus_dmamem_map(tag , segs , nsegs , size , kvap , flags)
Maps memory allocated withbus_dmamem_alloc() into kernel virtual address space.Argu-
ments are as follows:
tag This is the bus_dma_tag_t passed down from the parent driver via

<bus>_attach_args.

NetBSD 3.0 March 7, 2007 7

BUS_DMA (9) NetBSD Kernel Developer’s Manual BUS_DMA (9)

segs The array of bus_dma_segment_t’s filled in by bus_dmamem_alloc(), representing
the memory regions to map.

nsegs The number of segments insegs.
size The size of the mapping.
kvap Filled in to specify the kernel virtual address where the memory is mapped.
flags Flags are defined as follows:

BUS_DMA_WAITOK It is safe to wait (sleep) for resources during this call.
BUS_DMA_NOWAIT It is not safe to wait (sleep) for resources during this call.
BUS_DMA_BUS[1-4] These flags are placeholders, and may be used by busses to

provide bus-dependent functionality.
BUS_DMA_COHERENTThis flag is ahint to machine-dependent code. If possible, map

the memory in such a way as it will be DMA coherent.This
may include mapping the pages into uncached address space or
setting the cache-inhibit bits in page table entries.If DMA
coherent mappings are impossible, this flag is silently ignored.

Later, when this memory is loaded into a DMA map, machine-
dependent code will take whatever steps are necessary to deter-
mine if the memory was mapped in a DMA coherent fashion.
This may include checking if the kernel virtual address lies
within uncached address space or if the cache-inhibit bits are
set in page table entries. If it is determined that the mapping is
DMA coherent, state may be placed into the DMA map for use
by later calls tobus_dmamap_sync().

Note that a device driver must not rely on
BUS_DMA_COHERENTfor correct operation. All calls to
bus_dmamap_sync() must still be made.This flag is pro-
vided only as an optimization hint to machine-dependent code.

Also note that this flag only applies to coherency between the
CPU and memory. Coherency between memory and the device
is controlled with a different flag. See the description of the
bus_dmamap_load() function.

BUS_DMA_NOCACHEThis flag is ahint to machine-dependent code. If possible, map
the uncached memory. This flag may be useful in the case that
the memory cache causes unexpected behavior of the device.

Behavior is undefined if invalid arguments are passed tobus_dmamem_map().

Returns 0 on success, or an error code indicating mode of failure.

bus_dmamem_unmap(tag , kva , size)
Unmaps memory previously mapped withbus_dmamem_map(), freeing the kernel virtual
address space used by the mapping. The arguments are as follows:
tag This is the bus_dma_tag_t passed down from the parent driver via

<bus>_attach_args.
kva The kernel virtual address of the mapped memory.
size The size of the mapping.

Behavior is undefined if invalid arguments are passed tobus_dmamem_unmap().

If given valid arguments,bus_dmamem_unmap() always succeeds.

NetBSD 3.0 March 7, 2007 8

BUS_DMA (9) NetBSD Kernel Developer’s Manual BUS_DMA (9)

bus_dmamem_mmap(tag , segs , nsegs , off , prot , flags)
Provides support for usermmap(2)’ing of DMA-safe memory. This function is to be called by a
device driver’s (∗ d_mmap)() entry point, which is called by the device pager for each page to be
mapped. Thearguments are as follows:
tag This is the bus_dma_tag_t passed down from the parent driver via

<bus>_attach_args.
segs The array of bus_dma_segment_t’s filled in by bus_dmamem_alloc(), representing

the memory to bemmap(2)’ed.
nsegs The number of elements in thesegs array.
off The offset of the page in DMA memory which is to be mapped.
prot The protection codes for the mapping.
flags Flags are defined as follows:

BUS_DMA_WAITOK It is safe to wait (sleep) for resources during this call.
BUS_DMA_NOWAIT It is not safe to wait (sleep) for resources during this call.
BUS_DMA_BUS[1-4] These flags are placeholders, and may be used by busses to

provide bus-dependent functionality.
BUS_DMA_COHERENTSeebus_dmamem_map() above for a description of this flag.
BUS_DMA_NOCACHESeebus_dmamem_map() above for a description of this flag.

Behavior is undefined if invalid arguments are passed tobus_dmamem_mmap().

Returns -1 to indicate failure. Otherwise,returns an opaque value to be interpreted by the device
pager.

bus_dmatag_subregion(tag , min_addr , max_addr , newtag , flags)
Given a bus_dma_tag_t create a new bus_dma_tag_t with a limited bus address space. This func-
tion should not normally be used, but is useful for devices that do not support the full address
space of the parent bus. Thearguments are as follows:
tag This is the bus_dma_tag_t to subregion.
min_addr The smallest address this new tag can address.
max_addr.

The largest address this new tag can address.
newtag Pointer filled in with the address of the new bus_dma_tag_t.
flags Flags are defined as follows:

BUS_DMA_WAITOKIt is safe to wait (sleep) for resources during this call.
BUS_DMA_NOWAITIt is not safe to wait (sleep) for resources during this call.

bus_dmatag_destroy(tag)
Free a tag created bybus_dmatag_subregion().

SEE ALSO
bus_space (9), mb(9)

Jason Thorpe, "A Machine-Independent DMA Framework for NetBSD",Proceedings of the FREENIX track:
1998 USENIX Annual Technical Conference, pp. 1-12, 1998.

HISTORY
Thebus_dma interface appeared inNetBSD 1.3.

AUTHORS
The bus_dma interface was designed and implemented by Jason R. Thorpe of the Numerical Aerospace
Simulation Facility, NASA Ames Research Center. Additional input on thebus_dma design was provided
by Chris Demetriou, Charles Hannum, Ross Harvey, Matthew Jacob, Jonathan Stone, and Matt Thomas.

NetBSD 3.0 March 7, 2007 9

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

NAME
bus_space, bus_space_barrier, bus_space_copy_region_1,
bus_space_copy_region_2, bus_space_copy_region_4, bus_space_copy_region_8,
bus_space_free, bus_space_map, bus_space_peek_1, bus_space_peek_2,
bus_space_peek_4, bus_space_peek_8, bus_space_poke_1, bus_space_poke_2,
bus_space_poke_4, bus_space_poke_8, bus_space_read_1, bus_space_read_2,
bus_space_read_4, bus_space_read_8, bus_space_read_multi_1,
bus_space_read_multi_2, bus_space_read_multi_4, bus_space_read_multi_8,
bus_space_read_multi_stream_1, bus_space_read_multi_stream_2,
bus_space_read_multi_stream_4, bus_space_read_multi_stream_8,
bus_space_read_region_1, bus_space_read_region_2, bus_space_read_region_4,
bus_space_read_region_8, bus_space_read_region_stream_1,
bus_space_read_region_stream_2, bus_space_read_region_stream_4,
bus_space_read_region_stream_8, bus_space_read_stream_1,
bus_space_read_stream_2, bus_space_read_stream_4, bus_space_read_stream_8,
bus_space_set_region_1, bus_space_set_region_2, bus_space_set_region_4,
bus_space_set_region_8, bus_space_subregion, bus_space_unmap,
bus_space_vaddr, bus_space_mmap, bus_space_write_1, bus_space_write_2,
bus_space_write_4, bus_space_write_8, bus_space_write_multi_1,
bus_space_write_multi_2, bus_space_write_multi_4, bus_space_write_multi_8,
bus_space_write_multi_stream_1, bus_space_write_multi_stream_2,
bus_space_write_multi_stream_4, bus_space_write_multi_stream_8,
bus_space_write_region_1, bus_space_write_region_2,
bus_space_write_region_4, bus_space_write_region_8,
bus_space_write_region_stream_1, bus_space_write_region_stream_2,
bus_space_write_region_stream_4, bus_space_write_region_stream_8,
bus_space_write_stream_1, bus_space_write_stream_2,
bus_space_write_stream_4, bus_space_write_stream_8 — bus space manipulation func-
tions

SYNOPSIS
#include <machine/bus.h>

int
bus_space_map(bus_space_tag_t space , bus_addr_t address , bus_size_t size ,

int flags , bus_space_handle_t ∗ handlep);

void
bus_space_unmap(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t size);

int
bus_space_subregion(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , bus_size_t size , bus_space_handle_t ∗ nhandlep);

int
bus_space_alloc(bus_space_tag_t space , bus_addr_t reg_start ,

bus_addr_t reg_end , bus_size_t size , bus_size_t alignment ,
bus_size_t boundary , int flags , bus_addr_t ∗ addrp ,
bus_space_handle_t ∗ handlep);

void
bus_space_free(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t size);

NetBSD 3.0 March 1, 2008 1

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

void ∗
bus_space_vaddr(bus_space_tag_t space , bus_space_handle_t handle);

paddr_t
bus_space_mmap(bus_space_tag_t space , bus_addr_t addr , off_t off , int prot ,

int flags);

int
bus_space_peek_1(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint8_t ∗ datap);

int
bus_space_peek_2(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint16_t ∗ datap);

int
bus_space_peek_4(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint32_t ∗ datap);

int
bus_space_peek_8(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint64_t ∗ datap);

int
bus_space_poke_1(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint8_t data);

int
bus_space_poke_2(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint16_t data);

int
bus_space_poke_4(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint32_t data);

int
bus_space_poke_8(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint64_t data);

uint8_t
bus_space_read_1(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset);

uint16_t
bus_space_read_2(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset);

uint32_t
bus_space_read_4(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset);

uint64_t
bus_space_read_8(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset);

void
bus_space_write_1(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint8_t value);

NetBSD 3.0 March 1, 2008 2

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

void
bus_space_write_2(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint16_t value);

void
bus_space_write_4(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint32_t value);

void
bus_space_write_8(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint64_t value);

void
bus_space_barrier(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , bus_size_t length , int flags);

void
bus_space_read_region_1(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint8_t ∗ datap , bus_size_t count);

void
bus_space_read_region_2(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint16_t ∗ datap , bus_size_t count);

void
bus_space_read_region_4(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint32_t ∗ datap , bus_size_t count);

void
bus_space_read_region_8(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint64_t ∗ datap , bus_size_t count);

void
bus_space_read_region_stream_1(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , uint8_t ∗ datap ,
bus_size_t count);

void
bus_space_read_region_stream_2(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , uint16_t ∗ datap ,
bus_size_t count);

void
bus_space_read_region_stream_4(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , uint32_t ∗ datap ,
bus_size_t count);

void
bus_space_read_region_stream_8(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , uint64_t ∗ datap ,
bus_size_t count);

void
bus_space_write_region_1(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , const uint8_t ∗ datap , bus_size_t count);

void
bus_space_write_region_2(bus_space_tag_t space , bus_space_handle_t handle ,

NetBSD 3.0 March 1, 2008 3

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

bus_size_t offset , const uint16_t ∗ datap , bus_size_t count);

void
bus_space_write_region_4(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , const uint32_t ∗ datap , bus_size_t count);

void
bus_space_write_region_8(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , const uint64_t ∗ datap , bus_size_t count);

void
bus_space_write_region_stream_1(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , const uint8_t ∗ datap ,
bus_size_t count);

void
bus_space_write_region_stream_2(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , const uint16_t ∗ datap ,
bus_size_t count);

void
bus_space_write_region_stream_4(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , const uint32_t ∗ datap ,
bus_size_t count);

void
bus_space_write_region_stream_8(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , const uint64_t ∗ datap ,
bus_size_t count);

void
bus_space_copy_region_1(bus_space_tag_t space ,

bus_space_handle_t srchandle , bus_size_t srcoffset ,
bus_space_handle_t dsthandle , bus_size_t dstoffset , bus_size_t count);

void
bus_space_copy_region_2(bus_space_tag_t space ,

bus_space_handle_t srchandle , bus_size_t srcoffset ,
bus_space_handle_t dsthandle , bus_size_t dstoffset , bus_size_t count);

void
bus_space_copy_region_4(bus_space_tag_t space ,

bus_space_handle_t srchandle , bus_size_t srcoffset ,
bus_space_handle_t dsthandle , bus_size_t dstoffset , bus_size_t count);

void
bus_space_copy_region_8(bus_space_tag_t space ,

bus_space_handle_t srchandle , bus_size_t srcoffset ,
bus_space_handle_t dsthandle , bus_size_t dstoffset , bus_size_t count);

void
bus_space_set_region_1(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint8_t value , bus_size_t count);

void
bus_space_set_region_2(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint16_t value , bus_size_t count);

NetBSD 3.0 March 1, 2008 4

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

void
bus_space_set_region_4(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint32_t value , bus_size_t count);

void
bus_space_set_region_8(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint64_t value , bus_size_t count);

void
bus_space_read_multi_1(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint8_t ∗ datap , bus_size_t count);

void
bus_space_read_multi_2(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint16_t ∗ datap , bus_size_t count);

void
bus_space_read_multi_4(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint32_t ∗ datap , bus_size_t count);

void
bus_space_read_multi_8(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , uint64_t ∗ datap , bus_size_t count);

void
bus_space_read_multi_stream_1(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , uint8_t ∗ datap ,
bus_size_t count);

void
bus_space_read_multi_stream_2(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , uint16_t ∗ datap ,
bus_size_t count);

void
bus_space_read_multi_stream_4(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , uint32_t ∗ datap ,
bus_size_t count);

void
bus_space_read_multi_stream_8(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , uint64_t ∗ datap ,
bus_size_t count);

void
bus_space_write_multi_1(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , const uint8_t ∗ datap , bus_size_t count);

void
bus_space_write_multi_2(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , const uint16_t ∗ datap , bus_size_t count);

void
bus_space_write_multi_4(bus_space_tag_t space , bus_space_handle_t handle ,

bus_size_t offset , const uint32_t ∗ datap , bus_size_t count);

void
bus_space_write_multi_8(bus_space_tag_t space , bus_space_handle_t handle ,

NetBSD 3.0 March 1, 2008 5

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

bus_size_t offset , const uint64_t ∗ datap , bus_size_t count);

void
bus_space_write_multi_stream_1(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , const uint8_t ∗ datap ,
bus_size_t count);

void
bus_space_write_multi_stream_2(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , const uint16_t ∗ datap ,
bus_size_t count);

void
bus_space_write_multi_stream_4(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , const uint32_t ∗ datap ,
bus_size_t count);

void
bus_space_write_multi_stream_8(bus_space_tag_t space ,

bus_space_handle_t handle , bus_size_t offset , const uint64_t ∗ datap ,
bus_size_t count);

DESCRIPTION
The bus_space functions exist to allow device drivers machine-independent access to bus memory and
register areas.All of the functions and types described in this document can be used by including the
〈machine/bus.h 〉 header file.

Many common devices are used on multiple architectures, but are accessed differently on each because of
architectural constraints.For instance, a device which is mapped in one system’s I/O space may be mapped
in memory space on a second system.On a third system, architectural limitations might change the way reg-
isters need to be accessed (e.g., creating a non-linear register space). In some cases, a single driver may need
to access the same type of device in multiple ways in a single system or architecture.The goal of the
bus_space functions is to allow a single driver source file to manipulate a set of devices on different sys-
tem architectures, and to allow a single driver object file to manipulate a set of devices on multiple bus types
on a single architecture.

Not all busses have to implement all functions described in this document, though that is encouraged if the
operations are logically supported by the bus. Unimplementedfunctions should cause compile-time errors if
possible.

All of the interface definitions described in this document are shown as function prototypes and discussed as
if they were required to be functions.Implementations are encouraged to implement prototyped (type-
checked) versions of these interfaces, but may implement them as macros if appropriate.Machine-dependent
types, variables, and functions should be marked clearly in〈machine/bus.h 〉 to avoid confusion with the
machine-independent types and functions, and, if possible, should be given names which make the machine-
dependence clear.

CONCEPTS AND GUIDELINES
Bus spaces are described by bus space tags, which can be created only by machine-dependent code.A giv en
machine may have sev eral different types of bus space (e.g., memory space and I/O space), and thus may
provide multiple different bus space tags.Individual busses or devices on a machine may use more than one
bus space tag.For instance, ISA devices are given an ISA memory space tag and an ISA I/O space tag.
Architectures may have sev eral different tags which represent the same type of space, for instance because of
multiple different host bus interface chipsets.

NetBSD 3.0 March 1, 2008 6

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

A range in bus space is described by a bus address and a bus size. The bus address describes the start of the
range in bus space. The bus size describes the size of the range in bytes. Busses which are not byte address-
able may require use of bus space ranges with appropriately aligned addresses and properly rounded sizes.

Access to regions of bus space is facilitated by use of bus space handles, which are usually created by map-
ping a specific range of a bus space.Handles may also be created by allocating and mapping a range of bus
space, the actual location of which is picked by the implementation within bounds specified by the caller of
the allocation function.

All of the bus space access functions require one bus space tag argument, at least one handle argument, and
at least one offset argument (a bus size). The bus space tag specifies the space, each handle specifies a region
in the space, and each offset specifies the offset into the region of the actual location(s) to be accessed.Off-
sets are given in bytes, though busses may impose alignment constraints.The offset used to access data rela-
tive to a giv en handle must be such that all of the data being accessed is in the mapped region that the handle
describes. Trying to access data outside that region is an error.

Because some architectures’ memory systems use buffering to improve memory and device access perfor-
mance, there is a mechanism which can be used to create “barriers” in the bus space read and write stream.

There are two types of barriers: ordering barriers and completion barriers.

Ordering barriers prevent some operations from bypassing other operations.They are relatively light weight
and described in terms of the operations they are intended to order. The important thing to note is that they
create specific ordering constraint surrounding bus accesses but do not necessarily force any synchronization
themselves. So,if there is enough distance between the memory operations being ordered, the preceding
ones could complete by themselves resulting in no performance penalty.

For instance, a write before read barrier will force any writes issued before the barrier instruction to complete
before any reads after the barrier are issued. This forces processors with write buffers to read data from
memory rather than from the pending write in the write buffer.

Ordering barriers are usually sufficient for most circumstances, and can be combined together. For instance a
read before write barrier can be combined with a write before write barrier to force all memory operations to
complete before the next write is started.

Completion barriers force all memory operations and any pending exceptions to be completed before any
instructions after the barrier may be issued.Completion barriers are extremely expensive and almost never
required in device driver code. Asingle completion barrier can force the processor to stall on memory for
hundreds of cycles on some machines.

Correctly-written drivers will include all appropriate barriers, and assume only the read/write ordering
imposed by the barrier operations.

People trying to write portable drivers with thebus_space functions should try to make minimal assump-
tions about what the system allows. In particular, they should expect that the system requires bus space
addresses being accessed to be naturally aligned (i.e., base address of handle added to offset is a multiple of
the access size), and that the system does alignment checking on pointers (i.e., pointer to objects being read
and written must point to properly-aligned data).

The descriptions of thebus_space functions given below all assume that they are called with proper argu-
ments. Ifcalled with invalid arguments or arguments that are out of range (e.g., trying to access data outside
of the region mapped when a given handle was created), undefined behaviour results. In that case, they may
cause the system to halt, either intentionally (via panic) or unintentionally (by causing a fatal trap or by some
other means) or may cause improper operation which is not immediately fatal. Functionswhich return void
or which return data read from bus space (i.e., functions which don’t obviously return an error code) do not
fail. They could only fail if given inv alid arguments, and in that case their behaviour is undefined.Functions
which take a count of bytes have undefined results if the specifiedcount is zero.

NetBSD 3.0 March 1, 2008 7

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

TYPES
Several types are defined in〈machine/bus.h 〉 to facilitate use of thebus_space functions by drivers.

bus_addr_t

Thebus_addr_t type is used to describe bus addresses. It must be an unsigned integral type capable of
holding the largest bus address usable by the architecture. This type is primarily used when mapping and
unmapping bus space.

bus_size_t

Thebus_size_t type is used to describe sizes of ranges in bus space. It must be an unsigned integral type
capable of holding the size of the largest bus address range usable on the architecture. This type is used by
virtually all of thebus_space functions, describing sizes when mapping regions and offsets into regions
when performing space access operations.

bus_space_tag_t

The bus_space_tag_t type is used to describe a particular bus space on a machine. Its contents are
machine-dependent and should be considered opaque by machine-independent code.This type is used by all
bus_space functions to name the space on which they’re operating.

bus_space_handle_t

Thebus_space_handle_t type is used to describe a mapping of a range of bus space. Its contents are
machine-dependent and should be considered opaque by machine-independent code. This type is used when
performing bus space access operations.

MAPPING AND UNMAPPING BUS SPACE
Bus space must be mapped before it can be used, and should be unmapped when it is no longer needed.The
bus_space_map() andbus_space_unmap() functions provide these capabilities.

Some drivers need to be able to pass a subregion of already-mapped bus space to another driver or module
within a driver. Thebus_space_subregion() function allows such subregions to be created.

bus_space_map(space , address , size , flags , handlep)

The bus_space_map() function maps the region of bus space named by thespace, address, and
size arguments. Ifsuccessful, it returns zero and fills in the bus space handle pointed to byhandlep with
the handle that can be used to access the mapped region. If unsuccessful, it will return non-zero and leave
the bus space handle pointed to byhandlep in an undefined state.

Theflags argument controls how the space is to be mapped. Supported flags include:

BUS_SPACE_MAP_CACHEABLETry to map the space so that accesses can be cached by the system
cache. If this flag is not specified, the implementation should
map the space so that it will not be cached.This mapping method
will only be useful in very rare occasions.

This flag must have a value of 1 on all implementations for back-
ward compatibility.

BUS_SPACE_MAP_PREFETCHABLE
Try to map the space so that accesses can be prefetched by the
system, and writes can be buffered. Thismeans, accesses should
be side effect free (idempotent).Thebus_space_barrier()
methods will flush the write buffer or force actual read accesses.
If this flag is not specified, the implementation should map the
space so that it will not be prefetched or delayed.

NetBSD 3.0 March 1, 2008 8

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

BUS_SPACE_MAP_LINEAR Try to map the space so that its contents can be accessed linearly
via normal memory access methods (e.g., pointer dereferencing
and structure accesses).Thebus_space_vaddr() method can
be used to obtain the kernel virtual address of the mapped range.
This is useful when software wants to do direct access to a mem-
ory device, e.g., a frame buffer. If this flag is specified and linear
mapping is not possible, thebus_space_map() call should fail.
If this flag is not specified, the system may map the space in
whatever way is most convenient. Useof this mapping method is
not encouraged for normal device access; where linear access is
not essential, use of thebus_space_read/write() methods
is strongly recommended.

Not all combinations of flags make sense or are supported with all spaces.For instance,
BUS_SPACE_MAP_CACHEABLEmay be meaningless when used on many systems’ I/O port spaces, and on
some systemsBUS_SPACE_MAP_LINEARwithout BUS_SPACE_MAP_PREFETCHABLEmay never
work. Whenthe system hardware or firmware provides hints as to how spaces should be mapped (e.g., the
PCI memory mapping registers’ "prefetchable" bit), those hints should be followed for maximum compatibil-
ity. On some systems, requesting a mapping that cannot be satisfied (e.g., requesting a non-prefetchable
mapping when the system can only provide a prefetchable one) will cause the request to fail.

Some implementations may keep track of use of bus space for some or all bus spaces and refuse to allow
duplicate allocations. This is encouraged for bus spaces which have no notion of slot-specific space address-
ing, such as ISA and VME, and for spaces which coexist with those spaces (e.g., EISA and PCI memory and
I/O spaces co-existing with ISA memory and I/O spaces).

Mapped regions may contain areas for which there is no device on the bus. If space in those areas is
accessed, the results are bus-dependent.

bus_space_unmap(space , handle , size)

The bus_space_unmap() function unmaps a region of bus space mapped withbus_space_map().
When unmapping a region, thesize specified should be the same as the size given to bus_space_map()
when mapping that region.

After bus_space_unmap() is called on a handle, that handle is no longer valid. (If copies were made of
the handle they are no longer valid, either.)

This function will never fail. If it would fail (e.g., because of an argument error), that indicates a software
bug which should cause a panic. In that case,bus_space_unmap() will never return.

bus_space_subregion(space , handle , offset , size , nhandlep)

The bus_space_subregion() function is a convenience function which makes a new handle to some
subregion of an already-mapped region of bus space. The subregion described by the new handle starts at
byte offsetoffset into the region described byhandle, with the size given by size, and must be wholly
contained within the original region.

If successful,bus_space_subregion() returns zero and fills in the bus space handle pointed to by
nhandlep. If unsuccessful, it returns non-zero and leaves the bus space handle pointed to bynhandlep
in an undefined state. In either case, the handle described byhandle remains valid and is unmodified.

When done with a handle created bybus_space_subregion(), the handle should be thrown away.
Under no circumstances shouldbus_space_unmap() be used on the handle. Doing so may confuse any
resource management being done on the space, and will result in undefined behaviour. When
bus_space_unmap() orbus_space_free() is called on a handle, all subregions of that handle become
invalid.

NetBSD 3.0 March 1, 2008 9

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

bus_space_vaddr(tag , handle)

This method returns the kernel virtual address of a mapped bus space if and only if it was mapped with the
BUS_SPACE_MAP_LINEARflag. Therange can be accessed by normal (volatile) pointer dereferences.If
mapped with theBUS_SPACE_MAP_PREFETCHABLEflag, thebus_space_barrier() method must be
used to force a particular access order.

bus_space_mmap(tag , addr , off , prot , flags)

This method is used to provide support for memory mapping bus space into user applications. If an address
space is addressable via volatile pointer dereferences,bus_space_mmap() will return the physical address
(possibly encoded as a machine-dependent cookie) of the bus space indicated byaddr andoff. addr is
the base address of the device or device region, andoff is the offset into that region that is being requested.
If the request is made withBUS_SPACE_MAP_LINEARas a flag, then a linear region must be returned to
the caller. If the region cannot be mapped (either the address does not exist, or the constraints can not be
met),bus_space_mmap() returns-1 to indicate failure.

Note that it is not necessary that the region being requested by abus_space_mmap() call be mapped into a
bus_space_handle_t.

bus_space_mmap() is called once perPAGE_SIZEpage in the range.Theprot argument indicates the
memory protection requested by the user application for the range.

ALLOCA TING AND FREEING BUS SPACE
Some devices require or allow bus space to be allocated by the operating system for device use. When the
devices no longer need the space, the operating system should free it for use by other devices. The
bus_space_alloc() andbus_space_free() functions provide these capabilities.

bus_space_alloc(space , reg_start , reg_end , size , alignment , boundary , flags ,
addrp , handlep)

Thebus_space_alloc() function allocates and maps a region of bus space with the size given by size,
corresponding to the given constraints. Ifsuccessful, it returns zero, fills in the bus address pointed to by
addrp with the bus space address of the allocated region, and fills in the bus space handle pointed to by
handlep with the handle that can be used to access that region. If unsuccessful, it returns non-zero and
leaves the bus address pointed to byaddrp and the bus space handle pointed to byhandlep in an unde-
fined state.

Constraints on the allocation are given by the reg_start, reg_end, alignment, and boundary
parameters. Theallocated region will start at or afterreg_start and end before or atreg_end. The
alignment constraint must be a power of two, and the allocated region will start at an address that is an
ev en multiple of that power of two. Theboundary constraint, if non-zero, ensures that the region is allo-
cated so thatfirst address in region / boundary has the same value aslast address in
region / boundary. If the constraints cannot be met,bus_space_alloc() will f ail. It is an error to
specify a set of constraints that can never be met (for example,size greater thanboundary) .

Theflags parameter is the same as the like-named parameter tobus_space_map, the same flag values
should be used, and they hav ethe same meanings.

Handles created bybus_space_alloc() should only be freed withbus_space_free(). Trying to use
bus_space_unmap() on them causes undefined behaviour. The bus_space_subregion() function
can be used on handles created bybus_space_alloc().

bus_space_free(space , handle , size)

The bus_space_free() function unmaps and frees a region of bus space mapped and allocated with
bus_space_alloc(). Whenunmapping a region, thesize specified should be the same as the size
given to bus_space_alloc() when allocating the region.

NetBSD 3.0 March 1, 2008 10

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

After bus_space_free() is called on a handle, that handle is no longer valid. (If copies were made of the
handle, they are no longer valid, either.)

This function will never fail. If it would fail (e.g., because of an argument error), that indicates a software
bug which should cause a panic. In that case,bus_space_free() will never return.

READING AND WRITING SINGLE D AT A ITEMS
The simplest way to access bus space is to read or write a single data item.Thebus_space_read_N()
andbus_space_write_N() families of functions provide the ability to read and write 1, 2, 4, and 8 byte
data items on busses which support those access sizes.

bus_space_read_1(space , handle , offset)
bus_space_read_2(space , handle , offset)
bus_space_read_4(space , handle , offset)
bus_space_read_8(space , handle , offset)

Thebus_space_read_N() family of functions reads a 1, 2, 4, or 8 byte data item from the offset specified
by offset into the region specified byhandle of the bus space specified byspace. The location being
read must lie within the bus space region specified byhandle.

For portability, the starting address of the region specified byhandle plus the offset should be a multiple of
the size of data item being read. On some systems, not obeying this requirement may cause incorrect data to
be read, on others it may cause a system crash.

Read operations done by thebus_space_read_N() functions may be executed out of order with respect
to other pending read and write operations unless order is enforced by use of thebus_space_barrier()
function.

These functions will never fail. If they would fail (e.g., because of an argument error), that indicates a soft-
ware bug which should cause a panic. In that case, they will never return.

bus_space_write_1(space , handle , offset , value)
bus_space_write_2(space , handle , offset , value)
bus_space_write_4(space , handle , offset , value)
bus_space_write_8(space , handle , offset , value)

Thebus_space_write_N() family of functions writes a 1, 2, 4, or 8 byte data item to the offset specified
by offset into the region specified byhandle of the bus space specified byspace. The location being
written must lie within the bus space region specified byhandle.

For portability, the starting address of the region specified byhandle plus the offset should be a multiple of
the size of data item being written.On some systems, not obeying this requirement may cause incorrect data
to be written, on others it may cause a system crash.

Write operations done by thebus_space_write_N() functions may be executed out of order with respect
to other pending read and write operations unless order is enforced by use of thebus_space_barrier()
function.

These functions will never fail. If they would fail (e.g., because of an argument error), that indicates a soft-
ware bug which should cause a panic. In that case, they will never return.

PROBING BUS SPACE FOR HARDWARE WHICH MA Y NOT RESPOND
One problem with thebus_space_read_N() andbus_space_write_N() family of functions is that
they provide no protection against exceptions which can occur when no physical hardware or device
responds to the read or write cycles. Insuch a situation, the system typically would panic due to a kernel-
mode bus error. Thebus_space_peek_N() andbus_space_poke_N() family of functions provide a
mechanism to handle these exceptions gracefully without the risk of crashing the system.

NetBSD 3.0 March 1, 2008 11

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

As with bus_space_read_N() andbus_space_write_N(), the peek and poke functions provide the
ability to read and write 1, 2, 4, and 8 byte data items on busses which support those access sizes. All of the
constraints specified in the descriptions of thebus_space_read_N() and bus_space_write_N()
functions also apply tobus_space_peek_N() andbus_space_poke_N().

In addition, explicit calls to thebus_space_barrier() function are not required as the implementation
will ensure all pending operations complete before the peek or poke operation starts. The implementation
will also ensure that the peek or poke operations complete before returning.

The return value indicates the outcome of the peek or poke operation. Areturn value of zero implies that a
hardware device is responding to the operation at the specified offset in the bus space.A non-zero return
value indicates that the kernel intercepted a hardware exception (e.g., bus error) when the peek or poke oper-
ation was attempted.Note that some busses are incapable of generating exceptions when non-existent hard-
ware is accessed. In such cases, these functions will always return zero and the value of the data read by
bus_space_peek_N() will be unspecified.

Finally, it should be noted that at this time thebus_space_peek_N() andbus_space_poke_N() func-
tions are not re-entrant and should not, therefore, be used from within an interrupt service routine. This con-
straint may be removed at some point in the future.

bus_space_peek_1(space , handle , offset , datap)
bus_space_peek_2(space , handle , offset , datap)
bus_space_peek_4(space , handle , offset , datap)
bus_space_peek_8(space , handle , offset , datap)

Thebus_space_peek_N() family of functions cautiously read a 1, 2, 4, or 8 byte data item from the off-
set specified byoffset in the region specified byhandle of the bus space specified byspace. The data
item read is stored in the location pointed to bydatap. It is permissible fordatap to be NULL, in which
case the data item will be discarded after being read.

bus_space_poke_1(space , handle , offset , value)
bus_space_poke_2(space , handle , offset , value)
bus_space_poke_4(space , handle , offset , value)
bus_space_poke_8(space , handle , offset , value)

Thebus_space_poke_N() family of functions cautiously write a 1, 2, 4, or 8 byte data item specified by
value to the offset specified byoffset in the region specified byhandle of the bus space specified by
space.

BARRIERS
In order to allow high-performance buffering implementations to avoid bus activity on every operation, read
and write ordering should be specified explicitly by drivers when necessary. Thebus_space_barrier()
function provides that ability.

bus_space_barrier(space , handle , offset , length , flags)

The bus_space_barrier() function enforces ordering of bus space read and write operations for the
specified subregion (described by theoffset andlength parameters) of the region named byhandle in
the space named byspace.

Theflags argument controls what types of operations are to be ordered. Supported flags are:

BUS_SPACE_BARRIER_READ_BEFORE_READForce all reads before the barrier to complete
before any reads after the barrier may be
issued.

NetBSD 3.0 March 1, 2008 12

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

BUS_SPACE_BARRIER_READ_BEFORE_WRITEForce all reads before the barrier to complete
before any writes after the barrier may be
issued.

BUS_SPACE_BARRIER_WRITE_BEFORE_READForce all writes before the barrier to complete
before any reads after the barrier may be
issued.

BUS_SPACE_BARRIER_WRITE_BEFORE_WRITEForce all writes before the barrier to complete
before any writes after the barrier may be
issued.

BUS_SPACE_BARRIER_SYNC Force all memory operations and any pending
exceptions to be completed before any instruc-
tions after the barrier may be issued.

Those flags can be combined (or-ed together) to enforce ordering on different combinations of read and write
operations.

All of the specified type(s) of operation which are done to the region before the barrier operation are guaran-
teed to complete before any of the specified type(s) of operation done after the barrier.

Example: Consider a hypothetical device with two single-byte ports, one write-only input port (at offset 0)
and a read-only output port (at offset 1). Operation of the device is as follows: data bytes are written to the
input port, and are placed by the device on a stack, the top of which is read by reading from the output port.
The sequence to correctly write two data bytes to the device then read those two data bytes back would be:

/ ∗
∗ t a nd h are the tag and handle for the mapped device’s
∗ space.
∗ /

bus_space_write_1(t, h, 0, data0);
bus_space_barrier(t, h, 0, 1, BUS_SPACE_BARRIER_WRITE_BEFORE_WRITE); / ∗ 1 ∗ /
bus_space_write_1(t, h, 0, data1);
bus_space_barrier(t, h, 0, 2, BUS_SPACE_BARRIER_WRITE_BEFORE_READ); / ∗ 2 ∗ /
ndata1 = bus_space_read_1(t, h, 1);
bus_space_barrier(t, h, 1, 1, BUS_SPACE_BARRIER_READ_BEFORE_READ); / ∗ 3 ∗ /
ndata0 = bus_space_read_1(t, h, 1);
/ ∗ data0 == ndata0, data1 == ndata1 ∗ /

The first barrier makes sure that the first write finishes before the second write is issued, so that two writes to
the input port are done in order and are not collapsed into a single write. This ensures that the data bytes are
written to the device correctly and in order.

The second barrier forces the writes to the output port finish before any of the reads to the input port are
issued, thereby making sure that all of the writes are finished before data is read. This ensures that the first
byte read from the device really is the last one that was written.

The third barrier makes sure that the first read finishes before the second read is issued, ensuring that data is
read correctly and in order.

The barriers in the example above are specified to cover the absolute minimum number of bus space loca-
tions. It is correct (and often easier) to make barrier operations cover the device’s whole range of bus space,
that is, to specify an offset of zero and the size of the whole region.

The following barrier operations are obsolete and should be removed from existing code:

NetBSD 3.0 March 1, 2008 13

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

BUS_SPACE_BARRIER_READSynchronize read operations.

BUS_SPACE_BARRIER_WRITESynchronize write operations.

REGION OPERATIONS
Some devices use buffers which are mapped as regions in bus space. Often, drivers want to copy the contents
of those buffers to or from memory, e.g., into mbufs which can be passed to higher levels of the system or
from mbufs to be output to a network. In order to allow drivers to do this as efficiently as possible, the
bus_space_read_region_N() andbus_space_write_region_N() families of functions are pro-
vided.

Drivers occasionally need to copy one region of a bus space to another, or to set all locations in a region of
bus space to contain a single value. Thebus_space_copy_region_N() family of functions and the
bus_space_set_region_N() family of functions allow drivers to perform these operations.

bus_space_read_region_1(space , handle , offset , datap , count)
bus_space_read_region_2(space , handle , offset , datap , count)
bus_space_read_region_4(space , handle , offset , datap , count)
bus_space_read_region_8(space , handle , offset , datap , count)

Thebus_space_read_region_N() family of functions readscount 1, 2, 4, or 8 byte data items from
bus space starting at byte offsetoffset in the region specified byhandle of the bus space specified by
space and writes them into the array specified bydatap. Each successive data item is read from an offset
1, 2, 4, or 8 bytes after the previous data item (depending on which function is used).All locations being
read must lie within the bus space region specified byhandle.

For portability, the starting address of the region specified byhandle plus the offset should be a multiple of
the size of data items being read and the data array pointer should be properly aligned.On some systems,
not obeying these requirements may cause incorrect data to be read, on others it may cause a system crash.

Read operations done by thebus_space_read_region_N() functions may be executed in any order.
They may also be executed out of order with respect to other pending read and write operations unless order
is enforced by use of thebus_space_barrier() function. There is no way to insert barriers between
reads of individual bus space locations executed by thebus_space_read_region_N() functions.

These functions will never fail. If they would fail (e.g., because of an argument error), that indicates a soft-
ware bug which should cause a panic. In that case, they will never return.

bus_space_write_region_1(space , handle , offset , datap , count)
bus_space_write_region_2(space , handle , offset , datap , count)
bus_space_write_region_4(space , handle , offset , datap , count)
bus_space_write_region_8(space , handle , offset , datap , count)

Thebus_space_write_region_N() family of functions readscount 1, 2, 4, or 8 byte data items from
the array specified bydatap and writes them to bus space starting at byte offsetoffset in the region spec-
ified byhandle of the bus space specified byspace. Each successive data item is written to an offset 1, 2,
4, or 8 bytes after the previous data item (depending on which function is used). All locations being written
must lie within the bus space region specified byhandle.

For portability, the starting address of the region specified byhandle plus the offset should be a multiple of
the size of data items being written and the data array pointer should be properly aligned.On some systems,
not obeying these requirements may cause incorrect data to be written, on others it may cause a system crash.

Write operations done by thebus_space_write_region_N() functions may be executed in any order.
They may also be executed out of order with respect to other pending read and write operations unless order
is enforced by use of thebus_space_barrier() function. There is no way to insert barriers between
writes of individual bus space locations executed by thebus_space_write_region_N() functions.

NetBSD 3.0 March 1, 2008 14

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

These functions will never fail. If they would fail (e.g., because of an argument error), that indicates a soft-
ware bug which should cause a panic. In that case, they will never return.

bus_space_copy_region_1(space , srchandle , srcoffset , dsthandle , dstoffset ,
count)
bus_space_copy_region_2(space , srchandle , srcoffset , dsthandle , dstoffset ,
count)
bus_space_copy_region_4(space , srchandle , srcoffset , dsthandle , dstoffset ,
count)
bus_space_copy_region_8(space , srchandle , srcoffset , dsthandle , dstoffset ,
count)

Thebus_space_copy_region_N() family of functions copiescount 1, 2, 4, or 8 byte data items in
bus space from the area starting at byte offsetsrcoffset in the region specified bysrchandle of the
bus space specified byspace to the area starting at byte offset dstoffset in the region specified by
dsthandle in the same bus space. Each successive data item read or written has an offset 1, 2, 4, or 8
bytes after the previous data item (depending on which function is used).All locations being read and writ-
ten must lie within the bus space region specified by their respective handles.

For portability, the starting addresses of the regions specified by each handle plus its respective offset should
be a multiple of the size of data items being copied.On some systems, not obeying this requirement may
cause incorrect data to be copied, on others it may cause a system crash.

Read and write operations done by thebus_space_copy_region_N() functions may be executed in any
order. They may also be executed out of order with respect to other pending read and write operations unless
order is enforced by use of thebus_space_barrier(function). Thereis no way to insert barriers
between reads or writes of individual bus space locations executed by the
bus_space_copy_region_N() functions.

Overlapping copies between different subregions of a single region of bus space are handled correctly by the
bus_space_copy_region_N() functions.

These functions will never fail. If they would fail (e.g., because of an argument error), that indicates a soft-
ware bug which should cause a panic. In that case, they will never return.

bus_space_set_region_1(space , handle , offset , value , count)
bus_space_set_region_2(space , handle , offset , value , count)
bus_space_set_region_4(space , handle , offset , value , count)
bus_space_set_region_8(space , handle , offset , value , count)

Thebus_space_set_region_N() family of functions writes the given value to count 1, 2, 4, or 8
byte data items in bus space starting at byte offsetoffset in the region specified byhandle of the bus
space specified byspace. Each successive data item has an offset 1, 2, 4, or 8 bytes after the previous data
item (depending on which function is used).All locations being written must lie within the bus space region
specified byhandle.

For portability, the starting address of the region specified byhandle plus the offset should be a multiple of
the size of data items being written. On some systems, not obeying this requirement may cause incorrect
data to be written, on others it may cause a system crash.

Write operations done by thebus_space_set_region_N() functions may be executed in any order.
They may also be executed out of order with respect to other pending read and write operations unless order
is enforced by use of thebus_space_barrier() function. There is no way to insert barriers between
writes of individual bus space locations executed by thebus_space_set_region_N() functions.

These functions will never fail. If they would fail (e.g., because of an argument error), that indicates a soft-
ware bug which should cause a panic. In that case, they will never return.

NetBSD 3.0 March 1, 2008 15

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

READING AND WRITING A SINGLE LOCATION MULTIPLE TIMES
Some devices implement single locations in bus space which are to be read or written multiple times to com-
municate data, e.g., some ethernet devices’ packet buffer FIFOs. In order to allow drivers to manipulate
these types of devices as efficiently as possible, thebus_space_read_multi_N() and
bus_space_write_multi_N() families of functions are provided.

bus_space_read_multi_1(space , handle , offset , datap , count)
bus_space_read_multi_2(space , handle , offset , datap , count)
bus_space_read_multi_4(space , handle , offset , datap , count)
bus_space_read_multi_8(space , handle , offset , datap , count)

Thebus_space_read_multi_N() family of functions readscount 1, 2, 4, or 8 byte data items from
bus space at byte offsetoffset in the region specified byhandle of the bus space specified byspace
and writes them into the array specified bydatap. Each successive data item is read from the same location
in bus space. The location being read must lie within the bus space region specified byhandle.

For portability, the starting address of the region specified byhandle plus the offset should be a multiple of
the size of data items being read and the data array pointer should be properly aligned.On some systems,
not obeying these requirements may cause incorrect data to be read, on others it may cause a system crash.

Read operations done by thebus_space_read_multi_N() functions may be executed out of order with
respect to other pending read and write operations unless order is enforced by use of the
bus_space_barrier() function. Because thebus_space_read_multi_N() functions read the
same bus space location multiple times, they place an implicit read barrier between each successive read of
that bus space location.

These functions will never fail. If they would fail (e.g., because of an argument error), that indicates a soft-
ware bug which should cause a panic. In that case, they will never return.

bus_space_write_multi_1(space , handle , offset , datap , count)
bus_space_write_multi_2(space , handle , offset , datap , count)
bus_space_write_multi_4(space , handle , offset , datap , count)
bus_space_write_multi_8(space , handle , offset , datap , count)

Thebus_space_write_multi_N() family of functions readscount 1, 2, 4, or 8 byte data items from
the array specified bydatap and writes them into bus space at byte offsetoffset in the region specified
by handle of the bus space specified byspace. Each successive data item is written to the same location
in bus space. The location being written must lie within the bus space region specified byhandle.

For portability, the starting address of the region specified byhandle plus the offset should be a multiple of
the size of data items being written and the data array pointer should be properly aligned.On some systems,
not obeying these requirements may cause incorrect data to be written, on others it may cause a system crash.

Write operations done by thebus_space_write_multi_N() functions may be executed out of order
with respect to other pending read and write operations unless order is enforced by use of the
bus_space_barrier() function. Because thebus_space_write_multi_N() functions write the
same bus space location multiple times, they place an implicit write barrier between each successive write of
that bus space location.

These functions will never fail. If they would fail (e.g., because of an argument error), that indicates a soft-
ware bug which should cause a panic. In that case, they will never return.

STREAM FUNCTIONS
Most of thebus_space functions imply a host byte-order and a bus byte-order and take care of any transla-
tion for the caller. In some cases, however, hardware may map a FIFO or some other memory region for
which the caller may want to use multi-word, yet untranslated access. Access to these types of memory
regions should be with thebus_space_∗ _stream_N() functions.

NetBSD 3.0 March 1, 2008 16

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

bus_space_read_stream_1(space , handle , offset)
bus_space_read_stream_2(space , handle , offset)
bus_space_read_stream_4(space , handle , offset)
bus_space_read_stream_8(space , handle , offset)
bus_space_read_multi_stream_1(space , handle , offset , datap , count)
bus_space_read_multi_stream_2(space , handle , offset , datap , count)
bus_space_read_multi_stream_4(space , handle , offset , datap , count)
bus_space_read_multi_stream_8(space , handle , offset , datap , count)
bus_space_read_region_stream_1(space , handle , offset , datap , count)
bus_space_read_region_stream_2(space , handle , offset , datap , count)
bus_space_read_region_stream_4(space , handle , offset , datap , count)
bus_space_read_region_stream_8(space , handle , offset , datap , count)
bus_space_write_stream_1(space , handle , offset , value)
bus_space_write_stream_2(space , handle , offset , value)
bus_space_write_stream_4(space , handle , offset , value)
bus_space_write_stream_8(space , handle , offset , value)
bus_space_write_multi_stream_1(space , handle , offset , datap , count)
bus_space_write_multi_stream_2(space , handle , offset , datap , count)
bus_space_write_multi_stream_4(space , handle , offset , datap , count)
bus_space_write_multi_stream_8(space , handle , offset , datap , count)
bus_space_write_region_stream_1(space , handle , offset , datap , count)
bus_space_write_region_stream_2(space , handle , offset , datap , count)
bus_space_write_region_stream_4(space , handle , offset , datap , count)
bus_space_write_region_stream_8(space , handle , offset , datap , count)

These functions are defined just as their non-stream counterparts, except that they provide no byte-order
translation.

EXPECTED CHANGES TO THE BUS_SPACE FUNCTIONS
The definition of thebus_space functions should not yet be considered finalized.There are several
changes and improvements which should be explored, including:

• Providing a mechanism by which incorrectly-written drivers will be automatically given barriers and
properly-written drivers won’t be forced to use more barriers than they need. Thisshould probably be
done via a#define in the incorrectly-written drivers. Unfortunately, at this time, few drivers actually
use barriers correctly (or at all). Because of that,bus_space implementations on architectures which
do buffering must always do the barriers inside thebus_space calls, to be safe. That has a potentially
significant performance impact.

• Exporting thebus_space functions to user-land so that applications (such as X servers) have easier,
more portable access to device space.

• Redefining bus space tags and handles so that machine-independent bus interface drivers (for example
PCI to VME bridges) could define and implement bus spaces without requiring machine-dependent code.
If this is done, it should be done in such a way that machine-dependent optimizations should remain pos-
sible.

• Converting bus spaces (such as PCI configuration space) which currently use space-specific access meth-
ods to use thebus_space functions where that is appropriate.

• Redefining the way bus space is mapped and allocated, so that mapping and allocation are done with bus
specific functions which return bus space tags. This would allow further optimization than is currently
possible, and would also ease translation of thebus_space functions into user space (since mapping in
user space would look like it just used a different bus-specific mapping function).

NetBSD 3.0 March 1, 2008 17

BUS_SPACE (9) NetBSDKernel Developer’s Manual BUS_SPACE (9)

COMPATIBILITY
The current version of thebus_space interface specification differs slightly from the original specification
that came into wide use.A few of the function names and arguments have changed for consistency and
increased functionality. Drivers that were written to the old, deprecated specification can be compiled by
defining the __BUS_SPACE_COMPAT_OLDDEFSpreprocessor symbol before including
〈machine/bus.h 〉.

SEE ALSO
bus_dma(9), mb(9)

HISTORY
Thebus_space functions were introduced in a different form (memory and I/O spaces were accessed via
different sets of functions) inNetBSD 1.2. Thefunctions were merged to work on generic “spaces” early in
theNetBSD 1.3 development cycle, and many drivers were converted to use them. This document was writ-
ten later during theNetBSD 1.3 development cycle and the specification was updated to fix some consistency
problems and to add some missing functionality.

AUTHORS
Thebus_space interfaces were designed and implemented by theNetBSD developer community. Primary
contributors and implementors were Chris Demetriou, Jason Thorpe, and Charles Hannum, but the rest of the
NetBSD developers and the user community played a significant role in development.

Chris Demetriou wrote this manual page.

NetBSD 3.0 March 1, 2008 18

BZERO (9) NetBSDKernel Developer’s Manual BZERO (9)

NAME
bzero — write zeroes to a byte string

SYNOPSIS
#include <sys/systm.h>

void
bzero(void ∗ b , size_t len);

DESCRIPTION
The bzero() interface is obsolete. Do not add new code using it.It will soon be purged. Use
memset(9) instead. (Thebzero() function is now a macro for memset(9).)

Thebzero() function writeslen zero bytes to the stringb. If len is zero,bzero() does nothing.

SEE ALSO
memset(9)

NetBSD 3.0 July 7, 2001 1

CALLOUT (9) NetBSD Kernel Developer’s Manual CALLOUT(9)

NAME
callout_init, callout_destroy, callout_reset, callout_schedule,
callout_setfunc, callout_stop, callout_expired, callout_invoking, callout_ack
— execute a function after a specified length of time

SYNOPSIS
#include <sys/callout.h>

void
callout_init(callout_t ∗ c , u_int flags);

void
callout_destroy(callout_t ∗ c);

void
callout_reset(callout_t ∗ c , int ticks , void (∗ func)(void ∗) , void ∗ arg);

void
callout_schedule(callout_t ∗ c , int ticks);

void
callout_setfunc(callout_t ∗ c , void (∗ func)(void ∗) , void ∗ arg);

bool
callout_stop(callout_t ∗ c);

bool
callout_pending(callout_t ∗ c);

bool
callout_expired(callout_t ∗ c);

bool
callout_active(callout_t ∗ c);

bool
callout_invoking(callout_t ∗ c);

bool
callout_ack(callout_t ∗ c);

DESCRIPTION
Thecallout facility provides a mechanism to execute a function at a given time. Thetimer is based on the
hardclock timer which tickshz times per second. The function is called at softclock interrupt level.

Clients of thecallout facility are responsible for providing pre-allocated callout structures, or “handles”.
Thecallout facility replaces the historicUNIX functionstimeout() anduntimeout().

Thecallout_init() function initializes the callout handlec for use. No operations can be performed on
the callout before it is initialized. If theflags argument isCALLOUT_MPSAFE, the handler will be called
without getting the global kernel lock. In this case it should only use functions that are multiprocessor safe.

callout_destroy() destroys the callout, preventing further use. It is provided as a diagnostic facility
intended to catch bugs. To ensure future compatibility, callout_destroy() should always be called
when the callout is no longer required (for instance, when a device is being detached).

Thecallout_reset() function resets and starts the timer associated with the callout handlec. When the
timer expires afterticks/hz seconds, the function specified byfunc will be called with the argumentarg.
If the timer associated with the callout handle is already running, the callout will simply be rescheduled to

NetBSD 3.0 December 29, 2007 1

CALLOUT (9) NetBSD Kernel Developer’s Manual CALLOUT(9)

execute at the newly specified time. Once the timer is started, the callout handle is marked asPENDING.
Once the timer expires, the handle is marked asEXPIREDand INVOKING, and thePENDING status is
cleared.

The callout_setfunc() function sets the function and argument of the callout handlec to func and
arg respectively. The callout handle must already be initialized. If a callout will always be used with the
same function and argument, thencallout_setfunc() used in conjunction with
callout_schedule() is slightly more efficient than usingcallout_reset().

The callout_stop() function stops the timer associated the callout handlec. The PENDING and
EXPIREDstatus for the callout handle is cleared.It is safe to callcallout_stop() on a callout handle
that is not pending, so long as it is initialized.callout_stop() will return a non-zero value if the callout
was EXPIRED.

Thecallout_pending() function tests thePENDINGstatus of the callout handlec. A PENDINGcall-
out is one that has been started and whose function has not yet been called. Note that it is possible for a call-
out’s timer to have expired without its function being called if interrupt level has not dropped low enough to
let softclock interrupts through.Note that it is only safe to testPENDINGstatus when at softclock interrupt
level or higher.

Thecallout_expired() function tests to see if the callout’s timer has expired and its function called.

Thecallout_active() function returns true if a timer has been started but not explicitly stopped, even if
it has already fired.callout_active(foo) is logically the same ascallout_pending(foo) ||
callout_expired(foo); it is implemented as a separate function for compatibility withFreeBSDand for
the special case ofTCP_TIMER_ISARMED(). Itsuse is not recommended.

Thecallout_invoking() function tests theINVOKING status of the callout handlec. This flag is set
just before a callout’s function is being called. Since the priority level is lowered prior to invocation of the
callout function, other pending higher-priority code may run before the callout function is allowed to run.
This may create a race condition if this higher-priority code deallocates storage containing one or more call-
out structures whose callout functions are about to be run. In such cases, one technique to prevent references
to deallocated storage would be to test whether any callout functions are in theINVOKING state using
callout_invoking(), and if so, to mark the data structure and defer storage deallocation until the callout
function is allowed to run.For this handshake protocol to work, the callout function will have to use the
callout_ack() function to clear this flag.

Thecallout_ack() function clears theINVOKINGstate in the callout handlec. This is used in situations
where it is necessary to protect against the race condition described undercallout_invoking().

SEE ALSO
hz (9)

HISTORY
Thecallout facility was implemented by Artur Grabowski and Thomas Nordin, based on the work of G.
Varghese and A. Lauck, described in the paper Hashed and Hierarchical Timing Wheels: Data Structures for
the Efficient Implementation of a Timer Facility in the Proceedings of the 11th ACM Annual Symposium on
Operating System Principles, Austin, Texas, November 1987. It was adapted to theNetBSD kernel by Jason
R. Thorpe.

NetBSD 3.0 December 29, 2007 2

CARDBUS (9) NetBSD Kernel Developer’s Manual CARDBUS (9)

NAME
Cardbus, cardbus_attach_card, cardbus_detach_card, cardbus_function_enable,
cardbus_function_disable, cardbus_mapreg_map, cardbus_mapreg_unmap,
cardbus_get_capability, cardbus_make_tag, cardbus_free_tag,
cardbus_conf_read, cardbus_conf_write, cardbus_intr_establish,
cardbus_intr_disestablish, CARDBUS_VENDOR, CARDBUS_PRODUCT,
Cardbus_function_enable, Cardbus_function_disable, Cardbus_mapreg_map,
Cardbus_mapreg_unmap, Cardbus_make_tag, Cardbus_free_tag, Cardbus_conf_read,
Cardbus_conf_write — support for CardBus PC-Card devices

SYNOPSIS
#include <machine/bus.h>
#include <dev/cardbus/cardbusvar.h>
#include <dev/cardbus/cardbusreg.h>
#include <dev/cardbus/cardbusdevs.h>

int
cardbus_attach_card(struct cardbus_softc ∗ csc);

void
cardbus_detach_card(struct cardbus_softc ∗ csc);

int
cardbus_function_enable(struct cardbus_softc ∗ csc , int function);

int
cardbus_function_disable(struct cardbus_softc ∗ csc , int function);

int
cardbus_mapreg_map(struct cardbus_softc ∗ csc , int cf , int reg ,

cardbusreg_t type , int busflags , bus_space_tag_t ∗ tagp ,
bus_space_handle_t ∗ handlep , bus_addr_t ∗ basep , bus_size_t ∗ sizep);

int
cardbus_mapreg_unmap(struct cardbus_softc ∗ csc , int cf , int reg ,

bus_space_tag_t tag , bus_space_handle_t handle , bus_size_t size);

int
cardbus_get_capability(cardbus_chipset_tag_t cc ,

cardbus_function_tag_t cf , cardbustag_t tag , int capid , int ∗ offsetp ,
cardbusreg_t ∗ valuep);

cardbustag_t
cardbus_make_tag(cardbus_chipset_tag_t cc , int cf , int bus , int device ,

int function);

void
cardbus_free_tag(cardbus_chipset_tag_t cc , int cf , cardbustag_t tag);

cardbusreg_t
cardbus_conf_read(cardbus_chipset_tag_t cc , int cf , cardbustag_t tag ,

int offs);

void
cardbus_conf_write(cardbus_chipset_tag_t cc , int cf , cardbustag_t tag ,

int offs , busreg_t val);

NetBSD 3.0 July 3, 2004 1

CARDBUS (9) NetBSD Kernel Developer’s Manual CARDBUS (9)

void ∗
cardbus_intr_establish(cardbus_chipset_tag_t cc ,

cardbus_function_tag_t cf , cardbus_intr_handle_t irq , int level ,
int (∗ handler)(void ∗) , void ∗ arg);

void
cardbus_intr_disestablish(cardbus_chipset_tag_t cc ,

cardbus_function_tag_t cf , void ∗ ih);

int
CARDBUS_VENDOR(cardbusreg_t id);

int
CARDBUS_PRODUCT(cardbusreg_t id);

int
Cardbus_function_enable(cardbus_devfunc_t ct);

int
Cardbus_function_disable(cardbus_devfunc_t ct);

int
Cardbus_mapreg_map(cardbus_devfunc_t ct , int reg , cardbusreg_t type ,

int busflags , bus_space_tag_t ∗ tagp , bus_space_handle_t ∗ handlep ,
bus_addr_t ∗ basep , bus_size_t ∗ sizep);

int
Cardbus_mapreg_unmap(cardbus_devfunc_t ct , int reg , bus_space_tag_t tag ,

bus_space_handle_t handle , bus_size_t size);

cardbustag_t
Cardbus_make_tag(cardbus_devfunc_t ct);

void
Cardbus_free_tag(cardbus_devfunc_t ct , cardbustag_t tag);

cardbusreg_t
Cardbus_conf_read(cardbus_devfunc_t ct , cardbustag_t tag , int offs);

void
Cardbus_conf_write(cardbus_devfunc_t ct , cardbustag_t tag , int offs ,

busreg_t val);

DESCRIPTION
The machine-independentCardbus subsystem provides support for CardBus devices.

The CardBus interface is an improvement to the PC-Card interface supported bypcmcia (9). It introduces
several new capabilities such as 32-bit addressing, 33MHz operation, busmaster operation and 3.3 volt low-
voltage power. It remains compatible with all features of the PC-Card standard.

The CardBus interface signaling protocol is derived from the PCI signaling protocol. There are some differ-
ences between PCI and CardBus, however operations are identical for most functions implemented. Since a
32-bit CardBus interface is also defined for 16-bit PC-Cards, the same Card Services client to be used to
manage both CardBus and PCMCIA PC-Cards.By interrogating the card upon detection of an insertion
ev ent, NetBSD determines whether the card requiresCardbus support or not, and then applies the appropri-
ate power and signaling protocol requirements.

NetBSD 3.0 July 3, 2004 2

CARDBUS (9) NetBSD Kernel Developer’s Manual CARDBUS (9)

DATA T YPES
Drivers attached to the CardBus will make use of the following data types:

struct cardbus_attach_args
Devices have their identity recorded in this structure. It contains the following members:

cardbus_devfunc_t ca_ct;
bus_space_tag_t ca_iot; / ∗ CardBus I/O space tag ∗ /
bus_space_tag_t ca_memt; / ∗ CardBus MEM space tag ∗ /
bus_dma_tag_t ca_dmat; / ∗ DMA tag ∗ /
u_int ca_device;
cardbustag_t ca_tag;
cardbusreg_t ca_id;
cardbusreg_t ca_class;
cardbus_intr_line_t ca_intrline; / ∗ interrupt info ∗ /
struct cardbus_cis_info ca_cis;

FUNCTIONS
cardbus_attach_card(csc)

Attaches the card on the slot by turning on the power, read and analyse the tuple and sets configu-
ration index. Thisfunction returns the number of recognised device functions. If no device func-
tions are recognised it returns zero.

cardbus_detach_card(csc)
Detaches the card on the slot by release resources and turning off the power. This function must
not be called under interrupt context.

cardbus_function_enable(csc , function)
Enables device functionfunction on the card. Power will be applied if it hasn’t already.

cardbus_function_disable(csc , function)
Disables device functionfunction on the card. When no device functions are enabled, the
turn is turned off.

cardbus_mapreg_map(csc , cf , reg , type , busflags , tagp , handlep , basep , sizep)
Maps bus-space on the value of Base Address Register (BAR) indexed by reg for device func-
tion cf. The bus-space configuration is returned intagp, handlep, basep, andsizep.

cardbus_mapreg_unmap(csc , cf , reg , tag , handle , bus_size_t size)
Releases bus-space region for device functioncf specified bytag, handle andsize. reg is
the offset of the BAR register.

cardbus_get_capability(cc , cf , tag , capid , offsetp , valuep)
Find the PCI capability for the device functioncf specified bycapid. Returns the capability in
offsetp andvaluep.

cardbus_make_tag(cc , cf , bus , device , function)
Make a tag to access config space of a CardBus card. It works the same aspci_make_tag().

cardbus_free_tag(cc , cf , tag)
Release a tag used to access the config space of a CardBus card. It works the same as
pci_free_tag().

cardbus_conf_read(cc , cf , tag , offs)
Read the config space of a CardBus card. It works the same aspci_conf_read().

NetBSD 3.0 July 3, 2004 3

CARDBUS (9) NetBSD Kernel Developer’s Manual CARDBUS (9)

cardbus_conf_write(cc , cf , tag , offs , val)
Write to the config space of a CardBus card. It works same aspci_conf_write().

cardbus_intr_establish(cc , cf , irq , level , handler , arg)
Establish an interrupt handler for device functioncf. The priority of the interrupt is specified by
level. When the interrupt occurs the functionhandler is called with argumentarg. The
return value is a handle for the interrupt handler. cardbus_intr_establish() returns an
opaque handle to an event descriptor if it succeeds, and returns NULL on failure.

cardbus_intr_disestablish(cc , cf , ih)
Dis-establish the interrupt handler for device functioncf with handleih. The handle was
returned fromcardbus_intr_establish().

CARDBUS_VENDOR(id)
Return the CardBus vendor ID for deviceid.

CARDBUS_PRODUCT(id)
Return the CardBus product ID for deviceid.

The Cardbus_∗ () functions are convenience functions taking acardbus_devfunc_t argument and
perform the same operation as their namesake described above.

AUTOCONFIGURATION
During autoconfiguration, aCardbus driver will receive a pointer tostruct isapnp_attach_args
describing the device attaches to the CardBus.Drivers match the device using theca_id member using
CARDBUS_VENDOR() andCARDBUS_PRODUCT().

During the driver attach step, drivers should initially map the device I/O and memory resources using
cardbus_mapreg_map() or Cardbus_mapreg_map(). Upon successful allocation of resources,
power can be applied to the device with cardbus_function_enable() or
Cardbus_function_enable(). sothat device-specific interrogation can be performed.Finally, power
should be removed from the device using cardbus_function_disable() or
Cardbus_function_disable().

Since CardBus devices support dynamic configuration, drivers should make use of
powerhook_establish(9). Power can be applied and the interrupt handler should be established
through this interface.

DMA SUPPORT
No additional support is provided for CardBus DMA beyond the facilities provided by thebus_dma(9)
interface.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent CardBus subsystem can be found. All pathnames are relative to /usr/src .

The CardBus subsystem itself is implemented within the filessys/dev/cardbus/cardbus.c ,
sys/dev/cardbus/cardbus_map.c and sys/dev/cardbus/cardslot.c . The database of
known devices exists within the filesys/dev/cardbus/cardbus_data.h and is generated automati-
cally from the filesys/dev/cardbus/cardbusdevs . New vendor and product identifiers should be
added to this file. The database can be regenerated using the Makefile
sys/dev/cardbus/Makefile.cardbusdevs .

NetBSD 3.0 July 3, 2004 4

CARDBUS (9) NetBSD Kernel Developer’s Manual CARDBUS (9)

SEE ALSO
cardbus (4), pcmcia (4), autoconf (9), bus_dma(9), bus_space (9), driver (9), pci (9),
pcmcia (9)

HISTORY
The machine-independentCardbus subsystem appeared inNetBSD 1.5.

NetBSD 3.0 July 3, 2004 5

CNMAGIC (9) NetBSD Kernel Developer’s Manual CNMAGIC (9)

NAME
cn_trap, cn_isconsole, cn_check_magic, cn_init_magic, cn_set_magic,
cn_get_magic, cn_destroy_magic — console magic key sequence management

SYNOPSIS
#include <sys/systm.h>
typedef struct cnm_state cnm_state_t;

void
cn_trap();

int
cn_isconsole(dev_t dev);

void
cn_check_magic(dev_t dev , int k , cnm_state_t ∗ cnms);

void
cn_init_magic(cnm_state_t ∗ cnms);

int
cn_set_magic(char ∗ magic);

int
cn_get_magic(char ∗ magic , int len);

void
cn_destroy_magic(cnm_state_t ∗ cnms);

DESCRIPTION
TheNetBSD console magic key sequence management framework is designed to provide flexible methods to
set, change, and detect magic key sequences on console devices and break into the debugger or ROM moni-
tor with a minimum of interrupt latency.

Drivers that generate console input should make use of these routines.A different cnm_state_tshould be
used for each separate input stream. Multiple devices that share the same input stream, such as USB
keyboards can share the samecnm_state_t. Once acnm_state_tis allocated, it should be initialized with
cn_init_magic() so it can be used bycn_check_magic(). If a driver thinks it might be the console
input device it can set the magic sequence withcn_set_magic() to any arbitrary string. Whenever the
driver receives input, it should callcn_check_magic() to process the data and determine whether the
magic sequence has been hit.

The magic key sequence can be accessed through thehw.cnmagicsysctl variable. Thisis the raw data and
may be keycodes rather than processed characters, depending on the console device.

Here is a description of the console magic interface:

void cn_init_magic(cnm_state_t ∗ cnm)

Initialize the console magic state pointed to bycnm to a usable state.

void cnm_trap()

Trap into the kernel debugger or ROM monitor. By default this routine is defined to be
console_debugger() but can be overridden in MI header files.

int cn_isconsole(dev_t dev)

NetBSD 3.0 November 11, 2000 1

CNMAGIC (9) NetBSD Kernel Developer’s Manual CNMAGIC (9)

Determine whether a given dev is the system console. This macro tests to see ifdev is the same
ascn_tab->cn_devbut can be overridden in MI header files.

void cn_check_magic(dev_t dev , int k , cnm_state_t ∗ cnms)

All input should be passed throughcn_check_magic() so the state machine remains in a con-
sistent state.cn_check_magic() callscn_isconsole() with dev to determine if this is the
console. Ifthat returns true then it runs the input valuek through the state machine. If the state
machine completes a match of the current console magic sequencecn_trap() is called. Some
input may need to be translated to state machine values such as the serial lineBREAKsequence.

void cn_destroy_magic(cnm_state_t ∗ cnms)

This should be called once whatcnms points to is no longer needed.

int cn_set_magic(char ∗ magic)
cn_set_magic() encodes anul terminated string arbitrary string into values that can be used
by the state machine and installs it as the global magic sequence. The escape sequence is character
value0x27 and can be used to encode special values:

0x27 The literal value0x27 .
0x01 SerialBREAKsequence.
0x02 Nul character.

Returns0 on success or a non-zero error value.

int cn_get_magic(char ∗ magic , int len)
Extract the current magic sequence from the state machine and return up tolen bytes of it in the
buffer pointed to bymagic. It uses the same encoding accepted bycn_set_magic(). Returns
0 on success or a non-zero error value.

SEE ALSO
sysctl (8)

HISTORY
TheNetBSD console magic key sequence management framework first appeared inNetBSD 1.6.

AUTHORS
The NetBSD console magic key sequence management framework was designed and implemented by
Eduardo Horvath〈eeh@NetBSD.org〉.

NetBSD 3.0 November 11, 2000 2

CONDVAR (9) NetBSDKernel Developer’s Manual CONDVAR (9)

NAME
cv, condvar, cv_init, cv_destroy, cv_wait, cv_wait_sig, cv_timedwait,
cv_timedwait_sig, cv_signal, cv_broadcast, cv_has_waiters — condition variables

SYNOPSIS
#include <sys/condvar.h>

void
cv_init(kcondvar_t ∗ cv , const char ∗ wmesg);

void
cv_destroy(kcondvar_t ∗ cv);

void
cv_wait(kcondvar_t ∗ cv , kmutex_t ∗ mtx);

int
cv_wait_sig(kcondvar_t ∗ cv , kmutex_t ∗ mtx);

int
cv_timedwait(kcondvar_t ∗ cv , kmutex_t ∗ mtx , int ticks);

int
cv_timedwait_sig(kcondvar_t ∗ cv , kmutex_t ∗ mtx , int ticks);

void
cv_signal(kcondvar_t ∗ cv);

void
cv_broadcast(kcondvar_t ∗ cv);

bool
cv_has_waiters(kcondvar_t ∗ cv);

options DIAGNOSTIC
options LOCKDEBUG

DESCRIPTION
Condition variables (CVs) are used in the kernel to synchronize access to resources that are limited (for
example, memory) and to wait for pending I/O operations to complete.

Thekcondvar_t type provides storage for the CV object.This should be treated as an opaque object and
not examined directly by consumers.

OPTIONS
options DIAGNOSTIC

Kernels compiled with theDIAGNOSTICoption perform basic sanity checks on CV operations.

options LOCKDEBUG

Kernels compiled with theLOCKDEBUGoption perform potentially CPU intensive sanity checks on
CV operations.

FUNCTIONS
cv_init(cv , wmesg)

Initialize a CV for use. No other operations can be performed on the CV until it has been initialized.

NetBSD 3.0 June 4, 2008 1

CONDVAR (9) NetBSDKernel Developer’s Manual CONDVAR (9)

The wmesg argument specifies a string of no more than 8 characters that describes the resource or
condition associated with the CV. The kernel does not use this argument directly but makes it avail-
able for utilities such asps (1) to display.

cv_destroy(cv)

Release resources used by a CV. The CV must not be in use when it is destroyed, and must not be
used afterwards.

cv_wait(cv , mtx)

Cause the current LWP to wait non-interruptably for access to a resource, or for an I/O operation to
complete. TheLWP will resume execution when awoken by another thread usingcv_signal() or
cv_broadcast().

mtx specifies a kernel mutex to be used as an interlock, and must be held by the calling LWP on entry
to cv_wait(). It will be released once the LWP has prepared to sleep, and will be reacquired before
cv_wait() returns.

A small window exists between testing for availability of a resource and waiting for the resource with
cv_wait(), in which the resource may become available again. Theinterlock is used to guarentee
that the resource will not be signalled as available until the calling LWP has begun to wait for it.

Non-interruptable waits have the potential to deadlock the system, and so must be kept short (typi-
cally, under one second).

cv_wait_sig(cv , mtx)

As percv_wait(), but causes the current LWP to wait interruptably. If the LWP recieves a signal, or
is interrupted by another condition such as its containing process exiting, the wait is ended early and
an error code returned.

If cv_wait_sig() returns as a result of a signal, the return value isERESTARTif the signal has the
SA_RESTARTproperty. If awoken normally, the value is zero, andEINTR under all other condi-
tions.

cv_timedwait(cv , mtx , ticks)

As percv_wait(), but will return early if a timeout specified by theticks argument expires.

ticks is an architecture and system dependent value related to the number of clock interrupts per
second. Seehz (9) for details.Themstohz (9) macro can be used to convert a timeout expressed in
milliseconds to one suitable forcv_timedwait(). If the ticks argument is zero,
cv_timedwait() behaves exactly likecv_wait().

If the timeout expires before the LWP is awoken, the return value isEWOULDBLOCK. If awoken nor-
mally, the return value is zero.

cv_timedwait_sig(cv , mtx , ticks)

As percv_wait_sig(), but also accepts a timeout value and will returnEWOULDBLOCKif the
timeout expires.

cv_signal(cv)

Aw aken one LWP (potentially among many) that is waiting on the specified condition variable. The
mutex passed to the wait function (mtx) must also be held when callingcv_signal().

(Note thatcv_signal() is erroneously named in that it does not send a signal in the traditional
sense to LWPs waiting on a CV.)

NetBSD 3.0 June 4, 2008 2

CONDVAR (9) NetBSDKernel Developer’s Manual CONDVAR (9)

cv_broadcast(cv)

Aw aken all LWPs waiting on the specified condition variable. Themutex passed to the wait function
(mtx) must also be held when callingcv_broadcast().

cv_has_waiters(cv)

Returntrue if one or more LWPs are waiting on the specified condition variable.

cv_has_waiters() cannot test reliably for interruptable waits. It should only be used to test for
non-interruptable waits made usingcv_wait().

cv_has_waiters() should only be used when making diagnostic assertions, and must be called
while holding the interlocking mutex passed tocv_wait().

EXAMPLES
Consuming a resource:

/ ∗
∗ Lock the resource. Its mutex will also serve as the
∗ interlock.
∗ /

mutex_enter(&res->mutex);

/ ∗
∗ Wait for the resource to become available.
∗ /

while (res->state == BUSY)
cv_wait(&res->condvar, &res->mutex);

/ ∗
∗ It’s now available to us. Take ownership of the
∗ resource, and consume it.
∗ /

res->state = BUSY;
mutex_exit(&res->mutex);
consume(res);

Releasing a resource for the next consumer to use:

mutex_enter(&res->mutex);
res->state = IDLE;
cv_signal(&res->condvar);
mutex_exit(&res->mutex);

CODE REFERENCES
This section describes places within theNetBSD source tree where code implementing condition variables
can be found. All pathnames are relative to /usr/src .

The core of the CV implementation is insys/kern/kern_condvar.c .

The header filesys/sys/condvar.h describes the public interface.

NetBSD 3.0 June 4, 2008 3

CONDVAR (9) NetBSDKernel Developer’s Manual CONDVAR (9)

SEE ALSO
sigaction (2), errno (9), mb(9), mstohz (9), mutex (9), rwlock (9)

Jim Mauro and Richard McDougall,Solaris Internals: Core Kernel Architecture, Prentice Hall, 2001, ISBN
0-13-022496-0.

HISTORY
The CV primitives first appeared inNetBSD 5.0.

NetBSD 3.0 June 4, 2008 4

CONFIG (9) NetBSD Kernel Developer’s Manual CONFIG(9)

NAME
config — the autoconfiguration framework “device definition” language

DESCRIPTION
In NetBSD, the config (1) program reads and verifies a machine description file (documented in
config (5)) that specifies the devices to include in the kernel. Atable is produced byconfig (1) which is
used by the kernel during autoconfiguration (seeautoconf (9)) giving needed hints and details on matching
hardware devices with device drivers.

Each device in the machine description file has:

A Name The name is simply an alphanumeric string that ends in a unit number (e.g., "sd0", "sd1", and so
forth). Theseunit numbers identify particular instances of a base device name; the base name in
turn maps directly to a device driver. Device unit numbers are independent of hardware features.

A Parent Every device must have a parent. Thepairing is denoted by "child at parent".These pairings form
the links in a directed graph. The root device is the only exception, as it does not have a parent.

Locators Locators are used to augment the parent/child pairings that locate specific devices. Eachlocator
value is simply an integer that represents some sort of device address on the parent bus or con-
troller. This can be a memory address, an I/O port, a driver number, or any other value. Locators
can sometimes be wildcarded on devices that support direct connection.

Attributes
An attribute describes the device’s relationship with the code; it then serves to constrain the device
graph. Aplain attribute describes some attribute of a device. An interface attribute describes a
kind of “software interface” and declares the device’s ability to support other devices that use that
interface. Inaddition, an interface attribute usually identifies additional locators.

During autoconfiguration, the directed graph is turned into a tree by nominating one device as the root node
and matching drivers with devices by doing a depth-first traversal through the graph starting at this root node.

However, there must be constraints on the parent/child pairings that are possible. These constraints are
embedded in the “device definition” files.The remainder of this page describes the “device definition” lan-
guage and how to use this language to add new functionality to theNetBSD kernel.

DEVICE DEFINITION FILES
The device definition files are separated into machine-dependent and machine-independent files.The
machine-dependent file is located insys/arch/<arch>/conf/files.<arch> , where <arch> is the
name ofNetBSD architecture. Themachine-independent file is located insys/conf/files . It in turn
includes files for the machine-independent drivers located insys/dev/<bus>/files.<bus> , where
<bus> is the name of the machine-independent bus.

These files define all legal devices and pseudo-devices. They also define all attributes and interfaces, estab-
lishing the rules that determine allowable machine descriptions, and list the source files that make up the ker-
nel.

Each device definition file consists of a list of statements, typically one per line. Comments may be inserted
anywhere using the “#” character, and any line that begins with white space continues the previous line.
Valid statements are:

cinclude filename
Conditionally include contents of filefilename to currently processed configuration. If the
specifiedfilename doesn’t exist, a warning is printed, but the error ignored.

NetBSD 3.0 August 19, 2003 1

CONFIG (9) NetBSD Kernel Developer’s Manual CONFIG(9)

defflag [filename] {options}
The space-separated list of pre-processor macrosoptionsare defined in filefilename. This state-
ment permits ‘‘options FOO’’ f or FOO (i.e, without a value) in the machine description file.
config (1) will generate an error if a value is given. If the filename field is not specified, it will
be constructed based upon the lower-case of the option name, ‘‘opt_foo.h’’ f or example. The
option is case-sensitive.

defparam [filename] {options}
The space-separated list of pre-processor macrosoptionsare defined in filefilename. This state-
ment permits ‘‘options FOO=bar’’ or ‘ ‘option FOO="\"com\""’’ in the machine description file.
config (1) will generate an error if a value is not given. If the filename field is not specified, it
will be constructed based upon the lower-case of the option name, ‘‘opt_foo.h’’ f or example. The
option is case-sensitive.

defopt [filename] {options}
The space-separated list of pre-processor macrosoptionsare defined in filefilename. This state-
ment permits the syntax of either the defflag and defparam statements andconfig (1) does not
perform any checking of whether ‘‘options FOO’’ takes a value. Therefore,the use of the defopt
statement is deprecated in favour of the defflag and defparam statements.If the filename field is
not specified, it will be constructed based upon the lower-case of the option name, ‘‘opt_foo.h’’ f or
example. Theoption is case-sensitive.

deffs [filename] name
Define a filesystemname.

devclass name
Define a device classname. A device class is similar to an attribute.

define name [{locators}]
The attributenameis defined and device definitions can then refer to it.If the attribute is an inter-
face attribute and defines optionallocators, device attributes that refer tonameare assumed to
share the interface and require the same locators.

device name [{locators}]: [attributes]
The device nameis defined and requires the optional comma-separated list of locatorslocators.
The optionalattributesdefine attribute dependencies.

attach name at interface [with ifname]: [attributes]
The device nameis defined and supports the interfaceinterface. If ifnameis specified, it is used to
specify the interface to the driver for device name(seedriver (9) for details). The optional
attributesdefine attribute dependencies.

defpseudo name: [{locators}]
The pseudo-device nameis defined. The optionallocatorsmay be defined, but are largely point-
less since no device can attach to a pseudo-device.

file pathname [attributes [flags]] [rule]
The filepathnameis added to the list of files used to build the kernel. Ifno attributes are specified,
the file is always added to the kernel compilation. If any of the attributes are specified by other
devices in the machine description file, then the file is included in compilation, otherwise it is
omitted. Valid values for the optional flags are:

needs-count
Specify that config should generate a file for each of the attributes notifying the driver
how many of some particular device or set of devices are configured in the kernel. This
flag allows drivers to make calculations of driver used at compile time. This option pre-
vents autoconfiguration cloning.

NetBSD 3.0 August 19, 2003 2

CONFIG (9) NetBSD Kernel Developer’s Manual CONFIG(9)

needs-flag
This flag performs the same operation asneeds-countbut only records if the number is
nonzero. Sincethe count is not exact, needs-flagdoes not prevent autoconfiguration
cloning.

device-major name char [block] [attributes]
The character device switchnameassociated with a character major device number is added to the
list of device switches used to build the kernel. Ifblock is specified, the block device switch asso-
ciated with a block major device number is also added.If all of attributes are specified by devices
in the machine description files, then device switches are added into the device switches’ table of
the kernel in compilation, otherwise they are omitted.

includefilename
Include contents of filefilename to currently processed configuration. If the specified
filename doesn’t exist, config (1) exits with error.

packagefilename
Changes prefix to directory offilename, processes contents offilename, and switches back
to previous prefix. This is syntactic sugar for:

prefixdirname(filename)
includebasename(filename)
prefix

prefix [dirname]
If dirname is specified, it is pushed on top of prefix stack.Any further files specified via option
file would have the prefix implicitly prepended before itsfilename. If dirname is not spec-
ified, pops (removes) a prefix from prefix stack.

To allow locators to be wildcarded in the machine description file, their default value must be defined in the
attribute definition.To allow locators to be omitted entirely in the machine description file, enclose the loca-
tor in square brackets. Thiscan be used when some locators do not make sense for some devices, but the
software interface requires them.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
autoconfiguration framework can be found. All pathnames are relative to /usr/src .

The device definition files are insys/conf/files , sys/arch/<arch>/conf/files.<arch> , and
sys/dev/<bus>/files.<bus> .

The grammar for machine description files can be found inconfig (1), inusr.bin/config/gram.y .

SEE ALSO
config (1), config (5), autoconf (9), driver (9)

Building 4.4 BSD Systems with Config.

Chris Torek,Device Configuration in 4.4BSD, 1992.

HISTORY
Autoconfiguration first appeared in 4.1BSD. The autoconfiguration framework was completely revised in
4.4BSD. It has been modified withinNetBSD to support bus-independent drivers and bus-dependent attach-
ments.

NetBSD 3.0 August 19, 2003 3

CONS (9) NetBSD Kernel Developer’s Manual CONS(9)

NAME
cnbell, cnflush, cngetc, cngetsn, cnhalt, cnpollc, cnputc — console access interface

SYNOPSIS
#include <dev/cons.h>

void
cnbell(u_int pitch , u_int period , u_int volume);

void
cnflush(void);

int
cngetc(void);

int
cngetsn(char ∗ cp , int size);

void
cnhalt(void);

void
cnpollc(int on);

void
cnputc(int c);

DESCRIPTION
These functions operate over the current console device. Theconsole must be initialized before these func-
tions can be used.

Console input polling functionscngetc(), cngetsn() andcnpollc() are only to be used during initial
system boot, e.g., when asking for root and dump device or to get necessary user input within mount-
roothooks. Oncethe system boots, user input is read via standardtty (4) facilities.

The following is a brief description of each function:

cnbell() Ring a bell at appropriatepitch, for duration ofperiod milliseconds at given volume.
Note that thevolume value is ignored commonly.

cnflush() Waits for all pending output to finish.

cngetc() Poll (busy wait) for an input and return the input key. Returns 0 if there is no console input
device. cnpollc() mustbe called beforecngetc() could be used.cngetc() should be
used during kernel startup only.

cngetsn() Read one line of user input, stop reading once the newline key is input. Inputis echoed back.
This usescnpollc() andcngetc(). Numberof read characters issize at maximum, user
is notified by console bell when the end of input buffer is reached. <Backspace> key works as
expected. <@>or <CTRL>-u make cngetsn() discard input read so far, print newline and
wait for next input. cngetsn() returns number of characters actually read, excluding the
final newline. cp is not zero-ended before return.cngetsn() should be used during kernel
startup only.

cnhalt() Terminates the console device (i.e. cleanly shuts down the console hardware.)

cnpollc() Switch the console driver to polling mode ifon is nonzero, or back to interrupt driven mode if
on is zero.cnpollc() should be used during kernel startup only.

NetBSD 3.0 April 1, 2003 1

CONS (9) NetBSD Kernel Developer’s Manual CONS(9)

cnputc() Console kernel output character routine.Commonly, kernel code usesprintf (9) rather than
using this low-level interface.

EXAMPLES
This waits until a <Enter> key is pressed:

int c;

cnpollc(1);
for(;;) {

c = c ngetc();
if ((c == ’\r’ || (c == ’\n’)) {

printf("\n");
break;

}
}
cnpollc(0);

SEE ALSO
pckbd (4), pcppi (4), tty (4), wscons (4), wskbd (4), printf (9), spl (9), wscons (9)

NetBSD 3.0 April 1, 2003 2

COPY (9) NetBSD Kernel Developer’s Manual COPY(9)

NAME
copy, copyin, copyout, copystr, copyinstr, copyoutstr — kernel space to/from user space
copy functions

SYNOPSIS
#include <sys/types.h>
#include <sys/systm.h>

int
copyin(const void ∗ uaddr , void ∗ kaddr , size_t len);

int
copyout(const void ∗ kaddr , void ∗ uaddr , size_t len);

int
copystr(const void ∗ kfaddr , void ∗ kdaddr , size_t len , size_t ∗ done);

int
copyinstr(const void ∗ uaddr , void ∗ kaddr , size_t len , size_t ∗ done);

int
copyoutstr(const void ∗ kaddr , void ∗ uaddr , size_t len , size_t ∗ done);

int
copyin_proc(struct lwp ∗ l , const void ∗ uaddr , void ∗ kaddr , size_t len);

int
copyout_proc(struct lwp ∗ l , const void ∗ kaddr , void ∗ uaddr , size_t len);

int
ioctl_copyin(int ioctlflags , const void ∗ src , void ∗ dst , size_t len);

int
ioctl_copyout(int ioctlflags , const void ∗ src , void ∗ dst , size_t len);

DESCRIPTION
Thecopy functions are designed to copy contiguous data from one address to another. All but copystr()
copy data from user-space to kernel-space or vice-versa.

Thecopy routines provide the following functionality:

copyin() Copieslen bytes of data from the user-space addressuaddr in the current process to
the kernel-space addresskaddr.

copyout() Copieslen bytes of data from the kernel-space addresskaddr to the user-space
addressuaddr in the current process.

copystr() Copies a NUL-terminated string, at mostlen bytes long, from kernel-space address
kfaddr to kernel-space addresskdaddr. If thedone argument is non-NULL, the
number of bytes actually copied, including the terminating NUL, is returned in
∗ done.

copyinstr() Copies a NUL-terminated string, at mostlen bytes long, from user-space address
uaddr in the current process to kernel-space addresskaddr. If thedone argument
is non-NULL, the number of bytes actually copied, including the terminating NUL, is
returned in∗ done.

NetBSD 3.0 January 29, 2006 1

COPY (9) NetBSD Kernel Developer’s Manual COPY(9)

copyoutstr() Copies a NUL-terminated string, at mostlen bytes long, from kernel-space address
kaddr to user-space addressuaddr in the current process. If thedone argument is
non-NULL, the number of bytes actually copied, including the terminating NUL, is
returned in∗ done.

copyin_proc() Like copyin(), except it operates on the address space of the lwpl.

copyout_proc() Like copyout(), except it operates on the address space of the lwpl.

ioctl_copyin() Like copyin(), except it operates on kernel adresses when theFKIOCTL flag is
passed inioctlflags from the ioctl call.

ioctl_copyout()
Like copyout(), except it operates on kernel adresses when theFKIOCTL flag is
passed inioctlflags from the ioctl call.

RETURN VALUES
The copy functions return 0 on success orEFAULT if a bad address is encountered. In addition, the
copystr(), copyinstr(), andcopyoutstr() functions returnENAMETOOLONGif the string is longer
thanlen bytes.

SEE ALSO
fetch (9), store (9)

NetBSD 3.0 January 29, 2006 2

COREDUMP_WRITE (9) NetBSD Kernel Developer’s Manual COREDUMP_WRITE(9)

NAME
coredump_write — common coredump write routine

SYNOPSIS
#include <sys/signalvar.h>

int
coredump_write(void ∗ iocookie , enum uio_seg segflg , const void ∗ data ,

size_t len);

DESCRIPTION
coredump_write() is used by both machine-dependent and machine-independent components to write
information to a coredump.iocookie is an opaque pointer that was supplied to the caller of
coredump_write(). segflg indicates where thedata is located, system space or user space.data
points to the information to be written to the coredump.len is the amount of data to be written.

coredump_write() returns 0 on success and an appropriate error code on failure.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using
coredump_write() can be found. All pathnames are relative to /usr/src .

Process core dumps are initiated within the filesys/kern/kern_sig.c . Process core dumps for ELF
NetBSD binaries are performed within the files sys/kern/core_elf32.c or
sys/kern/core_elf64.c . Process core dumps for otherNetBSD binaries are performed within the file
sys/kern/core_netbsd.c .

SEE ALSO
cpu_coredump (9)

NetBSD 3.0 December 24, 2005 1

CPU_CONFIGURE (9) NetBSD Kernel Developer’s Manual CPU_CONFIGURE(9)

NAME
cpu_configure — machine-dependent device autoconfiguration

SYNOPSIS
#include <sys/systm.h>

void
cpu_configure(void);

DESCRIPTION
cpu_configure() is called during system bootstrap to perform the machine-dependent portion of device
autoconfiguration. Itsets the configuration machinery in motion by finding the root bus ("mainbus"). When
this function returns, interrupts must be enabled.

cpu_configure() performs the following tasks:

• initialize soft interrupts (seesoftintr (9))

• initialize CPU interrupts and SPLs

• call config_rootfound() for "mainbus"

• complete any initialization deferred fromcpu_startup().

SEE ALSO
autoconf (9), cpu_startup (9)

NetBSD 3.0 May 23, 2002 1

CPU_COREDUMP (9) NetBSD Kernel Developer’s Manual CPU_COREDUMP(9)

NAME
cpu_coredump — machine-dependent process core dump interface

SYNOPSIS
#include <sys/signalvar.h>

int
cpu_coredump(struct lwp ∗ l , void ∗ iocookie , struct core ∗ chdr);

int
cpu_coredump32(struct lwp ∗ l , void ∗ iocookie , struct core32 ∗ chdr);

DESCRIPTION
cpu_coredump() is the machine-dependent interface invoked by machine-independent code to dump the
machine-dependent header information at the start of a process core dump.The header information primar-
ily consists of the CPU and floating-point registers. l is the lwp structure of the thread being dumped.
iocookie is an opaque pointer to be passed tocoredump_write(). Informationabout the machine-
dependent header sections are returned inchdr.

cpu_coredump() returns 0 on success and an appropriate error code on failure.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-dependent coredump interface can be found. All pathnames are relative to /usr/src .

Process core dumps are initiated within the filesys/kern/kern_sig.c . Process core dumps for ELF
NetBSD binaries are performed within the files sys/kern/core_elf32.c or
sys/kern/core_elf64.c . Process core dumps for otherNetBSD binaries are performed within the file
sys/kern/core_netbsd.c .

SEE ALSO
coredump_write (9)

NetBSD 3.0 December 24, 2005 1

CPU_DUMPCONF (9) NetBSD Kernel Developer’s Manual CPU_DUMPCONF(9)

NAME
cpu_dumpconf, cpu_dump, cpu_dumpsize, dumpsys — machine-dependent kernel core dumps

SYNOPSIS
#include <sys/types.h>
#include <sys/systm.h>

void
cpu_dumpconf(void);

int
cpu_dump(int (∗ dump)(dev_t, daddr_t, void ∗ , size_t) , daddr_t ∗ blknop);

int
cpu_dumpsize(void);

void
dumpsys(void);

DESCRIPTION
cpu_dumpconf() is the machine-dependent interface invoked during system bootstrap to determine the
dump device and initialize machine-dependent kernel core dump state.Internally,cpu_dumpconf() will
invokecpu_dumpsize() to calculate the size of machine-dependent kernel core dump headers.

dumpsys() is invoked by cpu_reboot() to dump kernel physical memory onto the dump device.
dumpsys() invokescpu_dump() to write the machine-dependent header to the dump device at block num-
ber ∗ blknop using the dump device’s PIO dump routine specified by thedump argument.

cpu_dumpsize(), cpu_dump(), anddumpsys() are parts of the machine-dependent interface, however
they are not exported to machine-independent code.

SEE ALSO
cpu_reboot (9)

NetBSD 3.0 May 24, 2002 1

CPU_IDLE (9) NetBSD Kernel Developer’s Manual CPU_IDLE(9)

NAME
cpu_idle — machine-dependent processor idling interface

SYNOPSIS
#include <sys/cpu.h>

void
cpu_idle(void);

DESCRIPTION
cpu_idle() is called by machine-independent code when the processor has nothing to do.It can be used to
conserve the processor power, for example.

cpu_idle() returns immediately ifcpu_need_resched() has been called for the processor after the last
call of cpu_idle() or cpu_did_resched() on the processor. cpu_idle() returns as soon as possible
whencpu_need_resched() is called for the processor. Otherwise, it returns whenever it l ikes.

cpu_idle() is called atIPL_NONE, without any locks held.

EXAMPLES
The simplest (and, in some cases, the best) implementation ofcpu_idle() is the following.

void
cpu_idle(void)
{

/ ∗ nothing ∗ /
}

SEE ALSO
cpu_need_resched (9), cpu_switchto (9), intro (9), spl (9)

NetBSD 3.0 April 20, 2007 1

CPU_INITCLOCKS (9) NetBSD Kernel Developer’s Manual CPU_INITCLOCKS(9)

NAME
cpu_initclocks — machine-dependent clock setup interface

SYNOPSIS
#include <sys/systm.h>

void
cpu_initclocks(void);

DESCRIPTION
cpu_initclocks() is invoked by initclocks() during system bootstrap, immediately after autoconfig-
uration, to perform the machine-dependent initialization of clock frequencies and start the real-time and
statistic clocks running.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-dependent clocks initialization interface can be found. All pathnames are relative to /usr/src .

Machine-independent clock interface operations are performed within the file
sys/kern/kern_clock.c .

SEE ALSO
autoconf (9)

NetBSD 3.0 May 24, 2002 1

CPU_LWP_FORK (9) NetBSD Kernel Developer’s Manual CPU_LWP_FORK (9)

NAME
cpu_lwp_fork, child_return, proc_trampoline — finish a fork operation

SYNOPSIS
#include <sys/proc.h>

void
cpu_lwp_fork(struct lwp ∗ l1 , struct lwp ∗ l2 , void ∗ stack , size_t stacksize ,

void (∗ func)(void ∗) , void ∗ arg);

void
child_return(void ∗ arg);

DESCRIPTION
cpu_lwp_fork() is the machine-dependent portion offork1() which finishes a fork operation, with child
lwp l2 nearly set up.It copies and updates the PCB and trap frame from the parentl1, making the child
ready to run.

cpu_lwp_fork() rigs the child’s kernel stack so that it will start inproc_trampoline().
proc_trampoline() does not have a normal calling sequence and is entered bycpu_switch(). If an
alternate user-level stack is requested (with non-zero values in both thestack and stacksize argu-
ments), the user stack pointer is set up accordingly.

After being entered bycpu_switch() and while running in user context (within the kernel)
proc_trampoline() will invoke the functionfunc with the argumentarg. If a kernel thread is being
created, the return path and argument are specified withfunc andarg. If a user process is being created,
fork1() will passchild_return() andl2 to cpu_lwp_fork() asfunc andarg respectively. This
causes the newly-created child process to go directly to user level with an apparent return value of 0 from
fork (2), while the parent process returns normally.

SEE ALSO
fork (2), cpu_switch (9), fork1 (9)

NetBSD 3.0 January 29, 2006 1

CPU_NEED_RESCHED (9) NetBSD Kernel Developer’s Manual CPU_NEED_RESCHED(9)

NAME
cpu_need_resched — context switch notification

SYNOPSIS
#include <sys/cpu.h>

void
cpu_need_resched(struct cpu_info ∗ ci , int flags);

DESCRIPTION
The cpu_need_resched() function is the machine-independent interface for the scheduler to notify
machine-dependent code that a context switch from the current LWP, on the cpuci, is required. Thisev ent
may occur if a higher priority LWP appears on the run queue or if the current LWP has exceeded its time
slice.

If RESCHED_IMMEDflag is specified inflags, machine-dependent code should make a context switch
happen as soon as possible.In that case, for example, ifci is not the current processor,
cpu_need_resched() typically issues an inter processor call to the processor to make it notice the need
of a context switch as soon as possible.

EXAMPLES
Specifically, thecpu_need_resched() function will perform the following operations:

• Set a per-processor flag which is checked byuserret (9) when returning to user-mode execu-
tion.

• Post an asynchronous software trap (AST).

• Send an inter processor interrupt to wake up cpu_idle().

SEE ALSO
sched_4bsd (9), userret (9)

NetBSD 3.0 May 18, 2007 1

CPU_NUMBER (9) NetBSD Kernel Developer’s Manual CPU_NUMBER(9)

NAME
cpu_number — unique CPU identification number

SYNOPSIS
#include <sys/types.h>
#include <machine/cpu.h>

cpuid_t
cpu_number(void);

DESCRIPTION
cpu_number() returns the unique CPU identification number for the CPU that this thread is running on.

SEE ALSO
curcpu (9)

NetBSD 3.0 May 23, 2002 1

CPU_REBOOT (9) NetBSDKernel Developer’s Manual CPU_REBOOT (9)

NAME
cpu_reboot — halt or reboot the system

SYNOPSIS
#include <sys/reboot.h>

void
cpu_reboot(int howto , char ∗ bootstr);

DESCRIPTION
The cpu_reboot() function handles final system shutdown, and either halts or reboots the system.The
exact action to be taken is determined by the flags passed inhowto and by whether or not the system has
finished autoconfiguration.

If the system has finished autoconfiguration,cpu_reboot() does the following:

1. Setstheboothowtosystem variable from thehowto argument.

2. If this is the first invocation ofcpu_reboot() and theRB_NOSYNCflag is not set inhowto,
syncs and unmounts the system disks by callingvfs_shutdown (9) and sets the time of day
clock by callingresettodr (9).

3. Disablesinterrupts.

4. If rebooting after a crash (i.e., ifRB_DUMPis set inhowto, but RB_HALTis not), saves a sys-
tem crash dump.

5. Runsany shutdown hooks by callingdoshutdownhooks (9).

6. Printsa message indicating that the system is about to be halted or rebooted.

7. If RB_HALTis set inhowto, halts the system. Otherwise, reboots the system.

If the system has not finished autoconfiguration,cpu_reboot() runs any shutdown hooks by calling
doshutdownhooks (9), prints a message, and halts the system.

If RB_STRINGis set inhowto , then the parameterbootstr is passed to the system boot loader on some
ports.

SEE ALSO
doshutdownhooks (9), dumpsys (9), resettodr (9), vfs_shutdown (9)

NetBSD 3.0 November 13, 1995 1

CPU_ROOTCONF (9) NetBSD Kernel Developer’s Manual CPU_ROOTCONF (9)

NAME
cpu_rootconf — machine-dependent root file system setup

SYNOPSIS
#include <sys/types.h>
#include <sys/systm.h>

void
cpu_rootconf(void);

DESCRIPTION
cpu_rootconf() is the machine-dependent interface invoked during system bootstrap to determine the
root file system device and initialize machine-dependent file system state.cpu_rootconf() invokes the
machine-independent functionsetroot() to record the boot/root device and the boot partition information
for use in machine-independent code.

SEE ALSO
setroot (9)

NetBSD 3.0 May 24, 2002 1

CPU_STARTUP (9) NetBSD Kernel Developer’s Manual CPU_STARTUP (9)

NAME
cpu_startup — machine-dependent CPU startup

SYNOPSIS
#include <sys/systm.h>

void
cpu_startup(void);

DESCRIPTION
cpu_startup() is invoked early during system bootstrap, after the console has been set up and immedi-
ately afteruvm(9) has been initialized.cpu_startup() performs the following tasks:

• prints the initial copyright message

• allocate memory and buffers for kernel tables

• initialize the CPU

SEE ALSO
autoconf (9), uvm(9)

NetBSD 3.0 February 27, 2006 1

CPU_SWAPOUT (9) NetBSD Kernel Developer’s Manual CPU_SWAPOUT (9)

NAME
cpu_swapout, cpu_swapin — machine-dependent swap interface

SYNOPSIS
#include <sys/lwp.h>
#include <machine/cpu.h>

void
cpu_swapout(struct lwp ∗ l);

void
cpu_swapin(struct lwp ∗ l);

DESCRIPTION
cpu_swapout() andcpu_swapin() are the machine-dependent interface for swapping processes in and
out of the system.They perform any machine-specific operations such as saving and restoring floating point
state. They are invoked by uvm_swapout() anduvm_swapin() respectively.

SEE ALSO
uvm(9)

NetBSD 3.0 December 20, 2005 1

CPU_SWITCHTO (9) NetBSDKernel Developer’s Manual CPU_SWITCHTO (9)

NAME
cpu_switchto — machine-dependent LWP context switching interface

SYNOPSIS
#include <sys/cpu.h>

lwp_t ∗
cpu_switchto(lwp_t ∗ oldlwp , lwp_t ∗ newlwp , bool returning);

DESCRIPTION
cpu_switchto() saves the context of the LWP which is currently running on the processor, and restores
the context of the LWP specified bynewlwp.

cpu_switchto() doesn’t switch address spaces.

cpu_switchto() setscurlwp to newlwp.

cpu_switchto() should be called atIPL_SCHED. Whencpu_switchto() returns, the caller should
lower the priority level as soon as possible.

cpu_switchto() might be called with spin mutexes held.

It takes the following arguments.

oldlwp Specify the lwp from which we are going to switch, i.e., the calling LWP. If it wasNULL, the con-
text of the LWP currently running on this processor is not saved.

newlwp Specify the lwp to which we are going to switch. It must not beNULL.

returning
Only meaningful if the architecture implements fast software interrupts. If true, it indicates that
oldlwp is a soft interrupt LWP that is blocking.It’s a good indication that any kind of address
space or user activity can be completely ignored.For example:ras_lookup(), cache flushes,
TLB wirings, adjusting lazy FPU state. All that is required is to restore the register state and stack,
and return to the interrupted LWP.

RETURN VALUES
cpu_switchto() does not return until another LWP callscpu_switchto() to switch to us. It returns
the oldlwp argument of thecpu_switchto() which is called to switch back to our LWP. It’s either an
LWP which calledcpu_switchto to switch to us orNULL in the case that the LWP was exiting.

SEE ALSO
swapcontext (3), intro (9), mutex (9), spl (9)

NetBSD 3.0 May 21, 2007 1

CSF (9) NetBSD Kernel Developer’s Manual CSF(9)

NAME
CSF — TheNetBSD common scheduler framework

SYNOPSIS
#include <sys/sched.h>

void
sched_rqinit(void);

void
sched_setup(void);

void
sched_cpuattach(struct cpu_info ∗);

void
sched_tick(struct cpu_info ∗);

void
sched_schedclock(lwp_t ∗);

bool
sched_curcpu_runnable_p(void);

lwp_t ∗
sched_nextlwp(void);

void
sched_enqueue(lwp_t ∗ , bool);

void
sched_dequeue(lwp_t ∗);

void
sched_nice(struct proc ∗ , int);

void
sched_proc_fork(struct proc ∗ , struct proc ∗);

void
sched_proc_exit(struct proc ∗ , struct proc ∗);

void
sched_lwp_fork(lwp_t ∗);

void
sched_lwp_exit(lwp_t ∗);

void
sched_setrunnable(lwp_t ∗);

void
sched_print_runqueue(void (∗ pr)(const char ∗ , ...));

void
sched_pstats_hook(struct proc ∗ , int);

void
sched_pstats(void ∗ arg);

NetBSD 3.0 July 14, 2007 1

CSF (9) NetBSD Kernel Developer’s Manual CSF(9)

pri_t
sched_kpri(lwp_t ∗);

void
resched_cpu(lwp_t ∗);

void
setrunnable();

void
schedclock(lwp_t ∗);

void
sched_init(void);

DESCRIPTION
CSF provides a modular and self-contained interface for implementing different thread scheduling algo-
rithms. Thedifferent schedulers can be selected at compile-time.Currently, the only scheduler available is
sched_4bsd (9), the traditional 4.4BSD thread scheduler.

The interface is divided into two parts: A set of functions each scheduler needs to implement and common
functions used by all schedulers.

Scheduler-specific functions
The following functions have to be implemented by the individual scheduler.

Scheduler initialization
void sched_cpuattach(struct cpu_info ∗)

Per-CPU scheduler initialization routine.

void sched_rqinit(void)
Initialize the scheduler’s runqueue data structures.

void sched_setup(void)
Setup initial scheduling parameters and kick off timeout driven events.

Runqueue handling
Runqueue handling is completely internal to the scheduler. Other parts of the kernel should access run-
queues only through the following functions:

void sched_enqueue(lwp_t ∗ , bool)
Place an LWP within the scheduler’s runqueue structures.

void sched_dequeue(lwp_t ∗)
Remove an LWP from the scheduler’s runqueue structures.

lwp_t ∗ sched_nextlwp(void)
Return the LWP that should run the CPU next.

bool sched_curcpu_runnable_p(void)
Indicate if there is a runnable LWP for the current CPU.

void sched_print_runqueue(void (∗ pr)(const char ∗ , ...))
Print runqueues in DDB.

NetBSD 3.0 July 14, 2007 2

CSF (9) NetBSD Kernel Developer’s Manual CSF(9)

Core scheduler functions
void sched_tick(struct cpu_info ∗)

Periodically called fromhardclock (9). Determinesif a reschedule is necessary, if the running
LWP has used up its quantum.

void sched_schedclock(lwp_t ∗)
Periodically called fromschedclock() in order to handle priority adjustment.

Priority adjustment
void sched_nice(struct proc ∗ , int)

Recalculate the process priority according to its nice value.

General helper functions
void sched_proc_fork(struct proc ∗ , struct proc ∗)

Inherit the scheduling history of the parent process afterfork().

void sched_proc_exit(struct proc ∗ , struct proc ∗)
Charge back a processes parent for its resource usage.

void sched_lwp_fork(lwp_t ∗)
LWP-specific version of the above

void sched_lwp_exit(lwp_t ∗)
LWP-specific version of the above

void sched_setrunnable(lwp_t ∗)
Scheduler-specific actions forsetrunnable().

void sched_pstats_hook(struct proc ∗ , int)
Scheduler-specific actions forsched_pstats().

Common scheduler functions
pri_t sched_kpri(lwp_t ∗)

Scale a priority level to a kernel priority level, usually for an LWP that is about to sleep.

void sched_pstats(void ∗)
Update process statistics and check CPU resource allocation.

inline void resched_cpu(lwp_t ∗)
Arrange for a reschedule.

void setrunnable(lwp_t ∗)
Change process state to be runnable, placing it on a runqueue if it is in memory, awakening the
swapper otherwise.

void schedclock(lwp_t ∗)
Scheduler clock. Periodically called fromstatclock().

void sched_init(void)
Initialize callout forsched_pstats() and callsched_setup() to initialize any other sched-
uler-specific data.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing the scheduler
can be found. All pathnames are relative to /usr/src .

NetBSD 3.0 July 14, 2007 3

CSF (9) NetBSD Kernel Developer’s Manual CSF(9)

TheCSF programming interface is defined within the filesys/sys/sched.h .

Functions common to all scheduler implementations are insys/kern/kern_synch.c .

The traditional 4.4BSD scheduler is implemented insys/kern/sched_4bsd.c .

SEE ALSO
mi_switch (9), preempt (9), sched_4bsd (9)

HISTORY
TheCSF appeared inNetBSD 5.0.

AUTHORS
TheCSF was written by Daniel Sieger〈dsieger@NetBSD.org〉.

NetBSD 3.0 July 14, 2007 4

CURPROC (9) NetBSD Kernel Developer’s Manual CURPROC (9)

NAME
curproc, curcpu — current process and processor

SYNOPSIS
#include <sys/proc.h>

struct cpu_info ∗
curcpu(void);

struct proc ∗
curproc(void);

DESCRIPTION
curcpu() returns a pointer to acpu_infostructure containing information of the CPU that this thread is run-
ning on. curproc() returns a pointer to the process currently running on this CPU.

NetBSD 3.0 May 23, 2002 1

DDC (9) NetBSD Kernel Developer’s Manual DDC(9)

NAME
ddc — VESA Display Data Channel V2

SYNOPSIS
#include <dev/i2c/ddcvar.h>

int
ddc_read_edid(i2c_tag_t tag , uint8_t ∗ dest , size_t len);

DESCRIPTION
Theddc_read_edid() reads a VESA Extended Display Identification Data block (EDID) via VESA Dis-
play Data Channel (DDCv2). DDCv2 is a protocol for data exchange between display devices (such as mon-
itors and flat panels) and host machines using an I2C bus.

Thetag argument is a machine-dependent tag used to specify the I2C bus on which the DDCv2 device is
located. Thedest argument is a pointer to a buffer where the EDID data will be stored.Thelen argument
is the amount of data to read into the buffer. (The buffer must be large enough.)Typically, this value will be
128, which is the size of a normal EDID data block.

Normally the EDID data block will be post-processed with theedid_parse() function.

RETURN VALUES
Theddc_read_edid() function returns zero on success, and non-zero otherwise.

ENVIRONMENT
The ddc_read_edid() function is part of theddc (4) driver, and is only included in the kernel if that
driver is also included.

EXAMPLES
The following code usesddc_read_edid() to retrieve and print information about a monitor:

struct edid_info info;
i2c_tag_t tag;
char buffer[128];

...
/ ∗ initialize i2c tag... ∗ /
...
if ((ddc_read_edid(tag, buffer, 128) == 0) &&

(edid_parse(buffer, &info) == 0))
edid_print(info);

...

Note that this must be called before the PCI bus is attached during autoconfiguration.

SEE ALSO
ddc (4), edid (9), iic (9)

HISTORY
DDCv2 support was added inNetBSD 4.0.

AUTHORS
Garrett D’Amore〈gdamore@NetBSD.org〉

NetBSD 3.0 May 11, 2006 1

DELAY (9) NetBSDKernel Developer’s Manual DELAY (9)

NAME
delay, DELAY — microsecond delay

SYNOPSIS
#include <machine/param.h>

void
delay(unsigned int us);

void
DELAY(unsigned int us);

DESCRIPTION
Wait approximatelyus microseconds.

The delay is implemented as a machine loop, preventing events other than interrupt handlers for unmasked
interrupts to run.DELAY() is reentrant (doesn’t modify any global kernel or machine state) and is safe to use
in interrupt or process context.

For long delays, condition variables should be considered, however they can only be used from process con-
text and their resolution is limited by the system clock frequency.

SEE ALSO
condvar (9), hz (9)

NetBSD 3.0 May 23, 2002 1

DISK (9) NetBSD Kernel Developer’s Manual DISK(9)

NAME
disk, disk_init, disk_attach, disk_detach, disk_destroy, disk_busy, disk_unbusy,
disk_find, disk_blocksize — generic disk framework

SYNOPSIS
#include <sys/types.h>
#include <sys/disklabel.h>
#include <sys/disk.h>

void
disk_init(struct disk ∗ , const char ∗ name , const struct dkdriver ∗ driver);

void
disk_attach(struct disk ∗);

void
disk_detach(struct disk ∗);

void
disk_destroy(struct disk ∗);

void
disk_busy(struct disk ∗);

void
disk_unbusy(struct disk ∗ , long bcount , int read);

struct disk ∗
disk_find(const char ∗);

void
disk_blocksize(struct disk ∗ , int blocksize);

DESCRIPTION
TheNetBSD generic disk framework is designed to provide flexible, scalable, and consistent handling of disk
state and metrics information. The fundamental component of this framework is thedisk structure, which
is defined as follows:

struct disk {
TAILQ_ENTRY(disk) dk_link; / ∗ link in global disklist ∗ /
const char ∗ dk_name; / ∗ disk name ∗ /
prop_dictionary_t dk_info; / ∗ reference to disk-info dictionary ∗ /
int dk_bopenmask; / ∗ block devices open ∗ /
int dk_copenmask; / ∗ character devices open ∗ /
int dk_openmask; / ∗ composite (bopen|copen) ∗ /
int dk_state; / ∗ label state ### ∗ /
int dk_blkshift; / ∗ shift to convert DEV_BSIZE to blks ∗ /
int dk_byteshift; / ∗ shift to convert bytes to blks ∗ /

/ ∗
∗ Metrics data; note that some metrics may have no meaning
∗ on certain types of disks.
∗ /

struct io_stats ∗ dk_stats;

const struct dkdriver ∗ dk_driver; / ∗ pointer to driver ∗ /

NetBSD 3.0 May 3, 2008 1

DISK (9) NetBSD Kernel Developer’s Manual DISK(9)

/ ∗
∗ Information required to be the parent of a disk wedge.
∗ /

kmutex_t dk_rawlock; / ∗ lock on these fields ∗ /
u_int dk_rawopens; / ∗ # of o penes of rawvp ∗ /
struct vnode ∗ dk_rawvp; / ∗ vnode for the RAW_PART bdev ∗ /

kmutex_t dk_openlock; / ∗ lock on these and openmask ∗ /
u_int dk_nwedges; / ∗ # of c onfigured wedges ∗ /

/ ∗ all wedges on this disk ∗ /
LIST_HEAD(, dkwedge_softc) dk_wedges;

/ ∗
∗ Disk label information. Storage for the in-core disk label
∗ must be dynamically allocated, otherwise the size of this
∗ structure becomes machine-dependent.
∗ /

daddr_t dk_labelsector; / ∗ sector containing label ∗ /
struct disklabel ∗ dk_label; / ∗ label ∗ /
struct cpu_disklabel ∗ dk_cpulabel;

};

The system maintains a global linked-list of all disks attached to the system. This list, calleddisklist,
may grow or shrink over time as disks are dynamically added and removed from the system.Drivers which
currently make use of the detachment capability of the framework are theccd andvnd pseudo-device driv-
ers.

The following is a brief description of each function in the framework:

disk_init() Initialize the disk structure.

disk_attach() Attach a disk; allocate storage for the disklabel, set the “attached time” timestamp,
insert the disk into the disklist, and increment the system disk count.

disk_detach() Detach a disk; free storage for the disklabel, remove the disk from the disklist, and
decrement the system disk count. If the count drops below zero, panic.

disk_destroy() Release resources used by the disk structure when it is no longer required.

disk_busy() Increment the disk’s “busy counter”. If this counter goes from 0 to 1, set the time-
stamp corresponding to this transfer.

disk_unbusy() Decrement a disk’s busy counter. If the count drops below zero, panic. Get the cur-
rent time, subtract it from the disk’s timestamp, and add the difference to the disk’s
running total. Set the disk’s timestamp to the current time. If the provided byte
count is greater than 0, add it to the disk’s running total and increment the number
of transfers performed by the disk. The third argumentread specifies the direction
of I/O; if non-zero it means reading from the disk, otherwise it means writing to the
disk.

disk_find() Return a pointer to the disk structure corresponding to the name provided, or NULL
if the disk does not exist.

disk_blocksize() Initialize dk_blkshift anddk_byteshift members ofstruct disk with
suitable values derived from the supplied physical blocksize. It is only necessary to
call this function if the device’s physical blocksize is notDEV_BSIZE.

NetBSD 3.0 May 3, 2008 2

DISK (9) NetBSD Kernel Developer’s Manual DISK(9)

The functions typically called by device drivers aredisk_init() disk_attach(), disk_detach(),
disk_destroy,() disk_busy(), disk_unbusy(), and disk_blocksize(). The function
disk_find() is provided as a utility function.

USING THE FRAMEW ORK
This section includes a description on basic use of the framework and example usage of its functions.Actual
implementation of a device driver which uses the framework may vary.

Each device in the system uses a “softc” structure which contains autoconfiguration and state information for
that device. Inthe case of disks, the softc should also contain one instance of the disk structure, e.g.:

struct foo_softc {
device_t sc_dev; / ∗ generic device information ∗ /
struct disk sc_dk; / ∗ generic disk information ∗ /
[. . . m ore . . .]

};

In order for the system to gather metrics data about a disk, the disk must be registered with the system.The
disk_attach() routine performs all of the functions currently required to register a disk with the system
including allocation of disklabel storage space, recording of the time since boot that the disk was attached,
and insertion into the disklist. Note that since this function allocates storage space for the disklabel, it must
be called before the disklabel is read from the media or used in any other way. Beforedisk_attach() is
called, a portions of the disk structure must be initialized with data specific to that disk.For example, in the
“foo” disk driver, the following would be performed in the autoconfiguration “attach” routine:

void
fooattach(device_t parent, device_t self, void ∗ aux)
{

struct foo_softc ∗ sc = device_private(self);
[. . .]

/ ∗ Initialize and attach the disk structure. ∗ /
disk_init(&sc->sc_dk, device_xname(self), &foodkdriver);
disk_attach(&sc->sc_dk);

/ ∗ Read geometry and fill in pertinent parts of disklabel. ∗ /
[. . .]
disk_blocksize(&sc->sc_dk, bytes_per_sector);

}

The foodkdriver above is the disk’s “driver” switch. This switch currently includes a pointer to the
disk’s “strategy” routine. This switch needs to have global scope and should be initialized as follows:

void foostrategy(struct buf ∗);

const struct dkdriver foodkdriver = {
.d_strategy = foostrategy,

};

Once the disk is attached, metrics may be gathered on that disk. In order to gather metrics data, the driver
must tell the framework when the disk starts and stops operations.This functionality is provided by the
disk_busy() anddisk_unbusy() routines. The disk_busy() routine should be called immediately
before a command to the disk is sent, e.g.:

NetBSD 3.0 May 3, 2008 3

DISK (9) NetBSD Kernel Developer’s Manual DISK(9)

void
foostart(sc)

struct foo_softc ∗ sc;
{

[. . .]

/ ∗ Get buffer from drive’s transfer queue. ∗ /
[. . .]

/ ∗ Build command to send to drive. ∗ /
[. . .]

/ ∗ Tell the disk framework we’re going busy. ∗ /
disk_busy(&sc->sc_dk);

/ ∗ Send command to the drive. ∗ /
[. . .]

}

Whendisk_busy() is called, a timestamp is taken if the disk’s busy counter moves from 0 to 1, indicating
the disk has gone from an idle to non-idle state.Note thatdisk_busy() must be called atsplbio(). At
the end of a transaction, thedisk_unbusy() routine should be called.This routine performs some consis-
tency checks, such as ensuring that the calls todisk_busy() anddisk_unbusy() are balanced.This
routine also performs the actual metrics calculation.A timestamp is taken, and the difference from the time-
stamp taken indisk_busy() is added to the disk’s total running time. The disk’s timestamp is then
updated in case there is more than one pending transfer on the disk.A byte count is also added to the disk’s
running total, and if greater than zero, the number of transfers the disk has performed is incremented.The
third argumentread specifies the direction of I/O; if non-zero it means reading from the disk, otherwise it
means writing to the disk.

void
foodone(xfer)

struct foo_xfer ∗ xfer;
{

struct foo_softc = (struct foo_softc ∗)xfer->xf_softc;
struct buf ∗ bp = xfer->xf_buf;
long nbytes;
[. . .]

/ ∗
∗ Get number of bytes transfered. If there is no buf
∗ associated with the xfer, we are being called at the
∗ end of a non-I/O command.
∗ /

if (bp == NULL)
nbytes = 0;

else
nbytes = bp->b_bcount - bp->b_resid;

[. . .]

/ ∗ Notify the disk framework that we’ve completed the transfer. ∗ /
disk_unbusy(&sc->sc_dk, nbytes,

NetBSD 3.0 May 3, 2008 4

DISK (9) NetBSD Kernel Developer’s Manual DISK(9)

bp != NULL ? bp->b_flags & B_READ : 0);

[. . .]
}

Like disk_busy(), disk_unbusy() must be called atsplbio().

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
disk framework can be found. All pathnames are relative to /usr/src .

The disk framework itself is implemented within the filesys/kern/subr_disk.c . Data structures and
function prototypes for the framework are located insys/sys/disk.h .

The NetBSD machine-independent SCSI disk and CD-ROM drivers use the disk framework. They are
located insys/scsi/sd.c andsys/scsi/cd.c .

The NetBSD ccd andvnd drivers use the detachment capability of the framework. They are located in
sys/dev/ccd.c andsys/dev/vnd.c .

SEE ALSO
ccd (4), vnd (4), spl (9)

HISTORY
TheNetBSD generic disk framework appeared inNetBSD 1.2.

AUTHORS
The NetBSD generic disk framework was architected and implemented by Jason R. Thorpe
〈thorpej@NetBSD.org〉.

NetBSD 3.0 May 3, 2008 5

DISKLABEL (9) NetBSD Kernel Developer’s Manual DISKLABEL(9)

NAME
disklabel, readdisklabel, writedisklabel, setdisklabel,
bounds_check_with_label — disk label management routines

SYNOPSIS
char ∗
readdisklabel(dev_t dev , void (∗ strat)(struct buf ∗) , struct disklabel ∗ lp ,

struct cpu_disklabel ∗ clp);

int
writedisklabel(dev_t dev , void (∗ strat)(struct buf ∗) ,

struct disklabel ∗ lp , struct cpu_disklabel ∗ clp);

int
setdisklabel(struct disklabel ∗ olp , struct disklabel ∗ nlp , u_long openmask ,

struct cpu_disklabel ∗ clp);

int
bounds_check_with_label(struct buf ∗ bp , struct disklabel ∗ lp , int wlabel);

DESCRIPTION
This collection of routines provides a disklabel management interface to kernel device drivers. Theserou-
tines are classified as machine- or architecture-dependent because of restrictions imposed by the machine
architecture and boot-strapping code on the location of the label, or because cooperation with other operating
systems requires specialized conversion code.

readdisklabel() attempts to read a disklabel from the device identified bydev, using the device strat-
egy routine passed instrat. Note that a buffer structure is required to pass to the strategy routine; it needs
to be acquired and parameterized for the intended I/O operation, and disposed of when the operation has
completed. Somefields in the disklabel passed inlp may be pre-initialized by the caller in order to meet
device driver requirements for the I/O operation initiated to get to the disklabel data on the medium.In par-
ticular, the field “d_secsize”, if non-zero, is used byreaddisklabel() to get an appropriately sized buffer
to pass to the device strategy routine. Unspecified fields inlp should be set to zero. If the medium does not
contain a native disklabel that can be read in directly, readdisklabel() may resort to constructing a label
from other machine-dependent information using the provided buffer passed in theclp argument. Ifa disk
label can not be found or constructed, a string containing an approximated description of the failure mode is
returned. OtherwisetheNULLstring is returned.

writedisklabel() stores disk label information contained in the disk label structure given by lp on the
device identified bydev. Like readdisklabel(), it acquires and sets up an I/O buffer to pass to the strat-
egy routinestrat. writedisklabel() may elect to do a machine-dependent conversion of the native
disk label structure(using the buffer pointed at byclp) , to store the disk label onto the medium in a format
complying with architectural constraints.writedisklabel() returns 0 on success andEINVAL if the
disk label specifies invalid or inconvertible values. Otherwise,any error condition reported by the device
strategy routine in the buffer’s “b_error” fi eld is returned.

setdisklabel() checks a proposed new disk label passed innlp for some amount of basic sanity. This
includes a check on attempts to change the location, or reduce the size, of an existing disk partition that is
currently in use by the system. The current disposition of the disk partitions is made available througholp
andopenmask, which provide, respectively, the existing disk label and a bit mask identifying the partitions
that are currently in use.Failure to pass on “basic sanity”, results in aEINVAL return value, while a vetoed
update of the partition layout is signaled by aEBUSYreturn value. Otherwise,0 is returned.

bounds_check_with_label() is used to check whether a device transfer described bybp to the device
identified bydev, is properly contained within a disk partition of the disk with labellp. If this check fails,

NetBSD 3.0 December 26, 1996 1

DISKLABEL (9) NetBSD Kernel Developer’s Manual DISKLABEL(9)

bounds_check_with_label() sets the buffer’s “b_error” fi eld toEINVAL, sets theB_ERRORflag in
“b_flags”, and returns -1. If the argumentwlabel is zero, and the transfer is a write operation, a check is
done if the transfer would overwrite (a portion of) the disklabel area on the medium. If that is the case,
EROFSis set in “b_error”, the B_ERRORflag is set in “b_flags”, and -1 is returned.Note thatwlabel
should be set to a non-zero value if the intended operation is expected to install or update the disk label.Pro-
grams that intend to do so using the raw device interface should notify the driver by using aDIOCWLABEL
ioctl function.

SEE ALSO
disklabel (5), disklabel (8)

NetBSD 3.0 December 26, 1996 2

DMOVER (9) NetBSD Kernel Developer’s Manual DMOVER (9)

NAME
dmover_backend_register, dmover_backend_unregister, dmover_session_create,
dmover_session_destroy, dmover_request_alloc, dmover_request_free,
dmover_process, dmover_done — hardware-assisted data mover interface

SYNOPSIS
#include <dev/dmover/dmovervar.h>

Client interface routines:

int
dmover_session_create(const char ∗ , struct dmover_session ∗∗);

void
dmover_session_destroy(struct dmover_session ∗);

struct dmover_request ∗
dmover_request_alloc(struct dmover_session ∗ , dmover_buffer ∗);

void
dmover_request_free(struct dmover_request ∗);

void
dmover_process(struct dmover_request ∗);

Back-end interface routines:

void
dmover_backend_register(struct dmover_backend ∗);

void
dmover_backend_unregister(struct dmover_backend ∗);

void
dmover_done(struct dmover_request ∗);

DESCRIPTION
Thedmover facility provides an interface to hardware-assisted data movers. Thiscan be used to copy data
from one location in memory to another, clear a region of memory, fill a region of memory with a pattern,
and perform simple operations on multiple regions of memory, such as an XOR, without intervention by the
CPU.

The drivers for hardware-assisted data movers present themselves todmover by registering their capabili-
ties. Whena client wishes to use admover function, it creates a session for that function, which identifies
back-ends capable of performing that function.The client then enqueues requests on that session, which the
back-ends process asynchronously. The client may choose to block until the request is completed, or may
have a call-back invoked once the request has been completed.

When a client creates a session, thedmover facility identifies back-ends which are capable of handling the
requested function.When a request is scheduled for processing, thedmover scheduler will identify the best
back-end to process the request from the list of candidate back-ends, in an effort to provide load balancing,
while considering the relative performance of each back-end.

A dmover function always has one output region. A function may have zero or more input regions, or may
use an immediate value as an input.For functions which use input regions, the lengths of each input region
and the output region must be the same.All dmover functions with the same name will have the same num-
ber of and type inputs. If a back-end attempts to register a function which violates this invariant, behavior is
undefined.

NetBSD 3.0 December 4, 2007 1

DMOVER (9) NetBSD Kernel Developer’s Manual DMOVER (9)

The dmover facility supports several types of buffer descriptors.For functions which use input regions,
each input buffer descriptor and the output buffer descriptor must be of the same type. This restriction may
be removed in a future revision of the interface.

Thedmover facility may need to interrupt request processing and restart it. Clients of thedmover facility
should take care to avoid unwanted side-effects should this occur. In particular, for functions which use input
regions, no input region may overlap with the output region.

DATA STRUCTURES
Thedmover facility shares several data structures between the client and back-end in order to describe ses-
sions and requests.

typedef enum {
DMOVER_BUF_LINEAR,
DMOVER_BUF_UIO

} d mover_buffer_type;

typedef struct {
void ∗ l_addr;
size_t l_len;

} d mover_buf_linear;

typedef union {
dmover_buf_linear dmbuf_linear;
struct uio ∗ dmbuf_uio;

} d mover_buffer;

Together, these data types are used to describe buffer data structures which thedmover facility understands.
Additional buffer types may be added in future revisions of thedmover interface.

The dmover_assignment structure contains the information about the back-end to which a request is
currently assigned. It contains the following public members:

struct dmover_backend∗ das_backend
This is a pointer to the back-end.

const struct dmover_algdesc∗ das_algdesc
This is a pointer to the algorithm description provided by the back-end for the request’s function.

Thedmover_session structure contains the following public members:

void ∗ dses_cookie
This is a pointer to client private data.

int dses_ninputs
This is the number of inputs used by the selected function.

Thedmover_request structure contains the following public members:

TAILQ_ENTRY(dmover_request) dreq_dmbq
Linkage on the back-end’s queue of pending requests.

struct dmover_session∗ dreq_session
Pointer to the session with which this request is associated. This is intended for use by the back-end.

struct dmover_assignment∗ dreq_assignment
Pointer to thedmover_assignment structure which describes the back-end to which the request is
currently assigned. The back-end is assigned when the request is scheduled with

NetBSD 3.0 December 4, 2007 2

DMOVER (9) NetBSD Kernel Developer’s Manual DMOVER (9)

dmover_process().

void (∗ dreq_callback)(struct dmover_request∗)
This is a pointer to an optional call-back function provided by the client. If provided, the call-back is
invoked when the request is complete. This field must beNULL if DMOVER_REQ_WAITis set in
dreq_flags.

void ∗ dreq_cookie
This is a pointer to client private data specific to the request.

void ∗ dreq_dmbcookie
This is a pointer to back-end private data, for use while the back-end is actively processing a request.

volatile int dreq_flags
The following flags are defined:

DMOVER_REQ_DONE The request has been completed. If not using a call-back, the client
may poll this bit to determine if a request has been processed.

DMOVER_REQ_ERROR An error has occurred while processing the request.

DMOVER_REQ_RUNNING The request is currently being executed by the back-end. Once a com-
mand is running, it cannot be cancelled, and must run to completion.

DMOVER_REQ_WAIT If set by the client,dmover_process() will wait for the request to
complete usingcv_wait (9). Thisflag may only be used if the caller
has a valid thread context. If this flag is set, a callback may not be
used.

int dreq_error
If the DMOVER_REQ_ERRORbit is set, this contains theerrno (2) value indicating the error that
occurred during processing.

dmover_buffer_type dreq_outbuf_type
The type of the output buffer.

dmover_buffer dreq_outbuf
The output buffer.

uint8_t dreq_immediate[8]
This is the input for algorithms which use an immediate value. Values smaller than 8 bytes should
use the least-significant bytes first.For example, a 32-bit integer would occupy bytes 0, 1, 2, and 3.

dmover_buffer_type dreq_inbuf_type
The type of the input buffer. This is only used if thedmover function has one or more inputs.

dmover_buffer ∗ dreq_inbuf
A pointer to an array of input buffers. Thisis only used if thedmover function has one or more
inputs. Thenumber of inputs, and thus the number of valid elements in the array, is specified by the
algorithm description for the session.

CLIENT INTERF ACE
The following functions are provided to the client:

int dmover_session_create(const char ∗ function , struct dmover_session
∗∗ sessionp)

The dmover_session_create() function creates a data mover session for the specified data
movement functionfunction. A handle to the new session is returned in∗ sessionp.

NetBSD 3.0 December 4, 2007 3

DMOVER (9) NetBSD Kernel Developer’s Manual DMOVER (9)

The following are valid data movement function names:

“zero” Fill a memory region with zeros. This algorithm has an input count of 0.

“fill8” Fill a memory region with an 8-bit pattern. This algorithm has an input count of 0.The
pattern is provided in thedreq_imm8member of thedmover_request structure.

“copy” Copy a memory region from one location to another. This algorithm has an input count of
1.

“xor2” Perform an XOR operation on 2 inputs. This algorithm has an input count of 2.

“xor3” Perform an XOR operation on 3 inputs. This algorithm has an input count of 3.

“xor4” Perform an XOR operation on 4 inputs. This algorithm has an input count of 4.

“xor5” Perform an XOR operation on 5 inputs. This algorithm has an input count of 5.

“xor6” Perform an XOR operation on 6 inputs. This algorithm has an input count of 6.

“xor7” Perform an XOR operation on 7 inputs. This algorithm has an input count of 7.

“xor8” Perform an XOR operation on 8 inputs. This algorithm has an input count of 8.

Users of thedmover facility are encouraged to use the following aliases for the well-known function
names, as doing so saves space and reduces the chance of programming errors:

DMOVER_FUNC_ZERO “zero” (dmover_funcname_zero)

DMOVER_FUNC_FILL8 “fill8” (dmover_funcname_fill8)

DMOVER_FUNC_COPY “copy” (dmover_funcname_copy)

DMOVER_FUNC_XOR2 “xor2” (dmover_funcname_xor2)

DMOVER_FUNC_XOR3 “xor3” (dmover_funcname_xor3)

DMOVER_FUNC_XOR4 “xor4” (dmover_funcname_xor4)

DMOVER_FUNC_XOR5 “xor5” (dmover_funcname_xor5)

DMOVER_FUNC_XOR6 “xor6” (dmover_funcname_xor6)

DMOVER_FUNC_XOR7 “xor7” (dmover_funcname_xor7)

DMOVER_FUNC_XOR8 “xor8” (dmover_funcname_xor8)

void dmover_session_destroy(struct dmover_session ∗ session)

The dmover_session_destroy() function tears down a data mover session and releases all
resources associated with it.

struct dmover_request ∗ dmover_request_alloc(struct dmover_session ∗ session ,
dmover_buffer ∗ inbuf)

Thedmover_request_alloc() function allocates admover request structure and associates it
with the specified session.If the inbuf argument is notNULL, inbuf is used as the array of input
buffer descriptors in the request.Otherwise, ifinbuf is NULL and thedmover function requires
input buffers, the input buffer descriptors will be allocated automatically usingmalloc (9).

If the request structure or input buffer descriptors cannot be allocated,dmover_request_alloc()
returnNULL to indicate failure.

NetBSD 3.0 December 4, 2007 4

DMOVER (9) NetBSD Kernel Developer’s Manual DMOVER (9)

void dmover_request_free(struct dmover_request ∗ req)

Thedmover_request_free() function frees admover request structure. If thedmover func-
tion requires input buffers, and the input buffer descriptors associated withreq were allocated by
dmover_request_alloc(), then the input buffer descriptors will also be freed.

void dmover_process(struct dmover_request ∗ req)

Thedmover_process() function submits thedmover requestreq for processing. The call-back
specified by the request is invoked when processing is complete.

The dmover_session_create() anddmover_session_destroy() functions must not be called
from interrupt context.

The dmover_request_alloc(), dmover_request_free(), and dmover_process() functions
may be called from interrupt handlers at levels IPL_VM, IPL_SOFTCLOCK, and IPL_SOFTNET, or in non-
interrupt context.

The request completion call-back is called from a software interrupt handler atIPL_SOFTCLOCK.

BACK-END INTERF ACE
A back-end describes thedmover functions it can perform using an array ofdmover_algdesc struc-
tures:

struct dmover_algdesc {
const char ∗ dad_name; / ∗ algorithm name ∗ /
void ∗ dad_data; / ∗ opaque algorithm description ∗ /
int dad_ninputs; / ∗ number of inputs ∗ /

};

The dad_namemember points to a valid dmover function name which the client may specify. The
dad_datamember points to a back-end-specific description of the algorithm.

A back-end presents itself to thedmover facility using thedmover_backend structure. Theback-end
must initialize the following members of the structure:

const char∗ dmb_name
This is the name of the back-end.

u_int dmb_speed
This is an estimate of the number of kilobytes/second that the back-end can process.

void ∗ dmb_cookie
This is a pointer to back-end private data.

const struct dmover_algdesc∗ dmb_algdescs
This points to an array ofdmover_algdesc structures which describe the functions the data mover
can perform.

int dmb_nalgdescs
This is the number of elements in thedmb_algdescsarray.

void (∗ dmb_process)(struct dmover_backend∗)
This is the entry point to the back-end used to process requests.

When invoked by the dmover facility, the back-end’s (∗ dmb_process)() function should examine the
pending request queue in itsdmover_backend structure:

NetBSD 3.0 December 4, 2007 5

DMOVER (9) NetBSD Kernel Developer’s Manual DMOVER (9)

TAILQ_HEAD(, dmover_request) dmb_pendreqs
This is the queue of pending requests.

int dmb_npendreqs
This is the number of requests in thedmb_pendreqsqueue.

If an error occurs when processing the request, theDMOVER_REQ_ERRORbit must be set in thedreq_flags
member of the request, and thedreq_errormember set to anerrno (2) value to indicate the error.

When the back-end has finished processing the request, it must call thedmover_done() function. This
function eventually invokes the client’s call-back routine.

If a hardware-assisted data mover uses interrupts, the interrupt handlers should be registered at IPL_VM.

The following functions are provided to the back-ends:

void dmover_backend_register(struct dmover_backend ∗ backend)

Thedmover_backend_register() function registers the back-endbackend with thedmover
facility.

void dmover_backend_unregister(struct dmover_backend ∗ backend)

The dmover_backend_unregister() function removes the back-endbackend from the
dmover facility. The back-end must already be registered.

void dmover_done(struct dmover_request ∗ req)

Thedmover_done() function is called by the back-end when it has finished processing a request,
whether the request completed successfully or not.

The dmover_backend_register() anddmover_backend_unregister() functions must not be
called from interrupt context.

The dmover_done() function may be called atIPL_VM, IPL_SOFTCLOCK, IPL_SOFTNET, or in non-
interrupt context.

EXAMPLES
The following is an example of a client usingdmover to zero-fill a region of memory. In this example, the
CPU will be able to context switch to another thread and perform work while the hardware-assisted data
mover clears the specified block of memory.

int
hw_bzero(void ∗ buf, size_t len)
{

struct dmover_session ∗ dses;
struct dmover_request ∗ dreq;
int error;

error = dmover_session_create(DMOVER_FUNC_ZERO, &dses);
if (error)

return (error);

dreq = dmover_request_alloc(dses, NULL);
if (dreq == NULL) {

dmover_session_destroy(dses);
return (ENOMEM);

}

NetBSD 3.0 December 4, 2007 6

DMOVER (9) NetBSD Kernel Developer’s Manual DMOVER (9)

dreq->dreq_flags = DMOVER_REQ_WAIT;
dreq->dreq_callback = NULL;
dreq->dreq_outbuf.dreq_outbuf_type = DMOVER_BUF_LINEAR;
dreq->dreq_outbuf.dmbuf_linear.l_addr = buf;
dreq->dreq_outbuf.dmbuf_linear.l_len = len;

dmover_process(dreq);

error = (dreq->dreq_flags & DMOVER_REQ_ERROR) ?
dreq->dreq_error : 0;

dmover_request_free(dreq);
dmover_session_destroy(dses);

return (error);
}

SEE ALSO
queue (3), dmoverio (4)

HISTORY
Thedmover facility first appeared inNetBSD 2.0.

AUTHORS
Thedmover facility was designed and implemented by Jason R. Thorpe〈thorpej@wasabisystems.com〉 and
contributed by Wasabi Systems, Inc.

BUGS
The mechanism by which a back-end should advertise its performance to the request scheduler is not well-
defined. Therefore,the load-balancing mechanism within the request scheduler is also not well-defined.

NetBSD 3.0 December 4, 2007 7

DO_SETRESUID (9) NetBSD Kernel Developer’s Manual DO_SETRESUID(9)

NAME
do_setresuid, do_setresgid — set process uid and gid

SYNOPSIS
#include <sys/ucred.h>

int
do_setresuid(struct lwp ∗ lwp , uid_t ruid , uid_t euid , uid_t svuid ,

u_int flags);

int
do_setresgid(struct lwp ∗ lwp , uid_t ruid , uid_t euid , uid_t svuid ,

u_int flags);

DESCRIPTION
Thedo_setresuid anddo_setresgid functions are used to implement the various system calls that
allow a process to change its real, effective, and saved uid and gid values.

The do_setresuid function sets the specified processes real user ID toruid, its effective user ID to
euid, and its saved user ID tosvuid. If any of the uid arguments are −1 then that assignment is skipped.

If suser() is true, then any values may be assigned, otherwise the new uid values must match one of the
existing values and the caller must have set the relevant bit inflags.

Theflags argument specifies which of the existing uid values the new value must match.It should be set
to a logical OR of ID_{R,E,S}_EQ_{R,E,S}, where ID_E_EQ_R means that it is valid to set the effective ID
to the current value of the real ID.

The do_setresgid function sets the group IDs but otherwise behaves in the same manner as
do_setresuid. The processes group list is neither examined nor effected.

SEE ALSO
setregid (2), setreuid (2), setuid (2), suser (9)

CODE REFERENCES
These functions are implemented in:sys/kern/kern_prot.c .

HISTORY
Implemented forNetBSD 2.0 to replace ad-hoc code in each system call routine and in the various compat
modules.

NetBSD 3.0 September 28, 2003 1

DOFILEREAD (9) NetBSD Kernel Developer’s Manual DOFILEREAD(9)

NAME
dofileread, dofilereadv, dofilewrite, dofilewritev — high-level fi le operations

SYNOPSIS
#include <sys/file.h>

int
dofileread(struct lwp ∗ l , int fd , struct file ∗ fp , void ∗ buf , size_t nbyte ,

off_t ∗ offset , int flags , register_t ∗ retval);

int
dofilewrite(struct lwp ∗ l , int fd , struct file ∗ fp , const void ∗ buf ,

size_t nbyte , off_t ∗ offset , int flags , register_t ∗ retval);

int
dofilereadv(struct lwp ∗ l , int fd , struct file ∗ fp ,

const struct iovec ∗ iovp , int iovcnt , off_t ∗ offset , int flags ,
register_t ∗ retval);

int
dofilewritev(struct lwp ∗ l , int fd , struct file ∗ fp ,

const struct iovec ∗ iovp , int iovcnt , off_t ∗ offset , int flags ,
register_t ∗ retval);

DESCRIPTION
The functions implement the underlying functionality of theread (2), write (2), readv (2), and
writev (2) system calls.They are also used throughout the kernel as high-level access routines for file I/O.

Thedofileread() function attempts to readnbytes of data from the object referenced by file entryfp
into the buffer pointed to bybuf. Thedofilewrite() function attempts to writenbytes of data to the
object referenced by file entryfp from the buffer pointed to bybuf.

The dofilereadv() anddofilewritev() functions perform the same operations, but scatter the data
with theiovcnt buffers specified by the members of theiov array.

The offset of the file operations is explicitly specified by∗ offset. The new file offset after the file opera-
tion is returned in∗ offset. If the FOF_UPDATE_OFFSET flag is specified in theflags argument, the
file offset in the file entryfp is updated to reflect the new file offset, otherwise it remains unchanged after
the operation.

The file descriptorfd is largely unused except for use by the ktrace framework for reporting to userlevel the
process’s file descriptor.

Upon successful completion the number of bytes which were transferred is returned in∗ retval.

RETURN VALUES
Upon successful completion zero is returned, otherwise an appropriate error is returned.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using these
file operations can be found. All pathnames are relative to /usr/src .

The framework for these file operations is implemented within the filesys/kern/sys_generic.c .

NetBSD 3.0 December 20, 2005 1

DOFILEREAD (9) NetBSD Kernel Developer’s Manual DOFILEREAD(9)

SEE ALSO
file (9)

NetBSD 3.0 December 20, 2005 2

DOPOWERHOOKS (9) NetBSD Kernel Developer’s Manual DOPOWERHOOKS (9)

NAME
dopowerhooks — run all power hooks

SYNOPSIS
void
dopowerhooks(int why);

DESCRIPTION
The dopowerhooks() function invokes all power hooks established using the
powerhook_establish (9) function. When power is disappearing the power hooks are called in reverse
order, i.e., the power hook established last will be called first.When power is restored they are called normal
order.

This function is called from theapm(4) driver when a power change is detected.

SEE ALSO
powerhook_establish (9)

NetBSD 3.0 December 3, 1999 1

DOSHUTDOWNHOOKS (9) NetBSD Kernel Developer’s Manual DOSHUTDOWNHOOKS (9)

NAME
doshutdownhooks — run all shutdown hooks

SYNOPSIS
void
doshutdownhooks(void);

DESCRIPTION
The doshutdownhooks() function invokes all shutdown hooks established using the
shutdownhook_establish (9) function. Shutdown hooks are called in reverse order, i.e., the shutdown
hook established last will be called first.

This function is called fromcpu_reboot() with interrupts turned off. It is called immediately before the
system is halted or rebooted, after file systems have been unmounted, after the clock has been updated, and
after a system dump has been done (if necessary).

SEE ALSO
cpu_reboot (9), shutdownhook_establish (9)

NetBSD 3.0 November 13, 1995 1

DRIVER (9) NetBSD Kernel Developer’s Manual DRIVER(9)

NAME
driver — description of a device driver

SYNOPSIS
#include <sys/param.h>
#include <sys/device.h>
#include <sys/errno.h>

static int
foo_match(struct device ∗ parent , struct cfdata ∗ match , void ∗ aux);

static void
foo_attach(struct device ∗ parent , struct device ∗ self , void ∗ aux);

static int
foo_detach(struct device ∗ self , int flags);

static int
foo_activate(struct device ∗ self , enum devact act);

DESCRIPTION
This page briefly describes the basicNetBSD autoconfiguration interface used by device drivers. For a
detailed overview of the autoconfiguration framework seeautoconf (9).

Each device driver must present to the system a standard autoconfiguration interface. Thisinterface is pro-
vided by thecfattachstructure. Theinterface to the driver is constant and is defined statically inside the
driver. For example, the interface to driver “ foo” is defined with:

CFATTACH_DECL(foo, / ∗ driver name ∗ /
sizeof(struct foo_softc), / ∗ size of instance data ∗ /
foo_match, / ∗ match/probe function ∗ /
foo_attach, / ∗ attach function ∗ /
foo_detach, / ∗ detach function ∗ /
foo_activate); / ∗ activate function ∗ /

For each device instance controlled by the driver, the autoconfiguration framework allocates a block of mem-
ory to record device-instance-specific driver variables. Thesize of this memory block is specified by the sec-
ond argument in theCFATTA CH_DECLmacro. Thememory block is referred to as the driver’s softcstruc-
ture. Thesoftcstructure is only accessed within the driver, so its definition is local to the driver. Nev erthe-
less, thesoftcstructure should adopt the standardNetBSD configuration and naming conventions. For exam-
ple, thesoftcstructure for driver “ foo” is defined with:

struct foo_softc {
struct device sc_dev; / ∗ generic device info ∗ /
/ ∗ device-specific state ∗ /

};

The autoconfiguration framework mandates that the first member of thesoftcstructure must be the driver-
independentstruct device. Probably its most useful aspect to the driver is that it contains the device-instance
namedv_xname.

If a driver has character device interfaces accessed from userland, the driver must define thecdevswstructure.
The structure is constant and is defined inside the driver. For example, thecdevswstructure for driver “ foo”
is defined with:

const struct cdevsw foo_cdevsw {
int (∗ d_open)(dev_t, int, int, struct lwp ∗);

NetBSD 3.0 October 14, 2007 1

DRIVER (9) NetBSD Kernel Developer’s Manual DRIVER(9)

int (∗ d_close)(dev_t, int, int, struct lwp ∗);
int (∗ d_read)(dev_t, struct uio ∗ , i nt);
int (∗ d_write)(dev_t, struct uio ∗ , i nt);
int (∗ d_ioctl)(dev_t, u_long, void ∗ , i nt, struct lwp ∗);
void (∗ d_stop)(struct tty ∗ , i nt);
struct tty ∗ (∗ d_tty)(dev_t);
int (∗ d_poll)(dev_t, int, struct lwp ∗);
paddr_t (∗ d_mmap)(dev_t, off_t, int);
int (∗ d_kqfilter)(dev_t, struct knote ∗);
int d_type;

};

The structure variable must be named foo_cdevsw by appending the letters “_cdevsw” to the driver’s base
name. Thisconvention is mandated by the autoconfiguration framework.

If the driver “ foo” has also block device interfaces, the driver must define thebdevswstructure. Thestructure
is constant and is defined inside the driver. For example, thebdevswstructure for driver “ foo” is defined
with:

const struct bdevsw foo_bdevsw {
int (∗ d_open)(dev_t, int, int, struct lwp ∗);
int (∗ d_close)(dev_t, int, int, struct lwp ∗);
void (∗ d_strategy)(struct buf ∗);
int (∗ d_ioctl)(dev_t, u_long, void ∗ , i nt, struct lwp ∗);
int (∗ d_dump)(dev_t, daddr_t, void ∗ , s ize_t);
int (∗ d_psize)(dev_t);
int d_type;

};

The structure variable must be named foo_bdevsw by appending the letters “_bdevsw” to the driver’s base
name. Thisconvention is mandated by the autoconfiguration framework.

During system bootstrap, the autoconfiguration framework searches the system for devices. For each device
driver, its match function is called(via its cfattachstructure) to match the driver with a device instance.
The match function is called with three arguments. Thisfirst argumentparent is a pointer to the driver’s
parent device structure. The second argumentmatch is a pointer to a data structure describing the autocon-
figuration framework’s understanding of the driver. Both theparent andmatch arguments are ignored by
most drivers. The third argumentaux contains a pointer to a structure describing a potential device-
instance. Itis passed to the driver from the parent. The match function would type-cast theaux argument to
its appropriate attachment structure and use its contents to determine whether it supports the device.
Depending on the device hardware, the contents of the attachment structure may contain “locators” to locate
the device instance so that the driver can probe it for its identity. If the probe process identifies additional
device properties, it may modify the members of the attachment structure.For these devices, theNetBSD
convention is to call the match routinefoo_probe() instead offoo_match() to make this distinction
clear. Either way, the match function returns a nonzero integer indicating the confidence of supporting this
device and a value of 0 if the driver doesn’t support the device. Generally, only a single driver exists for a
device, so the match function returns 1 for a positive match.

The autoconfiguration framework will call the attach function(via itscfattachstructure)of the driver which
returns the highest value from its match function. The attach function is called with three arguments. The
attach function performs the necessary process to initialise the device for operation. The first argument
parent is a pointer to the driver’s parent device structure.The second argumentself is a pointer to the
driver’s device structure. It is also a pointer to oursoftcstructure since the device structure is its first mem-
ber. The third argumentaux is a pointer to the attachment structure.Theparent andaux arguments are
the same as passed to the match function.

NetBSD 3.0 October 14, 2007 2

DRIVER (9) NetBSD Kernel Developer’s Manual DRIVER(9)

The driver’s attach function is called before system interrupts are enabled.If interrupts are required during
initialisation, then the attach function should make use ofconfig_interrupts() (seeautoconf (9)) .

Some devices can be removed from the system without requiring a system reboot. The autoconfiguration
framework calls the driver’s detach function(via its cfattachstructure)during device detachment. If the
device does not support detachment, then the driver does not have to provide a detach function. The detach
function is used to relinquish resources allocated to the driver which are no longer needed. The first argu-
mentself is a pointer to the driver’s device structure. It is the same structure as passed to the attach func-
tion. Thesecond argumentflags contains detachment flags.Valid values are DETACH_FORCE (force
detachment; hardware gone) and DETACH_QUIET (do not print a notice) .

The autoconfiguration framework may call the driver’s activate function to notify the driver of a change in
the resources that have been allocated to it.For example, an Ethernet driver has to be notified if the network
stack is being added or removed from the kernel. Thefirst argument to the activate functionself is a
pointer to the driver’s device structure. It is the same argument as passed to the attach function. The second
argumentact describes the action.Valid actions are DVA CT_ACTIVATE (activate the device) and
DVACT_DEACTIVATE (deactivate the device) . If the action is not supported the activate function should
return EOPNOTSUPP. The DVA CT_DEACTIVATE call will only be made if the DVA CT_ACTIVATE call
was successful. Theactivate function is called in interrupt context.

Most drivers will want to make use of interrupt facilities. Interruptlocators provided through the attachment
structure should be used to establish interrupts within the system.Generally, an interrupt interface is pro-
vided by the parent. The interface will require a handler and a driver-specific argument to be specified.This
argument is usually a pointer to the device-instance-specific softc structure.When a hardware interrupt for
the device occurs the handler is called with the argument. Interrupthandlers should return 0 for “interrupt
not for me”, 1 for “I took care of it”, or -1 for “I guess it was mine, but I wasn’t expecting it”.

For a driver to be compiled into the kernel,config (1) must be aware of its existence. Thisis done by
including an entry in files.<bus> in the directory containing the driver. For example, the driver “ foo” attach-
ing to bus “bar” with dependency on kernel module “baz” has the entry:

device foo: baz
attach foo at bar
file dev/bar/foo.c foo

An entry can now be added to the machine description file:

foo ∗ at bar?

For device interfaces of a driver to be compiled into the kernel,config (1) must be aware of its existence.
This is done by including an entry in majors.<arch>.For example, the driver “ foo” with character device
interfaces, a character major device number “cmaj”, block device interfaces, a block device major number
“bmaj” and dependency on kernel module “baz” has the entry:

device-major foo char cmaj block bmaj baz

For a detailed description of the machine description file and the “device definition” language see
config (9).

SEE ALSO
config (1), autoconf (9), config (9), powerhook_establish (9),
shutdownhook_establish (9)

NetBSD 3.0 October 14, 2007 3

EDID (9) NetBSD Kernel Developer’s Manual EDID(9)

NAME
edid — VESA Extended Display Identification Data

SYNOPSIS
#include <dev/videomode/edidvar.h>
#include <dev/videomode/edidreg.h>

int
edid_is_valid(uint8_t ∗ data);

int
edid_parse(uint8_t ∗ data , struct edid_info ∗ info);

void
edid_print(struct edid_info ∗ info);

DESCRIPTION
These functions provide support parsing the Extended Display Identification Data which describes a display
device such as a monitor or flat panel display.

The edid_is_valid() function simply tests if the EDID block indata contains valid data. This test
includes a verification of the checksum, and that valid vendor and product idenfication data is present.The
data block contain at least 128 bytes.

The edid_parse() function parses the supplieddata block (which again, must be at least 128 bytes),
writing the relevant data into the structure pointed to byinfo.

Theedid_print() function prints the data in the given info structure to the console device.

RETURN VALUES
The edid_is_valid() function returns 0 if the data block is valid, and EINVAL otherwise. The
edid_parse() function returns zero if the data was successfully parsed, and non-zero otherwise.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
EDID subsystem can be found. All pathnames are relative to /usr/src .

The EDID subsystem is implemented within the filesys/dev/videomode/edid.c .

The EDID subsystem also makes use of VESA Generalized Timing Formula located located in
sys/dev/videomode/vesagtf.c and the generic videomode database located in
sys/dev/videomode/videomode.c .

EXAMPLES
The following code uses these functions to retrieve and print information about a monitor:

struct edid_info info;
i2c_tag_t tag;
char buffer[128];

...
/ ∗ initialize i2c tag... ∗ /
...
if ((ddc_read_edid(tag, buffer, 128) == 0) &&

(edid_parse(buffer, &info) == 0))
edid_print(info);

...

NetBSD 3.0 May 11, 2006 1

EDID (9) NetBSD Kernel Developer’s Manual EDID(9)

SEE ALSO
ddc (9), edid (9), iic (9)

HISTORY
These routines were added inNetBSD 4.0.

AUTHORS
Garrett D’Amore〈gdamore@NetBSD.org〉

NetBSD 3.0 May 11, 2006 2

ERRNO (9) NetBSD Kernel Developer’s Manual ERRNO(9)

NAME
errno — kernel internal error numbers

SYNOPSIS
#include <sys/errno.h>

DESCRIPTION
This section provides an overview of the error numbers used internally by the kernel and indicate neither suc-
cess nor failure. Theseerror numbers are not returned to userland code.

DIAGNOSTICS
Kernel functions that indicate success or failure by means of either 0 or anerrno (2) value sometimes have
a need to indicate that “special” handling is required at an upper layer or, in the case ofioctl (2) process-
ing, that “nothing was wrong but the request was not handled”.To handle these cases, some negative
errno (2) values are defined which are handled by the kernel before returning a differenterrno (2) value to
userland or simply zero.

The following is a list of the defined names and their meanings as given in 〈errno.h 〉. It is important to
note that the value −1 isnot used, since it is commonly used to indicate generic failure and leaves it up to the
caller to determine the action to take.

−2 EJUSTRETURN Modify regs, just return. No more work is required and the function should just return.

−3 ERESTART Restart syscall. The system call should be restarted.This typically means that the
machine dependent system call trap code will reposition the process’s instruction pointer or program
counter to re-execute the current system call with no other work required.

−4 EPASSTHROUGHOperation not handled by this layer. The operation was not handled and should be
passed through to another layer. This often occurs when processingioctl (2) requests since lower
layer processing may not handle something that subsequent code at a higher level will.

−5 EDUPFD Duplicate file descriptor. This error is returned from the device open routine indicating that
thel_dupfd field contains the file descriptor information to be returned to the caller, instead of the
file descriptor that has been opened already. This error is used by cloning device multiplexors.
Cloning device multiplexors open a new file descriptor and associate that file descriptor with the
appropriate cloned device. They set l_dupfd to that new file descriptor and returnEDUPFD.
vn_open (9) takes the file descriptor pointed to byl_dupfd and copies it to the file descriptor that
the open call will return.

−6 EMOVEFD Move file descriptor. This error is similar toEDUPFDexcept that the file descriptor in
l_dupfd is closed after it has been copied.

SEE ALSO
errno (2), ioctl (9)

HISTORY
An errno manual page appeared in Version 6AT&T UNIX . This errno manual page appeared in
NetBSD 3.0.

NetBSD 3.0 December 3, 2004 1

ETHERSUBR (9) NetBSD Kernel Developer’s Manual ETHERSUBR(9)

NAME
ethersubr, ether_ifattach, ether_addmulti, ether_delmulti, ETHER_FIRST_MULTI,
ETHER_NEXT_MULTI, ETHER_IS_MULTICAST, fddi_ifattach, fddi_addmulti,
fddi_delmulti — Ethernet and FDDI driver support functions and macros

SYNOPSIS
#include <net/if_ether.h>

void
ether_ifattach(struct ifnet ∗ ifp , uint8_t ∗ lla);

int
ether_addmulti(const struct sockaddr ∗ sa , struct ethercom ∗ ec);

int
ether_delmulti(const struct sockaddr ∗ sa , struct ethercom ∗ ec);

void
ETHER_FIRST_MULTI(struct ether_multistep step , struct ethercom ∗ ec ,

struct ether_multi ∗ enm);

void
ETHER_NEXT_MULTI(struct ether_multistep step , struct ether_multi ∗ enm);

int
ETHER_IS_MULTICAST(uint8_t ∗ addr);

#include <net/if_fddi.h>

void
fddi_ifattach(struct ifnet ∗ ifp , uint8_t ∗ lla);

int
fddi_addmulti(const struct sockaddr ∗ sa , struct ethercom ∗ ec);

int
fddi_delmulti(const struct sockaddr ∗ sa , struct ethercom ∗ ec);

DESCRIPTION
Theethersubr functions provide the interface between theethersubr module and the network drivers
which need Ethernet support. Such drivers must request theether attribute in theirfiles declaration and
call the appropriate functions as specified below.

FDDI drivers must request the "fddi" attribute in their "files" declaration and call the functions tagged with
"fddi_" or "FDDI_" instead, where different. Somemacros are shared.

Note that you also need thearp (9) stuff to support IPv4 on your hardware.

ether_ifattach()
Perform the device-independent, but Ethernet-specific initialization of the interface pointed to by
ifp.

Among other duties, this function creates a record for the link level address in the interface’s
address list and records the link level address pointed to bylla there.

You must call this function from the driver’s attach function.

fddi_ifattach()
corresponding function for FDDI devices.

NetBSD 3.0 March 3, 1997 1

ETHERSUBR (9) NetBSD Kernel Developer’s Manual ETHERSUBR(9)

ether_addmulti()

ether_delmulti()
Add (ether_addmulti()) or delete(ether_delmulti()) the address described by the
sa pointer to the Ethernet multicast list belonging toec.

These functions must be called from the driver’s ioctl function to handleSIOCADDMULTIand
SIOCDELMULTI requests. Ifthey return ENETRESET, the hardware multicast filter must be
reinitialized.

These functions acceptAF_UNSPECaddresses, which are interpreted as Ethernet addresses, or
AF_INET addresses. Inthe latter case,INADDR_ANYis mapped to a range describing all the
Ethernet address space reserved for IPv4 multicast addresses.

ether_addmulti() returnsEAFNOSUPPORTif an unsupported address family is specified,
EINVAL if a non-multicast address is specified, orENETRESETif the multicast list really
changed and the driver should synchronize its hardware filter with it.

ether_delmulti() returns, in addition to the above errors, ENXIO if the specified address
can’t be found in the list of multicast addresses.

fddi_addmulti()

fddi_delmulti()
corresponding functions for FDDI devices.

ETHER_NEXT_MULTI()
is a macro to step through all of the ether_multi records, one at a time.The current position is
remembered instep, which the caller must provide.

ETHER_FIRST_MULTI()
must be called to initializestep and get the first record.Both macros return aNULLenm when
there are no remaining records.

ETHER_IS_MULTICAST()
returns 1, ifaddr points to an Ethernet/FDDI multicast (or broadcast) address.Implemented as
a macro.

SEE ALSO
arp (9)

AUTHORS
UCB CSRG (original implementation)
Ignatios Souvatzis (support for new ARP system)

CODE REFERENCES
Ethernet support functions are declared in〈net/if_ether.h 〉 and defined (if not implemented as macro)
in /usr/src/sys/net/if_ethersubr.c .

FDDI support functions are declared in〈net/if_fddi.h 〉 and defined (if not implemented as macro) in
/usr/src/sys/net/if_fddisubr.c .

HISTORY
Rewritten to attach to the new ARP system inNetBSD 1.3.

NetBSD 3.0 March 3, 1997 2

EVCNT (9) NetBSD Kernel Developer’s Manual EVCNT(9)

NAME
evcnt, evcnt_attach_dynamic, evcnt_attach_static, evcnt_detach — generic event
counter framework

SYNOPSIS
#include <sys/evcnt.h>

void
evcnt_attach_dynamic(struct evcnt ∗ ev , int type ,

const struct evcnt ∗ parent , const char ∗ group , const char ∗ name);

void
evcnt_attach_static(struct evcnt ∗ ev);

void
evcnt_detach(struct evcnt ∗ ev);

DESCRIPTION
TheNetBSD generic event counter framework is designed to provide a flexible and hierarchical event count-
ing facility, which is useful for tracking system events (including device interrupts).

The fundamental component of this framework is theevcnt structure. Itsuser-accessible fields are:

struct evcnt {
uint64_t ev_count; / ∗ how many have occurred ∗ /
TAILQ_ENTRY(evcnt) ev_list; / ∗ entry on list of all counters ∗ /
unsigned char ev_type; / ∗ counter type; see below ∗ /
unsigned char ev_grouplen; / ∗ ’group’ len, excluding NUL ∗ /
unsigned char ev_namelen; / ∗ ’name’ len, excluding NUL ∗ /
const struct evcnt ∗ ev_parent; / ∗ parent, for hierarchical ctrs ∗ /
const char ∗ ev_group; / ∗ name of group ∗ /
const char ∗ ev_name; / ∗ name of specific event ∗ /

};

The system maintains a global linked list of all active event counters. This list, calledallevents, may
grow or shrink over time as event counters are dynamically added to and removed from the system.

Each event counter is marked (in theev_type field) with the type of event being counted. The following
types are currently defined:

EVCNT_TYPE_MISCMiscellaneous; doesn’t fit into one of the other types.
EVCNT_TYPE_INTRInterrupt counter, reported byvmstat -i.
EVCNT_TYPE_TRAPProcessor trap style events.

Each event counter also has a group name(ev_group) and an event name(ev_name) which are used
to identify the counter. The group name may be shared by a set of counters.For example, device interrupt
counters would use the name of the device whose interrupts are being counted as the group name.The
counter name is meant to distinguish the counter from others in its group (and need not be unique across
groups). Bothnames should be understandable by users, since they are printed by commands like
vmstat (1). The constantEVCNT_STRING_MAXis defined to be the maximum group or event name
length in bytes (including the trailingNUL). In the current implementation it is 256.

To support hierarchical tracking of events, each event counter can name a “parent” event counter. For
instance, interrupt dispatch code could have an event counter per interrupt line, and devices could each have
counters for the number of interrupts that they were responsible for causing. In that case, the counter for a
device on a given interrupt line would have the line’s counter as its parent. The valueNULL is used to indi-
cate that a counter has no parent.A counter’s parent must be attached before the counter is attached, and

NetBSD 3.0 January 11, 2005 1

EVCNT (9) NetBSD Kernel Developer’s Manual EVCNT(9)

detached after the counter is detached.

TheEVCNT_INITIALIZER() macro can be used to provide a static initializer for an event counter struc-
ture. It is invoked as EVCNT_INITIALIZER(type , parent , group , name), and its arguments will
be placed into the corresponding fields of the event counter structure it is initializing.Thegroup andname
arguments must be constant strings.

The following is a brief description of each function in the framework:

void evcnt_attach_dynamic(struct evcnt ∗ ev , int type , const struct evcnt
∗ parent , const char ∗ group , const char ∗ name)

Attach the event counter structure pointed to byev to the system event list. The event counter is
cleared and its fields initialized using the arguments to the function call. The contents of the
remaining elements in the structure (e.g., the name lengths) are calculated, and the counter is
added to the system event list.

The strings specified as the group and counter names must persist (with the same value) through-
out the life of the event counter; they are referenced by, not copied into, the counter.

void evcnt_attach_static(struct evcnt ∗ ev)

Attach the statically-initialized event counter structure pointed to byev to the system event list.
The event counter is assumed to be statically initialized using theEVCNT_INITIALIZER()
macro. Thisfunction simply calculates structure elements’ values as appropriate (e.g., the string
lengths), and adds the counter to the system event list.

void evcnt_detach(struct evcnt ∗ ev)

Detach the event counter structure pointed to byev from the system event list.

Note that no method is provided to increment the value of an event counter. Code incrementing an event
counter should do so by directly accessing itsev_count field in a manner that is known to be safe.For
instance, additions to a device’s event counters in the interrupt handler for that device will often be safe with-
out additional protection (because interrupt handler entries for a given device have to be serialized). How-
ev er, for other uses of event counters, additional locking or use of machine-dependent atomic operation may
be appropriate. (The overhead of using a mechanism that is guaranteed to be safe to increment every
counter, reg ardless of actual need for such a mechanism where the counter is being incremented, would be
too great. On some systems, it might involve a global lock and several function calls.)

USING THE FRAMEW ORK
This section includes a description on basic use of the framework and example usage of its functions.

Device drivers can use theevcnt_attach_dynamic() and evcnt_detach() functions to manage
device-specific event counters.Statically configured system modules can useevcnt_attach_static()
to configure global event counters.Similarly, loadable modules can useevcnt_attach_static() to
configure their global event counters,evcnt_attach_dynamic() to attach device-specific event coun-
ters, andevcnt_detach() to detach all counters when being unloaded.

Device drivers that wish to use the generic event counter framework should place event counter structures in
their “softc” structures.For example, to keep track of the number of interrupts for a given device (broken
down further into “device readable” and “device writable” interrupts) a device driver might use:

struct foo_softc {
struct device sc_dev; / ∗ generic device information ∗ /
[. . .]
struct evcnt sc_ev_intr; / ∗ interrupt count ∗ /
struct evcnt sc_ev_intr_rd; / ∗ ’readable’ interrupt count ∗ /

NetBSD 3.0 January 11, 2005 2

EVCNT (9) NetBSD Kernel Developer’s Manual EVCNT(9)

struct evcnt sc_ev_intr_wr; / ∗ ’writable’ interrupt count ∗ /
[. . .]

};

In the device attach function, those counters would be registered with the system using the
evcnt_attach_dynamic() function, using code like:

void
fooattach(parent, self, aux)

struct device ∗ parent, ∗ self;
void ∗ aux;

{
struct foo_softc ∗ sc = (struct foo_softc ∗)self;

[. . .]

/ ∗ Initialize and attach event counters. ∗ /
evcnt_attach_dynamic(&sc->sc_ev, EVCNT_TYPE_INTR,

NULL, sc->sc_dev.dv_xname, "intr");
evcnt_attach_dynamic(&sc->sc_ev_rd, EVCNT_TYPE_INTR,

&sc->sc_ev, sc->sc_dev.dv_xname, "intr rd");
evcnt_attach_dynamic(&sc->sc_ev_wr, EVCNT_TYPE_INTR,

&sc->sc_ev, sc->sc_dev.dv_xname, "intr wr");

[. . .]
}

If the device can be detached from the system, its detach function should invokeevcnt_detach() on each
attached counter (making sure to detach any “parent” counters only after detaching all children).

Code like the following might be used to initialize a static event counter (in this example, one used to track
CPU alignment traps):

struct evcnt aligntrap_ev = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "cpu", "aligntrap")

To attach this event counter, code like the following could be used:

evcnt_attach_static(&aligntrap_ev);

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
ev ent counter framework can be found. All pathnames are relative to /usr/src .

The event counter framework itself is implemented within the filesys/kern/subr_evcnt.c . Data
structures and function prototypes for the framework are located insys/sys/device.h .

Event counters are used throughout the system.

The vmstat (1) source fileusr.bin/vmstat/vmstat.c shows an example of how to access event
counters from user programs.

SEE ALSO
vmstat (1)

NetBSD 3.0 January 11, 2005 3

EVCNT (9) NetBSD Kernel Developer’s Manual EVCNT(9)

HISTORY
A set of interrupt counter interfaces with similar names to the interfaces in theNetBSD generic event counter
framework appeared as part of the new autoconfiguration system in 4.4BSD. Those interfaces were never
widely adopted inNetBSD because of limitations in their applicability. (Their use was limited to non-hierar-
chical, dynamically attached device interrupt counters.)The NetBSD generic event counter framework first
appeared inNetBSD 1.5.

AUTHORS
The NetBSD generic event counter framework was designed and implemented by Chris Demetriou
〈cgd@NetBSD.org〉.

NetBSD 3.0 January 11, 2005 4

EXTATTR (9) NetBSD Kernel Developer’s Manual EXTATTR (9)

NAME
extattr — file system extended attributes

SYNOPSIS
#include <sys/param.h>
#include <sys/vnode.h>
#include <sys/extattr.h>

DESCRIPTION
Extended attributes allow additional meta-data to be associated with vnodes representing files and directo-
ries. Thesemantics of this additional data is that of a “name=value” pair, where a name may be defined or
undefined, and if defined, associated with zero or more bytes of arbitrary binary data.Extended attribute
names exist within a set of namespaces; each operation on an extended attribute is required to provide the
namespace to which the operation refers. If the same name is present in multiple namespaces, the extended
attributes associated with the names are stored and manipulated independently. The following two names-
paces are defined universally, although individual file systems may implement additional namespaces, or not
implement these namespaces:EXTATTR_NAMESPACE_USER, EXTATTR_NAMESPACE_SYSTEM. The
semantics of these attributes are intended to be as follows: user attribute data is protected according the nor-
mal discretionary and mandatory protections associated with the data in the file or directory; system attribute
data is protected such that appropriate privilege is required to directly access or manipulate these attributes.

Reads of extended attribute data may return specific contiguous regions of the meta-data, in the style of
VOP_READ(9), but writes will replace the entire current “value” associated with a given name. Asthere are
a plethora of file systems with differing extended attributes, availability and functionality of these functions
may be limited, and they should be used with awareness of the underlying semantics of the supporting file
system. Authorizationschemes for extended attribute data may also vary by file system, as well as maximum
attribute size, and whether or not any or specific new attributes may be defined.

Extended attributes are named using a nul-terminated character string.Depending on underlying file system
semantics, this name may or may not be case-sensitive. Appropriate vnode extended attribute calls are:
VOP_GETEXTATTR(9), VOP_LISTEXTATTR(9), andVOP_SETEXTATTR(9).

SEE ALSO
vfsops (9), vnodeops (9)

NetBSD 3.0 January 2, 2005 1

EXTENT (9) NetBSD Kernel Developer’s Manual EXTENT(9)

NAME
extent, extent_create, extent_destroy, extent_alloc, extent_alloc_subregion,
extent_alloc_region, extent_free, extent_print — general purpose extent manager

SYNOPSIS
#include <sys/malloc.h>
#include <sys/extent.h>

struct extent ∗
extent_create(char ∗ name , u_long start , u_long end , int mtype ,

void ∗ storage , size_t storagesize , int flags);

void
extent_destroy(struct extent ∗ ex);

int
extent_alloc(struct extent ∗ ex , u_long size , u_long alignment ,

u_long boundary , int flags , u_long ∗ result);

int
extent_alloc_subregion(struct extent ∗ ex , u_long substart , u_long subend ,

u_long size , u_long alignment , u_long boundary , u_long flags ,
u_long ∗ result);

int
extent_alloc1(struct extent ∗ ex , u_long size , u_long alignment ,

u_long skew , u_long boundary , int flags , u_long ∗ result);

int
extent_alloc_subregion1(struct extent ∗ ex , u_long substart , u_long subend ,

u_long size , u_long alignment , u_long skew , u_long boundary ,
u_long flags , u_long ∗ result);

int
extent_alloc_region(struct extent ∗ ex , u_long start , u_long size ,

int flags);

int
extent_free(struct extent ∗ ex , u_long start , u_long size , int flags);

void
extent_print(struct extent ∗ ex);

DESCRIPTION
TheNetBSD extent manager provides management of areas of memory or other number spaces (such as I/O
ports). Anopaque structure called anextent map keeps track of allocated regions within the number
space.

extent_create() creates an extent map managing the space fromstart to end inclusive. All memory
allocation will use the memory typemtype (seemalloc (9)) . The extent map will have the namename,
used for identification in case of an error. If the flagEX_NOCOALESCEis specified, only entire regions may
be freed within the extent map, but internal coalescing of regions is disabled so thatextent_free() will
never hav eto allocate a region descriptor and therefore will never fail. Thecaller must specify one of the
flagsEX_NOWAITor EX_WAITOK, specifying whether it is okay to wait for memory allocated for extent
map overhead.

NetBSD 3.0 September 23, 1996 1

EXTENT (9) NetBSD Kernel Developer’s Manual EXTENT(9)

There are some applications which may want to use an extent map but can’t usemalloc() andfree().
These applications may provide pre-allocated storage for all descriptor overhead with the arguments
storage andstoragesize. An extent of this type is called afixed extent. If the application can
safely usemalloc() andfree(), storage should beNULL. A fixed extent has a fixed number of region
descriptors, so care should be taken to provide enough storage for them; alternatively, the flag
EX_MALLOCOKmay be passed to allocation requests to indicate that a fixed extent map may be extended
using a call tomalloc().

extent_destroy() destroys the extent mapex, freeing all allocated regions. If the extent is not a fixed
extent, the region and internal extent descriptors themselves are freed. This function always succeeds.

extent_alloc() allocates a region in extentex of sizesize that fits the provided parameters.There are
two distinct allocation policies, which are selected by theflags argument:

EX_FAST Allocate the first region that fits the provided parameters, regardless of resulting extent
fragmentation.

default Allocate the smallest region that is capable of holding the request, thus minimizing
fragmentation of the extent.

The caller must specify if waiting for space in the extent is allowed using the flagEX_WAITSPACE. If
EX_WAITSPACEis not specified, the allocation will fail if the request can not be satisfied without sleeping.
The caller must also specify, using theEX_NOWAITor EX_WAITOKflags, if waiting for overhead allocation
is allowed. Therequest will be aligned toalignment boundaries. Alignmentvalues must be a power of 2.
If no alignment is necessary, the value 1 should be specified.If boundary is nonzero, the allocated region
will not cross any of the numbers which are a multiple ofboundary. If the caller specifies the
EX_BOUNDZEROflag, the boundary lines begin at zero. Otherwise, the boundary lines begin at the begin-
ning of the extent. Theallocated region may begin on a boundary address, but the end of the region will not
touch nor cross it.A boundary argument smaller than the size of the request is invalid. Upon successful
completion,∗ result will contain the start of the allocated region.

extent_alloc_subregion() is similar toextent_alloc(), but it allows the caller to specify that the
allocated region must fall within the subregion fromsubstart to subend inclusive. The other arguments
and the return values ofextent_alloc_subregion() are otherwise the same as those of
extent_alloc().

extent_alloc_region() allocates the specific region in the extent mapex beginning atstart with
the sizesize. The caller must specify whether it is okay to wait for the indicated region to be free using the
flag EX_WAITSPACE. If EX_WAITSPACEis not specified, the allocation will fail if the request can not be
satisfied without sleeping.The caller must also specify, using theEX_NOWAITor EX_WAITOKflags, if
waiting for overhead allocation is allowed.

The extent_alloc1() and extent_alloc_subregion1() functions are extensions that take one
additional argument,skew, that modifies the requested alignment result in the following way: the value
(result - skew) is aligned to alignment boundaries. skew must be a smaller number than
alignment. Also, a boundary argument smaller than the sum of the requested skew and the size of the
request is invalid.

extent_free() frees a region of size bytes in extent ex starting atstart. If the extent has the
EX_NOCOALESCEproperty, only entire regions may be freed. If the extent has theEX_NOCOALESCE
property and the caller attempts to free a partial region, behavior is undefined. The caller must specify one of
the flagsEX_NOWAITor EX_WAITOKto specify whether waiting for memory is okay; these flags have
meaning in the event that allocation of a region descriptor is required during the freeing process. This situa-
tion occurs only when a partial region that begins and ends in the middle of another region is freed.Behavior
is undefined if invalid arguments are provided.

NetBSD 3.0 September 23, 1996 2

EXTENT (9) NetBSD Kernel Developer’s Manual EXTENT(9)

extent_print() Print out information about extent ex. This function always succeeds.Behavior is
undefined if invalid arguments are provided.

LOCKING
The extent manager performs all necessary locking on the extent map itself, and any other data structures
internal to the extent manager. The locks used by the extent manager are simplelocks, and will never sleep
(see lock (9)) . This should be taken into account when designing the locking protocol for users of the
extent manager.

RETURN VALUES
The behavior of all extent manager functions is undefined if given inv alid arguments.extent_create()
returns the extent map on success, orNULL if it fails to allocate storage for the extent map. It always suc-
ceeds when creating a fixed extent or when given the flag EX_WAITOK. extent_alloc(),
extent_alloc_region(), extent_alloc_subregion(), andextent_free() return one of the
following values:

0 Operation was successful.

ENOMEM If EX_NOWAITis specified, the extent manager was not able to allocate a region
descriptor for the new region or to split a region when freeing a partial region.

EAGAIN Requested region is not available andEX_WAITSPACEwas not specified.

EINTR Process received a signal while waiting for the requested region to become available in
the extent. Doesnot apply toextent_free().

EXAMPLES
Here is an example of a (useless) function that uses several of the extent manager routines.

void
func()
{

struct extent ∗ foo_ex;
u_long region_start;
int error;

/ ∗
∗ Extent "foo" manages a 256k region starting at 0x0 and
∗ only allows complete regions to be freed so that
∗ extent_free() never needs to allocate memory.
∗ /

foo_ex = extent_create("foo", 0x0, 0x3ffff, M_DEVBUF,
NULL, 0, EX_WAITOK | EX_NOCOALESCE);

/ ∗
∗ Allocate an 8k region, aligned to a 4k boundary, which
∗ does not cross any of the 3 64k boundaries (at 64k,
∗ 128k, and 192k) within the extent.
∗ /

error = extent_alloc(foo_ex, 0x2000, 0x1000, 0x10000,
EX_NOWAIT, ®ion_start);

if (error)
panic("you lose");

NetBSD 3.0 September 23, 1996 3

EXTENT (9) NetBSD Kernel Developer’s Manual EXTENT(9)

/ ∗
∗ Give up the extent.
∗ /

extent_destroy(foo_ex);
}

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
extent manager can be found. All pathnames are relative to /usr/src .

The extent manager itself is implemented within the filesys/kern/subr_extent.c . Function proto-
types for the framework are located insys/sys/extent.h .

The i386 bus management code uses the extent manager for managing I/O ports and I/O memory. This code
is in the filesys/arch/i386/i386/machdep.c .

SEE ALSO
malloc (9)

HISTORY
TheNetBSD extent manager appeared inNetBSD 1.3.

AUTHORS
TheNetBSD extent manager was architected and implemented by Jason R. Thorpe〈thorpej@NetBSD.org〉.
Matthias Drochner〈drochner@zelux6.zel.kfa-juelich.de〉 contributed to the initial testing and optimization of
the implementation.
Chris Demetriou〈cgd@NetBSD.org〉 contributed many architectural suggestions.

NetBSD 3.0 September 23, 1996 4

FETCH (9) NetBSD Kernel Developer’s Manual FETCH(9)

NAME
fetch, fubyte, fuibyte, fusword, fuswintr, fuword, fuiword — fetch data from user-space

SYNOPSIS
#include <sys/types.h>
#include <sys/systm.h>

int
fubyte(const void ∗ base);

int
fusword(const void ∗ base);

int
fuswintr(const void ∗ base);

long
fuword(const void ∗ base);

DESCRIPTION
Thefetch functions are designed to copy small amounts of data from user-space.

Thefetch routines provide the following functionality:

fubyte() Fetches a byte of data from the user-space addressbase.

fusword() Fetches a short word of data from the user-space addressbase.

fuswintr() Fetches a short word of data from the user-space addressbase. This function is safe to call
during an interrupt context.

fuword() Fetches a word of data from the user-space addressbase.

RETURN VALUES
Thefetch functions return the data fetched or -1 on failure. Notethat these functions all do "unsigned"
access, and therefore will never sign extend byte or short values. Thisprevents ambiguity with the error
return value for all functions exceptfuword().

SEE ALSO
copy (9), store (9)

BUGS
The functionfuword() has no way to unambiguously signal an error, because the data it reads might legiti-
mately be the same as the -1 used to indicate an error. The other functions do not have this problem because
the unsigned values returned by those can never match the -1 error return value.

NetBSD 3.0 January 7, 1996 1

FILE (9) NetBSD Kernel Developer’s Manual FILE(9)

NAME
file, closef, ffree, FILE_IS_USABLE, FILE_USE, FILE_UNUSE, FILE_SET_MATURE — oper-
ations on file entries

SYNOPSIS
#include <sys/file.h>

int
closef(struct file ∗ fp , struct lwp ∗ l);

void
ffree(struct file ∗ fp);

int
FILE_IS_USABLE(struct file ∗ fp);

void
FILE_USE(struct file ∗ fp);

void
FILE_UNUSE(struct file ∗ fp , struct lwp ∗ l);

void
FILE_SET_MATURE(struct file ∗ fp);

DESCRIPTION
The file descriptor table of a process references a file entry for each file used by the kernel. See
filedesc (9) for details of the file descriptor table. Each file entry is given by:

struct file {
LIST_ENTRY(file) f_list; / ∗ list of active files ∗ /
int f_flag;
int f_iflags; / ∗ internal flags ∗ /
int f_type; / ∗ descriptor type ∗ /
u_int f_count; / ∗ reference count ∗ /
u_int f_msgcount; / ∗ message queue references ∗ /
int f_usecount; / ∗ number active users ∗ /
kauth_cred_t f_cred; / ∗ creds associated with descriptor ∗ /
struct fileops {

int (∗ fo_read)(struct file ∗ fp, off_t ∗ offset,
struct uio ∗ uio, kauth_cred_t cred, int flags);

int (∗ fo_write)(struct file ∗ fp, off_t ∗ offset,
struct uio ∗ uio, kauth_cred_t cred, int flags);

int (∗ fo_ioctl)(struct file ∗ fp, u_long com, void ∗ data,
struct lwp ∗ l);

int (∗ fo_fcntl)(struct file ∗ fp, u_int com, void ∗ data,
struct lwp ∗ l);

int (∗ fo_poll)(struct file ∗ fp, int events,
struct lwp ∗ l);

int (∗ fo_stat)(struct file ∗ fp, struct stat ∗ sp,
struct lwp ∗ l);

int (∗ fo_close)(struct file ∗ fp, struct lwp ∗ l);
} ∗ f_ops;
off_t f_offset;
void ∗ f_data; / ∗ descriptor data ∗ /

NetBSD 3.0 October 4, 2006 1

FILE (9) NetBSD Kernel Developer’s Manual FILE(9)

};

NetBSD treats file entries in an object-oriented fashion after they are created.Each entry specifies the object
type, f_type, which can have the values DTYPE_VNODE, DTYPE_SOCKET, DTYPE_PIPE and
DTYPE_MISC. The file entry also has a pointer to a data structure,f_data, that contains information specific
to the instance of the underlying object.The data structure is opaque to the routines that manipulate the file
entry. Each entry also contains an array of function pointers,f_ops, that translate the generic operations on a
file descriptor into the specific action associated with its type.A reference to the data structure is passed as
the first parameter to a function that implements a file operation. The operations that must be implemented
for each descriptor type are read, write, ioctl, fcntl, poll, stat, and close.Seevnfileops (9) for an over-
view of the vnode file operations. All state associated with an instance of an object must be stored in that
instance’s data structure; the underlying objects are not permitted to manipulate the file entry themselves.

For data files, the file entry points to avnode (9) structure. Pipes and sockets do not have data blocks allo-
cated on the disk and are handled by the special-device filesystem that calls appropriate drivers to handle I/O
for them. For pipes, the file entry points to a system block that is used during data transfer. For sockets, the
file entry points to a system block that is used in doing interprocess communications.

The descriptor table of a process (and thus access to the objects to which the descriptors refer) is inherited
from its parent, so several different processes may reference the same file entry. Thus, each file entry has a
reference count,f_count. Each time a new reference is created, the reference count is incremented.When a
descriptor is closed, the reference count is decremented.When the reference count drops to zero, the file
entry is freed.

Some file descriptor semantics can be altered through theflags argument to theopen (2) system call.
These flags are recorded inf_flags member of the file entry. For example, the flags record whether the
descriptor is open for reading, writing, or both reading and writing. The following flags and their corre-
spondingopen (2) flags are:

FAPPEND O_APPEND
FASYNC O_ASYNC
O_FSYNC O_SYNC
FNDELAY O_NONBLOCK
O_NDELAY O_NONBLOCK
FNONBLOCK

O_NONBLOCK
FFSYNC O_SYNC
FDSYNC O_DSYNC
FRSYNC O_RSYNC
FALTIO O_ALT_IO

Some additional state-specific flags are recorded in thef_iflagsmember. Valid values include:

FIF_WANTCLOSE
If set, then the reference count on the file is zero, but there were multiple users of
the file. This can happen if a file descriptor table is shared by multiple pro-
cesses. Thisflag notifies potential users that the file is closing and will prevent
them from adding additional uses to the file.

FIF_LARVAL The file entry is not fully constructed (mature) and should not be used.

The read (2) andwrite (2) system calls do not take an offset in the file as an argument. Instead,each read
or write updates the current file offset,f_offsetin the file according to the number of bytes transferred.Since
more than one process may open the same file and each needs its own offset in the file, the offset cannot be
stored in the per-object data structure.

NetBSD 3.0 October 4, 2006 2

FILE (9) NetBSD Kernel Developer’s Manual FILE(9)

FUNCTIONS
closef(fp , l)

The internal form ofclose (2) which decrements the reference count on file entryfp. The
closef() function release all locks on the file owned by lwp l, decrements the reference count
on the file entry, and invokesffree() to free the file entry.

ffree(struct file ∗ fp)
Free file entryfp. The file entry was created infalloc (9).

FILE_IS_USABLE(fp)
Ensure that the file entry is useable by ensuring that neither the FIF_WANTCLOSE and
FIF_LARVAL flags are not set inf_iflags.

FILE_USE(fp)
Increment the reference count on file entryfp.

FILE_UNUSE(fp , l)
Decrement the reference count on file entryfp. If the FIF_WANTCLOSE flag is set inf_iflags,
the file entry is freed.

FILE_SET_MATURE(fp)
Mark the file entry as being fully constructed (mature) by clearing the FIF_LARVAL flag in
f_iflags.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using file
entries can be found. All pathnames are relative to /usr/src .

The framework for file entry handling is implemented within the filesys/kern/kern_descrip.c .

SEE ALSO
dofileread (9), filedesc (9), vnfileops (9), vnode (9)

NetBSD 3.0 October 4, 2006 3

FILEASSOC (9) NetBSD Kernel Developer’s Manual FILEASSOC(9)

NAME
fileassoc — in-kernel, file-system independent, file-meta data association

SYNOPSIS
#include <sys/fileassoc.h>

DESCRIPTION
Thefileassoc KPI allows association of meta-data with files independent of file-system support for such
elaborate meta-data.

When plugging a new fileassoc to the system, a developer can specify private data to be associated with
ev ery file, as well as (potentially different) private data to be associated with every file-system mount.

For example, a developer might choose to associate a custom ACL with every file, and a count of total files
with ACLs with the mount.

Kernel Programming Interface
Designed with simplicity in mind, thefileassoc KPI usually accepts four different types of parameters to
the most commonly used routines:

struct mount ∗ mp
Describing a mount on which to take action.

struct vnode ∗ vp
Describing a file on which to take action.

fileassoc_t id
Describing an id, as returned from a successful call tofileassoc_register().

void ∗ data
Describing a custom private data block, attached to either a file or a mount.

Before using thefileassoc KPI it is important to keep in mind that the interface provides memory man-
agement only forfileassoc internal memory. Any additional memory stored in the tables (such as pri-
vate data-structures used by custom fileassocs) should be allocated and freed by the developer.

fileassoc provides the ability to specify a “cleanup” routine tofileassoc_register() (see below)
to be called whenever an entry for a file or a mount is deleted.

Fileassoc Registration and Deregistration Routines
These routines allow a dev eloper to allocate afileassoc slot to be used for private data.

int fileassoc_register(const char ∗ name , fileassoc_cleanup_cb_t
cleanup_cb , fileassoc_t ∗ result)
Registers a new fileassoc asname, and returns afileassoc_t via result to be used as iden-
tifier in subsequent calls to thefileassoc subsystem.

fileassoc_register() returns zero on success.Otherwise, an error number will be returned.

If cleanup_cb is notNULL, it will be called during delete/clear operations (see routines below)
with indication whether the passed data is file- or mount-specific.

cleanup_cb should be a function receiving avoid ∗ and returningvoid. See the
EXAMPLES section for illustration.

int fileassoc_deregister(fileassoc_t id)
Deregisters afileassoc whose id isid.

NetBSD 3.0 May 15, 2007 1

FILEASSOC (9) NetBSD Kernel Developer’s Manual FILEASSOC(9)

Note that callingfileassoc_deregister() only frees the associated slot in thefileassoc
subsystem. Itis up to the developer to take care of garbage collection.

Lookup Routines
These routines allow lookup offileassoc mounts, files, and private data attached to them.

void ∗ fileassoc_lookup(struct vnode ∗ vp , fileassoc_t id)
Returns the private data for the file/id combination orNULL if not found.

Mount-wide Routines
int fileassoc_table_delete(struct mount ∗ mp)

Deletes a fileassoc table formp.

int fileassoc_table_clear(struct mount ∗ mp , fileassoc_t id)
Clear all table entries forfileassoc from mp.

If specified, the fileassoc’s “cleanup routine” will be called with a pointer to the private data-struc-
ture.

int fileassoc_table_run(struct mount ∗ mp , fileassoc_t id , fileassoc_cb_t
cb , void ∗ cookie)
For each entry forid, call cb with the entry being the first argument, andcookie being the sec-
ond argument.

cb is a function returningvoid and receiving onevoid ∗ parameter.

File-specific Routines
int fileassoc_file_delete(struct vnode ∗ vp)

Delete the fileassoc entries forvp.

If specified, the “cleanup routines” of all fileassoc types added will be called with a pointer to the
corresponding private data structure and indication ofFILEASSOC_CLEANUP_FILE.

Fileassoc-specific Routines
int fileassoc_add(struct vnode ∗ vp , fileassoc_t id , void ∗ data)

Add private data indata for vp, for the fileassoc specified byid.

If a table for the mount-pointvp is on doesn’t exist, one will be created automatically.
fileassoc manages internally the optimal table sizes as tables are modified.

int fileassoc_clear(struct vnode ∗ vp , fileassoc_t id)
Clear the private data forvp, for the fileassoc specified byid.

If specified, the fileassoc’s “cleanup routine” will be called with a pointer to the private data-struc-
ture and indication ofFILEASSOC_CLEANUP_FILE.

EXAMPLES
The following code examples should give you a clue on usingfileassoc for your purposes.

First, we’ll begin with registering a new id. We need to do that to save a slot for private data storage with
each mount and/or file:

fileassoc_t myhook_id;
int error;

error = fileassoc_register("my_hook", myhook_cleanup, &myhook_id);
if (error != 0)

NetBSD 3.0 May 15, 2007 2

FILEASSOC (9) NetBSD Kernel Developer’s Manual FILEASSOC(9)

...handle error...

In the above example we pass amyhook_cleanup() routine. It could look something like this:

void
myhook_cleanup(void ∗ data)
{

printf("Myhook: Removing entry for file.0);
...handle file entry removal...
free(data, M_TEMP);

}

Another useful thing would be to add our private data to a file.For example, let’s assume we keep a custom
ACL with each file:

int
myhook_acl_add(struct vnode ∗ vp, struct myhook_acl ∗ acl)
{

int error;

error = fileassoc_add(vp, myhook_id, acl);
if (error) {

printf("Myhook: Could not add ACL.0);
...handle error...

}

printf("Myhook: Added ACL.0);

return (0);
}

Adding an entry will override any entry that previously exists.

Whatever your plug is, eventually you’ll want to access the private data you store with each file.To do that
you can use the following:

int
myhook_acl_access(struct vnode ∗ vp, int access_flags)
{

struct myhook_acl ∗ acl;

acl = fileassoc_lookup(vp, myhook_id);
if (acl == NULL)

return (0);

error = myhook_acl_eval(acl, access_flags);
if (error) {

printf("Myhook: Denying access based on ACL decision.0);
return (error);

}

return (0);
}

NetBSD 3.0 May 15, 2007 3

FILEASSOC (9) NetBSD Kernel Developer’s Manual FILEASSOC(9)

And, in some cases, it may be desired to remove private data associated with an file:

int error;

error = fileassoc_clear(vp, myhook_id);
if (error) {

printf("Myhook: Error occurred during fileassoc removal.0);
...handle error...

}

As mentioned previously, the call tofileassoc_clear() will result in a call to the “cleanup routine”
specified in the initial call tofileassoc_register().

The above should be enough to get you started.

For example usage offileassoc, see the Veriexec code.

CODE REFERENCES
src/sys/kern/kern_fileassoc.c

HISTORY
Thefileassoc KPI first appeared inNetBSD 4.0.

AUTHORS
Elad Efrat〈elad@NetBSD.org〉
Brett Lymn〈blymn@NetBSD.org〉

NetBSD 3.0 May 15, 2007 4

FILEDESC (9) NetBSD Kernel Developer’s Manual FILEDESC(9)

NAME
filedesc, dupfdopen, falloc, fd_getfile, fdalloc, fdcheckstd, fdclear, fdclone,
fdcloseexec, fdcopy, fdexpand, fdfree, fdinit, fdrelease, fdremove, fdshare,
fdunshare — file descriptor tables and operations

SYNOPSIS
#include <sys/file.h>
#include <sys/filedesc.h>

int
falloc(struct lwp ∗ l , struct file ∗∗ resultfp , int ∗ resultfd);

struct file ∗
fd_getfile(struct filedesc ∗ fdp , int fd);

int
dupfdopen(struct lwp ∗ l , int indx , int dfd , int mode , int error);

int
fdalloc(struct proc ∗ p , int want , int ∗ result);

int
fdcheckstd(struct lwp ∗ l);

void
fdclear(struct lwp ∗ l);

int
fdclone(struct lwp ∗ l , struct file ∗ fp , int fd , int flag ,

const struct fileops ∗ fops , void ∗ data);

void
fdcloseexec(struct lwp ∗ l);

struct filedesc ∗
fdcopy(struct proc ∗ p);

void
fdexpand(struct proc ∗ p);

void
fdfree(struct lwp ∗ l);

struct filedesc ∗
fdinit(struct proc ∗ p);

int
fdrelease(struct lwp ∗ l , int fd);

void
fdremove(struct filedesc ∗ fdp , int fd);

void
fdshare(struct proc ∗ p1 , struct proc ∗ p2);

void
fdunshare(struct lwp ∗ l);

NetBSD 3.0 July 24, 2006 1

FILEDESC (9) NetBSD Kernel Developer’s Manual FILEDESC(9)

DESCRIPTION
For user processes, all I/O is done through file descriptors. These file descriptors represent underlying
objects supported by the kernel and are created by system calls specific to the type of object.In NetBSD, six
types of objects can be represented by file descriptors: data files, pipes, sockets, event queues, crypto, and
miscellaneous.

The kernel maintains a descriptor table for each process which is used to translate the external representation
of a file descriptor into an internal representation.The file descriptor is merely an index into this table.The
file descriptor table maintains the following information:

• the number of descriptors allocated in the file descriptor table;
• approximate next free descriptor;
• a reference count on the file descriptor table; and
• an array of open file entries.

On creation of the file descriptor table, a fixed number of file entries are created.It is the responsibility of
the file descriptor operations to expand the available number of entries if more are required.Each file entry
in the descriptor table contains the information necessary to access the underlying object and to maintain
common information. Seefile (9) for details of operations on the file entries.

New file descriptors are generally allocated byfalloc() and freed byfdrelease(). File entries are
extracted from the file descriptor table byfd_getfile(). Mostof the remaining functions in the interface
are purpose specific and perform lower-level fi le descriptor operations.

FUNCTIONS
The following functions are high-level interface routines to access the file descriptor table for a process and
its file entries.

falloc(p , ∗ resultfp , ∗ resultfd)
Create a new open file entry and allocate a file descriptor for processp. This operation is per-
formed by invoking fdalloc() to allocate the new file descriptor. The credential on the file
entry are inherited from processp. Thefalloc() function is responsible for expanding the file
descriptor table when necessary.

A pointer to the file entry is returned in∗ resultfp and the file descriptor is returned in
∗ resultfd. Thefalloc() function returns zero on success, otherwise an appropriate error is
returned.

fd_getfile(fdp , fd)
Get the file entry for file descriptorfd in the file descriptor tablefdp. The file entry is returned
if it is valid and useable, otherwiseNULL is returned.

dupfdopen(l , indx , dfd , mode , error)
Duplicate file descriptordfd for lwp l.

The following functions operate on the file descriptor table for a process.

fdalloc(p , want , ∗ result)
Allocate a file descriptorwant for processp. The resultant file descriptor is returned in
∗ result. Thefdalloc() function returns zero on success, otherwise an appropriate error is
returned.

fdcheckstd(l)
Check the standard file descriptors 0, 1, and 2 and ensure they are referencing valid file descrip-
tors. If they are not, create references to/dev/null . This operation is necessary as these file
descriptors are given implicit significance in the Standard C Library and it is unsafe for
setuid (2) andsetgid (2) processes to be started with these file descriptors closed.

NetBSD 3.0 July 24, 2006 2

FILEDESC (9) NetBSD Kernel Developer’s Manual FILEDESC(9)

fdclear(l)
Clear the descriptor table for lwp l. This operation is performed by invoking fdinit() to ini-
tialise a new file descriptor table to replace the old file descriptor table and invoking fdfree() to
release the old one.

fdclone(l , fp , fd , flag , fops , data)
This function is meant to be used by devices which allocate a file entry upon open.fdclone()
fills fp with the given parameters. Italways returns the in-kernel errno valueEMOVEFD, which
is meant to be returned from the device open routine. This special return value is interpreted by
the caller of the device open routine.

fdcloseexec(l)
Close any files for processp that are marked “close on exec”. This operation is performed by
invoking fdunshare() for the process and invoking fdrelease() on the appropriate file
descriptor.

fdcopy(p)
Copy the file descriptor table from processp and return a pointer to the copy. The returned file
descriptor is guaranteed to have a reference count of one.All file descriptor state is maintained.
The reference counts on each file entry referenced by the file descriptor table is incremented
accordingly.

fdexpand(p)
Expand the file descriptor table for processp by allocating memory for additional file descrip-
tors.

fdfree(l)
Decrement the reference count on the file descriptor table for lwp l and release the file descriptor
table if the reference count drops to zero.

fdinit(p)
Create a file descriptor table using the same current and root directories of processp. The
returned file descriptor table is guaranteed to have a reference count of one.

fdrelease(l , fd)
Remove file descriptorfd from the file descriptor table of lwp l. The operation is performed by
invoking closef().

fdremove(fdp , fd)
Unconditionally remove the file descriptorfd from file descriptor tablefdp.

fdshare(p1 , p2)
Share the file descriptor table belonging to processp1 with processp2. Processp2 is assumed
not to have a file descriptor table already allocated.The reference count on the file descriptor ta-
ble is incremented. This function is used byfork1 (9).

fdunshare(l)
Ensure that lwp l does not share its file descriptor table.If its file descriptor table has more than
one reference, the file descriptor table is copied by invoking fdcopy(). Thereference count on
the original file descriptor table is decremented.

RETURN VALUES
Successful operations return zero.A failed operation will return a non-zero return value. Possiblevalues
include:

NetBSD 3.0 July 24, 2006 3

FILEDESC (9) NetBSD Kernel Developer’s Manual FILEDESC(9)

[EBADF] Bad file descriptor specified.

[EMFILE] Cannot exceed file descriptor limit.

[ENOSPC] No space left in file descriptor table.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using file
descriptors can be found. All pathnames are relative to /usr/src .

The framework for file descriptor handling is implemented within the filesys/kern/kern_descrip.c .

SEE ALSO
file (9)

NetBSD 3.0 July 24, 2006 4

FIRMLOAD (9) NetBSD Kernel Developer’s Manual FIRMLOAD (9)

NAME
firmload — Firmware loader API for device drivers

SYNOPSIS
#include <dev/firmload.h>

int
firmware_open(const char ∗ drvname , const char ∗ imgname ,

firmware_handle_t ∗ fhp);

int
firmware_close(firmware_handle_t fh);

off_t
firmware_get_size(firmware_handle_t fh);

int
firmware_read(firmware_handle_t fh , off_t offset , void ∗ buf , size_t size);

void ∗
firmware_malloc(size_t size);

void
firmware_free(void ∗ buf , size_t size);

DESCRIPTION
firmload provides a simple and convenient API for device drivers to load firmware images from files
residing in the file system that are necessary for the devices that they control. Firmware images reside in
sub-directories, one for each driver, of a series of colon-separated path prefixes specified the sysctl variable
hw.firmware.path .

The following functions are provided by thefirmload API:

int firmware_open(const char ∗ drvname , const char ∗ imgname ,
firmware_handle_t ∗ fhp)

Open then firmware imageimgname for the driver drvname. The path to the firmware image
file is constructed by appending the string “/drvname/imgname” to each configured path prefix
until opening the firmware image file succeeds. Upon success,firmware_open() returns 0 and
stores a firmware image handle in the location pointed to byfhp. Otherwise, an error code is
returned to indicate the reason for failure.

int firmware_close(firmware_handle_t fh)

Close the firmware image file associated with the firmware handlefh. Returns 0 upon success or
an error code to indicate the reason for failure.

off_t firmware_get_size(firmware_handle_t fh)

Returns the size of the image file associated with the firmware handlefh.

int firmware_read(firmware_handle_t fh , off_t offset , void ∗ buf , size_t size)

Reads from the image file associated with the firmware handlefh beginning at offsetoffset for
lengthsize. The firmware image data is placed into the buffer specified bybuf. Returns 0 upon
success or an error code to indicate the reason for failure.

void ∗ firmware_malloc(size_t size)

NetBSD 3.0 January 17, 2006 1

FIRMLOAD (9) NetBSD Kernel Developer’s Manual FIRMLOAD (9)

Allocates a region of wired kernel memory of sizesize. Note: firmware_malloc() may
block.

void firmware_free(void ∗ buf , size_t size)

Frees a region of memory previously allocated byfirmware_malloc().

SEE ALSO
autoconf (9), malloc (9), vnsubr (9)

HISTORY
Thefirmload framework first appeared inNetBSD 4.0.

AUTHORS
Jason Thorpe〈thorpej@NetBSD.org〉

NetBSD 3.0 January 17, 2006 2

FORK1 (9) NetBSD Kernel Developer’s Manual FORK1(9)

NAME
fork1 — create a new process

SYNOPSIS
#include <sys/types.h>
#include <sys/proc.h>

int
fork1(struct lwp ∗ l1 , int flags , int exitsig , void ∗ stack , size_t stacksize ,

void (∗ func)(void ∗) , void ∗ arg , register_t ∗ retval ,
struct proc ∗∗ rnewprocp);

DESCRIPTION
fork1() creates a new process out of the process behindl1, which is assumed to be the current lwp. This
function is used primarily to implement thefork (2) andvfork (2) system calls, but is versatile enough to
be used as a backend for e.g. the__clone (2) call.

Theflags argument controls the semantics of the fork operation, and is made up of the bitwise-OR of the
following values:

FORK_PPWAIT The parent process will sleep until the child process successfully callsexecve (2) or
exits (either by a call to_exit (2) or abnormally).

FORK_SHAREVM The child process will share the parent’s virtual address space. If this flag is not
specified, the child will get a copy-on-write snapshot of the parent’s address space.

FORK_SHARECWD The child process will share the parent’s current directory, root directory, and file cre-
ation mask.

FORK_SHAREFILES
The child process will share the parent’s file descriptors.

FORK_SHARESIGS The child process will share the parent’s signal actions.

FORK_NOWAIT The child process will at creation time be inherited by the init process.

FORK_CLEANFILES
The child process will not copy or share the parent’s descriptors, but rather will start
out with a clean set.

A flags value of 0 indicates a standard fork operation.

Theexitsig argument controls the signal sent to the parent on child death.If normal operation desired,
SIGCHLD should be supplied.

It is possible to specify the child userspace stack location and size by using thestack andstacksize
arguments, respectively. ValuesNULL and 0, respectively, will give the child the default values for the
machine architecture in question.

The argumentsfunc andarg can be used to specify a kernel function to be called when the child process
returns instead ofchild_return(). Theseare used for example in starting the init process and creating
kernel threads.

Theretval argument is provided for the use of system call stubs.If retval is not NULL, it will hold the
following values after successful completion of the fork operation:

retval[0] This will contain the pid of the child process.

NetBSD 3.0 January 4, 2008 1

FORK1 (9) NetBSD Kernel Developer’s Manual FORK1(9)

retval[1] In the parent process, this will contain the value 0. In the child process, this will contain 1.

User level system call stubs typically subtract 1 fromretval[1] and bitwise-AND it withretval[0],
thus returning the pid to the parent process and 0 to the child.

If rnewprocp is not NULL, ∗ rnewprocp will point to the newly created process upon successful com-
pletion of the fork operation.

RETURN VALUES
Upon successful completion of the fork operation,fork1() returns 0. Otherwise, the following error values
are returned:

[EAGAIN] The limit on the total number of system processes would be exceeded.

[EAGAIN] The limit RLIMIT_NPROCon the total number of processes under execution by this user id
would be exceeded.

SEE ALSO
execve (2), fork (2), vfork (2)

NetBSD 3.0 January 4, 2008 2

FSETOWN (9) NetBSDKernel Developer’s Manual FSETOWN (9)

NAME
fsetown, fgetown, fownsignal — file descriptor owner handling functions

SYNOPSIS
#include <sys/file.h>

int
fsetown(struct lwp ∗ l , pid_t ∗ pgid , int cmd , const void ∗ data);

int
fgetown(struct lwp ∗ l , pid_t pgid , int cmd , void ∗ data);

void
fownsignal(pid_t pgid , int signo , int code , int band , void ∗ fdescdata);

DESCRIPTION
These functions handle file descriptor owner related ioctls and related signal delivery. Device drivers and
other parts of the kernel call these functions from ioctl entry functions or I/O notification functions.

fsetown() sets the owner of file.cmd is an ioctl command, one ofSIOCSPGRP, FIOSETOWN, and
TIOCSPGRP. data is interpreted as a pointer to a signed integer, the integer being the ID of the owner.
Thecmd determines how exactly data should be interpreted.If cmd is TIOCSPGRP, the ID needs to be
positive and is interpreted as process group ID.For SIOCSPGRPandFIOSETOWN, the passed ID is the
process ID if positive, or the process group ID if negative.

fgetown() returns the current owner of the file.cmd is an ioctl command, one ofSIOCGPGRP,
FIOGETOWN, and TIOCGPGRP. data is interpreted as a pointer to a signed integer, and the value is set
according to the passedcmd. For TIOCGPGRP, the returneddata value is positive process group ID if the
owner is the process group, or negative process ID if the owner is a process.For other ioctls, the returned
value is the positive process ID if the owner is a process, or the negative process group ID if the owner is a
process group.

fownsignal() schedules thesigno signal to be sent to the current file descriptor owner. The signals typi-
cally used with this function areSIGIO andSIGURG. Thecode andband arguments are sent along with
the signal as additional signal specific information ifSA_SIGINFO is activated. If the information is not
available from the context of thefownsignal() call, these should be passed as zero.fdescdata is used
to lookup the file descriptor for signals.If it is specified, the file descriptor number is sent along with the sig-
nal as additional signal specific information. If file descriptor data pointer is not available in the context of
thefownsignal() call,NULLshould be used instead.

Note that afcntl (2) F_SETOWN request is translated by the kernel to aFIOSETOWNioctl, and
F_GETOWNis translated toFIOGETOWN. This is done transparently by generic code, before the device- or
subsystem-specific ioctl entry function is called.

SEE ALSO
fcntl (2), siginfo (2), signal (7), ioctl (9), signal (9)

HISTORY
These kernel functions appeared inNetBSD 2.0.

NetBSD 3.0 December 20, 2005 1

FSTRANS (9) NetBSD Kernel Developer’s Manual FSTRANS(9)

NAME
fstrans, fstrans_setstate, fstrans_getstate, fstrans_start,
fstrans_start_nowait, fstrans_done, fstrans_is_owner, fscow_establish,
fscow_disestablish, fscow_run — file system suspension helper subsystem

SYNOPSIS
#include <sys/mount.h>
#include <sys/fstrans.h>

int
fstrans_setstate(struct mount ∗ mp , enum fstrans_state new_state);

enum fstrans_state
fstrans_getstate(struct mount ∗ mp);

void
fstrans_start(struct mount ∗ mp , enum fstrans_lock_type lock_type);

int
fstrans_start_nowait(struct mount ∗ mp , enum fstrans_lock_type lock_type);

void
fstrans_done(struct mount ∗ mp);

int
fstrans_is_owner(struct mount ∗ mp);

int
fscow_establish(struct mount ∗ mp , int (∗ func)(void ∗ , struct buf ∗ , bool) ,

void ∗ cookie);

int
fscow_disestablish(struct mount ∗ mp ,

int (∗ func)(void ∗ , struct buf ∗ , bool) , void ∗ cookie);

int
fscow_run(struct buf ∗ bp , bool data_valid);

DESCRIPTION
Thefstrans subsystem is a set of operations to assist file system suspension.These operations must not
be used outside of file systems.

File systems supporting this subsystem must set the flagIMNT_HAS_TRANSin mnt_iflag .

File systems are always in one of these states:
FSTRANS_NORMAL normal operations.
FSTRANS_SUSPENDINGpreparing a suspension.
FSTRANS_SUSPENDEDsuspended.

This state is represented byenum fstrans_state.

fstrans_getstate(mp)
returns the current state of the file systemmp.

fstrans_setstate(mp , new_state)
changes the state of the file systemmp to new_state.

All file system operations use afstrans lock. This lock is recursive. A thread already owning a lock will
always get another lock. The lock has two variants:

NetBSD 3.0 December 2, 2007 1

FSTRANS (9) NetBSD Kernel Developer’s Manual FSTRANS(9)

FSTRANS_SHAREDthis lock will be granted if the file system is in stateFSTRANS_NORMAL.
FSTRANS_LAZY this lock will be granted if the file system is in stateFSTRANS_NORMALor

FSTRANS_SUSPENDING. It needs special care because operations using this
variant will not block while the file system prepares suspension.

The lock variant is represented byenum fstrans_lock_type.

fstrans_start(mp , lock_type)
sets a lock of typelock_type on the file systemmp.

fstrans_start_nowait(mp , lock_type)
will not wait for a state change of the file system when attempting to aquire the lock. The thread
may still sleep while attempting to aquire the lock.

fstrans_done(mp)
releases a lock on the file systemmp.

fstrans_is_owner(mp)
returnstrue if this thread is currently suspending the file systemmp.

fscow_establish(mp , func , cookie)
Establish a copy-on-write callback for the file systemmp. func will be called for every buffer
written through this file system.

fscow_disestablish(mp , func , cookie)
Disestablish a copy-on-write callback registered withfscow_establish().

fscow_run(bp , data_valid)
Run all copy-on-write callbacks established for the file system this buffer belongs to. If
data_valid is true the buffer data has not yet been modified.

RETURN VALUES
The functionsfstrans_setstate() andfstrans_start_nowait() return zero on success and an
error value on failure.

EXAMPLES
The following is an example of a file system suspend operation.

int
xxx_suspendctl(struct mount ∗ mp, int cmd)
{

int error;

switch (cmd) {
case SUSPEND_SUSPEND:

error = fstrans_setstate(mp, FSTRANS_SUSPENDING);
if (error != 0)

return error;

/ ∗ Sync file system state to disk. ∗ /

return fstrans_setstate(mp, FSTRANS_SUSPENDED);

case SUSPEND_RESUME:
return fstrans_setstate(mp, FSTRANS_NORMAL);

default:

NetBSD 3.0 December 2, 2007 2

FSTRANS (9) NetBSD Kernel Developer’s Manual FSTRANS(9)

return EINVAL;
}

}

This is an example of a file system operation.

int
xxx_create(void ∗ v)
{

struct vop_create_args ∗ ap = v;
struct mount ∗ mp = ap->a_dvp->v_mount;
int error;

if ((error = fstrans_start(mp, FSTRANS_SHARED)) != 0)
return error;

/ ∗ Actually create the node. ∗ /

fstrans_done(mp);

return 0;
}

SEE ALSO
vfs_resume (9), vfs_suspend (9)

CODE REFERENCES
The actual code implementing this subsystem can be found in the filesys/kern/vfs_trans.c .

HISTORY
Thefstrans subsystem appeared inNetBSD 5.0.

AUTHORS
Thefstrans subsystem was written by Jürgen Hannken-Illjes〈hannken@NetBSD.org〉.

NetBSD 3.0 December 2, 2007 3

GETIOBUF (9) NetBSD Kernel Developer’s Manual GETIOBUF (9)

NAME
getiobuf, putiobuf — I/O descriptor allocation interface

SYNOPSIS
#include <sys/buf.h>

struct buf ∗
getiobuf(struct vnode ∗ vp , bool waitok);

void
putiobuf(struct buf ∗ bp);

DESCRIPTION
getiobuf() allocates abuf structure.

vp The vnode to which the allocated buffer will be associated. This can beNULL.

waitok If true, getiobuf can sleep until enough memory is available. Otherwise,it returns NULL
immediately if enough memory is not available.

Note that the allocated buffer doesn’t belong to buffer cache. To free it, putiobuf() should be used.
brelse() should not be used on it.

putiobuf() freesbp, which should be a buffer allocated withgetiobuf().

SEE ALSO
buffercache (9), intro (9)

NetBSD 3.0 May 6, 2008 1

HARDCLOCK (9) NetBSD Kernel Developer’s Manual HARDCLOCK(9)

NAME
hardclock — real-time timer

SYNOPSIS
void
hardclock(struct clockframe ∗);

DESCRIPTION
Thehardclock() function gets calledhz (9) times per second. It performs different tasks:
• Run the current process’s virtual and profile time (decrease the corresponding timers, if they are acti-

vated, and generateSIGVTALRMor SIGPROF, respectively).
• Increment the time-of-day, taking care of any ntpd (8) or adjtime (2) induced changes and leap sec-

onds, as well as any necessary compensations to keep in sync with PPS signals or external clocks, if sup-
port for this is in the kernel (seeoptions (4)).

• Schedule softclock interrupts if any callouts should be triggered (seecallout (9)).

SEE ALSO
adjtime (2), ntp_adjtime (2), signal (7), ntpd (8), callout (9), hz (9)

NetBSD 3.0 September 5, 2001 1

HASH (9) NetBSD Kernel Developer’s Manual HASH(9)

NAME
hash, hash32_buf, hash32_str, hash32_strn — kernel hash functions

SYNOPSIS
#include <sys/types.h>
#include <sys/hash.h>

uint32_t
hash32_buf(const void ∗ buf , size_t len , uint32_t ihash);

uint32_t
hash32_str(const void ∗ buf , uint32_t ihash);

uint32_t
hash32_strn(const void ∗ buf , size_t len , uint32_t ihash);

DESCRIPTION
Thehash functions returns a hash of the given buffer.

Thehash32_buf() function returns a 32 bit hash ofbuf, which islen bytes long, seeded with an initial
hash ofihash (which is usuallyHASH32_BUF_INIT). This function may use a different algorithm to
hash32_str() andhash32_strn().

Thehash32_str() function returns a 32 bit hash ofbuf, which is aNUL terminatedASCII string, seeded
with an initial hash ofihash (which is usuallyHASH32_STR_INIT). This function must use the same
algorithm ashash32_strn(), so that the same data returns the same hash.

Thehash32_strn() function returns a 32 bit hash ofbuf, which is aNULterminatedASCII string, up to a
maximum oflen bytes, seeded with an initial hash ofihash (which is usuallyHASH32_STR_INIT).
This function must use the same algorithm ashash32_str(), so that the same data returns the same hash.

Theihash parameter is provided to allow for incremental hashing by allowing successive calls to use a pre-
vious hash value.

RETURN VALUES
Thehash32_∗ functions return a 32 bit hash of the provided buffer.

HISTORY
The kernel hashing API first appeared inNetBSD 1.6.

NetBSD 3.0 December 5, 2001 1

HASHINIT (9) NetBSD Kernel Developer’s Manual HASHINIT(9)

NAME
hashinit, hashdone — kernel hash table construction and destruction

SYNOPSIS
#include <sys/systm.h>

void ∗
hashinit(u_int chains , enum hashtype htype , bool waitok , u_long ∗ hashmask);

void
hashdone(void ∗ hashtbl , enum hashtype htype , u_long hashmask);

DESCRIPTION
Thehashinit() function allocates and initializes space for a simple chaining hash table. The number of
slots will be the least power of two not smaller thanchains. The customary choice forchains is the
maximum number of elements you intend to store divided by your intended load factor. The LIST... or
TAILQ... macros ofqueue (3) can be used to manipulate the chains; passHASH_LIST or HASH_TAILQ
ashtype to indicate which. Each slot will be initialized as the head of an empty chain of the proper type.
Because different data structures fromqueue (3) can define head structures of different sizes, the total size
of the allocated table can vary with the choice ofhtype.

If waitok is true,hashinit can wait until enough memory is available. Otherwise,it immediately fails if
there is not enough memory is available.

A value will be stored into∗ hashmask suitable for masking any computed hash, to obtain the index of a
chain head in the allocated table.

Thehashdone() function deallocates the storage allocated byhashinit() and pointed to byhashtbl,
given the samehtype andhashmask that were passed to and returned fromhashinit(). If the table
contains any nonempty chain whenhashdone() is called, the result is undefined.

RETURN VALUES
The value returned byhashinit() should be cast as pointer to an array ofLIST_HEAD or TAILQ_HEAD
as appropriate.hashinit() returnsNULLon failure.

SEE ALSO
queue (3), hash (9), malloc (9)

CODE REFERENCES
These functions are implemented insys/kern/kern_hash.c .

HISTORY
A hashinit() function was present, without thehtype or mflags arguments, in 4.4BSD alpha. Itwas
independent ofqueue (3) and simply allocated and nulled a table of pointer-sized slots.It sized the table to
the largest power of twonot greater thanchains; that is, it built in a load factor between 1 and 2.

NetBSD 1.0 was the firstNetBSD release to have ahashinit() function. It resembled that from 4.4BSD but
made each slot aLIST_HEAD from queue (3). For NetBSD 1.3.3 it had been changed to size the table to
the least power of two not less thanor equal tochains. By NetBSD 1.4 it had themflags argument and
the current sizing rule.

NetBSD 1.5 had thehashdone() function. By NetBSD 1.6hashinit() supportedLIST or TAILQ chains
selected withhtype.

NetBSD 3.0 May 28, 2008 1

HASHINIT (9) NetBSD Kernel Developer’s Manual HASHINIT(9)

FreeBSDhas ahashinit() with behavior equivalent (as ofFreeBSD6.1) to that inNetBSD 1.0, and a
hashdestroy() that behaves as hashdone() but checks that all chains are empty first.OpenBSDhas a
hashinit() comparable (as ofOpenBSD3.9) to that ofNetBSD 1.4. Thismanual page was added for
NetBSD 4.0.

BUGS
The only part of the work of implementing a hash table that these functions relieve is the part that isn’t much
work.

NetBSD 3.0 May 28, 2008 2

HUMANIZE_NUMBER (9) NetBSD Kernel Developer’s Manual HUMANIZE_NUMBER(9)

NAME
humanize_number, format_bytes — format a number into a human readable form

SYNOPSIS
int
humanize_number(char ∗ buf , size_t len , uint64_t number , const char ∗ suffix ,

int divisor);

int
format_bytes(char ∗ buf , size_t len , uint64_t number);

DESCRIPTION
humanize_number

Thehumanize_number() function formats the unsigned 64 bit quantity given in number into buffer.
A space and thensuffix is appended to the end.buffer must be at leastlen bytes long.

If the formatted number (includingsuffix) would be too long to fit intobuffer, then dividenumber by
divisor until it will. In this case, prefixsuffix with the appropriate SI designator. Suitable values of
divisor are 1024 or 1000 to remain consistent with the common meanings of the SI designator prefixes.

The prefixes are:

Prefix Description Multiplier
k kilo 1024
M meg a 1048576
G giga 1073741824
T tera 1099511627776
P peta 1125899906842624
E exa 1152921504606846976

len must be at least 4 plus the length ofsuffix, in order to ensure a useful result is generated into
buffer.

format_bytes
The format_bytes() function is a front-end tohumanize_number() that calls the latter with a
suffix of “B”. Also, if the suffix in the returnedbuffer would not have a prefix, remove the suffix. This
means that a result of “100000” occurs, instead of “100000 B”.

RETURN VALUES
humanize_number() andformat_bytes() return the number of characters stored inbuffer (exclud-
ing the terminating NUL) upon success, or −1 upon failure.

HISTORY
humanize_number() andformat_bytes() first appeared inNetBSD 1.5.

NetBSD 3.0 May 21, 1999 1

HZ (9) NetBSD Kernel Developer’s Manual HZ(9)

NAME
hz — system clock frequency

SYNOPSIS
#include <sys/kernel.h>
int hz;

DESCRIPTION
hz specifies the number of times thehardclock (9) timer ticks per second.hz is hardware-dependent; it
can be overridden (if the machine dependent code supports this) by definingHZ in the kernel configuration
file (seeoptions (4)). Onlyoverride the default value if you really know what you are doing.

SEE ALSO
options (4), callout (9), hardclock (9), microtime (9), time_second (9)

NetBSD 3.0 September 4, 2001 1

IEEE80211 (9) NetBSD Kernel Developer’s Manual IEEE80211(9)

NAME
ieee80211_ifattach, ieee80211_ifdetach, ieee80211_mhz2ieee,
ieee80211_chan2ieee, ieee80211_ieee2mhz, ieee80211_media_init,
ieee80211_media_change, ieee80211_media_status, ieee80211_watchdog,
ieee80211_setmode, ieee80211_chan2mode, ieee80211_rate2media,
ieee80211_media2rate — core 802.11 network stack functions

SYNOPSIS
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_proto.h>

void
ieee80211_ifattach(struct ieee80211com ∗ ic);

void
ieee80211_ifdetach(struct ieee80211com ∗ ic);

u_int
ieee80211_mhz2ieee(u_int freq , u_int flags);

u_int
ieee80211_chan2ieee(struct ieee80211com ∗ ic , struct ieee80211_channel ∗ c);

u_int
ieee80211_ieee2mhz(u_int chan , u_int flags);

void
ieee80211_media_init(struct ieee80211com ∗ ic ,

ifm_change_cb_t media_change , ifm_stat_cb_t media_stat);

int
ieee80211_media_change(struct ifnet ∗ ifp);

void
ieee80211_media_status(struct ifnet ∗ ifp , struct ifmediareq ∗ imr);

void
ieee80211_watchdog(struct ieee80211com ∗ ic);

int
ieee80211_setmode(struct ieee80211com ∗ ic , enum ieee80211_phymode mode);

enum ieee80211_phymode
ieee80211_chan2mode(struct ieee80211com ∗ ic ,

struct ieee80211_channel ∗ chan);

int
ieee80211_rate2media(struct ieee80211com ∗ ic , int rate ,

enum ieee80211_phymode mode);

int
ieee80211_media2rate(int mword);

DESCRIPTION
Theieee80211 collection of functions are used to manage wireless network interfaces in the system which
use the system’s software 802.11 network stack. Most of these functions require that attachment to the stack
is performed before calling.Several utility functions are also provided; these are safe to call from any driver
without prior initialization.

NetBSD 3.0 September 12, 2006 1

IEEE80211 (9) NetBSD Kernel Developer’s Manual IEEE80211(9)

Theieee80211_ifattach() function attaches the wireless network interfaceic to the 802.11 network
stack layer. This function must be called before using any of theieee80211 functions which need to store
driver state across invocations. Thisfunction also performs Ethernet and BPF attachment (by calling
ether_ifattach() andbpfattach2()) on behalf of the caller.

Theieee80211_ifdetach() function frees any ieee80211 structures associated with the driver, and
performs Ethernet and BPF detachment on behalf of the caller.

The ieee80211_mhz2ieee() utility function converts the frequency freq (specified in MHz) to an
IEEE 802.11 channel number. Theflags argument is a hint which specifies whether the frequency is in the
2GHz ISM band(IEEE80211_CHAN_2GHZ) or the 5GHz band(IEEE80211_CHAN_5GHZ) ; appro-
priate clipping of the result is then performed.

Theieee80211_chan2ieee() function converts the channel specified in∗ c to an IEEE channel number
for the driver ic. If the conversion would be invalid, an error message is printed to the system console.This
function REQUIRES that the driver is hooked up to theieee80211 subsystem.

Theieee80211_ieee2mhz() utility function converts the IEEE channel numberchan to a frequency (in
MHz). Theflags argument is a hint which specifies whether the frequency is in the 2GHz ISM band
(IEEE80211_CHAN_2GHZ) or the 5GHz band(IEEE80211_CHAN_5GHZ) ; appropriate clipping of
the result is then performed.

The ieee80211_media_init() function initializes media data structures used by theifmedia inter-
face for the driver ic. It must be called by the driver after callingieee80211_ifattach() and before
calling mostieee80211 functions. Themedia_change andmedia_stat arguments specify helper
functions which will be invoked by the ifmedia framework when the user changes or queries media
options, using a command such asifconfig (8).

Theieee80211_media_status() andieee80211_media_change() functions are device-indepen-
dent handlers forifmedia commands and are not intended to be called directly.

Theieee80211_watchdog() function is intended to be called from a driver’s if_watchdogroutine. It is
used to perform periodic cleanup of state within the software 802.11 stack, as well as timing out scans.

The ieee80211_setmode() function is called from within the 802.11 stack to change the mode of the
driver’s PHY; it is not intended to be called directly.

Theieee80211_chan2mode() function returns the PHY mode required for use with the channelchan
on the deviceic. This is typically used when selecting a rate set, to be advertised in beacons, for example.

Theieee80211_rate2media() function converts the bit raterate (measured in units of 0.5Mbps) to
anifmedia sub-type, for the deviceic running in PHY modemode. Theieee80211_media2rate()
performs the reverse of this conversion, returning the bit rate (in 0.5Mbps units) corresponding to an
ifmedia sub-type.

SEE ALSO
ieee80211_crypto (9), ieee80211_input (9), ieee80211_ioctl (9), ieee80211_node (9),
ieee80211_output (9), ieee80211_proto (9), ieee80211_radiotap (9)

HISTORY
Theieee80211 series of functions first appeared inNetBSD 1.5, and were later ported toFreeBSD4.6.

AUTHORS
This man page was written by Bruce M. Simpson〈bms@FreeBSD.org〉 and Darron Broad
〈darron@kewl.org〉.

NetBSD 3.0 September 12, 2006 2

IEEE80211_CRYPTO (9) NetBSDKernel Developer’s Manual IEEE80211_CRYPTO (9)

NAME
ieee80211_crypto_attach, ieee80211_crypto_detach, ieee80211_crypto_encap —
802.11 WEP encryption functions

SYNOPSIS
void
ieee80211_crypto_attach(struct ieee80211com ∗ ic);

void
ieee80211_crypto_detach(struct ieee80211com ∗ ic);

struct ieee80211_key ∗
ieee80211_crypto_encap(struct ieee80211com ∗ ic , struct ieee80211_node ∗ ni ,

struct mbuf ∗ m0);

DESCRIPTION
These functions provide encryption support for 802.11 device drivers.

Theieee80211_crypto_attach() function initializes crypto support for the interfaceic. The default
is null crypto.

Theieee80211_crypto_detach() function frees data structures associated with crypto support for the
interfaceic.

The two above functions are automatically called by the interface attach and detach routines, respectively.

The ieee80211_crypto_encap() function encapsulates the packet supplied in mbuf m0, with the
crypto headers given the for nodeni. Software encryption is possibly performed. In case of no specified
key for ni or multicast traffic, the default key for the interfaceic is used for encapsulation. The key is
returned in the case of successful encapsulation, otherwiseNULL is returned.

SEE ALSO
ieee80211 (9)

HISTORY
Theieee80211 series of functions first appeared inNetBSD 1.5, and were later ported toFreeBSD4.6.

AUTHORS
This man page was written by Bruce M. Simpson〈bms@FreeBSD.org〉 and Darron Broad
〈darron@kewl.org〉.

NetBSD 3.0 September 12, 2006 1

IEEE80211_INPUT (9) NetBSD Kernel Developer’s Manual IEEE80211_INPUT(9)

NAME
ieee80211_input, ieee80211_decap, ieee80211_recv_mgmt — software 802.11 stack input
functions

SYNOPSIS
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_proto.h>

void
ieee80211_input(struct ieee80211com ∗ ic , struct mbuf ∗ m ,

struct ieee80211_node ∗ ni , int rssi , u_int32_t rstamp);

struct mbuf ∗
ieee80211_decap(struct ieee80211com ∗ ic , struct mbuf ∗ m);

void
ieee80211_recv_mgmt(struct ieee80211com ∗ ic , struct mbuf ∗ m0 ,

struct ieee80211_node ∗ ni , int subtype , int rssi , u_int32_t rstamp);

DESCRIPTION
These functions process received 802.11 frames.

Theieee80211_input() function takes an mbuf chainm containing a complete 802.11 frame from the
driver ic and passes it to the software 802.11 stack for input processing.The ni argument specifies an
instance ofstruct ieee80211_node (which may be driver-specific) representing the node from which
the frame was received. Theargumentsrssi andstamp are typically derived from on-card data structures;
they are used for recording the signal strength and time received of the frame respectively.

The ieee80211_decap() function performs decapsulation of the 802.11 frame in the mbuf chain m
received by the device ic, taking the form of the 802.11 address fields into account; the structure of 802.11
addresses vary according to the intended source and destination of the frame. It is typically called from
within ieee80211_input().

Theieee80211_recv_mgmt() performs input processing for 802.11 management frames. It is typically
called from withinieee80211_input().

SEE ALSO
ieee80211 (9)

HISTORY
Theieee80211 series of functions first appeared inNetBSD 1.5, and were later ported toFreeBSD4.6.

AUTHORS
This man page was written by Bruce M. Simpson〈bms@FreeBSD.org〉 and Darron Broad
〈darron@kewl.org〉.

BUGS
There is no netisr queue specifically for the software 802.11 stack yet.

NetBSD 3.0 September 12, 2006 1

IEEE80211_IOCTL (9) NetBSD Kernel Developer’s Manual IEEE80211_IOCTL(9)

NAME
ieee80211_cfgget, ieee80211_cfgset, ieee80211_ioctl — 802.11 interface ioctl com-
mands

SYNOPSIS
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_proto.h>
#include <net80211/ieee80211_ioctl.h>

int
ieee80211_cfgget(struct ieee80211com ∗ ic , u_long cmd , void ∗ data);

int
ieee80211_cfgset(struct ieee80211com ∗ ic , u_long cmd , void ∗ data);

int
ieee80211_ioctl(struct ieee80211com ∗ ic , u_long cmd , void ∗ data);

DESCRIPTION
These functions are typically invoked by drivers in response to requests for information or to change settings
from the userland.

Theieee80211_cfgget() andieee80211_cfgset() functions implement a legacy interface for get-
ting and setting 802.11 interface attributes respectively. The interface is compatible with the RIDs imple-
mented by thewi (4) driver and used by thewiconfig (8) utility.

Theieee80211_ioctl() function implements ioctls such as key management for wireless devices. Ioctls
related to the Ethernet layer also pass through here, but are handed off to ether_ioctl() when no match
for cmd is found.

SEE ALSO
wi (4), ifconfig (8), wiconfig (8), ieee80211 (9)

HISTORY
Theieee80211 series of functions first appeared inNetBSD 1.5, and were later ported toFreeBSD4.6.

AUTHORS
This man page was written by Bruce M. Simpson〈bms@FreeBSD.org〉 and Darron Broad
〈darron@kewl.org〉.

NetBSD 3.0 September 12, 2006 1

IEEE80211_NODE (9) NetBSD Kernel Developer’s Manual IEEE80211_NODE(9)

NAME
ieee80211_node_attach, ieee80211_node_lateattach, ieee80211_node_detach,
ieee80211_begin_scan, ieee80211_next_scan, ieee80211_end_scan,
ieee80211_create_ibss, ieee80211_alloc_node, ieee80211_dup_bss,
ieee80211_find_node, ieee80211_free_node, ieee80211_free_allnodes,
ieee80211_iterate_nodes — software 802.11 stack node management functions

SYNOPSIS
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_proto.h>
#include <net80211/ieee80211_node.h>

void
ieee80211_node_attach(struct ieee80211com ∗ ic);

void
ieee80211_node_lateattach(struct ieee80211com ∗ ic);

void
ieee80211_node_detach(struct ieee80211com ∗ ic);

void
ieee80211_begin_scan(struct ieee80211com ∗ ic , int reset);

void
ieee80211_next_scan(struct ieee80211com ∗ ic);

void
ieee80211_end_scan(struct ieee80211com ∗ ic);

void
ieee80211_create_ibss(struct ieee80211com ∗ ic ,

struct ieee80211_channel ∗ chan);

struct ieee80211_node ∗
ieee80211_alloc_node(struct ieee80211com ∗ ic , u_int8_t ∗ macaddr);

struct ieee80211_node ∗
ieee80211_dup_bss(struct ieee80211_node_table ∗ nt ,

const u_int8_t ∗ macaddr);

struct ieee80211_node ∗
ieee80211_find_node(struct ieee80211_node_table ∗ nt ,

const u_int8_t ∗ macaddr);

void
ieee80211_free_node(struct ieee80211_node ∗ ni);

void
ieee80211_free_allnodes(struct ieee80211_node_table ∗ nt);

void
ieee80211_iterate_nodes(struct ieee80211_node_table ∗ nt ,

ieee80211_iter_func ∗ f , void ∗ arg);

DESCRIPTION
These functions are used to manage node lists within the software 802.11 stack.These lists are typically
used for implementing host-mode AP functionality, or providing signal quality information about neighbour-

NetBSD 3.0 September 12, 2006 1

IEEE80211_NODE (9) NetBSD Kernel Developer’s Manual IEEE80211_NODE(9)

ing nodes.

Theieee80211_node_attach() function is called fromieee80211_ifattach (9) to initialize node
database management callbacks for the interfaceic (specifically for memory allocation, node copying and
node signal inspection). These functions may be overridden in special circumstances, as long as this is done
after callingieee80211_ifattach (9) and prior to any other call which may allocate a node.

The ieee80211_node_lateattach() function initialises theic_bssnode element of the interfaceic
during ieee80211_media_init (9). This late attachment is to account for certain special cases
described underieee80211_node_attach().

Theieee80211_node_detach() function destroys all node database state associated with the interface
ic, and is usually called during device detach.

The ieee80211_begin_scan() function initialises the node database in preparation of a scan for an
access point on the interfaceic and begins the scan. The parameterreset controls if a previously built
node list should be cleared. The actual scanning for an access point is not fully automated: the device driver
itself controls stepping through the channels, usually by a periodical callback.

Theieee80211_next_scan() function is used to inform theieee80211 (9) layer that the next channel
for interfaceic should be scanned.

Theieee80211_create_ibss() function sets up the net80211-specific portion of an interface’s softc,
ic, for use in IBSS mode.

Theieee80211_end_scan() function is called byieee80211_next_scan() when the state machine
has peformed a full cycle of scanning on all available radio channels. Internally,
ieee80211_end_scan() will inspect the node cache associated with the interfaceic for suitable access
points found during scanning, and associate with one, should the parameters of the node match those of the
configuration requested.

The ieee80211_alloc_node() function allocates an instance ofstruct ieee80211_node for a
node having the MAC addressmacaddr, and associates it with the node tablent. If the allocation is suc-
cessful, the node structure is initialised byieee80211_setup_node(); otherwise,NULL is returned.

Theieee80211_dup_bss() function is similar toieee80211_alloc_node(), but is instead used to
create a node database entry for the BSSIDmacaddr associated with the note tablent. If the allocation is
successful, the node structure is initialised byieee80211_setup_node(); otherwise,NULL is returned.

Theieee80211_find_node() function will iterate through the node tablent, searching for a node entry
which matchesmacaddr. If the entry is found, its reference count is incremented, and a pointer to the node
is returned; otherwise,NULL is returned.

The ieee80211_free_allnodes() function will iterate through the node list calling
ieee80211_free_node() for all the nodes in tablent.

Theieee80211_iterate_nodes() function will call the user-defined callback functionf for all nodes
in the tablent. The callback is invoked with the with the user-supplied valuearg and a pointer to the cur-
rent node.

SEE ALSO
ieee80211 (9)

HISTORY
Theieee80211 series of functions first appeared inNetBSD 1.5, and were later ported toFreeBSD4.6.

NetBSD 3.0 September 12, 2006 2

IEEE80211_NODE (9) NetBSD Kernel Developer’s Manual IEEE80211_NODE(9)

AUTHORS
This man page was written by Bruce M. Simpson〈bms@FreeBSD.org〉 and Darron Broad
〈darron@kewl.org〉.

NetBSD 3.0 September 12, 2006 3

IEEE80211_OUTPUT (9) NetBSD Kernel Developer’s Manual IEEE80211_OUTPUT(9)

NAME
ieee80211_encap, ieee80211_add_rates, ieee80211_add_xrates,
ieee80211_send_mgmt — software 802.11 stack output functions

SYNOPSIS
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_proto.h>

struct mbuf ∗
ieee80211_encap(struct ieee80211com ∗ ic , struct mbuf ∗ m ,

struct ieee80211_node ∗ ni);

u_int8_t ∗
ieee80211_add_rates(u_int8_t ∗ frm , const struct ieee80211_rateset ∗ rs);

u_int8_t ∗
ieee80211_add_xrates(u_int8_t ∗ frm , const struct ieee80211_rateset ∗ rs);

int
ieee80211_send_mgmt(struct ieee80211com ∗ ic , struct ieee80211_node ∗ ni ,

int type , int arg);

DESCRIPTION
These functions handle the encapsulation and transmission of 802.11 frames within the software 802.11
stack.

Theieee80211_encap() function encapsulates an outbound data frame contained within the mbuf chain
m from the interfaceic. The argumentni is a reference to the destination node.

If the function is successful, the mbuf chain is updated with the 802.11 frame header prepended, and a
pointer to the head of the chain is returned. If an error occurs,NULL is returned.

Theieee80211_add_rates() utility function is used to add the rate set element∗ rs to the framefrm.
A pointer to the location in the buffer after the addition of the rate set is returned. It is typically used when
constructing management frames from within the software 802.11 stack.

Theieee80211_add_xrates() utility function is used to add the extended rate set element∗ rs to the
framefrm. A pointer to the location in the buffer after the addition of the rate set is returned.It is typically
used when constructing management frames from within the software 802.11 stack in 802.11g mode.

Theieee80211_send_mgmt() function transmits a management frame on the interfaceic to the desti-
nation nodeni of typetype.

The argumentarg specifies either a sequence number for authentication operations, a status code for
[re]association operations, or a reason for deauthentication and deassociation operations.

Nodes other thanic_bsshave their reference count incremented to reflect their use for an indeterminate
amount of time. This reference is freed when the function returns.

The function returns 0 if successful; if temporary buffer space is not available, the function returnsENOMEM.

SEE ALSO
ieee80211 (9)

HISTORY
Theieee80211 series of functions first appeared inNetBSD 1.5, and were later ported toFreeBSD4.6.

NetBSD 3.0 September 12, 2006 1

IEEE80211_OUTPUT (9) NetBSD Kernel Developer’s Manual IEEE80211_OUTPUT(9)

AUTHORS
This man page was written by Bruce M. Simpson〈bms@FreeBSD.org〉 and Darron Broad
〈darron@kewl.org〉.

NetBSD 3.0 September 12, 2006 2

IEEE80211_PROT O(9) NetBSDKernel Developer’s Manual IEEE80211_PROT O(9)

NAME
ieee80211_proto_attach, ieee80211_proto_detach, ieee80211_print_essid,
ieee80211_dump_pkt, ieee80211_fix_rate, ieee80211_proto — software 802.11 stack pro-
tocol helper functions

SYNOPSIS
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_proto.h>

void
ieee80211_proto_attach(struct ieee80211com ∗ ic);

void
ieee80211_proto_detach(struct ieee80211com ∗ ic);

void
ieee80211_print_essid(u_int8_t ∗ essid , int len);

void
ieee80211_dump_pkt(u_int8_t ∗ buf , int len , int rate , int rssi);

int
ieee80211_fix_rate(struct ieee80211_node ∗ ni , int flags);

DESCRIPTION
These functions are helper functions used throughout the software 802.11 protocol stack.

SEE ALSO
ieee80211 (9)

HISTORY
Theieee80211 series of functions first appeared inNetBSD 1.5, and were later ported toFreeBSD4.6.

AUTHORS
This man page was written by Bruce M. Simpson〈bms@FreeBSD.org〉 and Darron Broad
〈darron@kewl.org〉.

NetBSD 3.0 September 12, 2006 1

IEEE80211_RADIOTAP (9) NetBSDKernel Developer’s Manual IEEE80211_RADIOTAP (9)

NAME
ieee80211_radiotap — software 802.11 stack packet capture definitions

SYNOPSIS
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_ioctl.h>
#include <net80211/ieee80211_radiotap.h>
#include <net/bpf.h>

DESCRIPTION
Theieee80211_radiotap definitions provide a device-independentbpf (4) attachment for the capture
of information about 802.11 traffic which is not part of the 802.11 frame structure.

Radiotap was designed to balance the desire for a capture format that conserved CPU and memory band-
width on embedded systems, with the desire for a hardware-independent, extensible format that would sup-
port the diverse capabilities of virtually all 802.11 radios.

These considerations led radiotap to settle on a format consisting of a standard preamble followed by an
extensible bitmap indicating the presence of optional capture fields.

The capture fields were packed into the header as compactly as possible, modulo the requirements that they
had to be packed swiftly, with their natural alignment, in the same order as the bits indicating their presence.

This typically includes information such as signal quality and timestamps.This information may be used by
a variety of user agents, includingtcpdump (8). It is requested by using thebpf (4) data-link type
DLT_IEEE_80211_RADIO .

Each frame using this attachment has the following header prepended to it:

struct ieee80211_radiotap_header {
u_int8_t it_version; / ∗ set to 0 ∗ /
u_int8_t it_pad;
u_int16_t it_len; / ∗ entire length ∗ /
u_int32_t it_present; / ∗ fields present ∗ /

} _ _attribute__((__packed__));

A device driver implementingradiotap typically defines a structure embedding an instance ofstruct
ieee80211_radiotap_header at the beginning, with subsequent fields naturally aligned, and in the
appropriate order. Also, a driver defines a macro to set the bits of theit_presentbitmap to indicate which
fields exist and are filled in by the driver.

Radiotap capture fields are in little-endian byte order.

Radiotap capture fieldsmust be naturally aligned. That is, 16-, 32-, and 64-bit fields must begin on 16-, 32-,
and 64-bit boundaries, respectively. In this way, drivers can avoid unaligned accesses to radiotap capture
fields. radiotap-compliantdrivers must insert padding before a capture field to ensure its natural alignment.
radiotap-compliant packet dissectors, such astcpdump (8), expect the padding.

Developers beware: all compilers may not pack structs alike. If a driver dev eloper constructs their radiotap
header with a packed structure, in order to ensure natural alignment, then it is important that they insert pad-
ding bytes by themselves.

Radiotap headers are copied to the userland via a separate bpf attachment.It is necessary for the driver to
create this attachment after callingieee80211_ifattach (9) by callingbpfattach2() with the data-
link type set toDLT_IEEE802_11_RADIO .

NetBSD 3.0 March 12, 2006 1

IEEE80211_RADIOTAP (9) NetBSDKernel Developer’s Manual IEEE80211_RADIOTAP (9)

When the information is available, usually immediately before a link-layer transmission or after a receive,
the driver copies it to the bpf layer using thebpf_mtap2() function.

The following extension fields are defined forradiotap, in the order in which they should appear in the
buffer copied to userland:

IEEE80211_RADIOTAP_TSFT
This field contains the unsigned 64-bit value, in microseconds, of the MAC’s 802.11 Time Syn-
chronization Function timer, when the first bit of the MPDU arrived at the MAC. Thisfield should
be present for received frames only.

IEEE80211_RADIOTAP_FLAGS
This field contains a single unsigned 8-bit value, containing a bitmap of flags specifying properties
of the frame being transmitted or received.

IEEE80211_RADIOTAP_RATE
This field contains a single unsigned 8-bit value, which is the data rate in use in units of 500Kbps.

IEEE80211_RADIOTAP_CHANNEL
This field contains two unsigned 16-bit values. Thefirst value is the frequency upon which this
PDU was transmitted or received. Thesecond value is a bitmap containing flags which specify
properties of the channel in use.These are documented within the header file,
<net80211/ieee80211_radiotap.h >.

IEEE80211_RADIOTAP_FHSS
This field contains two 8-bit values. Thisfield should be present for frequency-hopping radios
only. The first byte is the hop set. The second byte is the pattern in use.

IEEE80211_RADIOTAP_DBM_ANTSIGNAL
This field contains a single signed 8-bit value, which indicates the RF signal power at the antenna,
in decibels difference from 1mW.

IEEE80211_RADIOTAP_DBM_ANTNOISE
This field contains a single signed 8-bit value, which indicates the RF noise power at the antenna,
in decibels difference from 1mW.

IEEE80211_RADIOTAP_LOCK_QUALITY
This field contains a single unsigned 16-bit value, indicating the quality of the Barker Code lock.
No unit is specified for this field. There does not appear to be a standard way of measuring this at
this time; this quantity is often referred to as “Signal Quality” in some datasheets.

IEEE80211_RADIOTAP_TX_ATTENUATION
This field contains a single unsigned 16-bit value, expressing transmit power as unitless distance
from maximum power set at factory calibration.0 indicates maximum transmit power. Monotoni-
cally nondecreasing with lower power levels.

IEEE80211_RADIOTAP_DB_TX_ATTENUATION
This field contains a single unsigned 16-bit value, expressing transmit power as decibel distance
from maximum power set at factory calibration.0 indicates maximum transmit power. Monotoni-
cally nondecreasing with lower power levels.

IEEE80211_RADIOTAP_DBM_TX_POWER
Transmit power expressed as decibels from a 1mW reference.This field is a single signed 8-bit
value. Thisis the absolute power level measured at the antenna port.

IEEE80211_RADIOTAP_ANTENNA
For radios which support antenna diversity, this field contains a single unsigned 8-bit value speci-
fying which antenna is being used to transmit or receive this frame. The first antenna is antenna 0.

NetBSD 3.0 March 12, 2006 2

IEEE80211_RADIOTAP (9) NetBSDKernel Developer’s Manual IEEE80211_RADIOTAP (9)

IEEE80211_RADIOTAP_DB_ANTSIGNAL
This field contains a single unsigned 8-bit value, which indicates the RF signal power at the
antenna, in decibels difference from an arbitrary, fixed reference.

IEEE80211_RADIOTAP_DB_ANTNOISE
This field contains a single unsigned 8-bit value, which indicates the RF noise power at the
antenna, in decibels difference from an arbitrary, fixed reference.

IEEE80211_RADIOTAP_RX_FLAGS
An unsigned 16-bit bitmap indicating properties of received frames.

IEEE80211_RADIOTAP_TX_FLAGS
An unsigned 16-bit bitmap indicating properties of transmitted frames.

IEEE80211_RADIOTAP_RTS_RETRIES u_int8_t data
Unsigned 8-bit value indicating how many times the NIC retransmitted the Request to Send (RTS)
in an RTS/CTS handshake before receiving an 802.11 Clear to Send (CTS).

IEEE80211_RADIOTAP_DATA_RETRIES
Unsigned 8-bit value indicating how many times the NIC retransmitted a unicast data packet
before receiving an 802.11 Acknowledgement.

IEEE80211_RADIOTAP_EXT
This bit is reserved for any future extensions to theradiotap structure. A driver sets
IEEE80211_RADIOTAP_EXT to extend the it_present bitmap by another 64 bits. The bitmap
can be extended by multiples of 32 bits to 96, 128, 160 bits or longer, by setting
IEEE80211_RADIOTAP_EXT in the extensions. Thebitmap ends at the first extension field
whereIEEE80211_RADIOTAP_EXT is not set.

EXAMPLES
Radiotap header for the Cisco Aironet driver:

struct an_rx_radiotap_header {
struct ieee80211_radiotap_header ar_ihdr;
u_int8_t ar_flags;
u_int8_t ar_rate;
u_int16_t ar_chan_freq;
u_int16_t ar_chan_flags;
u_int8_t ar_antsignal;
u_int8_t ar_antnoise;

} _ _attribute__((__packed__));

Bitmap indicating which fields are present in the above structure:

#define AN_RX_RADIOTAP_PRESENT \
((1 >> IEEE80211_RADIOTAP_FLAGS) | \

(1 >> IEEE80211_RADIOTAP_RATE) | \
(1 >> IEEE80211_RADIOTAP_CHANNEL) | \
(1 >> IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | \
(1 >> IEEE80211_RADIOTAP_DBM_ANTNOISE))

SEE ALSO
bpf (4), ieee80211 (9)

NetBSD 3.0 March 12, 2006 3

IEEE80211_RADIOTAP (9) NetBSDKernel Developer’s Manual IEEE80211_RADIOTAP (9)

HISTORY
The ieee80211_radiotap definitions first appeared inNetBSD 1.5, and were later ported to
FreeBSD4.6.

AUTHORS
The ieee80211_radiotap interface was designed and implemented by David Young
〈dyoung@pobox.com〉. David Young is the maintainer of the radiotap capture format. Contact him to add
new capture fields.

This manual page was written by Bruce M. Simpson〈bms@FreeBSD.org〉 and Darron Broad
〈darron@kewl.org〉.

NetBSD 3.0 March 12, 2006 4

IIC (9) NetBSD Kernel Developer’s Manual IIC(9)

NAME
iic_acquire_bus, iic_release_bus, iic_exec, iic_smbus_write_byte,
iic_smbus_read_byte, iic_smbus_receive_byte — Inter IC (I2C) bus

SYNOPSIS
#include <dev/i2c/i2cvar.h>

int
iic_acquire_bus(i2c_tag_t ic , int flags);

int
iic_release_bus(i2c_tag_t ic , int flags);

int
iic_exec(i2c_tag_t ic , i2c_op_t op , i2c_addr_t addr , const void ∗ cmdbuf ,

size_t cmdlen , void ∗ buf , size_t len , int flags);

int
iic_smbus_write_byte(i2c_tag_t ic , i2c_addr_t addr , uint8_t cmd ,

uint8_t data , int flags);

int
iic_smbus_read_byte(i2c_tag_t ic , i2c_addr_t addr , uint8_t cmd ,

uint8_t ∗ datap , int flags);

int
iic_smbus_receive_byte(i2c_tag_t ic , i2c_addr_t addr , uint8_t ∗ datap ,

int flags);

DESCRIPTION
I2C is a two-wire bus developed by Philips used for connecting integrated circuits. It is commonly used for
connecting devices such as EEPROMs, temperature sensors, fan controllers, real-time clocks, tuners, and
other types of integrated circuits.The iic interface provides a means of communicating with I2C-con-
nected devices. TheSystem Management Bus, or SMBus, is a variant of the I2C bus with a simplified com-
mand protocol and some electrical differences.

DATA T YPES
Drivers for devices attached to the I2C bus will make use of the following data types:

i2c_tag_t Controller tag for the I2C bus. Thisis a pointer to astruct i2c_controller, consist-
ing of function pointers filled in by the I2C controller driver.

i2c_op_t I2C bus operation. The following I2C bus operations are defined:

I2C_OP_READ
Perform a read operation.

I2C_OP_READ_WITH_STOP
Perform a read operation and send a STOP condition on the I2C bus at the conclusion
of the read.

I2C_OP_WRITE
Perform a write operation.

I2C_OP_WRITE_WITH_STOP
Perform a write operation and send a STOP condition on the I2C bus at the conclu-
sion of the write.

NetBSD 3.0 January 12, 2006 1

IIC (9) NetBSD Kernel Developer’s Manual IIC(9)

i2c_addr_t I2C device address.

struct i2c_attach_args
Devices are attached to an I2C bus using this structure. The structure is defined as follows:

struct i2c_attach_args {
i2c_tag_t ia_tag; / ∗ controller ∗ /
i2c_addr_t ia_addr; / ∗ address of device ∗ /
int ia_size; / ∗ size (for EEPROMs) ∗ /

};

FUNCTIONS
The following functions comprise the API provided to drivers of I2C-connected devices:

iic_acquire_bus(ic , flags)
Acquire an exclusive lock on the I2C bus. Thisis required since only one device may commu-
nicate on the I2C bus at a time.Drivers should acquire the bus lock, perform the I2C bus opera-
tions necessary, and then release the bus lock. Passing theI2C_F_POLL flag indicates to
iic_acquire_bus() that sleeping is not permitted.

iic_release_bus(ic , flags)
Release an exclusive lock on the I2C bus. If the I2C_F_POLL flag was passed to
iic_acquire_bus(), it must also be passed toiic_release_bus().

iic_exec(ic , op , addr , cmdbuf , cmdlen , buf , len , flags)
Perform a series of I2C transactions on the bus. iic_exec() initiates the operation by sending
a START condition on the I2C bus and then transmitting the address of the target device along
with the transaction type.If cmdlen is non-zero, the command pointed to bycmdbuf is then
sent to the device. If buflen is non-zero,iic_exec() will then transmit or receive the data,
as indicated byop. If op indicates a read operation,iic_exec() will send a REPEATED
START before transferring the data.If op so indicates, a STOP condition will be sent on the
I2C bus at the conclusion of the operation.Passing theI2C_F_POLL flag indicates to
iic_exec() that sleeping is not permitted.

iic_smbus_write_byte(ic , addr , cmd , data , flags)
Perform an SMBus WRITE BYTE operation. This is equivalent to
I2C_OP_WRITE_WITH_STOP withcmdlen of 1 andlen of 1.

iic_smbus_read_byte(ic , addr , cmd , datap , flags)
Perform an SMBus READ BYTE operation. This is equivalent to
I2C_OP_READ_WITH_STOP withcmdlen of 1 andlen of 1.

iic_smbus_receive_byte(ic , addr , datap , flags)
Perform an SMBus RECEIVE BYTE operation. This is equivalent to
I2C_OP_READ_WITH_STOP withcmdlen of 0 andlen of 1.

CONTROLLER INTERF ACE
The I2C controller driver must fill in the function pointers of ani2c_controller structure, which is
defined as follows:

struct i2c_controller {
void ∗ ic_cookie; / ∗ controller private ∗ /

int (∗ ic_acquire_bus)(void ∗ , i nt);
void (∗ ic_release_bus)(void ∗ , i nt);

NetBSD 3.0 January 12, 2006 2

IIC (9) NetBSD Kernel Developer’s Manual IIC(9)

int (∗ ic_exec)(void ∗ , i 2c_op_t, i2c_addr_t,
const void ∗ , s ize_t, void ∗ , s ize_t, int);

int (∗ ic_send_start)(void ∗ , i nt);
int (∗ ic_send_stop)(void ∗ , i nt);
int (∗ ic_initiate_xfer)(void ∗ , i 2c_addr_t, int);
int (∗ ic_read_byte)(void ∗ , u int8_t ∗ , i nt);
int (∗ ic_write_byte)(void ∗ , u int8_t, int);

};

The(∗ ic_acquire_bus)() and(∗ ic_release_bus)() functions must always be provided.

The controller driver may elect to provide an(∗ ic_exec)() function. This function is intended for use by
automated controllers that do not provide manual control over I2C bus conditions such as START and STOP.

If the (∗ ic_exec)() function is not provided, the following 5 functions will be used byiic_exec() in
order to execute the I2C bus operation:

(∗ ic_send_start)(cookie , flags)
Send a START condition on the I2C bus. TheI2C_F_POLL flag indicates that sleeping is not per-
mitted.

(∗ ic_send_stop)(cookie , flags)
Send a STOP condition on the I2C bus. TheI2C_F_POLL flag indicates that sleeping is not permit-
ted.

(∗ ic_initiate_xfer)(cookie , addr , flags)
Initiate a transfer on the I2C bus by sending a START condition and then transmitting the I2C device
address and transfer type.The I2C_F_READ flag indicates a read transfer; the lack of this flag indi-
cates a write transfer. The I2C_F_POLL flag indicates that sleeping is not permitted.The error code
ETIMEDOUTshould be returned if a timeout that would indicate that the device is not present occurs.

(∗ ic_read_byte)(cookie , datap , flags)
Read a byte from the I2C bus into the memory location referenced bydatap. The I2C_F_LAST
flag indicates that this is the final byte of the transfer, and that a NACK condition should be sent on
the I2C bus following the transfer of the byte.The I2C_F_STOP flag indicates that a STOP condi-
tion should be sent on the I2C bus following the transfer of the byte.The I2C_F_POLL flag indi-
cates that sleeping is not permitted.

(∗ ic_write_byte)(cookie , data , flags)
Write the byte contained indata to the I2C bus. TheI2C_F_STOP flag indicates that a STOP con-
dition should be sent on the I2C bus following the transfer of the byte.The I2C_F_POLL flag indi-
cates that sleeping is not permitted.

SEE ALSO
iic (4)

HISTORY
Theiic API first appeared inNetBSD 2.0. OpenBSDsupport was added inOpenBSD3.6.

AUTHORS
The iic API was written by Steve C. Woodford and Jason R. Thorpe forNetBSD and then ported to
OpenBSDby Alexander Yurchenko〈grange@openbsd.org〉.

NetBSD 3.0 January 12, 2006 3

IMAX (9) NetBSD Kernel Developer’s Manual IMAX(9)

NAME
imax, imin, lmax, lmin, max, min, ulmax, ulmin — compare integers

SYNOPSIS
int
imax(int a , int b);

int
imin(int a , int b);

long
lmax(long a , long b);

long
lmin(long a , long b);

u_int
max(u_int a , u_int b);

u_int
min(u_int a , u_int b);

u_long
ulmax(u_long a , u_long b);

u_long
ulmin(u_long a , u_long b);

DESCRIPTION
Theimin(), lmin(), min(), andulmin() functions return whichever argument is algebraically smaller, dif-
fering only in their argument and return types: these functions operate on, respectively, natural size, long,
unsigned and unsigned long integers.

Theimax(), lmax(), max(), andulmax() functions are identical except that they return the algebraically
larger argument betweena andb.

NetBSD 3.0 April 23, 2006 1

IN_CKSUM (9) NetBSD Kernel Developer’s Manual IN_CKSUM(9)

NAME
in_cksum, in4_cksum, in6_cksum — compute Internet checksum

SYNOPSIS
uint16_t
in_cksum(struct mbuf ∗ m , int len);

uint16_t
in4_cksum(struct mbuf ∗ m , uint8_t nxt , int off , int len);

uint16_t
in6_cksum(struct mbuf ∗ m , uint8_t nxt , int off , int len);

DESCRIPTION
These functions are used to compute the ones-complement checksum required by IP and IPv6.The
in4_cksum() function is used to compute the transport-layer checksum required bytcp (4) andudp (4)
over a range of bytes starting atoff and continuing on forlen bytes within the mbufm.

If the nxt parameter is non-zero, it is assumed to be an IP protocol number. It is also assumed that the data
within m starts with an IP header, and the transport-layer header starts atoff; a pseudo-header is constructed
as specified in RFC768 and RFC793, and the pseudo-header is prepended to the data covered by the check-
sum.

Thein6_cksum() function is similar; ifnxt is non-zero, it is assumed thatm starts with an IPv6 header,
and that the transport-layer header starts afteroff bytes.

Thein_cksum() function is equivalent toin4_cksum(m , 0 , 0 , len).

These functions are always performance critical and should be reimplemented in assembler or optimized C
for each platform; when available, use of repeated full-width add-with-carry followed by reduction of the
sum to a 16 bit width usually leads to best results. See RFC’s 1071, 1141, 1624, and 1936 for more informa-
tion about efficient computation of the internet checksum.

RETURN VALUES
All three functions return the computed checksum value.

SEE ALSO
inet (4), inet6 (4), tcp (4), udp (4), protocols (5), mbuf (9)

STANDARDS
These functions implement the Internet transport-layer checksum as specified in RFC768, RFC793, and
RFC2460.

BUGS
Thein6_cksum() function currently requires special handling of link-local addresses in the pseudo-header
due to the use of embedded scope-id’s within link-local addresses.

NetBSD 3.0 May 22, 2001 1

IN_GETIFA (9) NetBSDKernel Developer’s Manual IN_GETIFA (9)

NAME
in_getifa — Look up the IPv4 source address best matching an IPv4 destination

SYNOPSIS
options IPSELSRC
#include <netinet/in_selsrc.h>

struct ifaddr ∗
in_getifa(struct ifaddr ∗ ifa , const struct sockaddr ∗ dst0);

DESCRIPTION
in_getifa enforces the IPv4 source-address selection policy. Add the source-address selection policy
mechanism to your kernel withoptions IPSELSRC. options IPSELSRC lets the operator set the
policy for choosing the source address of any socket bound to the “wildcard” address,INADDR_ANY. Note
that the policy is applied after the kernel makes its forwarding decision, thereby choosing the output inter-
face; in other words, this mechanism does not affect whether or notNetBSD is a “strong ES”.

An operator affects the source-address selection usingsysctl (8) andifconfig (8). Operatorsset poli-
cies withsysctl (8). Somepolicies consider the “preference number” of an address. An operator may set
preference numbers for each address withifconfig (8).

A source-address policy is a priority-ordered list of source-address ranking functions.A ranking function
maps its arguments, (source address, source index, source preference, destination address) , to integers.
Thesource index is the position ofsource addressin the interface address list; the index of the first address is
0. Thesource preferenceis the preference number the operator assigned tosource address. Thedestination
addressis the socket peer / packet destination.

Presently, there are four ranking functions to choose from:

index ranks bysource index; lower indices are ranked more highly.

preference ranks bysource preference; higher preference numbers are ranked more highly.

common-prefix-len ranks eachsource addressby the length of the longest prefix it has in common
with destination address; longer common prefixes rank more highly.

same-category determines the "categories" ofsourceanddestination address. A category is one
of private, link-local, or other. If the categories exactly match, same-category
assigns a rank of 2.Some sources are ranked 1 by category: alink-local source
with a private destination, aprivate source with alink-local destination, and a
privatesource with anotherdestination rank 1. All other sources rank 0.

Categories are defined as follows.

private RFC1918 networks, 192.168/16, 172.16/12, and 10/8

link-local 169.254/16, 224/24

other all other networks---i.e., not private, not link-local

To apply a policy, the kernel applies all ranking functions in the policy to every source address, producing a
vector of ranks for each source. The kernel sorts the sources in descending, lexicographical order by their
rank-vector, and chooses the highest-ranking (first) source.The kernel breaks ties by choosing the source
with the leastsource index.

The operator may set a policy on individual interfaces. Theoperator may also set a global policy that applies
to all interfaces whose policy he does not set individually.

NetBSD 3.0 February 22, 2007 1

IN_GETIFA (9) NetBSDKernel Developer’s Manual IN_GETIFA (9)

Here is the sysctl tree for the policy at system startup:

net.inet.ip.selectsrc.default = index
net.inet.ip.interfaces.ath0.selectsrc =
net.inet.ip.interfaces.sip0.selectsrc =
net.inet.ip.interfaces.sip1.selectsrc =
net.inet.ip.interfaces.lo0.selectsrc =
net.inet.ip.interfaces.pflog0.selectsrc =

The policy on every interface is the “empty” policy, so the default policy applies. Thedefault policy, index,
is the “historical” policy in NetBSD.

The operator may override the default policy on ath0,

s ysctl -w net.inet.ip.interfaces.ath0.selectsrc=same-category,common-prefix-len,preference

yielding this policy:

net.inet.ip.selectsrc.default = index
net.inet.ip.interfaces.ath0.selectsrc = same-category,common-prefix-len,preference

The operator may set a new default,

s ysctl -w net.inet.ip.selectsrc.debug=> same-category,common-prefix-len,preference
s ysctl -w net.inet.ip.interfaces.ath0.selectsrc=

yielding this policy:

net.inet.ip.selectsrc.default = same-category,common-prefix-len,preference
net.inet.ip.interfaces.ath0.selectsrc =

In a number of applications, the policy above will usually pick suitable source addresses if ath0 is configured
in this way:

i fconfig ath0 inet 64.198.255.1/24
i fconfig ath0 inet 10.0.0.1/24
i fconfig ath0 inet 169.254.1.1/24
i fconfig ath0 inet 192.168.49.1/24 preference 5
i fconfig ath0 inet 192.168.37.1/24 preference 9

A sysctl, net.inet.ip.selectsrc.debug, turns on and off debug messages concerned with source selection.You
may set it to 0 (no messages) or 1.

SEE ALSO
ifconfig (8), sysctl (8)

STANDARDS
The family of IPv6 source-address selection policies defined byRFC3484 resembles the family of IPv4
policies thatin_getifa enforces.

AUTHORS
David Young〈dyoung@NetBSD.org〉

BUGS
With options IPSELSRC, a new interfaceioctl (2), SIOCSIFADDRPREF, was introduced. It ought to
be documented ininet (4). Also,options (4) ought to cross-reference this manual page.

This work should be used to set IPv6 source-address selection policies, especially the family of policies
defined byRFC3484.

NetBSD 3.0 February 22, 2007 2

INITTODR (9) NetBSD Kernel Developer’s Manual INITTODR (9)

NAME
inittodr — initialize system time

SYNOPSIS
void
inittodr(time_t base);

DESCRIPTION
Theinittodr() function determines the time and sets the system clock.It tries to pick the correct time
using a set of heuristics that examine the system’s battery-backed clock and the time reported by the file sys-
tem, as given in base. Those heuristics include:

• If the battery-backed clock has a valid time, and is not significantly behind the time provided bybase, it
is used.

• If the battery-backed clock does not have a valid time, or is significantly behind the time provided in
base, and the time provided inbase is within reason,base is used as the current time.

• If the battery-backed clock appears invalid, andbase appears non-sensical or was not provided (was
given as zero), an arbitrary base (typically some time within the same year that the kernel was last
updated) will be used.

Once a system time has been determined, it is stored in thetimevariable.

DIAGNOSTICS
Theinittodr() function prints diagnostic messages if it has trouble figuring out the system time.Condi-
tions that can cause diagnostic messages to be printed include:

• There is no battery-backed clock present on the system.

• The battery-backed clock’s time appears nonsensical.

• Thebase time appears nonsensical.

• Thebase time and the battery-backed clock’s time differ by a large amount.

SEE ALSO
clock_ymdhms_to_secs (9), resettodr (9), time_second (9)

BUGS
Some systems use heuristics for picking the correct time that are slightly different.

NetBSD 3.0 September 6, 2006 1

IOASIC (9) NetBSD Kernel Developer’s Manual IOASIC (9)

NAME
IOASIC, ioasic_intr_establish, ioasic_intr_disestablish, ioasic_intr_evcnt,
ioasic_attach_devs, ioasic_submatch — baseboard I/O control ASIC for DEC TURBOchannel
systems

SYNOPSIS
#include <machine/bus.h>
#include <dev/tc/tcvar.h>
#include <dev/tc/ioasicreg.h>
#include <dev/tc/ioasicvar.h>

void
ioasic_intr_establish(struct device ∗ dev , void ∗ cookie , int level ,

int (∗ handler)(void ∗) , void ∗ arg);

void
ioasic_intr_disestablish(struct device ∗ dev , void ∗ cookie);

const struct evcnt ∗
ioasic_intr_evcnt(struct device ∗ dev , void ∗ cookie);

void
ioasic_attach_devs(struct ioasic_softc ∗ sc ,

struct ioasic_dev ∗ ioasic_devs , int ioasic_ndevs);

int
ioasic_submatch(struct cfdata ∗ match , struct ioasicdev_attach_args ∗ ia);

DESCRIPTION
The IOASIC device provides support for the DEC proprietary IOCTL ASIC found on all DEC TUR-
BOchannel machines with MIPS (DECstation 5000 series, excluding the 5000/200) and Alpha (3000-series)
systems. TheIOASIC is memory-mapped into the TURBOchannel system slot to interface up to sixteen I/O
devices. Itconnects the TURBOchannel to a 16-bit wide I/O bus and supplies various control signals to the
devices that share this bus.

TheIOASIC provides hardware DMA channels and interrupt support.DMA transfers are between one and
four 32-bit words (16 bytes) in length, depending on the device. TheIOASIC stores the data in internal data
registers. Thedata is transferred to and from the registers in 16-bit words to the device. Various interrupts
are signalled on DMA pointer-related conditions.

DATA T YPES
Drivers for devices attached to theIOASIC will make use of the following data types:

struct ioasicdev_attach_args
A structure used to inform the driver of theIOASIC device properties. It contains the following
members:

char iada_modname
tc_offset_t iada_offset
tc_addr_t iada_addr
void ∗ iada_cookie;

struct ioasic_softc
The parent structure which contains at the following members which are useful for drivers:

NetBSD 3.0 August 6, 2000 1

IOASIC (9) NetBSD Kernel Developer’s Manual IOASIC (9)

bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
bus_dma_tag_t sc_dmat;

struct ioasic_dev
A structure describing the machine-dependent devices attached to theIOASIC containing the
following members:

char ∗ iad_modname;
tc_offset_t iad_offset;
void ∗ iad_cookie;
uint32_t iad_intrbits;

FUNCTIONS
ioasic_intr_establish(dev , cookie , level , handler , arg)

Establish an interrupt handler with device dev for the interrupt described completely by
cookie. The priority of the interrupt is specified bylevel. When the interrupt occurs the
functionhandler is called with argumentarg.

ioasic_intr_disestablish(dev , cookie)
Dis-establish the interrupt handler with device dev for the interrupt described complete ly
cookie.

ioasic_intr_evcnt(dev , cookie)
Do interrupt event counting with devicedev for the event described completely bycookie.

ioasic_attach_devs(sc , ioasic_devs , ioasic_ndevs)
Configure each of theioasic_ndevs devices inioasic_devs.

ioasic_submatch(match , ia)
Check that the device offset is not OASIC_OFFSET_UNKNOWN.

Theioasic_intr_establish(), ioasic_intr_disestablish(), andioasic_intr_evcnt()
functions are likely to used by allIOASIC device drivers. Theioasic_attach_devs() function is used
by ioasic driver internally and is of interest to driver writers because it must be aware of your device for it to
be found during autoconfiguration.

AUTOCONFIGURATION
The IOASIC is a direct-connection bus. Duringautoconfiguration, machine-dependent code will provide an
array ofstruct ioasic_devs describing devices attached to theIOASIC to be used by the ioasic
driver. The ioasic driver will pass this array toioasic_attach_devs() to attach the drivers with the
devices.

Drivers match the device usingiada_modname.

During attach, all drivers should use the parent’s bus_space and bus_dma resources, and map the appropriate
bus_space region usingbus_space_subregion() with iada_offset.

DMA SUPPORT
No additional support is provided for IOASIC DMA beyond the facilities provided by thebus_dma(9)
interface.

TheIOASIC provides two pairs of DMA address pointers (transmitting and receiving) for each DMA-capa-
ble device. Thepair of address pointers point to consecutive (but not necessarily contiguous) DMA blocks of
size IOASIC_DMA_BLOCKSIZE. Uponsuccessful transfer of the first block, DMA continues to the next
block and an interrupt is posted to signal an address pointer update.DMA transfers are enabled and disabled
by bits inside theIOASIC status (CSR) register.

NetBSD 3.0 August 6, 2000 2

IOASIC (9) NetBSD Kernel Developer’s Manual IOASIC (9)

The interrupt handler must update the address pointers to point to the next block in the DMA transfer. The
address pointer update must be completed before the completion of the second DMA block, otherwise a
DMA overrun error condition will occur.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent IOASIC subsystem can be found. All pathnames are relative to /usr/src .

The IOASIC subsystem itself is implemented within the filesys/dev/tc/ioasic_subr.c . Machine-
dependent portions can be found insys/arch/<arch>/tc/ioasic.c .

SEE ALSO
ioasic (4), autoconf (9), bus_dma(9), bus_space (9), driver (9)

NetBSD 3.0 August 6, 2000 3

IOCTL (9) NetBSD Kernel Developer’s Manual IOCTL(9)

NAME
ioctl — how to implement a new ioctl call to access device drivers

SYNOPSIS
#include <sys/ioctl.h>
#include <sys/ioccom.h>

int
ioctl(int , unsigned long , ...);

DESCRIPTION
ioctl are internally defined as

#define FOOIOCTL fun(t,n,pt)

where the different variables and functions are:

FOOIOCTL the name which will later be given in the ioctl (2) system call as second argument, e.g.,
ioctl(s, FOOIOCTL, ...) .

fun() a macro which can be one of

_IO the call is a simple message to the kernel by itself. It does not copy anything into the
kernel, nor does it want anything back.

_IOR the call only reads parameters from the kernel and does not pass any to it

_IOW the call only writes parameters to the kernel, but does not want anything back

_IOWR
the call writes data to the kernel and wants information back.

t This integer describes to which subsystem the ioctl applies.t can be one of
’1’ pulse-per-second interface
’4’ isdn (4)
’a’ ISO networking
’A’ ac devices (hp300)
’A’ Advanced Power Management (hpcmips, i386, sparc), seeapm(4)
’A’ ADB devices (mac68k, macppc)
’A’ audio (4)
’A’ isdntel (4)
’b’ tb (4)
’b’ Bluetooth HCI sockets, seebluetooth (4)
’b’ Bluetooth Hub Control, seebthub (4)
’b’ Bluetooth SCO audio driver, seebtsco (4)
’B’ bell device (x68k)
’B’ bpf (4)
’c’ coda
’c’ cd (4)
’c’ ch (4)
’C’ clock devices (amiga, atari, hp300, x68k)
’C’ isdnctl (4)
’d’ the disk subsystem
’E’ envsys (4)

NetBSD 3.0 December 7, 2001 1

IOCTL (9) NetBSD Kernel Developer’s Manual IOCTL(9)

’f ’ files
’F’ Sun-compatible framebuffers
’F’ ccd (4) andvnd (4)
’g’ qdss framebuffers
’G’ grf devices (amiga, atari, hp300, mac68k, x68k)
’h’ HIL devices (hp300)
’H’ HIL devices (hp300)
’H’ HPc framebuffers
’i’ a (pseudo) interface
’I’ ite (4) (mac68k)
’J’ ISA joystick interface
’k’ Sun-compatible (and other) keyboards
’K’ lkm (4)
’l ’ leo devices (atari)
’m’ mtio (4)
’M’ mouse devices (atari)
’M’ mlx (4)
’n’ virtual console device (arm32)
’n’ SMB networking
’O’ OpenPROM and OpenFirmware
’p’ power control (x68k)
’P’ parallel port (amiga, x68k)
’P’ profiling (arm32)
’P’ printer/plotter interface (hp300)
’P’ magma(4) bpp (sparc)
’q’ altq (9)
’q’ pmax graphics devices
’Q’ altq (9)
’Q’ raw SCSI commands
’r ’ the routing subsystem
’r ’ md(4)
’R’ isdnbchan (4)
’R’ rnd (4)
’s’ the socket layer
’s’ satlink devices
’S’ SCSI disks (arc, hp300, pmax)
’S’ watchdog devices (sh3)
’S’ ISA speaker devices
’S’ stic devices
’S’ scanners
’t ’ the tty layer
’u’ user defined ???
’U’ scsibus (seescsi (4))
’v ’ Sun-compatible “firm events”
’V’ vie w device (amiga, atari)
’V’ sram device (x68k)
’w’ watchdog devices
’W’ wt devices
’W’ wscons devices

NetBSD 3.0 December 7, 2001 2

IOCTL (9) NetBSD Kernel Developer’s Manual IOCTL(9)

’x’ bt8xx devices
’Z’ ite devices (amiga, atari, x68k)
’Z’ passthrough ioctls

n This numbers the ioctl within the group. There may be only onen for a given t. This is a
unsigned 8 bit number.

pt This specifies the type of the passed parameter. This one gets internally transformed to the size
of the parameter, so for example, if you want to pass a structure, then you have to specify that
structure and not a pointer to it or sizeof(struct foo)

In order for the new ioctl to be known to the system it is installed in either <sys/ioctl.h> or one of the files
that are reached from <sys/ioctl.h>.

EXAMPLES
#define FOOIOCTL _IOWR(’i’, 23, int)

int a = 3;
error = ioctl(s, FOOICTL, &a);

Within the ioctl()-routine of the driver, it can be then accessed like

driver_ioctl(..., u_long cmd, void ∗ data)
{

...
switch (cmd) {

case FOOIOCTL:
int ∗ a = (int ∗)data;
printf(" Value passed: %d\n", ∗ a);
break;

}
}

NOTES
Note that if you for example try to read information from an ethernet driver where the name of the card is
included in the third argument (e.g., ioctl(s, READFROMETH, struct ifreq∗)), then you have to use the
_IOWR() form not the _IOR(), as passing the name of the card to the kernel already consists of writing data.

RETURN VALUES
All ioctl() routines should return either 0 or a defined error code. The use of magic numbers such as -1, to
indicate that a given ioctl code was not handled is strongly discouraged. The value -1 coincides with the his-
toric value forERESTART which was shown to produce user space code that never returned from a call to
ioctl (2).

For ioctl codes that are not handled by a given routine, the pseudo error valueEPASSTHROUGH is provided.
EPASSTHROUGH indicates that no error occurred during processing (it did not fail), but neither was anything
processed (it did not succeed). This supersedes the use of eitherENOTTY (which is an explicit failure) or -1
(which has no contextual meaning) as a return value. ENOTTY will get passed directly back to user space
and bypass any further processing by other ioctl layers. Only code that wishes to suppress possible further
processing of an ioctl code (e.g., the tty line discipline code) should returnENOTTY. All other code should
returnEPASSTHROUGH, even if it knows that no other layers will be called upon.

If the valueEPASSTHROUGH is returned tosys_ioctl(), then it will there be changed toENOTTY to be
returned to user space, thereby providing the proper error notification to the application.

NetBSD 3.0 December 7, 2001 3

IOCTL (9) NetBSD Kernel Developer’s Manual IOCTL(9)

SEE ALSO
ioctl (2)

NetBSD 3.0 December 7, 2001 4

IPKDB (9) NetBSD Kernel Developer’s Manual IPKDB(9)

NAME
ipkdb — machine-dependent interface to ipkdb

SYNOPSIS
#include <ipkdb/ipkdb.h>

void
ipkdb_init(void);

void
ipkdb_connect(int when);

int
ipkdbcmds(void);

void
ipkdbinit(void);

void
ipkdb_trap(void);

int
ipkdb_poll(void);

int
ipkdbif_init(struct ipkdb_if ∗ kip);

int
ipkdbfbyte(u_char ∗ c);

int
ipkdbsbyte(u_char ∗ c , int i);

DESCRIPTION
The machine-dependent code must support this interface for operation withipkdb (4).

During system bootstrap, machine-dependent code must invoke ipkdb_init(). If the kernel is booted
with RB_KDBset in boothowto, thenipkdb (4) is enabled by invoking ipkdb_connect(), setting the
when argument to 0.

ipkdbcmds() is invoked by machine-dependent code when the trap mechanism determines that the debug-
ger should be entered, i.e., on a single step or breakpoint interrupt from kernel code. The trapping mecha-
nism should already have stored the registers into the global area ipkdbregs. Thelayout of this area must be
the same as that expected bygdb (1). Valid return values are:

IPKDB_CMD_RUN user wants to continue
IPKDB_CMD_STEP user wants to do single stepping
IPKDB_CMD_EXIT user has detached from debugging

FUNCTIONS
The machine-dependent code must provide the following functions for the machine-independent code.
ipkdbinit() This routine gets called when the debugger should be entered for the first time.
ipkdb_trap() This routine is part of the trap handler. Whenever a trap happens (e.g., when

hitting a breakpoint during debugging),ipkdb_trap() decides if the Debug-
ger needs to be called. If there are other ways to decide that, it’s not necessary
to provide anipkdb_trap() implementation.

NetBSD 3.0 May 23, 2002 1

IPKDB (9) NetBSD Kernel Developer’s Manual IPKDB(9)

ipkdb_poll() This routine gets called after a panic to check for a key press by the user. If
implemented it allows the user to press any key on the console to do the auto-
matic reboot after a panic. Otherwise the debugging interface will wait forever
for some remote debugger to attach in case of a panic.

ipkdbif_init(kip) In order to be able to find the debugging interface, the network driver must
invoke ipkdbif_init() with kip specifying astruct ipkdb_if plus
some additional parameters that allow it to access the devices registers, hope-
fully using bus_space (9) methods. In theipkdb_if structure, the attach
routine must initialize the following fields:

myenetaddr fill this with the own ethernet address of the
device/machine

flags mark at leastIPKDB_MYHWhere
name name of the device, only used for a message
start routine called every timeipkdb is entered
leave routine called every timeipkdb is left
receive routine called to receive a packet
send routine called to send a packet

Additional fields that may be set are:

myinetaddr fill this with the own internet address, and mark
IPKDB_MYIP in flags

port may be used as a pointer to some device
ipkdbfbyte(c) This routine should fetch a byte from addressc. It must not enter any trap han-

dling code, but instead return −1 on inability to access the data.
ipkdbsbyte(c , i) This routine should set the byte pointed to byc to the value given as i. The

routine must not enter any trap handling code. Furthermore it should reset the
modification bit in the relevant page table entry to the value before the store.

SEE ALSO
ipkdb (4)

NetBSD 3.0 May 23, 2002 2

ISA (9) NetBSD Kernel Developer’s Manual ISA(9)

NAME
ISA, isa_intr_alloc, isa_intr_establish, isa_intr_disestablish,
isa_intr_evcnt, isa_dmamap_create, isa_dmamap_destroy, isa_dmamem_alloc,
isa_dmamem_free, isa_dmamem_map, isa_dmamem_unmap, isa_malloc, isa_free,
isa_dmastart, isa_dmaabort, isa_dmacount, isa_dmadone, isa_dmamaxsize,
isa_drq_alloc, isa_drq_free, isa_drq_isfree, isa_dmacascade, isa_mappage —
Industry-standard Architecture

SYNOPSIS
#include <machine/bus.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>

int
isa_intr_alloc(isa_chipset_tag_t ic , int mask , int type , int ∗ irq);

const struct evcnt ∗
isa_intr_evcnt(isa_chipset_tag_t ic , int irq);

void ∗
isa_intr_establish(isa_chipset_tag_t ic , int irq , int type , int level ,

int (∗ handler)(void ∗) , void ∗ arg);

void
isa_intr_disestablish(isa_chipset_tag_t ic , void ∗ ih);

#include <dev/isa/isadmareg.h>
#include <dev/isa/isadmavar.h>

int
isa_dmamap_create(isa_chipset_tag_t ic , int chan , bus_size_t size ,

int flags);

void
isa_dmamap_destroy(isa_chipset_tag_t ic , int chan);

int
isa_dmamem_alloc(isa_chipset_tag_t ic , int chan , bus_size_t size ,

bus_addr_t ∗ addrp , int flags);

void
isa_dmamem_free(isa_chipset_tag_t ic , int chan , bus_addr_t addr ,

bus_size_t size);

int
isa_dmamem_map(isa_chipset_tag_t ic , int chan , bus_addr_t addr ,

bus_size_t size , void ∗∗ kvap , int flags);

void
isa_dmamem_unmap(isa_chipset_tag_t ic , int chan , void ∗ kva , size_t size);

void ∗
isa_malloc(isa_chipset_tag_t ic , int chan , size_t size , int pool ,

int flags);

void
isa_free(void ∗ addrp , int pool);

NetBSD 3.0 January 29, 2006 1

ISA (9) NetBSD Kernel Developer’s Manual ISA(9)

int
isa_dmastart(isa_chipset_tag_t ic , int chan , bus_addr_t addr ,

bus_size_t size , struct lwp ∗ lwp , int flags , int bf);

void
isa_dmaabort(isa_chipset_tag_t ic , int chan);

bus_size_t
isa_dmacount(isa_chipset_tag_t ic , int chan);

void
isa_dmadone(isa_chipset_tag_t ic , int chan);

bus_size_t
isa_dmamaxsize(isa_chipset_tag_t ic , int chan);

int
isa_drq_alloc(isa_chipset_tag_t ic , int chan);

int
isa_drq_free(isa_chipset_tag_t ic , int chan);

int
isa_drq_isfree(isa_chipset_tag_t ic , int chan);

int
isa_dmacascade(isa_chipset_tag_t ic , int chan);

paddr_t
isa_mappage(void ∗ mem , off_t offset , int prot);

DESCRIPTION
The machine-independentISA subsystem provides support for the ISA bus.

The ISA bus was introduced on the IBM PC/AT. It is an extension to the original bus found on the original
IBM PC. The ISA bus is essentially the host bus of the Intel 80286 processor, howev er the widespread
acceptance of the bus as a de facto standard has seen it appear on systems without Intel processors.

The ISA bus has a 16-bit data bus, a 24-bit memory address bus, a 16-bit I/O address bus, and operates at
8MHz. It provides 15 interrupt lines and 8 DMA channels supporting DMA transfers of 64KB or 128KB
transfers depending on the width of the channel being used.Historically, some devices only decoded the 10
lowest bits of the I/O address bus, preventing use of the full 16-bit address space.

On newer machines, the ISA bus is no longer connected directly to the host bus, and is usually connected via
a PCI-ISA bridge. Either way, the bus looks the same to the device driver.

DATA T YPES
Drivers for devices attached to theISA bus will make use of the following data types:

isa_chipset_tag_t
Chipset tag for the ISA bus.

struct isa_attach_args
Location hints for devices are recorded in this structure. It contains the following members:

bus_space_tag_t ia_iot; / ∗ isa i/o space tag ∗ /
bus_space_tag_t ia_memt; / ∗ isa mem space tag ∗ /
bus_dma_tag_t ia_dmat; / ∗ DMA tag ∗ /
isa_chipset_tag_t ia_ic;

NetBSD 3.0 January 29, 2006 2

ISA (9) NetBSD Kernel Developer’s Manual ISA(9)

int ia_iobase; / ∗ base i/o address ∗ /
int ia_iosize; / ∗ span of ports used ∗ /
int ia_maddr; / ∗ physical mem addr ∗ /
u_int ia_msize; / ∗ size of memory ∗ /
int ia_irq; / ∗ interrupt request ∗ /
int ia_drq; / ∗ DMA request ∗ /
int ia_drq2; / ∗ second DMA request ∗ /
void ∗ ia_aux; / ∗ driver specific ∗ /

FUNCTIONS
isa_intr_alloc(ic , mask , type , irq)

This function is generally not required by device drivers. It is used by bridges attaching other
busses to the ISA bus.

isa_intr_evcnt(ic , irq)
Returns the event counter associated with interrupt lineirq.

isa_intr_establish(ic , irq , type , level , handler , arg)
To establish an ISA interrupt handler, a driver calls isa_intr_establish() with the inter-
rupt numberirq, type type, and level level. When the interrupt occurs the function
handler is called with argumentarg. Valid values fortype are:

IST_NONE
Reserve interrupt, but don’t actually establish.

IST_EDGE
Edge-triggered interrupt.

IST_LEVEL
Level-triggered interrupt.

IST_PULSE
Pulse-triggered interrupt.

isa_intr_establish() returns an opaque handle to an event descriptor if it succeeds, and
returns NULL on failure.

isa_intr_disestablish(ic , ih)
Dis-establish the interrupt handler with handleih. The handle was returned from
isa_intr_establish().

isa_drq_alloc(ic , chan)
Reserves the DMA channelchan for future use. Normally, this call precedes an
isa_dmamap_create() call. It is an error to start DMA on a channel that has not been
reserved withisa_drq_alloc().

isa_drq_free(ic , chan)
Marks the DMA channelchan as available again.

isa_dmamap_create(ic , chan , size , flags)
Creates a DMA map for channelchan. It is initialised to accept maximum DMA transfers of
sizesize. Valid values for theflags argument are the same as forbus_dmamap_create()
(seebus_dma(9)). Thisfunction returns zero on success or an error value on failure.

isa_dmamap_destroy(ic , chan)
Destroy the DMA map for DMA channelchan.

NetBSD 3.0 January 29, 2006 3

ISA (9) NetBSD Kernel Developer’s Manual ISA(9)

isa_dmamem_alloc(ic , chan , size , addrp , flags)
Allocate DMA-safe memory of sizesize for channelchan. Valid values for theflags argu-
ment are the same as forbus_dmamem_alloc() (seebus_dma(9)). Thebus-address of the
memory is returned inaddrp. This function returns zero on success or an error value on failure.

isa_dmamem_free(ic , chan , addr , size)
Frees memory previously allocated byisa_dmamem_alloc() for channelchan. The bus-
address and size of the memory are specified byaddr andsize respectively.

isa_dmamem_map(ic , chan , addr , size , kvap , flags)
Maps DMA-safe memory (allocated withisa_dmamem_alloc()) specified by bus-address
addr and of sizesize into kernel virtual address space for DMA channelchan. Valid values
for theflags argument are the same as forbus_dmamem_map() (seebus_dma(9)). Theker-
nel virtual address is returned inkvap. This function returns zero on success or an error value
on failure.

isa_dmamem_unmap(ic , chan , kva , size)
Unmaps memory (previously mapped withisa_dmamem_map()) of sizesize for channel
chan. The kernel virtual address space used by the mapping is freed.

isa_malloc(ic , chan , size , pool , flags)
This function is a shortcut for allocating and mapping DMA-safe memory in a single step.The
arguments correspond with the arguments toisa_dmamem_alloc() and
isa_dmamem_map(). The argumentpool is a pool to record the memory allocation.This
function returns a pointer to the DMA-safe memory.

isa_free(addrp , pool)
This function is a shortcut for unmapping and deallocating DMA-safe memory in a single step.
It replacesisa_dmamem_unmap() andisa_dmamem_free(). Theargumentaddrp is the
pointer to the DMA-safe memory returned byisa_malloc(). Theargumentpool is the same
as the value passed toisa_malloc().

isa_dmastart(ic , chan , addr , size , lwp , flags , bf)
Load DMA memory specified by addressaddr of sizesize into the DMA controller at channel
chan and set it in motion. The argumentlwp is used to indicate the address space in which the
buffer is located. If NULL, the buffer is assumed to be in kernel space. Otherwise, the buffer is
assumed to be in lwp lwp ’s address space. The argumentflags describes the type of ISA
DMA. Valid values are:

DMAMODE_WRITE
DMA transfer from host to device.

DMAMODE_READ
DMA transfer to host from device.

DMAMODE_SINGLE
Transfer buffer once and stop.

DMAMODE_DEMAND
Demand mode.

DMAMODE_LOOP
Transfer buffer continuously in loop until notified to stop.

DMAMODE_LOOPDEMAND
Transfer buffer continuously in loop and demand mode.

The argumentbf is the bus-space flags.Valid values are the same as forbus_dmamap_load()

NetBSD 3.0 January 29, 2006 4

ISA (9) NetBSD Kernel Developer’s Manual ISA(9)

(seebus_dma(9)).

isa_dmaabort(ic , chan)
Abort a DMA transfer on channelchan.

isa_dmacount(ic , chan)
Returns the offset in the DMA memory of the current DMA transfer on channelchan.

isa_dmadone(ic , chan)
Unloads the DMA memory on channelchan after a DMA transfer has completed.

isa_dmamaxsize(ic , chan)
Returns the maximum allowable DMA transfer size for channelchan.

isa_drq_isfree(ic , chan)
If the ia_drq or ia_drq2 members ofstruct isa_attach_args are wildcarded, then
the driver is expected to probe the hardware for valid DMA channels. In this case, the driver can
check to see if the hardware-supported DMA channelchan is available for use.

isa_dmacascade(ic , chan)
Programs the 8237 DMA controller channelchan to accept external DMA control by the device
hardware.

isa_mappage(mem , offset , prot)
Provides support for usermmap(2)’ing of DMA-safe memory.

AUTOCONFIGURATION
The ISA bus is an indirect-connection bus. Duringautoconfiguration each driver is required to probe the bus
for the presence of a device. AnISA driver will receive a pointer tostruct isa_attach_args hinting
at "locations" on the ISA bus where the device may be located.They should use theia_iobase, ia_iosize,
ia_maddr, and ia_msizemembers. Notall of these hints will be necessary; locators may be wildcarded with
IOBASEUNK and MADDRUNK foria_iobaseand ia_maddrrespectively. If a driver can probe the device
for configuration information at default locations, it may update the members ofstruct
isa_attach_args. The IRQ and DMA locators can also be wildcarded with IRQUNK and DRQUNK
respectively.

During the driver attach step, the I/O and memory address spaces should be mapped (seebus_space (9)).

DMA SUPPORT
Extensive DMA facilities are provided for the ISA bus. Adriver can use up to two DMA channels simulta-
neously. The DMA channels allocated during autoconfiguration are passed to the driver during the driver
attach using theia_drq andia_drq2 members ofstruct isa_attach_args.

Before allocating resources for DMA transfers on the ISA bus, a driver should check the maximum allowable
DMA transfer size for the DMA channel usingisa_dmamaxsize().

A DMA map should be created first usingisa_dmamap_create(). A DMA map describes how DMA
memory is loaded into the DMA controllers.Only DMA-safe memory can be used for DMA transfers.
DMA-safe memory is allocated usingisa_dmamem_alloc(). The memory allocated by
isa_dmamem_alloc() must now be mapped into kernel virtual address space byisa_dmamem_map()
so that it can be accessed by the driver.

For a DMA transfer from the host to the device, the driver will fill the DMA memory with the data to be
transferred. TheDMA-transfer of the memory is started usingisa_dmastart() with flags containing
DMAMODE_WRITE. Whenthe DMA transfer is completed, a call toisa_dmadone() cleans up the
DMA transfer by unloading the memory from the controller.

NetBSD 3.0 January 29, 2006 5

ISA (9) NetBSD Kernel Developer’s Manual ISA(9)

For a DMA transfer from the device to the host, the DMA-transfer is started usingisa_dmastart() with
flags containing DMAMODE_READ.When the DMA transfer is completed, a call toisa_dmadone()
cleans up the DMA transfer by unloading the memory from the controller. The memory can now be access
by the driver.

When the DMA resources are no longer required they should be released usingisa_dmamem_unmap(),
isa_dmamem_free() andisa_dmamap_destroy().

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent ISA subsystem can be found. All pathnames are relative to /usr/src .

The ISA subsystem itself is implemented within the filessys/dev/isa/isa.c and
sys/dev/isa/isadma.c .

SEE ALSO
isa (4), autoconf (9), bus_dma(9), bus_space (9), driver (9), isapnp (9)

HISTORY
The machine-independentISA subsystem appeared inNetBSD 1.2.

BUGS
The previous behaviour ofisa_intr_establish() was to invoke panic() on failure.
isa_intr_establish() now returns NULL on failure. Someold drivers written for the former behav-
iour discard the return value.

NetBSD 3.0 January 29, 2006 6

ISAPNP (9) NetBSD Kernel Developer’s Manual ISAPNP(9)

NAME
ISAPNP, isapnp_devmatch, isapnp_config, isapnp_unconfig — Plug ’n’ Play ISA bus

SYNOPSIS
#include <machine/bus.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <dev/isapnp/isapnpreg.h>
#include <dev/isapnp/isapnpvar.h>
#include <dev/isapnp/isapnpdevs.h>

int
isapnp_devmatch(const struct isapnp_attach_args ∗ ipa ,

const struct isapnp_devinfo ∗ dinfo , int ∗ variant);

int
isapnp_config(bus_space_tag_t iot , bus_space_tag_t memt ,

struct isapnp_attach_args ∗ ipa);

void
isapnp_unconfig(bus_space_tag_t iot , bus_space_tag_t memt ,

struct isapnp_attach_args ∗ ipa);

DESCRIPTION
The machine-independentISAPNP subsystem provides support for ISAPNP devices. ISAPNPdevices were
developed to support "plug and play" connection on the ISA bus. Inall other aspects, the ISAPNP bus is
same as the ISA bus (seeisa (9)).

Devices on the ISAPNP bus are uniquely identified by a 7-character string. Resources, such as I/O address
space and interrupts, should be allocated to the devices by the machine firmware. Onsome machine the
firmware seems doesn’t work correctly andNetBSD will attempt to allocate resources as necessary.

DATA T YPES
Drivers attached to the ISAPNP bus will make use of the following data types:

struct isapnp_matchinfo
NetBSD kernel contains a database of known ISAPNP devices. Eachentry in the database has a
struct isapnp_matchinfo. It contains the following members:

const char ∗ name; / ∗ device id string ∗ /
int variant; / ∗ variant flag ∗ /

struct isapnp_devinfo
Defines the devices supported by a driver. It contains pointer to an array of supportedstruct
isapnp_matchinfostructures and a pointer to another array of compatibility devices. Itcontains
the following members:

struct isapnp_matchinfo ∗ devlogic;
int nlogic;
struct isapnp_matchinfo ∗ devcompat;
int ncompat;

struct isapnp_region
Describes ISAPNP bus-space regions. Itcontains the following members:

NetBSD 3.0 June 19, 2001 1

ISAPNP (9) NetBSD Kernel Developer’s Manual ISAPNP(9)

bus_space_handle_t h;
uint32_t base;
uint32_t length;

struct isapnp_pin
Describes the wiring of interrupts and DMA pins from the ISAPNP bus onto the host processor.
It contains the following members:

uint8_t num;
uint8_t flags:4;
uint8_t type:4;
uint16_t bits;

struct isapnp_attach_args
A structure used to inform the driver of the device properties.It contains the following members:

bus_space_tag_t ipa_iot; / ∗ isa i/o space tag ∗ /
bus_space_tag_t ipa_memt; / ∗ isa mem space tag ∗ /
bus_dma_tag_t ipa_dmat; / ∗ isa dma tag ∗ /
isa_chipset_tag_t ipa_ic;
struct isapnp_region ipa_io[ISAPNP_NUM_IO];
struct isapnp_region ipa_mem[ISAPNP_NUM_MEM];
struct isapnp_region ipa_mem32[ISAPNP_NUM_MEM32];
struct isapnp_pin ipa_irq[ISAPNP_NUM_IRQ];
struct isapnp_pin ipa_drq[ISAPNP_NUM_DRQ];

FUNCTIONS
isapnp_devmatch(ipa , dinfo , variant)

Matches the device described by the attachmentipa with the device-match information in
dinfo. If the device is matched,isapnp_devmatch() returns a non-zero value and variant is
the flag describing the device variant. isapnp_devmatch() returns zero if the device is not
found.

isapnp_config(iot , memt , ipa)
Allocate device resources specified byipa. The device is mapped into the I/O and memory bus
spaces specified by bus-space tagsiot and memt respectively. The ipa_io, ipa_mem,
ipa_mem32, ipa_irq, and ipa_drq members ofipa are updated to reflect the allocated
and mapped resources.isapnp_config() returns zero on success and non-zero on error.

isapnp_unconfig(iot , memt , ipa)
Free the resources allocated byisapnp_config().

AUTOCONFIGURATION
During autoconfiguration, an ISAPNP driver will receive a pointer tostruct isapnp_attach_args
describing the device attached to the ISAPNP bus. Drivers match the device usingispnp_devmatch().

During the driver attach step, driver should initially allocate and map resources usingisapnp_config().
The I/O (memory) bus-space resources can be accessed using the bus-space tagipa_iot (ipa_memt)
and the bus-space handleipa_io[0].h (ipa_mem[0].h) members ofipa.

Interrupts should be established usingisa_intr_establish() (seeisa (9)) with the IRQ specified by
the ipa_irq[0].num member ofipa. Similarly, the standardisa (9) DMA interface should be used
with theipa_drq[0].num member ofipa.

NetBSD 3.0 June 19, 2001 2

ISAPNP (9) NetBSD Kernel Developer’s Manual ISAPNP(9)

DMA SUPPORT
Extensive DMA facilities are provided through theisa (9) DMA facilities.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independentISAPNP subsystem can be found. All pathnames are relative to /usr/src .

TheISAPNP subsystem itself is implemented within the filesys/dev/isapnp/isapnp.c . The data-
base of the known devices exists within the filesys/dev/isapnp/isapnpdevs.c and is generated
automatically from the filesys/dev/isapnp/isapnpdevs . New devices should be added to this file.
The database can be regenerated using the Makefilesys/dev/isapnp/Makefile.isapnpdevs .

SEE ALSO
isa (4), isapnp (4), pnpbios (4), autoconf (9), bus_dma(9), bus_space (9), driver (9), isa (9)

Plug and Play ISA Specification V1.0a, May 5 1994.

HISTORY
The machine-independent ISAPNP subsystem appear inNetBSD 1.3.

NetBSD 3.0 June 19, 2001 3

ISR_ADD (9) NetBSD/sun3 Kernel Developer’s Manual ISR_ADD(9)

NAME
isr_add, isr_add_autovect, isr_add_vectored, isr_add_custom — establish interrupt
handler

SYNOPSIS
#include <sun3/autoconf.h>

typedef int (∗ isr_func_t)(void ∗);

void
isr_add_autovect(isr_func_t fun , void ∗ arg , int level);

void
isr_add_vectored(isr_func_t fun , void ∗ arg , int pri , int vec);

void
isr_add_custom(int level , void ∗ fun);

DESCRIPTION
Theisr_add functions establish interrupt handlers into the system interrupt dispatch table and are typically
called from device drivers during the autoconfiguration process.

There are two types of interrupts in the Motorola 68000 architecture, which differ in the way that an interrupt
request is mapped to a dispatch function within the interrupt vector table.

When the CPU detects an asserted signal on one of its interrupt request lines, it suspends normal instruction
execution and begins an interrupt acknowledge cycle on the system bus. Duringthis cycle the interrupting
device directs how the CPU is to dispatch its interrupt request.

If the interrupting device is integrated tightly with the system bus, it provides an 8-bit interrupt vector num-
ber to the CPU and avectored interrupt occurs. This vector number points to a vector entry within the inter-
rupt vector table to which instruction execution is immediately transfered.

If the interrupting device cannot provide a vector number, it asserts a specialized bus line and an
autovectored interrupt occurs. The vector number to use is determined by adding the interrupt priority
(0–6) to an autovector base(typically 18 hexadecimal) .

isr_add_autovect()
Adds the functionfun to the list of interrupt handlers to be called during an autovec-
tored interrupt of prioritylevel. The pointerarg is passed to the function as its
first argument.

isr_add_vectored()
Adds the functionfun to the list of interrupt handlers to be called during a vectored
interrupts of prioritypri at dispatch vector numbervec. The pointerarg is passed
to the function as its first argument.

isr_add_custom()
Establish functionfun as the interrupt handler for vectorlevel. The autovector
base number is automatically added tolevel.

fun is called directly as the dispatch handler and must handle all of the specifics of
saving the processor state and returning from a processor exception. Theserequire-
ments generally dictate thatfun be written in assembler.

NetBSD 3.0 May 21, 1997 1

ISR_ADD (9) NetBSD/sun3 Kernel Developer’s Manual ISR_ADD(9)

CODE REFERENCES
sys/arch/sun3/sun3/isr.c

REFERENCES
MC68030 User’s Manual, Third edition, MC68030UM/AD Rev 2, Motorola Inc.

BUGS
There is no way to remove a handler once it has been added.

NetBSD 3.0 May 21, 1997 2

ITIMERFIX (9) NetBSD Kernel Developer’s Manual ITIMERFIX(9)

NAME
itimerfix — check that a timeval value is valid, and correct

SYNOPSIS
#include <sys/time.h>

int
itimerfix(struct timeval ∗ tv);

DESCRIPTION
The itimerfix function checks that the value intv is valid (0 ≤ tv->tv_sec && 0 ≤ tv->tv_usec <
1000000), and that the total time represented is at least onetick, or zero.

If the total represented time is nonzero and smaller than tick, it is adjusted to exactly one tick.

RETURN VALUES
itimerfix returns 0 on success orEINVAL if tv is invalid.

SEE ALSO
nanosleep (2), poll (2), select (2), setitimer (2)

NetBSD 3.0 November 23, 2001 1

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

NAME
kauth — kernel authorization framework

SYNOPSIS
#include <sys/kauth.h>

DESCRIPTION
kauth, or kernel authorization, is the subsystem managing all authorization requests inside the kernel. It
manages user credentials and rights, and can be used to implement a system-wide security policy. It allows
external modules to plug-in the authorization process.

kauth introduces some new concepts, namely “scopes” and “listeners”, which will be detailed together with
other useful information for kernel developers in this document.

Types
Somekauth types include the following:

kauth_cred_t Representing credentials that can be associated with an object. Includes user- and group-ids
(real, effective, and save) as well as group membership information.

kauth_scope_t Describes a scope.

kauth_listener_t
Describes a listener.

Terminology
kauth operates in various “scopes”, each scope holding a group of “listeners”.

Each listener works as a callback for when an authorization request within the scope is made.When such a
request is made, all listeners on the scope are passed common information such as the credentials of the
request context, an identifier for the requested operation, and possibly other information as well.

Every listener examines the passed information and returns its decision regarding the requested operation.It
can either allow, deny, or defer the operation -- in which case, the decision is left to the other listeners.

For an operation to be allowed, all listeners must not return any deny or defer decisions.

Scopes manage listeners that operate in the same aspect of the system.

Kernel Programming Interface
kauth exports a KPI that allows developers both ofNetBSD and third-party products to authorize requests,
access and modify credentials, create and remove scopes and listeners, and perform other miscellaneous
operations on credentials.

Authorization Requests
kauth provides a single authorization request routine, which all authorization requests go through.This
routine dispatches the request to the listeners of the appropriate scope, together with four optional user-data
variables, and returns the augmented result.

It is declared as

int kauth_authorize_action(kauth_scope_t scope , kauth_cred_t cred ,
kauth_action_t op , void ∗ arg0 , void ∗ arg1 , void ∗ arg2 , void ∗ arg3)

An authorization request can return one of two possible values. Zeroindicates success -- the operation is
allowed;EPERM(seeerrno (2)) indicates failure -- the operation is denied.

NetBSD 3.0 February 28, 2008 1

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

Each scope has its own authorization wrapper, to make it easy to call from various places by eliminating the
need to specify the scope and/or cast values. Theauthorization wrappers are detailed in each scope’s section.

kauth_authorize_action() has several special cases, when it will always allow the request.These
are for when the request is issued by the kernel itself (indicated by the credentials being eitherNOCREDor
FSCRED), or when there was no definitive decision from any of the listeners (i.e., it was not explicitly
allowed or denied) and no security model was loaded.

Generic Scope
The generic scope, “org.netbsd.kauth.generic”, manages generic authorization requests in the kernel.

The authorization wrapper for this scope is declared as

int kauth_authorize_generic(kauth_cred_t cred , kauth_action_t op , void
∗ arg0)

The following operations are available for this scope:

KAUTH_GENERIC_ISSUSER
Checks whether the credentials belong to the super-user.

Using this request is strongly discouraged and should only be done as a temporary place-
holder, as it is breaking the separation between the interface for authorization requests from
the back-end implementation.

KAUTH_GENERIC_CANSEE
Checks whether an object with one set of credentials can access information about another
object, possibly with a different set of credentials.

arg0 contains the credentials of the object looked at.

This request should be issued only in cases where generic credentials check is required; oth-
erwise it is recommended to use the object-specific routines.

System Scope
The system scope, “org.netbsd.kauth.system”, manages authorization requests affecting the entire system.

The authorization wrapper for this scope is declared as

int kauth_authorize_system(kauth_cred_t cred , kauth_action_t op , enum
kauth_system_req req , void ∗ arg1 , void ∗ arg2 , void ∗ arg3)

The following requests are available for this scope:

KAUTH_SYSTEM_ACCOUNTING
Check if enabling/disabling accounting allowed.

KAUTH_SYSTEM_CHROOT
req can be any of the following:

KAUTH_REQ_SYSTEM_CHROOT_CHROOT
Check if callingchroot (2) is allowed.

KAUTH_REQ_SYSTEM_CHROOT_FCHROOT
Check if callingfchroot (2) is allowed.

KAUTH_SYSTEM_CPU
Check CPU-manipulation access.

NetBSD 3.0 February 28, 2008 2

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

req can be any of the following:

KAUTH_REQ_SYSTEM_CPU_SETSTATE
Set CPU state, including setting it online or offline.

KAUTH_SYSTEM_DEBUG
This request concentrates several debugging-related operations.req can be any of the fol-
lowing:

KAUTH_REQ_SYSTEM_DEBUG_IPKDB
Check if usingipkdb (4) is allowed.

KAUTH_SYSTEM_FILEHANDLE
Check if filehandle operations allowed.

KAUTH_SYSTEM_LKM
Check if an LKM request is allowed.

arg1 is the command.

KAUTH_SYSTEM_MKNOD
Check if creating devices is allowed.

KAUTH_SYSTEM_MOUNT
Check if mount-related operations are allowed.

req can be any of the following:

KAUTH_REQ_SYSTEM_MOUNT_GET
Check if retrieving information about a mount is allowed. arg1 is a
struct mount ∗ with the mount structure in question,arg2 is avoid
∗ with file-system specific data, if any.

KAUTH_REQ_SYSTEM_MOUNT_NEW
Check if mounting a new file-system is allowed.

arg1 is thestruct vnode ∗ on which the file-system is to be mounted,
arg2 is anint with the mount flags, andarg3 is avoid ∗ with file-sys-
tem specific data, if any.

KAUTH_REQ_SYSTEM_MOUNT_UNMOUNT
Checks if unmounting a file-system is allowed.

arg1 is astruct mount ∗ with the mount in question.

KAUTH_REQ_SYSTEM_MOUNT_UPDATE
Checks if updating an existing mount is allowed.

arg1 is thestruct mount ∗ of the existing mount,arg2 is anint
with the new mount flags, andarg3 is avoid ∗ with file-system specific
data, if any.

KAUTH_SYSTEM_PSET
Check processor-set manipulation.

req can be any of the following:

KAUTH_REQ_SYSTEM_PSET_ASSIGN
Change processor-set processor assignment.

NetBSD 3.0 February 28, 2008 3

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

KAUTH_REQ_SYSTEM_PSET_BIND
Bind an LWP to a processor-set.

KAUTH_REQ_SYSTEM_PSET_CREATE
Create a processor-set.

KAUTH_REQ_SYSTEM_PSET_DESTROY
Destroy a processor-set.

KAUTH_SYSTEM_REBOOT
Check if rebooting is allowed.

KAUTH_SYSTEM_SETIDCORE
Check if changing coredump settings for set-id processes is allowed.

KAUTH_SYSTEM_SWAPCTL
Check if privilegedswapctl (2) requests are allowed.

KAUTH_SYSTEM_SYSCTL
This requests operations related tosysctl (9). req indicates the specific request and can
be one of the following:

KAUTH_REQ_SYSTEM_SYSCTL_ADD
Check if adding asysctl (9) node is allowed.

KAUTH_REQ_SYSTEM_SYSCTL_DELETE
Check if deleting asysctl (9) node is allowed.

KAUTH_REQ_SYSTEM_SYSCTL_DESC
Check if adding description to asysctl (9) node is allowed.

KAUTH_REQ_SYSTEM_SYSCTL_PRVT
Check if accessing privatesysctl (9) nodes is allowed.

KAUTH_SYSTEM_TIME
This request groups time-related operations.req can be any of the following:

KAUTH_REQ_SYSTEM_TIME_ADJTIME
Check if changing the time usingadjtime (2) is allowed.

KAUTH_REQ_SYSTEM_TIME_NTPADJTIME
Check if setting the time usingntp_adjtime (2) is allowed.

KAUTH_REQ_SYSTEM_TIME_SYSTEM
Check if changing the time (usually viasettimeofday (2)) is allowed.

arg1 is astruct timespec ∗ with the new time,arg2 is astruct
timeval ∗ with the delta from the current time,arg3 is abool indicat-
ing whether the caller is a device context (eg./dev/clockctl) or not.

KAUTH_REQ_SYSTEM_TIME_RTCOFFSET
Check if changing the RTC offset is allowed.

KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS
Check if manipulating timecounters is allowed.

Process Scope
The process scope, “org.netbsd.kauth.process”, manages authorization requests related to processes in the
system.

NetBSD 3.0 February 28, 2008 4

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

The authorization wrapper for this scope is declared as

int kauth_authorize_process(kauth_cred_t cred , kauth_action_t op , struct
proc ∗ p , void ∗ arg1 , void ∗ arg2 , void ∗ arg3)

The following operations are available for this scope:

KAUTH_PROCESS_KTRACE
Checks whether an object with one set of credentials canktrace (1) another processp, pos-
sibly with a different set of credentials.

If arg1 is KAUTH_REQ_PROCESS_KTRACE_PERSISTENT, this checks if persistent
tracing can be done. Persistent tracing maintains the trace across a set-user-id/set-group-id
exec (2), and normally requires privileged credentials.

KAUTH_PROCESS_PROCFS
Checks whether object with passed credentials can useprocfsto access processp.

arg1 is thestruct pfsnode ∗ for the target element in the target process, andarg2 is
the access type, which can be eitherKAUTH_REQ_PROCESS_PROCFS_CTL,
KAUTH_REQ_PROCESS_PROCFS_READ, KAUTH_REQ_PROCESS_PROCFS_RW, or
KAUTH_REQ_PROCESS_PROCFS_WRITE, indicating control, read, read-write, or write
access respectively.

KAUTH_PROCESS_PTRACE
Checks whether object with passed credentials can useptrace (2) to access processp.

arg1 is theptrace (2) command.

KAUTH_PROCESS_CANSEE
Checks whether an object with one set of credentials can access information about another
process, possibly with a different set of credentials.

arg1 indicates the class of information being viewed, and can either of
KAUTH_REQ_PROCESS_CANSEE_ARGS, KAUTH_REQ_PROCESS_CANSEE_ENTRY,
KAUTH_REQ_PROCESS_CANSEE_ENV, or
KAUTH_REQ_PROCESS_CANSEE_OPENFILES.

KAUTH_PROCESS_SCHEDULER_GETAFFINITY
Checks whether viewing the scheduler affinity is allowed.

KAUTH_PROCESS_SCHEDULER_SETAFFINITY
Checks whether setting the scheduler affinity is allowed.

KAUTH_PROCESS_SCHEDULER_GETPARAMS
Checks whether viewing the scheduler policy and parameters is allowed.

KAUTH_PROCESS_SCHEDULER_SETPARAMS
Checks whether modifying the scheduler policy and parameters is allowed.

KAUTH_PROCESS_SIGNAL
Checks whether an object with one set of credentials can post signals to another process.

p is the process the signal is being posted to, andarg1 is the signal number.

KAUTH_PROCESS_CORENAME
Controls access to process corename.

arg1 can be KAUTH_REQ_PROCESS_CORENAME_GET or
KAUTH_REQ_PROCESS_CORENAME_SET, indicating access to read or write the process’
corename, respectively.

NetBSD 3.0 February 28, 2008 5

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

When modifying the corename,arg2 holds the new corename to be used.

KAUTH_PROCESS_FORK
Checks if the process can fork.arg1 is anint indicating how many processes exist on the
system at the time of the check.

KAUTH_PROCESS_KEVENT_FILTER
Checks whether setting a processkevent (2) filter is allowed.

KAUTH_PROCESS_NICE
Checks whether thenicevalue ofp can be changed toarg1.

KAUTH_PROCESS_RLIMIT
Controls access to process resource limits.

arg1 can be KAUTH_REQ_PROCESS_RLIMIT_GET or
KAUTH_REQ_PROCESS_RLIMIT_SET, indicating access to read or write the process’
resource limits, respectively.

When modifying resource limits,arg2 is the new value to be used andarg3 indicates
which resource limit is to be modified.

KAUTH_PROCESS_SETID
Check if changing the user- or group-ids, groups, or login-name forp is allowed.

KAUTH_PROCESS_STOPFLAG
Check if setting the stop flags forexec (3), exit (3), andfork (2) is allowed.

arg1 indicates the flag, and can be eitherP_STOPEXEC, P_STOPEXIT, or P_STOPFORK
respectively.

Network Scope
The network scope, “org.netbsd.kauth.network”, manages networking-related authorization requests in the
kernel.

The authorization wrapper for this scope is declared as

int kauth_authorize_network(kauth_cred_t cred , kauth_action_t op , enum
kauth_network_req req , void ∗ arg1 , void ∗ arg2 , void ∗ arg3)

The following operations are available for this scope:

KAUTH_NETWORK_ALTQ
Checks if an ALTQ operation is allowed.

req indicates the ALTQ subsystem in question, and can be one of the following:

KAUTH_REQ_NETWORK_ALTQ_AFMAP
KAUTH_REQ_NETWORK_ALTQ_BLUE
KAUTH_REQ_NETWORK_ALTQ_CBQ
KAUTH_REQ_NETWORK_ALTQ_CDNR
KAUTH_REQ_NETWORK_ALTQ_CONF
KAUTH_REQ_NETWORK_ALTQ_FIFOQ
KAUTH_REQ_NETWORK_ALTQ_HFSC
KAUTH_REQ_NETWORK_ALTQ_JOBS
KAUTH_REQ_NETWORK_ALTQ_PRIQ
KAUTH_REQ_NETWORK_ALTQ_RED

NetBSD 3.0 February 28, 2008 6

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

KAUTH_REQ_NETWORK_ALTQ_RIO
KAUTH_REQ_NETWORK_ALTQ_WFQ

KAUTH_NETWORK_BIND
Checks if abind (2) request is allowed.

req allows to indicate the type of the request to structure listeners and callers easier. Sup-
ported request types:

KAUTH_REQ_NETWORK_BIND_PRIVPORT
Checks if binding to a privileged/reserved port is allowed.

KAUTH_NETWORK_FIREWALL
Checks if firewall-related operations are allowed.

req indicates the sub-action, and can be one of the following:

KAUTH_REQ_NETWORK_FIREWALL_FW
Modification of packet filtering rules.

KAUTH_REQ_NETWORK_FIREWALL_NAT
Modification of NAT rules.

KAUTH_NETWORK_INTERFACE
Checks if network interface-related operations are allowed.

arg1 is (optionally) thestruct ifnet ∗ associated with the interface. arg2 is
(optionally) anint describing the interface-specific operation.arg3 is (optionally) a
pointer to the interface-specific request structure.req indicates the sub-action, and can be
one of the following:

KAUTH_REQ_NETWORK_INTERFACE_GET
Check if retrieving information from the device is allowed.

KAUTH_REQ_NETWORK_INTERFACE_GETPRIV
Check if retrieving privileged information from the device is allowed.

KAUTH_REQ_NETWORK_INTERFACE_SET
Check if setting parameters on the device is allowed.

KAUTH_REQ_NETWORK_INTERFACE_SETPRIV
Check if setting privileged parameters on the device is allowed.

Note that unless thestruct ifnet ∗ for the interface was passed inarg1, there’s no
way to tell what structurearg3 is.

KAUTH_NETWORK_FORWSRCRT
Checks whether status of forwarding of source-routed packets can be modified or not.

KAUTH_NETWORK_NFS
Check is an NFS related operation is allowed.

req can be any of the following:

KAUTH_REQ_NETWORK_NFS_EXPORT
Check if modifying the NFS export table is allowed.

KAUTH_REQ_NETWORK_NFS_SVC
Check if access to the NFSnfssvc (2) syscall is allowed.

NetBSD 3.0 February 28, 2008 7

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

KAUTH_NETWORK_ROUTE
Checks if a routing-related request is allowed.

arg1 is thestruct rt_msghdr ∗ for the request.

KAUTH_NETWORK_SOCKET
Checks if a socket related operation is allowed.

req allows to indicate the type of the request to structure listeners and callers easier. Sup-
ported request types:

KAUTH_REQ_NETWORK_SOCKET_RAWSOCK
Checks if opening a raw socket is allowed.

KAUTH_REQ_NETWORK_SOCKET_OPEN
Checks if opening a socket is allowed. arg1, arg2, and arg3 are all
int parameters describing the domain, socket type, and protocol, respec-
tively.

KAUTH_REQ_NETWORK_SOCKET_CANSEE
Checks if looking at the socket passed is allowed.

arg1 is astruct socket ∗ describing the socket.

Machine-dependent Scope
The machine-dependent (machdep) scope, “org.netbsd.kauth.machdep”, manages machine-dependent autho-
rization requests in the kernel.

The authorization wrapper for this scope is declared as

int kauth_authorize_machdep(kauth_cred_t cred , kauth_action_t op , void
∗ arg0 , void ∗ arg1 , void ∗ arg2 , void ∗ arg3)

The actions on this scope provide a set that may or may not affect all platforms.Below is a list of available
actions, along with which platforms are affected by each.

KAUTH_MACHDEP_IOPERM_GET
Request to get the I/O permission level. Affectsamd64, i386, xen.

KAUTH_MACHDEP_IOPERM_SET
Request to set the I/O permission level. Affectsamd64, i386, xen.

KAUTH_MACHDEP_IOPL
Request to set the I/O privilege level. Affectsamd64, i386, xen.

KAUTH_MACHDEP_LDT_GET
Request to get the LDT (local descriptor table). Affectsamd64, i386, xen.

KAUTH_MACHDEP_LDT_SET
Request to set the LDT (local descriptor table). Affectsamd64, i386, xen.

KAUTH_MACHDEP_MTRR_GET
Request to get the MTRR (memory type range registers). Affectsamd64, i386, xen.

KAUTH_MACHDEP_MTRR_SET
Request to set the MTRR (memory type range registers). Affectsamd64, i386, xen.

KAUTH_MACHDEP_UNMANAGEDMEM
Request to access unmanaged memory. Affectsalpha, amd64, arm, i386, powerpc, sh3, vax,
xen.

NetBSD 3.0 February 28, 2008 8

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

Device Scope
The device scope, “org.netbsd.kauth.device”, manages authorization requests related to devices on the sys-
tem. Devices can be, for example, terminals, tape drives, and any other hardware. Network devices specifi-
cally are handled by thenetworkscope.

In addition to the standard authorization wrapper:

int kauth_authorize_device(kauth_cred_t cred , kauth_action_t op , void
∗ arg0 , void ∗ arg1 , void ∗ arg2 , void ∗ arg3)

this scope provides authorization wrappers for various device types.

int kauth_authorize_device_tty(kauth_cred_t cred , kauth_action_t op ,
struct tty ∗ tty)

Authorizes requests forterminal deviceson the system. The third argument,tty, is the terminal device in
question. Itis passed to the listener asarg0. The second argument,op, is the action and can be one of the
following:

KAUTH_DEVICE_TTY_OPEN
Open the terminal device pointed to bytty.

KAUTH_DEVICE_TTY_PRIVSET
Set privileged settings on the terminal device pointed to bytty.

KAUTH_DEVICE_TTY_STI
Use the “TIOCSTI” device ioctl (2), allowing to inject characters into the terminal buffer,
simulating terminal input.

int kauth_authorize_device_spec(kauth_cred_t cred , enum kauth_device_req
req , struct vnode ∗ vp)

Authorizes requests forspecial files, usually disk devices, but also direct memory access, on the system.

It passesKAUTH_DEVICE_RAWIO_SPECas the action to the listener, and accepts two arguments. req,
passed to the listener asarg0, is access requested, and can be one of
KAUTH_REQ_DEVICE_RAWIO_SPEC_READ, KAUTH_REQ_DEVICE_RAWIO_SPEC_WRITE, or
KAUTH_REQ_DEVICE_RAWIO_SPEC_RW, representing read, write, or both read/write access respectively.
vp is the vnode of the special file in question, and is passed to the listener asarg1.

Keep in mind that it is the responsibility of the security model developer to check whether the underlying
device is a disk or the system memory, usingiskmemdev():

if ((vp->v_type == VCHR) &&
iskmemdev(vp->v_un.vu_specinfo->si_rdev))

/ ∗ system memory access ∗ /

int kauth_authorize_device_passthru(kauth_cred_t cred , dev_t dev , u_long
mode , void ∗ data)

Authorizes hardwarepassthrurequests, or user commands passed directly to the hardware. Thesehave the
potential of resulting in direct disk and/or memory access.

It passesKAUTH_DEVICE_RAWIO_PASSTHRUas the action to the listener, and accepts three arguments.
dev, passed asarg1 to the listener, is the device for which the request is made.mode, passed asarg0 to
the listener, is a generic representation of the access mode requested.It can be one or more (binary-OR’d) of
the following:

NetBSD 3.0 February 28, 2008 9

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_READ
KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_READCONF
KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_WRITE
KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_WRITECONF

data, passed asarg2 to the listener, is device-specific data that may be associated with the request.

Credentials Scope
The credentials scope, “org.netbsd.kauth.cred”, is a special scope used internally by thekauth framework
to provide hooking to credential-related operations.

It is a “notify-only” scope, allowing hooking operations such as initialization of new credentials, credential
inheritance during a fork, and copying and freeing of credentials. The main purpose for this scope is to give
a security model a way to control the aforementioned operations, especially in cases where the credentials
hold security model-private data.

Notifications are made using the following function, which is internal tokauth:

int kauth_cred_hook(kauth_cred_t cred , kauth_action_t action , void ∗ arg0 ,
void ∗ arg1)

With the following actions:

KAUTH_CRED_COPY
The credentials are being copied.cred are the credentials of the lwp context doing the
copy, andarg0 andarg1 are bothkauth_cred_t representing the “from” and “to” cre-
dentials, respectively.

KAUTH_CRED_FORK
The credentials are being inherited from a parent to a child process during a fork.

cred are the credentials of the lwp context doing the fork, andarg0 andarg1 are both
struct proc ∗ of the parent and child processes, respectively.

KAUTH_CRED_FREE
The credentials incred are being freed.

KAUTH_CRED_INIT
The credentials incred are being initialized.

Since this is a notify-only scope, all listeners are required to returnKAUTH_RESULT_ALLOW.

Credentials Accessors and Mutators
kauth has a variety of accessor and mutator routines to handlekauth_cred_t objects.

The following routines can be used to access and modify the user- and group-ids in akauth_cred_t:

uid_t kauth_cred_getuid(kauth_cred_t cred)
Returns the real user-id fromcred.

uid_t kauth_cred_geteuid(kauth_cred_t cred)
Returns the effective user-id fromcred.

uid_t kauth_cred_getsvuid(kauth_cred_t cred)
Returns the saved user-id fromcred.

void kauth_cred_setuid(kauth_cred_t cred , uid_t uid)
Sets the real user-id incred to uid.

NetBSD 3.0 February 28, 2008 10

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

void kauth_cred_seteuid(kauth_cred_t cred , uid_t uid)
Sets the effective user-id incred to uid.

void kauth_cred_setsvuid(kauth_cred_t cred , uid_t uid)
Sets the saved user-id incred to uid.

gid_t kauth_cred_getgid(kauth_cred_t cred)
Returns the real group-id fromcred.

gid_t kauth_cred_getegid(kauth_cred_t cred)
Returns the effective group-id fromcred.

gid_t kauth_cred_getsvgid(kauth_cred_t cred)
Returns the saved group-id fromcred.

void kauth_cred_setgid(kauth_cred_t cred , gid_t gid)
Sets the real group-id incred to gid.

void kauth_cred_setegid(kauth_cred_t cred , gid_t gid)
Sets the effective group-id incred to gid.

void kauth_cred_setsvgid(kauth_cred_t cred , gid_t gid)
Sets the saved group-id incred to gid.

u_int kauth_cred_getrefcnt(kauth_cred_t cred)
Return the reference count forcred.

The following routines can be used to access and modify the group list in akauth_cred_t:

int kauth_cred_ismember_gid(kauth_cred_t cred , gid_t gid , int ∗ resultp)
Checks if the group-idgid is a member in the group list ofcred.

If it is, resultp will be set to one, otherwise, to zero.

The return value is an error code, or zero for success.

u_int kauth_cred_ngroups(kauth_cred_t cred)
Return the number of groups in the group list ofcred.

gid_t kauth_cred_group(kauth_cred_t cred , u_int idx)
Return the group-id of the group at indexidx in the group list ofcred.

int kauth_cred_setgroups(kauth_cred_t cred , gid_t ∗ groups , size_t ngroups ,
uid_t gmuid , enum uio_seg seg)
Copyngroups groups from array pointed to bygroups to the group list incred, adjusting
the number of groups incred appropriately. seg should be eitherUIO_USERSPACEor
UIO_SYSSPACEindicating whethergroups is a user or kernel space address.

Any groups remaining will be set to an invalid value.

gmuid is unused for now, and to maintain interface compatibility with the Darwin KPI.

The return value is an error code, or zero for success.

int kauth_cred_getgroups(kauth_cred_t cred , gid_t ∗ groups , size_t ngroups ,
enum uio_seg seg)
Copyngroups groups from the group list incred to the buffer pointed to bygroups. seg
should be eitherUIO_USERSPACEor UIO_SYSSPACEindicating whethergroups is a user or
kernel space address.

NetBSD 3.0 February 28, 2008 11

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

The return value is an error code, or zero for success.

Credential Private Data
kauth provides an interface to allow attaching security-model private data to credentials.

The use of this interface has two parts that can be divided to direct and indirect control of the private-data.
Directly controlling the private data is done by using the below routines, while the indirect control is often
dictated by events such as process fork, and is handled by listening on the credentials scope (see above).

Attaching private data to credentials works by registering a key to serve as a unique identifier, distinguishing
various sets of private data that may be associated with the credentials.Registering, and deregistering, a key
is done by using these routines:

int kauth_register_key(const char ∗ name , kauth_key_t ∗ keyp)
Register new key for private data forname (usually, the security model name).keyp will be
used to return the key to be used in further calls.

The function returns 0 on success and an error code (seeerrno (2)) on failure.

int kauth_deregister_key(kauth_key_t key)
Deregister private data keykey.

Once registered, private data may be manipulated by the following routines:

void kauth_cred_setdata(kauth_cred_t cred , kauth_key_t key , void ∗ data)
Set private data forkey in cred to bedata.

void ∗ kauth_cred_getdata(kauth_cred_t cred , kauth_key_t key)
Retrieve private data forkey in cred.

Note that it is required to use the above routines every time the private data is changed, i.e., using
kauth_cred_getdata() and later modifying the private data should be accompanied by a call to
kauth_cred_setdata() with the “new” private data.

Credential Inheritance and Reference Counting
kauth provides an interface for handling shared credentials.

When akauth_cred_t is first allocated, its reference count is set to 1.However, with time, its reference
count can grow as more objects (processes, LWPs, files, etc.) reference it.

The following routines are available for managing credentials reference counting:

void kauth_cred_hold(kauth_cred_t cred)
Increases reference count tocred by one.

void kauth_cred_free(kauth_cred_t cred)
Decreases the reference count tocred by one.

If the reference count dropped to zero, the memory used bycred will be freed.

Credential inheritance happens during afork (2), and is handled by the following function:

void kauth_proc_fork(struct proc ∗ parent , struct proc ∗ child)

When called, it references the parent’s credentials from the child, and calls the credentials scope’s hook with
theKAUTH_CRED_FORKaction to allow security model-specific handling of the inheritance to take place.

Credentials Memory Management
Data-structures for credentials, listeners, and scopes are allocated from memory pools managed by the
pool (9) subsystem.

NetBSD 3.0 February 28, 2008 12

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

Thekauth_cred_t objects have their own memory management routines:

kauth_cred_t kauth_cred_alloc(void)
Allocates a newkauth_cred_t, initializes its lock, and sets its reference count to one.

Conversion Routines
Sometimes it might be necessary to convert akauth_cred_t to userland’s view of credentials, astruct
uucred, or vice versa.

The following routines are available for these cases:

void kauth_uucred_to_cred(kauth_cred_t cred , const struct uucred ∗ uucred)
Convert userland’s view of credentials to akauth_cred_t.

This includes effective user- and group-ids, a number of groups, and a group list. The reference
count is set to one.

Note thatkauth will try to copy as many groups as can be held inside akauth_cred_t.

void kauth_cred_to_uucred(struct uucred ∗ uucred , const kauth_cred_t cred)
Convert kauth_cred_t to userland’s view of credentials.

This includes effective user- and group-ids, a number of groups, and a group list.

Note thatkauth will try to copy as many groups as can be held inside astruct uucred.

int kauth_cred_uucmp(kauth_cred_t cred , struct uucred ∗ uucred)
Comparescred with the userland credentials inuucred.

Common values that will be compared are effective user- and group-ids, and the group list.

Miscellaneous Routines
Other routines provided bykauth are:

void kauth_cred_clone(kauth_cred_t cred1 , kauth_cred_t cred2)
Clone credentials fromcred1 to cred2, except for the lock and reference count.

kauth_cred_t kauth_cred_dup(kauth_cred_t cred)
Duplicatecred.

What this routine does is callkauth_cred_alloc() followed by a call to
kauth_cred_clone().

kauth_cred_t kauth_cred_copy(kauth_cred_t cred)
Works likekauth_cred_dup(), except for a few differences.

If cred already has a reference count of one, it will be returned.Otherwise, a new
kauth_cred_t will be allocated and the credentials fromcred will be cloned to it. Last, a
call tokauth_cred_free() for cred will be done.

kauth_cred_t kauth_cred_get(void)
Return the credentials associated with the current LWP.

Scope Management
kauth provides routines to manage the creation and deletion of scopes on the system.

Note that the built-in scopes, the “generic” scope and the “process” scope, can’t be deleted.

kauth_scope_t kauth_register_scope(const char ∗ id , kauth_scope_callback_t
cb , void ∗ cookie)
Register a new scope on the system.id is the name of the scope, usually in reverse DNS-like

NetBSD 3.0 February 28, 2008 13

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

notation. For example, “org.netbsd.kauth.myscope”.cb is the default listener, to which autho-
rization requests for this scope will be dispatched to.cookie is optional user-data that will be
passed to all listeners during authorization on the scope.

void kauth_deregister_scope(kauth_scope_t scope)
Deregisterscope from the scopes available on the system, and free thekauth_scope_t
objectscope.

Listener Management
Listeners inkauth are authorization callbacks that are called during an authorization request in the scope
which they belong to.

When an authorization request is made, all listeners associated with a scope are called to allow, deny, or defer
the request.

It is enough for one listener to deny the request in order for the request to be denied; but all listeners are
called during an authorization process none-the-less. All listeners are required to allow the request for it to
be granted, and in a case where all listeners defer the request -- leaving the decision for other listeners -- the
request is denied.

The following KPI is provided for the management of listeners:

kauth_listener_t kauth_listen_scope(const char ∗ id , kauth_scope_callback_t
cb , void ∗ cookie)
Create a new listener on the scope with the idid, setting the default listener tocb. cookie is
optional user-data that will be passed to the listener when called during an authorization request.

void kauth_unlisten_scope(kauth_listener_t listener)
Removes listener from the scope which it belongs to, ensuring it won’t be called again, and
frees thekauth_listener_t objectlistener.

kauth provides no means for synchronization within listeners.It is the the programmer’s responsibility to
make sure data used by the listener is properly locked during its use, as it can be accessed simultaneously
from the same listener called multiple times. It is also the programmer’s responsibility to do garbage collec-
tion after the listener, possibly freeing any allocated data it used.

The common method to do the above is by having a reference count to each listener. On entry to the listener,
this reference count should be raised, and on exit -- lowered.

During the removal of a listener, first kauth_scope_unlisten() should be called to make sure the lis-
tener code will not be entered in the future.Then, the code should wait (possibly sleeping) until the refer-
ence count drops to zero. When that happens, it is safe to do the final cleanup.

Listeners might sleep, so no locks can be held when calling an authorization wrapper.

EXAMPLES
Older code had no abstraction of the security model, so most privilege checks looked like this:

if (suser(cred, &acflag) == 0)
/ ∗ allow privileged operation ∗ /

Using the new interface, you must ask for a specific privilege explicitly. For example, checking whether it is
possible to open a socket would look something like this:

if (kauth_authorize_network(cred, KAUTH_NETWORK_SOCKET,
KAUTH_REQ_NETWORK_SOCKET_OPEN, PF_INET, SOCK_STREAM,
IPPROTO_TCP) == 0)

/ ∗ allow opening the socket ∗ /

NetBSD 3.0 February 28, 2008 14

KAUTH (9) NetBSD Kernel Developer’s Manual KAUTH (9)

Note that thesecurelevelimplications were also integrated into thekauth framework so you don’t hav eto
note anything special in the call to the authorization wrapper, but rather just have to make sure the security
model handles the request as you expect it to.

To do that you can justgrep (1) in the relevant security model directory and have a look at the code.

EXTENDING KA UTH
Althoughkauth provides a large set of both detailed and more or less generic requests, it might be needed
ev entually to introduce more scopes, actions, or requests.

Adding a new scope should happen only when an entire subsystem is introduced and it is assumed other
parts of the kernel may want to interfere with its inner-workings. Whena subsystem that has the potential of
impacting the security if the system is introduced, existing security modules must be updated to also handle
actions on the newly added scope.

New actions should be added when sets of operations not covered at all belong in an already existing scope.

Requests (or sub-actions) can be added as subsets of existing actions when an operation that belongs in an
already covered area is introduced.

Note that all additions should include updates to this manual, the security models shipped withNetBSD, and
the example skeleton security model.

SEE ALSO
secmodel (9)

HISTORY
The kernel authorization framework first appeared in Mac OS X 10.4.

The kernel authorization framework in NetBSD first appeared inNetBSD 4.0, and is a clean-room implemen-
tation based on Apple TN2127, available at http://developer.apple.com/technotes/tn2005/tn2127.html

NOTES
As kauth in NetBSD is still under active dev elopment, it is likely that the ABI, and possibly the API, will
differ betweenNetBSD versions. Developers are to take notice of this fact in order to avoid building code
that expects one version of the ABI and running it in a system with a different one.

AUTHORS
Elad Efrat〈elad@NetBSD.org〉 implemented the kernel authorization framework in NetBSD.

Jason R. Thorpe〈thorpej@NetBSD.org〉 provided guidance and answered questions about the Darwin imple-
mentation.

ONE MORE THING
Thekauth framework is dedicated to Brian Mitchell, one of the most talented people I know. Thanks for
ev erything.

NetBSD 3.0 February 28, 2008 15

KCOPY (9) NetBSD Kernel Developer’s Manual KCOPY(9)

NAME
kcopy — copy data with abort on page fault

SYNOPSIS
#include <sys/systm.h>

int
kcopy(const void ∗ src , void ∗ dst , size_t len);

DESCRIPTION
kcopy() copieslen bytes fromsrc to dst, aborting if a fatal page fault is encountered.

kcopy() must save and restore the old fault handler since it is called byuiomove (9), which may be in the
path of servicing a non-fatal page fault.kcopy() returns 0 on success and an error number on failure.

SEE ALSO
errno (2), memcpy(9), uiomove (9)

NetBSD 3.0 April 4, 2006 1

KFILTER_REGISTER (9) NetBSD Kernel Developer’s Manual KFILTER_REGISTER (9)

NAME
kfilter_register, kfilter_unregister — add or remove kernel event filters

SYNOPSIS
#include <sys/event.h>

int
kfilter_register(const char ∗ name , struct filterops ∗ filtops ,

int ∗ retfilter);

int
kfilter_unregister(const char ∗ name);

DESCRIPTION
Thekfilter_register() function adds a new kernel event filter (kfilter) to the system, for use by callers
of kqueue (2) andkevent (2). name is the name of the new filter (which must not already exist), and
filtops is a pointer to afilterops structure which describes the filter operations.Both name and
filtops will be copied to an internal data structure, and a new filter number will be allocated.If
retfilter is not NULL, then the new filter number will be returned in the address pointed at by
retfilter.

Thekfilter_unregister() function removes a kfilter namedname that was previously registered with
kfilter_register(). If a filter with the samename is later reregistered withkfilter_register(),
it will get a different filter number (i.e., filter numbers are not recycled). It is not possible to unregister the
system filters (i.e., those that start with “EVFILT_” and are documented inkqueue (2)).

Thefilteropsstructure is defined as follows:

struct filterops {
int f_isfd; / ∗ true if ident == filedescriptor ∗ /
int (∗ f_attach)(struct knote ∗ kn);

/ ∗ called when knote is ADDed ∗ /
void (∗ f_detach)(struct knote ∗ kn);

/ ∗ called when knote is DELETEd ∗ /
int (∗ f_event)(struct knote ∗ kn, long hint);

/ ∗ called when event is triggered ∗ /
};

If the filter operation is for a file descriptor, f_isfdshould be non-zero, otherwise it should be zero. This con-
trols where thekqueue (2) system stores the knotes for an object.

RETURN VALUES
kfilter_register() returns 0 on success,EINVAL if there’s an inv alid argument, orEEXIST if the fil-
ter already exists,

kfilter_unregister() returns 0 on success,EINVAL if there’s an inv alid argument, orENOENTif the
filter doesn’t exist.

SEE ALSO
kqueue (2), free (9), knote (9), malloc (9)

HISTORY
Thekfilter_register() andkfilter_unregister() functions first appeared inNetBSD 2.0.

NetBSD 3.0 October 23, 2002 1

KFILTER_REGISTER (9) NetBSD Kernel Developer’s Manual KFILTER_REGISTER (9)

AUTHORS
The kfilter_register() and kfilter_unregister() functions were implemented by Luke
Mewburn〈 lukem@NetBSD.org〉.

NetBSD 3.0 October 23, 2002 2

KMEM_ALLOC (9) NetBSD Kernel Developer’s Manual KMEM_ALLOC(9)

NAME
kmem_alloc — allocate kernel wired memory

SYNOPSIS
#include <sys/kmem.h>

void ∗
kmem_alloc(size_t size , km_flag_t kmflags);

DESCRIPTION
kmem_alloc() allocates kernel wired memory. It takes the following arguments.

size Specify the size of allocation in bytes.

kmflags Either of the following:
KM_SLEEP Can sleep until enough memory is available.
KM_NOSLEEP

Don’t sleep. ImmediatelyreturnNULL if there is not enough memory available.

The contents of allocated memory are uninitialized.

Unlike Solaris, kmem_alloc(0, flags) is illegal.

RETURN VALUES
On success,kmem_alloc() returns a pointer to allocated memory. Otherwise, it returnsNULL.

SEE ALSO
intro (9), kmem_free (9), kmem_zalloc (9), malloc (9), memoryallocators (9)

CAVEATS
kmem_alloc() can not be used from interrupt context.

SECURITY CONSIDERATION
As the allocated memory is uninitialized, it can contain security-sensitive data left by its previous user. It’s
the caller’s responsibility not to expose it to the world.

NetBSD 3.0 January 4, 2008 1

KMEM_FREE (9) NetBSD Kernel Developer’s Manual KMEM_FREE(9)

NAME
kmem_free — free kernel wired memory

SYNOPSIS
#include <sys/kmem.h>

void
kmem_free(void ∗ p , size_t size);

DESCRIPTION
kmem_free() frees kernel wired memory allocated bykmem_alloc() or kmem_zalloc() so that it can
be used for other purposes. It takes the following arguments.

p The pointer to the memory being freed. It must be the one returned bykmem_alloc() or
kmem_zalloc().

size The size of the memory being freed, in bytes.It must be the same as thesize argument used
for kmem_alloc() orkmem_zalloc() when the memory was allocated.

FreeingNULL is illegal.

SEE ALSO
intro (9), kmem_alloc (9), kmem_zalloc (9), memoryallocators (9)

CAVEATS
kmem_free() can not be used from interrupt context.

NetBSD 3.0 January 4, 2008 1

KMEM_ZALLOC (9) NetBSD Kernel Developer’s Manual KMEM_ZALLOC(9)

NAME
kmem_zalloc — allocate zero-initialized kernel wired memory

SYNOPSIS
#include <sys/kmem.h>

void ∗
kmem_zalloc(size_t size , km_flag_t kmflags);

DESCRIPTION
kmem_zalloc() is the equivalent ofkmem_alloc(), except that it initializes the memory to zero.

SEE ALSO
intro (9), kmem_alloc (9), kmem_free (9), memoryallocators (9)

CAVEATS
kmem_zalloc() can not be used from interrupt context.

NetBSD 3.0 June 25, 2006 1

KNOTE (9) NetBSD Kernel Developer’s Manual KNOTE (9)

NAME
knote, KNOTE — raise kernel event

SYNOPSIS
#include <sys/event.h>

void
knote(struct klist ∗ list , long hint);

KNOTE(struct klist ∗ list , long hint);

DESCRIPTION
Theknote() function provides a hook into the kqueue kernel event notification mechanism to allow sections
of the kernel to raise a kernel event in the form of a ‘knote’, which is astruct knote as defined in
〈sys/event.h 〉.

knote() takes a singly linkedlist of knotes, along with ahint (which is passed to the appropriate filter
routine). knote() then walks thelist making calls to the filter routine for each knote. As each knote con-
tains a reference to the data structure that it is attached to, the filter may choose to examine the data structure
in deciding whether an event should be reported.Thehint is used to pass in additional information, which
may not be present in the data structure that the filter examines.

If the filter decides that the event should be returned, it returns a non-zero value andknote() links the knote
onto the tail end of the active list in the corresponding kqueue for the application to retrieve. If the knote is
already on the active list, no action is taken, but the call to the filter occurs in order to provide an opportunity
for the filter to record the activity.

knote() must not be called from interrupt contexts running at an interrupt priority level higher than
splsched().

KNOTE() is a macro that callsknote(list , hint) if list is not empty.

SEE ALSO
kqueue (2), kfilter_register (9)

HISTORY
Theknote() andKNOTE() functions first appeared inFreeBSD4.1, and then inNetBSD 2.0.

AUTHORS
Thekqueue() system was written by Jonathan Lemon〈 jlemon@FreeBSD.org〉.

NetBSD 3.0 February 18, 2004 1

KPAUSE (9) NetBSD Kernel Developer’s Manual KPAUSE (9)

NAME
kpause — make the calling LWP sleep

SYNOPSIS
#include <sys/proc.h>

int
kpause(const char ∗ wmesg , bool intr , int timeo , kmutex_t ∗ mtx);

DESCRIPTION
kpause() makes the calling LWP sleep.It’s similar to cv_timedwait_sig (9) without the correspond-
ing cv_signal (9).

kpause() can wake up spontaneously. Callers should prepare to handle it.

wmesg Specifies a string of no more than 8 characters that describes the resource or condition associated
with the call ofkpause(). Thekernel does not use this argument directly but makes it available for
utilities such asps (1) to display.

intr If true, sleep interruptably. If the LWP recieves a signal, or is interrupted by another condition such
as its containing process exiting, the wait is ended early and an error code returned.

timeo Specify a timeout.It is an architecture and system dependent value related to the number of clock
interrupts per second.Seehz (9) for details.Themstohz (9) macro can be used to convert a time-
out expressed in milliseconds to one suitable forkpause().

Zero means no timeout.

mtx Convenience and symmetry with other synchronization operations. If notNULL, mtx will be
released once the LWP has prepared to sleep, and will be reacquired beforekpause() returns.

RETURN VALUES
kpause() returns 0 when waking up spontaneously. Otherwise, It returns an error number.

ERRORS
[EWOULDBLOCK] The timeout expired.

[ERESTART] kpause() returned as a result of a signal withSA_RESTARTproperty.

[EINTR] kpause() returned due to other reasons.Typically as a result of a signal without
SA_RESTARTproperty.

SEE ALSO
sigaction (2), errno (9), condvar (9), mstohz (9), hz (9)

NetBSD 3.0 January 2, 2008 1

KPREEMPT (9) NetBSD Kernel Developer’s Manual KPREEMPT(9)

NAME
kpreempt — control kernel preemption

SYNOPSIS
#include <sys/systm.h>

void
kpreempt_disable(void);

void
kpreempt_enable(void);

bool
kpreempt_disabled(void);

DESCRIPTION
These functions are used to control kernel preemption of the calling LWP.

Kernel preemption is currently disabled by default. It can be enabled by tweaking kern.sched.kpreempt_pri
sysctl.

kpreempt_disable() disables kernel preemption of the calling LWP. Note that disabling kernel preemp-
tion can prevent LWPs with higher priorities from running.

kpreempt_enable() enables kernel preemption of the calling LWP, which was previously disabled by
kpreempt_disable().

kpreempt_disable() andkpreempt_enable() can be nested.

kpreempt_disabled() returnstrue if preemption of the calling LWP is disabled.It’s for diagnostic
purpose.

SEE ALSO
intro (9), spl (9)

NetBSD 3.0 May 6, 2008 1

KPRINTF (9) NetBSD Kernel Developer’s Manual KPRINTF(9)

NAME
printf, snprintf, vprintf, vsnprintf, uprintf, ttyprintf, tprintf, aprint
— kernel formatted output conversion

SYNOPSIS
#include <sys/systm.h>

void
printf(const char ∗ format , ...);

void
printf_nolog(const char ∗ format , ...);

int
snprintf(char ∗ buf , size_t size , const char ∗ format , ...);

#include <machine/stdarg.h>

void
vprintf(const char ∗ format , va_list ap);

int
vsnprintf(char ∗ buf , size_t size , const char ∗ format , va_list ap);

void
uprintf(const char ∗ format , ...);

void
ttyprintf(struct tty ∗ tty , const char ∗ format , ...);

#include <sys/tprintf.h>

tpr_t
tprintf_open(struct proc ∗ p);

void
tprintf(tpr_t tpr , const char ∗ format , ...);

void
tprintf_close(tpr_t tpr);

void
aprint_normal(const char ∗ format , ...);

void
aprint_naive(const char ∗ format , ...);

void
aprint_verbose(const char ∗ format , ...);

void
aprint_debug(const char ∗ format , ...);

void
aprint_error(const char ∗ format , ...);

void
aprint_normal_dev(device_t , const char ∗ format , ...);

void
aprint_naive_dev(device_t , const char ∗ format , ...);

NetBSD 3.0 September 24, 2007 1

KPRINTF (9) NetBSD Kernel Developer’s Manual KPRINTF(9)

void
aprint_verbose_dev(device_t , const char ∗ format , ...);

void
aprint_debug_dev(device_t , const char ∗ format , ...);

void
aprint_error_dev(device_t , const char ∗ format , ...);

void
aprint_normal_ifnet(struct ifnet ∗ , const char ∗ format , ...);

void
aprint_naive_ifnet(struct ifnet ∗ , const char ∗ format , ...);

void
aprint_verbose_ifnet(struct ifnet ∗ , const char ∗ format , ...);

void
aprint_debug_ifnet(struct ifnet ∗ , const char ∗ format , ...);

void
aprint_error_ifnet(struct ifnet ∗ , const char ∗ format , ...);

int
aprint_get_error_count(void);

DESCRIPTION
Theprintf() family of functions allows the kernel to send formatted messages to various output devices.
The functions printf() and vprintf() send formatted strings to the system console.The
printf_nolog() function is identical toprintf(), except it does not send the data to the system log.
The functionssnprintf() andvsnprintf() write output to a string buffer. These four functions work
similarly to their user space counterparts, and are not described in detail here.

The functionsuprintf() andttyprintf() send formatted strings to the current process’s controlling tty
and a specific tty, respectively.

The tprintf() function sends formatted strings to a process’s controlling tty, via a handle of type tpr_t.
This allows multiple write operations to the tty with a guarantee that the tty will be valid across calls.A han-
dle is acquired by callingtprintf_open() with the target process as an argument. Thishandle must be
closed with a matching call totprintf_close().

The functionsaprint_normal(), aprint_naive(), aprint_verbose(), aprint_debug(), and
aprint_error() are intended to be used to print autoconfiguration messages, and change their behavior
based on flags in the “boothowto” variable:

aprint_normal() Sends to the console unlessAB_QUIET is set. Always sends to the log.

aprint_naive() Sends to the console only ifAB_QUIET is set. Never sends to the log.

aprint_verbose() Sends to the console only ifAB_VERBOSEis set. Always sends to the log.

aprint_debug() Sends to the console and the log only ifAB_DEBUGis set.

aprint_error() Like aprint_normal(), but also keeps track of the number of times called.This
allows a subsystem to report the number of errors that occurred during a quiet or
silent initialization phase.

For the aprint_∗ () functions there are two additional families of functions with the suffixes _dev and
_ifnet which work like their counterparts without the suffixes, except that they take a device_t or

NetBSD 3.0 September 24, 2007 2

KPRINTF (9) NetBSD Kernel Developer’s Manual KPRINTF(9)

struct ifnet ∗ respectively as first argument and prefix the log message with the corresponding device
or interface name.

Theaprint_get_error_count() function reports the number of errors and resets the counter to 0.

If AB_SILENT is set, none of the autoconfiguration message printing routines send output to the console.
TheAB_VERBOSEandAB_DEBUGflags overrideAB_SILENT.

RETURN VALUES
The snprintf() andvsnprintf() functions return the number of characters placed in the buffer buf.
This is different to the user-space functions of the same name.

Thetprintf_open() function returnsNULL if no terminal handle could be acquired.

SEE ALSO
printf (1), printf (3), bitmask_snprintf (9)

CODE REFERENCES
sys/kern/subr_prf.c

HISTORY
Thesprintf() andvsprintf() unsized string formatting functions are supported for compatibility only,
and are not documented here.New code should use the size-limitedsnprintf() andvsnprintf() func-
tions instead.

In NetBSD 1.5 and earlier, printf() supported more format strings than the user spaceprintf(). These
nonstandard format strings are no longer supported.For the functionality provided by the former%bformat
string, seebitmask_snprintf (9).

The aprint_normal(), aprint_naive(), aprint_verbose(), and aprint_debug() functions
first appeared inBSD/OS.

BUGS
The uprintf() andttyprintf() functions should be used sparingly, if at all. Wheremultiple lines of
output are required to reach a process’s controlling terminal,tprintf() is preferred.

NetBSD 3.0 September 24, 2007 3

KTHREAD (9) NetBSD Kernel Developer’s Manual KTHREAD(9)

NAME
kthread_create, kthread_destroy, kthread_exit — kernel threads

SYNOPSIS
#include <sys/kthread.h>

int
kthread_create(pri_t pri , int flags , struct cpu_info ∗ ci ,

void (∗ func)(void ∗) , void ∗ arg , lwp_t ∗∗ newlp , const char ∗ fmt , ...);

void
kthread_destroy(lwp_t ∗ l);

void
kthread_exit(int ecode);

DESCRIPTION
Kernel threads are light-weight processes which execute entirely within the kernel.

Any process can request the creation of a new kernel thread.Kernel threads are not swapped out during
memory congestion. The VM space and limits are shared with proc0 (usually swapper).

FUNCTIONS
kthread_create(pri , flags , ci , func , arg , newlp , fmt , ...)

Create a kernel thread. The arguments are as follows.

pri Priority level for the thread. If no priority level is desired specifyPRI_NONE, caus-
ing kthread_create() to select the default priority level.

flags Flags that can be logically ORed together to alter the thread’s behaviour.

KTHREAD_IDLE: causes the thread to be created in theLSIDL (idle) state. By
default, the threads are created in theLSRUN(runnable) state, meaning they will
begin execution shortly after creation.

KTHREAD_MPSAFE: Specifies that the thread does its own locking and so is multi-
processor safe.If not specified, the global kernel lock will be held whenever the
thread is running (unless explicitly dropped by the thread).

KTHREAD_INTR: Specifies that the thread services device interrupts. This flag is
intended for kernel internal use and should not normally be specified.

ci If non-NULL, the thread will be created bound to the CPU specified byci, meaning
that it will only ever execute on that CPU. By default, the threads are free to execute
on any CPU in the system.

func A function to be called when the thread begins executing. Thisfunction must not
return. If the thread runs to completion, it must callkthread_exit() to properly
terminate itself.

arg An argument to be passed tofunc(). Maybe NULL if not required.

newpl A pointer to receive the new lwp structure for the kernel thread. May be NULL if not
required.

fmt A string containing format information used to display the kernel thread name.Must
not be NULL.

NetBSD 3.0 November 22, 2007 1

KTHREAD (9) NetBSD Kernel Developer’s Manual KTHREAD(9)

kthread_destroy(l)
From another thread executing in the kernel, cause a kthread to exit. Thekthread must be in the
LSIDL (idle) state.

kthread_exit(ecode)
Exit from a kernel thread. Must only be called by a kernel thread.

RETURN VALUES
Upon successful completion,kthread_create() returns 0. Otherwise, the following error values are
returned:

[EAGAIN] The limit on the total number of system processes would be exceeded.

[EAGAIN] The limit RLIMIT_NPROCon the total number of processes under execution by this user id
would be exceeded.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
kthread framework can be found. All pathnames are relative to /usr/src .

The kthread framework itself is implemented within the filesys/kern/kern_kthread.c . Data struc-
tures and function prototypes for the framework are located insys/sys/kthread.h .

SEE ALSO
driver (9)

HISTORY
The kthread framework appeared inNetBSD 1.4.

NetBSD 3.0 November 22, 2007 2

LINEDISC (9) NetBSD Kernel Developer’s Manual LINEDISC(9)

NAME
ttyldisc_add, ttyldisc_lookup, ttyldisc_remove — extensible line discipline framework

SYNOPSIS
#include <sys/conf.h>

int
ttyldisc_add(struct linesw ∗ disc , int no);

struct linesw ∗
ttyldisc_remove(const char ∗ name);

struct linesw ∗
ttyldisc_lookup(const char ∗ name);

DESCRIPTION
The NetBSD TTY line discipline framework allows extensibility. Modules that need special line disciplines
can add them as convenient and do not need to modify tty_conf.c. Line disciplines are now managed by a
string, rather than number.

Once the framework has been initialized, a new line discipline can be added by creating and initializing a
struct linesw and callingttyldisc_add().

The following is a brief description of each function in the framework:

ttyldisc_add() Register a line discipline.The l_name field of thestruct linesw should
point to a string which is to be the symbolic name of that line discipline.For com-
patibility purposes, a line discipline number can be passed inno, but for new dis-
ciplines this should be set to-1 .

ttyldisc_lookup() Look up a line discipline byname. NULL is returned if it can not be found.

ttyldisc_remove() Remove a line discipline calledname and return a pointer to it.If the discipline
cannot be found or removed ttyldisc_remove() will returnNULL.

SEE ALSO
tty (4)

HISTORY
Thettyldisc_add functions were added inNetBSD 1.6.

AUTHORS
TheNetBSD extensible line discipline framework was created by Eduardo Horvath〈eeh@NetBSD.org〉.

NetBSD 3.0 November 1, 2000 1

LOCK (9) NetBSD Kernel Developer’s Manual LOCK(9)

NAME
lock, simple_lock_init, simple_lock, simple_lock_try, simple_unlock,
simple_lock_freecheck, simple_lock_dump, lockinit, lockmgr, lockstatus,
lockmgr_printinfo, spinlockinit, spinlockmgr — kernel lock functions

DESCRIPTION
These interfaces have been obsoleted and removed from the system.

Please see thecondvar (9), mutex (9), andrwlock (9) manual pages for information on kernel synchroni-
sation primitives.

SEE ALSO
condvar (9), mutex (9), rwlock (9)

HISTORY
The kernel locking API first appeared in 4.4BSD-lite2, and was replaced inNetBSD 5.0.

NetBSD 3.0 January 30, 2008 1

LOG (9) NetBSD Kernel Developer’s Manual LOG(9)

NAME
log — log a message from the kernel through the/dev/klog device

SYNOPSIS
#include <sys/syslog.h>

void
log(int level , const char ∗ format , ...);

DESCRIPTION
Thelog() function allows the kernel to send messages to user processes listening on/dev/klog . Usually
syslogd (8) monitors/dev/klog for these messages and writes them to a log file.

All messages are logged using facilityLOG_KERN. Seesyslog (3) for a listing of log levels.

SEE ALSO
syslog (3), syslogd (8)

NetBSD 3.0 May 12, 1997 1

LTSLEEP (9) NetBSD Kernel Developer’s Manual LTSLEEP (9)

NAME
ltsleep, tsleep, wakeup — process context sleep and wakeup

SYNOPSIS
#include <sys/proc.h>

int
ltsleep(wchan_t ident , pri_t priority , const char ∗ wmesg , int timo ,

volatile struct simplelock ∗ slock);

int
tsleep(wchan_t ident , pri_t priority , const char ∗ wmesg , int timo);

void
wakeup(wchan_t ident);

DESCRIPTION
The interfaces described in this manual page are obsolete and will be removed from a future version of the
system.

Please see thecondvar (9), mutex (9), and rwlock (9) manual pages for information on kernel
synchronisation primitives.

These functions implement voluntary context switching.ltsleep() andtsleep() are used throughout the
kernel whenever processing in the current context can not continue for any of the following reasons:

• The current process needs to await the results of a pending I/O operation.

• The current process needs resources(e.g., memory) which are temporarily unavailable.

• The current process wants access to data-structures which are locked by other processes.

The functionwakeup() is used to notify sleeping processes of possible changes to the condition that caused
them to go to sleep.Typically, an awakened process will -- after it has acquired a context again -- retry the
action that blocked its operation to see if the “blocking” condition has cleared.

Theltsleep() function takes the following arguments:

ident An identifier of the “wait channel” representing the resource for which the current process
needs to wait. Thistypically is the virtual address of some kernel data-structure related to the
resource for which the process is contending.The same identifier must be used in a call to
wakeup() to get the process going again.ident should not beNULL.

priority The process priority to be used when the process is awakened and put on the queue of runnable
processes. Thismechanism is used to optimize “throughput” of processes executing in kernel
mode. If the flagPCATCHis OR’ed intopriority the process checks for posted signals
before and after sleeping. If the flagPNORELOCKis OR’ed intopriority, slock is NOT
re-locked after process resume.

wmesg A pointer to a character string indicating the reason a process is sleeping. The kernel does not
use the string, but makes it available (through the process structure fieldp_wmesg) for user
level utilities such asps (1).

timo If non-zero, the process will sleep for at mosttimo/hz seconds. Ifthis amount of time
elapses and nowakeup(ident) has occurred, and no signal(if PCATCH was set) was
posted,tsleep() will returnEWOULDBLOCK.

NetBSD 3.0 June 17, 2007 1

LTSLEEP (9) NetBSD Kernel Developer’s Manual LTSLEEP (9)

slock If not NULL, the slock interlock is unlocked once the scheduler lock is acquired.Unless
PNORELOCKwas set, slock is locked again once the process is resumed from sleep.This
provides wakeup-before-sleep condition protection facility.

Thetsleep() macro is functionally equivalent to:

ltsleep(ident, priority, wmesg, timo, NULL)

The wakeup() function will mark all processes which are currently sleeping on the identifierident as
runnable. Eventually, each of the processes will resume execution in the kernel context, causing a return
from tsleep(). Note that processes returning from sleep should always re-evaluate the conditions that
blocked them, since a call towakeup() merely signals apossiblechange to the blocking conditions.For
example, when two or more processes are waiting for an exclusive-access lock(see lock (9)) , only one of
them will succeed in acquiring the lock when it is released.All others will have to go back to sleep and wait
for the next opportunity.

RETURN VALUES
ltsleep() returns 0 if it returns as a result of awakeup(). If altsleep() returns as a result of a signal,
the return value isERESTARTif the signal has theSA_RESTARTproperty (seesigaction (2)) , and
EINTR otherwise. Ifltsleep() returns because of a timeout it returnsEWOULDBLOCK.

SEE ALSO
sigaction (2), condvar (9), hz (9), lock (9), mutex (9), rwlock (9)

HISTORY
The sleep/wakeup process synchronization mechanism is very old. It appeared in a very early version of
Unix. tsleep() appeared in 4.4BSD. ltsleep() appeared inNetBSD 1.5.

NetBSD 3.0 June 17, 2007 2

M_TAG (9) NetBSDKernel Developer’s Manual M_TAG (9)

NAME
m_tag, m_tag_get, m_tag_free, m_tag_prepend, m_tag_unlink, m_tag_delete,
m_tag_delete_chain, m_tag_delete_nonpersistent, m_tag_find, m_tag_copy,
m_tag_copy_chain, m_tag_init, m_tag_first, m_tag_next — mbuf tagging interfaces

SYNOPSIS
#include <sys/mbuf.h>

struct m_tag ∗
m_tag_get(int type , int len , int wait);

void
m_tag_free(struct m_tag ∗ t);

void
m_tag_prepend(struct mbuf ∗ m , struct m_tag ∗ t);

void
m_tag_unlink(struct mbuf ∗ m , struct m_tag ∗ t);

void
m_tag_delete(struct mbuf ∗ m , struct m_tag ∗ t);

void
m_tag_delete_chain(struct mbuf ∗ m , struct m_tag ∗ t);

void
m_tag_delete_nonpersistent(struct mbuf ∗);

struct m_tag ∗
m_tag_find(struct mbuf ∗ m , int type , struct m_tag ∗ t);

struct m_tag ∗
m_tag_copy(struct m_tag ∗ m);

int
m_tag_copy_chain(struct mbuf ∗ to , struct mbuf ∗ from);

void
m_tag_init(struct mbuf ∗ m);

struct m_tag ∗
m_tag_first(struct mbuf ∗ m);

struct m_tag ∗
m_tag_next(struct mbuf ∗ m , struct m_tag ∗ t);

DESCRIPTION
Them_tag interface is used to “tag” mbufs.

FUNCTIONS
m_tag_get(type , len , wait)

Allocate an mbuf tag.type is one of thePACKET_TAG_macros.len is the size of the data
associated with the tag, in bytes.wait is eitherM_WAITOKor M_NOWAIT.

m_tag_free(t)
Free the mbuf tagt.

NetBSD 3.0 September 7, 2004 1

M_TAG (9) NetBSDKernel Developer’s Manual M_TAG (9)

m_tag_prepend(m , t)
Prepend the mbuf tagt to the mbuf m. t will become the first tag of the mbuf m. Whenm is
freed,t will also be freed.

m_tag_unlink(m , t)
Unlink the mbuf tagt from the mbufm.

m_tag_delete(m , t)
The same asm_tag_unlink() followed bym_tag_free().

m_tag_delete_chain(m , t)
Unlink and free mbuf tags beginning with the mbuf tag t from the mbuf m. If t is NULL,
m_tag_delete_chain() unlinks and frees all mbuf tags associated with the mbufm.

m_tag_delete_nonpersistent(m)
Unlink and free all non persistent tags associated with the mbufm.

m_tag_find(m , type , t)
Find an mbuf tag with typetype after the mbuf tagt in the tag chain associated with the mbuf
m. If t is NULL, search from the first mbuf tag. If an mbuf tag is found, return a pointer to it.
Otherwise returnNULL.

m_tag_copy(t)
Copy an mbuf tagt. Return a new mbuf tag on success. Otherwise returnNULL.

m_tag_copy_chain(to , from)
Copy all mbuf tags associated with the mbuf from to the mbuf to. If to already has any mbuf
tags, they will be unlinked and freed beforehand. Return 1 on success. Otherwise return 0.

m_tag_init(m)
Initialize mbuf tag chain of the mbufm.

m_tag_first(m)
Return the first mbuf tag associated with the mbufm. ReturnNULL if no mbuf tags are found.

m_tag_next(m , t)
Return the next mbuf tag aftert associated with the mbuf m. ReturnNULL if t is the last tag in
the chain.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing the mbuf tag-
ging interfaces can be found. All pathnames are relative to /usr/src .

The mbuf tagging interfaces are implemented within the filesys/kern/uipc_mbuf2.c .

ThePACKET_TAG_macros are defined in the filesys/sys/mbuf.h .

SEE ALSO
intro (9), malloc (9), mbuf (9)

BUGS
The semantics of the term "persistent tag" are vague.

NetBSD 3.0 September 7, 2004 2

MAKEIPLCOOKIE (9) NetBSD Kernel Developer’s Manual MAKEIPLCOOKIE(9)

NAME
makeiplcookie — compose an ipl cookie

SYNOPSIS
#include <sys/param.h>

ipl_cookie_t
makeiplcookie(ipl_t ipl);

DESCRIPTION
makeiplcookie() composes a cookie which can be fed intosplraiseipl. ipl should be one of
IPL_ constants.

RETURN VALUES
makeiplcookie() returns a composed cookie.

SEE ALSO
spl (9), splraiseipl (9)

NetBSD 3.0 December 22, 2006 1

MALLOC (9) NetBSD Kernel Developer’s Manual MALLOC(9)

NAME
malloc, MALLOC, realloc, free, FREE, malloc_roundup, malloc_type_attach,
malloc_type_detach, malloc_type_setlimit, MALLOC_DEFINE_LIMIT, MALLOC_DEFINE,
MALLOC_DECLARE — general-purpose kernel memory allocator

SYNOPSIS
#include <sys/malloc.h>

void ∗
malloc(unsigned long size , struct malloc_type ∗ type , int flags);

MALLOC(space , cast , unsigned long size , struct malloc_type ∗ type , int flags);

void ∗
realloc(void ∗ addr , unsigned long newsize , struct malloc_type ∗ type ,

int flags);

void
free(void ∗ addr , struct malloc_type ∗ type);

FREE(void ∗ addr , struct malloc_type ∗ type);

unsigned long
malloc_roundup(unsigned long size);

void
malloc_type_attach(struct malloc_type ∗ type);

void
malloc_type_detach(struct malloc_type ∗ type);

void
malloc_type_setlimit(struct malloc_type ∗ type , unsigned long limit);

#include <sys/mallocvar.h>

MALLOC_DEFINE_LIMIT(type , shortdesc , longdesc , limit);

MALLOC_JUSTDEFINE_LIMIT(type , shortdesc , longdesc , limit);

MALLOC_DEFINE(type , shortdesc , longdesc);

MALLOC_JUSTDEFINE(type , shortdesc , longdesc);

MALLOC_DECLARE(type);

DESCRIPTION
These interfaces are being obsoleted and their new use is discouraged.For new code, please consider
to usekmem_alloc (9) or pool_cache (9) instead.

Themalloc() function allocates uninitialized memory in kernel address space for an object whose size is
specified bysize. malloc_roundup() returns the actual size of the allocation unit for the given value.
free() releases memory at addressaddr that was previously allocated bymalloc() for re-use. Unlike
free (3),free() does not accept anaddr argument that isNULL.

Therealloc() function changes the size of the previously allocated memory referenced byaddr to size
and returns a pointer to the(possibly moved) object. Thememory contents are unchanged up to the lesser
of the new and old sizes. If the new size is larger, the newly allocated memory is uninitialized. If the
requested memory cannot be allocated,NULL is returned and the memory referenced byaddr is unchanged.
If addr is NULL, thenrealloc() behaves exactly asmalloc(). If the new size is 0, thenrealloc()

NetBSD 3.0 March 24, 2008 1

MALLOC (9) NetBSD Kernel Developer’s Manual MALLOC(9)

behaves exactly asfree().

TheMALLOC() macro variant is functionally equivalent to

(space) = (cast)malloc((u_long)(size), type, flags)

and theFREE() macro variant is equivalent to

free((void ∗)(addr), type)

TheMALLOC() macro is intended to be used with a compile-time constantsize so that the compiler can do
constant folding. In the comparison tomalloc() andfree() functions, theMALLOC() andFREE() macros
may be faster, at the cost of increased code size. There is no difference between the memory allocated with
MALLOC and malloc. i.e., no matter which MALLOC or malloc is used to allocate the memory, either
FREE or free can be used to free it.

Unlike its standard C library counterpart (malloc (3)) , the kernel version takes two more arguments.

Theflags argument further qualifiesmalloc() operational characteristics as follows:

M_NOWAIT Causesmalloc() to returnNULL if the request cannot be immediately fulfilled due to
resource shortage.If this flag is not set (seeM_WAITOK), malloc() will never return
NULL.

M_WAITOK By default, malloc() may callcv_wait (9) to wait for resources to be released by
other processes, and this flag represents this behaviour. Note thatM_WAITOKis con-
veniently defined to be 0, and hence may be or’ed into theflags argument to indi-
cate that it’s ok to wait for resources.

M_ZERO Causes the allocated memory to be set to all zeros.

M_CANFAIL Changes behaviour forM_WAITOKcase - if the requested memory size is bigger than
malloc() can ever allocate, return failure, rather than callingpanic (9). Thisis dif-
ferent to M_NOWAIT, since the call can still wait for resources.

Rather than depending onM_CANFAIL, kernel code should do proper bound checking
itself. Thisflag should only be used in cases where this is not feasible. Since it can
hide real kernel bugs, its usage isstrongly discouraged.

Thetype argument describes the subsystem and/or use within a subsystem for which the allocated memory
was needed, and is commonly used to maintain statistics about kernel memory usage and, optionally, enforce
limits on this usage for certain memory types.

In addition to some built-in generic types defined by the kernel memory allocator, subsystems may define
their own types.

The MALLOC_DEFINE_LIMIT() macro defines a malloc type namedtype with the short description
shortdesc, which must be a constant string; this description will be used for kernel memory statistics
reporting. Thelongdesc argument, also a constant string, is intended as way to place a comment in the
actual type definition, and is not currently stored in the type structure.Thelimit argument specifies the
maximum amount of memory, in bytes, that this malloc type can consume.

The MALLOC_DEFINE() macro is equivalent to theMALLOC_DEFINE_LIMIT() macro with alimit
argument of 0. If kernel memory statistics are being gathered, the system will choose a reasonable default
limit for the malloc type.

TheMALLOC_DECLARE() macro is intended for use in header files which are included by code which needs
to use the malloc type, providing the necessary extern declaration.

NetBSD 3.0 March 24, 2008 2

MALLOC (9) NetBSD Kernel Developer’s Manual MALLOC(9)

Code which includes <sys/malloc.h> does not need to include <sys/mallocvar.h> to get these macro defini-
tions. The <sys/mallocvar.h> header file is intended for other header files which need to use the
MALLOC_DECLARE() macro.

The malloc_type_attach() function attaches the malloc typetype to the kernel memory allocator.
This is intended for use by LKMs; malloc types included in modules statically-linked into the kernel are
automatically registered with the kernel memory allocator. Howev er, it is possible to define malloc types
without automatically registering them using MALLOC_JUSTDEFINE() or
MALLOC_JUSTDEFINE_LIMIT(). Apart from not automatically registering to the kernel a boot time,
these functions are equivalent to their counterparts.They can be used when a separate LKM codepath for
initialization is not desired.

The malloc_type_detach() function detaches the malloc typetype previously attached with
malloc_type_attach().

The malloc_type_setlimit() function sets the memory limit of the malloc typetype to limit
bytes. Thetype must already be registered with the kernel memory allocator.

The following generic malloc types are currently defined:

M_DEVBUF Device driver memory.
M_DMAMAP bus_dma(9) structures.
M_FREE Should be on free list.
M_PCB Protocol control block.
M_SOFTINTR Softinterrupt structures.
M_TEMP Misc temporary data buffers.

Other malloc types are defined by the corresponding subsystem; see the documentation for that subsystem
for information its available malloc types.

Statistics based on thetype argument are maintained only if the kernel optionKMEMSTATSis used when
compiling the kernel (the default in currentNetBSD kernels) and can be examined by using ‘vmstat -m’.

RETURN VALUES
malloc() returns a kernel virtual address that is suitably aligned for storage of any type of object.

DIAGNOSTICS
A kernel compiled with theDIAGNOSTIC configuration option attempts to detect memory corruption
caused by such things as writing outside the allocated area and imbalanced calls to themalloc() and
free() functions. Failing consistency checks will cause a panic or a system console message:

• panic: “malloc - bogus type”
• panic: “malloc: out of space in kmem_map”
• panic: “malloc: allocation too large”
• panic: “malloc: wrong bucket”
• panic: “malloc: lost data”
• panic: “free: unaligned addr”
• panic: “free: duplicated free”
• panic: “free: multiple frees”
• panic: “init: minbucket too small/struct freelist too big”
• “multiply freed item〈addr〉”
• “Data modified on freelist:〈data object description〉”

NetBSD 3.0 March 24, 2008 3

MALLOC (9) NetBSD Kernel Developer’s Manual MALLOC(9)

SEE ALSO
vmstat (1), memoryallocators (9)

NetBSD 3.0 March 24, 2008 4

MB (9) NetBSD Kernel Developer’s Manual MB(9)

NAME
mb, mb_memory, mb_read, mb_write — memory barriers

SYNOPSIS
#include <sys/lock.h>

void
mb_memory(void);

void
mb_read(void);

void
mb_write(void);

DESCRIPTION
Many types of processor can execute instructions in a different order than issued by the compiler or assem-
bler. On a uniprocessor system, out of order execution is transparent to the programmer, operating system
and applications, as the processor must ensure that it is self consistent.

On multiprocessor systems, out of order execution can present a problem where locks are not used to guaran-
tee atomicity of access, because loads and stores issued by any giv en processor can appear on the system bus
(and thus appear to other processors) in an unpredictable order.

mb_memory(), mb_read(), andmb_write() can be used to control the order in which memory accesses
occur, and thus the order in which those accesses become visible to other processors.They can be used to
implement “lockless” access to data structures where the necessary barrier conditions are well understood.

Memory barriers can be computationally expensive, as they are considered “serializing” operations and may
stall further execution until the processor has drained internal buffers and re-synchronized.

The memory barrier primitives control only the order of memory access.They provide no guarantee that
stores have been flushed to the bus, or that loads have been made from the bus.

The memory barrier primitives are guaranteed only to prevent reordering of accesses to main memory. They
do not provide any guarantee of ordering when used with device memory (for example, loads or stores to or
from a PCI device). To guarantee ordering of access to device memory, the bus_dma(9) and
bus_space (9) interfaces should be used.

FUNCTIONS
mb_memory()

Issue a full memory barrier, ordering all memory accesses.Causes all loads and stores preceding the
call tomb_memory() to complete before further memory accesses can be made.

mb_read()

Issue a read memory barrier, ordering all loads from memory. Causes all loads preceding the call to
mb_read() to complete before further loads can be made.Stores may be reordered ahead of or
behind a call tomb_read().

mb_write()

Issue a write memory barrier, ordering all stores to memory. Causes all stores preceding the call to
mb_write() to complete before further stores can be made. Loads may be reordered ahead of or
behind a call tomb_write().

NetBSD 3.0 April 8, 2007 1

MB (9) NetBSD Kernel Developer’s Manual MB(9)

SEE ALSO
bus_dma(9), bus_space (9), mutex (9), rwlock (9)

HISTORY
The memory barrier primitives first appeared inNetBSD 5.0.

NetBSD 3.0 April 8, 2007 2

MBUF (9) NetBSD Kernel Developer’s Manual MBUF (9)

NAME
mbuf, m_get, m_getclr, m_gethdr, m_devget, m_copym, m_copypacket, m_copydata,
m_copyback, m_copyback_cow, m_cat, m_dup, m_makewritable, m_prepend, m_pulldown,
m_pullup, m_split, m_adj, m_apply, m_free, m_freem, mtod, MGET, MGETHDR, MEXTMALLOC,
MEXTADD, MCLGET, M_COPY_PKTHDR, M_MOVE_PKTHDR, M_ALIGN, MH_ALIGN,
M_LEADINGSPACE, M_TRAILINGSPACE, M_PREPEND, MCHTYPE, MFREE — functions and macros for
managing memory used by networking code

SYNOPSIS
#include <sys/mbuf.h>

struct mbuf ∗
m_get(int nowait , int type);

struct mbuf ∗
m_getclr(int nowait , int type);

struct mbuf ∗
m_gethdr(int nowait , int type);

struct mbuf ∗
m_devget(char ∗ buf , int totlen , int off0 , struct ifnet ∗ ifp ,

void (∗ copy)(const void ∗ , void ∗ , size_t));

struct mbuf ∗
m_copym(struct mbuf ∗ m , int off0 , int len , int wait);

struct mbuf ∗
m_copypacket(struct mbuf ∗ m , int how);

void
m_copydata(struct mbuf ∗ m , int off , int len , void ∗ cp);

void
m_copyback(struct mbuf ∗ m0 , int off , int len , void ∗ cp);

struct mbuf ∗
m_copyback_cow(struct mbuf ∗ m0 , int off , int len , void ∗ cp , int how);

int
m_makewritable(struct mbuf ∗∗ mp , int off , int len , int how);

void
m_cat(struct mbuf ∗ m , struct mbuf ∗ n);

struct mbuf ∗
m_dup(struct mbuf ∗ m , int off0 , int len , int wait);

struct mbuf ∗
m_prepend(struct mbuf ∗ m , int len , int how);

struct mbuf ∗
m_pulldown(struct mbuf ∗ m , int off , int len , int ∗ offp);

struct mbuf ∗
m_pullup(struct mbuf ∗ n , int len);

struct mbuf ∗
m_split(struct mbuf ∗ m0 , int len0 , int wait);

NetBSD 3.0 March 24, 2008 1

MBUF (9) NetBSD Kernel Developer’s Manual MBUF (9)

void
m_adj(struct mbuf ∗ mp , int req_len);

int
m_apply(struct mbuf ∗ m , int off , int len ,

int ∗ f(void ∗ , void ∗ , unsigned int) , void ∗ arg);

struct mbuf ∗
m_free(struct mbuf ∗ m);

void
m_freem(struct mbuf ∗ m);

datatype
mtod(struct mbuf ∗ m , datatype);

void
MGET(struct mbuf ∗ m , int how , int type);

void
MGETHDR(struct mbuf ∗ m , int how , int type);

void
MEXTMALLOC(struct mbuf ∗ m , int len , int how);

void
MEXTADD(struct mbuf ∗ m , void ∗ buf , int size , int type ,

void (∗ free)(struct mbuf ∗ , void ∗ , size_t, void ∗) , void ∗ arg);

void
MCLGET(struct mbuf ∗ m , int how);

void
M_COPY_PKTHDR(struct mbuf ∗ to , struct mbuf ∗ from);

void
M_MOVE_PKTHDR(struct mbuf ∗ to , struct mbuf ∗ from);

void
M_ALIGN(struct mbuf ∗ m , int len);

void
MH_ALIGN(struct mbuf ∗ m , int len);

int
M_LEADINGSPACE(struct mbuf ∗ m);

int
M_TRAILINGSPACE(struct mbuf ∗ m);

void
M_PREPEND(struct mbuf ∗ m , int plen , int how);

void
MCHTYPE(struct mbuf ∗ m , int type);

void
MFREE(struct mbuf ∗ m , struct mbuf ∗ n);

NetBSD 3.0 March 24, 2008 2

MBUF (9) NetBSD Kernel Developer’s Manual MBUF (9)

DESCRIPTION
Thembuf functions and macros provide an easy and consistent way to handle a networking stack’s memory
management needs.An mbuf consists of a header and a data area. It is of a fixed size,MSIZE (defined in
〈machine/param.h 〉) , which includes overhead. Theheader contains a pointer to the next mbuf in the
‘mbuf chain’, a pointer to the next ‘mbuf chain’, a pointer to the data area, the amount of data in this mbuf,
its type and aflags field.

Thetype variable can signify:
MT_FREE the mbuf should be on the ‘‘free’’ l ist
MT_DATA data was dynamically allocated
MT_HEADER data is a packet header
MT_SONAME data is a socket name
MT_SOOPTS data is socket options
MT_FTABLE data is the fragment reassembly header
MT_CONTROL mbuf contains ancillary (protocol control) data
MT_OOBDATA mbuf contains out-of-band data.

Theflags variable contains information describing thembuf, notably:
M_EXT has external storage
M_PKTHDR is start of record
M_EOR is end of record
M_CLUSTER external storage is a cluster.

If an mbuf designates the start of a record(M_PKTHDR) , its flags field may contain additional informa-
tion describing the content of the record:

M_BCAST sent/received as link-level broadcast
M_MCAST sent/received as link-level multicast
M_LINK0,
M_LINK1,
M_LINK2 three link-level specific flags.

An mbuf may add a single ‘mbuf cluster’ ofMCLBYTESbytes (also defined in〈machine/param.h 〉) ,
which has no additional overhead and is used instead of the internal data area; this is done when at least
MINCLSIZE bytes of data must be stored.

When theM_EXTflag is raised for an mbuf, the external storage area could be shared among multiple mbufs.
Be careful when you attempt to overwrite the data content of the mbuf.

m_get(int nowait , int type)
Allocates an mbuf and initializes it to contain internal data.Thenowait parameter is a choice
of M_WAIT / M_DONTWAIT from caller. M_WAITmeans the call cannot fail, but may take
forever. Thetype parameter is an mbuf type.

m_getclr(int nowait , int type)
Allocates an mbuf and initializes it to contain internal data, then zeros the data area.The
nowait parameter is a choice ofM_WAIT / M_DONTWAIT from caller. Thetype parameter
is an mbuf type.

m_gethdr(int nowait , int type)
Allocates an mbuf and initializes it to contain a packet header and internal data.Thenowait
parameter is a choice ofM_WAIT / M_DONTWAIT from caller. The type parameter is an
mbuf type.

m_devget(char ∗ buf , int totlen , int off0 , struct ifnet ∗ ifp , void
(∗ copy)(const void ∗ , void ∗ , size_t))
Copieslen bytes from device local memory into mbufs using copy routinecopy. If parameter

NetBSD 3.0 March 24, 2008 3

MBUF (9) NetBSD Kernel Developer’s Manual MBUF (9)

off is non-zero, the packet is supposed to be trailer-encapsulated andoff bytes plus the type
and length fields will be skipped before copying. Returnsthe top of the mbuf chain it created.

m_copym(struct mbuf ∗ m , int off0 , int len , int wait)
Creates a copy of an mbuf chain startingoff0 bytes from the beginning, continuing forlen
bytes. Ifthelen requested isM_COPYALL, the complete mbuf chain will be copied.Thewait
parameter is a choice ofM_WAIT / M_DONTWAIT from caller.

m_copypacket(struct mbuf ∗ m , int how)
Copies an entire packet, including header (which must be present).This function is an optimiza-
tion of the common casem_copym(m, 0, M_COPYALL, how).

m_copydata(struct mbuf ∗ m , int off , int len , void ∗ cp)
Copieslen bytes data from mbuf chainm into the buffer cp, startingoff bytes from the begin-
ning.

m_copyback(struct mbuf ∗ m0 , int off , int len , void ∗ cp)
Copieslen bytes data from buffer cp back into the mbuf chainm0, startingoff bytes from the
beginning of the chain, extending the mbuf chain if necessary. m_copyback() can only fail
when extending the chain.The caller should check for this kind of failure by checking the result-
ing length of the chain in that case. It is an error to usem_copyback() on read-only mbufs.

m_copyback_cow(struct mbuf ∗ m0 , int off , int len , void ∗ cp , int how)
Copieslen bytes data from buffer cp back into the mbuf chainm0 asm_copyback() does.
Unlike m_copyback(), it is safe to usem_copyback_cow() on read-only mbufs. If needed,
m_copyback_cow() automatically allocates new mbufs and adjusts the chain. On success, it
returns a pointer to the resulting mbuf chain, and frees the original mbuf m0. Otherwise, it
returnsNULL. The how parameter is a choice ofM_WAIT / M_DONTWAIT from the caller.
Unlike m_copyback(), extending the mbuf chain isn’t supported. Itis an error to attempt to
extend the mbuf chain usingm_copyback_cow().

m_makewritable(struct mbuf ∗∗ mp , int off , int len , int how)
Rearranges an mbuf chain so thatlen bytes from offsetoff are writable. When it meets read-
only mbufs, it allocates new mbufs, adjusts the chain asm_copyback_cow() does, and copies
the original content into them.m_makewritable() doesnot guarantee that alllen bytes at
off are consecutive. The how parameter is a choice ofM_WAIT / M_DONTWAIT from the
caller. m_makewritable() preserves the contents of the mbuf chain even in the case of fail-
ure. Itupdates a pointer to the mbuf chain pointed to bymp. It returns 0 on success.Otherwise,
it returns an error code, typicallyENOBUFS.

m_cat(struct mbuf ∗ m , struct mbuf ∗ n)
Concatenates mbuf chainn to m. Both chains must be of the same type; packet headers willnot
be updated if present.

m_dup(struct mbuf ∗ m , int off0 , int len , int wait)
Similarly tom_copym(), the function creates a copy of an mbuf chain startingoff0 bytes from
the beginning, continuing forlen bytes. Whilem_copym() tries to share external storage for
mbufs with M_EXTflag, m_dup() will deep-copy the whole data content into new mbuf chain
and avoids shared external storage.

m_prepend(struct mbuf ∗ m , int len , int how)
Lesser-used path forM_PREPEND(): allocates new mbuf m of sizelen to prepend to the chain,
copying junk along. Thehow parameter is a choice ofM_WAIT / M_DONTWAIT from caller.

m_pulldown(struct mbuf ∗ m , int off , int len , int ∗ offp)
Rearranges an mbuf chain so thatlen bytes from offsetoff are contiguous and in the data area
of an mbuf. Thereturn value points to an mbuf in the middle of the mbuf chainm. If we call the

NetBSD 3.0 March 24, 2008 4

MBUF (9) NetBSD Kernel Developer’s Manual MBUF (9)

return valuen, the contiguous data region is available atmtod(n, void ∗) + ∗ offp , or
mtod(n, void ∗) if offp is NULL. The top of the mbuf chainm, and mbufs up tooff, will
not be modified.On successful return, it is guaranteed that the mbuf pointed to byn does not
have a shared external storage, therefore it is safe to update the contiguous region. ReturnsNULL
and frees the mbuf chain on failure.len must be smaller or equal thanMCLBYTES.

m_pullup(struct mbuf ∗ m , int len)
Rearranges an mbuf chain so thatlen bytes are contiguous and in the data area of an mbuf (so
thatmtod() will work for a structure of sizelen). Returnsthe resulting mbuf chain on success,
frees it and returnsNULL on failure. If there is room, it will add up tomax_protohdr - len
extra bytes to the contiguous region to possibly avoid being called again. len must be smaller or
equal thanMHLEN.

m_split(struct mbuf ∗ m0 , int len0 , int wait)
Partitions an mbuf chain in two pieces, returning the tail, which is all but the firstlen0 bytes. In
case of failure, it returnsNULLand attempts to restore the chain to its original state.

m_adj(struct mbuf ∗ mp , int req_len)
Shaves off req_len bytes from head or tail of the (valid) data area.If req_len is greater than
zero, front bytes are being shaved off , if i t’s smaller, from the back (and if it is zero, the mbuf will
stay bearded). This function does not move data in any way, but is used to manipulate the data
area pointer and data length variable of the mbuf in a non-clobbering way.

m_apply(struct mbuf ∗ m , int off , int len , int (∗ f)(void ∗ , void ∗ , unsigned
int) , void ∗ arg)
Apply functionf to the data in an mbuf chain startingoff bytes from the beginning, continuing
for len bytes. Neitheroff nor len may be negative. arg will be supplied as first argument
for f, the second argument will be the pointer to the data buffer of a packet (starting afteroff
bytes in the stream), and the third argument is the amount of data in bytes in this call.If f
returns something not equal to zerom_apply() will bail out, returning the return code off.
Upon successful completion it will return zero.

m_free(struct mbuf ∗ m)
Frees mbufm.

m_freem(struct mbuf ∗ m)
Frees the mbuf chain beginning withm. This function contains the elementary sanity check for a
NULLpointer.

mtod(struct mbuf ∗ m , datatype)
Returns a pointer to the data contained in the specified mbuf m, type-casted to the specified data
typedatatype. Implemented as a macro.

MGET(struct mbuf ∗ m , int how , int type)
Allocates mbuf m and initializes it to contain internal data.Seem_get(). Implementedas a
macro.

MGETHDR(struct mbuf ∗ m , int how , int type)
Allocates mbuf m and initializes it to contain a packet header. Seem_gethdr(). Implemented
as a macro.

MEXTMALLOC(struct mbuf ∗ m , int len , int how)
Allocates external storage of sizelen for mbuf m. Thehow parameter is a choice ofM_WAIT
/ M_DONTWAITfrom caller. The flagM_EXTis set upon success. Implemented as a macro.

NetBSD 3.0 March 24, 2008 5

MBUF (9) NetBSD Kernel Developer’s Manual MBUF (9)

MEXTADD(struct mbuf ∗ m , void ∗ buf , int size , int type , void (∗ free)(struct
mbuf ∗ , void ∗ , size_t, void ∗) , void ∗ arg)
Adds pre-allocated external storagebuf to a normal mbuf m; the parameterssize, type, free
and arg describe the external storage.size is the size of the storage,type describes its
malloc (9) type,free is a free routine (if not the usual one), andarg is a possible argument to
the free routine. The flagM_EXTis set upon success. Implemented as a macro.If a free routine
is specified, it will be called when the mbuf is freed. In the case of former, the first argument for
a free routine is the mbuf m and the routine is expected to free it in addition to the external stor-
age pointed by second argument. Inthe case of latter, the first argument for the routine is NULL.

MCLGET(struct mbuf ∗ m , int how)
Allocates and adds an mbuf cluster to a normal mbuf m. The how parameter is a choice of
M_WAIT / M_DONTWAIT from caller. The flagM_EXTis set upon success.Implemented as a
macro.

M_COPY_PKTHDR(struct mbuf ∗ to , struct mbuf ∗ from)
Copies the mbuf pkthdr from mbuf from to mbuf to. from must have the type flag
M_PKTHDRset, andto must be empty. Implemented as a macro.

M_MOVE_PKTHDR(struct mbuf ∗ to , struct mbuf ∗ from)
Moves the mbuf pkthdr from mbuf from to mbuf to. from must have the type flagM_PKTHDR
set, andto must be empty. The flagM_PKTHDRin mbuffrom will be cleared.

M_ALIGN(struct mbuf ∗ m , int len)
Sets the data pointer of a newly allocated mbuf m to len bytes from the end of the mbuf data
area, so thatlen bytes of data written to the mbuf m, starting at the data pointer, will be aligned
to the end of the data area. Implemented as a macro.

MH_ALIGN(struct mbuf ∗ m , int len)
Sets the data pointer of a newly allocated packetheader mbuf m to len bytes from the end of the
mbuf data area, so thatlen bytes of data written to the mbuf m, starting at the data pointer, will
be aligned to the end of the data area. Implemented as a macro.

M_LEADINGSPACE(struct mbuf ∗ m)
Returns the amount of space available before the current start of valid data in mbuf m. Returns 0
if the mbuf data part is shared across multiple mbufs (i.e. not writable) . Implemented as a
macro.

M_TRAILINGSPACE(struct mbuf ∗ m)
Returns the amount of space available after the current end of valid data in mbuf m. Returns 0 if
the mbuf data part is shared across multiple mbufs (i.e. not writable) . Implemented as a macro.

M_PREPEND(struct mbuf ∗ m , int plen , int how)
Prepends space of sizeplen to mbuf m. If a new mbuf must be allocated,how specifies whether
to wait. If how is M_DONTWAITand allocation fails, the original mbuf chain is freed andm is
set toNULL. Implemented as a macro.

MCHTYPE(struct mbuf ∗ m , int type)
Change mbufm to new typetype. Implemented as a macro.

MFREE(struct mbuf ∗ m , struct mbuf ∗ n)
Frees a single mbufm and places the successor, if any, in mbuf n. Implemented as a macro.

FILES
Thembuf management functions are implemented within the filesys/kern/uipc_mbuf.c . Function
prototypes, and the functions implemented as macros are located insys/sys/mbuf.h . Both pathnames
are relative to the root of theNetBSD source tree,/usr/src .

NetBSD 3.0 March 24, 2008 6

MBUF (9) NetBSD Kernel Developer’s Manual MBUF (9)

SEE ALSO
/usr/share/doc/smm/18.net , netstat (1), m_tag (9), malloc (9)

Jun-ichiro Hagino, "Mbuf issues in 4.4BSD IPv6/IPsec support (experiences from KAME IPv6/IPsec
implementation)",Proceedings of the freenix track: 2000 USENIX annual technical conference, June 2000.

AUTHORS
The original mbuf data structures were designed by Rob Gurwitz when he did the initial TCP/IP implementa-
tion at BBN.
Further extensions and enhancements were made by Bill Joy, Sam Leffler, and Mike Karels at CSRG.
Current implementation of external storage by Matt Thomas〈matt@3am-software.com〉 and Jason R. Thorpe
〈thorpej@NetBSD.org〉.

NetBSD 3.0 March 24, 2008 7

MCA (9) NetBSD Kernel Developer’s Manual MCA(9)

NAME
MCA, mca_intr_establish, mca_intr_disestablish, mca_intr_evcnt, mca_conf_read,
mca_conf_write — MicroChannel Architecture bus

SYNOPSIS
#include <machine/bus.h>
#include <dev/mca/mcavar.h>
#include <dev/mca/mcadevs.h>

void ∗
mca_intr_establish(mca_chipset_tag_t mc , mca_intr_handle_t hdl , int level ,

int (∗ handler)(void ∗) , void ∗ arg);

void
mca_intr_disestablish(mca_chipset_tag_t mc , mca_intr_handle_t hdl);

const struct evcnt ∗
mca_intr_evcnt(mca_chipset_tag_t mc , mca_intr_handle_t hdl);

int
mca_conf_read(mca_chipset_tag_t mc , int slot , int reg);

void
mca_conf_write(mca_chipset_tag_t mc , int slot , int reg , int data);

DESCRIPTION
TheMCA device provides support for IBM’s MicroChannel Architecture bus found on IBM PS/2 systems and
selected workstations. Itwas designed as a replacement bus for the ISA bus found on IBM’s older machines.
However, the bus specifications were only available under license, so MCA did not achieve widespread
acceptance in the industry.

Being a replacement for the ISA bus, the MCA bus does share some similar aspects with the ISA bus. Some
MCA devices can be detected via the usual ISA-style probing.However, most device detection is done
through the Programmable Option Select (POS) registers. Theseregisters provide a window into a device to
determine device-specific properties and configuration. The configuration of devices and their POS registers
is performed using IBM’s system configuration software.

The MCA bus uses level-triggered interrupts while the ISA bus uses edge-triggered interrupts.Level trig-
gered interrupts have the advantage that they can be shared among multiple device. Therefore,most MCA-
specific devices should be coded with shared interrupts in mind.

DATA T YPES
Drivers for devices attached to the MCA bus will make use of the following data types:

mca_chipset_tag_t
Chipset tag for the MCA bus.

mca_intr_handle_t
The opaque handle describing an established interrupt handler.

struct mca_attach_args
A structure use to inform the driver of MCA bus properties. It contains the following members:

bus_space_tag_t ma_iot; / ∗ MCA I/O space tag ∗ /
bus_space_tag_t ma_memt; / ∗ MCA mem space tag ∗ /
bus_dma_tag_t ma_dmat; / ∗ MCA DMA tag ∗ /
int ma_slot; / ∗ MCA slot number ∗ /

NetBSD 3.0 October 7, 2001 1

MCA (9) NetBSD Kernel Developer’s Manual MCA(9)

int ma_pos[8]; / ∗ MCA POS values ∗ /
int ma_id; / ∗ MCA device ∗ /

FUNCTIONS
mca_intr_establish(mc , hdl , level , handler , arg)

Establish a MCA interrupt handler on the MCA bus specified bymc for the interrupt described
completely byhdl. The priority of the interrupt is specified bylevel. When the interrupt
occurs the functionhandler is called with argumentarg.

mca_intr_disestablish(mc , hdl)
Dis-establish the interrupt handler on the MCA bus specified bymc for the interrupt described
completelyhdl.

mca_intr_evcnt(mc , hdl)
Do interrupt event counting on the MCA bus specified bymc for the event described completely
by hdl.

mca_conf_read(mc , slot , reg)
Read the POS registerreg for the device in slotslot on the MCA bus specified bymc.

mca_conf_write(mc , slot , reg , data)
Write datadata to the POS registerreg for the device in slotslot on the MCA bus specified
by mc.

AUTOCONFIGURATION
The MCA bus is a direct-connection bus. Duringautoconfiguration, the parent specifies the MCA device ID
for the found device in thema_id member of themca_attach_argsstructure. Drivers should match on the
device ID. Device capabilities and configuration information should be read from device POS registers using
mca_conf_read(). Someimportant configuration information found in the POS registers include the I/O
base address, memory base address and interrupt number. The location of these configurable options with
the POS registers are device specific.

DMA SUPPORT
The MCA bus supports 32-bit, bidirectional DMA transfers.Currently, no machine-independent support for
MCA DMA is available.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent MCA subsystem can be found. All pathnames are relative to /usr/src .

The MCA subsystem itself is implemented within the filesys/dev/mca/mca_subr.c . Machine-depen-
dent portions can be found insys/arch/<arch>/mca/mca_machdep.c . The database of known
devices exists within the filesys/dev/mca/mcadevs_data.h and is generated automatically from the
file sys/dev/mca/mcadevs . New vendor and product identifiers should be added to this file. The data-
base can be regenerated using the Makefilesys/dev/mca/Makefile.mcadevs .

A good source of information about MCA devices is IBM’s system configuration disk. The disk contains
.adf files which describe the location of device configuration options in the POS registers.

SEE ALSO
mca(4), autoconf (9), bus_dma(9), bus_space (9), driver (9), isa (9)

NetBSD 3.0 October 7, 2001 2

MCA (9) NetBSD Kernel Developer’s Manual MCA(9)

BUGS
The machine-independentMCA driver does not currently support DMA. MCA devices which require DMA
operation currently access the DMA capabilities directly.

NetBSD 3.0 October 7, 2001 3

MEMCMP (9) NetBSD Kernel Developer’s Manual MEMCMP(9)

NAME
memcmp — compare byte string

SYNOPSIS
#include <sys/systm.h>

int
memcmp(const void ∗ b1 , const void ∗ b2 , size_t len);

DESCRIPTION
Thememcmp() function compares byte stringb1 against byte stringb2. Both strings are assumed to belen
bytes long.

RETURN VALUES
Thememcmp() function returns zero if the two strings are identical, otherwise returns the difference between
the first two differing bytes (treated as unsigned char values, so that ‘\200 ’ is greater than ‘\0 ’, for exam-
ple). Zero-lengthstrings are always identical.

STANDARDS
Thememcmp() function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 July 7, 2001 1

MEMCPY (9) NetBSD Kernel Developer’s Manual MEMCPY(9)

NAME
memcpy — copy byte string

SYNOPSIS
#include <systm.h>

void ∗
memcpy(void ∗ restrict dst , const void ∗ restrict src , size_t len);

DESCRIPTION
Thememcpy() function copieslen bytes from stringsrc to stringdst. The arguments must not overlap
-- behavior if the arguments overlap is undefined.To copy byte strings that overlap, usememmove(9).

RETURN VALUES
Thememcpy() function returns the original value ofdst.

SEE ALSO
memmove(9)

STANDARDS
Thememcpy() function conforms toISO/IEC9899:1999 (“ISO C99”).

NetBSD 3.0 July 7, 2001 1

MEMMOVE (9) NetBSD Kernel Developer’s Manual MEMMOVE (9)

NAME
memmove — copy byte string

SYNOPSIS
#include <sys/systm.h>

void ∗
memmove(void ∗ dst , const void ∗ src , size_t len);

DESCRIPTION
Thememmove() function copieslen bytes from stringsrc to stringdst. The two strings may overlap; the
copy is always done in a non-destructive manner.

RETURN VALUES
Thememmove() function returns the original value ofdst.

SEE ALSO
memcpy(9)

STANDARDS
Thememmove() function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 July 7, 2001 1

MEMORYALLOCATORS (9) NetBSD Kernel Developer’s Manual MEMORYALLOCATORS (9)

NAME
memoryallocators — introduction to kernel memory allocators

DESCRIPTION
TheNetBSD kernel provides several memory allocators, each with different characteristics and purpose.This
document summarizes the main differences between them.

The Malloc Allocator
The malloc (9) allocator can be used for variable-sized allocations in the kernel address space. It is inter-
rupt-safe, requires no setup (see below), and is considered to be stable (given the number of years it has been
in the kernel).

This interface also allows associating a “type” with an allocation to indicate what subsystem is using the
memory allocated, thus providing statistics as to the memory usage of different kernel subsystems.To define
a type, one should use theMALLOC_DEFINEmacro, otherwise, one of the built-in types, like M_TEMPcan
be used.

Seemalloc (9) for more details.

The Kmem Allocator
The kmem allocator is modelled after an interface of similar name implemented in Solaris, and is under
active dev elopment.

It is implemented on-top of thevmem(9) resource allocator (beyond the scope of this document), meaning it
will be usingpool_cache (9) internally to speed-up common (small) sized allocations.

Like malloc (9), it requires no setup, but can’t be used yet from interrupt context.

Seekmem_alloc (9), kmem_zalloc (9), andkmem_free (9) for more details.

The Pool Allocator
Thepool (9) allocator is a fixed-size memory allocator. It requires setup (to initialize a memory pool) and is
interrupt-safe.

Seepool (9) for more details.

The Pool Cache Allocator
The pool cache allocator works on-top of thepool (9) allocator, also allowing fixed-size allocation only,
requires setup, and is interrupt-safe.

The pool cache allocator is expected to be faster than other allocators, including the “normal” pool allocator.

In the future this allocator is expected to have a per-CPU cache.

Seepool_cache (9) for more details.

The UVM K ernel Memory Allocator
This is a low-level memory allocator interface. It allows variable-sized allocations in multiples of
PAGE_SIZE, and can be used to allocate both wired and pageable kernel memory.

Seeuvm(9) for more details.

SEE ALSO
free (9), intro (9), kmem_alloc (9), kmem_free (9), kmem_zalloc (9), malloc (9), pool (9),
pool_cache (9), uvm(9), vmem(9)

NetBSD 3.0 January 7, 2007 1

MEMORYALLOCATORS (9) NetBSD Kernel Developer’s Manual MEMORYALLOCATORS (9)

AUTHORS
Elad Efrat〈elad@NetBSD.org〉
YAMAMOTO Takashi〈yamt@NetBSD.org〉

NetBSD 3.0 January 7, 2007 2

MEMSET (9) NetBSD Kernel Developer’s Manual MEMSET(9)

NAME
memset — write a byte to byte string

SYNOPSIS
#include <sys/systm.h>

void ∗
memset(void ∗ b , int c , size_t len);

DESCRIPTION
Thememset() function writeslen bytes of valuec (converted to an unsigned char) to the stringb.

RETURN VALUES
Thememset() function returns the original value ofb.

STANDARDS
Thememset() function conforms toANSI X3.159-1989 (“ANSI C89”).

NetBSD 3.0 July 7, 2001 1

MI_SWITCH (9) NetBSD Kernel Developer’s Manual MI_SWITCH(9)

NAME
mi_switch — machine independent context switch prelude

SYNOPSIS
int
mi_switch(struct lwp ∗ l);

DESCRIPTION
Themi_switch() function implements the machine-independent prelude to an LWP context switch. It is
called from only a few distinguished places in the kernel code as a result of the principle of non-preemptable
kernel mode execution. The three major uses ofmi_switch() can be enumerated as follows:

1. From within cv_wait (9) and associated methods when the current LWP voluntarily relin-
quishes the CPU to wait for some resource to become available.

2. Fromwithin preempt (9) when the current LWP voluntarily relinquishes the CPU or when the
kernel prepares a return to user-mode execution.

3. In the signal handling code if a signal is delivered that causes an LWP to stop(see
issignal (9)) .

mi_switch() records the amount of time the current LWP has been running in the LWP structure and
checks this value against the CPU time limits allocated to the LWP (seegetrlimit (2)) . Exceeding the
soft limit results in aSIGXCPUsignal to be posted to the LWP, while exceeding the hard limit will cause a
SIGKILL .

Unlessl->l_switchto is notNULL, mi_switch() will call sched_nextlwp() to select a new LWP
from the scheduler’s runqueue structures. If no runnable LWP is found, the idle LWP is used.If the new
LWP is not equal to the current one,mi_switch() will hand over control to the machine-dependent func-
tion cpu_switchto (9) to switch to the new LWP.

mi_switch() has to be called with the LWP lock held (through callinglwp_lock() first) and at the
splsched (9) interrupt protection level. It returns with the LWP lock released.

RETURN VALUES
mi_switch() returns 1 if a context switch was performed to a different LWP, 0 otherwise.

SEE ALSO
condvar (9), cpu_switchto (9), csf (9), pmap(9), ras (9), sched_4bsd (9), splsched (9)

NetBSD 3.0 July 21, 2007 1

MICROSEQ (9) NetBSD Kernel Developer’s Manual MICROSEQ (9)

NAME
microseq — ppbus microseqencer developer’s guide

SYNOPSIS
#include <sys/types.h>
#include <dev/ppbus/ppbus_conf.h>
#include <dev/ppbus/ppbus_msq.h>

DESCRIPTION
Seeppbus (4) forppbus description and general info about the microsequencer.

The purpose of this document is to encourage developers to use the microsequencer mechanism in order to
have:

1. auniform programming model

2. efficient code

Before using microsequences, you are encouraged to look at theatppc (4) microsequencer implementation
and an example of how using it invpo (4).

PPBUS register model
Background

The parallel port model chosen forppbus (4) is the PC parallel port model.Thus, any register described
later has the same semantic than its counterpart in a PC parallel port.For more info about ISA/ECP pro-
gramming, get the Microsoft standard referenced “Extended Capabilities Port Protocol and ISA interface
Standard”. Registers described later are standard parallel port registers.

Mask macros are defined in the standardppbus (4) include files for each valid bit of parallel port registers.

Data register
In compatible or nibble mode, writing to this register will drive data to the parallel port data lines. In any
other mode, drivers may be tri-stated by setting the direction bit (PCD) in the control register. Reads to this
register return the value on the data lines.

Device status register
This read-only register reflects the inputs on the parallel port interface.

Bit Name Description
7 nBUSY inverted version of parallel port Busy signal
6 nACK version of parallel port nAck signal
5 PERROR version of parallel port PERROR signal
4 SELECT version of parallel port Select signal
3 nFA ULT version of parallel port nFault signal

Others are reserved and return undefined result when read.

Device control register
This register directly controls several output signals as well as enabling some functions.

Bit Name Description
5 PCD directionbit in extended modes
4 IRQENABLE 1 enables an interrupt on the rising edge of nAck

NetBSD 3.0 December 29, 2003 1

MICROSEQ (9) NetBSD Kernel Developer’s Manual MICROSEQ (9)

3 SELECTIN inverted and driven as parallel port nSelectin signal
2 nINIT driven as parallel port nInit signal
1 AUTOFEED inverted and driven as parallel port nAutoFd signal
0 STROBE inverted and driven as parallel port nStrobe signal

MICROINSTRUCTIONS
Description

Microinstructionsare either parallel port accesses, program iterations, submicrosequence or C calls.The
parallel port must be considered as the logical model described inppbus (4).

Av ailable microinstructions are:

#define MS_OP_GET 0 / ∗ get <ptr>, <len> ∗ /
#define MS_OP_PUT 1 / ∗ put <ptr>, <len> ∗ /
#define MS_OP_RFETCH 2 / ∗ rfetch <reg>, <mask>, <ptr> ∗ /
#define MS_OP_RSET 3 / ∗ rset <reg>, <mask>, <mask> ∗ /
#define MS_OP_RASSERT 4 / ∗ rassert <reg>, <mask> ∗ /
#define MS_OP_DELAY 5 / ∗ delay <val> ∗ /
#define MS_OP_SET 6 / ∗ set <val> ∗ /
#define MS_OP_DBRA 7 / ∗ dbra <offset> ∗ /
#define MS_OP_BRSET 8 / ∗ brset <mask>, <offset> ∗ /
#define MS_OP_BRCLEAR 9 / ∗ brclear <mask>, <offset> ∗ /
#define MS_OP_RET 10 / ∗ ret <retcode> ∗ /
#define MS_OP_C_CALL 11 / ∗ c_call <function>, <parameter> ∗ /
#define MS_OP_PTR 12 / ∗ ptr <pointer> ∗ /
#define MS_OP_ADELAY 13 / ∗ adelay <val> ∗ /
#define MS_OP_BRSTAT 14 / ∗ brstat <mask>, <mask>, <offset> ∗ /
#define MS_OP_SUBRET 15 / ∗ subret <code> ∗ /
#define MS_OP_CALL 16 / ∗ call <microsequence> ∗ /
#define MS_OP_RASSERT_P 17 / ∗ rassert_p <iter>, <reg> ∗ /
#define MS_OP_RFETCH_P 18 / ∗ rfetch_p <iter>, <reg>, <mask> ∗ /
#define MS_OP_TRIG 19 / ∗ trigger <reg>, <len>, <array> ∗ /

Execution context
Theexecution contextof microinstructions is:

• the program counter which points to the next microinstruction to execute either in the main
microsequence or in a subcall

• the current value ofptr which points to the next char to send/receive

• the current value of the internalbranch register

This data is modified by some of the microinstructions, not all.

MS_OP_GET and MS_OP_PUT
are microinstructions used to do either predefined standardIEEE1284-1994transfers or programmed non-stan-
dard I/O.

MS_OP_RFETCH - Register FETCH
is used to retrieve the current value of a parallel port register, apply a mask and save it in a buffer.

Parameters:

NetBSD 3.0 December 29, 2003 2

MICROSEQ (9) NetBSD Kernel Developer’s Manual MICROSEQ (9)

1. register

2. charactermask

3. pointerto the buffer

Predefined macro: MS_RFETCH(reg,mask,ptr)

MS_OP_RSET - Register SET
is used to assert/clear some bits of a particular parallel port register, two masks are applied.

Parameters:

1. register

2. maskof bits to assert

3. maskof bits to clear

Predefined macro: MS_RSET(reg,assert,clear)

MS_OP_RASSERT - Register ASSERT
is used to assert all bits of a particular parallel port register.

Parameters:

1. register

2. byteto assert

Predefined macro: MS_RASSERT(reg,byte)

MS_OP_DELAY - microsecond DELAY
is used to delay the execution of the microsequence.

Parameter:

1. delayin microseconds

Predefined macro: MS_DELAY(delay)

MS_OP_SET - SET internal branch register
is used to set the value of the internal branch register.

Parameter:

1. integer value

Predefined macro: MS_SET(accum)

MS_OP_DBRA - &Do BRAnch
is used to branch if internal branch register decremented by one result value is positive.

Parameter:

1. integer offset in the current executed (sub)microsequence.Offset is added to the index of the
next microinstruction to execute.

Predefined macro: MS_DBRA(offset)

NetBSD 3.0 December 29, 2003 3

MICROSEQ (9) NetBSD Kernel Developer’s Manual MICROSEQ (9)

MS_OP_BRSET - BRanch on SET
is used to branch if some of the status register bits of the parallel port are set.

Parameter:

1. bitsof the status register

2. integer offset in the current executed (sub)microsequence.Offset is added to the index of the
next microinstruction to execute.

Predefined macro: MS_BRSET(mask,offset)

MS_OP_BRCLEAR - BRanch on CLEAR
is used to branch if some of the status register bits of the parallel port are cleared.

Parameter:

1. bitsof the status register

2. integer offset in the current executed (sub)microsequence.Offset is added to the index of the
next microinstruction to execute.

Predefined macro: MS_BRCLEAR(mask,offset)

MS_OP_RET - RETurn
is used to return from a microsequence.This instruction is mandatory. This is the only way for the microse-
quencer to detect the end of the microsequence.The return code is returned in the integer pointed by the (int
∗) parameter of the ppb_MS_microseq().

Parameter:

1. integer return code

Predefined macro: MS_RET(code)

MS_OP_C_CALL - C function CALL
is used to call C functions from microsequence execution. Thismay be useful when a non-standard I/O is
performed to retrieve a data character from the parallel port.

Parameter:

1. theC function to call

2. theparameter to pass to the function call

The C function shall be declared as aint(∗)(void ∗ p, char ∗ ptr). The ptr parameter is the current
position in the buffer currently scanned.

Predefined macro: MS_C_CALL(func,param)

MS_OP_PTR - initialize internal PTR
is used to initialize the internal pointer to the currently scanned buffer. This pointer is passed to any C call
(see above).

Parameter:

1. pointerto the buffer that shall be accessed byxxx_P() microsequence calls. Note that this
pointer is automatically incremented duringxxx_P() calls.

Predefined macro: MS_PTR(ptr)

NetBSD 3.0 December 29, 2003 4

MICROSEQ (9) NetBSD Kernel Developer’s Manual MICROSEQ (9)

MS_OP_ADELAY - do an Asynchronous DELAY
is used to make acv_timedwait (9) during microsequence execution.

Parameter:

1. delayin ms

Predefined macro: MS_ADELAY(delay)

MS_OP_BRSTAT - BRanch on STAT e
is used to branch on status register state condition.

Parameter:

1. maskof asserted bits. Bits that shall be asserted in the status register are set in the mask

2. maskof cleared bits. Bits that shall be cleared in the status register are set in the mask

3. integer offset in the current executed (sub)microsequence.Offset is added to the index of the
next microinstruction to execute.

Predefined macro: MS_BRSTAT(asserted_bits,clear_bits,offset)

MS_OP_SUBRET - SUBmicrosequence RETurn
is used to return from the submicrosequence call.This action is mandatory before a RET call.Some
microinstructions (PUT, GET) may not be callable within a submicrosequence.

No parameter.

Predefined macro: MS_SUBRET()

MS_OP_CALL - submicrosequence CALL
is used to call a submicrosequence.A submicrosequence is a microsequence with a SUBRET call.Parame-
ter:

1. thesubmicrosequence to execute

Predefined macro: MS_CALL(microseq)

MS_OP_RASSERT_P - Register ASSERT from internal PTR
is used to assert a register with data currently pointed by the internal PTR pointer. Parameter:

1. amountof data to write to the register

2. register

Predefined macro: MS_RASSERT_P(iter,reg)

MS_OP_RFETCH_P - Register FETCH to internal PTR
is used to fetch data from a register. Data is stored in the buffer currently pointed by the internal PTR
pointer. Parameter:

1. amountof data to read from the register

2. register

3. maskapplied to fetched data

Predefined macro: MS_RFETCH_P(iter,reg,mask)

NetBSD 3.0 December 29, 2003 5

MICROSEQ (9) NetBSD Kernel Developer’s Manual MICROSEQ (9)

MS_OP_TRIG - TRIG r egister
is used to trigger the parallel port. This microinstruction is intended to provide a very efficient control of the
parallel port. Triggering a register is writing data, wait a while, write data, wait a while... This allows to
write magic sequences to the port.Parameter:

1. amountof data to read from the register

2. register

3. sizeof the array

4. arrayof unsigned chars. Each couple of u_chars define the data to write to the register and the
delay in us to wait. Thedelay is limited to 255 us to simplify and reduce the size of the array.

Predefined macro: MS_TRIG(reg,len,array)

MICROSEQUENCES
C structures

union ppb_insarg {
int i;
char c;
void ∗ p;
int (∗ f)(void ∗ , c har ∗);

};

struct ppb_microseq {
int opcode; / ∗ microins. opcode ∗ /
union ppb_insarg arg[PPB_MS_MAXARGS]; / ∗ arguments ∗ /

};

Using microsequences
To instantiate a microsequence, just declare an array of ppb_microseq structures and initialize it as needed.
You may either use predefined macros or code directly your microinstructions according to the ppb_microseq
definition. For example,

struct ppb_microseq select_microseq[] = {

/ ∗ parameter list
∗ /

#define SELECT_TARGET MS_PARAM(0, 1, MS_TYP_INT)
#define SELECT_INITIATOR MS_PARAM(3, 1, MS_TYP_INT)

/ ∗ send the select command to the drive ∗ /
MS_DASS(MS_UNKNOWN),
MS_CASS(H_nAUTO | H_nSELIN | H_INIT | H_STROBE),
MS_CASS(H_AUTO | H_nSELIN | H_INIT | H_STROBE),
MS_DASS(MS_UNKNOWN),
MS_CASS(H_AUTO | H_nSELIN | H_nINIT | H_STROBE),

/ ∗ now, wait until the drive is ready ∗ /
MS_SET(VP0_SELTMO),

/ ∗ loop: ∗ / MS_BRSET(H_ACK, 2 / ∗ ready ∗ /),
MS_DBRA(-2 / ∗ loop ∗ /),

/ ∗ error: ∗ / MS_RET(1),
/ ∗ ready: ∗ / MS_RET(0)

NetBSD 3.0 December 29, 2003 6

MICROSEQ (9) NetBSD Kernel Developer’s Manual MICROSEQ (9)

};

Here, some parameters are undefined and must be filled before executing the microsequence. In order to ini-
tialize each microsequence, one should use theppb_MS_init_msq() function like this:

ppb_MS_init_msq(select_microseq, 2,
SELECT_TARGET, 1 << target,
SELECT_INITIATOR, 1 << initiator);

and then execute the microsequence.

The microsequencer
The microsequencer is executed either at ppbus or adapter level (seeppbus (4) for info about ppbus system
layers). Mostof the microsequencer is executed atatppc (4) level to avoid ppbus (4) to adapter function
call overhead. Butsome actions like deciding whereas the transfer isIEEE1284-1994compliant are executed
atppbus (4) layer.

SEE ALSO
atppc (4), ppbus (4), vpo (4)

HISTORY
Themicroseq manual page first appeared inFreeBSD3.0.

AUTHORS
This manual page is based on theFreeBSDmicroseq manual page and was update for theNetBSD port by
Gary Thorpe.

BUGS
Only one level of submicrosequences is allowed.

When triggering the port, maximum delay allowed is 255 us.

NetBSD 3.0 December 29, 2003 7

MICROTIME (9) NetBSD Kernel Developer’s Manual MICROTIME (9)

NAME
microtime — realtime system clock

SYNOPSIS
#include <sys/time.h>

void
microtime(struct timeval ∗ tv);

DESCRIPTION
microtime() returns the current value of the system realtime clock in the structure pointed to by the argu-
menttv. The system realtime clock is guaranteed to be monotonically increasing at all times.As such, all
calls tomicrotime() are guaranteed to return a system time greater than or equal to the system time
returned in any previous calls.

SEE ALSO
settimeofday (2), hardclock (9), hz (9), inittodr (9), time_second (9)

CODE REFERENCES
The implementation of themicrotime() function is machine dependent, hence its location in the source
code tree varies from architecture to architecture.

BUGS
Despite the guarantee that the system realtime clock will always be monotonically increasing, it is always
possible for the system clock to be manually reset by the system administrator to any date.

NetBSD 3.0 September 14, 1998 1

MICROUPTIME (9) NetBSD Kernel Developer’s Manual MICROUPTIME (9)

NAME
binuptime, getbinuptime, microuptime, getmicrouptime, nanouptime,
getnanouptime — get the time elapsed since boot

SYNOPSIS
#include <sys/time.h>

void
binuptime(struct bintime ∗ bt);

void
getbinuptime(struct bintime ∗ bt);

void
microuptime(struct timeval ∗ tv);

void
getmicrouptime(struct timeval ∗ tv);

void
nanouptime(struct timespec ∗ ts);

void
getnanouptime(struct timespec ∗ tsp);

DESCRIPTION
The binuptime() and getbinuptime() functions store the time elapsed since boot as astruct
bintime at the address specified bybt. Themicrouptime() andgetmicrouptime() functions per-
form the same utility, but record the elapsed time as astruct timeval instead. Similarlythe
nanouptime() andgetnanouptime() functions store the elapsed time as astruct timespec.

The binuptime(), microuptime(), and nanouptime() functions always query the timecounter to
return the current time as precisely as possible.Whereasgetbinuptime(), getmicrouptime(), and
getnanouptime() functions are abstractions which return a less precise, but faster to obtain, time.

The intent of thegetbinuptime(), getmicrouptime(), and getnanouptime() functions is to
enforce the user’s preference for timer accuracy versus execution time.

SEE ALSO
bintime (9), getbintime (9), getmicrotime (9), getnanotime (9), microtime (9),
nanotime (9), tvtohz (9)

AUTHORS
This manual page was written by Kelly Yancey〈kbyanc@posi.net〉.

NetBSD 3.0 September 16, 2004 1

MSTOHZ (9) NetBSD Kernel Developer’s Manual MSTOHZ (9)

NAME
mstohz — convert milliseconds to system clock ticks

SYNOPSIS
#include <sys/param.h>

int
mstohz(int ms);

DESCRIPTION
mstohz can be used to convert time in milliseconds to system clock ticks, as used by thecallout (9)
facility, in an integer-overflow safe way.

This function is implemented as a define in the<sys/param.h>header. Individual ports can have a pro-
cessor-specific, more efficient version implemented in their<machine/param.h>header as a define.

RETURN VALUES
The return value is the number of clock ticks for the specified value.

SEE ALSO
callout (9)

BUGS
The machine-independentmstohz() function does not make use of expensive 64-bit integer arithmetic, so
the result will be rounded down to one second if the parameter is larger than 131072 milliseconds.

NetBSD 3.0 April 4, 2002 1

MUTEX (9) NetBSD Kernel Developer’s Manual MUTEX(9)

NAME
mutex, mutex_init, mutex_destroy, mutex_enter, mutex_exit, mutex_owned,
mutex_spin_enter, mutex_spin_exit, mutex_tryenter — mutual exclusion primitives

SYNOPSIS
#include <sys/mutex.h>

void
mutex_init(kmutex_t ∗ mtx , kmutex_type_t type , int ipl);

void
mutex_destroy(kmutex_t ∗ mtx);

void
mutex_enter(kmutex_t ∗ mtx);

void
mutex_exit(kmutex_t ∗ mtx);

int
mutex_owned(kmutex_t ∗ mtx);

void
mutex_spin_enter(kmutex_t ∗ mtx);

void
mutex_spin_exit(kmutex_t ∗ mtx);

int
mutex_tryenter(kmutex_t ∗ mtx);

options DIAGNOSTIC
options LOCKDEBUG

DESCRIPTION
Mutexes are used in the kernel to implement mutual exclusion among LWPs (lightweight processes) and
interrupt handlers.

Thekmutex_t type provides storage for the mutex object. Thisshould be treated as an opaque object and
not examined directly by consumers.

Mutexes replace thespl (9) system traditionally used to provide synchronization between interrupt handlers
and LWPs, and in combination with reader / writer locks replace thelockmgr (9) facility.

OPTIONS
options DIAGNOSTIC

Kernels compiled with theDIAGNOSTICoption perform basic sanity checks on mutex operations.

options LOCKDEBUG

Kernels compiled with theLOCKDEBUGoption perform potentially CPU intensive sanity checks on
mutex operations.

FUNCTIONS
mutex_init(mtx , type , ipl)

Dynamically initialize a mutex for use.

NetBSD 3.0 December 4, 2007 1

MUTEX (9) NetBSD Kernel Developer’s Manual MUTEX(9)

No other operations can be performed on a mutex until it has been initialized. Once initialized, all
types of mutex are manipulated using the same interface. Notethat mutex_init() may block in
order to allocate memory.

Thetype argument must be given as MUTEX_DEFAULT . Other constants are defined but are for
low-level system use and are not an endorsed, stable part of the interface.

The type of mutex returned depends on theipl argument:

IPL_NONE, or one of the IPL_SOFT∗ constants

An adaptive mutex will be returned. Adaptive mutexes provide mutual exclusion between
LWPs, and between LWPs and soft interrupt handlers.

Adaptive mutexes cannot be acquired from a hardware interrupt handler. An LWP may either
sleep or busy-wait when attempting to acquire an adaptive mutex that is already held.

IPL_VM, IPL_SCHED, IPL_HIGH

A spin mutex will be returned. Spin mutexes provide mutual exclusion between LWPs, and
between LWPs and interrupt handlers.

The ipl argument is used to pass a system interrupt priority level (IPL) that will block all
interrupt handlers that may try to acquire the mutex.

LWPs that own spin mutexes may not sleep, and therefore must not try to acquire adaptive
mutexes or other sleep locks.

A processor will always busy-wait when attempting to acquire a spin mutex that is already
held.

Seespl (9) for further information on interrupt priority levels (IPLs).

mutex_destroy(mtx)

Release resources used by a mutex. The mutex may not be used after it has been destroyed.
mutex_destroy() may block in order to free memory.

mutex_enter(mtx)

Acquire a mutex. If the mutex is already held, the caller will block and not return until the mutex is
acquired.

Mutexes and other types of locks must always be acquired in a consistent order with respect to each
other. Otherwise, the potential for system deadlock exists.

Adaptive mutexes and other types of lock that can sleep may not be acquired while a spin mutex is
held by the caller.

mutex_exit(mtx)

Release a mutex. The mutex must have been previously acquired by the caller. Mutexes may be
released out of order as needed.

mutex_owned(mtx)

For adaptive mutexes, return non-zero if the current LWP holds the mutex. For spin mutexes, return
non-zero if the mutex is held, potentially by the current processor. Otherwise, return zero.

mutex_owned() is provided for making diagnostic checks to verify that a lock is held.For exam-
ple:

NetBSD 3.0 December 4, 2007 2

MUTEX (9) NetBSD Kernel Developer’s Manual MUTEX(9)

KASSERT(mutex_owned(&driver_lock));

It should not be used to make locking decisions at run time, or to verify that a lock is unheld.

mutex_spin_enter(mtx)

Equivalent tomutex_enter(), but may only be used when it is known thatmtx is a spin mutex.
On some architectures, this can substantially reduce the cost of acquring a spin mutex.

mutex_spin_exit(mtx)

Equivalent tomutex_exit(), but may only be used when it is known thatmtx is a spin mutex. On
some architectures, this can substantially reduce the cost of releasing an unheld spin mutex.

mutex_tryenter(mtx)

Try to acquire a mutex, but do not block if the mutex is already held. Returns non-zero if the mutex
was acquired, or zero if the mutex was already held.

mutex_tryenter() can be used as an optimization when acquiring locks in the the wrong order.
For example, in a setting where the convention is that first_lock must be acquired before
second_lock , the following can be used to optimistically lock in reverse order:

/ ∗ We hold second_lock, but not first_lock. ∗ /
KASSERT(mutex_owned(&second_lock));

if (!mutex_tryenter(&first_lock)) {
/ ∗ Failed to get it - lock in the correct order. ∗ /
mutex_exit(&second_lock);
mutex_enter(&first_lock);
mutex_enter(&second_lock);

/ ∗
∗ We may need to recheck any conditions the code
∗ path depends on, as we released second_lock
∗ briefly.
∗ /

}

CODE REFERENCES
This section describes places within theNetBSD source tree where code implementing mutexes can be found.
All pathnames are relative to /usr/src .

The core of the mutex implementation is insys/kern/kern_mutex.c .

The header filesys/sys/mutex.h describes the public interface, and interfaces that machine-dependent
code must provide to support mutexes.

SEE ALSO
condvar (9), mb(9), rwlock (9), spl (9)

Jim Mauro and Richard McDougall,Solaris Internals: Core Kernel Architecture,, Prentice Hall, 2001, ISBN
0-13-022496-0.

HISTORY
The mutex primitives first appeared inNetBSD 5.0.

NetBSD 3.0 December 4, 2007 3

NAMECACHE (9) NetBSD Kernel Developer’s Manual NAMECACHE (9)

NAME
namecache, cache_lookup, cache_revlookup, cache_enter, cache_purge,
cache_purgevfs, namecache_print — name lookup cache

SYNOPSIS
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/uio.h>
#include <sys/vnode.h>

int
cache_lookup(struct vnode ∗ dvp , struct vnode ∗∗ vpp ,

struct componentname ∗ cnp);

int
cache_revlookup(struct vnode ∗ vp , struct vnode ∗ dvp , char ∗∗ bpp , char ∗ bufp);

void
cache_enter(struct vnode ∗ dvp , struct vnode ∗ vp , struct componentname ∗ cnp);

void
cache_purge(struct vnode ∗ vp);

void
cache_purgevfs(struct mount ∗ mp);

void
namecache_print(struct vnode ∗ vp , void (∗ func)(const char ∗ , ...));

DESCRIPTION
The name lookup cache is the mechanism to allow the file system type dependent algorithms to quickly
resolve a file’s vnode from its pathname. The name lookup cache is generally accessed through the higher-
level namei (9) interface.

The name of the file is used to lookup an entry associated with the file in the name lookup cache.If no entry
is found, one is created for it. If an entry is found, the information obtained from the cache lookup contains
information about the file which is useful to the file system type dependent functions.

The name lookup cache is managed by a least recently used (LRU) algorithm so frequently used names will
hang around. The cache itself is a hash table callednchashtbl, containingnamecacheentries that are allo-
cated dynamically from a kernel memory pool. Each entry has the following structure:

#define NCHNAMLEN 31 / ∗ maximum name segment length ∗ /
struct namecache {

LIST_ENTRY(namecache) nc_hash; / ∗ hash chain ∗ /
TAILQ_ENTRY(namecache) nc_lru; / ∗ LRU chain ∗ /
LIST_ENTRY(namecache) nc_vhash; / ∗ directory hash chain ∗ /
LIST_ENTRY(namecache) nc_dvlist;
struct vnode ∗ nc_dvp; / ∗ vnode of parent of name ∗ /
LIST_ENTRY(namecache) nc_vlist;
struct vnode ∗ nc_vp; / ∗ vnode the name refers to ∗ /
int nc_flags; / ∗ copy of componentname’s ISWHITEOUT ∗ /
char nc_nlen; / ∗ length of name ∗ /
char nc_name[NCHNAMLEN]; / ∗ segment name ∗ /

};

NetBSD 3.0 June 25, 2007 1

NAMECACHE (9) NetBSD Kernel Developer’s Manual NAMECACHE (9)

For simplicity (and economy of storage), names longer than a maximum length of NCHNAMLEN are not
cached; they occur infrequently in any case, and are almost never of interest.

Eachnamecacheentry can appear on two hash chains in addition tonshashtbl: ncvhashtbl(the name cache
directory hash chain), andnclruhead(the name cache LRU chain). Thehash chains are indexed by a hash
value obtained from the file’s name and the address of its parent directory vnode.

Functions which access to the name cache pass arguments in the partially initialisedcomponentnamestruc-
ture. Seevnodeops (9) for details on this structure.

FUNCTIONS
cache_lookup(dvp , vpp , cnp)

Look for a name in the cache.cache_lookup() is called withdvp pointing to the vnode of
the directory to search andcnp pointing to the partially initialised component structure.
cnp->cn_nameptr points to the name of the entry being sought,cnp->cn_namelen tells
the length of the name, andcnp->cn_hash contains a hash of the name. If the lookup suc-
ceeds, the vnode is locked, stored invpp and a status of zero is returned. If the locking fails for
whatever reason, the vnode is unlocked and the error is returned.If the lookup determines that
the name does not exist any longer, a status of ENOENT is returned. If the lookup fails, a status
of -1 is returned.

cache_revlookup(vp , dvp , bpp , bufp)
Scan cache looking for name of directory entry pointing atvp and fill indvpp. If bufp is non-
NULL, also place the name in the buffer which starts atbufp, immediately beforebpp, and
move bpp backwards to point at the start of it. Returns 0 on success, -1 on cache miss, positive
errno on failure.

cache_enter(dvp , vp , cnp)
Add an entry to the cache.cache_enter() is called withdvp pointing to the vnode of the
directory to enter andcnp pointing to the partially initialised component structure.If vp is
NULL, a negative cache entry is created, specifying that the entry does not exist in the file sys-
tem. cnp->cn_nameptr points to the name of the entry being entered,cnp->cn_namelen
tells the length of the name, andcnp->cn_hash contains a hash of the name.

cache_purge(vp)
Flush the cache of a particular vnodevp. cache_purge() is called when a vnode is renamed
to hide entries that would now be inv alid.

cache_purgevfs(mp)
Flush cache of a whole file systemmp. cache_purgevfs() is called when file system is
unmounted to remove entries that would now be inv alid.

namecache_print(vp , func)
Print all entries of the name cache.func is theprintf (9) format. namecache_print() is
only defined if the kernel option DDB is compiled into the kernel.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
name lookup cache can be found. All pathnames are relative to /usr/src .

The name lookup cache is implemented within the filesys/kern/vfs_cache.c .

SEE ALSO
intro (9), namei (9), vfs (9), vnode (9)

NetBSD 3.0 June 25, 2007 2

NAMECACHE (9) NetBSD Kernel Developer’s Manual NAMECACHE (9)

HISTORY
The name lookup cache first appeared in 4.2BSD.

AUTHORS
The original name lookup cache was written by Robert Elz.

NetBSD 3.0 June 25, 2007 3

NAMEI (9) NetBSD Kernel Developer’s Manual NAMEI (9)

NAME
namei, lookup, relookup, NDINIT — pathname lookup

SYNOPSIS
#include <sys/namei.h>
#include <sys/uio.h>
#include <sys/vnode.h>

int
namei(struct nameidata ∗ ndp);

int
lookup(struct nameidata ∗ ndp);

int
relookup(struct vnode ∗ dvp , struct vnode ∗∗ vpp , struct componentname ∗ cnp);

void
NDINIT(struct nameidata ∗ ndp , u_long op , u_long flags , enum uio_seg segflg ,

const char ∗ namep);

DESCRIPTION
Thenamei interface is used to convert pathnames to file system vnodes. The name of the interface is actu-
ally a contraction of the wordsnameandinodefor name-to-inode conversion, in the days before thevfs (9)
interface was implemented.

The arguments passed to the functions are encapsulated in thenameidatastructure. Ithas the following
structure:

struct nameidata {
/ ∗

∗ Arguments to namei/lookup.
∗ /

const char ∗ ni_dirp; / ∗ pathname pointer ∗ /
enum uio_seg ni_segflg; / ∗ location of pathname ∗ /
/ ∗

∗ Arguments to lookup.
∗ /

struct vnode ∗ ni_startdir; / ∗ starting directory ∗ /
struct vnode ∗ ni_rootdir; / ∗ logical root directory ∗ /
/ ∗

∗ Results: returned from/manipulated by lookup
∗ /

struct vnode ∗ ni_vp; / ∗ vnode of result ∗ /
struct vnode ∗ ni_dvp; / ∗ vnode of intermediate dir ∗ /
/ ∗

∗ Shared between namei and lookup/commit routines.
∗ /

size_t ni_pathlen; / ∗ remaining chars in path ∗ /
const char ∗ ni_next; / ∗ next location in pathname ∗ /
u_long ni_loopcnt; / ∗ count of symlinks encountered ∗ /
/ ∗

∗ Lookup parameters
∗ /

struct componentname {

NetBSD 3.0 December 28, 2007 1

NAMEI (9) NetBSD Kernel Developer’s Manual NAMEI (9)

/ ∗
∗ Arguments to lookup.
∗ /

u_long cn_nameiop; / ∗ namei operation ∗ /
u_long cn_flags; / ∗ flags to namei ∗ /
kauth_cred_t cn_cred; / ∗ credentials ∗ /
/ ∗

∗ Shared between lookup and commit routines.
∗ /

char ∗ cn_pnbuf; / ∗ pathname buffer ∗ /
const char ∗ cn_nameptr; / ∗ pointer to looked up name ∗ /
long cn_namelen; / ∗ length of looked up component ∗ /
u_long cn_hash; / ∗ hash value of looked up name ∗ /
long cn_consume; / ∗ chars to consume in lookup() ∗ /

} n i_cnd;
};

The namei interface accesses vnode operations by passing arguments in the partially initialised
componentnamestructureni_cnd. This structure describes the subset of information from the nameidata
structure that is passed through to the vnode operations.Seevnodeops (9) for more information.The
details of the componentname structure are not absolutely necessary since the members are initialised by the
helper macroNDINIT(). It is useful to know the operations and flags as specified invnodeops (9).

Thenamei interface overloadsni_cnd.cn_flagswith some additional flags. These flags should be specific to
the namei interface and ignored by vnode operations.However, due to the historic close relationship
between thenamei interface and the vnode operations, these flags are sometimes used (and set) by vnode
operations, particularlyVOP_LOOKUP(). Theadditional flags are:

NOCROSSMOUNT
do not cross mount points

RDONLY lookup with read-only semantics
HASBUF caller has allocated pathname bufferni_cnd.cn_pnbuf
SAVENAME save pathname buffer
SAVESTART save starting directory
ISDOTDOT current pathname component is ..
MAKEENTRY add entry to the name cache
ISLASTCN this is last component of pathname
ISSYMLINK symlink needs interpretation
ISWHITEOUT found whiteout
DOWHITEOUT do whiteouts
REQUIREDIR must be a directory
CREATEDIR trailing slashes are ok
PARAMASK mask of parameter descriptors

If the caller ofnamei() sets the SAVENAME flag, then it must free the buffer. If VOP_LOOKUP() sets the
flag, then the buffer must be freed by either the commit routine or theVOP_ABORT() routine. The SAVES-
TART flag is set only by the callers ofnamei(). It implies SAVENAME plus the addition of saving the par-
ent directory that contains the name inni_startdir. It allows repeated calls tolookup() for the name being
sought. Thecaller is responsible for releasing the buffer and for invoking vrele() onni_startdir.

All access to thenamei interface must be in process context. Pathname lookups cannot be done in interrupt
context.

NetBSD 3.0 December 28, 2007 2

NAMEI (9) NetBSD Kernel Developer’s Manual NAMEI (9)

FUNCTIONS
namei(ndp)

Convert a pathname into a pointer to a vnode. The pathname is specified byndp->ni_dirpand is
of lengthndp->ni_pathlen. The ndp->segflgflags defines whether the name inndp->ni_dirp is
an address in kernel space (UIO_SYSSPACE) or an address in user space (UIO_USERSPACE).

The vnode for the pathname is returned inndp->ni_vp. The parent directory is returned locked
in ndp->ni_dvpif f LOCKPARENT is specified.

If ndp->ni_cnd.cn_flagshas the FOLLOW flag set then symbolic links are followed when they
occur at the end of the name translation process.Symbolic links are always followed for all other
pathname components other than the last.

lookup(ndp)
Search for a pathname. This is a very central and rather complicated routine.

The pathname is specified byndp->ni_dirpand is of lengthndp->ni_pathlen. The starting direc-
tory is taken fromndp->ni_startdir. The pathname is descended until done, or a symbolic link is
encountered.

The semantics oflookup() are altered by the operation specified byndp->ni_cnd.cn_nameiop.
When CREATE, RENAME, or DELETE is specified, information usable in creating, renaming,
or deleting a directory entry may be calculated.

If the target of the pathname exists and LOCKLEAF is set, the target is returned locked in
ndp->ni_vp, otherwise it is returned unlocked.

relookup(dvp , vpp , cnp)
Reacquire a path name component is a directory. This is a quicker way to lookup a pathname
component when the parent directory is known. Thelocked parent directory vnode is specified
by dvp and the pathname component bycnp. The vnode of the pathname is returned in the
address specified byvpp.

NDINIT(ndp , op , flags , segflg , namep)
Initialise a nameidata structure pointed to byndp for use by thenamei interface. Itsaves hav-
ing to deal with the componentname structure insidendp. The operation and flags are specified
by op andflags respectively. These are the values to whichndp->ni_cnd.cn_nameiopand
ndp->ni_cnd.cn_flagsare respectively set. The segment flags which defines whether the path-
name is in kernel address space or user address space is specified bysegflag. The argument
namep is a pointer to the pathname thatndp->ni_dirp is set to.

This routine stores the credentials of the calling thread (curlwp) in ndp. In the rare case that
another set of credentials is required for the namei operation,ndp->ni_cnd.cn_credmust be set
manually.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
name lookup subsystem can be found. All pathnames are relative to /usr/src .

The name lookup subsystem is implemented within the filesys/kern/vfs_lookup.c .

SEE ALSO
intro (9), namecache (9), vfs (9), vnode (9), vnodeops (9)

NetBSD 3.0 December 28, 2007 3

NAMEI (9) NetBSD Kernel Developer’s Manual NAMEI (9)

BUGS
It is unfortunate that much of thenamei interface makes assumptions on the underlying vnode operations.
These assumptions are an artefact of the introduction of the vfs interface to split a file system interface which
was historically designed as a tightly coupled module.

NetBSD 3.0 December 28, 2007 4

OPENCRYPTO (9) NetBSDKernel Developer’s Manual OPENCRYPTO (9)

NAME
opencrypto, crypto_get_driverid, crypto_register, crypto_kregister,
crypto_unregister, crypto_done, crypto_kdone, crypto_newsession,
crypto_freesession, crypto_dispatch, crypto_kdispatch, crypto_getreq,
crypto_freereq — API for cryptographic services in the kernel

SYNOPSIS
#include <opencrypto/cryptodev.h>

int32_t
crypto_get_driverid(u_int32_t);

int
crypto_register(u_int32_t , int , u_int16_t , u_int32_t ,

int (∗)(void ∗ , u_int32_t ∗ , struct cryptoini ∗) ,
int (∗)(void ∗ , u_int32_t ∗) , int (∗)(u_int64_t) ,
int (∗)(struct cryptop ∗) , void ∗);

int
crypto_kregister(u_int32_t , int , u_int32_t ,

int (∗)(void ∗ , struct cryptkop ∗ , int) , void ∗);

int
crypto_unregister(u_int32_t , int);

void
crypto_done(struct cryptop ∗);

void
crypto_kdone(struct cryptkop ∗);

int
crypto_newsession(u_int64_t ∗ , struct cryptoini ∗ , int);

int
crypto_freesession(u_int64_t);

int
crypto_dispatch(struct cryptop ∗);

int
crypto_kdispatch(struct cryptkop ∗);

struct cryptop ∗
crypto_getreq(int);

void
crypto_freereq(struct cryptop ∗);

#define EALG_MAX_BLOCK_LEN 16

struct cryptoini {
int cri_alg;
int cri_klen;
int cri_rnd;
void ∗ cri_key;
u_int8_t cri_iv[EALG_MAX_BLOCK_LEN];

NetBSD 3.0 December 20, 2003 1

OPENCRYPTO (9) NetBSDKernel Developer’s Manual OPENCRYPTO (9)

struct cryptoini ∗ cri_next;
};

struct cryptodesc {
int crd_skip;
int crd_len;
int crd_inject;
int crd_flags;
struct cryptoini CRD_INI;
struct cryptodesc ∗ crd_next;

};

struct cryptop {
TAILQ_ENTRY(cryptop) crp_next;
u_int64_t crp_sid;
int crp_ilen;
int crp_olen;
int crp_etype;
int crp_flags;
void ∗ crp_buf;
void ∗ crp_opaque;
struct cryptodesc ∗ crp_desc;
int (∗ crp_callback)(struct cryptop ∗);
void ∗ crp_mac;

};

struct crparam {
void ∗ crp_p;
u_int crp_nbits;

};

#define CRK_MAXPARAM 8

struct cryptkop {
TAILQ_ENTRY(cryptkop) krp_next;
u_int krp_op; / ∗ ie. CRK_MOD_EXP or other ∗ /
u_int krp_status; / ∗ return status ∗ /
u_short krp_iparams; / ∗ # of i nput parameters ∗ /
u_short krp_oparams; / ∗ # of o utput parameters ∗ /

u_int32_t krp_hid;
struct crparam krp_param[CRK_MAXPARAM]; / ∗ kvm ∗ /
int (∗ krp_callback)(struct cryptkop ∗);

};

DESCRIPTION
opencrypto is a framework for drivers of cryptographic hardware to register with the kernel so
“consumers” (other kernel subsystems, and eventually users through an appropriate device) are able to make
use of it. Drivers register with the framework the algorithms they support, and provide entry points (func-
tions) the framework may call to establish, use, and tear down sessions.Sessions are used to cache crypto-
graphic information in a particular driver (or associated hardware), so initialization is not needed with every
request. Consumersof cryptographic services pass a set of descriptors that instruct the framework (and the
drivers registered with it) of the operations that should be applied on the data (more than one cryptographic

NetBSD 3.0 December 20, 2003 2

OPENCRYPTO (9) NetBSDKernel Developer’s Manual OPENCRYPTO (9)

operation can be requested).

Ke ying operations are supported as well.Unlike the symmetric operators described above, these sessionless
commands perform mathematical operations using input and output parameters.

Since the consumers may not be associated with a process, drivers may not use condition variables:
condvar (9). Thesame holds for the framework. Thus,a callback mechanism is used to notify a consumer
that a request has been completed (the callback is specified by the consumer on an per-request basis).The
callback is invoked by the framework whether the request was successfully completed or not. An error indi-
cation is provided in the latter case.A specific error code,EAGAIN, is used to indicate that a session number
has changed and that the request may be re-submitted immediately with the new session number. Errors are
only returned to the invoking function if not enough information to call the callback is available (meaning,
there was a fatal error in verifying the arguments). Nocallback mechanism is used for session initialization
and teardown.

The crypto_newsession() routine is called by consumers of cryptographic services (such as the
ipsec (4) stack) that wish to establish a new session with the framework. On success, the first argument
will contain the Session Identifier (SID). The second argument contains all the necessary information for the
driver to establish the session. The third argument indicates whether a hardware driver should be used (1) or
not (0). The various fields in thecryptoini structure are:

cri_alg Contains an algorithm identifier. Currently supported algorithms are:

CRYPTO_DES_CBC
CRYPTO_3DES_CBC
CRYPTO_BLF_CBC
CRYPTO_CAST_CBC
CRYPTO_SKIPJACK_CBC
CRYPTO_MD5_HMAC
CRYPTO_SHA1_HMAC
CRYPTO_RIPEMD160_HMAC
CRYPTO_MD5_KPDK
CRYPTO_SHA1_KPDK
CRYPTO_AES_CBC
CRYPTO_ARC4
CRYPTO_MD5
CRYPTO_SHA1

cri_klen Specifies the length of the key in bits, for variable-size key algorithms.

cri_rnd Specifies the number of rounds to be used with the algorithm, for variable-round algo-
rithms.

cri_key Contains the key to be used with the algorithm.

cri_iv Contains an explicit initialization vector (IV), if it does not prefix the data.This field is
ignored during initialization. If no IV is explicitly passed (see below on details), a ran-
dom IV is used by the device driver processing the request.

cri_next Contains a pointer to anothercryptoini structure. Multiplesuch structures may be
linked to establish multi-algorithm sessions (ipsec (4) is an example consumer of such a
feature).

The cryptoini structure and its contents will not be modified by the framework (or the drivers used).
Subsequent requests for processing that use the SID returned will avoid the cost of re-initializing the hard-
ware (in essence, SID acts as an index in the session cache of the driver).

NetBSD 3.0 December 20, 2003 3

OPENCRYPTO (9) NetBSDKernel Developer’s Manual OPENCRYPTO (9)

crypto_freesession() is called with the SID returned bycrypto_newsession() to disestablish the
session.

crypto_dispatch() is called to process a request. The various fields in thecryptop structure are:

crp_sid Contains the SID.

crp_ilen Indicates the total length in bytes of the buffer to be processed.

crp_olen On return, contains the length of the result, not includingcrd_skip. For symmetric
crypto operations, this will be the same as the input length.

crp_alloctype
Indicates the type of buffer, as used in the kernelmalloc (9) routine. This will be used if
the framework needs to allocate a new buffer for the result (or for re-formatting the
input).

crp_callback This routine is invoked upon completion of the request, whether successful or not.It is
invoked through thecrypto_done() routine. If the request was not successful, an error
code is set in thecrp_etype field. It is the responsibility of the callback routine to set
the appropriatespl (9) level.

crp_etype Contains the error type, if any errors were encountered, or zero if the request was success-
fully processed. If theEAGAIN error code is returned, the SID has changed (and has
been recorded in thecrp_sid field). Theconsumer should record the new SID and use
it in all subsequent requests.In this case, the request may be re-submitted immediately.
This mechanism is used by the framework to perform session migration (move a session
from one driver to another, because of availability, performance, or other considerations).

Note that this field only makes sense when examined by the callback routine specified in
crp_callback. Errors are returned to the invoker of crypto_process() only when
enough information is not present to call the callback routine (i.e., if the pointer passed is
NULLor if no callback routine was specified).

crp_flags Is a bitmask of flags associated with this request. Currently defined flags are:

CRYPTO_F_IMBUFThe buffer pointed to bycrp_buf is an mbuf chain.

crp_buf Points to the input buffer. On return (when the callback is invoked), it contains the result
of the request. The input buffer may be an mbuf chain or a contiguous buffer (of a type
identified bycrp_alloctype), depending oncrp_flags.

crp_opaque This is passed through the crypto framework untouched and is intended for the invoking
application’s use.

crp_desc This is a linked list of descriptors. Each descriptor provides information about what type
of cryptographic operation should be done on the input buffer. The various fields are:

crd_skip The offset in the input buffer where processing should start.

crd_len How many bytes, aftercrd_skip, should be processed.

crd_inject Offset from the beginning of the buffer to insert any results. For encryp-
tion algorithms, this is where the initialization vector (IV) will be inserted
when encrypting or where it can be found when decrypting (subject to
crd_flags). For MAC algorithms, this is where the result of the keyed
hash will be inserted.

NetBSD 3.0 December 20, 2003 4

OPENCRYPTO (9) NetBSDKernel Developer’s Manual OPENCRYPTO (9)

crd_flags The following flags are defined:

CRD_F_ENCRYPT For encryption algorithms, this bit is set when
encryption is required (when not set, decryp-
tion is performed).

CRD_F_IV_PRESENT For encryption algorithms, this bit is set when
the IV already precedes the data, so the
crd_inject value will be ignored and no
IV will be written in the buffer. Otherwise, the
IV used to encrypt the packet will be written at
the location pointed to bycrd_inject. The
IV length is assumed to be equal to the block-
size of the encryption algorithm. Some appli-
cations that do special “IV cooking”, such as
the half-IV mode inipsec (4), can use this
flag to indicate that the IV should not be writ-
ten on the packet. Thisflag is typically used in
conjunction with theCRD_F_IV_EXPLICIT
flag.

CRD_F_IV_EXPLICIT For encryption algorithms, this bit is set when
the IV is explicitly provided by the consumer
in thecrd_iv fields. Otherwise,for encryp-
tion operations the IV is provided for by the
driver used to perform the operation, whereas
for decryption operations it is pointed to by the
crd_inject field. This flag is typically
used when the IV is calculated “on the fly” by
the consumer, and does not precede the data
(some ipsec (4) configurations, and the
encrypted swap are two such examples).

CRD_F_COMP For compression algorithms, this bit is set
when compression is required (when not set,
decompression is performed).

CRD_INI Thiscryptoini structure will not be modified by the framework or the
device drivers. Sincethis information accompanies every cryptographic
operation request, drivers may re-initialize state on-demand (typically an
expensive operation). Furthermore,the cryptographic framework may re-
route requests as a result of full queues or hardware failure, as described
above.

crd_next Point to the next descriptor. Linked operations are useful in protocols
such asipsec (4), where multiple cryptographic transforms may be
applied on the same block of data.

crypto_getreq() allocates acryptop structure with a linked list of as many cryptodesc structures
as were specified in the argument passed to it.

crypto_freereq() deallocates a structurecryptop and any cryptodesc structures linked to it.Note
that it is the responsibility of the callback routine to do the necessary cleanups associated with the opaque
field in thecryptop structure.

NetBSD 3.0 December 20, 2003 5

OPENCRYPTO (9) NetBSDKernel Developer’s Manual OPENCRYPTO (9)

crypto_kdispatch() is called to perform a keying operation. The various fields in thecrytokop
structure are:

krp_op Operation code, such as CRK_MOD_EXP.

krp_status Return code.This errno-style variable indicates whether there were lower level reasons
for operation failure.

krp_iparams Number of input parameters to the specified operation. Note that each operation has a
(typically hardwired) number of such parameters.

krp_oparams Number of output parameters from the specified operation.Note that each operation has
a (typically hardwired) number of such parameters.

krp_kvp An array of kernel memory blocks containing the parameters.

krp_hid Identifier specifying which low-level driver is being used.

krp_callback Callback called on completion of a keying operation.

DRIVER-SIDE API
The crypto_get_driverid(), crypto_register(), crypto_kregister(),
crypto_unregister(), andcrypto_done() routines are used by drivers that provide support for cryp-
tographic primitives to register and unregister with the kernel crypto services framework. Drivers must first
use thecrypto_get_driverid() function to acquire a driver identifier, specifying theflags as an
argument (normally 0, but software-only drivers should specifyCRYPTOCAP_F_SOFTWARE). For each
algorithm the driver supports, it must then callcrypto_register(). The first argument is the driver
identifier. The second argument is an array ofCRYPTO_ALGORITHM_MAX + 1elements, indicating
which algorithms are supported. The last three arguments are pointers to three driver-provided functions that
the framework may call to establish new cryptographic context with the driver, free already established con-
text, and ask for a request to be processed (encrypt, decrypt, etc.)crypto_unregister() is called by
drivers that wish to withdraw support for an algorithm. The two arguments are the driver and algorithm iden-
tifiers, respectively. Typically, drivers for pcmcia (4) crypto cards that are being ejected will invoke this
routine for all algorithms supported by the card.If called withCRYPTO_ALGORITHM_ALL, all algorithms
registered for a driver will be unregistered in one go and the driver will be disabled (no new sessions will be
allocated on that driver, and any existing sessions will be migrated to other drivers). Thesame will be done
if all algorithms associated with a driver are unregistered one by one.

The calling convention for the three driver-supplied routines is:

int (∗ newsession) (void ∗ , u _int32_t ∗ , s truct cryptoini ∗);
int (∗ freesession) (void ∗ , u _int64_t);
int (∗ process) (void ∗ , s truct cryptop ∗ , i nt);

On invocation, the first argument tonewsession() contains the driver identifier obtained via
crypto_get_driverid(). On successfully returning, it should contain a driver-specific session identi-
fier. The second argument is identical to that ofcrypto_newsession().

Thefreesession() routine takes as argument the SID (which is the concatenation of the driver identifier
and the driver-specific session identifier). It should clear any context associated with the session (clear hard-
ware registers, memory, etc.).

The process() routine is invoked with a request to perform crypto processing. This routine must not
block, but should queue the request and return immediately. Upon processing the request, the callback rou-
tine should be invoked. In case of error, the error indication must be placed in thecrp_etype field of the
cryptop structure. Thehint argument can be set toCRYPTO_HINT_MOREthe there will be more
request right after this request. When the request is completed, or an error is detected, theprocess() rou-
tine should invokecrypto_done(). Sessionmigration may be performed, as mentioned previously.

NetBSD 3.0 December 20, 2003 6

OPENCRYPTO (9) NetBSDKernel Developer’s Manual OPENCRYPTO (9)

Thekprocess() routine is invoked with a request to perform crypto key processing. Thisroutine must not
block, but should queue the request and return immediately. Upon processing the request, the callback rou-
tine should be invoked. In case of error, the error indication must be placed in thekrp_status field of the
cryptkop structure. Whenthe request is completed, or an error is detected, thekprocess() routine
should invokecrypto_kdone().

RETURN VALUES
crypto_register(), crypto_kregister(), crypto_unregister(), crypto_newsession(),
and crypto_freesession() return 0 on success, or an error code on failure.
crypto_get_driverid() returns a non-negative value on error, and −1 on failure. crypto_getreq()
returns a pointer to acryptop structure andNULL on failure. crypto_dispatch() returnsEINVAL if
its argument or the callback function wasNULL, and 0 otherwise.The callback is provided with an error
code in case of failure, in thecrp_etype field.

FILES
sys/crypto/crypto.c most of the framework code

SEE ALSO
condvar (9), ipsec (4), pcmcia (4), malloc (9)

Angelos D. Keromytis, Jason L. Wright, and Theo de Raadt,The Design of the OpenBSD Cryptographic
Fr amework, Usenix, 2003, June 2003.

HISTORY
The cryptographic framework first appeared inOpenBSD2.7 and was written by Angelos D. Keromytis
〈angelos@openbsd.org〉.

Sam Leffler ported the crypto framework to FreeBSDand made performance improvements.

Jonathan Stone〈 jonathan@NetBSD.org〉 ported the cryptoframe fromFreeBSDto NetBSD. opencrypto
first appeared inNetBSD 2.0.

BUGS
The framework currently assumes that all the algorithms in acrypto_newsession() operation must be
available by the same driver. If that’s not the case, session initialization will fail.

The framework also needs a mechanism for determining which driver is best for a specific set of algorithms
associated with a session. Some type of benchmarking is in order here.

Multiple instances of the same algorithm in the same session are not supported.Note that 3DES is consid-
ered one algorithm (and not three instances of DES). Thus, 3DES and DES could be mixed in the same
request.

A queue for completed operations should be implemented and processed at some softwarespl (9) level, to
avoid overall system latency issues, and potential kernel stack exhaustion while processing a callback.

When SMP time comes, we will support use of a second processor (or more) as a crypto device (this is actu-
ally AMP, but we need the same basic support).

NetBSD 3.0 December 20, 2003 7

OPTSTR (9) NetBSD Kernel Developer’s Manual OPTSTR(9)

NAME
optstr_get — Options string management

SYNOPSIS
#include <sys/optstr.h>

bool
optstr_get(const char ∗ optstr , const char ∗ key , char ∗ buf , size_t bufsize);

DESCRIPTION
An options string is a list of key/value pairs represented in textual form. Each pair is expressed as
‘’k ey=value’’ and is separated from other pairs by one or more spaces.For example:

key1=value1 key2=value2 key3=value3

Options strings are used to pass information between userland programs and the kernel in a binary-agnostic
way. This makes them endianness and ABI independent.

FUNCTIONS
The following functions are provided to manage options strings:

optstr_get(optstr , key , buf , bufsize)
Scans theoptstroptions string looking for the key key and stores its value in the buffer pointed to
by buf copying a maximum ofbufsizebytes. Returns‘true’ if the key was found or ‘false’ other-
wise, in which casebuf is left unmodified.

CODE REFERENCES
The options string management functions are implemented within the filessys/kern/subr_optstr.c
andsys/sys/optstr.h .

HISTORY
Options strings appeared inNetBSD 4.0.

NetBSD 3.0 August 11, 2007 1

PANIC (9) NetBSD Kernel Developer’s Manual PANIC (9)

NAME
panic — Bring down system on fatal error

SYNOPSIS
#include <sys/types.h>
#include <sys/systm.h>

void
panic(const char ∗ fmt , ...);

DESCRIPTION
Thepanic() function terminates theNetBSD system. Themessagefmt is aprintf (3) style format string
which is printed to the console and saved in the variablepanicstrfor later retrieval via core dump inspection.
A newline character is added at the end automatically, and is thus not needed in the format string.

If a kernel debugger is installed, control is passed to it after the message is printed.If the kernel debugger is
ddb (4), control may be passed to it, depending on the value ofddb.onpanic. See options (4) for more
details on settingddb.onpanic. If control is not passed through toddb (4), addb (4)-specific function is used
to print the kernel stack trace, and then control returns topanic().

If control remains inpanic(), an attempt is made to save an image of system memory on the configured
dump device.

If during the process of handling the panic,panic() is called again (from the filesystem synchronization
routines, for example) ,the system is rebooted immediately without synchronizing any filesystems.

RETURN VALUES
Thepanic() function does not return.

SEE ALSO
sysctl (3), ddb (4), ipkdb (4), options (4), savecore (8), swapctl (8), sysctl (8)

NetBSD 3.0 January 28, 2006 1

PCI (9) NetBSD Kernel Developer’s Manual PCI(9)

NAME
PCI, pci_activate, pci_conf_read, pci_conf_write, pci_conf_print,
pci_conf_capture, pci_conf_restore, pci_find_device, pci_get_capability,
pci_mapreg_type, pci_mapreg_map, pci_mapreg_info, pci_intr_map,
pci_intr_string, pci_intr_evcnt, pci_intr_establish, pci_intr_disestablish,
pci_get_powerstate, pci_set_powerstate, pci_vpd_read, pci_vpd_write,
pci_make_tag, pci_decompose_tag, pci_findvendor, pci_devinfo, PCI_VENDOR,
PCI_PRODUCT, PCI_REVISION — Peripheral Component Interconnect

SYNOPSIS
#include <machine/bus.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>

int
pci_activate(pci_chipset_tag_t pc , pcitag_t tag , int reg , void ∗ sc ,

int (∗ wakeup)(pci_chipset_tag_t pc, pcitag_t tag ,
void ∗ sc, pcireg_t reg));

pcireg_t
pci_conf_read(pci_chipset_tag_t pc , pcitag_t tag , int reg);

void
pci_conf_write(pci_chipset_tag_t pc , pcitag_t tag , int reg , pcireg_t val);

void
pci_conf_print(pci_chipset_tag_t pc , pcitag_t tag ,

void (∗ func)(pci_chipset_tag_t, pcitag_t, const pcireg_t ∗));

void
pci_conf_capture(pci_chipset_tag_t pc , pcitag_t tag ,

struct pci_conf_state ∗);

void
pci_conf_restore(pci_chipset_tag_t pc , pcitag_t tag ,

struct pci_conf_state ∗);

int
pci_find_device(struct pci_attach_args ∗ pa ,

int (∗ func)(struct pci_attach_args ∗));

int
pci_get_capability(pci_chipset_tag_t pc , pcitag_t tag , int capid ,

int ∗ offsetp , pcireg_t ∗ valuep);

pcireg_t
pci_mapreg_type(pci_chipset_tag_t pc , pcitag_t tag , int reg);

int
pci_mapreg_map(struct pci_attach_args ∗ pa , int reg , pcireg_t type ,

int busflags , bus_space_tag_t ∗ tagp , bus_space_handle_t ∗ handlep ,
bus_addr_t ∗ basep , bus_size_t ∗ sizep);

int
pci_mapreg_info(pci_chipset_tag_t pc , pcitag_t tag , int reg , pcireg_t type ,

bus_addr_t ∗ basep , bus_size_t ∗ sizep , int ∗ flagsp);

NetBSD 3.0 June 17, 2006 1

PCI (9) NetBSD Kernel Developer’s Manual PCI(9)

int
pci_find_rom(struct pci_attach_args ∗ pa , bus_space_tag_t bst ,

bus_space_handle_t bsh , int code , bus_space_handle_t ∗ handlep ,
bus_space_size_t ∗ sizep);

int
pci_intr_map(struct pci_attach_args ∗ pa , pci_intr_handle_t ∗ ih);

const char ∗
pci_intr_string(pci_chipset_tag_t pc , pci_intr_handle_t ih);

const struct evcnt ∗
pci_intr_evcnt(pci_chipset_tag_t pc , pci_intr_handle_t ih);

void ∗
pci_intr_establish(pci_chipset_tag_t pc , pci_intr_handle_t ih , int level ,

int (∗ handler)(void ∗) , void ∗ arg);

void
pci_intr_disestablish(pci_chipset_tag_t pc , void ∗ ih);

int
pci_set_powerstate(pci_chipset_tag_t pc , pcitag_t tag , pcireg_t newstate);

int
pci_get_powerstate(pci_chipset_tag_t pc , pcitag_t tag , pcireg_t ∗ state);

int
pci_vpd_read(pci_chipset_tag_t pc , pcitag_t tag , int offset , int count ,

pcireg_t ∗ data);

int
pci_vpd_write(pci_chipset_tag_t pc , pcitag_t tag , int offset , int count ,

pcireg_t ∗ data);

pcitag_t
pci_make_tag(pci_chipset_tag_t pc , int bus , int device , int function);

void
pci_decompose_tag(pci_chipset_tag_t pc , pcitag_t tag , int ∗ busp ,

int ∗ devicep , int ∗ functionp);

char ∗
pci_findvendor(pcireg_t id);

void
pci_devinfo(pcireg_t id , pcireg_t class , int show , char ∗ cp , size_t len);

int
PCI_VENDOR(pcireg_t id);

int
PCI_PRODUCT(pcireg_t id);

int
PCI_REVISION(pcireg_t id);

NetBSD 3.0 June 17, 2006 2

PCI (9) NetBSD Kernel Developer’s Manual PCI(9)

DESCRIPTION
The machine-independentPCI subsystem provides support for PCI devices.

The PCI bus was initially developed by Intel in the early 1990’s to replace the ISA bus for interfacing with
their Pentium processor. The PCI specification is widely regarded as well designed, and the PCI bus has
found widespread acceptance in machines ranging from Apple’s PowerPC-based systems to Sun’s Ultra-
SPARC-based machines.

The PCI bus is a multiplexed bus, allowing addresses and data on the same pins for a reduced number of
pins. Datatransfers can be 8-bit, 16-bit or 32-bit.A 64-bit extended PCI bus is also defined.Multi-byte
transfers are little-endian. The PCI bus operates up to 33MHz and any device on the bus can be the bus mas-
ter.

AGP is a version of PCI optimised for high-throughput data rates, particularly for accelerated frame buffers.

The PCI bus is a "plug and play" bus, in the sense that devices can be configured dynamically by software.
The PCI interface chip on a PCI device bus presents a small window of registers into the PCI configuration
space. Theseregisters contain information about the device such as the vendor and a product ID. The con-
figuration registers can also be written to by software to alter how the device interfaces to the PCI bus. An
important register in the configuration space is the Base Address Register (BAR). TheBAR is written to by
software to map the device registers into a window of processor address space.Once this mapping is done,
the device registers can be accessed relative to the base address.

DATA T YPES
Drivers for devices attached to thePCI will make use of the following data types:

pcireg_t
Configuration space register.

pci_chipset_tag_t
Chipset tag for the PCI bus.

pcitag_t
Configuration tag describing the location and function of the PCI device. It contains the tuple
〈bus, device, function〉.

pci_intr_handle_t
The opaque handle describing an established interrupt handler.

struct pci_attach_args
Devices have their identity recorded in this structure. It contains the following members:

bus_space_tag_t pa_iot; / ∗ pci i/o space tag ∗ /
bus_space_tag_t pa_memt; / ∗ pci mem space tag ∗ /
bus_dma_tag_t pa_dmat; / ∗ DMA tag ∗ /
pci_chipset_tag_t pa_pc;
int pa_flags; / ∗ flags ∗ /
pcitag_t pa_tag;
pcireg_t pa_id;
pcireg_t pa_class;

struct pci_conf_state
Stores the PCI configuration state of a device. It contains the following member:

pcireg_t reg[16]; / ∗ pci conf register ∗ /

NetBSD 3.0 June 17, 2006 3

PCI (9) NetBSD Kernel Developer’s Manual PCI(9)

FUNCTIONS
pci_activate(pc , tag , sc , fun)

Attempt to bring the device to state D0. If the device is not in the D0 state callfun to restore its
state. Iffun is NULL then restoring from state D3 is going to fail.

pci_conf_read(pc , tag , reg)
Read from registerreg in PCI configuration space. The argumenttag is the PCI tag for the
current device attached to PCI chipsetpc.

pci_conf_write(pc , tag , reg , val)
Write to registerreg in PCI configuration space. The argumenttag is the PCI tag for the cur-
rent device attached to PCI chipsetpc.

pci_conf_print(pc , tag , func)
Print out most of the registers in the PCI configuration for the device. Theargumenttag is the
PCI tag for the current device attached to PCI chipsetpc. The argumentfunc is a function
called bypci_conf_print() to print the device-dependent registers. Thisfunction is only
useful for driver dev elopment and is usually wrapped in pre-processor declarations.

pci_conf_capture(pc , tag , pcs)
Capture PCI configuration space into structurepcs. The argumenttag is the PCI tag for the
current device attached to the PCI chipsetpc.

pci_conf_restore(pc , tag , pcs)
Restores PCI configuration space from structurepcs. The argumenttag is the PCI tag for the
current device attached to the PCI chipsetpc.

pci_find_device(pa , func)
Find a device using a match function on all probed busses. Theargumentfunc is called by
pci_find_device() to match a device. Theargumentpa is filled in if the device is matched.
pci_find_device() returns 1 if the device is matched, and zero otherwise.This function is
specifically for use by LKMs (seelkm (4)) and its use otherwise is strongly discouraged.

pci_get_capability(pc , tag , capid , offsetp , valuep)
Parse the device capability list in configuration space looking for capabilitycapid. If
offsetp is not NULL, the register offset in configuration space is returned inoffsetp. If
valuep is not NULL, the value of the capability is returned invaluep. The argumenttag is
the PCI tag for the current device attached to PCI chipsetpc. This function returns 1 if the capa-
bility was found. If the capability was not found, it returns zero, andoffsetp andvaluep
remain unchanged.

pci_mapreg_type(pc , tag , reg)
Interrogates the Base Address Register (BAR) in configuration space specified byreg and
returns the default (or current) mapping type.Valid returns values are:

PCI_MAPREG_TYPE_IO
The mapping is to I/O address space.

PCI_MAPREG_TYPE_MEM
The mapping is to memory address space.

PCI_MAPREG_TYPE_MEM| PCI_MAPREG_MEM_TYPE_64BIT
The mapping is to 64-bit memory address space.

PCI_MAPREG_TYPE_ROM
The mapping is to ROM. Note that in the current implementation,
PCI_MAPREG_TYPE_ROM has the same numeric value as
PCI_MAPREG_TYPE_MEM.

NetBSD 3.0 June 17, 2006 4

PCI (9) NetBSD Kernel Developer’s Manual PCI(9)

The argumenttag is the PCI tag for the current device attached to PCI chipsetpc.

pci_mapreg_map(pa , reg , type , busflags , tagp , handlep , basep , sizep)
Maps the register windows for the device into kernel virtual address space. This function is gen-
erally only called during the driver attach step and takes a pointer to thestruct pci_attach_argsin
pa. The physical address of the mapping is in the Base Address Register (BAR) in configuration
space specified byreg. Valid values for the type of mappingtype are:

PCI_MAPREG_TYPE_IO
The mapping should be to I/O address space.

PCI_MAPREG_TYPE_MEM
The mapping should be to memory address space.

PCI_MAPREG_TYPE_ROM
The mapping is to access ROM. This type of mapping is only permitted when the
value forreg is PCI_MAPREG_ROM.

The argumentbusflags are bus-space flags passed tobus_space_map() to perform the
mapping (seebus_space (9)). Thebus-space tag and handle for the mapped register window
are returned intagp andhandlep respectively. The bus-address and size of the mapping are
returned inbasep andsizep respectively. If any of tagp, handlep, basep, or sizep are
NULL thenpci_mapreg_map() does not define their return value. Thisfunction returns zero
on success and non-zero on error.

pci_mapreg_info(pc , tag , reg , type , basep , sizep , flagsp)
Performs the same operations aspci_mapreg_map() but doesn’t actually map the register
window into kernel virtual address space. Returns the bus-address, size and bus flags inbasep,
sizep andflagsp respectively. These return values can be used bybus_space_map() to
actually map the register window into kernel virtual address space.This function is useful for
setting up the registers in configuration space and deferring the mapping to a later time, such as
in a bus-independent attachment routine.pci_mapreg_info returns zero on success and non-
zero on failure.

pci_find_rom(pa , bst , bsh , code , handlep , sizep)
Locates a suitable ROM image within a PCI expansion ROM previously mapped with
pci_mapreg_map() and creates a subregion for it with bus_space_subregion(). The
bst and bsh arguments are the bus tag and handle obtained with the prior call to
pci_mapreg_map(). Valid values for the image typecode are:

PCI_ROM_CODE_TYPE_X86
Find a ROM image containing i386 executable code for use by PC BIOS.

PCI_ROM_CODE_TYPE_OFW
Find a ROM image containing Forth code for use by Open Firmware.

PCI_ROM_CODE_TYPE_HPPA
Find a ROM image containing HP PA/RISC executable code.

The created subregion will cover the entire selected ROM image, including header data.The
handle to this subregion is returned inhandlep. The size of the image (and the corresponding
subregion) is returned insizep. This function can only be used with expansion ROMs located
at thePCI_MAPREG_ROMbase address register (BAR).

pci_intr_map(pa , ih)
Seepci_intr (9).

NetBSD 3.0 June 17, 2006 5

PCI (9) NetBSD Kernel Developer’s Manual PCI(9)

pci_intr_string(pc , ih)
Seepci_intr (9).

pci_intr_evcnt(pc , ih)
Seepci_intr (9).

pci_intr_establish(pc , ih , level , handler , arg)
Seepci_intr (9).

pci_intr_disestablish(pc , ih)
Seepci_intr (9).

pci_set_powerstate(pc , tag , newstate)
Set power state of the device to newstate. Valid values fornewstate are:

PCI_PMCSR_STATE_D0
PCI_PMCSR_STATE_D1
PCI_PMCSR_STATE_D2
PCI_PMCSR_STATE_D3

pci_get_powerstate(pc , tag , state)
Get current power state of the device.

pci_vpd_read(pc , tag , offset , count , data)
Readcount 32-bit words of Vital Product Data for the device starting at offsetoffset into the
buffer pointed to bydata. Returns 0 on success or non-zero if the device has no Vital Product
Data capability or if reading the Vital Product Data fails.

pci_vpd_write(pc , tag , offset , count , data)
Write count 32-bit words of Vital Product Data for the device starting at offsetoffset from
the buffer pointed to bydata. Returns 0 on success or non-zero if the device has no Vital Prod-
uct Data capability of if writing the Vital Product Data fails.

pci_make_tag(pc , bus , device , function)
Create a new PCI tag for the PCI device specified by the tuple〈bus, device, function〉. This func-
tion is not useful to the usual PCI device driver. It is generally used by drivers of multi-function
devices when attaching other PCI device drivers to each function.

pci_decompose_tag(pc , tag , busp , devicep , fnp)
Decompose the PCI tagtag generated bypci_make_tag() into its 〈bus, device, function〉
tuple.

pci_findvendor(id)
Return the string of the vendor name for the device specified byid.

pci_devinfo(id , class , show , cp , len)
Returns the description string from the in-kernel PCI database for the device described byid and
class. The description string is returned incp; the size of that storage is given in len. The
argumentshow specifies whether the PCI subsystem should report the string to the console.

PCI_VENDOR(id)
Return the PCI vendor id for deviceid.

PCI_PRODUCT(id)
Return the PCI product id for deviceid.

PCI_REVISION(id)
Return the PCI product revision for deviceid.

NetBSD 3.0 June 17, 2006 6

PCI (9) NetBSD Kernel Developer’s Manual PCI(9)

AUTOCONFIGURATION
During autoconfiguration, aPCI driver will receive a pointer tostruct pci_attach_args describing
the device attaches to the PCI bus. Drivers match the device using thepa_id member using
PCI_VENDOR(). PCI_PRODUCT() andPCI_REVISION().

During the driver attach step, drivers can read the device configuration space usingpci_conf_read().
The meaning attached to registers in the PCI configuration space are device-dependent, but will usually con-
tain physical addresses of the device register windows. Device options can also be stored into the PCI con-
figuration space usingpci_conf_write(). For example, the driver can request support for bus-mastering
DMA by writing the option to the PCI configuration space.

Device capabilities can be queried usingpci_get_capability(), and returns device-specific informa-
tion which can be found in the PCI configuration space to alter device operation.

After reading the physical addresses of the device register windows from configuration space, these windows
must be mapped into kernel virtual address space usingpci_mapreg_map(). Device registers can now be
accessed using the standard bus-space API (seebus_space (9)).

Details of using PCI interrupts is described inpci_intr (9).

DMA SUPPORT
The PCI bus supports bus-mastering operations from any device on the bus. TheDMA facilities are accessed
through the standardbus_dma(9) interface. To support DMA transfers from the device to the host, it is nec-
essary to enable bus-mastering in the PCI configuration space for the device.

During system shutdown, it is necessary to abort any DMA transfers in progress by registering a shutdown
hook (seeshutdownhook_establish (9)).

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent PCI subsystem can be found. All pathnames are relative to /usr/src .

The PCI subsystem itself is implemented within the filessys/dev/pci/pci.c ,
sys/dev/pci/pci_subr.c , sys/dev/pci/pci_map.c , sys/dev/pci/pci_quirks.c , and
sys/dev/pci/pciconf.c . Machine-dependent portions are implemented within the file
sys/arch/<arch>/pci/pci_machdep.c .

The database of known devices exists within the filesys/dev/pci/pcidevs_data.h and is generated
automatically from the filesys/dev/pci/pcidevs . New vendor and product identifiers should be
added to this file. The database can be regenerated using the Makefile
sys/dev/pci/Makefile.pcidevs .

SEE ALSO
pci (4), autoconf (9), bus_dma(9), bus_space (9), driver (9), pci_configure_bus (9),
pci_intr (9), shutdownhook_establish (9)

HISTORY
The machine-independent PCI subsystem appeared inNetBSD 1.2.

NetBSD 3.0 June 17, 2006 7

PCI_CONFIGURE_BUS (9) NetBSD Kernel Developer’s Manual PCI_CONFIGURE_BUS (9)

NAME
pci_configure_bus, pci_conf_hook, pci_conf_interrupt — perform PCI bus configuration

SYNOPSIS
#include <dev/pci/pciconf.h>

int
pci_configure_bus(pci_chipset_tag_t pc , struct extent ∗ ioext ,

struct extent ∗ memext , struct extent ∗ pmemext , int firstbus ,
int cacheline_size);

DESCRIPTION
Thepci_configure_bus() function configures a PCI bus for use. This involves:

• Defining bus numbers for all busses on the system,

• Setting the Base Address Registers for all devices,

• Setting up the interrupt line register for all devices,

• Configuring bus latency timers for all devices, and

• Configuring cacheline sizes for all devices.

In traditional PCs and Alpha systems, the BIOS or firmware takes care of this task, but that is not the case for
all systems.pci_configure_bus() should be called prior to the autoconfiguration of the bus.

Thepc argument is a machine-dependent tag used to specify the PCI chipset to the system.This should be
the same value used withpci_make_tag(). Theextent arguments define memory extents from which the
address space for the cards will be taken. Theseaddresses should be in the PCI address space.Theioext
extent is for PCI I/O accesses.Thememext extent is for PCI memory accesses that might have side effects.
I.e., that can not be cached.The pmemext extent is for PCI memory accesses that can be cached.The
pmemext extent will be used for any ROMs and any memory regions that are marked as “prefetchable” in
their BAR. If an implementation does not distinguish between prefetchable and non-prefetchable memory, it
may pass NULL forpmemext. In this case, prefetchable memory allocations will be made from the non-
prefetchable region. Thefirstbus argument indicates the number of the first bus to be configured.The
cacheline_size argument is used to configure the PCI Cache Line Size Register; it should be the size,
in bytes, of the largest D-cache line on the system.

An implementation may choose to not have full configuration performed bypci_configure_bus() on
certain PCI devices, such as PCI host bridges or PCI bus analyzers which are instantiated as devices on the
bus. In order for this to take place, the header〈machine/pci_machdep.h 〉 must define the
__HAVE_PCI_CONF_HOOK symbol (without a value), and a machine-dependent function
pci_conf_hook() (declared in the same header) must be defined. The prototype for this function is

int pci_conf_hook(pci_chipset_tag_t pc , int bus , int device , int function ,
pcireg_t id)

In this function,bus, device, and function uniquely identify the item being configured; in addition to
this, the value of the device’s PCI identification register is passed inid. For each device
pci_conf_hook() can then decide upon the amount of configuration to be performed by returning a bit-
wise inclusive-or of the following flags:

PCI_CONF_MAP_IO Configure Base Address Registers that map I/O space

PCI_CONF_MAP_MEM Configure Base Address Registers that map memory space

NetBSD 3.0 February 21, 2006 1

PCI_CONFIGURE_BUS (9) NetBSD Kernel Developer’s Manual PCI_CONFIGURE_BUS (9)

PCI_CONF_MAP_ROM Configure Expansion ROM Base Address register

PCI_CONF_ENABLE_IO Enable I/O space accesses

PCI_CONF_ENABLE_MEMEnable memory space accesses

PCI_CONF_ENABLE_BM Enable bus mastering

In addition,PCI_CONF_ALLspecifies all of the above.

One of the functions ofpci_configure_bus() is to configure interrupt “line” information. This must be
done on a machine-dependent basis, so a machine-dependent functionpci_conf_interrupt() must be
defined. Theprototype for this function is

void pci_conf_interrupt(pci_chipset_tag_t pc , int bus , int device , int pin ,
int swiz , int ∗ iline)

In this function,bus, device, andpin, uniquely identify the item being configured.Theswiz argument
is a “swizzle”, a sum of the device numbers of the primary interface of the bridges between the host bridge
and the current device. Thefunction is responsible for setting the value ofiline. See chapter 9 of the
“PCI-to-PCI Bridge Architecture Specification” for more information on swizzling (also known as interrupt
routing).

RETURN VALUES
If successfulpci_configure_bus() returns 0.A non-zero return value means that the bus was not com-
pletely configured for some reason.A description of the failure will be displayed on the console.

ENVIRONMENT
The pci_configure_bus() function is only included in the kernel if the kernel is compiled with the
PCI_NETBSD_CONFIGUREoption enabled.

EXAMPLES
Thepci_conf_hook() function in evbppc’s walnut implementation looks like:

int
pci_conf_hook(pci_chipset_tag_t pc, int bus, int dev, int func,

pcireg_t id)
{

if ((PCI_VENDOR(id) == PCI_VENDOR_IBM &&
PCI_PRODUCT(id) == PCI_PRODUCT_IBM_405GP) ||

(PCI_VENDOR(id) == PCI_VENDOR_INTEL &&
PCI_PRODUCT(id) == PCI_PRODUCT_INTEL_80960_RP)) {

/ ∗ Don’t configure the bridge and PCI probe. ∗ /
return 0;

}
return (PCI_CONF_ALL & ˜PCI_CONF_MAP_ROM);

}

Thepci_conf_interrupt() function in the sandpoint implementation looks like:

void
pci_conf_interrupt(pci_chipset_tag_t pc, int bus, int dev, int pin,

int swiz, int ∗ iline)
{

if (bus == 0) {
∗ iline = dev;

NetBSD 3.0 February 21, 2006 2

PCI_CONFIGURE_BUS (9) NetBSD Kernel Developer’s Manual PCI_CONFIGURE_BUS (9)

} e lse {
∗ iline = 13 + ((swiz + dev + 3) & 3);

}
}

The BeBox has nearly 1GB of PCI I/O memory starting at processor address 0x81000000 (PCI I/O address
0x01000000), and nearly 1GB of PCI memory starting at 0xC0000000 (PCI memory address 0x00000000).
Thepci_configure_bus() function might be called as follows:

struct extent ∗ ioext, ∗ memext;
...
ioext = extent_create("pciio", 0x01000000, 0x0fffffff, M_DEVBUF,

NULL, 0, EX_NOWAIT);
memext = extent_create("pcimem", 0x00000000, 0x0fffffff, M_DEVBUF,

NULL, 0, EX_NOWAIT);
...
pci_configure_bus(0, ioext, memext, NULL);
...
extent_destroy(ioext);
extent_destroy(memext);
...

Note that this must be called before the PCI bus is attached during autoconfiguration.

SEE ALSO
pci (4), extent (9)

HISTORY
pci_configure_bus() was added inNetBSD 1.6.

NetBSD 3.0 February 21, 2006 3

PCI_INTR (9) NetBSD Kernel Developer’s Manual PCI_INTR(9)

NAME
pci_intr, pci_intr_map, pci_intr_string, pci_intr_establish,
pci_intr_disestablish — PCI bus interrupt manipulation functions

SYNOPSIS
#include <dev/pci/pcivar.h>

int
pci_intr_map(struct pci_attach_args ∗ pa , pci_intr_handle_t ∗ ih);

const char ∗
pci_intr_string(pci_chipset_t ∗ pc , pci_intr_handle_t ih);

void ∗
pci_intr_establish(pci_chipset_t ∗ pc , pci_intr_handle_t ih , int ipl ,

int (∗ intrhand)(void ∗) , void ∗ intrarg);

void
pci_intr_disestablish(pci_chipset_t ∗ pc , void ∗ ih);

DESCRIPTION
The pci_intr functions exist to allow device drivers machine-independent access to PCI bus interrupts.
The functions described in this page are typically declared in a port’s 〈machine/pci_machdep.h 〉
header file; however, drivers should generally include〈dev/pci/pcivar.h 〉 to get other PCI-specific
declarations as well.

Each driver has anattach() function which has a bus-specificattach_args structure. Eachdriver for a
PCI device is passed a pointer to an object of typestruct pci_attach_args which contains, among
other things, information about the location of the device in the PCI bus topology sufficient to allow inter-
rupts from the device to be handled.

If a driver wishes to establish an interrupt handler for the device, it should pass thestruct
pci_attach_args ∗ to thepci_intr_map() function, which returns zero on success, and nonzero on
failure. The function sets thepci_intr_handle_t pointed at by its second argument to a machine-
dependent value which identifies a particular interrupt source.

If the driver wishes to refer to the interrupt source in an attach or error message, it should use the value
returned bypci_intr_string().

Subsequently, when the driver is prepared to receive interrupts, it should callpci_intr_establish() to
actually establish the handler; when the device interrupts,intrhand will be called with a single argument
intrarg, and will run at the interrupt priority level ipl.

The return value of pci_intr_establish() may be saved and passed to
pci_intr_disestablish() to disable the interrupt handler when the driver is no longer interested in
interrupts from the device.

PORTING
A port’s implementation of pci_intr_map() may use the following members ofstruct
pci_attach_args to determine how the device’s interrupts are routed.

pci_chipset_tag_t pa_pc;
pcitag_t pa_tag;
pcitag_t pa_intrtag; / ∗ intr. appears to come from here ∗ /
pci_intr_pin_t pa_intrpin; / ∗ intr. appears on this pin ∗ /
pci_intr_line_t pa_intrline; / ∗ intr. routing information ∗ /
pci_intr_pin_t pa_rawintrpin; / ∗ unswizzled pin ∗ /

NetBSD 3.0 May 19, 2002 1

PCI_INTR (9) NetBSD Kernel Developer’s Manual PCI_INTR(9)

PCI-PCI bridges swizzle (permute) interrupt wiring.Depending on implementation details, it may be more
convenient to use either original or the swizzled interrupt parameters. The original device tag and interrupt
pin can be found inpa_tag andpa_rawintrpin respectively, while the swizzled tag and pin can be
found inpa_intrtag andpa_intrpin.

When a device is attached to a primary bus, both pairs of fields contain the same values. Whena device is
found behind one or more pci-pci bridges,pa_intrpin contains the “swizzled” interrupt pin number,
while pa_rawintrpin contains the original interrupt pin;pa_tag contains the PCI tag of the device
itself, andpa_intrtag contains the PCI tag of the uppermost bridge device.

NetBSD 3.0 May 19, 2002 2

PCKBPORT (9) NetBSDKernel Developer’s Manual PCKBPORT (9)

NAME
pckbport, pckbport_attach, pckbport_attach_slot, pckbport_cnattach,
pckbportintr, pckbport_set_inputhandler, pckbport_flush, pckbport_poll_cmd,
pckbport_enqueue_cmd, pckbport_poll_data, pckbport_set_poll,
pckbport_xt_translation, pckbport_slot_enable — PC keyboard port interface

SYNOPSIS
#include <dev/pckbport/pckbportvar.h>

pckbport_tag_t
pckbport_attach(void ∗ , struct pckbport_accessops const ∗);

struct device ∗
pckbport_attach_slot(struct device ∗ , pckbport_tag_t , pckbport_slot_t);

int
pckbport_cnattach(void ∗ , struct pckbport_accessops const ∗ ,

pckbport_slot_t);

void
pckbportintr(pckbport_tag_t , pckbport_slot_t , int);

void
pckbport_set_inputhandler(pckbport_tag_t , pckbport_slot_t ,

pckbport_inputfcn , void ∗ , char ∗);

void
pckbport_flush(pckbport_tag_t , pckbport_slot_t);

int
pckbport_poll_cmd(pckbport_tag_t , pckbport_slot_t , u_char ∗ , int , int ,

u_char ∗ , int);

int
pckbport_enqueue_cmd(pckbport_tag_t , pckbport_slot_t , u_char ∗ , int , int ,

int , u_char ∗);

int
pckbport_poll_data(pckbport_tag_t , pckbport_slot_t);

void
pckbport_set_poll(pckbport_tag_t , pckbport_slot_t , int);

int
pckbport_xt_translation(pckbport_tag_t , pckbport_slot_t , int);

void
pckbport_slot_enable(pckbport_tag_t , pckbport_slot_t , int);

DESCRIPTION
The machine-independentpckbport subsystem provides an interface layer corresponding to the serial
keyboard and mouse interface used on theIBM PS/2 and many other machines. It interfaces a controller
driver such aspckbc (4) to device drivers such aspckbd (4) andpms(4).

A single controller can have up to two ports (known as “slots”), and these are identified by values of type
pckbport_slot_t. The valuesPCKBPORT_KBD_SLOTand PCKBPORT_AUX_SLOTshould be used
for keyboard and mouse ports respectively. Each controller is identified by an opaque value of type
pckbport_tag_t.

NetBSD 3.0 August 5, 2004 1

PCKBPORT (9) NetBSDKernel Developer’s Manual PCKBPORT (9)

Controller interface
A PC keyboard controller registers itself by callingpckbport_attach(cookie , ops), with ops being
a pointer to astruct pckbport_accessops containing pointers to functions for driving the controller,
which will all be called withcookie as their first argument. pckbport_attach() returns the
pckbport_tag_t assigned to the controller. The controller is then expected to call
pckbport_attach_slot() for each slot with which it is equipped, passing thestruct device ∗
corresponding to the controller. This function returns a pointer to the child device attached to the slot, or
NULL if no such device was attached.

The elements ofstruct pckbport_accessops each take as their first two arguments thecookie
passed topckbport_attach() and the slot in question. The elements are:

int (∗ t_xt_translation)(void ∗ cookie , pckbport_slot_t slot , int on)
If on is non-zero, enable, otherwise disable, AT-to-XT keycode translation on the slot
specified. Returns1 on success, 0 on failure (or if the controller does not support such
translation).

int (∗ t_send_devcmd)(void ∗ cookie , pckbport_slot_t slot , u_char byte)
Send a singlebyte to the device without waiting for completion. Returns 1 on suc-
cess, 0 on failure.

int (∗ t_poll_data1)(void ∗ cookie , pckbport_slot_t slot)
Wait for and return one byte of data from the device, without using interrupts.This
function will only be called after(∗ t_set_poll)() has been used to put the slot in
polling mode. If no data are forthcoming from the device after about 100ms, return −1.

void (∗ t_slot_enable)(void ∗ cookie , pckbport_slot_t slot , int on)
If on is non-zero, enable, otherwise disable, the slot. If a slot is disabled, it can be
powered down, and is not expected to generate any interrupts. Whenfirst attached,
ports should be disabled.

void (∗ t_intr_establish)(void ∗ cookie , pckbport_slot_t slot)
Set up an interrupt handler for the slot. Called when a device gets attached to it.

void (∗ t_set_poll)(void ∗ cookie , pckbport_slot_t slot , int on)
If on is non-zero, enable, otherwise disable, polling mode on the slot. In polling mode,
data received from the device are provided to(∗ t_poll_data1)() and not passed to
pckbportintr(), whether or not interrupts are enabled. In non-polling mode, data
from the device are expected to cause interrupts.The controller interrupt handler
should callpckbportintr(tag , slot , byte) once for eachbyte received from
the device. Whenfirst attached, a port should be in non-polling mode.

Device interface
Devices that attach topckbport controllers do so using the normalautoconf (9) mechanism.Their
(∗ ca_match)() and(∗ ca_attach)() functions get passed astruct pckbport_attach_args
which contains the controller and slot number where the device was found.Device drivers can use the fol-
lowing functions to communicate with the controller. Each takestag andslot arguments to specify the
slot to be acted on.

pckbport_set_inputhandler(tag , slot , fn , arg , name)
Arrange for fn to be called with argumentarg whenever an unsolicited byte is
received from the slot. The function will be called atspltty().

pckbport_flush(tag , slot)
Ensure that there is no pending input from the slot.

NetBSD 3.0 August 5, 2004 2

PCKBPORT (9) NetBSDKernel Developer’s Manual PCKBPORT (9)

pckbport_poll_cmd(tag , slot , cmd , len , responselen , respbuf , slow)
Issue a complete device command,cmd, len bytes long, expecting a response
responselen bytes long, which will be placed inrespbuf. If slow is true, the
command is expected to take over a second to execute. pckbport_poll_cmd() han-
dles getting an acknowledgement from the device and retrying the command if neces-
sary. Returns 0 on success, and an error value on failure. Thisfunction should only be
called during autoconfiguration or when the slot has been placed into polling mode by
pckbport_set_poll().

pckbport_enqueue_cmd(tag , slot , cmd , len , responselen , sync , respbuf)
Issue a complete device command,cmd, len bytes long, expecting a response
responselen bytes long, which will be places inrespbuf. If sync is true,
pckbport_enqueue_cmd() waits for the command to complete before returning,
otherwise it returns immediately. It is not safe to setsync when calling from an inter-
rupt context. The pckbport layer handles getting an acknowledgement from the
device and retrying the command if necessary. Returns 0 on success, and an error value
on failure.

pckbport_poll_data(tag , slot)
Low-level command to poll for a single byte of data from the device, but ignoring bytes
that are part of the response to a command issued through
pckbport_enqueue_command().

pckbport_set_poll(tag , slot , on)
If on is true, enable polling on the slot, otherwise disable it.In polling mode,
pckbport_poll_cmd() can be used to issue commands and
pckbport_poll_data() to read unsolicited data, without enabling interrupts.In
non-polling mode, commands should be issued usingpckbport_enqueue_cmd(),
unsolicited data are handled by the input function, and disabling interrupts will suspend
pckbport operation.

pckbport_xt_translation(tag , slot , on)
Passthrough of(∗ t_xt_translation)() (see above).

pckbport_slot(enable , tag , slot , on)
Passthrough of(∗ t_slot_enable)() (see above).

Console interface
On systems that can attach consoles throughpckbport, the controller’s console attachment function (called
very early in autoconfiguration) callspckbport_cnattach(cookie , ops , slot). Thefirst two argu-
ments are the same as forpckbport_attach(), while the third indicates which slot the console keyboard
is attached to. pckbport_cnattach() either calls pckbd_cnattach(), if it is available, or
pckbport_machdep_cnattach(). The latter allows machine-dependent keyboard drivers to attach
themselves, but it is only called if a device with thepckbport_machdep_cnattach attribute is config-
ured into the system.pckbport_cnattach() returns 0 on success and an error value on failure.
pckbport_machdep_cnattach() is expected to do the same.

CODE REFERENCES
Thepckbport code, and thepckbd (4) andpms(4) device drivers are insys/dev/pckbport .

SEE ALSO
pckbc (4), pckbd (4), pms(4), autoconf (9), spl (9)

NetBSD 3.0 August 5, 2004 3

PCKBPORT (9) NetBSDKernel Developer’s Manual PCKBPORT (9)

HISTORY
The pckbport system appeared inNetBSD 2.0. Beforethat, pckbd (4) andpms(4) attached directly to
pckbc (4) without any sensible way of using a different controller.

NetBSD 3.0 August 5, 2004 4

PCMCIA (9) NetBSD Kernel Developer’s Manual PCMCIA(9)

NAME
PCMCIA pcmcia_function_init, pcmcia_function_enable,
pcmcia_function_disable, pcmcia_io_alloc, pcmcia_io_free, pcmcia_io_map,
pcmcia_io_unmap, pcmcia_mem_alloc, pcmcia_mem_free, pcmcia_mem_map,
pcmcia_mem_unmap, pcmcia_intr_establish, pcmcia_intr_disestablish,
pcmcia_cis_read_1, pcmcia_cis_read_2, pcmcia_cis_read_3, pcmcia_cis_read_4,
pcmcia_cis_read_n, pcmcia_scan_cis — support for PCMCIA PC-Card devices

SYNOPSIS
#include <machine/bus.h>
#include <dev/pcmcia/pcmciareg.h>
#include <dev/pcmcia/pcmciavar.h>
#include <dev/pcmcia/pcmciadevs.h>

void
pcmcia_function_init(struct pcmcia_function ∗ pf ,

struct pcmcia_config_entry ∗ cfe);

int
pcmcia_function_enable(struct pcmcia_function ∗ pf);

void
pcmcia_function_disable(struct pcmcia_function ∗ pf);

int
pcmcia_io_alloc(struct pcmcia_function ∗ pf , bus_addr_t start ,

bus_size_t size , bus_size_t align , struct pcmcia_io_handle ∗ pciop);

void
pcmcia_io_free(struct pcmcia_function ∗ pf , struct pcmcia_io_handle ∗ pcihp);

int
pcmcia_io_map(struct pcmcia_function ∗ pf , int width ,

struct pcmcia_io_handle ∗ pcihp , int ∗ windowp);

void
pcmcia_io_unmap(struct pcmcia_function ∗ pf , int window);

int
pcmcia_mem_alloc(struct pcmcia_function ∗ pf , bus_size_t size ,

struct pcmcia_mem_handle ∗ pcmhp);

void
pcmcia_mem_free(struct pcmcia_function ∗ pf ,

struct pcmcia_mem_handle ∗ pcmhp);

int
pcmcia_mem_map(struct pcmcia_function ∗ pf , int width , bus_addr_t card_addr ,

bus_size_t size , struct pcmcia_mem_handle ∗ pcmhp , bus_size_t ∗ offsetp ,
int ∗ windowp);

void
pcmcia_mem_unmap(struct pcmcia_function ∗ pf , int window);

void ∗
pcmcia_intr_establish(struct pcmcia_function ∗ pf , int level ,

int (∗ handler)(void ∗) , void ∗ arg);

NetBSD 3.0 November 2, 2005 1

PCMCIA (9) NetBSD Kernel Developer’s Manual PCMCIA(9)

void
pcmcia_intr_disestablish(struct pcmcia_function ∗ pf , void ∗ ih);

uint8_t
pcmcia_cis_read_1(struct pcmcia_tuple ∗ tuple , int index);

uint16_t
pcmcia_cis_read_2(struct pcmcia_tuple ∗ tuple , int index);

uint32_t
pcmcia_cis_read_3(struct pcmcia_tuple ∗ tuple , int index);

uint32_t
pcmcia_cis_read_4(struct pcmcia_tuple ∗ tuple , int index);

uint32_t
pcmcia_cis_read_n(struct pcmcia_tuple ∗ tuple , int number , int index);

int
pcmcia_scan_cis(struct device ∗ dev ,

int (∗ func)(struct pcmcia_tuple ∗ , void ∗) , void ∗ arg);

DESCRIPTION
The machine-independentPCMCIA subsystem provides support for PC-Card devices defined by the Personal
Computer Memory Card International Assocation (PCMCIA).The PCMCIA bus supports insertion and
removal of cards while a system is powered-on (ie, dynamic reconfiguration). The socket must be powered-
off when a card is not present.To the user, this appears as though the socket is "hot" during insertion and
removal events.

A PCMCIA controller interfaces the PCMCIA bus with the ISA or PCI busses on the host system. The con-
troller is responsible for detecting and enabling devices and for allocating and mapping resources such as
memory and interrupts to devices on the PCMCIA bus.

Each device has a table called the Card Information Structure (CIS) which contains configuration informa-
tion. Thetuples in the CIS are used by the controller to uniquely identify the device. Additionalinformation
may be present in the CIS, such as the ethernet MAC address, that can be accessed and used within a device
driver.

Devices on the PCMCIA bus are uniquely identified by a 32-bit manufacturer ID and a 32-bit product ID.
Additionally, devices can perform multiple functions (such as ethernet and modem) and these functions are
identified by a function ID.

PCMCIA devices do not support DMA, however memory on the device can be mapped into the address
space of the host.

DATA T YPES
Drivers attached to thePCMCIA bus will make use of the following data types:

struct pcmcia_card
Devices (cards) have their identity recorded in this structure. It contains the following members:

char ∗ cis1_info[4];
int32_t manufacturer;
int32_t product;
uint16_t error;
SIMPLEQ_HEAD(, pcmcia_function) pf_head;

NetBSD 3.0 November 2, 2005 2

PCMCIA (9) NetBSD Kernel Developer’s Manual PCMCIA(9)

struct pcmcia_function
Identifies the function of the devices. A device can have multiple functions. Consider it an
opaque type for identifying a particular function of a device.

struct pcmcia_config_entry
Contains information about the resources requested by the device. It contains the following
members:

int number;
uint32_t flags;
int iftype;
int num_iospace;
u_long iomask;
struct {

u_long length;
u_long start;

} i ospace[4];
uint16_t irqmask;
int num_memspace;
struct {

u_long length;
u_long cardaddr;
u_long hostaddr;

} memspace[2];
int maxtwins;

SIMPLEQ_ENTRY(pcmcia_config_entry) cfe_list;

struct pcmcia_tuple
A handle for identifying an entry in the CIS.

struct pcmcia_io_handle
A handle for mapping and allocating I/O address spaces. It contains the tag and handle for
accessing the bus-space.

struct pcmcia_mem_handle
A handle for mapping and allocating memory address spaces.It contains the tag and handle for
accessing the bus-space.

struct pcmcia_attach_args
A structure used to inform the driver of the device properties.It contains the following members:

int32_t manufacturer;
int32_t product;
struct pcmcia_card ∗ card;
struct pcmcia_function ∗ pf;

FUNCTIONS
pcmcia_function_init(pf , cfe)

Initialise the machine-independentPCMCIA state with the config entrycfe.

pcmcia_function_enable(pf)
Provide power to the socket containing the device specified by device functionpf.

pcmcia_function_disable(pf)
Remove power from the socket containing the device specified by device functionpf.

NetBSD 3.0 November 2, 2005 3

PCMCIA (9) NetBSD Kernel Developer’s Manual PCMCIA(9)

pcmcia_io_alloc(pf , start , size , align , pciop)
Request I/O space for device functionpf at addressstart of sizesize. Alignment is speci-
fied byalign. A handle for the I/O space is returned inpciop.

pcmcia_io_free(pf , pcihp)
Release I/O space with handlepcihp for device functionpf.

pcmcia_io_map(pf , width , pcihp , windowp)
Map device I/O for device functionpf to the I/O space with handlepcihp. The width of data
access is specified bywidth. Valid values for the width are:

PCMCIA_WIDTH_AUTO
Use the largest I/O width reported by the device.

PCMCIA_WIDTH_IO8 Force 8-bit I/O width.

PCMCIA_WIDTH_IO16
Force 16-bit I/O width.

A handle for the mapped I/O window is returned inwindowp.

pcmcia_io_unmap(pf , window)
Unmap the I/O windowwindow for device functionpf.

pcmcia_mem_alloc(pf , size , pcmhp)
Request memory space for device functionpf of sizesize. A handle for the memory space is
returned inpcmhp.

pcmcia_mem_free(pf , pcmhp)
Release memory space with handlepcmhp for device functionpf.

pcmcia_mem_map(pf , width , card_addr , size , pcmhp , offsetp , windowp)
Map device memory for device functionpf to the memory space with handlepcmhp. The
address of the device memory starts atcard_addr and is sizesize. The width of data access
is specified bywidth. Valid values for the width are:

PCMCIA_WIDTH_MEM8
Force 8-bit memory width.

PCMCIA_WIDTH_MEM16
Force 16-bit memory width.

A handle for the mapped memory window is returned inwindowp and a bus-space offset into
the memory window is returned inoffsetp.

pcmcia_mem_unmap(pf , window)
Unmap the memory windowwindow for device functionpf.

pcmcia_intr_establish(pf , level , handler , arg)
Establish an interrupt handler for device functionpf. The priority of the interrupt is specified by
level. When the interrupt occurs the functionhandler is called with argumentarg. The
return value is a handle for the interrupt handler. pcmcia_intr_establish() returns an
opaque handle to an event descriptor if it succeeds, and returns NULL on failure.

pcmcia_intr_disestablish(pf , ih)
Dis-establish the interrupt handler for device functionpf with handleih. The handle was
returned frompcmcia_intr_establish().

NetBSD 3.0 November 2, 2005 4

PCMCIA (9) NetBSD Kernel Developer’s Manual PCMCIA(9)

pcmcia_cis_read_1(tuple , index)
Read one byte from tupletuple at indexindex in the CIS.

pcmcia_cis_read_2(tuple , index)
Read two bytes from tupletuple at indexindex in the CIS.

pcmcia_cis_read_3(tuple , index)
Read three bytes from tupletuple at indexindex in the CIS.

pcmcia_cis_read_4(tuple , index)
Read four bytes from tupletuple at indexindex in the CIS.

pcmcia_cis_read_n(tuple , number , index)
Readn bytes from tupletuple at indexindex in the CIS.

pcmcia_scan_cis(dev , func , arg)
Scan the CIS for device dev. For each tuple in the CIS, functionfunc is called with the tuple
and the argumentarg. func should return 0 if the tuple it was called with is the one it was
looking for, or 1 otherwise.

AUTOCONFIGURATION
During autoconfiguration, aPCMCIA driver will receive a pointer tostruct pcmcia_attach_args
describing the device attached to the PCMCIA bus. Drivers match the device using themanufacturerand
productmembers.

During the driver attach step, drivers will use the pcmcia functionpf. The driver should traverse the list of
config entries searching for a useful configuration. This config entry is passed to
pcmcia_function_init() to initialise the machine-independent interface. I/Oand memory resources
should be initialised usingpcmcia_io_alloc() and pcmcia_mem_alloc() using the specified
resources in the config entry. These resources can then be mapped into processor bus space using
pcmcia_io_map() and pcmcia_mem_map() respectively. Upon successful allocation of resources,
power can be applied to the device withpcmcia_function_enable() so that device-specific interroga-
tion can be performed. Finally, power should be removed from the device using
pcmcia_function_disable().

Since PCMCIA devices support dynamic configuration, drivers should make use of
powerhook_establish(9). Power can be applied and the interrupt handler should be established
through this interface.

DMA SUPPORT
PCMCIA devices do not support DMA.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent PCMCIA subsystem can be found. All pathnames are relative to /usr/src .

The PCMCIA subsystem itself is implemented within the filesys/dev/pcmcia/pcmcia.c . The data-
base of known devices exists within the filesys/dev/pcmcia/pcmciadevs_data.h and is generated
automatically from the filesys/dev/pcmcia/pcmciadevs . New manufacturer and product identifiers
should be added to this file. The database can be regenerated using the Makefile
sys/dev/pcmcia/Makefile.pcmciadevs .

SEE ALSO
pcic (4), pcmcia (4), tcic (4), autoconf (9), bus_dma(9), bus_space (9), driver (9)

NetBSD 3.0 November 2, 2005 5

PCMCIA (9) NetBSD Kernel Developer’s Manual PCMCIA(9)

Personal Computer Memory Card International Association (PCMCIA),PC Card 95 Standard, 1995.

HISTORY
The machine-independent PCMCIA subsystem appeared inNetBSD 1.3.

NetBSD 3.0 November 2, 2005 6

PFIL (9) NetBSD Kernel Developer’s Manual PFIL(9)

NAME
pfil, pfil_head_register, pfil_head_unregister, pfil_head_get, pfil_hook_get,
pfil_add_hook, pfil_remove_hook, pfil_run_hooks — packet filter interface

SYNOPSIS
#include <sys/param.h>
#include <sys/mbuf.h>
#include <net/if.h>
#include <net/pfil.h>

int
pfil_head_register(struct pfil_head ∗ ph);

int
pfil_head_unregister(struct pfil_head ∗ ph);

struct pfil_head ∗
pfil_head_get(int af , u_long dlt);

struct packet_filter_hook ∗
pfil_hook_get(int dir , struct pfil_head ∗ ph);

int
pfil_add_hook(int (∗ func)() , void ∗ arg , int flags , struct pfil_head ∗ ph);

int
pfil_remove_hook(int (∗ func)() , void ∗ arg , int flags , struct pfil_head ∗ ph);

int
(∗ func)(void ∗ arg , struct mbuf ∗∗ mp , struct ifnet ∗ , int dir);

int
pfil_run_hooks(struct pfil_head ∗ ph , struct mbuf ∗∗ mp , struct ifnet ∗ ifp ,

int dir);

DESCRIPTION
Thepfil framework allows for a specified function to be invoked for every incoming or outgoing packet for
a particular network I/O stream. These hooks may be used to implement a firewall or perform packet trans-
formations.

Packet filtering points are registered withpfil_head_register(). Filtering points are identified by a
key (void ∗) and a data link type (int) in thepfil_headstructure. Packet filters use the key and data link type
to look up the filtering point with which they register themselves. Thekey is unique to the filtering point.
The data link type is abpf (4) DLT constant indicating what kind of header is present on the packet at the fil-
tering point. Filtering points may be unregistered with thepfil_head_unregister() function.

Packet filters register/unregister themselves with a filtering point with thepfil_add_hook() and
pfil_remove_hook() functions, respectively. The head is looked up using thepfil_head_get()
function, which takes the key and data link type that the packet filter expects. Filtersmay provide an argu-
ment to be passed to the filter when invoked on a packet.

When a filter is invoked, the packet appears just as if it “came off the wire”. That is, all protocol fields are in
network byte order. The filter is called with its specified argument, the pointer to the pointer to the mbuf
containing the packet, the pointer to the network interface that the packet is traversing, and the direction
(PFIL_IN or PFIL_OUT, see also below) that the packet is traveling. Thefilter may change which mbuf
the mbuf ∗∗ argument references. The filter returns an errno if the packet processing is to stop, or 0 if the
processing is to continue. If the packet processing is to stop, it is the responsibility of the filter to free the

NetBSD 3.0 January 8, 2006 1

PFIL (9) NetBSD Kernel Developer’s Manual PFIL(9)

packet.

The flags parameter, used in thepfil_add_hook() and pfil_remove_hook() functions, indicates
when the filter should be called. The flags are:

PFIL_IN call me on incoming packets
PFIL_OUT call me on outgoing packets
PFIL_ALL call me on all of the above
PFIL_IFADDR call me on interface reconfig (mbuf∗∗ is ioctl #)
PFIL_IFNET call me on interface attach/detach (mbuf ∗∗ is eitherPFIL_IFNET_ATTACH or

PFIL_IFNET_DETACH)
PFIL_WAITOK OK to call malloc with M_WAITOK.

Thepfil interface is enabled in the kernel via thePFIL_HOOKS option.

SEE ALSO
bpf (4)

HISTORY
Thepfil interface first appeared inNetBSD 1.3. Thepfil input and output lists were originally imple-
mented as〈sys/queue.h 〉 LIST structures; however this was changed inNetBSD 1.4 to TAILQ struc-
tures. Thischange was to allow the input and output filters to be processed in reverse order, to allow the
same path to be taken, in or out of the kernel.

The pfil interface was changed in 1.4T to accept a 3rd parameter to bothpfil_add_hook() and
pfil_remove_hook(), introducing the capability of per-protocol filtering. This was done primarily in
order to support filtering of IPv6.

In 1.5K, thepfil framework was changed to work with an arbitrary number of filtering points, as well as be
less IP-centric.

AUTHORS
The pfil interface was designed and implemented by Matthew R. Green, with help from Darren Reed,
Jason R. Thorpe and Charles M. Hannum.Darren Reed added support for IPv6 in addition to IPv4. Jason R.
Thorpe added support for multiple hooks and other clean up.

BUGS
The currentpfil implementation will need changes to suit a threaded kernel model.

NetBSD 3.0 January 8, 2006 2

PHYSIO (9) NetBSD Kernel Developer’s Manual PHYSIO(9)

NAME
physio — initiate I/O on raw devices

SYNOPSIS
int
physio((∗ strategy)(struct buf ∗) , struct buf ∗ bp , dev_t dev , int flags ,

(∗ minphys)(struct buf ∗) , struct uio ∗ uio);

DESCRIPTION
Thephysio() is a helper function typically called from character device read and write routines to start I/O
on a user process buffer. It calls back on the providedstrategy routine one or more times to complete the
transfer described byuio. The maximum amount of data to transfer with each call tostrategy is deter-
mined by theminphys routine. Sinceuio normally describes user space addresses,physio() needs to
lock the appropriate data area into memory before each transaction withstrategy (see
uvm_vslock (9) and uvm_vsunlock (9)). physio() always awaits the completion of the entire
requested transfer before returning, unless an error condition is detected earlier. In all cases, the buffer
passed inbp is locked (marked as “busy”) for the duration of the entire transfer.

A break-down of the arguments follows:

strategy
The device strategy routine to call for each chunk of data to initiate device I/O.

bp The buffer to use with the strategy routine. The buffer flags will have B_BUSY, B_PHYS, and
B_RAWset when passed to the strategy routine. If NULL, a buffer is allocated from a system pool.

dev The device number identifying the device to interact with.

flags Direction of transfer; the only valid settings areB_READor B_WRITE.

minphys
A device specific routine called to determine the maximum transfer size that the device’s strategy
routine can handle.

uio The description of the entire transfer as requested by the user process.Currently, the results of
passing auio structure with the ‘uio_segflg’ set to anything other thanUIO_USERSPACE, are
undefined.

RETURN VALUES
If successfulphysio() returns 0.EFAULTis returned if the address range described byuio is not accessi-
ble by the requesting process.physio() will return any error resulting from calls to the device strategy rou-
tine, by examining theB_ERRORbuffer flag and the ‘b_error’ field.Note that the actual transfer size may be
less than requested byuio if the device signals an “end of file” condition.

SEE ALSO
read (2), write (2)

NetBSD 3.0 June 15, 1996 1

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

NAME
pmap — machine-dependent portion of the virtual memory system

SYNOPSIS
#include <sys/param.h>
#include <uvm/uvm_extern.h>

void
pmap_init(void);

void
pmap_virtual_space(vaddr_t ∗ vstartp , vaddr_t ∗ vendp);

vaddr_t
pmap_steal_memory(vsize_t size , vaddr_t ∗ vstartp , vaddr_t ∗ vendp);

pmap_t
pmap_kernel(void);

pmap_t
pmap_create(void);

void
pmap_destroy(pmap_t pmap);

void
pmap_reference(pmap_t pmap);

void
pmap_fork(pmap_t src_map , pmap_t dst_map);

long
pmap_resident_count(pmap_t pmap);

long
pmap_wired_count(pmap_t pmap);

vaddr_t
pmap_growkernel(vaddr_t maxkvaddr);

int
pmap_enter(pmap_t pmap , vaddr_t va , paddr_t pa , vm_prot_t prot , int flags);

void
pmap_remove(pmap_t pmap , vaddr_t sva , vaddr_t eva);

void
pmap_remove_all(pmap_t pmap);

void
pmap_protect(pmap_t pmap , vaddr_t sva , vaddr_t eva , vm_prot_t prot);

void
pmap_unwire(pmap_t pmap , vaddr_t va);

bool
pmap_extract(pmap_t pmap , vaddr_t va , paddr_t ∗ pap);

void
pmap_kenter_pa(vaddr_t va , paddr_t pa , vm_prot_t prot);

NetBSD 3.0 December 25, 2007 1

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

void
pmap_kremove(vaddr_t va , vsize_t size);

void
pmap_copy(pmap_t dst_map , pmap_t src_map , vaddr_t dst_addr , vsize_t len ,

vaddr_t src_addr);

void
pmap_collect(pmap_t pmap);

void
pmap_update(pmap_t pmap);

void
pmap_activate(struct lwp ∗ l);

void
pmap_deactivate(struct lwp ∗ l);

void
pmap_zero_page(paddr_t pa);

void
pmap_copy_page(paddr_t src , paddr_t dst);

void
pmap_page_protect(struct vm_page ∗ pg , vm_prot_t prot);

bool
pmap_clear_modify(struct vm_page ∗ pg);

bool
pmap_clear_reference(struct vm_page ∗ pg);

bool
pmap_is_modified(struct vm_page ∗ pg);

bool
pmap_is_referenced(struct vm_page ∗ pg);

paddr_t
pmap_phys_address(paddr_t cookie);

vaddr_t
PMAP_MAP_POOLPAGE(paddr_t pa);

paddr_t
PMAP_UNMAP_POOLPAGE(vaddr_t va);

void
PMAP_PREFER(vaddr_t hint , vaddr_t ∗ vap , vsize_t sz , int td);

DESCRIPTION
The pmap module is the machine-dependent portion of theNetBSD virtual memory systemuvm(9). The
purpose of thepmap module is to manage physical address maps, to program the memory management
hardware on the system, and perform any cache operations necessary to ensure correct operation of the vir-
tual memory system.Thepmap module is also responsible for maintaining certain information required by
uvm(9).

NetBSD 3.0 December 25, 2007 2

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

In order to cope with hardware architectures that make the invalidation of virtual address mappings expen-
sive (e.g., TLB invalidations, TLB shootdown operations for multiple processors), thepmap module is
allowed to delay mapping invalidation or protection operations until such time as they are actually necessary.
The functions that are allowed to delay such actions arepmap_enter(), pmap_remove(),
pmap_protect(), pmap_kenter_pa(), andpmap_kremove(). Callersof these functions must use the
pmap_update() function to notify thepmap module that the mappings need to be made correct.Since the
pmap module is provided with information as to which processors are using a given physical map, thepmap
module may use whatever optimizations it has available to reduce the expense of virtual-to-physical mapping
synchronization.

HEADER FILES AND D AT A STRUCTURES
Machine-dependent code must provide the header file〈machine/pmap.h 〉. This file contains the defini-
tion of thepmap structure:

struct pmap {
/ ∗ Contents defined by pmap implementation. ∗ /

};
typedef struct pmap ∗ pmap_t;

This header file may also define other data structures that thepmap implementation uses.

Note that all prototypes forpmap interface functions are provided by the header file〈uvm/uvm_pmap.h 〉.
It is possible to override this behavior by defining the C pre-processor macroPMAP_EXCLUDE_DECLS.
This may be used to add a layer of indirection topmap API calls, for handling different MMU types in a sin-
gle pmap module, for example. If the PMAP_EXCLUDE_DECLSmacro is defined,〈machine/pmap.h 〉
mustprovide function prototypes in a block like so:

#ifdef _KERNEL / ∗ not exposed to user namespace ∗ /
__BEGIN_DECLS / ∗ make safe for C++ ∗ /
/ ∗ Prototypes go here. ∗ /
__END_DECLS
#endif / ∗ _KERNEL ∗ /

The header file〈uvm/uvm_pmap.h 〉 defines a structure for trackingpmap statistics (see below). This
structure is defined as:

struct pmap_statistics {
long resident_count; / ∗ number of mapped pages ∗ /
long wired_count; / ∗ number of wired pages ∗ /

};

WIRED MAPPINGS
Thepmap module is based on the premise that all information contained in the physical maps it manages is
redundant. Thatis, physical map information may be “forgotten” by thepmap module in the event that it is
necessary to do so; it can be rebuilt byuvm(9) by taking a page fault. Thereis one exception to this rule: so-
called “wired” mappings may not be forgotten. Wired mappings are those for which either no high-level
information exists with which to rebuild the mapping, or mappings which are needed by critical sections of
code where taking a page fault is unacceptable.Information about which mappings are wired is provided to
thepmap module when a mapping is established.

MODIFIED/REFERENCED INFORMA TION
Thepmap module is required to keep track of whether or not a page managed by the virtual memory system
has been referenced or modified. This information is used byuvm(9) to determine what happens to the page
when scanned by the pagedaemon.

NetBSD 3.0 December 25, 2007 3

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

Many CPUs provide hardware support for tracking modified/referenced information.However, many CPUs,
particularly modern RISC CPUs, do not.On CPUs which lack hardware support for modified/referenced
tracking, thepmap module must emulate it in software. Thereare several strategies for doing this, and the
best strategy depends on the CPU.

The “referenced” attribute is used by the pagedaemon to determine if a page is “active”. Active pages are not
candidates for re-use in the page replacement algorithm.Accurate referenced information is not required for
correct operation; if supplying referenced information for a page is not feasible, then thepmap implementa-
tion should always consider the “referenced” attribute to befalse .

The “modified” attribute is used by the pagedaemon to determine if a page needs to be cleaned (written to
backing store; swap space, a regular file, etc.). Accurate modified informationmust be provided by the
pmap module for correct operation of the virtual memory system.

Note that modified/referenced information is only tracked for pages managed by the virtual memory system
(i.e., pages for which a vm_page structure exists). In addition, only “managed” mappings of those pages
have modified/referenced tracking. Mappings entered with thepmap_enter() function are “managed”
mappings. Itis possible for “unmanaged” mappings of a page to be created, using thepmap_kenter_pa()
function. Theuse of “unmanaged” mappings should be limited to code which may execute in interrupt con-
text (for example, the kernel memory allocator), or to enter mappings for physical addresses which are not
managed by the virtual memory system. “Unmanaged” mappings may only be entered into the kernel’s vir-
tual address space. This constraint is placed on the callers of thepmap_kenter_pa() and
pmap_kremove() functions so that thepmap implementation need not block interrupts when manipulating
data structures or holding locks.

Also note that the modified/referenced information must be tracked on a per-page basis; they are not
attributes of a mapping, but attributes of a page. Therefore, even after all mappings for a given page have
been removed, the modified/referenced information for that pagemustbe preserved. Theonly time the mod-
ified/referenced attributes may be cleared is when the virtual memory system explicitly calls the
pmap_clear_modify() andpmap_clear_reference() functions. These functions must also change
any internal state necessary to detect the page being modified or referenced again after the modified or refer-
enced state is cleared. (Prior toNetBSD 1.6, pmap implementations could get away without this because
UVM (and Mach VM before that) always calledpmap_page_protect() before clearing the modified or
referenced state, but UVM has been changed to not do this anymore, so allpmap implementations must now
handle this.)

STATISTICS
The pmap is required to keep statistics as to the number of “resident” pages and the number of “wired”
pages.

A “ resident” page is one for which a mapping exists. Thisstatistic is used to compute the resident size of a
process and enforce resource limits. Only pages (whether managed by the virtual memory system or not)
which are mapped into a physical map should be counted in the resident count.

A “ wired” page is one for which a wired mapping exists. Thisstatistic is used to enforce resource limits.

Note that it is recommended (though not required) that thepmap implementation use the
pmap_statistics structure in the tracking ofpmap statistics by placing it inside thepmap structure and
adjusting the counts when mappings are established, changed, or removed. Thisavoids potentially expensive
data structure traversals when the statistics are queried.

REQUIRED FUNCTIONS
This section describes functions that apmap module must provide to the virtual memory system.

NetBSD 3.0 December 25, 2007 4

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

void pmap_init(void)
This function initializes thepmap module. It is called byuvm_init() to initialize any
data structures that the module needs to manage physical maps.

pmap_tpmap_kernel(void)
Return a pointer to thepmap structure that maps the kernel virtual address space.

Note that this function may be provided as a C pre-processor macro.

void pmap_virtual_space(vaddr_t ∗ vstartp , vaddr_t ∗ vendp)
The pmap_virtual_space() function is called to determine the initial kernel virtual
address space beginning and end.These values are used to create the kernel’s virtual mem-
ory map. The function must set∗ vstartp to the first kernel virtual address that will be
managed byuvm(9), and must set∗ vendp to the last kernel virtual address that will be
managed byuvm(9).

If the pmap_growkernel() feature is used by apmap implementation, then∗ vendp
should be set to the maximum kernel virtual address allowed by the implementation.If
pmap_growkernel() is not used, then∗ vendp mustbe set to the maximum kernel vir-
tual address that can be mapped with the resources currently allocated to map the kernel
virtual address space.

pmap_tpmap_create(void)
Create a physical map and return it to the caller. The reference count on the new map is 1.

void pmap_destroy(pmap_t pmap)
Drop the reference count on the specified physical map.If the reference count drops to 0,
all resources associated with the physical map are released and the physical map destroyed.
In the case of a drop-to-0, no mappings will exist in the map.Thepmap implementation
may assert this.

void pmap_reference(pmap_t pmap)
Increment the reference count on the specified physical map.

longpmap_resident_count(pmap_t pmap)
Query the “resident pages” statistic forpmap.

Note that this function may be provided as a C pre-processor macro.

longpmap_wired_count(pmap_t pmap)
Query the “wired pages” statistic forpmap.

Note that this function may be provided as a C pre-processor macro.

int pmap_enter(pmap_t pmap , vaddr_t va , paddr_t pa , vm_prot_t prot , int
flags)
Create a mapping in physical mappmap for the physical addresspa at the virtual address
va with protection specified by bits inprot:

VM_PROT_READ The mapping must allow reading.

VM_PROT_WRITE The mapping must allow writing.

VM_PROT_EXECUTE The page mapped contains instructions that will be
executed by the processor.

The flags argument contains protection bits (the same bits as used in theprot argu-
ment) indicating the type of access that caused the mapping to be created.This informa-
tion may be used to seed modified/referenced information for the page being mapped, pos-
sibly avoiding redundant faults on platforms that track modified/referenced information in

NetBSD 3.0 December 25, 2007 5

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

software. Otherinformation provided byflags:

PMAP_WIRED The mapping being created is a wired mapping.

PMAP_CANFAIL The call topmap_enter() is allowed to fail. If this flag is
not set, and thepmap_enter() call is unable to create the
mapping, perhaps due to insufficient resources, thepmap
module must panic.

The access type provided in theflags argument will never exceed the protection speci-
fied byprot. The pmap implementation may assert this. Note that on systems that do
not provide hardware support for tracking modified/referenced information, modified/refer-
enced information for the pagemustbe seeded with the access type provided inflags if
the PMAP_WIREDflag is set.This is to prevent a fault for the purpose of tracking modi-
fied/referenced information from occurring while the system is in a critical section where a
fault would be unacceptable.

Note thatpmap_enter() is sometimes called to enter a mapping at a virtual address for
which a mapping already exists. Inthis situation, the implementation must take whatever
action is necessary to invalidate the previous mapping before entering the new one.

Also note thatpmap_enter() is sometimes called to change the protection for a pre-exist-
ing mapping, or to change the “wired” attribute for a pre-existing mapping.

Thepmap_enter() function returns 0 on success or an error code indicating the mode of
failure.

void pmap_remove(pmap_t pmap , vaddr_t sva , vaddr_t eva)
Remove mappings from the virtual address rangesva to eva from the specified physical
map.

void pmap_remove_all(pmap_t pmap)
This function is a hint to thepmap implementation that all entries inpmap will be
removed before any more entries are entered.Following this call, there will be
pmap_remove() calls resulting in every mapping being removed, followed by either
pmap_destroy() or pmap_update(). No otherpmap interfaces which take pmap as
an argument will be called during this process.Other interfaces which might need to
accesspmap (such aspmap_page_protect()) are permitted during this process.

Thepmap implementation is free to either remove all thepmap’s mappings immediately in
pmap_remove_all(), or to use the knowledge of the upcomingpmap_remove() calls
to optimize the removals (or to just ignore this call).

void pmap_protect(pmap_t pmap , vaddr_t sva , vaddr_t eva , vm_prot_t prot)
Set the protection of the mappings in the virtual address rangesva to eva in the specified
physical map.

void pmap_unwire(pmap_t pmap , vaddr_t va)
Clear the “wired” attribute on the mapping for virtual addressva.

boolpmap_extract(pmap_t pmap , vaddr_t va , paddr_t ∗ pap)
This function extracts a mapping from the specified physical map. It serves two purposes:
to determine if a mapping exists for the specified virtual address, and to determine what
physical address is mapped at the specified virtual address.Thepmap_extract() should
return the physical address for any kernel-accessible address, including KSEG-style direct-
mapped kernel addresses.

NetBSD 3.0 December 25, 2007 6

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

Thepmap_extract() function returnsfalse if a mapping forva does not exist. Oth-
erwise, it returnstrue and places the physical address mapped atva into ∗ pap if thepap
argument is non-NULL.

void pmap_kenter_pa(vaddr_t va , paddr_t pa , vm_prot_t prot)
Enter an “unmanaged” mapping for physical addresspa at virtual addressva with protec-
tion prot into the kernel physical map. Mappings of this type are always “wired”, and are
unaffected by routines that alter the protection of pages (such as
pmap_page_protect()). Suchmappings are also not included in the gathering of mod-
ified/referenced information about a page.Mappings entered withpmap_kenter_pa()
by machine-independent codemust nothave execute permission, as the data structures
required to track execute permission of a page may not be available to
pmap_kenter_pa(). Machine-independentcode is not allowed to enter a mapping with
pmap_kenter_pa() at a virtual address for which a valid mapping already exists. Map-
pings created withpmap_kenter_pa() may be removed only with a call to
pmap_kremove().

Note thatpmap_kenter_pa() must be safe for use in interrupt context. splvm() blocks
interrupts that might causepmap_kenter_pa() to be called.

void pmap_kremove(vaddr_t va , vsize_t size)
Remove all mappings starting at virtual addressva for size bytes from the kernel physi-
cal map. All mappings that are removed must be the “unmanaged” type created with
pmap_kenter_pa(). Theimplementation may assert this.

void pmap_copy(pmap_t dst_map , pmap_t src_map , vaddr_t dst_addr ,
vsize_t len , vaddr_t src_addr)
This function copies the mappings starting atsrc_addr in src_map for len bytes into
dst_map starting atdst_addr.

Note that while this function is required to be provided by apmap implementation, it is not
actually required to do anything. pmap_copy() is merely advisory (it is used in the
fork (2) path to “pre-fault” the child’s address space).

void pmap_collect(pmap_t pmap)
This function is called just before a process is swapped out to allow thepmap module to
release resources used to map the process’s address space. The implementation may
choose to remove physical mappings in order to free for example page tables back to the
system. Note, however, that wired mappings mustnot be removed when
pmap_collect() is called.

Note that while this function is required to be provided by apmap implementation, it is not
actually required to do anything. pmap_collect() is merely advisory. It is recom-
mended, however, thatpmap_collect() be fully implemented by apmap implementa-
tion.

void pmap_update(pmap_t pmap)
This function is used to inform thepmap module that all physical mappings, for the speci-
fied pmap, must now be correct. Thatis, all delayed virtual-to-physical mappings updates
(such as TLB invalidation or address space identifier updates) must be completed.This
routine must be used after calls topmap_enter(), pmap_remove(),
pmap_protect(), pmap_kenter_pa(), andpmap_kremove() in order to ensure cor-
rect operation of the virtual memory system.

If a pmap implementation does not delay virtual-to-physical mapping updates,
pmap_update() has no operation. In this case, the call may be deleted using a C pre-pro-

NetBSD 3.0 December 25, 2007 7

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

cessor macro in〈machine/pmap.h 〉.

void pmap_activate(struct lwp ∗ l)
Activate the physical map used by the process behind lwp l. This is called by the virtual
memory system when the virtual memory context for a process is changed, and is also
often used by machine-dependent context switch code to program the memory manage-
ment hardware with the process’s page table base, etc. Note thatpmap_activate() may
not always be called whenl is the current lwp. pmap_activate() must be able to han-
dle this scenario.

void pmap_deactivate(struct lwp ∗ l)
Deactivate the physical map used by the process behind lwp l. It is generally used in con-
junction with pmap_activate(). Like pmap_activate(), pmap_deactivate()
may not always be called whenl is the current lwp.

void pmap_zero_page(paddr_t pa)
Zero the PAGE_SIZE sized region starting at physical addresspa. Thepmap implementa-
tion must take whatever steps are necessary to map the page to a kernel-accessible address
and zero the page. It is suggested that implementations use an optimized zeroing algo-
rithm, as the performance of this function directly impacts page fault performance.The
implementation may assume that the region is PAGE_SIZE aligned and exactly
PA GE_SIZE bytes in length.

Note that the cache configuration of the platform should also be considered in the imple-
mentation ofpmap_zero_page(). For example, on systems with a physically-addressed
cache, the cache load caused by zeroing the page will not be wasted, as the zeroing is usu-
ally done on-demand.However, on systems with a virtually-addressed cached, the cache
load caused by zeroing the pagewill be wasted, as the page will be mapped at a virtual
address which is different from that used to zero the page. In the virtually-addressed cache
case, care should also be taken to avoid cache alias problems.

void pmap_copy_page(paddr_t src , paddr_t dst)
Copy the PAGE_SIZE sized region starting at physical addresssrc to the same sized
region starting at physical addressdst. The pmap implementation must take whatever
steps are necessary to map the source and destination pages to a kernel-accessible address
and perform the copy. It is suggested that implementations use an optimized copy algo-
rithm, as the performance of this function directly impacts page fault performance.The
implementation may assume that both regions are PAGE_SIZE aligned and exactly
PA GE_SIZE bytes in length.

The same cache considerations that apply topmap_zero_page() apply to
pmap_copy_page().

void pmap_page_protect(struct vm_page ∗ pg , vm_prot_t prot)
Lower the permissions for all mappings of the pagepg to prot. This function is used by
the virtual memory system to implement copy-on-write (called with VM_PROT_READ set
in prot) and to revoke all mappings when cleaning a page (called with no bits set in
prot). Accesspermissions must never be added to a page as a result of this call.

boolpmap_clear_modify(struct vm_page ∗ pg)
Clear the “modified” attribute on the pagepg.

Thepmap_clear_modify() function returnstrue or false indicating whether or not
the “modified” attribute was set on the page before it was cleared.

NetBSD 3.0 December 25, 2007 8

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

Note that this function may be provided as a C pre-processor macro.

boolpmap_clear_reference(struct vm_page ∗ pg)
Clear the “referenced” attribute on the pagepg.

The pmap_clear_reference() function returnstrue or false indicating whether
or not the “referenced” attribute was set on the page before it was cleared.

Note that this function may be provided as a C pre-processor macro.

boolpmap_is_modified(struct vm_page ∗ pg)
Test whether or not the “modified” attribute is set on pagepg.

Note that this function may be provided as a C pre-processor macro.

boolpmap_is_referenced(struct vm_page ∗ pg)
Test whether or not the “referenced” attribute is set on pagepg.

Note that this function may be provided as a C pre-processor macro.

paddr_tpmap_phys_address(paddr_t cookie)
Convert a cookie returned by a devicemmap() function into a physical address. This func-
tion is provided to accommodate systems which have physical address spaces larger than
can be directly addressed by the platform’spaddr_t type. Theexistence of this function
is highly dubious, and it is expected that this function will be removed from thepmap API
in a future release ofNetBSD.

Note that this function may be provided as a C pre-processor macro.

OPTIONAL FUNCTIONS
This section describes several optional functions in thepmap API.

vaddr_t pmap_steal_memory(vsize_t size , vaddr_t ∗ vstartp , vaddr_t
∗ vendp)
This function is a bootstrap memory allocator, which may be provided as an alternative to
the bootstrap memory allocator used withinuvm(9) itself. It is particularly useful on sys-
tems which provide for example a direct-mapped memory segment. Thisfunction works
by stealing pages from the (to be) managed memory pool, which has already been provided
to uvm(9) in the vm_physmem[] array. The pages are then mapped, or otherwise made
accessible to the kernel, in a machine-dependent way. The memory must be zeroed by
pmap_steal_memory(). Note that memory allocated withpmap_steal_memory()
will never be freed, and mappings made bypmap_steal_memory() must never be
“forgotten”.

Note thatpmap_steal_memory() should not be used as a general-purpose early-startup
memory allocation routine. It is intended to be used only by the
uvm_pageboot_alloc() routine and its supporting routines. If you need to allocate
memory before the virtual memory system is initialized, useuvm_pageboot_alloc().
Seeuvm(9) for more information.

The pmap_steal_memory() function returns the kernel-accessible address of the allo-
cated memory. If no memory can be allocated, or if allocated memory cannot be mapped,
the function must panic.

If the pmap_steal_memory() function uses address space from the range provided to
uvm(9) by the pmap_virtual_space() call, then pmap_steal_memory() must
adjust∗ vstartp and∗ vendp upon return.

NetBSD 3.0 December 25, 2007 9

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

Thepmap_steal_memory() function is enabled by defining the C pre-processor macro
PMAP_STEAL_MEMORYin 〈machine/pmap.h 〉.

vaddr_tpmap_growkernel(vaddr_t maxkvaddr)
Management of the kernel virtual address space is complicated by the fact that it is not
always safe to wait for resources with which to map a kernel virtual address.However, it is
not always desirable to pre-allocate all resources necessary to map the entire kernel virtual
address space.

Thepmap_growkernel() interface is designed to help alleviate this problem. The vir-
tual memory startup code may choose to allocate an initial set of mapping resources (e.g.,
page tables) and set an internal variable indicating how much kernel virtual address space
can be mapped using those initial resources. Then, when the virtual memory system
wishes to map something at an address beyond that initial limit, it calls
pmap_growkernel() to pre-allocate more sources with which to create the mapping.
Note that once additional kernel virtual address space mapping resources have been allo-
cated, they should not be freed; it is likely they will be needed again.

Thepmap_growkernel() function returns the new maximum kernel virtual address that
can be mapped with the resources it has available. If new resources cannot be allocated,
pmap_growkernel() must panic.

The pmap_growkernel() function is enabled by defining the C pre-processor macro
PMAP_GROWKERNELin 〈machine/pmap.h 〉.

void pmap_fork(pmap_t src_map , pmap_t dst_map)
Somepmap implementations may need to keep track of other information not directly
related to the virtual address space.For example, on the i386 port, the Local Descriptor Ta-
ble state of a process is associated with the pmap (this is due to the fact that applications
manipulate the Local Descriptor Table directly expect it to be logically associated with the
virtual memory state of the process).

Thepmap_fork() function is provided as a way to associate information fromsrc_map
with dst_map when a vmspace is forked. pmap_fork() is called from
uvmspace_fork().

The pmap_fork() function is enabled by defining the C pre-processor macro
PMAP_FORKin 〈machine/pmap.h 〉.

vaddr_tPMAP_MAP_POOLPAGE(paddr_t pa)
This function is used by thepool (9) memory pool manager. Pools allocate backing pages
one at a time. This is provided as a means to use hardware features such as a direct-
mapped memory segment to map the pages used by thepool (9) allocator. This can lead
to better performance by e.g. reducing TLB contention.

PMAP_MAP_POOLPAGE() returns the kernel-accessible address of the page being mapped.
It must always succeed.

The use ofPMAP_MAP_POOLPAGE() is enabled by defining it as a C pre-processor macro
in 〈machine/pmap.h 〉. If PMAP_MAP_POOLPAGE() is defined,
PMAP_UNMAP_POOLPAGE() must also be defined.

The following is an example of how to definePMAP_MAP_POOLPAGE():

#define PMAP_MAP_POOLPAGE(pa) MIPS_PHYS_TO_KSEG0((pa))

This takes the physical address of a page and returns the KSEG0 address of that page on a
MIPS processor.

NetBSD 3.0 December 25, 2007 10

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

paddr_tPMAP_UNMAP_POOLPAGE(vaddr_t va)
This function is the inverse ofPMAP_MAP_POOLPAGE().

PMAP_UNMAP_POOLPAGE() returns the physical address of the page corresponding to the
provided kernel-accessible address.

The use ofPMAP_UNMAP_POOLPAGE() is enabled by defining it as a C pre-processor
macro in 〈machine/pmap.h 〉. If PMAP_UNMAP_POOLPAGE() is defined,
PMAP_MAP_POOLPAGE() must also be defined.

The following is an example of how to definePMAP_UNMAP_POOLPAGE():

#define PMAP_UNMAP_POOLPAGE(pa) MIPS_KSEG0_TO_PHYS((va))

This takes the KSEG0 address of a previously-mapped pool page and returns the physical
address of that page on a MIPS processor.

void PMAP_PREFER(vaddr_t hint , vaddr_t ∗ vap , vsize_t sz , int td)
This function is used byuvm_map(9) to adjust a virtual address being allocated in order to
avoid cache alias problems. If necessary, the virtual address pointed byvap will be
advanced.hint is an object offset which will be mapped into the resulting virtual
address, andsz is size of the object.td indicates if the machine dependent pmap uses the
topdown VM.

The use ofPMAP_PREFER() is enabled by defining it as a C pre-processor macro in
〈machine/pmap.h 〉.

void pmap_procwr(struct proc ∗ p , vaddr_t va , vsize_t size)
Synchronize CPU instruction caches of the specified range. The address space is desig-
nated byp. This function is typically used to flush instruction caches after code modifica-
tion.

The use of pmap_procwr() is enabled by defining a C pre-processor macro
PMAP_NEED_PROCWRin 〈machine/pmap.h 〉.

SEE ALSO
uvm(9)

HISTORY
The pmap module was originally part of the design of the virtual memory system in the Mach Operating
System. Thegoal was to provide a clean separation between the machine-independent and the machine-
dependent portions of the virtual memory system, in stark contrast to the original 3BSD virtual memory sys-
tem, which was specific to the VAX.

Between 4.3BSD and 4.4BSD, the Mach virtual memory system, including thepmap API, was ported toBSD
and included in the 4.4BSD release.

NetBSD inherited theBSD version of the Mach virtual memory system.NetBSD 1.4 was the firstNetBSD
release with the new uvm(9) virtual memory system, which included several changes to thepmap API.
Since the introduction ofuvm(9), thepmap API has evolved further.

AUTHORS
The original Mach VAXpmap module was written by Avadis Tevanian, Jr. and
Michael Wayne Young.

Mike Hibler did the integration of the Mach virtual memory system into 4.4BSD and implemented apmap
module for the Motorola 68020+68851/68030/68040.

NetBSD 3.0 December 25, 2007 11

PMAP (9) NetBSD Kernel Developer’s Manual PMAP(9)

Thepmap API as it exists inNetBSD is derived from 4.4BSD, and has been modified by
Chuck Cranor,
Charles M. Hannum,
Chuck Silvers,
Wolfgang Solfrank,
Bill Sommerfeld, and
Jason R. Thorpe.

The author of this document is
Jason R. Thorpe〈thorpej@NetBSD.org〉.

BUGS
The use and definition ofpmap_activate() andpmap_deactivate() needs to be reexamined.

The use ofpmap_copy() needs to be reexamined. Empiricalevidence suggests that performance of the sys-
tem suffers whenpmap_copy() actually performs its defined function. This is largely due to the fact that
the copy of the virtual-to-physical mappings is wasted if the process callsexecve (2) after fork (2). For
this reason, it is recommended thatpmap implementations leave the body of thepmap_copy() function
empty for now.

NetBSD 3.0 December 25, 2007 12

PMATCH (9) NetBSD Kernel Developer’s Manual PMATCH (9)

NAME
pmatch — performs pattern matching on strings

SYNOPSIS
#include <sys/systm.h>

int
pmatch(const char ∗ string , const char ∗ pattern , const char ∗∗ estr);

DESCRIPTION
Extract substring matchingpattern from string. If not NULL, estr points to the end of the longest
exact or substring match.

pmatch() uses the following metacharacters:

? match any single character.

∗ match any character 0 or more times.

[define a range of characters that will match.The range is defined by 2 characters separated by a ‘- ’.
The range definition has to end with a ‘] ’. A ‘ ˆ ’ f ollowing the ‘[’ w ill negate the range.

RETURN VALUES
pmatch() will return 2 for an exact match, 1 for a substring match, 0 for no match and −1 if an error occurs.

NetBSD 3.0 October 12, 2003 1

PMC (9) NetBSD Kernel Developer’s Manual PMC(9)

NAME
pmc, pmc_get_num_counters, pmc_get_counter_type, pmc_save_context,
pmc_restore_context, pmc_enable_counter, pmc_disable_counter,
pmc_counter_isrunning, pmc_counter_isconfigured, pmc_configure_counter,
pmc_get_counter_value, pmc_accumulate, pmc_alloc_kernel_counter,
pmc_free_kernel_counter, pmc_start_profiling, pmc_stop_profiling,
PMC_ENABLED — Hardware Performance Monitoring Interface

SYNOPSIS
#include <sys/pmc.h>

int
pmc_get_num_counters(void);

int
pmc_get_counter_type(int ctr);

void
pmc_save_context(struct lwp ∗ l);

void
pmc_restore_context(struct lwp ∗ l);

int
pmc_enable_counter(struct lwp ∗ l , int ctr);

int
pmc_disable_counter(struct lwp ∗ l , int ctr);

int
pmc_counter_isrunning(struct lwp ∗ l , int ctr);

int
pmc_counter_isconfigured(struct lwp ∗ l , int ctr);

int
pmc_configure_counter(struct lwp ∗ l , int ctr , struct pmc_counter_cfg ∗ cfg);

int
pmc_get_counter_value(struct lwp ∗ l , int ctr , int flags , uint64_t ∗ pval);

int
pmc_accumulate(struct lwp ∗ l_parent , struct lwp ∗ l_exiting);

int
pmc_alloc_kernel_counter(int ctr , struct pmc_counter_cfg ∗ cfg);

int
pmc_free_kernel_counter(int ctr);

int
pmc_start_profiling(int ctr , struct pmc_counter_cfg ∗ cfg);

int
pmc_stop_profiling(int ctr);

int
PMC_ENABLED(struct lwp ∗ l);

NetBSD 3.0 December 20, 2005 1

PMC (9) NetBSD Kernel Developer’s Manual PMC(9)

DESCRIPTION
Provides a machine-independent interface to the hardware performance counters which are available on sev-
eral CPU families. Thecapabilities of these counters vary from CPU to CPU, but they basically count hard-
ware events such as data cache hits or misses, branches taken, branched mispredicted, and so forth.Some
can interrupt the processor when a certain threshold has been reached.Some can count events in user space
and kernel space independently.

Thepmc interface is intended to allow monitoring from within the kernel as well as monitoring of userland
applications. Ifthe hardware can interrupt the CPU in a specific implementation, then it may also be used as
a profiling source instead of the clock.

NOTES
All function calls in this interface may be defined ascpp (1) macros. If any function is not implemented as a
macro, its prototype must be defined by the port-specific header〈machine/pmc.h 〉.

Counters are numbered from 0 toN−1 where N is the number of counters available on the system (see
pmc_get_num_counters() below).

Upon a process fork, implementations must

• Zero performance counters for the new process, and

• Inherit any enabled performance counters.

DATA T YPES
Each implementation must specify two new types:

pmc_evid_t An integer type which can contain the event IDs for a given processor.

pmc_ctr_t An integer type defining the value which may be contained in a given counter register.

Counters are configured with thestruct pmc_counter_cfg. This structure is defined as

struct pmc_counter_cfg {
pmc_evid_t event_id;
pmc_ctr_t reset_value;
uint32_t flags;

};

flags are currently unused.

FUNCTIONS
pmc_get_num_counters(void)

Returns the number of counters present on the current system.Valid values forctr in the interface
entry points below are from zero to one less than the return value from this function.

pmc_get_counter_type(int ctr)
Returns an implementation-dependent type describing the specified counter. If ctr is specified as
−1, returns a machine-dependent type describing the CPU or counter configuration.For example,
on an ia32 architecture, it may distinguish between 586-, 686-, and K7-style counters.

pmc_save_context(struct lwp ∗ l)
Saves the PMC context for the current process.This is called just beforecpu_switch (9). If there
is kernel PMC state, it must be maintained across this call.

NetBSD 3.0 December 20, 2005 2

PMC (9) NetBSD Kernel Developer’s Manual PMC(9)

pmc_restore_context(struct lwp ∗ l)
Restores the PMC context for the current process. This is called just aftercpu_switch (9) returns.
If there is kernel PMC state, it must be maintained across this call.

pmc_enable_counter(struct lwp ∗ l , int ctr)
Enables counterctr for the specified process. The counter should have already been configured
with a call topmc_configure_counter(). This starts the counter running if it is not already
started and enables any interrupts, as appropriate.

pmc_disable_counter(struct lwp ∗ l , int ctr)
Disables counterctr for the specified process. This stops the counter from running, and disables
any interrupts, as appropriate.

pmc_counter_isrunning(struct lwp ∗ l , int ctr)
Returns non-zero if the specified counter in the specified process is running or if the counter is run-
ning in the kernel.

pmc_counter_isconfigured(struct lwp ∗ l , int ctr)
Returns non-zero if the specified counter in the specified process is configured or if the counter is in
use by the kernel.

pmc_configure_counter(struct lwp ∗ l , int ctr , struct pmc_counter_cfg ∗ cfg)
Configures counterctr according to the configuration information stored incfg.

pmc_get_counter_value(struct lwp ∗ l , int ctr , int flags , uint64_t ∗ pval)
Returns the value of counterctr in the space pointed to bypval. The only recognized flag is
PMC_VALUE_FLAGS_CHILDREN which specifies that the returned counts should be accumulated
values for any exited child processes.

pmc_accumulate(struct lwp ∗ l_parent , struct lwp ∗ l_exiting)
Accumulates any counter data from the exiting processp_exiting into the counters for the parent
processp_parent.

pmc_alloc_kernel_counter(int ctr , struct pmc_counter_cfg ∗ cfg)
Allocates counterctr for use by the kernel and configures it withcfg.

pmc_free_kernel_counter(int ctr)
Returns counterctr to the available pool of counters that may be used by processes.

pmc_start_profiling(int ctr , struct pmc_counter_cfg ∗ cfg)
Allocates counterctr for use by the kernel for profiling and configures it withcfg.

pmc_stop_profiling(int ctr)
Stops profiling with counterctr.

PMC_ENABLED(struct lwp ∗ l)
Returns non-zero if the given process or the kernel is using the PMC at all.

SEE ALSO
pmc(1), pmc_control (2), pmc_get_info (2)

NetBSD 3.0 December 20, 2005 3

PMC (9) NetBSD Kernel Developer’s Manual PMC(9)

HISTORY
Thepmc interface appeared inNetBSD 2.0.

AUTHORS
The pmc interface was designed and implemented by Allen Briggs for Wasabi Systems, Inc.Additional
input on thepmc design was provided by Jason R. Thorpe.

NetBSD 3.0 December 20, 2005 4

PMF (9) NetBSD Kernel Developer’s Manual PMF(9)

NAME
PMF, pmf_device_register, pmf_device_deregister, pmf_device_suspend,
pmf_device_resume, pmf_device_recursive_suspend,
pmf_device_recursive_resume, pmf_device_resume_subtree,
pmf_class_network_register, pmf_class_input_register,
pmf_class_display_register, pmf_system_suspend, pmf_system_resume,
pmf_system_shutdown, pmf_event_register, pmf_event_deregister,
pmf_event_inject, pmf_set_platform, pmf_get_platform — power management and inter-
driver messaging framework

SYNOPSIS
#include <sys/device.h>

bool
pmf_device_register(device_t dev , bool (∗ suspend)(device_t dev) ,

bool (∗ resume)(device_t dev));

pmf_device_register1(device_t dev , bool (∗ suspend)(device_t dev) ,
bool (∗ resume)(device_t dev) ,
bool (∗ shutdown)(device_t dev, int how));

void
pmf_device_deregister(device_t dev);

bool
pmf_device_suspend(device_t dev);

bool
pmf_device_resume(device_t dev);

bool
pmf_device_recursive_suspend(device_t dev);

bool
pmf_device_recursive_resume(device_t dev);

bool
pmf_device_resume_subtree(device_t dev);

void
pmf_class_network_register(device_t dev , struct ifnet ∗ ifp);

bool
pmf_class_input_register(device_t dev);

bool
pmf_class_display_register(device_t dev);

bool
pmf_system_suspend(void);

bool
pmf_system_resume(void);

void
pmf_system_shutdown(int);

bool
pmf_event_register(device_t dev , pmf_generic_event_t ev ,

NetBSD 3.0 March 29, 2008 1

PMF (9) NetBSD Kernel Developer’s Manual PMF(9)

void (∗ handler)(device_t dev) , bool global);

void
pmf_event_deregister(device_t dev , pmf_generic_event_t ev ,

void (∗ handler)(device_t dev) , bool global);

bool
pmf_event_inject(device_t dev , pmf_generic_event_t ev);

bool
pmf_set_platform(const char ∗ key , const char ∗ value);

const char ∗
pmf_get_platform(const char ∗ key);

DESCRIPTION
The machine-independentPMF framework provides power management and inter-driver messaging support
for device drivers.

DATA T YPES
Drivers for devices implementingPMF may make use of the following data type:

pmf_generic_event_t
A device driver can register as a listener for specific events, or inject events into the message
queue. Thefollowing message types are defined:

PMFE_DISPLAY_ON
PMFE_DISPLAY_REDUCED
PMFE_DISPLAY_STANDBY
PMFE_DISPLAY_SUSPEND
PMFE_DISPLAY_OFF
PMFE_DISPLAY_BRIGHTNESS_UP
PMFE_DISPLAY_BRIGHTNESS_DOWN
PMFE_AUDIO_VOLUME_DOWN
PMFE_AUDIO_VOLUME_TOGGLE
PMFE_CHASSIS_LID_CLOSE
PMFE_CHASSIS_LID_OPEN

FUNCTIONS
pmf_device_register(dev , suspend , resume)

Register a device with the power management framework. If either suspend or resume is
NULL then it is assumed that device state does not need to be captured and resumed on a power
transition. Bus and class-level power management will still be performed. Returnsfalse if
there was an error.

pmf_device_register1(dev , suspend , resume , shutdown)
Like pmf_device_register, but additionally registers a shutdown handler.

pmf_device_deregister(dev)
Deregister a device with the power management framework.

pmf_device_suspend(dev)
Suspend a device by first calling the class suspend handler, followed by the driver suspend han-
dler, and finally the bus suspend handler.

NetBSD 3.0 March 29, 2008 2

PMF (9) NetBSD Kernel Developer’s Manual PMF(9)

pmf_device_resume(dev)
Resume a device by first calling the bus resume handler, followed by the driver resume handler,
and finally the class resume handler.

pmf_device_recursive_suspend(dev)
As pmf_device_suspend(), but ensures that all child devices ofdev are suspended.

pmf_device_recursive_resume(dev)
As pmf_device_resume(), but ensures that all parent devices ofdev are resumed.

pmf_device_resume_subtree(dev)
As pmf_device_resume(), but ensures that all child devices ofdev are resumed.

pmf_class_network_register(dev , ifp)
Register a device with the power management framework as a network-class device.

pmf_class_input_register(dev)
Register a device with the power management framework as an input-class device.

pmf_class_display_register(dev)
Register a device with the power management framework as a display-class device.

pmf_system_suspend(void)
Suspend all attached devices. Devices are suspended by traversing the autoconfiguration tree
beginning with the leaf nodes. This function will fail if any attached drivers do not support the
power management framework.

pmf_system_resume(void)
Resume all attached devices. Devices are resumed by traversing the autoconfiguration tree begin-
ning with devices that do not have a parent. Thisfunction will fail if any attached drivers do not
support the power management framework.

pmf_system_shutdown(int)
Shutdown all attached devices. Devices are shut down by traversing the autoconfiguration tree
beginning with the leaf nodes. The integer argument is passed to the driver shutdown functions.
It should contain the reboot(2) “howto” argument. Thisfunction ignores the presence of attached
drivers that do not support the power management framework.

pmf_event_register(dev , ev , handler , global)
Register the callbackhandler to be called whenever an ev ev ent is triggered. Ifglobal is
true , handler accepts anonymous events frompmf_event_inject().

pmf_event_deregister(dev , ev , handler , global)
Deregister the callback previously registered withpmf_event_register().

pmf_event_inject(dev , ev)
Inject an inter-driver message into the message queue. Ifdev is NULL, the event is considered to
be anonymous and one or more drivers may handle this event, otherwise the event is delivered
directly to the callback registered bydev.

pmf_set_platform(key , value)
Insert a name-value pair into the platform information database.

pmf_get_platform(key)
Retrieve the value forkey from the platform information database. ReturnsNULL if the key is
not present.

NetBSD 3.0 March 29, 2008 3

PMF (9) NetBSD Kernel Developer’s Manual PMF(9)

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
power management framework can be found. All pathnames are relative to /usr/src .

The power management framework is implemented within the files sys/sys/pmf.h ,
sys/sys/device.h , sys/kern/kern_pmf.c , andsys/kern/subr_autoconf.c .

SEE ALSO
autoconf (9), driver (9)

HISTORY
ThePMF framework appeared inNetBSD 5.0.

AUTHORS
Jared D. McNeill〈 jmcneill@NetBSD.org〉
Joerg Sonnenberger〈 joerg@NetBSD.org〉

NetBSD 3.0 March 29, 2008 4

POOL (9) NetBSD Kernel Developer’s Manual POOL(9)

NAME
pool_init, pool_destroy, pool_get, pool_put, pool_prime, pool_sethiwat,
pool_setlowat — resource-pool manager

SYNOPSIS
#include <sys/pool.h>

void
pool_init(struct pool ∗ pp , size_t size , u_int align , u_int align_offset ,

int flags , const char ∗ wchan , struct pool_allocator ∗ palloc , int ipl);

void
pool_destroy(struct pool ∗ pp);

void ∗
pool_get(struct pool ∗ pp , int flags);

void
pool_put(struct pool ∗ pp , void ∗ item);

int
pool_prime(struct pool ∗ pp , int nitems);

void
pool_sethiwat(struct pool ∗ pp , int n);

void
pool_setlowat(struct pool ∗ pp , int n);

DESCRIPTION
These utility routines provide management of pools of fixed-sized areas of memory. Resource pools set
aside an amount of memory for exclusive use by the resource pool owner. This can be used by applications
to guarantee the availability of a minimum amount of memory needed to continue operation independent of
the memory resources currently available from the system-wide memory allocator (malloc (9)) .

INITIALIZING A POOL
The functionpool_init() initializes a resource pool. The arguments are:

pp The handle identifying the pool resource instance.

size Specifies the size of the memory items managed by the pool.

align Specifies the memory address alignment of the items returned bypool_get().
This argument must be a power of two. If zero, the alignment defaults to an archi-
tecture-specific natural alignment.

align_offset The offset within an item to which thealign parameter applies.

flags Should be set to zero orPR_NOTOUCH. If PR_NOTOUCHis given, free items are
never used to keep internal state so that the pool can be used for non memory
backed objects.

wchan The ‘wait channel’ passed on tocv_wait (9) if pool_get() must wait for items
to be returned to the pool.

palloc Can be set toNULLor pool_allocator_kmem , in which case the default ker-
nel memory allocator will be used. It can also be set to
pool_allocator_nointr when the pool will never be accessed from inter-
rupt context.

NetBSD 3.0 July 25, 2007 1

POOL (9) NetBSD Kernel Developer’s Manual POOL(9)

ipl Specifies an interrupt priority level that will block all interrupt handlers that could
potentially access the pool.

The POOL_INIT() macro can be used to both declare and initialize a resource pool.The POOL_INIT()
macro has the same arguments as thepool_init() function and the resource pool will be initialized auto-
matically during system startup.

DESTROYING A POOL
The functionpool_destroy() destroys a resource pool. It takes a single argumentpp identifying the pool
resource instance.

ALLOCA TING ITEMS FROM A POOL
pool_get() allocates an item from the pool and returns a pointer to it. The arguments are:

pp The handle identifying the pool resource instance.

flags The flags can be used to define behaviour in case the pooled resources are depleted. If no
resources are available and PR_NOWAIT is given, pool_get() returns NULL. If
PR_WAITOKis given and allocation is attempted with no resources available, the function
will sleep until items are returned to the pool. If bothPR_LIMITFAIL andPR_WAITOK
are specified, and the pool has reached its hard limit,pool_get() will return NULLwithout
waiting, allowing the caller to do its own garbage collection; however, it will still wait if the
pool is not yet at its hard limit.

RETURNING ITEMS T O A POOL
pool_put() returns the pool item pointed at byitem to the resource pool identified by the pool handlepp.
If the number of available items in the pool exceeds the maximum pool size set bypool_sethiwat() and
there are no outstanding requests for pool items, the excess items will be returned to the system. The argu-
ments topool_put() are:

pp The handle identifying the pool resource instance.

item A pointer to a pool item previously obtained bypool_get().

PRIMING A POOL
pool_prime() adds items to the pool. Storage space for the items is allocated by using the page allocation
routine specified topool_create().

The arguments topool_prime() are:

pp The handle identifying the pool resource instance.

nitems The number of items to add to the pool.

This function may returnENOMEMin case the requested number of items could not be allocated.Otherwise,
the return value is 0.

SETTING POOL RESOURCE WATERMARKS
A pool will attempt to increase its resource usage to keep up with the demand for its items.Conversely, it
will return unused memory to the system should the number of accumulated unused items in the pool exceed
a programmable limit.The limits for the minimum and maximum number of items which a pool should keep
at hand are known as the high and low watermarks. The functions pool_sethiwat() and
pool_setlowat() set a pool’s high and low watermarks, respectively.

pool_sethiwat()

NetBSD 3.0 July 25, 2007 2

POOL (9) NetBSD Kernel Developer’s Manual POOL(9)

pp The handle identifying the pool resource instance.

n The maximum number of items to keep in the pool.As items are returned and the total num-
ber of pages in the pool is larger than the maximum set by this function, any completely
unused pages are released immediately. If this function is not used to specify a maximum
number of items, the pages will remain associated with the pool until the system runs low on
memory, at which point the VM system will try to reclaim unused pages.

pool_setlowat()

pp The handle identifying the pool resource instance.

n The minimum number of items to keep in the pool. The number pages in the pool will not
decrease below the required value to accommodate the minimum number of items specified
by this function. Unlike pool_prime(), this function does not allocate the necessary
memory up-front.

POTENTIAL PITF ALLS
Note that undefined behaviour results when mixing the storage providing methods supported by the pool
resource routines.

The pool resource code uses a per-pool lock to protect its internal state. If any pool functions are called in an
interrupt context, the caller must block all interrupts that might cause the code to be reentered.Additionally,
the functionspool_init() andpool_destroy() should never be called in interrupt context.

DIAGNOSTICS
Pool usage logs can be enabled by defining the compile-time optionPOOL_DIAGNOSTIC.

CODE REFERENCES
The pool manager is implemented in the filesys/kern/subr_pool.c .

SEE ALSO
free (9), malloc (9), memoryallocators (9), pool_cache (9), uvm(9)

HISTORY
TheNetBSD pool manager appeared inNetBSD 1.4.

NetBSD 3.0 July 25, 2007 3

POOL_CACHE (9) NetBSD Kernel Developer’s Manual POOL_CACHE (9)

NAME
pool_cache, pool_cache_init, pool_cache_destroy, pool_cache_get_paddr,
pool_cache_get, pool_cache_put_paddr, pool_cache_put,
pool_cache_destruct_object, pool_cache_invalidate, pool_cache_sethiwat,
pool_cache_setlowat — resource-pool cache manager

SYNOPSIS
#include <sys/pool.h>

pool_cache_t
pool_cache_init(size_t size , u_int align , u_int align_offset , int flags ,

const char ∗ name , struct pool_allocator ∗ palloc , int ipl ,
int (∗ ctor)(void ∗ , void ∗ , int) , void (∗ dtor)(void ∗ , void ∗) ,
void ∗ arg);

void
pool_cache_destroy(pool_cache_t pc);

void ∗
pool_cache_get_paddr(pool_cache_t pc , int flags , paddr_t ∗ pap);

void ∗
pool_cache_get(pool_cache_t pc , int flags);

void
pool_cache_put_paddr(pool_cache_t pc , void ∗ object , paddr_t pa);

void
pool_cache_put(pool_cache_t pc , void ∗ object);

void
pool_cache_destruct_object(pool_cache_t pc , void ∗ object);

void
pool_cache_invalidate(pool_cache_t pc);

void
pool_cache_sethiwat(pool_cache_t pc , int nitems);

void
pool_cache_setlowat(pool_cache_t pc , int nitems);

DESCRIPTION
These utility routines provide management of pools of fixed-sized areas of memory. Resource pools set
aside an amount of memory for exclusive use by the resource pool owner. This can be used by applications
to guarantee the availability of a minimum amount of memory needed to continue operation independent of
the memory resources currently available from the system-wide memory allocator.

Global and per-CPU caches of constructed objects are maintained. The two lev els of cache work together to
allow for low overhead allocation and release of objects, and improved L1/L2/L3 hardware cache locality in
multiprocessor systems.

FUNCTIONS
pool_cache_init(pc , pp , ctor , dtor , arg)

Allocate and initialize a pool cache. The arguments are:

NetBSD 3.0 Febuary 1, 2008 1

POOL_CACHE (9) NetBSD Kernel Developer’s Manual POOL_CACHE (9)

size

Specifies the size of the memory items managed by the pool.

align

Specifies the memory address alignment of the items returned bypool_cache_get().
This argument must be a power of two. If zero, the alignment defaults to an architecture-
specific natural alignment.

align_offset

The offset within an item to which thealign parameter applies.

flags

Should be set to zero orPR_NOTOUCH. If PR_NOTOUCHis given, free items are never
used to keep internal state so that the pool can be used for non memory backed objects.

name

The name used to identify the object in diagnostic output.

palloc

Should be typically be set to NULL, instructingpool_cache_init() to select an
appropriate back-end allocator. Alternate allocators can be used to partition space from
arbitrary sources. Use of alternate allocators is not documented here as it is not a stable,
endorsed part of the API.

ipl

Specifies an interrupt priority level that will block all interrupt handlers that could poten-
tially access the pool.Thepool_cache facility provides its own synchronization.The
users of any giv en pool_cache need not provide additional synchronization for access
to it.

ctor

Specifies a constructor used to initialize newly allocated objects.If no constructor is
required, specifyNULL.

dtor

Specifies a destructor used to destroy cached objects prior to their release to backing store.
If no destructor is required, specifyNULL.

arg

This value of this argument will be passed to both the constructor and destructor routines.

pool_cache_destroy(pc)

Destroy a pool cache. All other access to the cache must be stopped before this call can be made.
pc.

pool_cache_get_paddr(pc , flags , pap)

Get an object from a pool cachepc. If pap is not NULL, physical address of the object or
POOL_PADDR_INVALIDwill be returned via it.flags will be passed topool_get() func-
tion of the backingpool (9) and the object constructor specified when the pool cache is created
by pool_cache_init().

NetBSD 3.0 Febuary 1, 2008 2

POOL_CACHE (9) NetBSD Kernel Developer’s Manual POOL_CACHE (9)

pool_cache_get(pc , flags)

pool_cache_get() is the same aspool_cache_get_paddr() with NULLpap argument.
It’s implemented as a macro.

pool_cache_put_paddr(pc , object , pa)

Put an objectobject back to the pool cachepc. pa should be physical address of the object
object or POOL_PADDR_INVALID. pp. If the number of available items in the backing
pool exceeds the maximum pool size set bypool_cache_sethiwat() and there are no out-
standing requests for pool items, the excess items will be returned to the system.

pool_cache_put(pc , object)

pool_cache_put() is the same as pool_cache_put_paddr() with
POOL_PADDR_INVALIDpa argument. It’s implemented as a macro.

pool_cache_destruct_object(pc , object)

Force destruction of an objectobject and its release back into the pool.

pool_cache_invalidate(pc)

Invalidate a pool cachepc. Destruct and release all objects in the global cache.Per-CPU caches
will not be invalidated by this call, meaning that it is still possible to allocate "stale" items from
the cache. If relevant, the user must check for this condition when allocating items.

pool_cache_sethiwat(pc , nitems)

A pool will attempt to increase its resource usage to keep up with the demand for its items.Con-
versely, it will return unused memory to the system should the number of accumulated unused
items in the pool exceed a programmable limit. The limits for the minimum and maximum num-
ber of items which a pool should keep at hand are known as the high and lowwatermarks.

The functionpool_cache_sethiwat() sets the backing pool’s high water mark.As items
are returned and the total number of pages in the pool is larger than the maximum set by this
function, any completely unused pages are released immediately. If this function is not used to
specify a maximum number of items, the pages will remain associated with the pool until the sys-
tem runs low on memory, at which point the VM system will try to reclaim unused pages.

pool_cache_setlowat(pc , nitems)

Set the minimum number of items to keep in the pool. The number pages in the pool will not
decrease below the required value to accommodate the minimum number of items specified by
this function.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing the
pool_cache subsystem can be found. All pathnames are relative to /usr/src .

Thepool_cache subsystem is implemented within the filesys/kern/subr_pool.c .

SEE ALSO
intro (9), kmem_alloc (9), kmem_free (9), memoryallocators (9), pool (9)

NetBSD 3.0 Febuary 1, 2008 3

POWERHOOK_ESTABLISH (9) NetBSD Kernel Developer’s Manual POWERHOOK_ESTABLISH (9)

NAME
powerhook_establish, powerhook_disestablish — add or remove a power change hook

SYNOPSIS
void ∗
powerhook_establish(const char ∗ name , void (∗ fn)(int why, void ∗ a) ,

void ∗ arg);

void
powerhook_disestablish(void ∗ cookie);

DESCRIPTION
Thepowerhook_establish() function addsfn of the list of hooks invoked by dopowerhooks (9) at
power change. When invoked, the hook functionfn will be passed the new power state as the first argument
andarg as its second argument.

Thepowerhook_disestablish() function removes the hook described by the opaque pointercookie
from the list of hooks to be invoked at power change. If cookie is invalid, the result of
powerhook_disestablish() is undefined.

Power hooks should be used to perform activities that must happen when the power situation to the computer
changes. Becauseof the environment in which they are run, power hooks cannot rely on many system ser-
vices (including file systems, and timeouts and other interrupt-driven services). Thepower hooks are typi-
cally executed from an interrupt context.

The different reasons for calling the power hooks are: suspend, standby, and resume. The reason is reflected
in the why argument and the values PWR_SOFTSUSPEND, PWR_SUSPEND, PWR_SOFTSTANDBY,
PWR_STANDBY, PWR_SOFTRESUME, and PWR_RESUME. It calls with PWR_SOFTxxx in the normal pri-
ority level while the other callings are protected withsplhigh (9). At suspend the system is going to lose
(almost) all power, standby retains some power (e.g., minimal power to USB devices), and at resume power
is back to normal.

RETURN VALUES
If successful,powerhook_establish() returns an opaque pointer describing the newly-established
power hook. Otherwise, it returns NULL.

SEE ALSO
dopowerhooks (9)

NetBSD 3.0 September 24, 2006 1

PPI (9) NetBSD Kernel Developer’s Manual PPI(9)

NAME
ppi — user-space interface to ppbus parallel port

SYNOPSIS
#include <sys/ioctl.h>
#include <dev/ppbus/ppi.h>
#include <dev/ppbus/ppbus_conf.h>

DESCRIPTION
All I/O on theppi interface is performed usingioctl() calls. Each command takes a singleuint8_t
argument, transferring one byte of data. The following commands are available:

PPIGDATA, PPISDATA
Get and set the contents of the data register.

PPIGSTATUS, PPISSTATUS
Get and set the contents of the status register.

PPIGCTRL, PPISCTRL
Get and set the contents of the control register. The following defines correspond to bits in this
register. Setting a bit in the control register drives the corresponding output low.
STROBE
AUTOFEED
nINIT
SELECTIN
PCD

PPIGEPP, PPISEPP
Get and set the contents of the EPP control register.

PPIGECR, PPISECR
Get and set the contents of the ECP control register.

PPIGFIFO , PPISFIFO
Read and write the ECP FIFO (8-bit operations only).

EXAMPLES
To present the value 0x5a to the data port, drive STROBE low and then high again, the following code frag-
ment can be used:

int fd;
uint8_t val;

val = 0x5a;
ioctl(fd, PPISDATA, &val);
ioctl(fd, PPIGCTRL, &val);
val |= STROBE;
ioctl(fd, PPISCTRL, &val);
val &= ˜STROBE;
ioctl(fd, PPISCTRL, &val);

SEE ALSO
ioctl (2), atppc (4), io (4), ppbus (4), ppi (4)

NetBSD 3.0 December 29, 2003 1

PPI (9) NetBSD Kernel Developer’s Manual PPI(9)

HISTORY
ppi originally appeared inFreeBSD.

AUTHORS
This manual page is based on theFreeBSDppi manual page and was updated for theNetBSD port by Gary
Thorpe.

BUGS
The inverse sense of signals is confusing.

Theioctl() interface is slow, and there is no way (yet) to chain multiple operations together.

The headers required for user applications are not installed as part of the standard system.

NetBSD 3.0 December 29, 2003 2

PPSRATECHECK (9) NetBSD Kernel Developer’s Manual PPSRATECHECK (9)

NAME
ppsratecheck — function to help implement rate-limited actions

SYNOPSIS
#include <sys/time.h>

int
ppsratecheck(struct timeval ∗ lasttime , int ∗ curpps , int maxpps);

DESCRIPTION
Theppsratecheck() function provides easy way to perform packet-per-sec, or event-per-sec, rate limita-
tion. Themotivation for implementingppsratecheck() was to provide a mechanism that could be used
to add rate limitation to network packet output.For certain network packets, we may want to impose rate
limitation, to avoid denial-of-service attack possibilities.

maxpps specifies maximum permitted packets, or events, per second.If ppsratecheck() is called more
thanmaxpps times in a given one second period, the function will return 0, indicating that we exceeded the
limit. If we are below the limit, the function will return 1.If maxpps is set to 0, the function will always
return 0 (no packets/events are permitted) . Neg ativemaxpps indicates that rate limitation is disabled, and
ppsratecheck will always return 1.

curpps andlasttime are used to maintain the number of recent calls.curpps will be incremented
ev ery timeppsratecheck() is called, and will be reset whenever necessary.

SEE ALSO
log (9), printf (9), ratecheck (9), time_second (9)

HISTORY
Theppsratecheck() function appeared inNetBSD 1.5.

NetBSD 3.0 August 3, 2000 1

PREEMPT (9) NetBSD Kernel Developer’s Manual PREEMPT(9)

NAME
preempt, yield — general preempt and yield functions

SYNOPSIS
#include <sys/sched.h>

void
preempt(void);

#include <sys/proc.h>

void
yield(void);

DESCRIPTION
Thepreempt() function puts the current LWP back on the system run queue and performs an involuntary
context switch. The yield() function is mostly same aspreempt(), except that it performs a voluntary
context switch.

These functions drop the kernel lock before switching and re-acquire it before returning.

NetBSD 3.0 July 3, 2007 1

PROP_COPYIN_IOCTL (9) NetBSD Kernel Developer’s Manual PROP_COPYIN_IOCTL (9)

NAME
prop_array_copyin_ioctl, prop_array_copyout_ioctl,
prop_dictionary_copyin_ioctl, prop_dictionary_copyout_ioctl — Copy property
lists to and from kernel space

SYNOPSIS
#include <prop/proplib.h>

int
prop_array_copyin_ioctl(const struct plistref ∗ pref , const u_long cmd ,

prop_array_t ∗ arrayp);

int
prop_array_copyout_ioctl(struct plistref ∗ pref , const u_long cmd ,

prop_array_t array);

int
prop_dictionary_copyin_ioctl(const struct plistref ∗ pref ,

const u_long cmd , prop_dictionary_t ∗ dictp);

int
prop_dictionary_copyout_ioctl(struct plistref ∗ pref , const u_long cmd ,

prop_dictionary_t dict);

DESCRIPTION
The prop_array_copyin_ioctl, prop_array_copyout_ioctl,
prop_dictionary_copyin_ioctl, and prop_dictionary_copyout_ioctl functions imple-
ment the kernel side of a protocol for sending property lists to and from the kernel usingioctl (2).

A kernel ioctl routine receiving or returning a property list will be passed a pointer to astruct
plistref. This structure encapsulates the reference to the property list in externalized form.

RETURN VALUES
If successful, functions return zero. Otherwise, an error number will be returned to indicate the error.

ERRORS
prop_array_copyin_ioctl() andprop_dictionary_copyin_ioctl() will fail if:

[EFAULT] Bad address

[EIO] Input/output error

[ENOMEM] Cannot allocate memory

[ENOTSUP] Not supported

prop_array_copyout_ioctl() andprop_dictionary_copyout_ioctl() will fail if:

[EFAULT] Bad address

[ENOMEM] Cannot allocate memory

[ENOTSUP] Not supported

EXAMPLES
The following (simplified) example demonstrates usingprop_dictionary_copyin_ioctl() and
prop_dictionary_copyout_ioctl() in an ioctl routine:

NetBSD 3.0 October 25, 2006 1

PROP_COPYIN_IOCTL (9) NetBSD Kernel Developer’s Manual PROP_COPYIN_IOCTL (9)

extern prop_dictionary_t fooprops;

int
fooioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp ∗ l)
{

prop_dictionary_t dict, odict;
int error;

switch (cmd) {
case FOOSETPROPS: {

const struct plistref ∗ pref = (const struct plistref ∗) d ata;
error = prop_dictionary_copyin_ioctl(pref, cmd, &dict);
if (error)

return (error);
odict = fooprops;
fooprops = dict;
prop_object_release(odict);
break;

}

case FOOGETPROPS: {
struct plistref ∗ pref = (struct plistref ∗) d ata;
error = prop_dictionary_copyout_ioctl(pref, cmd, fooprops);
break;

}

default:
return (EPASSTHROUGH);

}
return (error);

}

SEE ALSO
prop_array (3), prop_dictionary (3), prop_send_ioctl (3), proplib (3)

HISTORY
Theproplib property container object library first appeared inNetBSD 4.0.

NetBSD 3.0 October 25, 2006 2

PUTTER (9) NetBSD Kernel Developer’s Manual PUTTER(9)

NAME
putter — Pass-to-Userspace Transporter

DESCRIPTION
The putter subsystem is used for request-response handling of userspace components.It currently pro-
vides routines for associating a file descriptor with a subsystem data structure instance and I/O routines.
Users of the facility must fill out the callbacks instruct putter_opsto integrate withputter.

SEE ALSO
pud (4), puffs (4)

BUGS
Under construction. Interfaces may and will change.

NetBSD 3.0 November 21, 2007 1

RADIO (9) NetBSD Kernel Developer’s Manual RADIO(9)

NAME
radio — interface between low and high level radio drivers

DESCRIPTION
The radio device driver is divided into a high level, hardware independent layer, and a low lev el hardware
dependent layer. The interface between these is theradio_hw_ifstructure.

struct radio_hw_if {
int (∗ open)(void ∗ , i nt, int, struct lwp ∗);
int (∗ close)(void ∗ , i nt, int, struct lwp ∗);
int (∗ get_info)(void ∗ , s truct radio_info ∗);
int (∗ set_info)(void ∗ , s truct radio_info ∗);
int (∗ search)(void ∗ , i nt);

};

The high level radio driver attaches to the low lev el driver when the latter callsradio_attach_mi. This call
should be

void
radio_attach_mi(rhwp, hdlp, dev)

struct radio_hw_if ∗ rhwp;
void ∗ hdlp;
struct device ∗ dev;

Theradio_hw_ifstruct is as shown above. Thehdlp argument is a handle to some low lev el data structure.It
is sent as the first argument to all the functions inradio_hw_ifwhen the high level driver calls them. dev is
the device struct for the hardware device.

The fields ofradio_hw_ifare described in some more detail below.

int open (void ∗ , i nt flags, int fmt, struct lwp ∗ p);
Optional.
Is called when the radio device is opened.
Returns 0 on success, otherwise an error code.

int close (void ∗ , i nt flags, int fmt, struct lwp ∗ p);
Optional.
Is called when the radio device is closed.
Returns 0 on success, otherwise an error code.

int get_info (void ∗ , s truct radio_info ∗);
Fill the radio_info struct.
Returns 0 on success, otherwise an error code.

int set_info (void ∗ , s truct radio_info ∗);
Set values from the radio_info struct.
Returns 0 on success, otherwise an error code.

int search (void ∗ , i nt);
Returns 0 on success, otherwise an error code.

SEE ALSO
radio (4)

NetBSD 3.0 December 20, 2005 1

RAS (9) NetBSD Kernel Developer’s Manual RAS(9)

NAME
ras_lookup, ras_fork, ras_purgeall — restartable atomic sequences

SYNOPSIS
#include <sys/types.h>
#include <sys/proc.h>
#include <sys/ras.h>

void ∗
ras_lookup(struct proc ∗ p , void ∗ addr);

int
ras_fork(struct proc ∗ p1 , struct proc ∗ p2);

int
ras_purgeall(struct proc ∗ p);

DESCRIPTION
Restartable atomic sequences are user code sequences which are guaranteed to execute without preemption.
This property is assured by checking the set of restartable atomic sequences registered for a process during
cpu_switch (9). If a process is found to have been preempted during a restartable sequence, then its
execution is rolled-back to the start of the sequence by resetting its program counter saved in its process con-
trol block (PCB).

The RAS functionality is provided by a combination of the machine-independent routines discussed in this
page and a machine-dependent component incpu_switch (9). A port which supports restartable atomic
sequences will define __HAVE_RAS inmachine/types.h for machine-independent code to condition-
ally provide RAS support.

A complicated side-effect of restartable atomic sequences is their interaction with the machine-dependent
ptrace (2) support. Specifically, single-step traps and/or the emulation of single-stepping must carefully
consider the effect on restartable atomic sequences.A general solution is to ignore these traps or disable
them within restartable atomic sequences.

FUNCTIONS
The functions which operate on restartable atomic sequences are:

ras_lookup(p , addr)
This function searches the registered restartable atomic sequences for processp which contain
the user addressaddr. If the addressaddr is found within a RAS, then the restart address of
the RAS is returned, otherwise −1 is returned.

ras_fork(p1 , p2)
This function is used to copy all registered restartable atomic sequences for processp1 to process
p2. It is primarily called fromfork1 (9) when the sequences are inherited from the parent by
the child.

ras_purgeall(p)
This function is used to remove all registered restartable atomic sequences for processp. It is
primarily used to remove all registered restartable atomic sequences for a process during
exec (3) and byrasctl (2).

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
RAS functionality can be found. All pathnames are relative to /usr/src .

NetBSD 3.0 August 12, 2002 1

RAS (9) NetBSD Kernel Developer’s Manual RAS(9)

The RAS framework itself is implemented within the filesys/kern/kern_ras.c . Data structures and
function prototypes for the framework are located insys/sys/ras.h . Machine-dependent portions are
implemented within cpu_switch (9) in the machine-dependent file
sys/arch/<arch>/<arch>/locore.S .

SEE ALSO
rasctl (2), cpu_switch (9), fork1 (9)

HISTORY
The RAS functionality first appeared inNetBSD 2.0.

NetBSD 3.0 August 12, 2002 2

RASOPS (9) NetBSD Kernel Developer’s Manual RASOPS(9)

NAME
rasops, rasops_init, rasops_reconfig — raster display operations

SYNOPSIS
#include <dev/wscons/wsdisplayvar.h>
#include <dev/rasops/rasops.h>

int
rasops_init(struct rasops_info ∗ ri , int wantrows , int wantcols);

int
rasops_reconfig(struct rasops_info ∗ ri , int wantrows , int wantcols);

DESCRIPTION
Therasops subsystem is a set of raster operations forwscons (9).

The primary data type for using the raster operations is therasops_info structure in
dev/rasops/rasops.h :

struct rasops_info {

/ ∗
∗ These must be filled in by the caller
∗ /

int ri_depth; / ∗ depth in bits ∗ /
u_char ∗ ri_bits; / ∗ ptr to bits ∗ /
int ri_width; / ∗ width (pels) ∗ /
int ri_height; / ∗ height (pels) ∗ /
int ri_stride; / ∗ stride in bytes ∗ /

/ ∗
∗ If you want shadow framebuffer support, point ri_hwbits
∗ to the real framebuffer, and ri_bits to the shadow framebuffer
∗ /

u_char ∗ ri_hwbits;

/ ∗
∗ These can optionally be left zeroed out. If you fill ri_font,
∗ but aren’t using wsfont, set ri_wsfcookie to -1.
∗ /

struct wsdisplay_font ∗ ri_font;
int ri_wsfcookie; / ∗ wsfont cookie ∗ /
void ∗ ri_hw; / ∗ driver private data ∗ /
int ri_crow; / ∗ cursor row ∗ /
int ri_ccol; / ∗ cursor column ∗ /
int ri_flg; / ∗ various operational flags ∗ /

/ ∗
∗ These are optional and will default if zero. Meaningless
∗ on depths other than 15, 16, 24 and 32 bits per pel. On
∗ 24 bit displays, ri_{r,g,b}num must be 8.
∗ /

u_char ri_rnum; / ∗ number of bits for red ∗ /
u_char ri_gnum; / ∗ number of bits for green ∗ /

NetBSD 3.0 October 7, 2001 1

RASOPS (9) NetBSD Kernel Developer’s Manual RASOPS(9)

u_char ri_bnum; / ∗ number of bits for blue ∗ /
u_char ri_rpos; / ∗ which bit red starts at ∗ /
u_char ri_gpos; / ∗ which bit green starts at ∗ /
u_char ri_bpos; / ∗ which bit blue starts at ∗ /

/ ∗
∗ These are filled in by rasops_init()
∗ /

int ri_emuwidth; / ∗ width we actually care about ∗ /
int ri_emuheight; / ∗ height we actually care about ∗ /
int ri_emustride; / ∗ bytes per row we actually care about ∗ /
int ri_rows; / ∗ number of rows (characters) ∗ /
int ri_cols; / ∗ number of columns (characters) ∗ /
int ri_delta; / ∗ row delta in bytes ∗ /
int ri_pelbytes; / ∗ bytes per pel (may be zero) ∗ /
int ri_fontscale; / ∗ fontheight ∗ fontstride ∗ /
int ri_xscale; / ∗ fontwidth ∗ pelbytes ∗ /
int ri_yscale; / ∗ fontheight ∗ stride ∗ /
u_char ∗ ri_origbits; / ∗ where screen bits actually start ∗ /
int ri_xorigin; / ∗ where ri_bits begins (x) ∗ /
int ri_yorigin; / ∗ where ri_bits begins (y) ∗ /
int32_t ri_devcmap[16]; / ∗ color -> framebuffer data ∗ /

/ ∗
∗ The emulops you need to use, and the screen caps for wscons
∗ /

struct wsdisplay_emulops ri_ops;
int ri_caps;

/ ∗
∗ Callbacks so we can share some code
∗ /

void (∗ ri_do_cursor)(struct rasops_info ∗);
};

Valid values for theri_flg member are:

RI_FULLCLEAR eraserows() hack to clear full screen
RI_FORCEMONO monochrome output even if we can do color
RI_BSWAP framebuffer endianness doesn’t match CPU
RI_CURSOR cursor is switched on
RI_CLEAR clear display on startup
RI_CENTER center onscreen output
RI_CURSORCLIP cursor is currently clipped
RI_CFGDONE rasops_reconfig() completed successfully

FUNCTIONS
rasops_init(ri , wantrows , wantcols)

Initialise arasops_infodescriptor. The argumentswantrows andwantcols are the number
of rows and columns we’d like. In terms of optimization, fonts that are a multiple of 8 pixels
wide work the best.

NetBSD 3.0 October 7, 2001 2

RASOPS (9) NetBSD Kernel Developer’s Manual RASOPS(9)

rasops_reconfig(ri , wantrows , wantcols)
Reconfigure arasops_infodescriptor because parameters have changed in some way. The argu-
mentswantrows andwantcols are the number of rows and columns we’d like. If calling
rasops_reconfig() to change the font and ri_wsfcookie≥ 0, you must call
wsfont_unlock() on it, and reset it to -1 (or a new, valid cookie).

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
rasops subsystem can be found. All pathnames are relative to /usr/src .

The rasops subsystem is implemented within the directorysys/dev/rasops . Therasops module itself
is implemented within the filesys/dev/rasops/rasops.c .

SEE ALSO
intro (9), wscons (9), wsdisplay (9), wsfont (9)

HISTORY
Therasops subsystem appeared inNetBSD 1.5.

AUTHORS
Therasops subsystem was written by Andrew Doran〈ad@NetBSD.org〉.

NetBSD 3.0 October 7, 2001 3

RATECHECK (9) NetBSD Kernel Developer’s Manual RATECHECK (9)

NAME
ratecheck — function to help implement rate-limited actions

SYNOPSIS
#include <sys/time.h>

int
ratecheck(struct timeval ∗ lasttime , const struct timeval ∗ mininterval);

DESCRIPTION
Theratecheck() function provides a simple time interval check which can be used when implementing
time-based rate-limited actions.If the difference between the current monotonically-increasing system time
(mono_time) and lasttime is less than the value given by the mininterval argument, zero is
returned. Otherwise,lasttime is set to the current time and a non-zero value is returned.

The motivation for implementingratecheck() was to provide a mechanism that could be used to add rate
limiting to diagnostic message output. If printed too often, diagnostic messages can keep the system from
doing useful work. If the repeated messages can be caused by deliberate user action or network events, they
can be exploited to cause denial of system service.

Note that using a very short time interval (less than a second) formininterval defeats the purpose of this
function. (Itdoesn’t take much to flood a 9600 baud serial console with output, for instance.)

EXAMPLES
Here is a simple example of use of theratecheck() function:

/ ∗
∗ The following variables could be global, in a device softc, etc.,
∗ depending on the exact usage.
∗ /

struct timeval drv_lasterr1time; / ∗ time of last err1 message ∗ /
long drv_err1count; / ∗ # of e rr1 errs since last msg ∗ /
struct timeval drv_lasterr2time; / ∗ time of last err2 message ∗ /
long drv_err2count; / ∗ # of e rr2 errs since last msg ∗ /

/ ∗
∗ The following variable will often be global or shared by all
∗ instances of a driver. It should be initialized, so it can be
∗ patched. Allowing it to be set via an option might be nice,
∗ but could lead to an insane proliferation of options.
∗ /

struct timeval drv_errintvl = { 5, 0 }; / ∗ 5 s econds ∗ /

/ ∗ error handling/reporting function ∗ /
void
drv_errhandler(int err1, int err2)
{

/ ∗
∗ Note that you should NOT use the same last-event
∗ time variable for dissimilar messages!
∗ /

if (err1) {
/ ∗ handle err1 condition ∗ /

NetBSD 3.0 February 2, 2000 1

RATECHECK (9) NetBSD Kernel Developer’s Manual RATECHECK (9)

...

drv_err1count++;
if (ratecheck(&drv_lasterr1notice,

&drv_errinterval)) {
printf("drv: %ld err1 errors occurred",

drv_err1count);
drv_err1count = 0;

}
}
if (err2) {

/ ∗ handle err2 condition ∗ /
...

drv_err2count++;
if (ratecheck(&drv_lasterr2notice,

&drv_errinterval)) {
printf("drv: %ld err2 errors occurred",

drv_err2count);
drv_err2count = 0;

}
}

}

SEE ALSO
log (9), ppsratecheck (9), printf (9), time_second (9)

HISTORY
Theratecheck() function appeared inNetBSD 1.5.

BUGS
ratecheck() may not work as expected, ifmininterval is less than the hardware clock interrupt inter-
val (1/hz) .

NetBSD 3.0 February 2, 2000 2

RESETTODR (9) NetBSD Kernel Developer’s Manual RESETTODR (9)

NAME
resettodr — set battery-backed clock from system time

SYNOPSIS
void
resettodr(void);

DESCRIPTION
Theresettodr() function sets the system’s battery-backed clock based on the current system time.

SEE ALSO
clock_secs_to_ymdhms (9), inittodr (9), time_second (9)

NetBSD 3.0 March 2, 2006 1

RND (9) NetBSD Kernel Developer’s Manual RND(9)

NAME
RND, rnd_attach_source, rnd_detach_source, rnd_add_data, rnd_add_uint32 — func-
tions to make a device available for entropy collection

SYNOPSIS
#include <sys/rnd.h>

void
rnd_attach_source(rndsource_element_t ∗ rnd_source , char ∗ devname ,

uint32_t source_type , uint32_t flags);

void
rnd_detach_source(rndsource_element_t ∗ rnd_source);

void
rnd_add_data(rndsource_element_t ∗ rnd_source , void ∗ data , uint32_t len ,

uint32_t entropy);

void
rnd_add_uint32(rndsource_element_t ∗ rnd_source , uint32_t datum);

DESCRIPTION
TheseRND functions make a device available for entropy collection for/dev/random .

Ideally the first argumentrnd_source of these functions gets included in the devices’ entity struct, but any
means to permanently (static) attach one such argument to one incarnation of the device is ok. Do not share
rnd_source structures between two devices.

rnd_attach_source(rndsource_element_t ∗ rnd_source , char ∗ devname , uint32_t
source_type , uint32_t flags)
This function announces the availability of a device for entropy collection. It must be called
before the source struct pointed to byrnd_source is used in any of the following functions.

devname is the name of the device. It is used to print a message (if the kernel is compiled with
‘‘ options RND_VERBOSE’’) and also for status information printed withrndctl (8).

source_type is RND_TYPE_NETfor network devices,RND_TYPE_DISKfor physical disks,
RND_TYPE_TAPEfor a tape drive, and RND_TYPE_TTYfor a tty. RND_TYPE_UNKNOWNis
not to be used as a type. It is used internally to the rnd system.

flags are the logical OR ofRND_FLAG_NO_COLLECT(don’t collect or estimate)
RND_FLAG_NO_ESTIMATE(don’t estimate) to control the default setting for collection and
estimation. Notethat devices of typeRND_TYPE_NETdefault toRND_FLAG_NO_ESTIMATE.

rnd_detach_source(rndsource_element_t ∗ rnd_source)
This function disconnects the device from entropy collection.

rnd_add_uint32(rndsource_element_t ∗ rnd_source , uint32_t datum)
This function adds the value ofdatumto the entropy pool. Noentropy is assumed to be collected
from this value, it merely helps stir the entropy pool. All entropy is gathered from jitter between
the timing of events.

Note that using a constant fordatumdoes not weaken security, but it does not help.Try to use
something that can change, such as an interrupt status register which might have a bit set for
receive ready or transmit ready, or other device status information.

To allow the system to gather the timing information accurately, this call should be placed within
the actual hardware interrupt service routine.Care must be taken to ensure that the interrupt was

NetBSD 3.0 October 20, 1997 1

RND (9) NetBSD Kernel Developer’s Manual RND(9)

actually serviced by the interrupt handler, since on some systems interrupts can be shared.

This function loses nearly all usefulness if it is called from a scheduled software interrupt. If that
is the only way to add the device as an entropy source, don’t.

If it is desired to mix in thedatumand to add in a timestamp, but not to actually estimate entropy
from a source of randomness, passingNULL for rnd_sourceis permitted, and the device does not
need to be attached.

rnd_add_data(rndsource_element_t ∗ rnd_source , void ∗ data , uint32_t len ,
uint32_t entropy)
adds (hopefully) randomdata to the entropy pool. len is the number of bytes indata and
entropy is an "entropy quality" measurement. If every bit of data is known to be random,
entropy is the number of bits indata.

Timing information is also used to add entropy into the system, using inter-event timings.

If it is desired to mix in thedata and to add in a timestamp, but not to actually estimate entropy
from a source of randomness, passingNULL for rnd_sourceis permitted, and the device does not
need to be attached.

FILES
These functions are declared in src/sys/sys/rnd.h and defined in src/sys/dev/rnd.c.

SEE ALSO
rnd (4), rndctl (8)

HISTORY
The random device was introduced inNetBSD 1.3.

AUTHORS
This implementation was written by Michael Graff <explorer@flame.org> using ideas and algorithms gath-
ered from many sources, including the driver written by Ted Ts’o.

BUGS
The only good sources of randomness are quantum mechanical, and most computers avidly avoid having true
sources of randomness included. Don’t expect to surpass "pretty good".

NetBSD 3.0 October 20, 1997 2

RSSADAPT (9) NetBSD Kernel Developer’s Manual RSSADAPT (9)

NAME
rssadapt, ieee80211_rssadapt_choose, ieee80211_rssadapt_input,
ieee80211_rssadapt_lower_rate, ieee80211_rssadapt_raise_rate,
ieee80211_rssadapt_updatestats — rate adaptation based on received signal strength

SYNOPSIS
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_rssadapt.h>

void
ieee80211_rssadapt_input(struct ieee80211com ∗ ic ,

struct ieee80211_node ∗ ni , struct ieee80211_rssadapt ∗ ra , int rssi);

void
ieee80211_rssadapt_lower_rate(struct ieee80211com ∗ ic ,

struct ieee80211_node ∗ ni , struct ieee80211_rssadapt ∗ ra ,
struct ieee80211_rssdesc ∗ id);

void
ieee80211_rssadapt_raise_rate(struct ieee80211com ∗ ic ,

struct ieee80211_rssadapt ∗ ra , struct ieee80211_rssdesc ∗ id);

void
ieee80211_rssadapt_updatestats(struct ieee80211_rssadapt ∗ ra);

int
ieee80211_rssadapt_choose(struct ieee80211_rssadapt ∗ ra ,

struct ieee80211_rateset ∗ rs , struct ieee80211_frame ∗ wh , u_int len ,
int fixed_rate , const char ∗ dvname , int do_not_adapt);

DESCRIPTION
Therssadapt module provides rapid adaptation of transmission data rate to 802.11 device drivers based
on received-signal strength(RSS) . A driver needs only to providerssadapt with indications of RSS and
failure/success of transmissions for each 802.11 client or peer. For each transmit packet, rssadapt
chooses the transmission data rate that offers the best expected throughput, given the packet’s length and des-
tination.

rssadapt models an 802.11 channel very simply(see also theBUGS section) . It assumes that the
packet-error rate(PER) is determined by the signal-to-noise ratio(S/N) at the receiver, the transmission
data rate, and the packet length.The S/N determines the choice of data rate that yields the lowest PER for all
packets of a certain length.

FUNCTIONS
ieee80211_rssadapt_choose(ra , rs , wh , len , fixed_rate , dvname , do_not_adapt)

Choose the transmission data rate for a packet.
ra Ordinarily, the rssadapt state object belonging to the node

which is the packet destination.However, if the destination is a
broadcast/multicast address, thenra belongs to the BSS node,
ic->ic_bss.

rs A l ist of eligible data rates for the node; for example, the rates
negotiated when the node associated with the network.

len The packet length in bytes, including the 802.11 header and frame
check sequence(FCS) .

NetBSD 3.0 March 23, 2004 1

RSSADAPT (9) NetBSD Kernel Developer’s Manual RSSADAPT (9)

fixed_rate If the operator has set the data rate using, for example,
ifconfig wi0 media ds1, then fixed_rate tells the
index of that rate inrs. rssadapt obeys a fixed data rate
whenever the 802.11 standard allows it: sometimes the standard
requires multicast/broadcast packets to be transmitted at a so-
called “basic rate”.

dvname The device driver usesdvname to indicate the name of the inter-
face for the purpose of diagnostic and debug messages.The
driver setsdvname to NULLwhen no messages are desired.

do_not_adapt If do_not_adapt is non-zero, then
ieee80211_rssadapt_choose() will choose the highest
rate inrs that suits the destination, regardless of the RSS.

The return value ofieee80211_rssadapt_choose() is an index into rs, indi-
cating its choice of transmit data rate.

ieee80211_rssadapt_input(ic , ni , ra , rssi)
The RSS serves as a rough estimate of the S/N at each node.A driver provides RSS
updates usingieee80211_rssadapt_input(), whose arguments are:
ic The wireless interface’s 802.11 state object.
ni The 802.11 node whose RSS the driver is updating.
ra The node’srssadapt state object.
rssi The node’s received signal strength indication.The range ofrssi is from 0

to 255.
ieee80211_rssadapt_lower_rate(ic , ni , ra , id)
ieee80211_rssadapt_raise_rate(ic , ra , id)

Drivers call ieee80211_rssadapt_raise_rate() and
ieee80211_rssadapt_lower_rate() to indicate transmit successes and fail-
ures, respectively.
ic The 802.11 state object.
ni The neighbor to whom the driver transmitted.
ra The neighbor’srssadapt state object.
id DIsplays statistics on the transmission attempt.

ieee80211_rssadapt_updatestats(ra)
An 802.11 node is eligible for its RSS thresholds to decay every 1/10 to 10 seconds.
It is eligible more often (every 1/10 second) at high packet rates, and less often (every
10 seconds) at low packet rates.A driver assistsrssadapt in tracking the expo-
nential-average packet rate by callingieee80211_rssadapt_updatestats()
ev ery 1/10th second for each node’sieee80211_rssadapt object.
ra The neighbor’srssadapt state object.

ALGORITHM
rssadapt monitors the RSS from neighboring 802.11 nodes, recording the exponential average RSS in
each neighbor’s ieee80211_rssadapt structure. rssadapt uses transmit success/failure feedback
from the device driver to fill a table of RSS thresholds. The table is indexed by packet size,L, and a data
rate,R, to find out the minimum exponential-average RSS that a node must show beforerssadapt will
indicate that a packet L bytes long can be transmitted R bits per second with optimal expected throughput.
When the driver indicates a unicast packet is transmitted unsuccessfully(that is, the NIC received no ACK
for the packet) , rssadapt will move the corresponding RSS threshold toward the exponential average
RSSI at the time of transmission. Thus several consecutive transmit failures for the same〈L, R〉 tuple will
ensure that the RSS threshold rises high enough that rateR is abandoned for packetsL bytes long. When the
driver indicates a successful transmission, the RSS threshold corresponding to the same packet length, but
the next higher data rate, is lowered slightly. The RSS threshold is said to “decay”. This ensures that occa-
sionally rssadapt indicates the driver should try the next higher data rate, just in case conditions at the

NetBSD 3.0 March 23, 2004 2

RSSADAPT (9) NetBSD Kernel Developer’s Manual RSSADAPT (9)

receiver hav echanged (for example, noise levels have fallen) and a higher data rate can be supported at the
same RSS level.

The rate of decay is controlled. In an interval of 1/10th second to 10 seconds, only one RSS threshold per
neighbor may decay. The interval is connected to the exponential-average rate that packets are being trans-
mitted. Athigh packet rates, the interval is shortest. It is longest at low packet rates. The rationale for this is
that RSS thresholds should not decay rapidly if there is no information from packet transmissions to counter-
act their decay.

DATA STRUCTURES
An ieee80211_rssdesc describes a transmission attempt.

struct ieee80211_rssdesc {
u_int id_len;
u_int id_rateidx;
struct ieee80211_node ∗ id_node;
u_int8_t id_rssi;

};

id_len is the length, in bytes, of the transmitted packet. id_node points to the neighbor’s
ieee8021_node, and id_rssi is the exponential-average RSS at the time the packet was transmitted.
id_rateidx is an index into the destination-neighbor’s rate-set,id_node->ni_rates, indicating the
transmit data rate for the packet.

An ieee80211_rssadapt contains the rate-adaptation state for a neighboring 802.11 node.Ordinarily a
driver will “subclass” ieee80211_node. The ieee80211_rssadapt structure will be a subclass
member. In this way, every node’s rssadapt condition is independently tracked and stored in its node
object.

struct ieee80211_rssadapt {
u_int16_t ra_avg_rssi;
u_int32_t ra_nfail;
u_int32_t ra_nok;
u_int32_t ra_pktrate;
u_int16_t ra_rate_thresh[IEEE80211_RSSADAPT_BKTS]

[IEEE80211_RATE_SIZE];
struct timeval ra_last_raise;
struct timeval ra_raise_interval;

};

ra_avg_rssi is the exponential-average RSS, shifted left 8 bits.ra_nfail tells the number of transmit
failures in the current update interval. ra_nok tells the number of transmit successes in the current update
interval. ra_pktrate tells the exponential average number of transmit failure/success indications over
past update intervals. Thisapproximates the rate of packet-transmission.ra_rate_thresh contains RSS
thresholds that are indexed by 〈packet length, data rate〉 tuples. Whenthis node’s exponential-average RSS
exceedsra_rate_thresh[i][j], then packets at most 128 x 8ˆi bytes long are eligible to be transmit-
ted at the rate indexed by j. ra_last_raise andra_raise_interval are used to control the rate
that RSS thresholds “decay”. ra_last_raise indicates when
ieee80211_rssadapt_raise_rate() was last called.ra_raise_interval tells the minimum
period between consecutive calls to ieee80211_rssadapt_raise_rate(). If
ieee80211_rssadapt_raise_rate() is called more than once in any period, the second and subse-
quent calls are ignored.

NetBSD 3.0 March 23, 2004 3

RSSADAPT (9) NetBSD Kernel Developer’s Manual RSSADAPT (9)

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using
rssadapt can be found. All pathnames are relative to /usr/src .

The code forrssadapt is in the filesys/net80211/ieee80211_rssadapt.c .

wi (4) contains a reference implementation. Seesys/dev/ic/wi.c .

SEE ALSO
wi (4)

Javier del Prado Pavon and Sunghyun Choi, "Link Adaptation Strategy for IEEE 802.11 WLAN via
Received Signal Strength Measurement",ICC’03, pp. 1108-1113, May 2003.

HISTORY
rssadapt first appeared inNetBSD 3.0.

AUTHORS
David Young〈dyoung@NetBSD.org〉

BUGS
To cope with interference from microwave ovens, frequency-hopping radios, and other sources of RF pulse-
trains and bursts,rssadapt should adapt the fragmentation threshold as well as the data rate.

For improved throughput,rssadapt should indicate to drivers when they should use the 802.11b short-pre-
amble.

The constants inieee80211_rssadapt_updatestats() should be configurable.

NetBSD 3.0 March 23, 2004 4

RT_TIMER (9) NetBSD Kernel Developer’s Manual RT_TIMER (9)

NAME
rt_timer, rt_timer_add, rt_timer_queue_create, rt_timer_queue_change,
rt_timer_queue_destroy, rt_timer_remove_all — route callout functions

SYNOPSIS
#include <net/route.h>

struct rttimer_queue ∗
rt_timer_queue_create(time_t timeout);

void
rt_timer_queue_change(struct rttimer_queue ∗ q , time_t timeout);

void
rt_timer_queue_destroy(struct rttimer_queue ∗ q , int destroy);

int
rt_timer_add(struct rtentry ∗ rt ,

void(∗ f)(struct rtentry ∗ , struct rttimer ∗) ,
struct rttimer_queue ∗ q);

void
rt_timer_remove_all(struct rtentry ∗ rt);

DESCRIPTION
Thert_timer functions provide a generic route callout functionality. They allow a function to be called
for a route at any time. Thiswas originally intended to be used to remove routes added by path MTU discov-
ery code.

For maximum efficiency, a separate queue should be defined for each timeout period.For example, one
queue should be created for the 10 minute path MTU discovery timeouts, another for 20 minute ARP time-
outs after 20 minutes, and so on.This permits extremely fast queue manipulations so that the timeout func-
tions remain scalable, even in the face of thousands of route manipulations per minute.

It is possible to create only a single timeout queue for all possible timeout values, but doing so is not scalable
as queue manipulations become quite expensive if the timeout deltas are not roughly constant.

Thert_timer interface provides the following functions:

rt_timer_queue_create(time_t timeout)
This function creates a new timer queue with the specified timeout periodtimeout, expressed
in seconds.

rt_timer_queue_change(rttimer_queue ∗ q , time_t timeout)
This function modifies the timeout period for a timer queue.Any value, including 0, is valid.
The next time the timer queue’s timeout expires (based on the previous timeout value), all entries
which are valid to execute based on the new timeout will be executed, and the new timeout period
scheduled.

rt_timer_queue_destroy(rttimer_queue ∗ q , int destroy)
This function destroys a timeout queue. All entries are removed, and if thedestroy argument
is non-zero, the timeout action is performed for each entry.

rt_timer_add(struct rtentry ∗ rt , void(∗ f)(struct rtentry ∗ , struct rttimer
∗) , struct rttimer_queue ∗ q)
This function adds an entry to a timeout queue.The functionf will be called after the timeout
period for queueq has elapsed.If f is NULL the route will be deleted when the timeout expires.

NetBSD 3.0 April 23, 1998 1

RT_TIMER (9) NetBSD Kernel Developer’s Manual RT_TIMER (9)

rt_timer_remove_all(struct rtentry ∗ rt)
This function removes all references to the given route from thert_timer subsystem. Thisis
used when a route is deleted to ensure that no dangling references remain.

SEE ALSO
netstat (1), arp (9)

AUTHORS
This interface is roughly based on (but, alas, not compatible with) one designed by David Borman of BSDI.
This implementation is by Kevin Lahey of the Numerical Aerospace Simulation Facility, NASA Ames
Research Center.

CODE REFERENCES
Thert_timer interface is implemented insys/net/route.h andsys/net/route.c .

HISTORY
Thert_timer interface appeared inNetBSD 1.4.

NetBSD 3.0 April 23, 1998 2

RWLOCK (9) NetBSD Kernel Developer’s Manual RWLOCK (9)

NAME
rw, rw_init, rw_destroy, rw_enter, rw_exit, rw_tryenter, rw_tryupgrade,
rw_downgrade, rw_read_held, rw_write_held, rw_lock_held — reader / writer lock primi-
tives

SYNOPSIS
#include <sys/rwlock.h>

void
rw_init(krwlock_t ∗ rw);

void
rw_destroy(krwlock_t ∗ rw);

void
rw_enter(krwlock_t ∗ rw , const krw_t op);

void
rw_exit(krwlock_t ∗ rw);

int
rw_tryenter(krwlock_t ∗ rw , const krw_t op);

int
rw_tryupgrade(krwlock_t ∗ rw);

void
rw_downgrade(krwlock_t ∗ rw);

int
rw_read_held(krwlock_t ∗ rw);

int
rw_write_held(krwlock_t ∗ rw);

int
rw_lock_held(krwlock_t ∗ rw);

options DIAGNOSTIC
options LOCKDEBUG

DESCRIPTION
Reader / writer locks (RW locks) are used in the kernel to synchronize access to an object among LWPs
(lightweight processes) and soft interrupt handlers.

In addition to the capabilities provided by mutexes, RW locks distinguish between read (shared) and write
(exclusive) access. RW locks are intended to provide protection for kernel data or objects that are read much
more frequently than updated.For objects that are updated as frequently as they are read, mutexes should be
used to guarantee atomic access.

RW locks are in one of three distinct states at any giv en time:

Unlocked The lock is not held.

Read locked The lock holders intend to read the protected object.Multiple callers may hold a RW
lock with “read intent” simultaneously.

Write locked The lock holder intends to update the protected object.Only one caller may hold a RW
lock with “write intent”.

NetBSD 3.0 December 4, 2007 1

RWLOCK (9) NetBSD Kernel Developer’s Manual RWLOCK (9)

Thekrwlock_t type provides storage for the RW lock object. This should be treated as an opaque object
and not examined directly by consumers.

Note that the these interfaces must not be used from a hardware interrupt handler.

OPTIONS AND MACROS
options DIANOSTIC

Kernels compiled with theDIAGNOSTICoption perform basic sanity checks on RW lock operations.

options LOCKDEBUG

Kernels compiled with theLOCKDEBUGoption perform potentially CPU intensive sanity checks on
RW lock operations.

FUNCTIONS
rw_init(rw)

Initialize a lock for use. No other operations can be performed on the lock until it has been initial-
ized.

rw_destroy(rw)

Release resources used by a lock. The lock may not be used after it has been destroyed.

rw_enter(rw , op)

If RW_READERis specified as the argument toop, acquire a read lock. If the lock is write held, the
caller will block and not return until the hold is acquired. Callers must not recursively acquire read
locks.

If RW_WRITERis specified, acquire a write lock.If the lock is already held, the caller will block and
not return until the hold is acquired.

RW locks and other types of locks must always be acquired in a consistent order with respect to each
other. Otherwise, the potential for system deadlock exists.

rw_exit(rw)

Release a lock. The lock must have been previously acquired by the caller.

rw_tryenter(rw , op)

Try to acquire a lock, but do not block if the lock is already held. If the lock is acquired successfully,
return non-zero. Otherwise, return zero.

Valid arguments toop areRW_READERor RW_WRITER.

rw_tryupgrade(rw)

Try to upgrade a lock from one read hold to a write hold.If the lock is upgraded successfully, returns
non-zero. Otherwise,returns zero.

rw_downgrade(rw)

Downgrade a lock from a write hold to a read hold.

rw_write_held(rw)

rw_read_held(rw)

NetBSD 3.0 December 4, 2007 2

RWLOCK (9) NetBSD Kernel Developer’s Manual RWLOCK (9)

rw_lock_held(rw)

Test the lock’s condition and return non-zero if the lock is held (potentially by the current LWP) and
matches the specified condition. Otherwise, return zero.

These functions must never be used to make locking decisions at run time: they are provided only for
diagnostic purposes.

CODE REFERENCES
This section describes places within theNetBSD source tree where code implementing RW locks can be
found. All pathnames are relative to /usr/src .

The core of the RW lock implementation is insys/kern/kern_rwlock.c .

The header filesys/sys/rwlock.h describes the public interface, and interfaces that machine-dependent
code must provide to support RW locks.

SEE ALSO
condvar (9), mb(9), mutex (9)

Jim Mauro and Richard McDougall,Solaris Internals: Core Kernel Architecture, Prentice Hall, 2001, ISBN
0-13-022496-0.

HISTORY
The RW lock primitives first appeared inNetBSD 5.0.

NetBSD 3.0 December 4, 2007 3

SCHED_4BSD (9) NetBSD Kernel Developer’s Manual SCHED_4BSD(9)

NAME
sched_4bsd — The 4.4BSD thread scheduler

SYNOPSIS
#include <sys/sched.h>

void
resetpriority(lwp_t ∗ l);

void
sched_tick(struct cpu_info ∗ ci);

void
sched_schedclock(lwp_t ∗ l);

void
sched_pstats_hook(struct proc ∗ p , int minslp);

void
sched_setrunnable(lwp_t ∗ l);

void
updatepri(lwp_t ∗ l);

DESCRIPTION
The NetBSD thread scheduling sub-system employs a “multilevel feedback queues” algorithm, favouring
interactive, short-running threads to CPU-bound ones.

resetpriority() recomputes the priority of a thread running in user mode. If the resulting priority is
higher than that of the current thread, a reschedule is arranged.

sched_tick() gets called fromhardclock (9) every 100ms to force a switch between equal priority
threads.

The priority of the current thread is adjusted throughsched_schedclock(). Thepriority of a thread gets
worse as it accumulates CPU time.

sched_pstats_hook() gets called fromsched_pstats() every Hz ticks in order to recompute the pri-
orities of all threads.

sched_setrunnable() checks if an LWP has slept for more than one second. If so, its priority is
updated byupdatepri().

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing the scheduler
can be found. All pathnames are relative to /usr/src .

The 4.4BSD scheduler subsystem is implemented within the filesys/kern/sched_4bsd.c .

SEE ALSO
csf (9), hardclock (9), mi_switch (9), userret (9)

Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman,The Design and
Implementation of the 4.4BSD Operating System, Addison Wesley, 1996.

NetBSD 3.0 July 14, 2007 1

SCSIPI (9) NetBSD Kernel Developer’s Manual SCSIPI(9)

NAME
scsipi — SCSI/ATAPI middle-layer interface

SYNOPSIS
#include <dev/scsipi/atapiconf.h>
#include <dev/scsipi/scsiconf.h>

void
scsipi_async_event(struct scsipi_channel ∗ chan ,

scsipi_async_event_t event , void ∗ arg);

void
scsipi_channel_freeze(struct scsipi_channel ∗ chan , int count);

void
scsipi_channel_thaw(struct scsipi_channel ∗ chan , int count);

void
scsipi_channel_timed_thaw(void ∗ arg);

void
scsipi_periph_freeze(struct scsipi_periph ∗ periph , int count);

void
scsipi_periph_thaw(struct scsipi_periph ∗ periph , int count);

void
scsipi_periph_timed_thaw(void ∗ arg);

void
scsipi_done(struct scsipi_xfer ∗ xs);

void
scsipi_printaddr(struct scsipi_periph ∗ periph);

int
scsipi_target_detach(struct scsipi_channel ∗ chan , int target , int lun ,

int flags);

int
scsipi_thread_call_callback(struct scsipi_channel ∗ chan ,

void (∗ callback)(struct scsipi_channel ∗ , void ∗) , void ∗ arg);

DESCRIPTION
Thescsipi system is the middle layer interface between SCSI/ATAPI host bus adapters (HBA) and high-
level SCSI/ATAPI drivers. Thisdocument describes the interfaces provided by thescsipi layer towards
the HBA layer. An HBA has to provide a pointer to astruct scsipi_adapterand one pointer per channel to a
struct scsipi_channel. Once the SCSI or ATAPI bus is attached, thescsipi system will scan the bus and
allocate astruct scsipi_periphfor each device found on the bus. Ahigh-level command (command sent from
the high-level SCSI/ATAPI layer to the low-level HBA layer) is described by astruct scsipi_xfer.

A request is sent to the HBA driver though theadapt_request() callback. The HBA driver signals com-
pletion (with or without errors) of the request thoughscsipi_done(). scsipi knows the resources lim-
its of the HBA (max number of concurrent requests per adapter of channel, and per periph), and will make
sure the HBA won’t receive more requests than it can handle.

The mid-layer can also handleQUEUE FULLandCHECK CONDITIONev ents.

NetBSD 3.0 December 20, 2005 1

SCSIPI (9) NetBSD Kernel Developer’s Manual SCSIPI(9)

INITIALISATION
An HBA driver has to allocate and initialize to 0 astruct scsipi_adapterand fill in the following members:

struct device∗ adapt_dev pointer to the HBA’ s struct device
int adapt_nchannels number of channels (or busses) of the adapter
int adapt_openings total number of commands the adapter can handle (may be

replaced bychan_openings, see below)
int adapt_max_periph number of commands the adapter can handle per device

The following callbacks should be provided through thestruct scsipi_adapter:
void (∗ adapt_request)(struct scsipi_channel ∗ , scsipi_adapter_req_t ,

void ∗)
mandatory

void (∗ adapt_minphys)(struct buf ∗)
mandatory

int (∗ adapt_ioctl)(struct scsipi_channel ∗ , u_long , void ∗ , int , struct
lwp ∗)
optional

int (∗ adapt_enable)(struct device ∗ , int)
optional, set toNULL if not used

int (∗ adapt_getgeom)(struct scsipi_periph ∗ , struct disk_parms ∗ ,
u_long)
optional, set toNULL if not used

int (∗ adapt_accesschk)(struct scsipi_periph ∗ , struct
scsipi_inquiry_pattern ∗)
optional, set toNULL if not used

The HBA driver has to allocate and initialize to 0 onestruct scsipi_channelper channel and fill in the follow-
ing members:

struct scsipi_adapter∗ chan_adapter
Pointer to the HBA’ s struct scsipi_adapter

struct scsipi_bustype∗ chan_bustype
should be initialized to eitherbus_atapior bus_scsi, both defined in
thescsipi code.

int chan_channel channel number (starting at 0)
int chan_flags channel flags:

SCSIPI_CHAN_OPENINGSUse per-channel max number of com-
mandschan_openingsinstead of per-
adapteradapt_openings

SCSIPI_CHAN_CANGROWThis channel can grow its
chan_openingsor adapt_openingson
request (via theadapt_request()
callback)

SCSIPI_CHAN_NOSETTLEDo not wait SCSI_DELAY seconds
for devices to settle before probing
(usually used by adapters that provide
an "abstracted" view of the bus).

int chan_openings total number of commands the adapter can handle for this channel
(used only if theSCSIPI_CHAN_OPENINGSflag is set)

chan_max_periph number of commands per device the adapter can handle on this
channel (used only if theSCSIPI_CHAN_OPENINGSflag is set)

NetBSD 3.0 December 20, 2005 2

SCSIPI (9) NetBSD Kernel Developer’s Manual SCSIPI(9)

int chan_ntargets number of targets
int chan_nluns number of LUNs per target
int chan_id adapter’s ID on this channel
int chan_defquirks default device quirks. Quirks are defined in

<dev/scsipi/scsipiconf.h> and are usually set in the mid-
dle layer based on the device’s inquiry data. For some kinds of
adapters it may be convenient to have a set of quirks applied to all
devices, regardless of the inquiry data.

The HBA driver attaches the SCSI or ATAPI bus (depending on the setting ofchan_bustype) by passing a
pointer to thestruct scsipi_channel to the autoconf (4) machinery. The print function shall be either
scsiprint() oratapiprint().

OTHER DAT A STRUCTURES
When scanning the bus, thescsipi system allocates astruct scsipi_periphfor each device probed.The
interesting fields are:

struct device∗ periph_dev pointer to the device’sstruct device
struct scsipi_channel∗ periph_channel

pointer to the channel the device is connected to
int periph_quirks device quirks, defined in〈dev/scsipi/scsipiconf.h 〉
int periph_target target ID, or drive number on ATAPI
int periph_lun LUN (currently not used on ATAPI)

A SCSI or ATAPI request is passed to the HBA through astruct scsipi_xfer. The HBA driver has access to
the following data:

struct callout xs_callout
callout for adapter use, usually for command timeout

int xs_control control flags (only flags of interest for HBA drivers are described):
XS_CTL_POLL poll in the HBA driver for request completion (most

likely because interrupts are disabled)
XS_CTL_RESET reset the device
XS_CTL_DATA_UIO xs_data points to astruct uio buffer
XS_CTL_DATA_IN data is transferred from HBA to memory
XS_CTL_DATA_OUT data is transferred from memory to HBA
XS_CTL_DISCOVERYthis xfer is part of a device discovery done by the

middle layer
XS_CTL_REQSENSE xfer is a request sense

int xs_status status flags:
XS_STS_DONE xfer is done (set byscsipi_done())
XS_STS_PRIVATE mask of flags reserved for HBA’ s use (0xf0000000)

struct scsipi_periph∗ xs_periph
periph doing the xfer

int timeout command timeout, in milliseconds. The HBA should start the timeout at the
time the command is accepted by the device. If the timeout happens, the HBA
shall terminate the command throughscsipi_done() with a XS_TIMEOUT
error

struct scsipi_generic∗ cmd
scsipi command to execute

int cmdlen len (in bytes) of the cmd buffer

NetBSD 3.0 December 20, 2005 3

SCSIPI (9) NetBSD Kernel Developer’s Manual SCSIPI(9)

u_char∗ data data buffer (this is either a DMA or uio address)
int datalen data length (in bytes, zero if uio)
int resid difference betweendatalen and how much data was really transferred
scsipi_xfer_result_t error

error value returned by the HBA driver to mid-layer. See description of
scsipi_done() for valid values

union {struct scsipi_sense_data scsi_sense; uint32_t atapi_sense;} sense
where to store sense info iferror is XS_SENSEor XS_SHORTSENSE

uint8_t status SCSI status; checked by middle layer whenerror is XS_BUSY(the middle
layer handlesSCSI_CHECKandSCSI_QUEUE_FULL)

uint8_t xs_tag_type SCSI tag type, set to 0 if untagged command
uint8_t xs_tag_id tag ID, used for tagged commands

FUNCTIONS AND CALLB ACKS
(∗ adapt_request)(struct scsipi_channel ∗ chan , scsipi_adapter_req_t req ,

void ∗ arg)
Used by the mid-layer to transmit a request to the adapter.req can be one of:
ADAPTER_REQ_RUN_XFER

request the adapter to send a command to the device. arg is a pointer to thestruct
scsipi_xfer. Once the xfer is complete the HBA driver shall callscsipi_done()
with updated status and error information.

ADAPTER_REQ_GROW_RESOURCES
ask the adapter to increase resources of the channel (grow adapt_openingsor
chan_openings) if possible. Supportof this feature is optional. This request is
called from the kernel completion thread.arg must be ignored.

ADAPTER_REQ_SET_XFER_MODE
set the xfer mode for a for I_T Nexus. Thiswill be called once all LUNs of a tar-
get have been probed.arg points to astruct scsipi_xfer_modedefined as follows:
int xm_target target for I_T Nexus
int xm_mode bitmask of device capabilities
int xm_period sync period
int xm_offset sync offset

xm_period and xm_offset shall be ignored for
ADAPTER_REQ_SET_XFER_MODE. xm_modeholds the following bits:
PERIPH_CAP_SYNC

ST synchronous transfers
PERIPH_CAP_WIDE16

ST 16 bit wide transfers
PERIPH_CAP_WIDE32

ST 32 bit wide transfers
PERIPH_CAP_DT

DT transfers
PERIPH_CAP_TQING

tagged queueing
Whenever the xfer mode changes, the driver should call
scsipi_async_event() to notify the mid-layer.

adapt_request() may be called from interrupt context.
adapt_minphys()

pointer to the driver’s minphys function. If the driver can handle transfers of sizeMAXPHYS,
this can point tominphys().

NetBSD 3.0 December 20, 2005 4

SCSIPI (9) NetBSD Kernel Developer’s Manual SCSIPI(9)

adapt_ioctl()
ioctl function for the channel.The only ioctl supported at this level is SCBUSIORESETfor
which the HBA driver shall issue a SCSI reset on the channel.

int adapt_enable(struct device ∗ dev , int enable)
Disable the adapter ifenableis zero, or enable it if non-zero.Returns 0 if operation is success-
ful, or error from<sys/errno.h> . This callback is optional, and is useful mostly for hot-
plug devices. For example, this callback would power on or off the relevant PCMCIA socket
for a PCMCIA controller.

int adapt_getgeom(struct scsipi_periph ∗ periph , struct disk_parms ∗ params ,
u_long sectors)
Optional callback, used by high-level drivers to get the fictitious geometry used by the con-
troller’s firmware for the specified periph.Returns 0 if successful. See Adaptec drivers for
details.

int adapt_accesschk(struct scsipi_periph ∗ periph , struct
scsipi_inquiry_pattern ∗ inqbuf)
Optional callback; if present the mid-layer uses it to check if it can attach a driver to the speci-
fied periph. If the callback returns a non-zero value, the periph is ignored by thescsipi code.
This callback is used by adapters which want to drive some devices themselves, for example
hardware RAID controllers.

scsipi_async_event(struct scsipi_channel ∗ chan , scsipi_async_event_t
event , void ∗ arg)
Asynchronous event notification for the mid-layer.event can be one of:
ASYNC_EVENT_MAX_OPENINGS

set max openings for a periph.Argument is astruct scsipi_max_openingswith at
least the following members:
int mo_target
int mo_lun
int mo_openings

Not all periphs may allow openings to increase; if not allowed the request is
silently ignored.

ASYNC_EVENT_XFER_MODE
update the xfer mode for an I_T nexus. Argument is astruct scsipi_xfer_mode
properly filled in. An ASYNC_EVENT_XFER_MODEcall with
PERIPH_CAP_TQINGset inxm_modeis mandatory to activate tagged queuing.

ASYNC_EVENT_RESET
channel has been reset. No argument. HBA drivers have to issue
ASYNC_EVENT_RESET events if they rely on the mid-layer for
SCSI CHECK CONDITION handling.

scsipi_done(struct scsipi_xfer ∗ xs)
shall be called by the HBA when the xfer is complete, or when it needs to be requeued by the
mid-layer. error in the scsipi_xfer shall be set to one of the following:
XS_NOERROR

xfer completed without error.
XS_SENSECheck the returned SCSI sense for the error.
XS_SHORTSENSE

Check the ATAPI sense for the error.
XS_DRIVER_STUFFUP

Driver failed to perform operation.

NetBSD 3.0 December 20, 2005 5

SCSIPI (9) NetBSD Kernel Developer’s Manual SCSIPI(9)

XS_RESOURCE_SHORTAGE
Adapter resource shortage. The mid-layer will retry the command after some
delay.

XS_SELTIMEOUT
The device timed out while trying to send the command

XS_TIMEOUT
The command was accepted by the device, but it didn’t complete in allowed time.

XS_BUSY The mid-layer will checkstatusfor additional details:
SCSI_CHECK SCSI check condition. The mid-layer will freeze the

periph queue and issue a REQUEST SENSE command.If
the HBA supports tagged queuing, it shall remove and
requeue any command not yet accepted by the HBA (or at
last make sure no more commands will be sent to the
device before the REQUEST SENSE is complete).

SCSI_QUEUE_FULLThe mid layer will adjust the periph’s openings and
requeue the command.

SCSI_BUSY The mid-layer will requeue the xfer after delay.
XS_RESETxfer destroyed by a reset; the mid-layer will requeue it.
XS_REQUEUE

Ask the mid-layer to requeue this command immediately.

The adapter should not reference anxfer oncescsipi_done(xfer) has been called, unless
thexfer hadXS_CTL_POLLset.

scsipi_done() will call the adapt_request() callback again only if called with
xs->error set toXS_NOERROR, and xfer doesn’t hav e XS_CTL_POLL set. All other
error conditions are handled by a kernel thread (once the HBA’ s interrupt handler has returned).

scsipi_printaddr(struct scsipi_periph ∗ periph)
print a kernel message with the periph’s name, in the form device(controller:channel:target:lun).

scsipi_channel_freeze(struct scsipi_channel ∗ chan , int count)
Freeze the specified channel (requests are queued but not sent to HBA). The channel’s freeze
counter is increased bycount.

scsipi_channel_thaw(struct scsipi_channel ∗ chan , int count)
Decrement the channel’s freeze counter bycount and process the queue if the counter goes to
0. In order to preserve command ordering, HBA drivers should not call
scsipi_channel_thaw() before callingscsipi_done() for all commands in the HBA’ s
queue which need to be requeued.

scsipi_periph_timed_thaw(void ∗ arg)
Call scsipi_channel_thaw(arg , 1). Intendedto be used ascallout (9) callback.

scsipi_periph_freeze(struct scsipi_periph ∗ periph , int count)
scsipi_periph_thaw(struct scsipi_periph ∗ periph)
scsipi_periph_timed_thaw(void ∗ arg)

Same as the channel counterparts, but only for one specific peripheral.
scsipi_target_detach(struct scsipi_channel ∗ chan , int target , int lun , int

flags)
detach the periph associated with this I_T_L nexus. Bothtarget andlun may be wildcarded
using the magic value -1.flags is passed toconfig_detach() . Returns 0 if successful,
or error code if a device couldn’t be removed.

scsipi_thread_call_callback(struct scsipi_channel ∗ chan , void
(∗ callback)(struct scsipi_channel ∗ , void ∗) , void ∗ arg)
callback() will be called withchan andarg as arguments, from the channel completion
thread. Thecallback is run at splbio.scsipi_thread_call_callback() will freeze the
channel by one, it’s up to the caller to thaw it when appropriate.Returns 0 if the callback was

NetBSD 3.0 December 20, 2005 6

SCSIPI (9) NetBSD Kernel Developer’s Manual SCSIPI(9)

properly recorded, or EBUSY if the channel has already a callback pending.

FILES
sys/dev/scsiconf.h header file for use by SCSI HBA drivers

sys/dev/atapiconf.h header file for use by ATAPI HBA drivers

Both header files includesys/dev/scsipiconf.h which contains most structure definitions, function
prototypes and macros.

EXAMPLES
The best examples are existing HBA drivers. Mostof them sit in thesys/dev/ic directory.

HISTORY
Thescsipi interface appeared inNetBSD 1.6.

AUTHORS
Thescsipi interface was designed and implemented by Jason R. Thorpe. Manuel Bouyer converted most
drivers to the new interface.

NetBSD 3.0 December 20, 2005 7

SECMODEL (9) NetBSD Kernel Developer’s Manual SECMODEL(9)

NAME
secmodel — security model development guidelines

SYNOPSIS
#include <secmodel/secmodel.h>

DESCRIPTION
NetBSD provides a complete abstraction of the underlying security model used with the operating system to a
set ofkauth (9) scopes and actions.

It is possible to modify the security model -- either slightly or using an entirely different model -- by attach-
ing/detachingkauth (9) listeners. This document describes this process.

Background
In NetBSD 4.0, Kernel Authorization --kauth (9) -- was introduced as the subsystem responsible for autho-
rization and credential management.Before its introduction, there were several ways for providing resource
access control:

− Checking if the user in question is the superuser viasuser().
− Comparing the user-id against hard-coded values, often zero,
− Checking the system securelevel.

The problem with the above is that the interface ("can X do Y?") was tightly coupled with the implementa-
tion ("is X Z?"). kauth (9) allowed us to separate them, dispatching requests with highly detailed context
using a consistent and clear KPI.

The result is a pluggable framework for attaching "listeners" that can modify the behavior of the system,
security-wise. Itallows us to maintain the existing security model (based on a single superuser and above-
superuser restrictions known as securelevel) but easily decouple it from the system, given we want to use a
different one.

The different security model can be implemented in the kernel or loaded as an LKM, base its decisions on
available information, dispatch the decision to a userspace daemon, or even to a centralized network autho-
rization server.

The kauth(9) KPI
Before writing a new security model, one should be familiar with thekauth (9) KPI, its limitations, require-
ments, and so on.

First, some terminology. According tokauth (9), the system is logically divided to scopes, where each
scope denotes a different area of interest in the system -- something like a namespace. For example,NetBSD
has the process, network, and machdep scopes, representing process-related, network-related, and machdep-
related actions.

Each scope has a collection of actions -- or requests -- forming the high level indication of the request type.
Each request is automatically associated with credentials and between zero to four arguments providing the
request context.

For example, in the process scope there are requests such as "can signal", "can change rlimits", and "can
change corename".

Each scope in the system is associated with listeners, which are actually callback routines, that get called
when an authorization request on the relevant scope takes place.

Every listener receives the request and its context, and can make a decision of either "allow", "deny", or
"defer" (if it doesn’t want to be the one deciding).

NetBSD 3.0 January 31, 2007 1

SECMODEL (9) NetBSD Kernel Developer’s Manual SECMODEL(9)

It is important to note that a single "deny" is enough to fail a request, and at least a single "allow" is required
to allow it. In other words, it is impossible to attach listeners that weaken the security of the system or over-
ride decisions made by other listeners.

At last, there are several things you should remember aboutkauth (9):

− Authorization requests can not be issued when the kernel is holding any locks. Thisis a require-
ment from kernel code, to allow designing security models where the request should be dis-
patched to userspace or a different host.

− Private listener data -- such as internal data-structures -- is entirely under the responsibility of the
developer. Locking, synchronization, and garbage collection are all things thatkauth (9) does
not take care of for you!

Writing a new security model
A security model is composed of (code-wise) the following components:

1. Entryroutines, namedsecmodel_<model>_init() andsecmodel_<model>_start(),
used to initialize and start the security model.

If the security model is to be started automatically by the kernel and is compiled in it, a function
calledsecmodel_start() can be added to call the model’s start routine.

If the security model is to be built and used as an LKM, another function called
secmodel_<model>_stop(), to stop the security model in case the module is to be
unloaded.

2. A sysctl(9) setup routine for the model.This should create an entry for the model in the
sysctl (9) namespace, under the "security.models.<model>" hierarchy.

All "knobs" for the model should be located under the new node, as well as a mandatory "name"
variable, indicating a descriptive human-readable name for the model.

If the module is to be used as an LKM, explicit calls to the setup routine and
sysctl_teardown() are to be used to create and destroy thesysctl (9) tree.

3. If the model uses any private data inside credentials, listening on the credentials scope,
KAUTH_SCOPE_CRED, is required.

4. Optionally, internal data-structures used by the model. These must all be prefixed with "sec-
model_<model>_".

5. A set of listeners, attached to various scopes, used to enforce the policy the model intends to
implement.

6. Finally, a security model should register itself when loaded usingsecmodel_register()
and deregister it when unloaded (if used as an LKM) usingsecmodel_deregister().

Below is sample code for akauth (9) network scope listener for thejenna security model. It is used to
allow users with a user-id below 1000 bind to reserved ports (for example, 22/TCP):

int
secmodel_jenna_network_cb(kauth_cred_t cred, kauth_action_t action,

void ∗ cookie, void ∗ arg0, void ∗ arg1, void ∗ arg2, void ∗ arg3)
{

int result;

/ ∗ Default defer. ∗ /
result = KAUTH_RESULT_DEFER;

NetBSD 3.0 January 31, 2007 2

SECMODEL (9) NetBSD Kernel Developer’s Manual SECMODEL(9)

switch (action) {
case KAUTH_NETWORK_BIND:

/ ∗
∗ We only care about bind(2) requests to privileged
∗ ports.
∗ /

if ((u_long)arg0 == KAUTH_REQ_NETWORK_BIND_PRIVPORT) {
/ ∗

∗ If the user-id is below 1000, which may
∗ indicate a "reserved" user-id, allow the
∗ request.
∗ /

if (kauth_cred_geteuid(cred) < 1000)
result = KAUTH_RESULT_ALLOW;

}
break;

}

return (result);
}

There are two main issues, however, with that listener, that you should be aware of when approaching to
write your own security model:

1. Asmentioned,kauth (9) uses restrictive decisions: if you attach this listener on-top of an exist-
ing security model, even if it would allow the request, it could still be failed.

2. If you attach this listener as the only listener for the network scope, there are many other
requests that will be deferred and, eventually, denied -- which may not be desired.

That’s why before implementing listeners, it should be clear whether they implement an entirely new from
scratch security model, or add on-top of an existing one.

Adding on-top of an existing security model
One of the shortcomings ofkauth (9) is that it does not provide any stacking mechanism, similar to Linux
Security Modules (LSM).This, however, is considered a feature in reducing dependency on other people’s
code.

To properly "stack" minor adjustments on-top of an existing security model, one could use one of two
approaches:

− Registering an internal scope for the security model to be used as a fall-back when requests are deferred.

This requires the security model developer to add an internal scope for every scope the model partly cov-
ers, and registering the fall-back listeners to it. In the model’s listener(s) for the scope, when a defer
decision is made, the request is passed to be authorized on the internal scope, effectively using the fall-
back security model.

Here’s example code that implements the above:

#include <secmodel/bsd44/bsd44.h>

/ ∗
∗ Internal fall-back scope for the network scope.
∗ /

#define JENNA_ISCOPE_NETWORK "jenna.iscope.network"

NetBSD 3.0 January 31, 2007 3

SECMODEL (9) NetBSD Kernel Developer’s Manual SECMODEL(9)

static kauth_scope_t secmodel_jenna_iscope_network;

/ ∗
∗ Jenna’s entry point. Register internal scope for the network scope
∗ which we partly cover for fall-back authorization.
∗ /

void
secmodel_jenna_start(void)
{

secmodel_jenna_iscope_network = kauth_register_scope(
JENNA_ISCOPE_NETWORK, NULL, NULL);

kauth_listen_scope(JENNA_ISCOPE_NETWORK,
secmodel_bsd44_suser_network_cb, NULL);

kauth_listen_scope(JENNA_ISCOPE_NETWORK,
secmodel_bsd44_securelevel_network_cb, NULL);

}

/ ∗
∗ Jenna sits on top of another model, effectively filtering requests.
∗ If it has nothing to say, it discards the request. This is a good
∗ example for fine-tuning a security model for a special need.
∗ /

int
secmodel_jenna_network_cb(kauth_cred_t cred, kauth_action_t action,

void ∗ cookie, void ∗ arg0, void ∗ arg1, void ∗ arg2, void ∗ arg3)
{

int result;

/ ∗ Default defer. ∗ /
result = KAUTH_RESULT_DEFER;

switch (action) {
case KAUTH_NETWORK_BIND:

/ ∗
∗ We only care about bind(2) requests to privileged
∗ ports.
∗ /

if ((u_long)arg0 == KAUTH_REQ_NETWORK_BIND_PRIVPORT) {
if (kauth_cred_geteuid(cred) < 1000)

result = KAUTH_RESULT_ALLOW;
}
break;

}

/ ∗
∗ If we have don’t have a decision, fall-back to the bsd44
∗ security model.
∗ /

if (result == KAUTH_RESULT_DEFER)
result = kauth_authorize_action(

secmodel_jenna_iscope_network, cred, action,

NetBSD 3.0 January 31, 2007 4

SECMODEL (9) NetBSD Kernel Developer’s Manual SECMODEL(9)

arg0, arg1, arg2, arg3);

return (result);
}

− If the above is not desired, or cannot be used for any reason, there is always the ability to manually call
the fall-back routine:

int
secmodel_jenna_network_cb(kauth_cred_t cred, kauth_action_t action,

void ∗ cookie, void ∗ arg0, void ∗ arg1, void ∗ arg2, void ∗ arg3)
{

int result;

/ ∗ Default defer. ∗ /
result = KAUTH_RESULT_DEFER;

switch (action) {
case KAUTH_NETWORK_BIND:

/ ∗
∗ We only care about bind(2) requests to privileged
∗ ports.
∗ /

if ((u_long)arg0 == KAUTH_REQ_NETWORK_BIND_PRIVPORT) {
if (kauth_cred_geteuid(cred) < 1000)

result = KAUTH_RESULT_ALLOW;
}
break;

}

/ ∗
∗ If we have don’t have a decision, fall-back to the bsd44
∗ security model’s suser behavior.
∗ /

if (result == KAUTH_RESULT_DEFER)
result = secmodel_bsd44_suser_network_cb(cred, action,

cookie, arg0, arg1, arg2, arg3);

return (result);
}

Writing a new security model from scratch
When writing a security model from scratch, aside from the obvious issues of carefully following the desired
policy to be implemented and paying attention to all of the issues outlined above, one must also remember
that any unhandled requests will be denied by default.

To make it easier on developers to write new security models from scratch,NetBSD maintains skeleton listen-
ers that contain every possible request and arguments.

Av ailable security models
The following is a list of security models available in the default NetBSD distribution. To choose, one should
edit /usr/src/sys/conf/std .

NetBSD 3.0 January 31, 2007 5

SECMODEL (9) NetBSD Kernel Developer’s Manual SECMODEL(9)

secmodel_bsd44
TraditionalNetBSD security model, derived from 4.4BSD.

secmodel_overlay
Sample overlay security model, sitting on-top ofsecmodel_bsd44 (9).

FILES
/usr/share/examples/secmodel

SEE ALSO
kauth (9), secmodel_bsd44 (9), secmodel_overlay (9)

AUTHORS
Elad Efrat〈elad@NetBSD.org〉

NetBSD 3.0 January 31, 2007 6

SECMODEL_BSD44 (9) NetBSD Kernel Developer’s Manual SECMODEL_BSD44(9)

NAME
secmodel_bsd44 — traditionalNetBSD security model (based on 4.4BSD)

DESCRIPTION
secmodel_bsd44 is the default security model inNetBSD. It is the traditional security model based on
4.4BSD and is composed of two main concepts, thesuper-userand thesecurelevel.

Super-user
Thesuper-useris the host administrator, considered to have higher privileges than other users. It is the only
entity the kernel recognizes by having an effective user-id of zero.

Securelevel
Please refer tosecmodel_securelevel (9) for details.

SEE ALSO
kauth (9), secmodel (9), secmodel_securelevel (9)

AUTHORS
Elad Efrat〈elad@NetBSD.org〉

NetBSD 3.0 November 21, 2007 1

SECMODEL_OVERLAY (9) NetBSDKernel Developer’s Manual SECMODEL_OVERLAY (9)

NAME
secmodel_overlay — sample overlay security model implementation

SYNOPSIS
#include <secmodel/overlay/overlay.h>

DESCRIPTION
secmodel_overlay is a sample implementation for an overlay security model. It can be thought of as a
“filter” for the underlying model it overlays, by default it issecmodel_bsd44 (9), where developers or
administrators can implement custom policies using least intrusive code changes.

FILES
/usr/src/sys/secmodel/overlay/secmodel_overlay.c

SEE ALSO
kauth (9), secmodel (9), secmodel_bsd44 (9)

AUTHORS
Elad Efrat〈elad@NetBSD.org〉

NetBSD 3.0 September 15, 2006 1

SECMODEL_BSD44 (9) NetBSD Kernel Developer’s Manual SECMODEL_BSD44(9)

NAME
secmodel_bsd44 — traditionalNetBSD security model (based on 4.4BSD)

DESCRIPTION
The securelevel mechanism is intended to allow protecting the persistence of code and data on the system, or
a subset thereof, from modification, even by the super-user, by providing convenient means of “locking
down” a system to a degree suited to its environment.

The super-user can raise the securelevel usingsysctl (8), but onlyinit (8) can lower it.

secmodel_bsd44 provides four levels of securelevel, defined as follows:

-1 Permanently insecure mode
− Don’t raise the securelevel on boot

0 Insecure mode
− The init process (PID 1) may not be traced or accessed byptrace (2) or procfs.
− Immutable and append-only file flags may be changed
− All devices may be read or written subject to their permissions

1 Secure mode
− All effects of securelevel 0
− /dev/mem and/dev/kmem may not be written to
− Raw disk devices of mounted file systems are read-only
− Immutable and append-only file flags may not be removed
− Kernel modules may not be loaded or unloaded
− Thenet.inet.ip.sourceroutesysctl (8) variable may not be changed
− Adding or removingsysctl (9) nodes is denied
− The RTC offset may not be changed
− Set-id coredump settings may not be altered
− Attaching the IP-based kernel debugger,ipkdb (4), is not allowed
− Device “pass-thru” requests that may be used to perform raw disk and/or memory access are

denied
− iopl andiopermcalls are denied
− Access to unmanaged memory is denied

2 Highly secure mode
− All effects of securelevel 1
− Raw disk devices are always read-only whether mounted or not
− New disks may not be mounted, and existing mounts may only be downgraded from read-write to

read-only
− The system clock may not be set backwards or close to overflow
− Per-process coredump name may not be changed
− Packet filtering and NAT rules may not be altered

Highly secure mode may seem Draconian, but is intended as a last line of defence should the superuser
account be compromised. Its effects preclude circumvention of file flags by direct modification of a raw disk
device, or erasure of a file system by means ofnewfs (8). Further, it can limit the potential damage of a
compromised “firewall” by prohibiting the modification of packet filter rules. Preventing the system clock
from being set backwards aids in post-mortem analysis and helps ensure the integrity of logs. Precision
timekeeping is not affected because the clock may still be slowed.

Normally, the system runs in securelevel 0 while single-user and in securelevel 1 while multi-user. If a
higher securelevel is desired while running multi-user, it can be set using thesecurelevelkeyword in the
startup script/etc/rc.conf , see rc.conf (5) for details. Lower securelevels require the kernel to be
compiled withoptions INSECURE, causing it to always default to securelevel −1.

NetBSD 3.0 November 21, 2007 1

SECMODEL_BSD44 (9) NetBSD Kernel Developer’s Manual SECMODEL_BSD44(9)

In order for this protection to be effective, the administrator must ensure that no program that is run while the
security level is 0 or lower, nor any data or configuration file used by any such program, can be modified
while the security level is greater than 0. This may be achieved through the careful use of the “immutable”
file flag to define and protect a Trusted Computing Base (TCB) consisting of all such programs and data, or
by ensuring that all such programs and data are on filesystems that are mounted read-only and running at
security level 2 or higher. Particular care must be taken to ensure, if relying upon security level 1 and the
use of file flags, that the integrity of the TCB cannot be compromised through the use of modifications to the
disklabel or access to overlapping disk partitions, including the raw partition.

Do not overlook the fact that shell scripts (or anything else fed to an interpreter, through any mechanism) and
the kernel itself are "programs that run while the security level is 0" and must be considered part of the TCB.

SEE ALSO
kauth (9), secmodel (9), secmodel_bsd44 (9)

AUTHORS
Elad Efrat〈elad@NetBSD.org〉

BUGS
Systems withoutsysctl (8) behave as though they hav esecurity level −1.

The security level 2 restrictions relating to TCB integrity protection should be enforced at security level 1.
Restrictions dependent upon security level but not relating to TCB integrity protection should be selected by
sysctl (8) settings available only at security level 0 or lower.

NetBSD 3.0 November 21, 2007 2

SELECT (9) NetBSD Kernel Developer’s Manual SELECT(9)

NAME
seldestroy, selinit, selrecord, selnotify — select and poll subsystem

SYNOPSIS
#include <sys/param.h>
#include <sys/select.h>

void
seldestroy(struct selinfo ∗ sip);

void
selinit(struct selinfo ∗ sip);

void
selrecord(struct lwp ∗ selector , struct selinfo ∗ sip);

void
selnotify(struct selinfo ∗ sip , int events , long knhint);

DESCRIPTION
selinit() andseldestroy() functions must be used to initialize and destroy the struct selinfo. The
seldestroy() function may block.

selrecord() andselnotify() are used by device drivers to coordinate with the kernel implementation
of select (2) andpoll (2). Eachobject that can be polled contains aselinfo record. Device drivers
provide locking for theselinfo record.

selrecord() records that the calling thread is interested in events related to a given object. selrecord()
should only be called when the poll routine determines that the object is not ready for I/O: there are no events
of interest pending.The check for pending I/O and call toselrecord() must be atomic. Atomicity can be
provided by holding the object’s lock across the test and call toselrecord(). For non-MPSAFE drivers,
the globalkernel_lock is enough to provide atomicity.

selnotify() is called by the underlying object handling code in order to notify any waiting threads that an
ev ent of interest has occurred.The same lock held across the poll method and call toselrecord() must be
held across the call toselnotify(). Thelock prevents an event of interest being signalled while a thread
is in the process of recording its interest.

Theevents indicates which event happen. Zero may be used if unknown.

selnotify() also callsKNOTE() passingknhintas an argument.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing select and poll
subsystem can be found. All pathnames are relative to /usr/src .

The core of the select and poll subsystem implementation is insys/kern/sys_select.c . Data struc-
tures and function prototypes are located insys/sys/select.h , sys/sys/poll.h and
sys/sys/selinfo.h .

SEE ALSO
poll (2), select (2), knote (9)

NetBSD 3.0 May 13, 2008 1

SETJMP (9) NetBSD Kernel Developer’s Manual SETJMP(9)

NAME
setjmp, longjmp — non-local jumps

SYNOPSIS
#include <machine/types.h>
#include <sys/systm.h>

int
setjmp(label_t ∗ label);

void
longjmp(label_t ∗ label);

DESCRIPTION
The setjmp() function saves its calling environment inlabel. It returns zero on success.The
longjmp() function restores the environment saved by the most recent invocation ofsetjmp(). It returns
so that kernel execution continues as if the corresponding invocation of thesetjmp() had just returned.

setjmp() andlongjmp() are a machine-independent interface for machine-dependent implementations.

These functions are primarily used byddb (4).

SEE ALSO
ddb (4)

NetBSD 3.0 May 23, 2002 1

SHUTDOWNHOOK_ESTABLISH (9) NetBSD Kernel Developer’s Manual SHUTDOWNHOOK_ESTABLISH (9)

NAME
shutdownhook_establish, shutdownhook_disestablish — add or remove a shutdown hook

SYNOPSIS
void ∗
shutdownhook_establish(void (∗ fn)(void ∗) , void ∗ arg);

void
shutdownhook_disestablish(void ∗ cookie);

DESCRIPTION
The shutdownhook_establish() function adds fn to the list of hooks invoked by
doshutdownhooks (9) at shutdown. Wheninvoked, the hook functionfn will be passedarg as its only
argument.

The shutdownhook_disestablish() function removes the hook described by the opaque pointer
cookie from the list of hooks to be invoked at shutdown. If cookie is invalid, the result of
shutdownhook_disestablish() is undefined.

Shutdown hooks should be used to perform one-time activities that must happen immediately before the ker-
nel exits. Becauseof the environment in which they are run, shutdown hooks cannot rely on many system
services (including file systems, and timeouts and other interrupt-driven services), or even basic system
integrity (because the system could be rebooting after a crash).

RETURN VALUES
If successful,shutdownhook_establish() returns an opaque pointer describing the newly-established
shutdown hook. Otherwise, it returns NULL.

EXAMPLES
It may be appropriate to use a shutdown hook to disable a device that does direct memory access, so that the
device will not try to access memory while the system is rebooting.

It may be appropriate to use a shutdown hook to inform watchdog timer hardware that the operating system
is no longer running.

SEE ALSO
doshutdownhooks (9)

BUGS
The names are clumsy, at best.

NetBSD 3.0 November 13, 1995 1

SIGNAL (9) NetBSD Kernel Developer’s Manual SIGNAL (9)

NAME
signal, siginit, sigactsinit, sigactsunshare, sigactsfree, execsigs, sigaction1,
sigprocmask1, sigpending1, sigsuspend1, sigaltstack1, gsignal, pgsignal,
psignal, sched_psignal, issignal, postsig, killproc, sigexit, sigmasked,
trapsignal, sendsig, sigcode, sigtramp — software signal facilities

SYNOPSIS
#include <sys/signal.h>
#include <sys/signalvar.h>

void
siginit(struct proc ∗ p);

void
sigactsinit(struct proc ∗ np , struct proc ∗ pp , int share);

void
sigactsunsuare(struct proc ∗ p);

void
sigactsfree(struct proc ∗ p);

void
execsigs(struct proc ∗ p);

int
sigaction1(struct proc ∗ p , int signum , const struct sigaction ∗ nsa ,

struct sigaction ∗ osa , void ∗ tramp , int vers);

int
sigprocmask1(struct proc ∗ p , int how , const sigset_t ∗ nss , sigset_t ∗ oss);

void
sigpending1(struct proc ∗ p , sigset_t ∗ ss);

int
sigsuspend1(struct proc ∗ p , const sigset_t ∗ ss);

int
sigaltstack1(struct proc ∗ p , const struct sigaltstack ∗ nss ,

struct sigaltstack ∗ oss);

void
gsignal(int pgid , int signum);

void
kgsignal(int pgid , ksiginfo_t ∗ ks , void ∗ data);

void
pgsignal(struct pgrp ∗ pgrp , int signum , int checkctty);

void
kpgsignal(struct pgrp ∗ pgrp , ksiginfo_t ∗ ks , void ∗ data , int checkctty);

void
psignal(struct proc ∗ p , int signum);

void
kpsignal(struct proc ∗ p , ksiginfo_t ∗ ks , void ∗ data);

NetBSD 3.0 December 20, 2005 1

SIGNAL (9) NetBSD Kernel Developer’s Manual SIGNAL (9)

void
sched_psignal(struct proc ∗ p , int signum);

int
issignal(struct lwp ∗ l);

void
postsig(int signum);

void
killproc(struct proc ∗ p , const char ∗ why);

void
sigexit(struct proc ∗ p , int signum);

int
sigmasked(struct proc ∗ p , int signum);

void
trapsignal(struct proc ∗ p , const ksiginfo_t ∗ ks);

void
sendsig(const ksiginfo_t ∗ ks , const sigset_t ∗ mask);

DESCRIPTION
The system defines a set of signals that may be delivered to a process.These functions implement the kernel
portion of the signal facility.

Signal numbers used throughout the kernel signal facilities should always be within the range of[1-NSIG].

Most of the kernel’s signal infrastructure is implemented in machine-independent code.Machine-dependent
code provides support for invoking a process’s signal handler, restoring context when the signal handler
returns, generating signals when hardware traps occur, triggering the delivery of signals when a process is
about to return from the kernel to userspace.

The signal state for a process is contained instruct sigctx. This includes the list of signals with deliv-
ery pending, information about the signal handler stack, the signal mask, and the address of the signal tram-
poline.

The registered signal handlers for a process are recorded instruct sigacts. This structure may be
shared by multiple processes.

The kernel’s signal facilities are implemented by the following functions:

void siginit(struct proc ∗ p)

This function initializes the signal state ofproc0 to the system default. Thissignal state is then
inherited byinit (8) when it is started by the kernel.

void sigactsinit(struct proc ∗ np , struct proc ∗ pp , int share)

This function creates an initialstruct sigacts for the processnp. If theshare argument is
non-zero, thennp shares thestruct sigacts with the processpp. Otherwise,np receives a
newstruct sigacts which is copied frompp if non-NULL.

void sigactsunshare(struct proc ∗ p)

This function causes the processp to no longer share itsstruct sigacts The current state of
the signal actions is maintained in the new copy.

NetBSD 3.0 December 20, 2005 2

SIGNAL (9) NetBSD Kernel Developer’s Manual SIGNAL (9)

void sigactsfree(struct proc ∗ p)

This function decrements the reference count on thestruct sigacts of processp. If the refer-
ence count reaches zero, thestruct sigacts is freed.

void execsigs(struct proc ∗ p)

This function is used to reset the signal state of the processp to the system defaults when the
process execs a new program image.

int sigaction1(struct proc ∗ p , int signum , const struct sigaction ∗ nsa ,
struct sigaction ∗ osa , void ∗ tramp , int vers)

This function implements thesigaction (2) system call.Thetramp andvers arguments pro-
vide support for userspace signal trampolines.Trampoline version 0 is reserved for the legacy ker-
nel-provided signal trampoline;tramp must beNULL in this case.Otherwise,vers specifies the
ABI of the trampoline specified bytramp. The signal trampoline ABI is machine-dependent, and
must be coordinated with thesendsig() function.

int sigprocmask1(struct proc ∗ p , int how , const sigset_t ∗ nss , sigset_t ∗ oss)

This function implements thesigprocmask (2) system call.

void sigpending1(struct proc ∗ p , sigset_t ∗ ss)

This function implements thesigpending (2) system call.

int sigsuspend1(struct proc ∗ p , const sigset_t ∗ ss)

This function implements thesigsuspend (2) system call.

int sigaltstack1(struct proc ∗ p , const struct sigaltstack ∗ nss , struct
sigaltstack ∗ oss)

This function implements thesigaltstack (2) system call.

void gsignal(int pgid , int signum)

This is a wrapper function forkgsignal() which is described below.

void kgsignal(int pgid , ksiginfo_t ∗ ks , void ∗ data)

Schedule the signalks->ksi_signo to be delivered to all members of the process group speci-
fied bypgid. Thedata argument and the complete signal scheduling semantics are described in
thekpsignal() function below. below for a complete description of the signal scheduling seman-
tics.

void pgsignal(struct pgrp ∗ pgrp , int signum , int checkctty)

This is a wrapper function forkpgsignal() which is described below.

void kpgsignal(struct pgrp ∗ pgrp , ksiginfo_t ∗ ks , void ∗ data , int checkctty)

Schedule the signalks->ksi_signo to be delivered to all members of the process grouppgrp.
If checkctty is non-zero, the signal is only sent to processes which have a controlling terminal.
The data argument and the complete signal scheduling semantics are described in the
kpsignal() function below.

void trapsignal(struct proc ∗ p , const ksiginfo_t ∗ ks)

Sends the signalks->ksi_signo caused by a hardware trap to the processp. This function is
meant to be called by machine-dependent trap handling code, through the
p->p_emul->e_trapsignal function pointer because some emulations define their own

NetBSD 3.0 December 20, 2005 3

SIGNAL (9) NetBSD Kernel Developer’s Manual SIGNAL (9)

trapsignal functions that remap the signal information to what the emulation expects.

void psignal(struct proc ∗ p , int signum)

This is a wrapper function forkpgsignal() which is described below.

void kpsignal(struct proc ∗ p , ksiginfo_t ∗ ks , void ∗ data)

Schedule the signalks->ksi_signo to be delivered to the processp. Thedata argument, if not
NULL, points to the file descriptor data that caused the signal to be generated in theSIGIO case.

With a few exceptions noted below, the target process signal disposition is updated and is marked as
runnable, so further handling of the signal is done in the context of the target process after a context
switch; seeissignal() below. Note thatkpsignal() does not by itself cause a context switch to
happen.

The target process is not marked as runnable in the following cases:

• The target process is sleeping uninterruptibly. The signal will be noticed when the
process returns from the system call or trap.

• The target process is currently ignoring the signal.

• If a stop signal is sent to a sleeping process that takes the default action(see
sigaction (2)) , the process is stopped without awakening it.

• SIGCONT restarts a stopped process(or puts them back to sleep) reg ardless of the sig-
nal action(e.g., blocked or ignored) .

If the target process is being traced,kpsignal() behaves as if the target process were taking the
default action forsignum. This allows the tracing process to be notified of the signal.

void sched_psignal(struct proc ∗ p , int signum)

An alternate version ofkpsignal() which is intended for use by code which holds the scheduler
lock.

int issignal(struct lwp ∗ l)

This function determines which signal, if any, is to be posted to the processp. A signal is to be
posted if:

• The signal has a handler provided by the program image.

• The signal should cause the process to dump core and/or terminate.

• The signal should interrupt the current system call.

Signals which cause the process to be stopped are handled withinissignal() directly.

issignal() should be called by machine-dependent code when returning to userspace from a sys-
tem call or other trap or interrupt by using the following code:

while (signum = CURSIG(curproc))
postsig(signum);

void postsig(int signum)

Thepostsig() function is used to invoke the action for the signalsignum in the current process.
If the default action of a signal is to terminate the process, and the signal does not have a registered
handler, the process exits usingsigexit(), dumping a core image if necessary.

NetBSD 3.0 December 20, 2005 4

SIGNAL (9) NetBSD Kernel Developer’s Manual SIGNAL (9)

void killproc(struct proc ∗ p , const char ∗ why)

This function sends a SIGKILL signal to the specified process.The message provided bywhy is
sent to the system log and is also displayed on the process’s controlling terminal.

void sigexit(struct proc ∗ p , int signum)

This function forces the processp to exit with the signalsignum, generating a core file if appropri-
ate. Nochecks are made for masked or caught signals; the process always exits.

int sigmasked(struct proc ∗ p , int signum)

This function returns non-zero if the signal specified bysignum is ignored or masked for process
p.

void sendsig(const ksiginfo_t ∗ ks , const sigset_t ∗ mask)

This function is provided by machine-dependent code, and is used to invoke a signal handler for the
current process.sendsig() must prepare the registers and stack of the current process to invoke
the signal handler stored in the process’s struct sigacts. This may include switching to an
alternate signal stack specified by the process.The previous register, stack, and signal state are
stored in aucontext_t, which is then copied out to the user’s stack.

The registers and stack must be set up to invoke the signal handler as follows:

(∗ handler)(int signum, siginfo_t ∗ info, void ∗ ctx)

wheresignum is the signal number, info contains additional signal specific information when
SA_SIGINFO is specified when setting up the signal handler. ctx is the pointer toucontext_t
on the user’s stack. Theregisters and stack must also arrange for the signal handler to return to the
signal trampoline.The trampoline is then used to return to the code which was executing when the
signal was delivered using thesetcontext (2) system call.

For performance reasons, it is recommended thatsendsig() arrange for the signal handler to be
invoked directly on architectures where it is convenient to do so. In this case, the trampoline is used
only for the signal return path. If it is not feasible to directly invoke the signal handler, the trampo-
line is also used to invoke the handler, performing any final set up that was not possible for
sendsig() to perform.

sendsig() must invoke the signal trampoline with the correct ABI. The ABI of the signal trampo-
line is specified on a per-signal basis in thesigacts() structure for the process.Trampoline ver-
sion 0 is reserved for the legacy kernel-provided, on-stack signal trampoline. All other trampoline
versions indicate a specific trampoline ABI. This ABI is coordinated with machine-dependent code
in the system C library.

SIGNAL TRAMPOLINE
The signal trampoline is a special piece of code which provides support for invoking the signal handlers for a
process. Thetrampoline is used to return from the signal handler back to the code which was executing
when the signal was delivered, and is also used to invoke the handler itself on architectures where it is not
feasible to have the kernel invoke the handler directly.

In traditionalUNIX systems, the signal trampoline, also referred to as the “sigcode”, is provided by the kernel
and copied to the top of the user’s stack when a new process is created or a new program image is exec’d.
Starting inNetBSD 2.0, the signal trampoline is provided by the system C library. This allows for more flexi-
bility when the signal facility is extended, makes dealing with signals easier in debuggers, such asgdb (1),
and may also enhance system security by allowing the kernel to disallow execution of code on the stack.

NetBSD 3.0 December 20, 2005 5

SIGNAL (9) NetBSD Kernel Developer’s Manual SIGNAL (9)

The signal trampoline is specified on a per-signal basis. The correct trampoline is selected automatically by
the C library when a signal handler is registered by a process.

Signal trampolines have a special naming convention which enables debuggers to determine the characteris-
tics of the signal handler and its arguments. Trampoline functions are named like so:

__sigtramp_<flavor>_<version>

where:

〈flavor〉 The flavor of the signal handler. The following flavors are valid:

sigcontext Specifies a traditional BSD-style (deprecated) signal handler with the fol-
lowing signature:

void (∗ handler)(int signum,
int code,
struct sigcontext ∗ scp);

siginfo Specifies a POSIX-style signal handler with the following signature:

void (∗ handler)(int signum,
siginfo_t ∗ si,
void ∗ uc);

Note: sigcontext style signal handlers are deprecated, and retained only for
compatibility with older binaries.

〈version〉 Specifies the ABI version of the signal trampoline. The trampoline ABI is coordinated with
the machine-dependent kernel sendsig() function. The trampoline version needs to be
unique even across different trampoline flavors, in order to simplify trampoline selection in the
kernel.

The following is an example if a signal trampoline name which indicates that the trampoline is used for tradi-
tional BSD-style signal handlers and implements version 1 of the signal trampoline ABI:

__sigtramp_sigcontext_1

The current signal trampoline is:

__sigtramp_siginfo_2

SEE ALSO
sigaction (2), signal (7), condvar (9)

NetBSD 3.0 December 20, 2005 6

SOFTINT (9) NetBSD Kernel Developer’s Manual SOFTINT(9)

NAME
softint, softint_establish, softint_disestablish, softint_schedule — machine-
independent software interrupt framework

SYNOPSIS
#include <sys/intr.h>

void ∗
softint_establish(int flags , void (∗ func)(void ∗) , void ∗ arg);

void
softint_disestablish(void ∗ cookie);

void
softint_schedule(void ∗ cookie);

DESCRIPTION
The software interrupt framework is designed to provide a generic software interrupt mechanism which can
be used any time a low-priority callback is needed.

It allows dynamic registration of software interrupts for loadable drivers and protocol stacks, prioritization
and fair queueing of software interrupts, and allows machine-dependent optimizations to reduce cost.

Four priority levels are provided. Inorder of priority (lowest to highest) the levels are: clock, bio, net, serial.
The names are symbolic and in isolation do not have any direct connection with a particular kind of device
activity: they are only meant as a guide.

The four priority levels map directly to scheduler priority levels, and where the architecture implements ’fast’
software interrupts, they also map onto interrupt priorities.The interrupt priorities are intended to be hidden
from machine independent code, which should in general use thread-safe mechanisms to synchronize with
software interrupts (for example: mutexes).

Software interrupts run with limited machine context. In particular, they do not possess any address space
context. They should not try to operate on user space addresses, or to use virtual memory facilities other
than those noted as interrupt safe.Unlike hardware interrupts, software interrupts do have thread context.
They may block on synchronization objects, sleep, and resume execution at a later time.

Since software interrupts are a limited resource and run with higher priority than most other LWPs in the sys-
tem, all block-and-resume activity by a software interrupt must be kept short to allow further processing at
that level to continue. Byextension, code running with process context must take care to ensure that any
lock that may be taken from a software interrupt can not be held for more than a short period of time.

The kernel does not allow software interrupts to use facilities or perform actions that are likely to block for a
significant amount of time.This means that it’s not valid for a software interrupt to sleep on condition vari-
ables or to wait for resources to become available (for example, memory).

The following is a brief description of each function in the framework:

softint_establish(flags , func , arg)

Register a software interrupt.The flags value must contain one of the following constants,
specifing the priority level for the soft interrupt:

SOFTINT_CLOCK, SOFTINT_BIO, SOFTINT_NET, SOFTINT_SERIAL

If the constant SOFTINT_MPSAFE is not logically ORed intoflags, the global
kernel_lock will automatically be acquired before the soft interrupt handler is called.

NetBSD 3.0 December 6, 2007 1

SOFTINT (9) NetBSD Kernel Developer’s Manual SOFTINT(9)

The constantfunc specifies the function to call when the soft interrupt is executed. Theargu-
mentarg will be passed to this function.

softint_establish() may block in order to allocate memory. If successful, it returns a
non-NULL opaque value to be used as an argument tosoftint_schedule() and/or
softint_disestablish(). If for some reason it does not succeed, it returnsNULL.

softint_disestablish(cookie)

Deallocate a software interrupt previously allocated by a call tosoftint_establish().

softint_schedule(cookie)

Schedule a software interrupt previously allocated by a call tosoftint_establish() to be
executed as soon as that software interrupt is unblocked. softint_schedule() can safely be
called multiple times before the callback routine is invoked.

Soft interrupt scheduling is CPU-local.A request to dispatch a soft interrupt will only be ser-
viced on the same CPU where the request was made.The LWPs (light weight processes) dedi-
cated to soft interrupt processing are bound to their home CPUs, so if a soft interrupt handler
sleeps and later resumes, it will always resume on the same CPU.

On a system with multiple processors, multiple instances of the same soft interrupt handler can
be in flight simultaneously (at most one per-CPU).

SEE ALSO
mutex (9), rwlock (9), spl (9)

HISTORY
TheNetBSD machine-independent software interrupt framework was designed in 1997 and was implemented
by one port inNetBSD 1.3. However, it did not gain wider implementation untilNetBSD 1.5. Between
NetBSD 4.0 andNetBSD 5.0 the framework was re-implemented in a machine-independant way to provide
software interrupts with thread context.

NetBSD 3.0 December 6, 2007 2

SPL (9) NetBSD Kernel Developer’s Manual SPL(9)

NAME
spl, spl0, splhigh, splvm, splsched, splsoftbio, splsoftclock, splsoftnet,
splsoftserial, splx — modify system interrupt priority level

SYNOPSIS
#include <sys/intr.h>

void
spl0(void);

int
splhigh(void);

int
splsched(void);

int
splvm(void);

int
splsoftbio(void);

int
splsoftclock(void);

int
splsoftserial(void);

int
splsoftnet(void);

void
splx(int s);

DESCRIPTION
These functions raise and lower the interrupt priority level. They are used by kernel code to block interrupts
in critical sections, in order to protect data structures.

In a multi-CPU system, these functions change the interrupt priority level on the local CPU only. In general,
device drivers should not make use of these interfaces. To ensure correct synchronization, device drivers
should use thecondvar (9), mutex (9), andrwlock (9) interfaces.

Interrupt priorities are arranged in a strict hierarchy, although sometimes levels may be equivalent (overlap).
The hierarchy means that raising the IPL to any lev el will block interrupts at that level, and at all lower lev-
els. Thehierarchy is used to minimize data loss due to interrupts not being serviced in a timely fashion.

The levels may be divided into two groups: hard and soft. Hard interrupts are generated by hardware
devices. Softinterrupts are a way of deferring hardware interrupts to do more expensive processing at a
lower interrupt priority, and are explicitly scheduled by the higher-level interrupt handler. Software inter-
rupts are further described bysoftint (9).

Note that hard interupt handlers do not possess process (thread) context and so it is not valid to use kernel
facilities that may attempt to sleep from a hardware interrupt.For example, it is not possible to acquire a
reader/writer lock from a hardware interrupt. Soft interrupt handlers possess limited process context and so
may sleep briefly in order to acquire a reader/writer lock or adaptive mutex, but may not sleep for any other
reason.

NetBSD 3.0 February 13, 2008 1

SPL (9) NetBSD Kernel Developer’s Manual SPL(9)

In order of highest to lowest priority, the priority-raising functions along with their counterpart symbolic tags
are:

splhigh(), IPL_HIGH

Blocks all hard and soft interrupts, including the highest level I /O interrupts, such as interrupts
from serial interfaces and the statistics clock (if any). It is also used for code that cannot tolerate
any interrupts.

Code running at this level may not (in general) directly access machine independent kernel ser-
vices. For example, it is illegal to call the kernelprintf() function or to try and allocate mem-
ory. The methods of synchronization available are: spin mutexes and scheduling a soft interrupt.
Generally, all code run at this level must schedule additional processing to run in a software inter-
rupt.

Code with thread context running at this level must not use a kernel interface that may cause the
current LWP to sleep, such as thecondvar interfaces.

Interrupt handlers at this level cannot acquire the global kernel_lock and so must be coded to
ensure correct synchronization on multiprocessor systems.

splsched(), IPL_SCHED

Blocks all medium priority hardware interrupts, such as interrupts from audio devices, and the
clock interrupt.

Interrupt handlers running at this level endure the same restrictions as at IPL_HIGH, but may
access scheduler interfaces, and so may awaken LWPs (light weight processes) using the
condvar (9) interfaces, and may schedule callouts using thecallout (9) interfaces.

Code with thread context running at this level may sleep via thecondvar interfaces, and may
use other kernel facilities that could cause the current LWP to sleep.

splvm(), IPL_VM

Blocks hard interrupts from ’low’ priority hardware interrupts, such as interrupts from network,
block I/O and tty devices.

Code running at this level endures the same restrictions as at IPL_SCHED, but may use the dep-
recatedmalloc (9) or endorsedpool_cache (9) interfaces to allocate memory.

At the time of writing, the globalkernel_lock is automatically acquired for interrupts at this
level, in order to support device drivers that do not provide their own multiprocessor synchroniza-
tion. A future release of the system may allow the automatic acquisition ofkernel_lock to
be disabled for individual interrupt handlers.

splsoftserial(), IPL_SOFTSERIAL

Blocks soft interrupts at the IPL_SOFTSERIAL symbolic level.

This is the first of the software levels. Soft interrupts at this level and lower may acquire
reader/writer locks or adaptive mutexes.

splsoftnet(), IPL_SOFTNET

Blocks soft interrupts at the IPL_SOFTNET symbolic level.

splsoftbio(), IPL_SOFTBIO

Blocks soft interrupts at the IPL_SOFTBIO symbolic level.

NetBSD 3.0 February 13, 2008 2

SPL (9) NetBSD Kernel Developer’s Manual SPL(9)

splsoftclock(), IPL_SOFTCLOCK

Blocks soft interrupts at the IPL_SOFTCLOCK symbolic level.

This is the priority at which callbacks generated by thecallout (9) facility runs.

One function lowers the system priority level:

spl0(), IPL_NONE

Unblocks all interrupts. This should rarely be used directly;splx() should be used instead.

Thesplx() function restores the system priority level to the one encoded ins, which must be a value previ-
ously returned by one of the otherspl functions.

SEE ALSO
condvar (9), mutex (9), rwlock (9)

HISTORY
In 4.4BSD, splnet() was used to block network software interrupts. Most device drivers usedsplimp()
to block hardware interrupts.To avoid unnecessarily blocking other interrupts, inNetBSD 1.1 a new function
was added that blocks only network hardware interrupts.For consistency with otherspl functions, the old
splnet() function was renamed tosplsoftnet(), and the new function was namedsplnet().

Originally,splsoftclock() lowered the system priority level. During theNetBSD 1.5 development cycle,
spllowersoftclock() was introduced and the semantics ofsplsoftclock() were changed.

The splimp() call was removed from the kernel betweenNetBSD 1.5 andNetBSD 1.6. Thefunction of
splimp() was replaced bysplvm() and code which abused the semantics ofsplimp() was changed to not
mix interrupt priority levels.

BetweenNetBSD 4.0 andNetBSD 5.0, the hardware levels were reduced in number and a strict hierarchy
defined.

NetBSD 3.0 February 13, 2008 3

SPLRAISEIPL (9) NetBSD Kernel Developer’s Manual SPLRAISEIPL(9)

NAME
splraiseipl — raise the system priority level

SYNOPSIS
#include <sys/param.h>

int
splraiseipl(ipl_cookie_t icookie);

DESCRIPTION
splraiseipl() raises the system priority level to the level specified byicookie. icookie should be a
value returned bymakeiplcookie().

In general, device drivers should not make use of this interface. To ensure correct synchronization, device
drivers should use thecondvar (9), mutex (9), andrwlock (9) interfaces.

See thespl (9) manual page for a description of interrupt priority levels.

RETURN VALUES
splraiseipl() returns saved priority level which can be used forsplx().

EXAMPLES
The following two lines are functional equivalents.

s = s plraiseipl(makeiplcookie(IPL_VM));

s = s plvm();

Becausemakeiplcookie() can be slow and is not expected to be used in a perfomance critical path, it’s
better to do it beforehand.

initialization_code(ipl_t ipl)
{

ourcookie = makeiplcookie(ipl);
}

performance_critical_code()
{

int s;

s = s plraiseipl(ourcookie);
do_something();
splx(s);

}

SEE ALSO
condvar (9), makeiplcookie (9), mutex (9), rwlock (9), spl (9)

NetBSD 3.0 February 11, 2007 1

STORE (9) NetBSD Kernel Developer’s Manual STORE (9)

NAME
store, subyte, suibyte, susword, suswintr, suword, suiword — store data to user-space

SYNOPSIS
#include <sys/types.h>
#include <sys/systm.h>

int
subyte(void ∗ base , int c);

int
susword(void ∗ base , short c);

int
suswintr(void ∗ base , short c);

int
suword(void ∗ base , long c);

DESCRIPTION
Thestore functions are designed to copy small amounts of data to the user-space of the currently running
process.

Thestore routines provide the following functionality:

subyte() Stores a byte of data to the user-space addressbase.

susword() Stores a short word of data to the user-space addressbase.

suswintr() Stores a short word of data to the user-space addressbase. This function is safe to call dur-
ing an interrupt context.

suword() Stores a word of data to the user-space addressbase.

RETURN VALUES
Thestore functions return 0 on success or -1 on failure.

SEE ALSO
copy (9), fetch (9)

NetBSD 3.0 January 7, 1996 1

SUSPENDSCHED (9) NetBSD Kernel Developer’s Manual SUSPENDSCHED(9)

NAME
suspendsched — suspend the scheduler

SYNOPSIS
#include <sys/proc.h>
#include <sys/sched.h>

void
suspendsched(void);

DESCRIPTION
The suspendsched() function suspends the operation of the scheduler by stopping all non-system pro-
cesses which are on the run queue or the sleep queue.

Thesuspendsched() function must not be called with the scheduler lock held.

SEE ALSO
scheduler (9)

NetBSD 3.0 September 21, 2002 1

SYSCTL (9) NetBSD Kernel Developer’s Manual SYSCTL(9)

NAME
sysctl — system variable control interfaces

SYNOPSIS
#include <sys/param.h>
#include <sys/sysctl.h>

Primary external interfaces:

void
sysctl_init(void);

int
sysctl_lock(struct lwp ∗ l , void ∗ oldp , size_t savelen);

int
sysctl_dispatch(const int ∗ name , u_int namelen , void ∗ oldp , size_t ∗ oldlenp ,

const void ∗ newp , size_t newlen , const int ∗ oname , struct lwp ∗ l ,
const struct sysctlnode ∗ rnode);

void
sysctl_unlock(struct lwp ∗ l);

int
sysctl_createv(struct sysctllog ∗∗ log , int cflags ,

const struct sysctlnode ∗∗ rnode , const struct sysctlnode ∗∗ cnode ,
int flags , int type , const char ∗ namep , const char ∗ desc ,
sysctlfn func , u_quad_t qv , void ∗ newp , size_t newlen , ...);

int
sysctl_destroyv(struct sysctlnode ∗ rnode , ...);

void
sysctl_free(struct sysctlnode ∗ rnode);

void
sysctl_teardown(struct sysctllog ∗∗);

int
old_sysctl(int ∗ name , u_int namelen , void ∗ oldp , size_t ∗ oldlenp ,

void ∗ newp , size_t newlen , struct lwp ∗ l);

Core internal functions:

int
sysctl_locate(struct lwp ∗ l , const int ∗ name , u_int namelen ,

const struct sysctlnode ∗∗ rnode , int ∗ nip);

int
sysctl_lookup(const int ∗ name , u_int namelen , void ∗ oldp , size_t ∗ oldlenp ,

const void ∗ newp , size_t newlen , const int ∗ oname , struct lwp ∗ l ,
const struct sysctlnode ∗ rnode);

int
sysctl_create(const int ∗ name , u_int namelen , void ∗ oldp , size_t ∗ oldlenp ,

const void ∗ newp , size_t newlen , const int ∗ oname , struct lwp ∗ l ,
const struct sysctlnode ∗ rnode);

NetBSD 3.0 June 20, 2005 1

SYSCTL (9) NetBSD Kernel Developer’s Manual SYSCTL(9)

int
sysctl_destroy(const int ∗ name , u_int namelen , void ∗ oldp , size_t ∗ oldlenp ,

const void ∗ newp , size_t newlen , const int ∗ oname , struct lwp ∗ l ,
const struct sysctlnode ∗ rnode);

int
sysctl_query(const int ∗ name , u_int namelen , void ∗ oldp , size_t ∗ oldlenp ,

const void ∗ newp , size_t newlen , const int ∗ oname , struct lwp ∗ l ,
const struct sysctlnode ∗ rnode);

Simple “helper” functions:

int
sysctl_needfunc(const int ∗ name , u_int namelen , void ∗ oldp , size_t ∗ oldlenp ,

const void ∗ newp , size_t newlen , const int ∗ oname , struct lwp ∗ l ,
const struct sysctlnode ∗ rnode);

int
sysctl_notavail(const int ∗ name , u_int namelen , void ∗ oldp , size_t ∗ oldlenp ,

const void ∗ newp , size_t newlen , const int ∗ oname , struct lwp ∗ l ,
const struct sysctlnode ∗ rnode);

int
sysctl_null(const int ∗ name , u_int namelen , void ∗ oldp , size_t ∗ oldlenp ,

const void ∗ newp , size_t newlen , const int ∗ oname , struct lwp ∗ l ,
const struct sysctlnode ∗ rnode);

DESCRIPTION
The SYSCTL subsystem instruments a number of kernel tunables and other data structures via a simple
MIB-lik e interface, primarily for consumption by userland programs, but also for use internally by the ker-
nel.

LOCKING
All operations on the SYSCTL tree must be protected by acquiring the main SYSCTL lock.The only func-
tions that can be called when the lock is not held aresysctl_lock(), sysctl_createv(),
sysctl_destroyv(), andold_sysctl(). All other functions require the tree to be locked. Thisis to
prevent other users of the tree from moving nodes around during an add operation, or from destroying nodes
or subtrees that are actively being used. The lock is acquired by callingsysctl_lock() with a pointer to
the process’s lwp l (NULLmay be passed to all functions as the lwp pointer if no lwp is appropriate, though
any changes made viasysctl_create(), sysctl_destroy(), sysctl_lookup(), or by any helper
function will be done with effective superuser privileges). Theoldp andsavelen arguments are a pointer
to and the size of the memory region the caller will be using to collect data from SYSCTL. These may also
beNULLand 0, respectively.

The memory region will be locked viauvm_vslock() if it is a region in userspace. The address and size of
the region are recorded so that when the SYSCTL lock is to be released viasysctl_unlock(), only the
lwp pointerl is required.

LOOKUPS
Once the lock has been acquired, it is typical to callsysctl_dispatch() to handle the request.
sysctl_dispatch() will examine the contents ofname, an array of integers at leastnamelen long,
which is to be located in kernel space, in order to determine which function to call to handle the specific
request.

NetBSD 3.0 June 20, 2005 2

SYSCTL (9) NetBSD Kernel Developer’s Manual SYSCTL(9)

sysctl_dispatch() uses the following algorithm to determine the function to call:

• Scan the tree usingsysctl_locate()

• If the node returned has a “helper” function, call it

• If the requested node was found but has no function, callsysctl_lookup()

• If the node was not found andname specifies one ofsysctl_query(), sysctl_create(), or
sysctl_destroy(), call the appropriate function

• If none of these options applies and no other error was yet recorded, returnEOPNOTSUPP

The oldp and oldlenp arguments tosysctl_dispatch(), as with all the other core functions,
describe an area into which the current or requested value may be copied.oldp may or may not be a
pointer into userspace (as dictated by whetherl is NULL or not). oldlenp is a non-NULL pointer to a
size_t. newp andnewlen describe an area where the new value for the request may be found;newp may
also be a pointer into userspace.Theoname argument is a non-NULLpointer to the base of the request cur-
rently being processed. By simple arithmetic onname, namelen, and oname, one can easily determine
the entire original request andnamelen values, if needed. The rnode value, as passed to
sysctl_dispatch() represents the root of the tree into which the current request is to be dispatched.If
NULL, the main tree will be used.

sysctl_locate() scans a tree for the node most specific to a request.If the pointer referenced byrnode
is notNULL, the tree indicated is searched, otherwise the main tree will be used.The address of the most rel-
evant node will be returned viarnode and the number of MIB entries consumed will be returned vianip, if
it is notNULL.

Thesysctl_lookup() function takes the same arguments assysctl_dispatch() with the caveat that
the value fornamelen must be zero in order to indicate that the node referenced by thernode argument is
the one to which the lookup is being applied.

CREATION AND DESTRUCTION OF NODES
New nodes are created and destroyed by thesysctl_create() and sysctl_destroy() functions.
These functions take the same arguments assysctl_dispatch() with the additional requirement that the
namelen argument must be 1 and thename argument must point to an integer valued eitherCTL_CREATE
or CTL_CREATESYMwhen creating a new node, orCTL_DESTROYwhen destroying a node.Thenewp
and newlen arguments should point to a copy of the node to be created or destroyed. If the create or
destroy operation was successful, a copy of the node created or destroyed will be placed in the space indi-
cated byoldp andoldlenp. If the create operation fails because of a conflict with an existing node, a
copy of that node will be returned instead.

In order to facilitate the creation and destruction of nodes from a given tree by kernel subsystems, the func-
tions sysctl_createv() and sysctl_destroyv() are provided. Thesefunctions take care of the
overhead of filling in the contents of the create or destroy request, dealing with locking, locating the appro-
priate parent node, etc.

The arguments tosysctl_createv() are used to construct the new node. If the log argument is not
NULL, a sysctllog structure will be allocated and the pointer referenced will be changed to address it.The
same log may be used for any number of nodes, provided they are all inserted into the same tree. This allows
for a series of nodes to be created and later removed from the tree in a single transaction (via
sysctl_teardown()) without the need for any record keeping on the caller’s part. Thecflags argu-
ment is currently unused and must be zero.Thernode argument must either beNULLor a valid pointer to
a reference to the root of the tree into which the new node must be placed. If it isNULL, the main tree will
be used. It is illegal for rnode to refer to aNULLpointer. If thecnode argument is notNULL, on return it
will be adjusted to point to the address of the new node.

NetBSD 3.0 June 20, 2005 3

SYSCTL (9) NetBSD Kernel Developer’s Manual SYSCTL(9)

The flags andtype arguments are combined into thesysctl_flags field, and the current value for
SYSCTL_VERSIONis added in. Note: theCTLFLAG_PERMANENTflag can only be set from SYSCTL set-
up routines (seeSETUP FUNCTIONS) as called bysysctl_init(). Thenamep argument is copied
into thesysctl_name field and must be less thanSYSCTL_NAMELENcharacters in length. The string
indicated bydesc will be copied if theCTLFLAG_OWNDESCflag is set, and will be used as the node’s
description. Note:if sysctl_destroyv() attempts to delete a node that does not own its own description
(and is not marked as permanent), but the deletion fails, the description will be copied and
sysctl_destroyv() will set theCTLFLAG_OWNDESCflag.

Thefunc argument is the name of a “helper” function (seeHELPER FUNCTIONS AND MA CROS). If
the CTLFLAG_IMMEDIATEflag is set, theqv argument will be interpreted as the initial value for the new
“int” or “quad” node. This flag does not apply to any other type of node.The newp andnewlen argu-
ments describe the data external to SYSCTL that is to be instrumented. One offunc, qv and the
CTLFLAG_IMMEDIATEflag, ornewp andnewlen must be given for nodes that instrument data, other-
wise an error is returned.

The remaining arguments are a list of integers specifying the path through the MIB to the node being created.
The list must be terminated by theCTL_EOLvalue. Thepenultimate value in the list may beCTL_CREATE
if a dynamic MIB entry is to be made for this node.sysctl_createv() specifically does not support
CTL_CREATESYM, since setup routines are expected to be able to use the in-kernelksyms (4) interface to
discover the location of the data to be instrumented.If the node to be created matches a node that already
exists, a return code of 0 is given, indicating success.

When usingsysctl_destroyv() to destroy a giv en node, thernode argument, if notNULL, is taken to
be the root of the tree from which the node is to be destroyed, otherwise the main tree is used.The rest of
the arguments are a list of integers specifying the path through the MIB to the node being destroyed. If the
node being destroyed does not exist, a successful return code is given. Nodes marked with the
CTLFLAG_PERMANENTflag cannot be destroyed.

HELPER FUNCTIONS AND MA CROS
Helper functions are invoked with the same common argument set assysctl_dispatch() except that the
rnode argument will never be NULL. It will be set to point to the node that corresponds most closely to the
current request. Helpers are forbidden from modifying the node they are passed; they should instead copy
the structure if changes are required in order to effect access control or other checks. The “helper” prototype
and function that needs to ensure that a newly assigned value is within a certain range (presuming external
data) would look like the following:

static int sysctl_helper(SYSCTLFN_PROTO);

static int
sysctl_helper(SYSCTLFN_ARGS)
{

struct sysctlnode node;
int t, error;

node = ∗ rnode;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)

return (error);

if (t < 0 || t > 20)
return (EINVAL);

NetBSD 3.0 June 20, 2005 4

SYSCTL (9) NetBSD Kernel Developer’s Manual SYSCTL(9)

∗ (int ∗)rnode->sysctl_data = t;
return (0);

}

The use of theSYSCTLFN_PROTO, SYSCTLFN_ARGS, and SYSCTLFN_CALL
macros ensure that all arguments are passed properly. The single argument to theSYSCTLFN_CALLmacro
is the pointer to the node being examined.

Three basic helper functions are available for use.sysctl_needfunc() will emit a warning to the system
console whenever it is inv oked and provides a simplistic read-only interface to the given node.
sysctl_notavail() will forward “queries” tosysctl_query() so that subtrees can be discovered, but
will return EOPNOTSUPPfor any other condition. sysctl_null() specifically ignores any arguments
given, sets the value indicated byoldlenp to zero, and returns success.

SETUP FUNCTIONS
Though nodes can be added to the SYSCTL tree at any time, in order to add nodes during the kernel boot-
strap phase, a proper “setup” function must be used. Setup functions are declared using the
SYSCTL_SETUPmacro, which takes the name of the function and a short string description of the function
as arguments. Theaddress of the function is added to a list of functions thatsysctl_init() traverses dur-
ing initialization.

Setup functions do not have to add nodes to the main tree, but can set up their own trees for emulation or
other purposes. Emulations that require use of a main tree but with some nodes changed to suit their own
purposes can arrange to overlay a sparse private tree onto their main tree by making thee_sysctlovly
member of their struct emul definition point to the overlaid tree.

Setup functions should take care to create all nodes from the root down to the subtree they are creating, since
the order in which setup functions are called is arbitrary (the order in which setup functions are called is only
determined by the ordering of the object files as passed to the linker when the kernel is built).

MISCELLANEOUS FUNCTIONS
sysctl_init() is called early in the kernel bootstrap process.It initializes the SYSCTL lock, calls all the
registered setup functions, and marks the tree as permanent.

sysctl_free() will unconditionally delete any and all nodes below the given node. Itsintended use is for
the deletion of entire trees, not subtrees. If a subtree is to be removed, sysctl_destroy() or
sysctl_destroyv() should be used to ensure that nodes not owned by the sub-system being deactivated
are not mistakenly destroyed. TheSYSCTL lock must be held when calling this function.

sysctl_teardown() unwinds a sysctllog and deletes the nodes in the opposite order in which they were
created.

old_sysctl() provides an interface similar to the old SYSCTL implementation, with the exception that
access checks on a per-node basis are performed if thel argument is non-NULL. If called with aNULLargu-
ment, the values fornewp andoldp are interpreted as kernel addresses, and access is performed as for the
superuser.

NOTES
It is expected that nodes will be added to (or removed from) the tree during the following stages of a
machine’s lifetime:

• initialization -- when the kernel is booting
• autoconfiguration -- when devices are being probed at boot time

NetBSD 3.0 June 20, 2005 5

SYSCTL (9) NetBSD Kernel Developer’s Manual SYSCTL(9)

• “plug and play” device attachment -- when a PC-Card, USB, or other device is plugged in or attached
• LKM initialization -- when an LKM is being loaded
• “run-time” -- when a process creates a node via thesysctl (3) interface

Nodes marked withCTLFLAG_PERMANENTcan only be added to a tree during the first or initialization
phase, and can never be removed. Theinitialization phase terminates when the main tree’s root is marked
with theCTLFLAG_PERMANENTflag. Oncethe main tree is marked in this manner, no nodes can be added
to any tree that is marked withCTLFLAG_READONLYat its root, and no nodes can be added at all if the
main tree’s root is so marked.

Nodes added by device drivers, LKMs, and at device insertion time can be added to (and removed from)
“read-only” parent nodes.

Nodes created by processes can only be added to “writable” parent nodes.Seesysctl (3) for a description
of the flags that are allowed to be used by when creating nodes.

SEE ALSO
sysctl (3)

HISTORY
The dynamic SYSCTL implementation first appeared inNetBSD 2.0.

AUTHORS
Andrew Brown 〈atatat@NetBSD.org〉 designed and implemented the dynamic SYSCTL implementation.

NetBSD 3.0 June 20, 2005 6

SYSMON_ENVSYS (9) NetBSD Kernel Developer’s Manual SYSMON_ENVSYS(9)

NAME
sysmon_envsys — kernel part of the envsys 2 framework

SYNOPSIS
#include <dev/sysmon/sysmonvar.h>

struct sysmon_envsys ∗
sysmon_envsys_create(void);

void
sysmon_envsys_destroy(struct sysmon_envsys ∗);

int
sysmon_envsys_register(struct sysmon_envsys ∗);

void
sysmon_envsys_unregister(struct sysmon_envsys ∗);

int
sysmon_envsys_sensor_attach(struct sysmon_envsys ∗ , envsys_data_t ∗);

int
sysmon_envsys_sensor_detach(struct sysmon_envsys ∗ , envsys_data_t ∗);

DESCRIPTION
sysmon_envsys is the kernel part of theenvsys (4) framework. With this framework you are able to
register and unregister asysmon_envsys device, attach or detach sensors into a device and enable or dis-
able automatic monitoring for some sensors without any user interactivity, among other things.

HOW TO USE THE FRAMEW ORK
To register a new driver to the sysmon_envsys framework, a sysmon_envsysobject must be allocated
and initialized; thesysmon_envsys_create() function is used for this. This returns a zero’ed pointer to
a sysmon_envsys structure and takes care of initialization of some private features.

Once we have the object we could start initializing sensors (see theSENSOR DETAILS section for more
information) and attaching them to the device, this is acomplished by the
sysmon_envsys_sensor_attach() function. This function attachs the envsys_data_t (sensor) speci-
fied as second argument into the sysmon_envsys object specified in the first argument.

Finally when the sensors are already attached, the device needs to set some required (and optional) members
of the sysmon_envsys struct before calling thesysmon_envsys_register() function to register the
device.

If there’s some error before registering the device, thesysmon_envsys_destroy() function must be
used to detach the sensors previously attached and free the sysmon_envsys object allocated by the
sysmon_envsys_create() function.

Thesysmon_envsysstructure is defined as follow (only the public members are shown):

struct sysmon_envsys {
const char ∗ sme_name;
int sme_flags;
int sme_class;
uint64_t sme_events_timeout;
void ∗ sme_cookie;
void (∗ sme_refresh)(struct sysmon_envsys ∗ , e nvsys_data_t ∗);

};

NetBSD 3.0 February 28, 2008 1

SYSMON_ENVSYS (9) NetBSD Kernel Developer’s Manual SYSMON_ENVSYS(9)

The members have the following meaning:

sme_class This specifies the class of the sysmon envsys device. See the
DEVICE CLASSES section for more information (OPTIONAL).

sme_name The name that will be used in the driver (REQUIRED).

sme_flags Additional flags for thesysmon_envsys device. Currently support-
ing SME_DISABLE_REFRESH. If enabled, thesme_refresh
function callback won’t be used to refresh sensors data and the driver
will use its own method. Hencesme_cookie won’t be necessary
either (OPTIONAL).

sme_events_timeout This is used to specify the default timeout value that will be used to
check for critical events if any monitoring flag was set. The value is
used as seconds (OPTIONAL).

If the driver wants to refresh sensors data via thesysmon_envsys framework, the following members
must be specified:

sme_cookie Pointer to the device struct (also called “softc”). This may be used in
thesme_refreshfunction callback.

sme_refresh Pointer to a function that will be used to refresh sensor data in the
device. This can be used to set the state and other properties of the
sensor depending of the returned data by the driver. NOTE: You don’t
have to refresh all sensors, only the sensor specified by the
edata->sensorindex.

Note that it’s not necessary to refresh the sensors data before the driver is registered, only do it if you need
the data in your driver to check for a specific condition.

The timeout value for the monitoring events on a device may be changed via theENVSYS_SETDICTIONARY
ioctl (2) or theenvstat (8) command.

To unregister a driver previously registered with the sysmon_envsys framework, the
sysmon_envsys_unregister() function must be used. If there were monitoring events registered for
the driver, they all will be destroyed before the device is unregistered and its sensors will be detached; finally
thesysmon_envsysobject will be freed, so there’s no need to callsysmon_envsys_destroy() if we are
going to unregister a device.

DEVICE CLASSES
Thesme_class member of thesysmon_envsys structure is an optional flag that specifies the class of
the sysmon envsys device. Currently there are two classes:

SME_CLASS_ACADAPTER

This class is for devices that want to act as anAC adapter. The device writer must ensure that at
least there is a sensor withunitsof ENVSYS_INDICATOR. This will be used to report its current
state (on/off).

SME_CLASS_BATTERY

This class is for devices that want to act as anBattery. The device writer must ensure that at least
there are two sensors with units of ENVSYS_BATTERY_CAPACITY and
ENVSYS_BATTERY_CHARGE .

These two sensors are used to ensure that the battery device won’t nev er send alow-powerev ent to
thepowerd (8) daemon (if running) when all battery devices are in a critical state.The critical state
means that a battery is not currently charging and its charge state is low or critical. When the

NetBSD 3.0 February 28, 2008 2

SYSMON_ENVSYS (9) NetBSD Kernel Developer’s Manual SYSMON_ENVSYS(9)

low-powercondition is met, an event is sent to thepowerd (8) daemon (if running) and will shut-
down the system gracefully via the/etc/powerd/scripts/sensor_battery script.

If powerd (8) is not running, the system will be powered off via thecpu_reboot (9) call with the
RB_POWERDOWNflag.

NOTE: If a SME_CLASS_ACADAPTERor SME_CLASS_BATTERYclass don’t hav ethe sensors required, the
low-powerev ent will never be sent, and the graceful shutdown won’t be possible.

SENSOR DETAILS
Each sensor uses aenvsys_data_tstructure, it’s defined as follow (only the public members are shown);

typedef struct envsys_data {
uint32_t units;
uint32_t state;
uint32_t flags;
uint32_t rpms;
int32_t rfact;
int32_t value_cur;
int32_t value_max;
int32_t value_min;
int32_t value_avg;
bool monitor;
char desc[ENVSYS_DESCLEN];

} e nvsys_data_t;

The members for theenvsys_data_tstructure have the following meaning:

units Used to set the units type.

state Used to set the current state.

flags Used to set additional flags.

rpms Used to set the nominal RPM value forfan sensors.

rfact Used to set the rfact value forvoltagesensors.

value_cur Used to set the current value.

value_max Used to set the maximum value.

value_min Used to set the minimum value.

value_avg Used to set the average value.

monitor Used to enable automatic sensor monitoring (by default it’s disabled). The automatic
sensor monitoring will check if a condition is met periodically and will send an event to
thepowerd (8) daemon (if running). The monitoring event will be registered when this
flag is true and one or more of theENVSYS_FMONFOOflags were set in theflags
member.

desc Used to set the description string.NOTE that the description string must be unique in a
device, and sensors with duplicate or empty description will simply be ignored.

Users of this framework must take care about the following points:

• Thedesc member needs to have a valid description, unique in a device and non empty to be valid.

NetBSD 3.0 February 28, 2008 3

SYSMON_ENVSYS (9) NetBSD Kernel Developer’s Manual SYSMON_ENVSYS(9)

• Theunits type must be valid. The following units are defined:

ENVSYS_STEMP For temperature sensors.
ENVSYS_SFANRPM For fan sensors.
ENVSYS_SVOLTS_AC For AC Voltage.
ENVSYS_SVOLTS_DC For DC Voltage.
ENVSYS_SOHMS For Ohms.
ENVSYS_SWATTS For Watts.
ENVSYS_SAMPS For Ampere.
ENVSYS_SWATTHOUR For Watts hour.
ENVSYS_SAMPHOUR For Ampere hour.
ENVSYS_INDICATOR For sensors that only want a boolean type.
ENVSYS_INTEGER For sensors that only want an integer type.
ENVSYS_DRIVE For drive sensors.
ENVSYS_BATTERY_CAPACITY

For Battery device classes. This sensor unit uses the
ENVSYS_BATTERY_CAPACITY_∗ values in value_cur to
report its current capacity to userland. Mandatory ifsme_classis set
to SME_CLASS_BATTERY.

ENVSYS_BATTERY_CHARGE For Battery device classes. This sensor is equivalent to the Indicator
type, it’s a boolean. Use it to specify in what state is the Battery state:
true if the battery is currently charging orfalseotherwise. Mandatory
if sme_classis set toSME_CLASS_BATTERY.

• When initializing or refreshing the sensor, thestate member should be set to a known state (otherwise
it will be in unknown state). Possible values:

ENVSYS_SVALID Sets the sensor to a valid state.
ENVSYS_SINVALID Sets the sensor to an invalid state.
ENVSYS_SCRITICAL Sets the sensor to a critical state.
ENVSYS_SCRITUNDER Sets the sensor to a critical under state.
ENVSYS_SCRITOVER Sets the sensor to a critical over state.
ENVSYS_SWARNUNDER Sets the sensor to a warning under state.
ENVSYS_SWARNOVER Sets the sensor to a warning over state.

• Theflags member accepts one or more of the following flags:

ENVSYS_FCHANGERFACT Marks the sensor with ability to change therfact value on the fly (in
voltage sensors). Therfact member must be used in the correct place
of the code that retrieves and converts the value of the sensor.

ENVSYS_FPERCENT This uses thevalue_cur andvalue_max members to make a per-
centage. Both values must be enabled and have data.

ENVSYS_FVALID_MAX Marks thevalue_max value as valid.

ENVSYS_FVALID_MIN Marks thevalue_min value as valid.

ENVSYS_FVALID_AVG Marks thevalue_avg value as valid.

ENVSYS_FMONCRITICAL Enables and registers a new event to monitor a critical state.

ENVSYS_FMONCRITUNDER
Enables and registers a new event to monitor a critical under state.

ENVSYS_FMONCRITOVER Enables and registers a new event to monitor a critical over state.

NetBSD 3.0 February 28, 2008 4

SYSMON_ENVSYS (9) NetBSD Kernel Developer’s Manual SYSMON_ENVSYS(9)

ENVSYS_FMONWARNUNDER
Enables and registers a new event to monitor a warning under state.

ENVSYS_FMONWARNOVER
Enables and registers a new event to monitor a warning over state.

ENVSYS_FMONSTCHANGED
Enables and registers a new event to monitor Battery capacity or drive
state sensors. It won’t be effective if the units member is not set to
ENVSYS_DRIVE or ENVSYS_BATTERY_CAPACITY.

ENVSYS_FMONNOTSUPP Disallows to set a critical limit via theENVSYS_SETDICTIONARY
ioctl(2) . This flag has not any effect for monitoring flags set in the
driver and it’s only meant to disable setting critical limits from userland.

If the driver has to use any of thevalue_max, value_min or value_avg members, they should be
marked as valid with the appropiate flag.

• If units is set toENVSYS_DRIVE, there are some predefined states that must be set (only one) to the
value_cur member:

ENVSYS_DRIVE_EMPTY Drive state is unknown.
ENVSYS_DRIVE_READY Drive is ready.
ENVSYS_DRIVE_POWERUP Drive is powering up.
ENVSYS_DRIVE_ONLINE Drive is online.
ENVSYS_DRIVE_OFFLINE Drive is offl ine.
ENVSYS_DRIVE_IDLE Drive is idle.
ENVSYS_DRIVE_ACTIVE Drive is active.
ENVSYS_DRIVE_BUILD Drive is building.
ENVSYS_DRIVE_REBUILD Drive is rebuilding.
ENVSYS_DRIVE_POWERDOWN

Drive is powering down.
ENVSYS_DRIVE_FAIL Drive has failed.
ENVSYS_DRIVE_PFAIL Drive has been degraded.
ENVSYS_DRIVE_MIGRATING Drive is migrating.
ENVSYS_DRIVE_CHECK Drive is checking its state.

• If units is set toENVSYS_BATTERY_CAPACITY, there are some predefined capacity states that must
be set (only one) to thevalue_cur member:

ENVSYS_BATTERY_CAPACITY_NORMAL Battery charge is in normal capacity.
ENVSYS_BATTERY_CAPACITY_CRITICAL

Battery charge is in critical capacity.
ENVSYS_BATTERY_CAPACITY_LOW Battery charge is in low capacity.
ENVSYS_BATTERY_CAPACITY_WARNING

Battery charge is in warning capacity.

• The envsys (4) framework expects to have the values converted to a unit that can be converted to
another one easily. That means the user should convert the value returned by the driver to the appropiate
unit. For example voltage sensors tomV, temperature sensors touK , Watts tomW, Ampere tomA, etc.

The following types shouldn’t need any conversion: ENVSYS_BATTERY_CAPACITY,
ENVSYS_BATTERY_CHARGE, ENVSYS_INDICATOR, ENVSYS_INTEGER andENVSYS_DRIVE.

PLEASE NOTE THAT YOU MUST AVOID USING FLOATING POINT OPERATIONS IN KERNEL
WHEN CONVERTING THE DATA RETURNED BY THE DRIVER TO THE APPROPIATE UNIT, IT’S
NOT ALLOWED.

NetBSD 3.0 February 28, 2008 5

SYSMON_ENVSYS (9) NetBSD Kernel Developer’s Manual SYSMON_ENVSYS(9)

HOW TO ENABLE AUTOMATIC MONITORING IN SENSORS
The following example illustrates how to enable automatic monitoring in a virtual driver for acritical state in
the first sensor(sc_sensor[0]):

int
mydriver_initialize_sensors(struct mysoftc ∗ sc)
{

...
/ ∗ sensor is initialized with a valid state ∗ /
sc->sc_sensor[0].state = ENVSYS_SVALID;

/ ∗
∗ the monitor member must be true to enable
∗ automatic monitoring.
∗ /

sc->sc_sensor[0].monitor = true;

/ ∗ and now we specify the type of the monitoring event ∗ /
sc->sc_sensor[0].flags |= ENVSYS_FMONCRITICAL;
...

}

int
mydriver_refresh(struct sysmon_envsys ∗ sme, envsys_data_t ∗ edata)
{

struct mysoftc ∗ sc = sme->sme_cookie;

/ ∗ we get current data from the driver ∗ /
edata->value_cur = sc->sc_getdata();

/ ∗
∗ if value is too high, mark the sensor in
∗ critical state.
∗ /

if (edata->value_cur > MYDRIVER_SENSOR0_HIWAT) {
edata->state = ENVSYS_SCRITICAL;
/ ∗ a c ritical event will be sent now automatically ∗ /

} e lse {
/ ∗

∗ if value is within the limits, and we came from
∗ a c ritical state make sure to change sensor’s state
∗ to valid.
∗ /

edata->state = ENVSYS_SVALID;
}
...

}

CODE REFERENCES
This section describes places within the NetBSD source tree where actual code implementing theenvsys 2
framework can be found. All pathnames are relative to /usr/src .

NetBSD 3.0 February 28, 2008 6

SYSMON_ENVSYS (9) NetBSD Kernel Developer’s Manual SYSMON_ENVSYS(9)

Theenvsys 2framework is implemented within the files:

sys/dev/sysmon/sysmon_envsys.c

sys/dev/sysmon/sysmon_envsys_events.c

sys/dev/sysmon/sysmon_envsys_tables.c

sys/dev/sysmon/sysmon_envsys_util.c

There’s an example LKM driver that shows how the framework works in:
sys/lkm/misc/envsys2/lkminit_envsys2.c .

SEE ALSO
envsys (4), envstat (8)

HISTORY
The first envsysframework first appeared inNetBSD 1.5. The envsys 2 framework first appeared in
NetBSD 5.0.

AUTHORS
The (current)envsys 2framework was implemented by Juan Romero Pardines. Additionalinput on the
design was provided by manyNetBSD developers around the world.

The firstenvsysframework was implemented by Jason R. Thorpe, Tim Rightnour and Bill Squier.

NetBSD 3.0 February 28, 2008 7

TC (9) NetBSD Kernel Developer’s Manual TC(9)

NAME
TC, tc_intr_establish, tc_intr_disestablish, tc_intr_evcnt. tc_mb, tc_wmb,
tc_syncbus, tc_badaddr, TC_DENSE_TO_SPARSE, TC_PHYS_TO_UNCACHED — TURBOchannel
bus

SYNOPSIS
#include <machine/bus.h>
#include <dev/tc/tcvar.h>
#include <dev/tc/tcdevs.h>

void
tc_intr_establish(struct device ∗ dev , void ∗ cookie , int level ,

int (∗ handler)(void ∗) , void ∗ arg);

void
tc_intr_disestablish(struct device ∗ dev , void ∗ cookie);

const struct evcnt ∗
tc_intr_evcnt(struct device ∗ dev , void ∗ cookie);

void
tc_mb();

void
tc_wmb();

void
tc_syncbus();

int
tc_badaddr(tc_addr_t tcaddr);

tc_addr_t
TC_DENSE_TO_SPARSE(tc_addr_t addr);

tc_addr_t
TC_PHYS_TO_UNCACHED(tc_addr_t addr);

DESCRIPTION
The TC device provides support for the DEC TURBOchannel bus found on all DEC TURBOchannel
machines with MIPS (DECstation 5000 series, excluding the 5000/200) and Alpha (3000-series) systems.
TURBOchannel is a 32-bit wide synchronous DMA-capable bus, running at 25 MHz on higher-end
machines and at 12.5 MHz on lower-end machines.

DATA T YPES
Drivers for devices attached to the TURBOchannel bus will make use of the following data types:

struct tc_attach_args
A structure use to inform the driver of TURBOchannel bus properties.It contains the following
members:

bus_space_tag_t ta_memt;
bus_dma_tag_t ta_dmat;
char ta_modname[TC_ROM_LLEN+1];
u_int ta_slot;
tc_offset_t ta_offset;
tc_addr_t ta_addr;

NetBSD 3.0 October 7, 2001 1

TC (9) NetBSD Kernel Developer’s Manual TC(9)

void ∗ ta_cookie;
u_int ta_busspeed;

The ta_busspeedmember specifies the TURBOchannel bus speed and is useful for time-related
functions. Values values areTC_SPEED_12_5_MHZfor the 12.5 MHz bus and
TC_SPEED_25_MHZfor the 50 MHz bus.

FUNCTIONS
tc_intr_establish(dev , cookie , level , handler , arg)

Establish an interrupt handler with device dev for the interrupt described completely by
cookie, the value passed to the driver in the ta_cookiemember of thetc_attach_argsstructure.
The priority of the interrupt is specified bylevel. When the interrupt occurs the function
handler is called with argumentarg.

tc_intr_disestablish(dev , cookie)
Dis-establish the interrupt handler with device dev for the interrupt described completely
cookie.

tc_intr_evcnt(dev , cookie)
Do interrupt event counting with devicedev for the event described completely bycookie.

tc_mb() A read/write memory barrier. Any CPU-to-memory reads/writes before the barrier must com-
plete before any CPU-to-memory reads/writes after it.

tc_wmb()
A write memory barrier. Any CPU-to-memory writes before the barrier must complete before
any CPU-to-memory writes after it.

tc_syncbus()
Synchronise writes on the TURBOchannel bus by ensuring CPU writes are propagated across the
TURBOchannel bus.

tc_badaddr(tcaddr)
Returns non-zero if the given addresstcaddr is invalid.

TC_DENSE_TO_SPARSE(addr)
Convert the given physical addressaddr in TURBOchannel dense space to the corresponding
address in TURBOchannel sparse space.

TC_PHYS_TO_UNCACHED(addr)
Convert the given system memory physical addressaddr to the physical address of the corre-
sponding region that is not cached.

AUTOCONFIGURATION
The TURBOchannel bus is a direct-connection bus. Duringautoconfiguration, the parent specifies the name
of the found TURBOchannel module into theta_modname member of thetc_attach_argsstructure. Driv-
ers should match on this name.

DMA SUPPORT
The TURBOchannel bus supports 32-bit, bidirectional DMA transfers. Support is provided by the standard
bus_dma(9) interface.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent TURBOchannel subsystem can be found. All pathnames are relative to /usr/src .

NetBSD 3.0 October 7, 2001 2

TC (9) NetBSD Kernel Developer’s Manual TC(9)

The TURBOchannel subsystem itself is implemented within the filesys/dev/tc/tc_subr.c .
Machine-dependent portions can be found insys/arch/<arch>/tc/tcbus.c .

SEE ALSO
tc (4), autoconf (9), bus_dma(9), bus_space (9), driver (9)

NetBSD 3.0 October 7, 2001 3

TCP_CONGCTL (9) NetBSD Kernel Developer’s Manual TCP_CONGCTL(9)

NAME
tcp_congctl — TCP congestion control API

SYNOPSIS
#include <netinet/tcp_congctl.h>

int
tcp_congctl_register(const char ∗ , struct tcp_congctl ∗);

int
tcp_congctl_unregister(const char ∗);

DESCRIPTION
The tcp_congctrl API is used to add or remove TCP congestion control algorithms on-the-fly and to
modularize them. It includes basically two functions:

tcp_congctl_register(const char ∗ , struct tcp_congctl ∗)
Registers a new congestion control algorithm.Thestruct tcp_congctl argument must con-
tain a list of callbacks like the following:

struct tcp_congctl {
int (∗ fast_retransmit)(struct tcpcb ∗ ,

struct tcphdr ∗);
void (∗ slow_retransmit)(struct tcpcb ∗);
void (∗ fast_retransmit_newack)(struct tcpcb ∗ ,

struct tcphdr ∗);
void (∗ newack)(struct tcpcb ∗ ,

struct tcphdr ∗);
void (∗ cong_exp)(struct tcpcb ∗);

};

tcp_congctl_unregister(const char ∗)
If found, unregister the selected TCP congestion control algorithm.

RETURN VALUES
tcp_congctl_register() andtcp_congctl_unregister() both return0 when there is no error.
If the name is already registered, tcp_congctl_register() will return EEXIST.
tcp_congctl_unregister() can returnENOENTif there is no congestion control algorithm by that
name and can returnEBUSYif the matched algorithm is being used by userspace applications.

FILES
Implementation is in sys/netinet/tcp_congctl.c and the interface is in
sys/netinet/tcp_congctl.h .

SEE ALSO
tcp (4)

NetBSD 3.0 October 15, 2006 1

TIME_SECOND (9) NetBSD Kernel Developer’s Manual TIME_SECOND(9)

NAME
boottime, time_second, time_uptime — system time variables

SYNOPSIS
extern struct timeval boottime;
extern time_t time_uptime;
extern time_t time_second;

DESCRIPTION
The time_secondvariable is the system’s “wall time” clock. It is set at boot byinittodr (9), and is
updated by thesettimeofday (2) system call and by periodic clock interrupts.

Theboottimevariable holds the system boot time. It is set fromtimeat system boot, and is updated when the
system time is adjusted withsettimeofday (2).

The time_uptimevariable is a monotonically increasing system clock. It is set fromtime_secondat boot, and
is updated by the periodic timer interrupt. (It is not updated bysettimeofday (2).)

All of these variables contain times expressed in seconds and microseconds since midnight (0 hour), January
1, 1970.

Clock interrupts should be blocked when reading or writingtime_secondor time_uptime, because those vari-
ables are updated byhardclock(). boottimeandruntimemay be read and written without special precau-
tions.

SEE ALSO
settimeofday (2), hardclock (9), hz (9), inittodr (9), microtime (9)

NetBSD 3.0 September 6, 2006 1

TIME (9) NetBSD Kernel Developer’s Manual TIME(9)

NAME
boottime, time_second, time_uptime — system time variables

SYNOPSIS
#include <sys/time.h>

extern struct timeval boottime;
extern time_t time_second;
extern time_t time_uptime;

DESCRIPTION
Theboottimevariable holds the system boot time.

Thetime_secondvariable is the system’s “wall time” clock to the second.

Thetime_uptimevariable is the number of seconds since boot.

The bintime (9), getbintime (9), microtime (9), getmicrotime (9), nanotime (9), and
getnanotime (9) functions can be used to get the current time more accurately and in an atomic manner.
Similarly, the binuptime (9), getbinuptime (9), microuptime (9), getmicrouptime (9),
nanouptime (9), andgetnanouptime (9) functions can be used to get the time elapse since boot more
accurately and in an atomic manner. Theboottimevariable may be read and written without special precau-
tions.

SEE ALSO
clock_settime (2), ntp_adjtime (2), settimeofday (2), bintime (9), binuptime (9),
getbintime (9), getbinuptime (9), getmicrotime (9), getmicrouptime (9), getnanotime (9),
getnanouptime (9), microtime (9), microuptime (9), nanotime (9), nanouptime (9)

Poul-Henning Kamp, "Timecounters: Efficient and precise timekeeping in SMP kernels",Proceedings of
EuroBSDCon 2002, Amsterdam.

Marshall Kirk McKusick and George V. Neville-Neil, The Design and Implementation of the FreeBSD
Operating System, Addison-Wesley, 57-61,65-66, July 2004.

NetBSD 3.0 September 17, 2004 1

TODR (9) NetBSD Kernel Developer’s Manual TODR (9)

NAME
todr_attach, todr_gettime, todr_settime, clock_ymdhms_to_secs,
clock_secs_to_ymdhms — time-of-day clock support

SYNOPSIS
#include <dev/clock_subr.h>

void
todr_attach(todr_chip_handle_t);

int
todr_gettime(todr_chip_handle_t , struct timeval ∗);

int
todr_settime(todr_chip_handle_t , struct timeval ∗);

void
clock_secs_to_ymdhms(int , struct clock_ymdhms ∗);

time_t
clock_ymdhms_to_secs(struct clock_ymdhms ∗);

DESCRIPTION
Thetodr_∗ () functions provide an interface to read, set and controltime-of-day devices. Adriver for
a time-of-day device registers itstodr_chip_handle_t with machine-dependent code using the
todr_attach() function. Alternatively, a machine-dependent front-end to atime-of-day device driver
may obtain thetodr_chip_handle_t directly.

The todr_gettime() retrieves the current data and time from the TODR device and returns it in the
struct timeval storage provided by the caller. todr_settime() sets the date and time in the TODR
device represented bytodr_chip_handle_t according to thestruct timeval argument.

The utilitiesclock_secs_to_ymdhms() andclock_ymdhms_to_secs() are provided to convert a
time value in seconds to and from a structure representing the date and time as a
〈year,month,day,weekday,hour,minute,seconds〉 tuple. Thisstructure is defined as follows:

struct clock_ymdhms {
u_short dt_year; / ∗ Year ∗ /
u_char dt_mon; / ∗ Month (1-12) ∗ /
u_char dt_day; / ∗ Day (1-31) ∗ /
u_char dt_wday; / ∗ Day of week (0-6) ∗ /
u_char dt_hour; / ∗ Hour (0-23) ∗ /
u_char dt_min; / ∗ Minute (0-59) ∗ /
u_char dt_sec; / ∗ Second (0-59) ∗ /

};

Note: leap years are recognised by these conversion routines.

RETURN VALUES
The todr_∗ () functions return 0 if the requested operation was successful; otherwise an error code from
〈sys/errno.h 〉 shall be returned. However, behaviour is undefined if an invalid
todr_chip_handle_t is passed to any of these functions.

Theclock_ymdhms_to_secs() function returns −1 if the time in seconds would be less that zero or too
large to fit in atime_t. Theclock_secs_to_ymdhms() function never fails.

NetBSD 3.0 September 6, 2006 1

TODR (9) NetBSD Kernel Developer’s Manual TODR (9)

SEE ALSO
intersil7170 (4), mk48txx (4), inittodr (9), resettodr (9), time_second (9)

NetBSD 3.0 September 6, 2006 2

UCOM (9) NetBSD Kernel Developer’s Manual UCOM(9)

NAME
ucom — interface for USB tty like devices

DESCRIPTION
Theucom driver is a (relatively) easy way to make aUSB device look like atty (4). It basically takes two
bulk pipes, input and output, and makes a tty out of them. This is useful for a number of device types, e.g.,
serial ports (seeuftdi (4)), modems (seeumodem(4)), and devices that traditionally look like a tty (see
uvisor (4)).

Communication between the real driver and the ucom driver is via the attachment arguments (when
attached) and via theucom_methodsstruct

ATTA CHMENT
struct ucom_attach_args {

int portno;
int bulkin;
int bulkout;
u_int ibufsize;
u_int ibufsizepad;
u_int obufsize;
u_int obufsizepad;
usbd_device_handle device;
usbd_interface_handle iface;
struct ucom_methods ∗ methods;
void ∗ arg;

};

int portno
identifies the port if the devices should have more than oneucom attached. Usethe value
UCOM_UNK_PORTNOif there is only one port.

int bulkin
the number of the bulk input pipe.

int bulkout
the number of the bulk output pipe.

u_int ibufsize
the size of the read requests on the bulk in pipe.

u_int ibufsizepad
the size of the input buffer. This is usually the same asibufsize .

u_int obufsize
the size of the write requests on the bulk out pipe.

u_int ibufsizepad
the size of the output buffer. This is usually the same asobufsize .

usbd_device_handle device
a handle to the device.

usbd_interface_handle iface
a handle to the interface that should be used.

NetBSD 3.0 December 20, 2005 1

UCOM (9) NetBSD Kernel Developer’s Manual UCOM(9)

struct ucom_methods∗ methods
a pointer to the methods that theucom driver should use for further communication with the
driver.

void ∗ arg
the value that should be passed as first argument to each method.

METHODS
The ucom_methods struct contains a number of function pointers used by theucom driver at various
stages. Ifthe device is not interested in being called at a particular point it should just use aNULL pointer
and theucom driver will use a sensible default.

struct ucom_methods {
void (∗ ucom_get_status)(void ∗ sc, int portno,

u_char ∗ lsr, u_char ∗ msr);
void (∗ ucom_set)(void ∗ sc, int portno, int reg, int onoff);

#define UCOM_SET_DTR 1
#define UCOM_SET_RTS 2
#define UCOM_SET_BREAK 3

int (∗ ucom_param)(void ∗ sc, int portno, struct termios ∗);
int (∗ ucom_ioctl)(void ∗ sc, int portno, u_long cmd,

void ∗ data, int flag, struct lwp ∗ l);
int (∗ ucom_open)(void ∗ sc, int portno);
void (∗ ucom_close)(void ∗ sc, int portno);
void (∗ ucom_read)(void ∗ sc, int portno, u_char ∗∗ ptr,

uint32_t ∗ count);
void (∗ ucom_write)(void ∗ sc, int portno, u_char ∗ to,

u_char ∗ from, uint32_t ∗ count);
};

void (∗ ucom_get_status)(void ∗ sc, int portno, u_char ∗ lsr, u_char ∗ msr)
get the status of portportno. The status consists of the line status,lsr, and the modem status
msr. The contents of these two bytes is exactly as for a 16550 UART.

void (∗ ucom_set)(void ∗ sc, int portno, int reg, int onoff)
Set (or unset) a particular feature of a port.

int (∗ ucom_param)(void ∗ sc, int portno, struct termios ∗ t)
Set the speed, number of data bit, stop bits, and parity of a port according to thetermios (4)
struct.

int (∗ ucom_ioctl)(void ∗ sc, int portno, u_long cmd, void ∗ data, int flag,
struct lwp ∗ l)
implements any non-standardioctl (2) that a device needs.

int (∗ ucom_open)(void ∗ sc, int portno)
called just before theucom driver opens the bulk pipes for the port.

void (∗ ucom_close)(void ∗ sc, int portno)
called just after theucom driver closes the bulk pipes for the port.

void (∗ ucom_read)(void ∗ sc, int portno, u_char ∗∗ ptr, uint32_t ∗ count)
if the data delivered on the bulk pipe is not just the raw input characters this routine needs to adjust
ptr andcount so that they tell where to find the given number of raw characters.

NetBSD 3.0 December 20, 2005 2

UCOM (9) NetBSD Kernel Developer’s Manual UCOM(9)

void (∗ ucom_write)(void ∗ sc, int portno, u_char ∗ dst, u_char ∗ src,
uint32_t ∗ count)
if the data written to the bulk pipe is not just the raw characters then this routine needs to copy
count raw characters fromsrc into the buffer at dst and do the appropriate padding.The
count should be updated to the new size. Thebuffer atsrc is at mostibufsizebytes and the
buffer atdst is ibufsizepadbytes.

Apart from these methods there is a function

void ucom_status_change(struct ucom_softc ∗)

which should be called by the driver whenever it notices a status change.

SEE ALSO
tty (4), uftdi (4), umodem(4), usb (4), uvisor (4)

HISTORY
Thisucom interface first appeared inNetBSD 1.5.

NetBSD 3.0 December 20, 2005 3

UIOMOVE (9) NetBSD Kernel Developer’s Manual UIOMOVE (9)

NAME
uiomove — move data described by a struct uio

SYNOPSIS
#include <sys/systm.h>

int
uiomove(void ∗ buf , size_t n , struct uio ∗ uio);

DESCRIPTION
Theuiomove function copies up ton bytes between the kernel-space address pointed to bybuf and the
addresses described byuio, which may be in user-space or kernel-space.

Theuio argument is a pointer to astruct uio as defined by〈sys/uio.h 〉:

struct uio {
struct iovec ∗ uio_iov; / ∗ pointer to array of iovecs ∗ /
int uio_iovcnt; / ∗ number of iovecs in array ∗ /
off_t uio_offset; / ∗ offset into file this uio corresponds to ∗ /
size_t uio_resid; / ∗ residual i/o count ∗ /
enum uio_rw uio_rw;
struct vmspace ∗ uio_vmspace;

};

A struct uio typically describes data in motion.Several of the fields described below reflect that expec-
tation.

uio_iov Pointer to array ofstruct iovecs:

struct iovec {
void ∗ iov_base; / ∗ Base address. ∗ /
size_t iov_len; / ∗ Length. ∗ /

};

uio_iovcnt The number of iovecs in the array.

uio_offset An offset into the corresponding object.

uio_resid The amount of space described by the structure; notionally, the amount of data remaining to
be transferred.

uio_rw A flag indicating whether data should be read into the space (UIO_READ) or written from
the space (UIO_WRITE).

uio_vmspace A pointer to the address space which is being transferred to or from.

The value ofuio->uio_rw controls whetheruiomove copies data frombuf to uio or vice versa.

The lesser ofn or uio->uio_resid bytes are copied.

uiomove changes fields of the structure pointed to byuio, such thatuio->uio_resid is decremented
by the amount of data moved, uio->uio_offset is incremented by the same amount, and the array of
iovecs is adjusted to point that much farther into the region described. This allows multiple calls to
uiomove to easily be used to fill or drain the region of data.

RETURN VALUES
uiomove returns 0 on success or EFAULT if a bad address is encountered.

NetBSD 3.0 March 7, 2007 1

UIOMOVE (9) NetBSD Kernel Developer’s Manual UIOMOVE (9)

SEE ALSO
copy (9), fetch (9), store (9)

NetBSD 3.0 March 7, 2007 2

USBDI (9) NetBSD Kernel Developer’s Manual USBDI(9)

NAME
usbdi — USB device drivers interface

SYNOPSIS
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>

DESCRIPTION
Device driver access to the USB bus centers around transfers.A transfer describes a communication with a
USB device. A transfer is an abstract concept that can result in several physical packets being transferred to
or from a device. A transfer is described by ausbd_xfer_handle. It is allocated byusbd_alloc_xferand the
data describing the transfer is filled byusbd_setup_default_xferfor control pipe transfers, by
usbd_setup_xferfor bulk and interrupt transfers, and byusbd_setup_isoc_xferfor isochronous transfers.

describeusbd_do_request

describe pipes

describe usbd_status

Functions offered by usbdi
usbd_status usbd_open_pipe(usbd_interface_handle iface, uint8_t address,

uint8_t flags,
usbd_pipe_handle∗ pipe)

usbd_status usbd_close_pipe(usbd_pipe_handle pipe)

usbd_status usbd_transfer(usbd_xfer_handle req)

usbd_xfer_handle usbd_alloc_xfer(usbd_device_handle)

usbd_status usbd_free_xfer(usbd_xfer_handle xfer)

void usbd_setup_xfer(usbd_xfer_handle xfer, usbd_pipe_handle pipe,
usbd_private_handle priv, void ∗ buffer,
uint32_t length, uint16_t flags, uint32_t timeout,
usbd_callback)

void usbd_setup_default_xfer(usbd_xfer_handle xfer,
usbd_device_handle dev,
usbd_private_handle priv, uint32_t timeout,
usb_device_request_t∗ req, void ∗ buffer,
uint32_t length, uint16_t flags, usbd_callback)

void usbd_setup_isoc_xfer(usbd_xfer_handle xfer, usbd_pipe_handle pipe,
usbd_private_handle priv, uint16_t ∗ frlengths,
uint32_t nframes, uint16_t flags, usbd_callback)

void usbd_get_xfer_status(usbd_xfer_handle xfer, usbd_private_handle
∗ priv,

void ∗∗ buffer, uint32_t ∗ count, usbd_status∗ status)

usb_endpoint_descriptor_t
∗ usbd_interface2endpoint_descriptor(usbd_interface_handle iface,
uint8_t address)

NetBSD 3.0 December 3, 1999 1

USBDI (9) NetBSD Kernel Developer’s Manual USBDI(9)

usbd_status usbd_abort_pipe(usbd_pipe_handle pipe)

usbd_status usbd_clear_endpoint_stall(usbd_pipe_handle pipe)

usbd_status usbd_clear_endpoint_stall_async(usbd_pipe_handle pipe)

usbd_status usbd_endpoint_count(usbd_interface_handle dev, uint8_t
∗ count)

usbd_status usbd_interface_count(usbd_device_handle dev, uint8_t ∗ count)

usbd_status usbd_interface2device_handle(usbd_interface_handle iface,
usbd_device_handle ∗ dev)

usbd_status usbd_device2interface_handle(usbd_device_handle dev, uint8_t
ifaceno, usbd_interface_handle ∗ iface)

usbd_device_handle usbd_pipe2device_handle(usbd_pipe_handle)

void ∗ usbd_alloc_buffer(usbd_xfer_handle req, uint32_t size)

void usbd_free_buffer(usbd_xfer_handle req)

void ∗ usbd_get_buffer(usbd_xfer_handle xfer)

usbd_status usbd_sync_transfer(usbd_xfer_handle req)

usbd_status usbd_open_pipe_intr(usbd_interface_handle iface, uint8_t
address,

uint8_t flags, usbd_pipe_handle∗ pipe,
usbd_private_handle priv, void ∗ buffer,
uint32_t length, usbd_callback)

usbd_status usbd_do_request(usbd_device_handle pipe, usb_device_request_t
∗ req, void ∗ data)

usbd_status usbd_do_request_async(usbd_device_handle pipe,
usb_device_request_t ∗ req, void ∗ data)

usbd_status usbd_do_request_flags(usbd_device_handle pipe,
usb_device_request_t ∗ req,

void ∗ data, uint16_t flags, int∗)

usb_interface_descriptor_t
∗ usbd_get_interface_descriptor(usbd_interface_handle iface)

usb_config_descriptor_t ∗ usbd_get_config_descriptor(usbd_device_handle
dev)

usb_device_descriptor_t ∗ usbd_get_device_descriptor(usbd_device_handle
dev)

usbd_status usbd_set_interface(usbd_interface_handle, int)

int usbd_get_no_alts(usb_config_descriptor_t ∗ , i nt)

usbd_status usbd_get_interface(usbd_interface_handle iface, uint8_t
∗ aiface)

void usbd_fill_deviceinfo (usbd_device_handle dev, struct usb_device_info
∗ di)

NetBSD 3.0 December 3, 1999 2

USBDI (9) NetBSD Kernel Developer’s Manual USBDI(9)

int usbd_get_interface_altindex(usbd_interface_handle iface)

usb_interface_descriptor_t ∗ usbd_find_idesc(usb_config_descriptor_t ∗ cd,
int iindex, int ano)

usb_endpoint_descriptor_t ∗ usbd_find_edesc(usb_config_descriptor_t ∗ cd,
int ifaceidx, int altidx,

int endptidx)

const char ∗ usbd_errstr(usbd_status err)

Utilities from usbdi_util.h
Based on the routines inusbdi.h a number of utility functions have been defined that are accessible
throughusbdi_util.h

usbd_status usbd_get_desc(usbd_device_handle dev, int type,
int index, int len, void∗ desc)

usbd_status usbd_get_config_desc(usbd_device_handle, int,
usb_config_descriptor_t∗)

usbd_status usbd_get_config_desc_full(usbd_device_handle, int,
void ∗ , int)

usbd_status usbd_get_device_desc(usbd_device_handle dev,
usb_device_descriptor_t∗ d)

usbd_status usbd_set_address(usbd_device_handle dev, int addr)

usbd_status usbd_get_port_status(usbd_device_handle,
int, usb_port_status_t∗)

usbd_status usbd_set_hub_feature(usbd_device_handle dev, int)

usbd_status usbd_clear_hub_feature(usbd_device_handle, int)

usbd_status usbd_set_port_feature(usbd_device_handle dev, int, int)

usbd_status usbd_clear_port_feature(usbd_device_handle, int, int)

usbd_status usbd_get_device_status(usbd_device_handle,usb_status_t ∗)

usbd_status usbd_get_hub_status(usbd_device_handle dev,
usb_hub_status_t∗ st)

usbd_status usbd_set_protocol(usbd_interface_handle dev, int report)

usbd_status usbd_get_report_descriptor
(usbd_device_handle dev, int ifcno, int repid, int size, void∗ d)

struct usb_hid_descriptor ∗ usbd_get_hid_descriptor
(usbd_interface_handle ifc)

usbd_status usbd_set_report
(usbd_interface_handle iface,int type,int id,void∗ data,int len)

usbd_status usbd_set_report_async
(usbd_interface_handle iface,int type,int id,void∗ data,int len)

usbd_status usbd_get_report
(usbd_interface_handle iface,int type,int id,void∗ data,int len)

NetBSD 3.0 December 3, 1999 3

USBDI (9) NetBSD Kernel Developer’s Manual USBDI(9)

usbd_status usbd_set_idle
(usbd_interface_handle iface, int duration, int id)

usbd_status usbd_alloc_report_desc
(usbd_interface_handle ifc, void∗∗ descp, int∗ sizep, int mem)

usbd_status usbd_get_config
(usbd_device_handle dev, uint8_t ∗ conf)

usbd_status usbd_get_string_desc
(usbd_device_handle dev, int sindex, int langid, usb_string_descriptor_t∗ sdesc)

void usbd_delay_ms(usbd_device_handle, u_int)

usbd_status usbd_set_config_no
(usbd_device_handle dev, int no, int msg)

usbd_status usbd_set_config_index
(usbd_device_handle dev, int index, int msg)

usbd_status usbd_bulk_transfer
(usbd_xfer_handle xfer, usbd_pipe_handle pipe, uint16_t flags, uint32_t timeout, void
∗ buf, uint32_t∗ size, char∗ lbl)

void usb_detach_wait(device_ptr_t)

void usb_detach_wakeup(device_ptr_t)

SEE ALSO
usb (4)

HISTORY
This usbdi interface first appeared inNetBSD 1.4. Theinterface is based on an early definition from the
OpenUSBDI group within the USB organisation. Rightafter this definition the OpenUSBDI development
got closed for open source developers, so this interface has not followed the further changes. The OpenUS-
BDI specification is now available again, but looks different.

BUGS
This man page is under development, so its biggest shortcoming is incompleteness.

NetBSD 3.0 December 3, 1999 4

USERRET (9) NetBSD Kernel Developer’s Manual USERRET(9)

NAME
userret — return path to user-mode execution

SYNOPSIS
#include <sys/lwp.h>
#include <sys/sched.h>

void
userret(struct lwp ∗ l);

DESCRIPTION
Theuserret() function is executed after processing a trap(e.g., a system call or interrupt) before return-
ing to user-mode execution. Theimplementation is machine dependent and is never inv oked from machine-
independent code. The function prototype for each architecture may be different to the prototype above,
however the functionally provided by theuserret() function on each architecture is essentially the same.

Specifically, theuserret() function performs the following procedure:

• Detect a change in the signal disposition of the current process and invoke postsig (9) to post
the signal to the process.This may occur when the outcome of the trap or syscall posted a signal
to the process(e.g., invalid instruction trap) .

• Check thewant_reschedflag to see if the scheduler requires the current process to be preempted
by invoking preempt (9) (seecpu_need_resched (9)) . This may occur if the clock inter-
rupt causes the scheduler to determine that the current process has completed its time slice.

• Update the scheduler state.

SEE ALSO
cpu_need_resched (9), postsig (9), preempt (9), scheduler (9)

NetBSD 3.0 December 20, 2005 1

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

NAME
uvm — virtual memory system external interface

SYNOPSIS
#include <sys/param.h>
#include <uvm/uvm.h>

DESCRIPTION
The UVM virtual memory system manages access to the computer’s memory resources. User processes and
the kernel access these resources through UVM’s external interface. UVM’s external interface includes func-
tions that:

− initialize UVM sub-systems
− manage virtual address spaces
− resolve page faults
− memory map files and devices
− perform uio-based I/O to virtual memory
− allocate and free kernel virtual memory
− allocate and free physical memory

In addition to exporting these services, UVM has two kernel-level processes: pagedaemon and swapper. The
pagedaemon process sleeps until physical memory becomes scarce.When that happens, pagedaemon is
aw oken. It scans physical memory, paging out and freeing memory that has not been recently used.The
swapper process swaps in runnable processes that are currently swapped out, if there is room.

There are also several miscellaneous functions.

INITIALIZATION
void
uvm_init(void);

void
uvm_init_limits(struct lwp ∗ l);

void
uvm_setpagesize(void);

void
uvm_swap_init(void);

uvm_init() sets up the UVM system at system boot time, after the console has been setup. It initializes
global state, the page, map, kernel virtual memory state, machine-dependent physical map, kernel memory
allocator, pager and anonymous memory sub-systems, and then enables paging of kernel objects.

uvm_init_limits() initializes process limits for the named process.This is for use by the system
startup for process zero, before any other processes are created.

uvm_setpagesize() initializes the uvmexp members pagesize (if not already done by machine-dependent
code), pageshift and pagemask. It should be called by machine-dependent code early in thepmap_init()
call (seepmap(9)).

uvm_swap_init() initializes the swap sub-system.

VIRTU AL ADDRESS SPACE MANAGEMENT
int
uvm_map(struct vm_map ∗ map , vaddr_t ∗ startp , vsize_t size , struct
uvm_object ∗ uobj , voff_t uoffset , vsize_t align , uvm_flag_t flags);

NetBSD 3.0 October 15, 2007 1

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

void
uvm_unmap(struct vm_map ∗ map , vaddr_t start , vaddr_t end);

int
uvm_map_pageable(struct vm_map ∗ map , vaddr_t start , vaddr_t end , bool
new_pageable , int lockflags);

bool
uvm_map_checkprot(struct vm_map ∗ map , vaddr_t start , vaddr_t end , vm_prot_t
protection);

int
uvm_map_protect(struct vm_map ∗ map , vaddr_t start , vaddr_t end , vm_prot_t
new_prot , bool set_max);

int
uvm_deallocate(struct vm_map ∗ map , vaddr_t start , vsize_t size);

struct vmspace ∗
uvmspace_alloc(vaddr_t min , vaddr_t max , int pageable);

void
uvmspace_exec(struct lwp ∗ l , vaddr_t start , vaddr_t end);

struct vmspace ∗
uvmspace_fork(struct vmspace ∗ vm);

void
uvmspace_free(struct vmspace ∗ vm1);

void
uvmspace_share(struct proc ∗ p1 , struct proc ∗ p2);

void
uvmspace_unshare(struct lwp ∗ l);

bool
uvm_uarea_alloc(vaddr_t ∗ uaddrp);

void
uvm_uarea_free(vaddr_t uaddr);

uvm_map() establishes a valid mapping in mapmap, which must be unlocked. Thenew mapping has size
size, which must be a multiple ofPAGE_SIZE. Theuobj anduoffset arguments can have four mean-
ings. Whenuobj is NULL and uoffset is UVM_UNKNOWN_OFFSET, uvm_map() does not use the
machine-dependentPMAP_PREFERfunction. If uoffset is any other value, it is used as the hint to
PMAP_PREFER. Whenuobj is notNULL anduoffset is UVM_UNKNOWN_OFFSET, uvm_map() finds
the offset based upon the virtual address, passed asstartp. If uoffset is any other value, we are doing a
normal mapping at this offset. Thestart address of the map will be returned instartp.

align specifies alignment of mapping unlessUVM_FLAG_FIXEDis specified inflags. align must be
a power of 2.

flags passed touvm_map() are typically created using theUVM_MAPFLAG(vm_prot_t prot ,
vm_prot_t maxprot , vm_inherit_t inh , int advice , int flags) macro, which uses the
following values. Theprot andmaxprot can take are:

#define UVM_PROT_MASK 0x07 / ∗ protection mask ∗ /
#define UVM_PROT_NONE 0x00 / ∗ protection none ∗ /
#define UVM_PROT_ALL 0x07 / ∗ everything ∗ /

NetBSD 3.0 October 15, 2007 2

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

#define UVM_PROT_READ 0x01 / ∗ read ∗ /
#define UVM_PROT_WRITE 0x02 / ∗ write ∗ /
#define UVM_PROT_EXEC 0x04 / ∗ exec ∗ /
#define UVM_PROT_R 0x01 / ∗ read ∗ /
#define UVM_PROT_W 0x02 / ∗ write ∗ /
#define UVM_PROT_RW 0x03 / ∗ read-write ∗ /
#define UVM_PROT_X 0x04 / ∗ exec ∗ /
#define UVM_PROT_RX 0x05 / ∗ read-exec ∗ /
#define UVM_PROT_WX 0x06 / ∗ write-exec ∗ /
#define UVM_PROT_RWX 0x07 / ∗ read-write-exec ∗ /

The values thatinh can take are:

#define UVM_INH_MASK 0x30 / ∗ inherit mask ∗ /
#define UVM_INH_SHARE 0x00 / ∗ "share" ∗ /
#define UVM_INH_COPY 0x10 / ∗ "copy" ∗ /
#define UVM_INH_NONE 0x20 / ∗ "none" ∗ /
#define UVM_INH_DONATE 0x30 / ∗ "donate" << not used ∗ /

The values thatadvice can take are:

#define UVM_ADV_NORMAL 0x0 / ∗ ’normal’ ∗ /
#define UVM_ADV_RANDOM 0x1 / ∗ ’random’ ∗ /
#define UVM_ADV_SEQUENTIAL 0x2 / ∗ ’sequential’ ∗ /
#define UVM_ADV_MASK 0x7 / ∗ mask ∗ /

The values thatflags can take are:

#define UVM_FLAG_FIXED 0x010000 / ∗ find space ∗ /
#define UVM_FLAG_OVERLAY 0x020000 / ∗ establish overlay ∗ /
#define UVM_FLAG_NOMERGE 0x040000 / ∗ don’t merge map entries ∗ /
#define UVM_FLAG_COPYONW 0x080000 / ∗ set copy_on_write flag ∗ /
#define UVM_FLAG_AMAPPAD 0x100000 / ∗ for bss: pad amap to reduce malloc() ∗ /
#define UVM_FLAG_TRYLOCK 0x200000 / ∗ fail if we can not lock map ∗ /

The UVM_MAPFLAGmacro arguments can be combined with an or operator. There are several special pur-
pose macros for checking protection combinations, e.g., theUVM_PROT_WXmacro. Thereare also some
additional macros to extract bits from the flags.The UVM_PROTECTION, UVM_INHERIT,
UVM_MAXPROTECTIONandUVM_ADVICEmacros return the protection, inheritance, maximum protection
and advice, respectively. uvm_map() returns a standard UVM return value.

uvm_unmap() removes a valid mapping, fromstart to end, in mapmap, which must be unlocked.

uvm_map_pageable() changes the pageability of the pages in the range fromstart to end in mapmap
to new_pageable. uvm_map_pageable() returns a standard UVM return value.

uvm_map_checkprot() checks the protection of the range fromstart to end in mapmap against
protection. This returns eithertrue or false .

uvm_map_protect() changes the protectionstart to end in mapmap to new_prot, also setting the
maximum protection to the region tonew_prot if set_max is non-zero. This function returns a standard
UVM return value.

uvm_deallocate() deallocates kernel memory in mapmap from addressstart to start + size.

uvmspace_alloc() allocates and returns a new address space, with ranges frommin to max, setting the
pageability of the address space topageable.

NetBSD 3.0 October 15, 2007 3

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

uvmspace_exec() either reuses the address space of lwp l if there are no other references to it, or creates
a new one withuvmspace_alloc(). Therange of valid addresses in the address space is reset tostart
throughend.

uvmspace_fork() creates and returns a new address space based upon thevm1 address space, typically
used when allocating an address space for a child process.

uvmspace_free() lowers the reference count on the address spacevm, freeing the data structures if there
are no other references.

uvmspace_share() causes processp2 to share the address space ofp1.

uvmspace_unshare() ensures that lwp l has its own, unshared address space, by creating a new one if
necessary by callinguvmspace_fork().

uvm_uarea_alloc() allocates virtual space for a u-area (i.e., a kernel stack) and stores its virtual address
in ∗ uaddrp. The return value istrue if the u-area is already backed by wired physical memory, otherwise
false .

uvm_uarea_free() frees a u-area allocated withuvm_uarea_alloc(), freeing both the virtual space
and any physical pages which may have been allocated to back that virtual space later.

PA GE FAULT H ANDLING
int
uvm_fault(struct vm_map ∗ orig_map , vaddr_t vaddr , vm_prot_t access_type);

uvm_fault() is the main entry point for faults. It takesorig_map as the map the fault originated in, a
vaddr offset into the map the fault occurred, andaccess_type describing the type of access requested.
uvm_fault() returns a standard UVM return value.

MEMOR Y M APPING FILES AND DEVICES
void
uvm_vnp_setsize(struct vnode ∗ vp , voff_t newsize);

void ∗
ubc_alloc(struct uvm_object ∗ uobj , voff_t offset , vsize_t ∗ lenp , int
advice , int flags);

void
ubc_release(void ∗ va , int flags);

int
ubc_uiomove(struct uvm_object ∗ uobj , struct uio ∗ uio , vsize_t todo , int
advice , int flags);

uvm_vnp_setsize() sets the size of vnodevp to newsize. Caller must hold a reference to the vnode.
If the vnode shrinks, pages no longer used are discarded.

ubc_alloc() creates a kernel mapping ofuobj starting at offsetoffset. The desired length of the map-
ping is pointed to bylenp, but the actual mapping may be smaller than this.lenp is updated to contain the
actual length mapped.advice is the access pattern hint, which must be one of

UVM_ADV_NORMAL No hint
UVM_ADV_RANDOM Random access hint
UVM_ADV_SEQUENTIAL

Sequential access hint (from lower offset to higher offset)

NetBSD 3.0 October 15, 2007 4

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

The possibleflags are

UBC_READ Mapping will be accessed for read.
UBC_WRITE Mapping will be accessed for write.
UBC_FAULTBUSY Fault in window’s pages already during mapping operation.Makes sense

only for write.

Currently,uobj must actually be a vnode object.Once the mapping is created, it must be accessed only by
methods that can handle faults, such asuiomove() or kcopy(). Page faults on the mapping will result in
the vnode’sVOP_GETPAGES() method being called to resolve the fault.

ubc_release() frees the mapping atva for reuse.The mapping may be cached to speed future accesses
to the same region of the object. The flags can be any of

UBC_UNMAP Do not cache mapping.

ubc_uiomove() allocates an UBC memory window, performs I/O on it and unmaps the window. The
advice parameter takes the same values as the respective parameter inubc_alloc() and theflags
parameter takes the same arguments asubc_alloc() and ubc_unmap(). Additionally, the flag
UBC_PARTIALOKcan be provided to indicate that it is acceptable to return if an error occurs mid-transfer.

VIRTU AL MEMOR Y I /O
int
uvm_io(struct vm_map ∗ map , struct uio ∗ uio);

uvm_io() performs the I/O described inuio on the memory described inmap.

ALLOCA TION OF KERNEL MEMOR Y
vaddr_t
uvm_km_alloc(struct vm_map ∗ map , vsize_t size , vsize_t align , uvm_flag_t
flags);

void
uvm_km_free(struct vm_map ∗ map , vaddr_t addr , vsize_t size , uvm_flag_t
flags);

struct vm_map ∗
uvm_km_suballoc(struct vm_map ∗ map , vaddr_t ∗ min , vaddr_t ∗ max , vsize_t
size , bool pageable , bool fixed , struct vm_map ∗ submap);

uvm_km_alloc() allocatessize bytes of kernel memory in mapmap. The first address of the allocated
memory range will be aligned according to thealign argument (specify 0 if no alignment is necessary) .
The alignment must be a multiple of page size.Theflags is a bitwise inclusive OR of the allocation type
and operation flags.

The allocation type should be one of:

UVM_KMF_WIRED Wired memory.

UVM_KMF_PAGEABLE
Demand-paged zero-filled memory.

UVM_KMF_VAONLY Virtual address only. No physical pages are mapped in the allocated region. If nec-
essary, it’s the caller’s responsibility to enter page mappings.It’s also the caller’s
responsibility to clean up the mappings before freeing the address range.

The following operation flags are available:

NetBSD 3.0 October 15, 2007 5

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

UVM_KMF_CANFAIL
Can fail even if UVM_KMF_NOWAITis not specified andUVM_KMF_WAITVAis
specified.

UVM_KMF_ZERO Request zero-filled memory. Only supported forUVM_KMF_WIRED. Shouldn’t be
used with other types.

UVM_KMF_TRYLOCK
Fail if we can’t lock the map.

UVM_KMF_NOWAIT Fail immediately if no memory is available.

UVM_KMF_WAITVA Sleep to wait for the virtual address resources if needed.

(If neither UVM_KMF_NOWAITnor UVM_KMF_CANFAILare specified andUVM_KMF_WAITVAis speci-
fied,uvm_km_alloc() will never fail, but rather sleep indefinitely until the allocation succeeds.)

Pageability of the pages allocated withUVM_KMF_PAGEABLEcan be changed byuvm_map_pageable().
In that case, the entire range must be changed atomically. Changing a part of the range is not supported.

uvm_km_free() frees the memory range allocated byuvm_km_alloc(). addr must be an address
returned byuvm_km_alloc(). map andsize must be the same as the ones used for the corresponding
uvm_km_alloc(). flags must be the allocation type used for the correspondinguvm_km_alloc().

uvm_km_free() is the only way to free memory ranges allocated byuvm_km_alloc(). uvm_unmap()
must not be used.

uvm_km_suballoc() allocates submap frommap, creating a new map if submap is NULL. The
addresses of the submap can be specified exactly by setting thefixed argument to non-zero, which causes
themin argument to specify the beginning of the address in the submap.If fixed is zero, any address of
size size will be allocated frommap and the start and end addresses returned inmin and max. If
pageable is non-zero, entries in the map may be paged out.

ALLOCA TION OF PHYSICAL MEMOR Y
struct vm_page ∗
uvm_pagealloc(struct uvm_object ∗ uobj , voff_t off , struct vm_anon ∗ anon ,
int flags);

void
uvm_pagerealloc(struct vm_page ∗ pg , struct uvm_object ∗ newobj , voff_t
newoff);

void
uvm_pagefree(struct vm_page ∗ pg);

int
uvm_pglistalloc(psize_t size , paddr_t low , paddr_t high , paddr_t alignment ,
paddr_t boundary , struct pglist ∗ rlist , int nsegs , int waitok);

void
uvm_pglistfree(struct pglist ∗ list);

void
uvm_page_physload(vaddr_t start , vaddr_t end , vaddr_t avail_start , vaddr_t
avail_end , int free_list);

uvm_pagealloc() allocates a page of memory at virtual addressoff in either the objectuobj or the
anonymous memoryanon, which must be locked by the caller. Only one ofuobj andanon can be non
NULL. ReturnsNULLwhen no page can be found. The flags can be any of

NetBSD 3.0 October 15, 2007 6

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

#define UVM_PGA_USERESERVE 0x0001 / ∗ ok to use reserve pages ∗ /
#define UVM_PGA_ZERO 0x0002 / ∗ returned page must be zero’d ∗ /

UVM_PGA_USERESERVEmeans to allocate a page even if that will result in the number of free pages being
lower than uvmexp.reserve_pagedaemon (if the current thread is the pagedaemon) or
uvmexp.reserve_kernel (if the current thread is not the pagedaemon).UVM_PGA_ZEROcauses the
returned page to be filled with zeroes, either by allocating it from a pool of pre-zeroed pages or by zeroing it
in-line as necessary.

uvm_pagerealloc() reallocates pagepg to a new objectnewobj, at a new offsetnewoff.

uvm_pagefree() frees the physical pagepg. If the content of the page is known to be zero-filled, caller
should set PG_ZERO in pg->flags so that the page allocator will use the page to serve future
UVM_PGA_ZEROrequests efficiently.

uvm_pglistalloc() allocates a list of pages for sizesize byte under various constraints.low and
high describe the lowest and highest addresses acceptable for the list.If alignment is non-zero, it
describes the required alignment of the list, in power-of-two notation. If boundary is non-zero, no seg-
ment of the list may cross this power-of-two boundary, relative to zero. nsegs is the maximum number of
physically contiguous segments. Ifwaitok is non-zero, the function may sleep until enough memory is
available. (It also may give up in some situations, so a non-zerowaitok does not imply that
uvm_pglistalloc() cannot return an error.) The allocated memory is returned in therlist list; the
caller has to provide storage only, the list is initialized byuvm_pglistalloc().

uvm_pglistfree() frees the list of pages pointed to bylist. If the content of the page is known to be
zero-filled, caller should setPG_ZEROin pg->flags so that the page allocator will use the page to serve
futureUVM_PGA_ZEROrequests efficiently.

uvm_page_physload() loads physical memory segments into VM space on the specifiedfree_list.
It must be called at system boot time to set up physical memory management pages. The arguments describe
thestart andend of the physical addresses of the segment, and the available start and end addresses of
pages not already in use.

PROCESSES
void
uvm_pageout(void);

void
uvm_scheduler(void);

void
uvm_swapin(struct lwp ∗ l);

uvm_pageout() is the main loop for the page daemon.

uvm_scheduler() is the process zero main loop, which is to be called after the system has finished start-
ing other processes. It handles the swapping in of runnable, swapped out processes in priority order.

uvm_swapin() swaps in the named lwp.

PA GE LOAN
int
uvm_loan(struct vm_map ∗ map , vaddr_t start , vsize_t len , void ∗ v , int flags);

void
uvm_unloan(void ∗ v , int npages , int flags);

NetBSD 3.0 October 15, 2007 7

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

uvm_loan() loans pages in a map out to anons or to the kernel. map should be unlocked,start andlen
should be multiples ofPAGE_SIZE. Argumentflags should be one of

#define UVM_LOAN_TOANON 0x01 / ∗ loan to anons ∗ /
#define UVM_LOAN_TOPAGE 0x02 / ∗ loan to kernel ∗ /

v should be pointer to array of pointers tostruct anon or struct vm_page , as appropriate. The
caller has to allocate memory for the array and ensure it’s big enough to holdlen / PAGE_SIZE pointers.
Returns 0 for success, or appropriate error number otherwise. Note that wired pages can’t be loaned out and
uvm_loan() will fail in that case.

uvm_unloan() kills loans on pages or anons.Thev must point to the array of pointers initialized by previ-
ous call touvm_loan(). npages should match number of pages allocated for loan, this also matches num-
ber of items in the array. Argumentflags should be one of

#define UVM_LOAN_TOANON 0x01 / ∗ loan to anons ∗ /
#define UVM_LOAN_TOPAGE 0x02 / ∗ loan to kernel ∗ /

and should match what was used for previous call touvm_loan().

MISCELLANEOUS FUNCTIONS
struct uvm_object ∗
uao_create(vsize_t size , int flags);

void
uao_detach(struct uvm_object ∗ uobj);

void
uao_reference(struct uvm_object ∗ uobj);

bool
uvm_chgkprot(void ∗ addr , size_t len , int rw);

void
uvm_kernacc(void ∗ addr , size_t len , int rw);

int
uvm_vslock(struct vmspace ∗ vs , void ∗ addr , size_t len , vm_prot_t prot);

void
uvm_vsunlock(struct vmspace ∗ vs , void ∗ addr , size_t len);

void
uvm_meter(void);

void
uvm_fork(struct lwp ∗ l1 , struct lwp ∗ l2 , bool shared);

int
uvm_grow(struct proc ∗ p , vaddr_t sp);

void
uvn_findpages(struct uvm_object ∗ uobj , voff_t offset , int ∗ npagesp , struct
vm_page ∗∗ pps , int flags);

void
uvm_swap_stats(int cmd , struct swapent ∗ sep , int sec , register_t ∗ retval);

Theuao_create(), uao_detach(), anduao_reference() functions operate on anonymous memory
objects, such as those used to support System V shared memory. uao_create() returns an object of size

NetBSD 3.0 October 15, 2007 8

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

size with flags:

#define UAO_FLAG_KERNOBJ 0x1 / ∗ create kernel object ∗ /
#define UAO_FLAG_KERNSWAP 0x2 / ∗ enable kernel swap ∗ /

which can only be used once each at system boot time.uao_reference() creates an additional reference
to the named anonymous memory object.uao_detach() removes a reference from the named anonymous
memory object, destroying it if removing the last reference.

uvm_chgkprot() changes the protection of kernel memory fromaddr to addr + len to the value of
rw. This is primarily useful for debuggers, for setting breakpoints. This function is only available with
optionsKGDB.

uvm_kernacc() checks the access at addressaddr to addr + len for rw access in the kernel address
space.

uvm_vslock() anduvm_vsunlock() control the wiring and unwiring of pages for processp from addr
to addr + len. These functions are normally used to wire memory for I/O.

uvm_meter() calculates the load average and wakes up the swapper if necessary.

uvm_fork() forks a virtual address space for process’ (old)p1 and (new) p2. If theshared argument is
non zero, p1 shares its address space with p2, otherwise a new address space is created. This function cur-
rently has no return value, and thus cannot fail. In the future, this function will be changed to allow it to fail
in low memory conditions.

uvm_grow() increases the stack segment of processp to includesp.

uvn_findpages() looks up or creates pages inuobj at offset offset, marks them busy and returns
them in thepps array. Currentlyuobj must be a vnode object.The number of pages requested is pointed
to bynpagesp, and this value is updated with the actual number of pages returned. The flags can be

#define UFP_ALL 0x00 / ∗ return all pages requested ∗ /
#define UFP_NOWAIT 0x01 / ∗ don’t sleep ∗ /
#define UFP_NOALLOC 0x02 / ∗ don’t allocate new pages ∗ /
#define UFP_NOCACHE 0x04 / ∗ don’t return pages which already exist ∗ /
#define UFP_NORDONLY 0x08 / ∗ don’t return PG_READONLY pages ∗ /

UFP_ALL is a pseudo-flag meaning all requested pages should be returned.UFP_NOWAITmeans that we
must not sleep. UFP_NOALLOCcauses any pages which do not already exist to be skipped.
UFP_NOCACHEcauses any pages which do already exist to be skipped.UFP_NORDONLYcauses any pages
which are marked PG_READONLY to be skipped.

uvm_swap_stats() implements theSWAP_STATSand SWAP_OSTATSoperation of theswapctl (2)
system call.cmd is the requested command,SWAP_STATSor SWAP_OSTATS. The function will copy no
more thansec entries in the array pointed bysep. On return,retval holds the actual number of entries
copied in the array.

SYSCTL
UVM provides support for theCTL_VMdomain of thesysctl (3) hierarchy. It handles theVM_LOADAVG,
VM_METER, VM_UVMEXP, and VM_UVMEXP2nodes, which return the current load averages, calculates cur-
rent VM totals, returns the uvmexp structure, and a kernel version independent view of the uvmexp structure,
respectively. It also exports a number of tunables that control how much VM space is allowed to be con-
sumed by various tasks. The load averages are typically accessed from userland using thegetloadavg (3)
function. Theuvmexp structure has all global state of the UVM system, and has the following members:

/ ∗ vm_page constants ∗ /
int pagesize; / ∗ size of a page (PAGE_SIZE): must be power of 2 ∗ /

NetBSD 3.0 October 15, 2007 9

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

int pagemask; / ∗ page mask ∗ /
int pageshift; / ∗ page shift ∗ /

/ ∗ vm_page counters ∗ /
int npages; / ∗ number of pages we manage ∗ /
int free; / ∗ number of free pages ∗ /
int active; / ∗ number of active pages ∗ /
int inactive; / ∗ number of pages that we free’d but may want back ∗ /
int paging; / ∗ number of pages in the process of being paged out ∗ /
int wired; / ∗ number of wired pages ∗ /
int reserve_pagedaemon; / ∗ number of pages reserved for pagedaemon ∗ /
int reserve_kernel; / ∗ number of pages reserved for kernel ∗ /

/ ∗ pageout params ∗ /
int freemin; / ∗ min number of free pages ∗ /
int freetarg; / ∗ target number of free pages ∗ /
int inactarg; / ∗ target number of inactive pages ∗ /
int wiredmax; / ∗ max number of wired pages ∗ /

/ ∗ swap ∗ /
int nswapdev; / ∗ number of configured swap devices in system ∗ /
int swpages; / ∗ number of PAGE_SIZE’ed swap pages ∗ /
int swpginuse; / ∗ number of swap pages in use ∗ /
int nswget; / ∗ number of times fault calls uvm_swap_get() ∗ /
int nanon; / ∗ number total of anon’s in system ∗ /
int nfreeanon; / ∗ number of free anon’s ∗ /

/ ∗ stat counters ∗ /
int faults; / ∗ page fault count ∗ /
int traps; / ∗ trap count ∗ /
int intrs; / ∗ interrupt count ∗ /
int swtch; / ∗ context switch count ∗ /
int softs; / ∗ software interrupt count ∗ /
int syscalls; / ∗ system calls ∗ /
int pageins; / ∗ pagein operation count ∗ /

/ ∗ pageouts are in pdpageouts below ∗ /
int swapins; / ∗ swapins ∗ /
int swapouts; / ∗ swapouts ∗ /
int pgswapin; / ∗ pages swapped in ∗ /
int pgswapout; / ∗ pages swapped out ∗ /
int forks; / ∗ forks ∗ /
int forks_ppwait; / ∗ forks where parent waits ∗ /
int forks_sharevm; / ∗ forks where vmspace is shared ∗ /

/ ∗ fault subcounters ∗ /
int fltnoram; / ∗ number of times fault was out of ram ∗ /
int fltnoanon; / ∗ number of times fault was out of anons ∗ /
int fltpgwait; / ∗ number of times fault had to wait on a page ∗ /
int fltpgrele; / ∗ number of times fault found a released page ∗ /
int fltrelck; / ∗ number of times fault relock called ∗ /
int fltrelckok; / ∗ number of times fault relock is a success ∗ /
int fltanget; / ∗ number of times fault gets anon page ∗ /

NetBSD 3.0 October 15, 2007 10

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

int fltanretry; / ∗ number of times fault retrys an anon get ∗ /
int fltamcopy; / ∗ number of times fault clears "needs copy" ∗ /
int fltnamap; / ∗ number of times fault maps a neighbor anon page ∗ /
int fltnomap; / ∗ number of times fault maps a neighbor obj page ∗ /
int fltlget; / ∗ number of times fault does a locked pgo_get ∗ /
int fltget; / ∗ number of times fault does an unlocked get ∗ /
int flt_anon; / ∗ number of times fault anon (case 1a) ∗ /
int flt_acow; / ∗ number of times fault anon cow (case 1b) ∗ /
int flt_obj; / ∗ number of times fault is on object page (2a) ∗ /
int flt_prcopy; / ∗ number of times fault promotes with copy (2b) ∗ /
int flt_przero; / ∗ number of times fault promotes with zerofill (2b) ∗ /

/ ∗ daemon counters ∗ /
int pdwoke; / ∗ number of times daemon woke up ∗ /
int pdrevs; / ∗ number of times daemon rev’d clock hand ∗ /
int pdswout; / ∗ number of times daemon called for swapout ∗ /
int pdfreed; / ∗ number of pages daemon freed since boot ∗ /
int pdscans; / ∗ number of pages daemon scanned since boot ∗ /
int pdanscan; / ∗ number of anonymous pages scanned by daemon ∗ /
int pdobscan; / ∗ number of object pages scanned by daemon ∗ /
int pdreact; / ∗ number of pages daemon reactivated since boot ∗ /
int pdbusy; / ∗ number of times daemon found a busy page ∗ /
int pdpageouts; / ∗ number of times daemon started a pageout ∗ /
int pdpending; / ∗ number of times daemon got a pending pageout ∗ /
int pddeact; / ∗ number of pages daemon deactivates ∗ /

NOTES
uvm_chgkprot() is only available if the kernel has been compiled with optionsKGDB.

All structure and types whose names begin with “vm_” will be renamed to “uvm_”.

SEE ALSO
swapctl (2), getloadavg (3), kvm(3), sysctl (3), ddb (4), options (4), memoryallocators (9),
pmap(9)

HISTORY
UVM is a new VM system developed at Washington University in St. Louis (Missouri).UVM’ s roots lie
partly in the Mach-based 4.4BSD VM system, theFreeBSDVM system, and the SunOS 4 VM system.
UVM’ s basic structure is based on the 4.4BSD VM system. UVM’ s new anonymous memory system is
based on the anonymous memory system found in the SunOS 4 VM (as described in papers published by
Sun Microsystems, Inc.).UVM also includes a number of features new to BSD including page loanout, map
entry passing, simplified copy-on-write, and clustered anonymous memory pageout. UVM is also further
documented in an August 1998 dissertation by Charles D. Cranor.

UVM appeared inNetBSD 1.4.

AUTHORS
Charles D. Cranor〈chuck@ccrc.wustl.edu〉 designed and implemented UVM.

Matthew Green 〈mrg@eterna.com.au〉 wrote the swap-space management code and handled the logistical
issues involved with merging UVM into theNetBSD source tree.

NetBSD 3.0 October 15, 2007 11

UVM (9) NetBSD Kernel Developer’s Manual UVM(9)

Chuck Silvers 〈chuq@chuq.com〉 implemented the aobj pager, thus allowing UVM to support System V
shared memory and process swapping. Healso designed and implemented the UBC part of UVM, which
uses UVM pages to cache vnode data rather than the traditional buffer cache buffers.

NetBSD 3.0 October 15, 2007 12

VA TTR (9) NetBSD Kernel Developer’s Manual VATTR (9)

NAME
vattr, vattr_null, VATTR_NULL — vnode attributes

SYNOPSIS
#include <sys/param.h>
#include <sys/vnode.h>

void
vattr_null(struct vattr ∗ vap);

void
VATTR_NULL(struct vattr ∗ vap);

DESCRIPTION
Vnode attributes describe attributes of a file or directory including file permissions, owner, group, size,
access time and modification time.

A vnode attribute has the following structure:

struct vattr {
enum vtype va_type; / ∗ vnode type (for create) ∗ /
mode_t va_mode; / ∗ files access mode and type ∗ /
nlink_t va_nlink; / ∗ number of references to file ∗ /
uid_t va_uid; / ∗ owner user id ∗ /
gid_t va_gid; / ∗ owner group id ∗ /
long va_fsid; / ∗ file system id (dev for now) ∗ /
long va_fileid; / ∗ file id ∗ /
u_quad_t va_size; / ∗ file size in bytes ∗ /
long va_blocksize; / ∗ blocksize preferred for i/o ∗ /
struct timespec va_atime; / ∗ time of last access ∗ /
struct timespec va_mtime; / ∗ time of last modification ∗ /
struct timespec va_ctime; / ∗ time file changed ∗ /
struct timespec va_birthtime; / ∗ time file created ∗ /
u_long va_gen; / ∗ generation number of file ∗ /
u_long va_flags; / ∗ flags defined for file ∗ /
dev_t va_rdev; / ∗ device the special file represents ∗ /
u_quad_t va_bytes; / ∗ bytes of disk space held by file ∗ /
u_quad_t va_filerev; / ∗ file modification number ∗ /
u_int va_vaflags; / ∗ operations flags, see below ∗ /
long va_spare; / ∗ remain quad aligned ∗ /

};

A field value of VNOVAL represents a field whose value is unavailable or which is not to be changed.Valid
flag values forva_flagsare:

VA_UTIMES_NULL
utimes argument was NULL

VA_EXCLUSIVE exclusive create request

Vnode attributes for a file are set by the vnode operationVOP_SETATTR(9). Vnodeattributes for a file are
retrieved by the vnode operationVOP_GETATTR(9). For more information on vnode operations see
vnodeops (9).

NetBSD 3.0 January 24, 2008 1

VA TTR (9) NetBSD Kernel Developer’s Manual VATTR (9)

FUNCTIONS
vattr_null(vap)

Set vnode attributes invap to VNOVAL.

VATTR_NULL(vap)
This function is an alias forvattr_null().

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
vnode attributes can be found. All pathnames are relative to /usr/src .

The vnode attributes ares implemented within the filesys/kern/vfs_subr2.c .

SEE ALSO
intro (9), vfs (9), vnode (9), vnodeops (9)

NetBSD 3.0 January 24, 2008 2

VCONS (9) NetBSD Kernel Developer’s Manual VCONS(9)

NAME
vcons — generic virtual console framework

SYNOPSIS
#include <wscons/wsdisplay_vconsvar.h>

int
vcons_init(struct vcons_data ∗ vd , void ∗ cookie ,

struct wsscreen_descr ∗ desc , struct wsdisplay_accessops ∗ accops);

int
vcons_init_screen(struct vcons_data ∗ vd , struct vcons_screen ∗ scr ,

int exists , long ∗ defattr);

void
vcons_redraw_screen(struct vcons_screen ∗ scr);

DESCRIPTION
These functions are used to setup and control the generic virtual console framework.

Thevcons_init() function initializes the framework, it needs to be called for each driver that’s going to
usevcons.

vcons_init_screen() adds a virtual screen to a display.

vcons_redraw_screen() redraws a screen.A driver should call it when returning to terminal emulation
mode, for instance when X exits.

struct vcons_data contains all information needed to manage virtual consoles on a display, usually it
will be a member of the driver’s softc.

struct vcons_screen describes a virtual screen.

USAGE
To use vcons with a driver it needs to be initialized by callingvcons_init(), usually in the driver’s attach
function.

vd should be a pointer to the driver’s struct vcons_data.

cookie should be a pointer to the driver’s softc.

desc should point to astruct wsscreen_descr describing the default screen type for this dis-
play.

accops points to the driver’s struct wsdisplay_accessops so vcons_init() can fill it in
with its own implementations of alloc_screen(), free_screen(), and
show_screen().

A driver should however provide its own ioctl() andmmap() implementations. Both will receive a pointer
to the driver’s struct vcons_data as first parameter.

After initialization the driver needs to provide a callback function that will be called whenever a screen is
added. Itspurpose is to set up thestruct rasops_info describing the screen.After that the drawing
methods instruct rasops_info will be replaced with wrappers which call the original drawing func-
tions (which may or may not be provided by the driver) only when the respective screen is visible.To add a
virtual screen the driver one should callvcons_init_screen() which will call the callback function
described above, allocate storage for characters and attributes based on whatever the callback set up in
struct rasops_info, and add the screen to a list kept instruct vcons_data.

NetBSD 3.0 February 12, 2006 1

VCONS (9) NetBSD Kernel Developer’s Manual VCONS(9)

The callback needs to have this form:

void init_screen(void ∗ cookie , struct vcons_screen ∗ scr , int existing , long
∗ defattr)

and should be stored in theinit_screenmember found instruct vcons_data. The arguments are:

cookie is the cookie passed tovcons_init()

scr points to thestruct vcons_screen being added, itsscr_ri member, a struct
rasops_info, needs to be filled in.

existing is non-zero if the screen already exists and is only added to the list.

defattr points to the screen’s default text attribute. It’s filled in byvcons_init_screen() by call-
ing thealloc_attr() method found instruct rasops_info.

When attaching a wsdisplay (9) the accesscookie member of the struct
wsemuldisplaydev_attach_args passed toconfig_found() needs to be a pointer to the driver’s
struct vcons_data.

The following members ofstruct vcons_screen may be of interest to drivers:

scr_ri contains thestruct rasops_info describing the screen’s geometry, access methods
and so on.

scr_cookie the value passed as cookie tovcons_init(). Usuallythe driver’s softc.

scr_vd the driver’s struct vcons_data.

scr_flags can be zero or any combination of:
VCONS_NO_REDRAW don’t call vcons_redraw_screen() when this

screen becomes visible.
VCONS_SCREEN_IS_STATICdon’t free (9) this screen’s struct

vcons_screen in free_screen() - useful if the
screen has been statically allocated.

scr_status currently contains only one flag,VCONS_IS_VISIBLE , which is set when the screen is
visible.

SEE ALSO
wscons (4), wsdisplay (4)

NetBSD 3.0 February 12, 2006 2

VERIEXEC (9) NetBSD Kernel Developer’s Manual VERIEXEC(9)

NAME
veriexec — in-kernel file integrity subsystem KPI

SYNOPSIS
#include <sys/verified_exec.h>

DESCRIPTION
veriexec is the KPI forVeriexec, theNetBSD in-kernel file integrity subsystem.It is responsible for man-
aging the supported hashing algorithms, fingerprint calculation and comparison, file monitoring tables, and
relevant hooks to enforce theVeriexecpolicy.

Core Routines
void veriexec_init(void)

Initialize theVeriexecsubsystem. Calledonly once during system startup.

bool veriexec_lookup(struct vnode ∗ vp)
Check ifvp is monitored byVeriexecor not. Returnstrue if it is, or false otherwise.

int veriexec_verify(struct lwp ∗ l , struct vnode ∗ vp , const u_char ∗ name ,
int flag , bool ∗ found)
Verifies the digital fingerprint ofvp. name is the filename, andflag is the access flag.The
access flag can be one of:

VERIEXEC_DIRECT
The file was executed directly viaexecve (2).

VERIEXEC_INDIRECT
The file was executed indirectly, either as an interpreter for a script or mapped to
an executable memory region.

VERIEXEC_FILE
The file was opened for reading/writing.

l is the LWP for the request context.

An optional argument,found, is a pointer to a boolean indicating whether an entry for the file
was found in theVeriexectables.

void veriexec_purge(struct vnode ∗ vp)
Purge the file entry forvp. This invalidates the fingerprint so it will be evaluated next time the
file is accessed.

Fingerprint Related Routines
veriexec_fpops_add(const char ∗ fp_type , size_t hash_len , size_t ctx_size ,

veriexec_fpop_init_t init , veriexec_fpop_update_t update ,
veriexec_fpop_final_t final)
Add support for fingerprinting algorithmfp_type with binary hash lengthhash_len and cal-
culation context sizectx_size to Veriexec. init, update, andfinal are the routines used
to initialize, update, and finalize a calculation context.

Table Management Routines
int veriexec_file_add(struct lwp ∗ l , prop_dictionary_t dict)

Add aVeriexecentry for the file described bydict.

dict is expected to have the following:

Name Type Purpose

NetBSD 3.0 February 10, 2008 1

VERIEXEC (9) NetBSD Kernel Developer’s Manual VERIEXEC(9)

file string filename
entry-type uint8 entry type flags (seeveriexec (4))
fp-type string fingerprint hashing algorithm
fp data the fingerprint

int veriexec_file_delete(struct lwp ∗ l , struct vnode ∗ vp)
RemoveVeriexecentry forvp.

int veriexec_table_delete(struct lwp ∗ l , struct mount ∗ mp)
RemoveVeriexectable for mount-pointmp.

int veriexec_flush(struct lwp ∗ l)
Delete allVeriexectables.

Hook Handlers
int veriexec_openchk(struct lwp ∗ l , struct vnode ∗ vp , const char ∗ path , int

fmode)
Called when a file is opened.

l is the LWP opening the file,vp is a vnode for the file being opened as returned from
namei (9). If NULL, the file is being created.path is the pathname for the file (not necessarily
a full path), andfmode are the mode bits with which the file was opened.

int veriexec_renamechk(struct lwp ∗ l , struct vnode ∗ fromvp , const char
∗ fromname , struct vnode ∗ tovp , const char ∗ toname)
Called when a file is renamed.

fromvp and fromname are the vnode and filename of the file being renamed.tovp and
toname are the vnode and filename of the target file.l is the LWP renaming the file.

Depending on the strict level, veriexec will either track changes appropriately or prevent the
rename.

int veriexec_removechk(struct lwp ∗ l , struct vnode ∗ vp , const char ∗ name)
Called when a file is removed.

vp is the vnode of the file being removed, andname is the filename.l is the LWP removing the
file,

Depending on the strict level, veriexec will either clean-up after the file or prevent its removal.

int veriexec_unmountchk(struct mount ∗ mp)
Checks if the current strict level allows mp to be unmounted.

Misc. Routines
int veriexec_convert(struct vnode ∗ vp , prop_dictionary_t rdict)

Convert Veriexecentry forvp to human-readableproplib (3) dictionary, rdict, with the fol-
lowing elements:

Name Type Purpose
entry-type uint8 entry type flags (seeveriexec (4))
status uint8 entry status (see below)
fp-type string fingerprint hashing algorithm
fp data the fingerprint

The “status” can be one of the following:

NetBSD 3.0 February 10, 2008 2

VERIEXEC (9) NetBSD Kernel Developer’s Manual VERIEXEC(9)

Status Meaning
FINGERPRINT_NOTEVAL not evaluated
FINGERPRINT_VALID fingerprint match
FINGERPRINT_MISMATCH fingerprintmismatch

If no entry was found,ENOENTis returned. Otherwise, zero.

int veriexec_dump(struct lwp ∗ l , prop_array_t rarray)
Fill rarray with entries for all files monitored byVeriexecthat have a filename associated with
them.

Each element in rarray is a dictionary with the same elements as filled by
veriexec_convert(), with an additional field, “file”, containing the filename.

FILES
Path Purpose
src/sys/dev/verified_exec.c driver for userland communication
src/sys/sys/verified_exec.h shared(userland/kernel) header file
src/sys/kern/kern_verifiedexec.c subsystemcode
src/sys/kern/vfs_syscalls.c rename,remove, and unmount policies
src/sys/kern/vfs_vnops.c regular file access policy

SEE ALSO
proplib (3), sysctl (3), veriexec (4), security (8), sysctl (8), veriexecctl (8),
veriexecgen (8), fileassoc (9)

AUTHORS
Brett Lymn〈blymn@NetBSD.org〉
Elad Efrat〈elad@NetBSD.org〉

CAVEATS
There are two known issues withVeriexecthat should be considered when using it.

Remote File-systems
There is an issue providing protection for files residing on mounts from remote hosts. Because access to the
file-system does not necessarily go throughveriexec, there is no way to track on-disk changes. While it
is possible to minimize the effect by evaluating the file’s fingerprint on each access without caching the
result, a problem arises when a file is overwritten after its fingerprint has been evaluated and it is running on
the local host.

An attacker could potentially overwrite the file contents in the remote host at that point, and force a flush on
the local host, resulting in paging in of the files from the disk, introducing malicious code into a supposedly
safe address space.

There is a fix for this issue, however due to dependencies on other work that is still in progress it has not
been committed yet.

Layered File-systems
Due to VFS limitations,veriexec cannot track the same on-disk file across multiple layers of overlay file-
systems. Therefore,you cannot expect changes to files on overlay mounts will be detected simply because
the underlying mount is monitored byveriexec.

A workaround for this issue is listing all files, under all mounts, you want monitored in the signature file.

NetBSD 3.0 February 10, 2008 3

VFS (9) NetBSD Kernel Developer’s Manual VFS(9)

NAME
vfs — kernel interface to file systems

DESCRIPTION
The virtual file system,vfs, is the kernel interface to file systems. The interface specifies the calls for the
kernel to access file systems. It also specifies the core functionality that a file system must provide to the
kernel.

The focus ofvfs activity is thevnodeand is discussed invnode (9). Filesystem operations such as mount-
ing and syncing are discussed invfsops (9).

SEE ALSO
intro (9), vfsops (9), vnode (9), vnodeops (9)

NetBSD 3.0 September 22, 2001 1

VFS_HOOKS (9) NetBSD Kernel Developer’s Manual VFS_HOOKS(9)

NAME
vfs_hooks, vfs_hooks_unmount — VFS hooks interface

SYNOPSIS
#include <sys/param.h>
#include <sys/mount.h>

void
vfs_hooks_unmount(struct mount ∗ mp);

DESCRIPTION
The VFS hooks interface provides a way for different kernel subsystems to attach custom functions to spe-
cific VFS operations. This enforces code separation by keeping the VFS’s core sources uncluttered and
makes all subsystem functionality reside in a single place.As an example, this interface is used by the NFS
server code to automatically handle the exports list for each mount point.

Hooks are described by astruct vfs_hooks object, as seen below:

struct vfs_hooks {
int (∗ vh_unmount)(struct mount ∗);

};

For simplicity, each field is named after the VFS operation it refers to. The purpose of each member func-
tion, alongside some important notes, is shown below:

vh_unmount(mp)
This hook is executed during the unmount process of a file system.

For more information about the purpose of each operation, seevfsops (9). Notethat any of these fields
may be a null pointer.

After the definition of astruct vfs_hooks object, the kernel has to add it to thevfs_hookslink set
using theVFS_HOOKS_ATTACH(struct vfs_hooks ∗) macro.

Please note that this interface is incomplete on purpose to keep it in its smallest possible size (i.e., do not pro-
vide a hook that is not used). If you feel the need to hook a routine to a VFS operation that is not yet sup-
ported by this interface, just add it to the files described inCODE REFERENCES.

FUNCTIONS
The following functions are provided to the VFS code to run the hooked functions:

vfs_hooks_unmount(mp)
Runs all hooks for the VFS unmount operation.Given that these operations shall not fail, it
returnsvoid.

CODE REFERENCES
The VFS hooks interface is implemented within the filessys/kern/vfs_hooks.c and
sys/sys/mount.h .

SEE ALSO
intro (9), vfs (9), vfsops (9)

HISTORY
The VFS hooks interface appeared inNetBSD 4.0.

NetBSD 3.0 September 23, 2005 1

VFSOPS (9) NetBSD Kernel Developer’s Manual VFSOPS(9)

NAME
vfsops, VFS_MOUNT, VFS_START, VFS_UNMOUNT, VFS_ROOT, VFS_QUOTACTL, VFS_STATVFS,
VFS_SYNC, VFS_VGET, VFS_FHTOVP, VFS_VPTOFH, VFS_SNAPSHOT, VFS_SUSPENDCTL — kernel
file system interface

SYNOPSIS
#include <sys/param.h>
#include <sys/mount.h>
#include <sys/vnode.h>

int
VFS_MOUNT(struct mount ∗ mp , const char ∗ path , void ∗ data , size_t ∗ dlen);

int
VFS_START(struct mount ∗ mp , int flags);

int
VFS_UNMOUNT(struct mount ∗ mp , int mntflags);

int
VFS_ROOT(struct mount ∗ mp , struct vnode ∗∗ vpp);

int
VFS_QUOTACTL(struct mount ∗ mp , int cmds , uid_t uid , void ∗ arg);

int
VFS_STATVFS(struct mount ∗ mp , struct statvfs ∗ sbp);

int
VFS_SYNC(struct mount ∗ mp , int waitfor , kauth_cred_t cred);

int
VFS_VGET(struct mount ∗ mp , ino_t ino , struct vnode ∗∗ vpp);

int
VFS_FHTOVP(struct mount ∗ mp , struct fid ∗ fhp , struct vnode ∗∗ vpp);

int
VFS_VPTOFH(struct vnode ∗ vp , struct fid ∗ fhp , size_t ∗ fh_size);

int
VFS_SNAPSHOT(struct mount ∗ mp , struct vnode ∗ vp , struct timespec ∗ ts);

int
VFS_SUSPENDCTL(struct mount ∗ mp , int cmd);

DESCRIPTION
In a similar fashion to thevnode (9) interface, all operations that are done on a file system are conducted
through a single interface that allows the system to carry out operations on a file system without knowing its
construction or type.

All supported file systems in the kernel have an entry in thevfs_list_initial table. Thistable is generated by
config (1) and is aNULL-terminated list ofvfsopsstructures. Thevfsops structure describes the operations
that can be done to a specific file system type.The following table lists the elements of the vfsops vector, the
corresponding invocation macro, and a description of the element.

Vector element Macro Description

int (∗ vfs_mount)() VFS_MOUNT Mount a file system
int (∗ vfs_start)() VFS_START Make operational

NetBSD 3.0 January 24, 2008 1

VFSOPS (9) NetBSD Kernel Developer’s Manual VFSOPS(9)

int (∗ vfs_unmount)() VFS_UMOUNT Unmount a file system
int (∗ vfs_root)() VFS_ROOT Get the file system root vnode
int (∗ vfs_quotactl)() VFS_QUOTA CTL Query/modifyspace quotas
int (∗ vfs_statvfs)() VFS_STATVFS Getfile system statistics
int (∗ vfs_sync)() VFS_SYNC Flush file system buffers
int (∗ vfs_vget)() VFS_VGET Getvnode from file id
int (∗ vfs_fhtovp)() VFS_FHTOVP NFS file handle to vnode lookup
int (∗ vfs_vptofh)() VFS_VPTOFH Vnodeto NFS file handle lookup
void (∗ vfs_init)() - Initialize file system
void (∗ vfs_reinit)() - Reinitialize file system
void (∗ vfs_done)() - Cleanup unmounted file system
int (∗ vfs_mountroot)() - Mount the root file system
int (∗ vfs_snapshot)() VFS_SNAPSHOT Take a snapshot
int (∗ vfs_suspendctl)() VFS_SUSPENDCTL Suspend or resume

Some additional non-function members of the vfsops structure are the file system namevfs_nameand a ref-
erence countvfs_refcount. It is not mandatory for a file system type to support a particular operation, but it
must assign each member function pointer to a suitable function to do the minimum required of it.In most
cases, such functions either do nothing or return an error value to the effect that it is not supported.
vfs_reinit, vfs_mountroot, vfs_fhtovp, andvfs_vptofhmay beNULL.

At system boot, each file system with an entry invfs_list_initial is established and initialized. Each initial-
ized file system is recorded by the kernel in the listvfs_listand the file system specific initialization function
vfs_init in its vfsops vector is invoked. Whenthe file system is no longer neededvfs_doneis invoked to run
file system specific cleanups and the file system is removed from the kernel list.

At system boot, the root file system is mounted by invoking the file system type specificvfs_mountrootfunc-
tion in the vfsops vector. All file systems that can be mounted as a root file system must define this function.
It is responsible for initializing to list of mount structures for all future mounted file systems.

Kernel state which affects a specific file system type can be queried and modified using thesysctl (8) inter-
face.

FUNCTIONS
VFS_MOUNT(mp , path , data , dlen)

Mount a file system specified by the mount structuremp on the mount point described bypath.
The argumentdata contains file system type specific data, while the argumentdlen points to a
location specifying the length of the data.

VFS_MOUNT() initializes the mount structure for the mounted file system. This structure records
mount-specific information for the file system and records the list of vnodes associated with the
file system. This function is invoked both to mount new file systems and to change the attributes
of an existing file system. If the flag MNT_UPDATE is set in mp->mnt_flag, the file system
should update its state.This can be used, for instance, to convert a read-only file system to read-
write. The current attributes for a mounted file system can be fetched by specifying
MNT_GETARGS. If neitherMNT_UPDATEor MNT_GETARGSare specified, a new file system
will attempted to be mounted.

VFS_START(mp , flags)
Make the file system specified by the mount structuremp operational. Theargumentflags is a
set of flags for controlling the operation ofVFS_START(). This function is invoked after
VFS_MOUNT() and before the first access to the file system.

NetBSD 3.0 January 24, 2008 2

VFSOPS (9) NetBSD Kernel Developer’s Manual VFSOPS(9)

VFS_UNMOUNT(mp , mntflags)
Unmount a file system specified by the mount structuremp. VFS_UNMOUNT() performs any file
system type specific operations required before the file system is unmounted, such are flushing
buffers. IfMNT_FORCE is specified in the flagsmntflags then open files are forcibly closed.
The function also deallocates space associated with data structure that were allocated for the file
system when it was mounted.

VFS_ROOT(mp , vpp)
Get the root vnode of the file system specified by the mount structuremp. The vnode is returned
in the address given by vpp. This function is used by the pathname translation algorithms when
a vnode that has been covered by a mounted file system is encountered.While resolving the
pathname, the pathname translation algorithm will have to go through the directory tree in the file
system associated with that mount point and therefore requires the root vnode of the file system.

VFS_QUOTACTL(mp , cmds , uid , arg)
Query/modify user space quotas for the file system specified by the mount structuremp. The
argument specifies the control command to perform. The userid is specified inid and arg
allows command-specific data to be returned to the system call interface. VFS_QUOTACTL() is
the file system type specific implementation of thequotactl (2) system call.

VFS_STATVFS(mp , sbp)
Get file system statistics for the file system specified by the mount structuremp. A statvfs struc-
ture filled with the statistics is returned insbp. VFS_STATVFS() is the file system type specific
implementation of thestatvfs (2) andfstatvfs (2) system calls.

VFS_SYNC(mp , waitfor , cred)
Flush file system I/O buffers for the file system specified by the mount structuremp. The
waitfor argument indicates whether a partial flush or complete flush should be performed.
The argumentcred specifies the calling credentials.VFS_SYNC() does not provide any return
value since the operation can never fail.

VFS_VGET(mp , ino , vpp)
Get vnode for a file system type specific file idino for the file system specified by the mount
structuremp. The vnode is returned in the address specifiedvpp. The function is optional for
file systems which have a unique id number for every file in the file system.It is used internally
by the UFS file system and also by the NFSv3 server to implement the READDIRPLUS NFS
call. If the file system does not support this function, it should returnEOPNOTSUPP.

VFS_FHTOVP(mp , fhp , vpp)
Get the vnode for the file handlefhp in the file system specified by the mount structuremp. The
locked vnode is returned invpp.

When exporting, the call toVFS_FHTOVP() should follow a call to netexport_check(),
which checks if the file is accessible to the client.

If file handles are not supported by the file system, this function must returnEOPNOTSUPP.

VFS_VPTOFH(vp , fhp , fh_size)
Get a file handle for the vnode specified byvp. The file handle is returned infhp. The contents
of the file handle are defined by the file system and are not examined by any other subsystems.It
should contain enough information to uniquely identify a file within the file system as well as
noticing when a file has been removed and the file system resources have been recycled for a new
file.

The parameterfh_size points to the container size for the file handle.This parameter should
be updated to the size of the finished file handle.Note that it is legal to call this function with
fhp set toNULL in casefh_size is zero. In casefh_size indicates a storage space too

NetBSD 3.0 January 24, 2008 3

VFSOPS (9) NetBSD Kernel Developer’s Manual VFSOPS(9)

small, the storage space required for the file handle corresponding tovp should be filled in and
E2BIG should be returned.

If file handles are not supported by the file system, this function must returnEOPNOTSUPP.

VFS_SNAPSHOT(mp , vp , ts)
Take a snapshot of the file system specified by the mount structuremp and make it accessible
through the locked vnodevp. If ts is notNULL it will receive the time this snapshot was taken.
If the file system does not support this function, it should returnEOPNOTSUPP.

VFS_SUSPENDCTL(mp , cmd)
Suspend or resume all operations on this file system.cmd is eitherSUSPEND_SUSPENDto sus-
pend orSUSPEND_RESUMEto resume operations.If the file system does not support this func-
tion, it should returnEOPNOTSUPP.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the vfs
operations can be found. All pathnames are relative to /usr/src .

The vfs operations are implemented within the filessys/kern/vfs_subr.c ,
sys/kern/vfs_subr2.c andsys/kern/vfs_init.c .

SEE ALSO
intro (9), namei (9), vfs (9), vfssubr (9), vnode (9), vnodeops (9)

HISTORY
The vfs operations vector, its functions and the corresponding macros appeared in 4.3BSD.

NetBSD 3.0 January 24, 2008 4

VFSSUBR (9) NetBSD Kernel Developer’s Manual VFSSUBR(9)

NAME
vfssubr, vfs_getnewfsid, vfs_getvfs, vfs_export, vfs_showexport,
vfs_export_lookup, vfs_setpublicfs, vfs_mountedon, vfs_mountroot,
vfs_unmountall, vfs_busy, vfs_unbusy, vfs_rootmountalloc, vfs_shutdown,
vfs_attach, vfs_detach, vfs_reinit, vfs_getopsbyname, vfs_suspend, vfs_resume
— high-level interface to kernel file system interface

SYNOPSIS
#include <sys/param.h>
#include <sys/mount.h>
#include <sys/vnode.h>

void
vfs_getnewfsid(struct mount ∗ mp);

struct mount ∗
vfs_getvfs(fsid_t ∗ fsid);

int
vfs_export_lookup(struct mount ∗ mp , struct netexport ∗ nep ,

struct export_args ∗ argp);

int
vfs_setpublicfs(struct mount ∗ mp , struct netexport ∗ nep ,

struct export_args ∗ argp);

int
vfs_mountedon(struct vnode ∗ vp);

int
vfs_mountroot(void);

void
vfs_unmountall(struct lwp ∗ l);

int
vfs_busy(struct mount ∗ mp , int flags , struct simplelock ∗ interlkp);

void
vfs_unbusy(struct mount ∗ mp);

int
vfs_rootmountalloc(char ∗ fstypename , char ∗ devname , struct mount ∗∗ mpp);

void
vfs_shutdown(void);

int
vfs_attach(struct vfsops ∗ vfs);

int
vfs_detach(struct vfsops ∗ vfs);

void
vfs_reinit(void);

struct vfsops ∗
vfs_getopsbyname(const char ∗ name);

NetBSD 3.0 January 21, 2007 1

VFSSUBR (9) NetBSD Kernel Developer’s Manual VFSSUBR(9)

int
vfs_suspend(struct mount ∗ mp , int nowait);

void
vfs_resume(struct mount ∗ mp);

DESCRIPTION
The high-level functions described in this page are the interface to the kernel file system interface (VFS).

FUNCTIONS
vfs_getnewfsid(mp)

Get a new unique file system id type for the file system specified by the mount structuremp. The
file system id type is stored inmp->mnt_stat.f_fsidx.

vfs_getvfs(fsid)
Lookup a mount point with the file system identifierfsid.

vfs_export_lookup(mp , nep , argp)
Check client permission on the exportable file system specified by the mount structuremp. The
argumentnam is the address of the networked client. This function is used by file system type
specific functions to verify that the client can access the file system.

vfs_setpublicfs(mp , nep , argp)
Set the publicly exported file system specified by the mount structuremp.

vfs_mountedon(vp)
Check to see if a file system is mounted on a block device specified by the vnodevp.

vfs_mountroot(void)
Mount the root file system.

vfs_unmountall(l)
Unmount all file systems.

vfs_busy(mp , flags , interlkp)
Mark the mount point specified bymp as busy. This function is used to synchronize access and
to delay unmounting.The interlock specified by argumentinterlkp is not released on failure.

vfs_unbusy(mp)
Free the busy file system specified by the mount structuremp.

vfs_rootmountalloc(fstypename , devname , mpp)
Lookup a file system type specified by the namefstypename and if found allocate and ini-
tialise a mount structure for it.The allocated mount structure is returned in the address specified
by mpp. The device the root file system was mounted from is specified by the argument
devname and is recorded in the new mount structure.

vfs_shutdown()
Sync and unmount all file systems before shutting down. Invoked by cpu_reboot (9).

vfs_attach(vfs)
Establish file systemvfs and initialise it.

vfs_detach(vfs)
Remove file systemvfs from the kernel.

vfs_reinit(void)
Reinitialises all file systems within the kernel through file system-specific vfs operation (see
vfsops (9)).

NetBSD 3.0 January 21, 2007 2

VFSSUBR (9) NetBSD Kernel Developer’s Manual VFSSUBR(9)

vfs_getopsbyname(name)
Given a file system name specified byname, look up the vfs operations for that file system (see
vfsops (9)), or returnNULL if file system isn’t present in the kernel.

vfs_suspend(mp , nowait)
Request a mounted file system to suspend all operations. All new operations to the file system
are stopped. After all operations in progress have completed, the file system is synced to disk
and the function returns.If a file system suspension is currently in progress andnowait is set
EWOULDBLOCKis returned.If the operation is successful, zero is returned, otherwise an appro-
priate error code is returned.

vfs_resume(mp)
Request a mounted file system to resume operations.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the vfs
operations can be found. All pathnames are relative to /usr/src .

The vfs interface functions are implemented within the filessys/kern/vfs_subr.c ,
sys/kern/vfs_subr2.c , andsys/kern/vfs_init.c .

SEE ALSO
intro (9), namei (9), vfs (9), vfsops (9), vnode (9), vnodeops (9)

NetBSD 3.0 January 21, 2007 3

VME (9) NetBSD Kernel Developer’s Manual VME(9)

NAME
VME, vme_probe, vme_space_map, vme_space_unmap, vme_intr_map,
vme_intr_establish, vme_intr_disestablish, vme_intr_evcnt, vme_dmamap_create,
vme_dmamap_destroy, vme_dmamem_alloc, vme_dmamem_free, vme_space_alloc,
vme_space_free, vme_space_get — Versa Module Euroboard bus

SYNOPSIS
#include <machine/bus.h>
#include <dev/vme/vmereg.h>
#include <dev/vme/vmevar.h>

int
vme_probe(void ∗ vc , vme_addr_t vmeaddr , vme_size_t len , vme_am_t am ,

vme_datasize_t datasize , int (∗ callback)() , void ∗ arg);

int
vme_space_map(void ∗ vc , vme_addr_t vmeaddr , vme_size_t len , vme_am_t am ,

vme_datasize_t datasize , vme_swap_t swap , bus_space_tag_t ∗ tag ,
bus_space_handle_t ∗ handle , vme_mapresc_t ∗ resc);

void
vme_space_unmap(void ∗ vc , vme_mapresc_t resc);

int
vme_intr_map(void ∗ vc , int level , int vector , vme_intr_handle_t ∗ handlep);

void ∗
vme_intr_establish(void ∗ vc , vme_intr_handle_t handle , int prio ,

int (∗ func)(void ∗) , void ∗ arg);

void
vme_intr_disestablish(void ∗ vc , void ∗ cookie);

const struct evcnt ∗
vme_intr_evcnt(void ∗ vc , vme_intr_handle_t handle);

int
vme_dmamap_create(void ∗ vc , vme_size_t size , vme_am_t am ,

vme_datasize_t datasize , vme_swap_t swap , int nsegs , vme_size_t segsz ,
vme_addr_t bound , int flags , bus_dmamap_t ∗ map);

void
vme_dmamap_destroy(void ∗ vc , bus_dmamap_t map);

int
vme_dmamem_alloc(void ∗ vc , vme_size_t size , vme_am_t am ,

vme_datasize_t datasize , vme_swap_t swap , bus_dma_segment_t ∗ segs ,
int nsegs , int ∗ rsegs , int flags);

void
vme_dmamem_free(void ∗ vc , bus_dma_segment_t ∗ segs , int nsegs);

int
vme_space_alloc(struct vmebus_softc ∗ tag , vme_addr_t addr , vme_size_t size ,

vme_am_t ams);

void
vme_space_free(void ∗ vc , vme_addr_t addr , vme_size_t size , vme_am_t ams);

NetBSD 3.0 June 12, 2001 1

VME (9) NetBSD Kernel Developer’s Manual VME(9)

int
vme_space_get(void ∗ vc , vme_size_t size , vme_am_t ams , u_long align ,

vme_addr_t ∗ addr);

DESCRIPTION
TheVME bus provides support for VME devices. TheVME bus is a high-performance backplane bus for use
in computer systems. It is based on the VMEbus specification initially released by the VMEbus International
Trade Association (VITA) in August of 1982. It has since undergone IEC and IEEE standardisation.

The VME bus supports 8, 16, and 32-bit transfers over non-multiplexed 32-bit data and address paths.The
latest revisions allow 64-bit, multiplexed transfers. Itsupports asynchronous, fully handshaken transfers at
speeds up to 80 MB/sec. It has a master-slave architecture, encouraging multiprocessing and supports up to
seven interrupt levels.

DATA T YPES
Drivers attached to theVME bus will make use of the following data types:

vme_chipset_tag_t
An opaque type identifying the bus controller.

vme_addr_t
Addresses on the bus.

vme_am_t
Address modifiers. Valid values are VME_AM_A32, VME_AM_A16, VME_AM_A24,
VME_AM_USERDEF (user/vendor definable), VME_AM_MBO, VME_AM_SUPER,
VME_AM_USER, VME_AM_DAT A, VME_AM_PRG, VME_AM_BLT32 and
VME_AM_BLT64.

vme_datasize_t
The datasize of the address space.Valid values are VME_D8, VME_D16, and VME_D32.

vme_mapresc_t
Generic placeholder for any resources needed for a mapping.

vme_intr_handle_t
An opaque type describing an interrupt mapping.

vme_swap_t
Hardware swap capabilities for controlling data endianness.Valid values have not been specified
yet.

struct vme_range
A structure used to describe an address range on the VME bus. It contains the following mem-
bers:

vme_addr_t offset;
vme_size_t size;
vme_am_t am;

struct vme_attach_args
A structure used to inform the driver of the device properties.It contains the following members:

vme_chipset_tag_t va_vct;
bus_dma_tag_t va_bdt;
int ivector;
int ilevel;
int numcfranges;

NetBSD 3.0 June 12, 2001 2

VME (9) NetBSD Kernel Developer’s Manual VME(9)

struct vme_range r[VME_MAXCFRANGES];

FUNCTIONS
vme_probe(vc , vmeaddr , len , am , datasize , callback , arg)

Probes the VME space managed by controllervc at addressvmeaddr, lengthlen, with address
modifiersam and datasizedatasize for a device. If a VME device is found, the function
callback() (if it is not NULL) is called to perform device-specific identification.
callback() is called with the argumentarg, and the bus-space tag and bus-space handle for
accessing the VME space mapping and should return a nonzero positive integer for a positive
device match.

vme_space_map(vc , vmeaddr , len , am , datasize , swap , tag , handle , resc)
Maps the VME space managed by controllervc at addressvmeaddr, lengthlen, with address
modifiersam, datasizedatasize and endiannessswap for a device. If the mapping is success-
ful tag contains the bus-space tag andhandle contains the bus-space handle for accessing the
VME space mapping.resc contains the resources for the mappings.vme_space_map()
returns 0 on success, and nonzero on error.

vme_space_unmap(vc , resc)
Unmaps the VME space mapping managed by controllervc and resourcesresc.

vme_intr_map(vc , level , vector , handlep)
Setshandlep to a machine-dependent value which identifies a particular interrupt source at
level level and vectorvector on the controllervc. vme_intr_map() returns zero on suc-
cess, and nonzero on failure.

vme_intr_establish(vc , handle , prio , func , arg)
Establishes the interrupt handlerhandlep. When the device interrupts,func() will be called
with a single argumentarg and will run at the interrupt priority level prio. The return value of
vme_intr_establish() may be saved and passed tovme_intr_disestablish().

vme_intr_disestablish(vc , cookie)
Disables the interrupt handler when the driver is no longer interested in interrupts from the
device. cookie is the value returned byvme_intr_establish().

vme_intr_evcnt(vc , handle)
Increment the interrupt event counter for the interrupt specified byhandle.

vme_dmamap_create(vc , size , am , datasize , swap , nsegs , segsz , bound , flags ,
map)
Allocates a DMA handle and initializes it according to the parameters provided. TheVME-spe-
cific parameters describe the address-space modifiersam, datasizedatasize, and endianness
swap. The remaining parameters are described inbus_dma(9).

vme_dmamap_destroy(vc , map)
Frees all resources associated with a given DMA handle. The parameters are described in
bus_dma(9).

vme_dmamem_alloc(vc , size , am , datasize , swap , segs , nsegs , rsegs , flags)
Allocates memory that is “DMA safe” for the VME bus managed by controllervc. The VME-
specific parameters describe the address-space modifiersam, datasizedatasize, and endian-
nessswap. The remaining parameters are described inbus_dma(9).

vme_dmamem_free(vc , segs , nsegs)
Frees memory previously allocated byvme_dmamem_alloc() for the VME space managed by
controllervc.

NetBSD 3.0 June 12, 2001 3

VME (9) NetBSD Kernel Developer’s Manual VME(9)

vme_space_alloc(tag , addr , size , ams)
Allocate VME space for the bus-spacetag at addressaddr of sizesize and address-space
modifiersams. vme_space_alloc() returns EINVAL on invalid inputs.

vme_space_free(vc , addr , size , ams)
Deallocate VME space for the bus-spacetag at addressaddr of sizesize and address-space
modifiersams.

vme_space_get(vc , size , ams , align , addr)
Returns EINVAL on invalid inputs.

AUTOCONFIGURATION
The VME bus is an indirect-connection bus. Duringautoconfiguration each driver is required to probe the
bus for the presence of a device. A VME driver will receive a pointer to astruct vme_attach_args
hinting at "locations" (address ranges) on the VME bus where the device may be located. The driver should
check the number of address ranges, allocate the address space of these ranges using
vme_space_alloc(), and probe the address space for the device usingvme_probe().

During driver attach the driver should also map the address ranges usingvme_space_map(). Theinterrupt
locators in struct vme_attach_args are used by vme_intr_map() and
vme_intr_establish().

DMA SUPPORT
Extensive DMA facilities are provided.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independentVME subsystem can be found. All pathnames are relative to /usr/src .

TheVME subsystem itself is implemented within the filesys/dev/vme/vme.c .

SEE ALSO
vme(4), autoconf (9), bus_dma(9), bus_space (9), driver (9)

HISTORY
The machine-independent VME subsystem appeared inNetBSD 1.5.

BUGS
This page is incomplete.

NetBSD 3.0 June 12, 2001 4

VMEM (9) NetBSD Kernel Developer’s Manual VMEM(9)

NAME
vmem — virtual memory allocator

DESCRIPTION
Thevmem is a general purpose resource allocator. Despite its name, it can be used for arbitrary resources
other than virtual memory.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing thevmem sub-
system can be found. All pathnames are relative to /usr/src .

Thevmem subsystem is implemented within the filesys/kern/subr_vmem.c .

SEE ALSO
intro (9), memoryallocators (9), vmem_alloc (9), vmem_create (9), vmem_destroy (9),
vmem_free (9), vmem_xalloc (9), vmem_xfree (9)

Jeff Bonwick and Jonathan Adams, "Magazines and Vmem: Extending the Slab Allocator to Many CPUs
and Arbitrary Resources",2001 USENIX Annual Technical Conference, 2001.

AUTHORS
This implementation ofvmem was written by YAMAMOTO Takashi.

NetBSD 3.0 October 22, 2006 1

VMEM_ALLOC (9) NetBSD Kernel Developer’s Manual VMEM_ALLOC(9)

NAME
vmem_alloc — Allocate resource from arena

SYNOPSIS
#include <sys/vmem.h>

vmem_addr_t
vmem_alloc(vmem_t ∗ vm , vmem_size_t size , vm_flag_t flags);

DESCRIPTION
vmem_alloc() allocates a resource from the arena.

vm The arena which we allocate from.

size Specify the size of the allocation.

flags A bitwise OR of an allocation strategy and a sleep flag.

The allocation strategy is one of:

VM_BESTFIT Prefer space efficiency.

VM_INSTANTFIT Prefer performance.

The sleep flag should be one of:

VM_SLEEP Can sleep until enough resources are available.

VM_NOSLEEPDon’t sleep. Immediatelyreturn VMEM_ADDR_NULLif there are not enough
resources available.

RETURN VALUES
On success,vmem_alloc() returns an allocated vmem_addr_t. Otherwise, it returnsVMEM_ADDR_NULL.

SEE ALSO
intro (9), vmem(9)

NetBSD 3.0 October 22, 2006 1

VMEM_CREATE (9) NetBSD Kernel Developer’s Manual VMEM_CREATE (9)

NAME
vmem_create — create a vmem arena

SYNOPSIS
#include <sys/vmem.h>

vmem_t
vmem_create(const char ∗ name , vmem_addr_t base , vmem_size_t size ,

vmem_size_t quantum ,
vmem_addr_t (∗ allocfn)(vmem_t ∗ , vmem_size_t, vmem_size_t ∗ , vm_flag_t) ,
void (∗ freefn)(vmem_t ∗ , vmem_addr_t, vmem_size_t) , vmem_t ∗ source ,
vmem_size_t qcache_max , vm_flag_t flags);

DESCRIPTION
vmem_create() creates a new vmem arena.

name The string to describe the vmem.

base The start address of the initial span. It can beVMEM_ADDR_NULLif no initial span is
required.

size The size of the initial span.

quantum The smallest unit of allocation.

allocfn The callback function used to import spans from the backend arena.

freefn The callback function used to free spans to the backend arena.

source The backend arena.

qcache_max The largest size of allocations which can be served by quantum cache.It is merely a hint
and can be ignored.

flags Either of:

VM_SLEEP Can sleep until enough resources are available.

VM_NOSLEEPDon’t sleep. Immediatelyreturn NULL if there are not enough resources
available.

RETURN VALUES
vmem_create() return a pointer to the newly allocated vmem_t. Otherwise, it returnsNULL.

SEE ALSO
intro (9), vmem(9)

NetBSD 3.0 October 22, 2006 1

VMEM_DESTROY (9) NetBSDKernel Developer’s Manual VMEM_DESTROY (9)

NAME
vmem_create — destroy a vmem arena

SYNOPSIS
#include <sys/vmem.h>

void
vmem_destroy(vmem_t ∗ vm);

DESCRIPTION
vmem_destroy() destroys a vmem arena.

vm The vmem arena being destroyed. Thecaller should ensure that no one will use it anymore.

SEE ALSO
intro (9), vmem(9)

NetBSD 3.0 October 22, 2006 1

VMEM_FREE (9) NetBSD Kernel Developer’s Manual VMEM_FREE(9)

NAME
vmem_free — free resource to arena

SYNOPSIS
#include <sys/vmem.h>

void
vmem_free(vmem_t ∗ vm , vmem_addr_t addr , vmem_size_t size);

DESCRIPTION
vmem_free() frees resource allocated byvmem_alloc to the arena.

vm The arena which we free to.

addr The resource being freed. It must be the one returned byvmem_alloc(). Notably, it must not be
the one fromvmem_xalloc(). Otherwise,the behaviour is undefined.

size The size of the resource being freed.It must be the same as thesize argument used for
vmem_alloc().

SEE ALSO
intro (9), vmem(9)

NetBSD 3.0 October 22, 2006 1

VMEM_XALLOC (9) NetBSD Kernel Developer’s Manual VMEM_XALLOC(9)

NAME
vmem_xalloc — Allocate resource from arena

SYNOPSIS
#include <sys/vmem.h>

vmem_addr_t
vmem_xalloc(vmem_t ∗ vm , vmem_size_t size , vmem_size_t align ,

vmem_size_t phase , vmem_size_t nocross , vmem_addr_t minaddr ,
vmem_addr_t maxaddr , vm_flag_t flags);

DESCRIPTION
vmem_xalloc() allocates a resource from the arena.

vm The arena which we allocate from.

size Specify the size of the allocation.

align If zero, don’t care about the alignment of the allocation. Otherwise, request a resource segment
starting at offsetphase from analign aligned boundary.

phase See the above description ofalign. If align is zero,phase should be zero.Otherwise,
phase should be smaller thanalign.

nocross Request a resource which doesn’t crossnocross aligned boundary.

minaddr If non-zero, specify the minimum address which can be allocated.

maxaddr If non-zero, specify the maximum address + 1 which can be allocated.

flags A bitwise OR of an allocation strategy and a sleep flag.

The allocation strategy is one of:

VM_BESTFIT Prefer space efficiency.

VM_INSTANTFIT Prefer performance.

The sleep flag should be one of:

VM_SLEEP Can sleep until enough resources are available.

VM_NOSLEEPDon’t sleep. Immediatelyreturn VMEM_ADDR_NULLif there are not enough
resources available.

RETURN VALUES
On success, vmem_xalloc() returns an allocated vmem_addr_t.Otherwise, it returns
VMEM_ADDR_NULL.

SEE ALSO
intro (9), vmem(9)

NetBSD 3.0 November 4, 2006 1

VMEM_XFREE (9) NetBSD Kernel Developer’s Manual VMEM_XFREE(9)

NAME
vmem_xfree — free resource to arena

SYNOPSIS
#include <sys/vmem.h>

void
vmem_xfree(vmem_t ∗ vm , vmem_addr_t addr , vmem_size_t size);

DESCRIPTION
vmem_xfree() frees resource allocated byvmem_xalloc to the arena.

vm The arena which we free to.

addr The resource being freed. It must be the one returned byvmem_xalloc(). Notably, it must not be
the one fromvmem_alloc(). Otherwise,the behaviour is undefined.

size The size of the resource being freed.It must be the same as thesize argument used for
vmem_xalloc().

SEE ALSO
intro (9), vmem(9)

NetBSD 3.0 November 4, 2006 1

VNFILEOPS (9) NetBSD Kernel Developer’s Manual VNFILEOPS(9)

NAME
vnfileops, vn_closefile, vn_fcntl, vn_ioctl, vn_read, vn_poll, vn_statfile,
vn_write — vnode file descriptor operations

SYNOPSIS
#include <sys/param.h>
#include <sys/file.h>
#include <sys/vnode.h>

int
vn_closefile(file_t ∗ fp);

int
vn_fcntl(file_t ∗ fp , u_int com , void ∗ data);

int
vn_ioctl(file_t ∗ fp , u_long com , void ∗ data);

int
vn_read(file_t ∗ fp , off_t ∗ offset , struct uio ∗ uio , kauth_cred_t cred ,

int flags);

int
vn_poll(file_t ∗ fp , int events);

int
vn_statfile(file_t ∗ fp , struct stat ∗ sb);

int
vn_write(file_t ∗ fp , off_t ∗ offset , struct uio ∗ uio , kauth_cred_t cred ,

int flags);

DESCRIPTION
The functions described in this page are the vnode-specific file descriptor operations.They should only be
accessed through the opaque function pointers in the file entries (seefile (9)). They are described here
only for completeness.

FUNCTIONS
vn_closefile(fp , l)

Common code for a file table vnode close operation.The file is described byfp andl is the
calling lwp. vn_closefile() simply callsvn_close (9) with the appropriate arguments.

vn_fcntl(fp , com , data , l)
Common code for a file table vnodefcntl (2) operation. The file is specified byfp. The argu-
mentl is the calling lwp. vn_fcntl() simply locks the vnode and invokes the vnode operation
VOP_FCNTL(9) with the commandcom and buffer data. The vnode is unlocked on return.If
the operation is successful zero is returned, otherwise an appropriate error is returned.

vn_ioctl(fp , com , data , l)
Common code for a file table vnode ioctl operation.The file is specified byfp. The argumentl
is the calling lwp vn_ioctl() simply locks the vnode and invokes the vnode operation
VOP_IOCTL(9) with the commandcom and buffer data. The vnode is unlocked on return.If
the operation is successful zero is returned, otherwise an appropriate error is returned.

vn_read(fp , offset , uio , cred , flags)
Common code for a file table vnode read. The argumentfp is the file structure, The argument
offset is the offset into the file. The argumentuio is the uio structure describing the memory

NetBSD 3.0 April 9, 2008 1

VNFILEOPS (9) NetBSD Kernel Developer’s Manual VNFILEOPS(9)

to read into. The caller’s credentials are specified incred. The flags argument can define
FOF_UPDATE_OFFSET to update the read position in the file. If the operation is successful
zero is returned, otherwise an appropriate error is returned.

vn_poll(fp , events , l)
Common code for a file table vnode poll operation.vn_poll() simply callsVOP_POLL(9)
with the events events and the calling lwp l. The function returns a bitmask of available
ev ents.

vn_statfile(fp , sb , l)
Common code for a stat operation.The file descriptor is specified by the argumentfp andsb is
the buffer to return the stat information. The argumentl is the calling lwp. vn_statfile()
basically calls the vnode operationVOP_GETATTR(9) and transfer the contents of a vattr struc-
ture into a struct stat. If the operation is successful zero is returned, otherwise an appropriate
error code is returned.

vn_write(fp , offset , uio , cred , flags)
Common code for a file table vnode write. The argumentfp is the file structure, The argument
offset is the offset into the file. The argumentuio is the uio structure describing the memory
to read from. The caller’s credentials are specified incred. Theflags argument can define
FOF_UPDATE_OFFSET to update the read position in the file. If the operation is successful
zero is returned, otherwise an appropriate error is returned.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
vnode framework can be found. All pathnames are relative to /usr/src .

The high-level convenience functions are implemented within the filesys/kern/vfs_vnops.c .

SEE ALSO
file (9), intro (9), vnode (9), vnodeops (9), vnsubr (9)

NetBSD 3.0 April 9, 2008 2

VNODE (9) NetBSD Kernel Developer’s Manual VNODE(9)

NAME
vnode, vcount, vref, VREF, vrele, vget, vput, vhold, VHOLD, holdrele, HOLDRELE,
getnewvnode, ungetnewvnode, vrecycle, vgone, vgonel, vflush, vaccess, checkalias,
bdevvp, cdevvp, vfinddev, vdevgone, vwakeup, vflushbuf, vinvalbuf, vtruncbuf,
vprint — kernel representation of a file or directory

SYNOPSIS
#include <sys/param.h>
#include <sys/vnode.h>

int
vcount(struct vnode ∗ vp);

void
vref(struct vnode ∗ vp);

void
VREF(struct vnode ∗ vp);

void
vrele(struct vnode ∗ vp);

int
vget(struct vnode ∗ vp , int lockflag);

void
vput(struct vnode ∗ vp);

void
vhold(struct vnode ∗ vp);

void
VHOLD(struct vnode ∗ vp);

void
holdrele(struct vnode ∗ vp);

void
HOLDRELE(struct vnode ∗ vp);

int
getnewvnode(enum vtagtype tag , struct mount ∗ mp , int (∗∗ vops)(void ∗) ,

struct vnode ∗∗ vpp);

void
ungetnewvnode(struct vnode ∗ vp);

int
vrecycle(struct vnode ∗ vp , struct simplelock ∗ inter_lkp , struct lwp ∗ l);

void
vgone(struct vnode ∗ vp);

void
vgonel(struct vnode ∗ vp , struct lwp ∗ l);

int
vflush(struct mount ∗ mp , struct vnode ∗ skipvp , int flags);

NetBSD 3.0 January 24, 2008 1

VNODE (9) NetBSD Kernel Developer’s Manual VNODE(9)

int
vaccess(enum vtype type , mode_t file_mode , uid_t uid , gid_t gid ,

mode_t acc_mode , kauth_cred_t cred);

struct vnode ∗
checkalias(struct vnode ∗ vp , dev_t nvp_rdev , struct mount ∗ mp);

int
bdevvp(dev_t dev , struct vnode ∗∗ vpp);

int
cdevvp(dev_t dev , struct vnode ∗∗ vpp);

int
vfinddev(dev_t dev , enum vtype , struct vnode ∗∗ vpp);

void
vdevgone(int maj , int minl , int minh , enum vtype type);

void
vwakeup(struct buf ∗ bp);

void
vflushbuf(struct vnode ∗ vp , int sync);

int
vinvalbuf(struct vnode ∗ vp , int flags , kauth_cred_t cred , struct lwp ∗ l ,

int slpflag , int slptimeo);

int
vtruncbuf(struct vnode ∗ vp , daddr_t lbn , int slpflag , int slptimeo);

void
vprint(const char ∗ label , struct vnode ∗ vp);

DESCRIPTION
The vnode is the focus of all file activity in NetBSD. There is a unique vnode allocated for each active file,
directory, mounted-on file, fifo, domain socket, symbolic link and device. Thekernel has no concept of a
file’s underlying structure and so it relies on the information stored in the vnode to describe the file.Thus,
the vnode associated with a file holds all the administration information pertaining to it.

When a process requests an operation on a file, thevfs (9) interface passes control to a file system type
dependent function to carry out the operation.If the file system type dependent function finds that a vnode
representing the file is not in main memory, it dynamically allocates a new vnode from the system main
memory pool.Once allocated, the vnode is attached to the data structure pointer associated with the cause of
the vnode allocation and it remains resident in the main memory until the system decides that it is no longer
needed and can be recycled.

The vnode has the following structure:

struct vnode {
struct uvm_object v_uobj; / ∗ uvm object ∗ /

#define v_usecount v_uobj.uo_refs
#define v_interlock v_uobj.vmobjlock

voff_t v_size; / ∗ size of file ∗ /
int v_flag; / ∗ flags ∗ /
int v_numoutput; / ∗ num pending writes ∗ /
long v_writecount; / ∗ ref count of writers ∗ /

NetBSD 3.0 January 24, 2008 2

VNODE (9) NetBSD Kernel Developer’s Manual VNODE(9)

long v_holdcnt; / ∗ page & buffer refs ∗ /
struct mount ∗ v_mount; / ∗ ptr to vfs we are in ∗ /
int (∗∗ v_op)(void ∗); / ∗ vnode ops vector ∗ /
TAILQ_ENTRY(vnode) v_freelist; / ∗ vnode freelist ∗ /
LIST_ENTRY(vnode) v_mntvnodes; / ∗ vnodes for mount pt ∗ /
struct buflists v_cleanblkhd; / ∗ clean blocklist head ∗ /
struct buflists v_dirtyblkhd; / ∗ dirty blocklist head ∗ /
LIST_ENTRY(vnode) v_synclist; / ∗ dirty vnodes ∗ /
LIST_HEAD(, namecache) v_dnclist; / ∗ namecaches for children ∗ /
LIST_HEAD(, namecache) v_nclist; / ∗ namecaches for our parent ∗ /
union {

struct mount ∗ vu_mountedhere;/ ∗ ptr to mounted vfs ∗ /
struct socket ∗ vu_socket; / ∗ unix ipc (VSOCK) ∗ /
struct specinfo ∗ vu_specinfo; / ∗ device (VCHR, VBLK) ∗ /
struct fifoinfo ∗ vu_fifoinfo; / ∗ fifo (VFIFO) ∗ /

} v _un;
#define v_mountedhere v_un.vu_mountedhere
#define v_socket v_un.vu_socket
#define v_specinfo v_un.vu_specinfo
#define v_fifoinfo v_un.vu_fifoinfo

struct nqlease ∗ v_lease; / ∗ Soft ref to lease ∗ /
enum vtype v_type; / ∗ vnode type ∗ /
enum vtagtype v_tag; / ∗ underlying data type ∗ /
struct lock v_lock; / ∗ lock for this vnode ∗ /
struct lock ∗ v_vnlock; / ∗ ptr to vnode lock ∗ /
void ∗ v_data; / ∗ private data for fs ∗ /
struct klist v_klist; / ∗ knotes attached to vnode ∗ /

};

Most members of the vnode structure should be treated as opaque and only manipulated using the proper
functions. Thereare some rather common exceptions detailed throughout this page.

Files and file systems are inextricably linked with the virtual memory system andv_uobjcontains the data
maintained by the virtual memory system.For compatibility with code written before the integration of
uvm(9) intoNetBSD, C-preprocessor directives are used to alias the members ofv_uobj.

Vnode flags are recorded byv_flag. Valid flags are:

VROOT This vnode is the root of its file system.
VTEXT This vnode is a pure text prototype.
VSYSTEM This vnode is being used by the kernel; only used to skip quota files invflush().
VISTTY This vnode represents a tty; used when reading dead vnodes.
VEXECMAP This vnode has executable mappings.
VWRITEMAP

This vnode might have PROT_WRITE user mappings.
VWRITEMAPDIRTY

This vnode might have dirty pages due to VWRITEMAP
VLOCKSWORK

This vnode’s file system supports locking.
VXLOCK This vnode is currently locked to change underlying type.
VXWANT A process is waiting for this vnode.

NetBSD 3.0 January 24, 2008 3

VNODE (9) NetBSD Kernel Developer’s Manual VNODE(9)

VBWAIT Waiting for output associated with this vnode to complete.
VALIASED This vnode has an alias.
VDIROP This vnode is involved in a directory operation. This flag is used exclusively by LFS.
VLAYER This vnode is on a layered file system.
VONWORKLST

This vnode is on syncer work-list.
VFREEING This vnode is being freed.
VMAPPED This vnode might have user mappings.

The VXLOCK flag is used to prevent multiple processes from entering the vnode reclamation code. It is also
used as a flag to indicate that reclamation is in progress.The VXWANT flag is set by threads that wish to be
aw akened when reclamation is finished.Beforev_flagcan be modified, thev_interlocksimplelock must be
acquired. Seelock (9) for details on the kernel locking API.

Each vnode has three reference counts:v_usecount, v_writecountandv_holdcnt. The first is the number of
active references within the kernel to the vnode. This count is maintained byvref(), vrele(), andvput().
The second is the number of active references within the kernel to the vnode performing write access to the
file. It is maintained by theopen (2) andclose (2) system calls. The third is the number of references
within the kernel requiring the vnode to remain active and not be recycled. Thiscount is maintained by
vhold() andholdrele(). Whenboth thev_usecountandv_holdcntreach zero, the vnode is recycled to
the freelist and may be reused for another file.The transition to and from the freelist is handled by
getnewvnode(), ungetnewvnode() and vrecycle(). Access to v_usecount, v_writecount and
v_holdcntis also protected by thev_interlocksimplelock.

The number of pending synchronous and asynchronous writes on the vnode are recorded inv_numoutput. It
is used byfsync (2) to wait for all writes to complete before returning to the user. Its value must only be
modified at splbio (seespl (9)). It does not track the number of dirty buffers attached to the vnode.

v_dnclist and v_nclist are used bynamecache (9) to maintain the list of associated entries so that
cache_purge (9) can purge them.

The link to the file system which owns the vnode is recorded byv_mount. Seevfsops (9) for further infor-
mation of file system mount status.

Thev_oppointer points to its vnode operations vector. This vector describes what operations can be done to
the file associated with the vnode. The system maintains one vnode operations vector for each file system
type configured into the kernel. Thevnode operations vector contains a pointer to a function for each opera-
tion supported by the file system. Seevnodeops (9) for a description of vnode operations.

When not in use, vnodes are kept on the freelist throughv_freelist. The vnodes still reference valid files but
may be reused to refer to a new file at any time. Whena valid vnode which is on the freelist is used again,
the user must callvget() to increment the reference count and retrieve it from the freelist. When a user
wants a new vnode for another file,getnewvnode() is invoked to remove a vnode from the freelist and ini-
tialize it for the new file.

The type of object the vnode represents is recorded byv_type. It is used by generic code to perform checks
to ensure operations are performed on valid file system objects.Valid types are:

VNON The vnode has no type.
VREG The vnode represents a regular file.
VDIR The vnode represents a directory.
VBLK The vnode represents a block special device.
VCHR The vnode represents a character special device.
VLNK The vnode represents a symbolic link.

NetBSD 3.0 January 24, 2008 4

VNODE (9) NetBSD Kernel Developer’s Manual VNODE(9)

VSOCK
The vnode represents a socket.

VFIFO The vnode represents a pipe.
VBAD The vnode represents a bad file (not currently used).

Vnode tag types are used by external programs only (e.g.,pstat (8)), and should never be inspected by the
kernel. Itsuse is deprecated since new v_tagvalues cannot be defined for loadable file systems.The v_tag
member is read-only. Valid tag types are:

VT_NON non file system
VT_UFS universal file system
VT_NFS network file system
VT_MFS memory file system
VT_MSDOSFS FAT file system
VT_LFS log-structured file system
VT_LOFS loopback file system
VT_FDESC file descriptor file system
VT_PORTAL portal daemon
VT_NULL null file system layer
VT_UMAP uid/gid remapping file system layer
VT_KERNFS kernel interface file system
VT_PROCFS process interface file system
VT_AFS AFS file system
VT_ISOFS ISO 9660 file system(s)
VT_UNION union file system
VT_ADOSFS Amiga file system
VT_EXT2FS Linux’s EXT2 file system
VT_CODA Coda file system
VT_FILECORE filecore file system
VT_NTFS Microsoft NT’s file system
VT_VFS virtual file system
VT_OVERLAY overlay file system
VT_SMBFS SMB file system
VT_PTYFS pseudo-terminal device file system
VT_TMPFS efficient memory file system
VT_UDF universal disk format file system
VT_SYSVBFS systemV boot file system

All vnode locking operations usev_vnlock. This lock is acquired by callingvn_lock (9) and released by
calling VOP_UNLOCK(9). The reason for this asymmetry is thatvn_lock (9) is a wrapper for
VOP_LOCK(9) with extra checks, while the unlocking step usually does not need additional checks and thus
has no wrapper.

The vnode locking operation is complicated because it is used for many purposes. Sometimesit is used to
bundle a series of vnode operations (seevnodeops (9)) into an atomic group.Many file systems rely on it
to prevent race conditions in updating file system type specific data structures rather than using their own pri-
vate locks. The vnode lock can operate as a multiple-reader (shared-access lock) or single-writer lock
(exclusive access lock), however many current file system implementations were written assuming only sin-
gle-writer locking. Multiple-reader locking functions equivalently only in the presence of big-lock SMP
locking or a uni-processor machine. The lock may be held while sleeping. While thev_vnlockis acquired,
the holder is guaranteed that the vnode will not be reclaimed or invalidated. Mostfile system functions
require that you hold the vnode lock on entry. Seelock (9) for details on the kernel locking API.

NetBSD 3.0 January 24, 2008 5

VNODE (9) NetBSD Kernel Developer’s Manual VNODE(9)

For leaf file systems (such as ffs, lfs, msdosfs, etc),v_vnlockwill point to v_lock. For stacked file systems,
v_vnlockwill generally point tov_vlockof the lowest file system.Additionally, the implementation of the
vnode lock is the responsibility of the individual file systems andv_vnlockmay also be NULL indicating that
a leaf node does not export a lock for vnode locking. In this case, stacked file systems (such as nullfs) must
call the underlying file system directly for locking.

Each file system underlying a vnode allocates its own private area and hangs it fromv_data.

Most functions discussed in this page that operate on vnodes cannot be called from interrupt context. The
membersv_numoutput, v_holdcnt, v_dirtyblkhd, v_cleanblkhd, v_freelist, and v_synclistare modified in
interrupt context and must be protected bysplbio (9) unless it is certain that there is no chance an interrupt
handler will modify them. The vnode lock must not be acquired within interrupt context.

FUNCTIONS
vcount(vp)

Calculate the total number of reference counts to a special device with vnodevp.

vref(vp)
Incrementv_usecountof the vnodevp. Any kernel thread system which uses a vnode (e.g., dur-
ing the operation of some algorithm or to store in a data structure) should callvref().

VREF(vp)
This function is an alias forvref().

vrele(vp)
Decrementv_usecountof unlocked vnodevp. Any code in the system which is using a vnode
should callvrele() when it is finished with the vnode.If v_usecountof the vnode reaches zero
andv_holdcntis greater than zero, the vnode is placed on the holdlist. If bothv_usecountand
v_holdcntare zero, the vnode is placed on the freelist.

vget(vp , lockflags)
Reclaim vnodevp from the freelist, increment its reference count and lock it. The argument
lockflags specifies thelockmgr (9) flags used to lock the vnode. If the VXLOCK is set in
vp’s v_flag, vnodevp is being recycled invgone() and the calling thread sleeps until the transi-
tion is complete. When it is awakened, an error is returned to indicate that the vnode is no longer
usable (possibly having been recycled to a new file system type).

vput(vp)
Unlock vnodevp and decrement itsv_usecount. Depending on the reference counts, move the
vnode to the holdlist or the freelist. This operation is functionally equivalent to calling
VOP_UNLOCK(9) followed byvrele().

vhold(vp)
Mark the vnodevp as active by incrementingvp->v_holdcntand moving the vnode from the
freelist to the holdlist.Once on the holdlist, the vnode will not be recycled until it is released
with holdrele().

VHOLD(vp)
This function is an alias forvhold().

holdrele(vp)
Mark the vnodevp as inactive by decrementingvp->v_holdcntand moving the vnode from the
holdlist to the freelist.

HOLDRELE(vp)
This function is an alias forholdrele().

NetBSD 3.0 January 24, 2008 6

VNODE (9) NetBSD Kernel Developer’s Manual VNODE(9)

getnewvnode(tag , mp , vops , vpp)
Retrieve the next vnode from the freelist.getnewvnode() must choose whether to allocate a
new vnode or recycle an existing one. The criterion for allocating a new one is that the total
number of vnodes is less than the number desired or there are no vnodes on either free list.Gen-
erally only vnodes that have no buffers associated with them are recycled and the next vnode
from the freelist is retrieved. If the freelist is empty, vnodes on the holdlist are considered.The
new vnode is returned in the address specified byvpp.

The argumentmp is the mount point for the file system requested the new vnode. Beforeretriev-
ing the new vnode, the file system is checked if it is busy (such as currently unmounting).An
error is returned if the file system is unmounted.

The argumenttag is the vnode tag assigned to∗ vpp->v_tag. The argumentvops is the
vnode operations vector of the file system requesting the new vnode. Ifa vnode is successfully
retrieved zero is returned, otherwise an appropriate error code is returned.

ungetnewvnode(vp)
Undo the operation ofgetnewvnode(). Theargumentvp is the vnode to return to the freelist.
This function is needed forVFS_VGET(9) which may need to push back a vnode in case of a
locking race condition.

vrecycle(vp , inter_lkp , l)
Recycle the unused vnodevp to the front of the freelist.vrecycle() is a null operation if the
reference count is greater than zero.

vgone(vp)
Eliminate all activity associated with the unlocked vnodevp in preparation for recycling.

vgonel(vp , p)
Eliminate all activity associated with the locked vnodevp in preparation for recycling.

vflush(mp , skipvp , flags)
Remove any vnodes in the vnode table belonging to mount pointmp. If skipvp is not NULL it
is exempt from being flushed. The argumentflags is a set of flags modifying the operation of
vflush(). If FORCECLOSE is not specified, there should not be any active vnodes and the
error EBUSYis returned if any are found (this is a user error, not a system error). If FORCE-
CLOSE is specified, active vnodes that are found are detached.If WRITECLOSE is set, only
flush out regular file vnodes open for writing.SKIPSYSTEM causes any vnodes marked
V_SYSTEM to be skipped.

vaccess(type , file_mode , uid , gid , acc_mode , cred)
Do access checking by comparing the file’s permissions to the caller’s desired access type
acc_mode and credentialscred.

checkalias(vp , nvp_rdev , mp)
Check to see if the new vnodevp represents a special device for which another vnode represents
the same device. If such an alias exists, the existing contents and the aliased vnode are deallo-
cated. Thecaller is responsible for filling the new vnode with its new contents.

bdevvp(dev , vpp)
Create a vnode for a block device. bdevvp() is used for root file systems, swap areas and for
memory file system special devices.

cdevvp(dev , vpp)
Create a vnode for a character device. cdevvp() is used for the console and kernfs special
devices.

NetBSD 3.0 January 24, 2008 7

VNODE (9) NetBSD Kernel Developer’s Manual VNODE(9)

vfinddev(dev , vtype , vpp)
Lookup a vnode by device number. The vnode is returned in the address specified byvpp.

vdevgone(int maj , int min , int minh , enum vtype type)
Reclaim all vnodes that correspond to the specified minor number rangeminl to minh (end-
points inclusive) of the specified majormaj.

vwakeup(bp)
Update outstanding I/O countvp->v_numoutputfor the vnodebp->b_vp and do a wakeup if
requested andvp->vflaghas VBWAIT set.

vflushbuf(vp , sync)
Flush all dirty buffers to disk for the file with the locked vnodevp. The argumentsync speci-
fies whether the I/O should be synchronous andvflushbuf() will sleep untilvp->v_numoutput
is zero andvp->v_dirtyblkhdis empty.

vinvalbuf(vp , flags , cred , l , slpflag , slptimeo)
Flush out and invalidate all buffers associated with locked vnodevp. The argumentl andcred
specified the calling process and its credentials.The ltsleep (9) flag and timeout are specified
by the argumentsslpflag andslptimeo respectively. If the operation is successful zero is
returned, otherwise an appropriate error code is returned.

vtruncbuf(vp , lbn , slpflag , slptimeo)
Destroy any in-core buffers past the file truncation length for the locked vnodevp. The trunca-
tion length is specified bylbn. vtruncbuf() will sleep while the I/O is performed,The
ltsleep (9) flag and timeout are specified by the argumentsslpflag andslptimeo respec-
tively. If the operation is successful zero is returned, otherwise an appropriate error code is
returned.

vprint(label , vp)
This function is used by the kernel to dump vnode information during a panic. It is only used if
the kernel option DIAGNOSTIC is compiled into the kernel. Theargumentlabel is a string to
prefix the information dump of vnodevp.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
vnode framework can be found. All pathnames are relative to /usr/src .

The vnode framework is implemented within the files sys/kern/vfs_subr.c and
sys/kern/vfs_subr2.c .

SEE ALSO
intro (9), lock (9), namecache (9), namei (9), uvm(9), vattr (9), vfs (9), vfsops (9), vnodeops (9),
vnsubr (9)

BUGS
The locking protocol is inconsistent.Many vnode operations are passed locked vnodes on entry but release
the lock before they exit. The locking protocol is used in some places to attempt to make a series of opera-
tions atomic (e.g., access check then operation).This does not work for non-local file systems that do not
support locking (e.g., NFS). Thevnode interface would benefit from a simpler locking protocol.

NetBSD 3.0 January 24, 2008 8

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

NAME
vnodeops, VOP_LOOKUP, VOP_CREATE, VOP_MKNOD, VOP_OPEN, VOP_CLOSE, VOP_ACCESS,
VOP_GETATTR, VOP_SETATTR, VOP_READ, VOP_WRITE, VOP_IOCTL, VOP_FCNTL, VOP_POLL,
VOP_KQFILTER, VOP_REVOKE, VOP_MMAP, VOP_FSYNC, VOP_SEEK, VOP_REMOVE, VOP_LINK,
VOP_RENAME, VOP_MKDIR, VOP_RMDIR, VOP_SYMLINK, VOP_READDIR, VOP_READLINK,
VOP_ABORTOP, VOP_INACTIVE, VOP_RECLAIM, VOP_LOCK, VOP_UNLOCK, VOP_ISLOCKED,
VOP_BMAP, VOP_PRINT, VOP_PATHCONF, VOP_ADVLOCK, VOP_LEASE, VOP_WHITEOUT,
VOP_GETPAGES, VOP_PUTPAGES, VOP_STRATEGY, VOP_BWRITE, VOP_GETEXTATTR,
VOP_SETEXTATTR, VOP_LISTEXTATTR — vnode operations

SYNOPSIS
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/dirent.h>
#include <sys/lock.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/unistd.h>
#include <sys/fcntl.h>
#include <sys/lockf.h>
#include <sys/extattr.h>

int
VOP_LOOKUP(struct vnode ∗ dvp , struct vnode ∗∗ vpp ,

struct componentname ∗ cnp);

int
VOP_CREATE(struct vnode ∗ dvp , struct vnode ∗∗ vpp ,

struct componentname ∗ cnp , struct vattr ∗ vap);

int
VOP_MKNOD(struct vnode ∗ dvp , struct vnode ∗∗ vpp , struct componentname ∗ cnp ,

struct vattr ∗ vap);

int
VOP_OPEN(struct vnode ∗ vp , int mode , kauth_cred_t cred);

int
VOP_CLOSE(struct vnode ∗ vp , int fflag , kauth_cred_t cred);

int
VOP_ACCESS(struct vnode ∗ vp , int mode , kauth_cred_t cred);

int
VOP_GETATTR(struct vnode ∗ vp , struct vattr ∗ vap , kauth_cred_t cred);

int
VOP_SETATTR(struct vnode ∗ vp , struct vattr ∗ vap , kauth_cred_t cred);

int
VOP_READ(struct vnode ∗ vp , struct uio ∗ uio , int ioflag , kauth_cred_t cred);

int
VOP_WRITE(struct vnode ∗ vp , struct uio ∗ uio , int ioflag , kauth_cred_t cred);

NetBSD 3.0 January 19, 2008 1

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

int
VOP_IOCTL(struct vnode ∗ vp , u_long command , void ∗ data , int fflag ,

kauth_cred_t cred);

int
VOP_FCNTL(struct vnode ∗ vp , u_int command , void ∗ data , int fflag ,

kauth_cred_t cred);

int
VOP_POLL(struct vnode ∗ vp , int events);

int
VOP_KQFILTER(struct vnode ∗ vp , struct knote ∗ kn);

int
VOP_REVOKE(struct vnode ∗ vp , int flags);

int
VOP_MMAP(struct vnode ∗ vp , vm_prot_t prot , kauth_cred_t cred);

int
VOP_FSYNC(struct vnode ∗ vp , kauth_cred_t cred , int flags , off_t offlo ,

off_t offhi);

int
VOP_SEEK(struct vnode ∗ vp , off_t oldoff , off_t newoff , kauth_cred_t cred);

int
VOP_REMOVE(struct vnode ∗ vp , struct vnode ∗ vp , struct componentname ∗ cnp);

int
VOP_LINK(struct vnode ∗ dvp , struct vnode ∗ vp , struct componentname ∗ cnp);

int
VOP_RENAME(struct vnode ∗ fdvp , struct vnode ∗ fvp ,

struct componentname ∗ fcnp , struct vnode ∗ tdvp , struct vnode ∗ tvp ,
struct componentname ∗ tcnp);

int
VOP_MKDIR(struct vnode ∗ dvp , struct vnode ∗∗ vpp , struct componentname ∗ cnp ,

struct vattr ∗ vap);

int
VOP_RMDIR(struct vnode ∗ dvp , struct vnode ∗ vp , struct componentname ∗ cnp);

int
VOP_SYMLINK(struct vnode ∗ dvp , struct vnode ∗∗ vpp ,

struct componentname ∗ cnp , struct vattr ∗ vap , char ∗ target);

int
VOP_READDIR(struct vnode ∗ vp , struct uio ∗ uio , kauth_cred_t cred ,

int ∗ eofflag , off_t ∗∗ cookies , int ∗ ncookies);

int
VOP_READLINK(struct vnode ∗ vp , struct uio ∗ uio , kauth_cred_t cred);

int
VOP_ABORTOP(struct vnode ∗ dvp , struct componentname ∗ cnp);

NetBSD 3.0 January 19, 2008 2

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

int
VOP_INACTIVE(struct vnode ∗ vp);

int
VOP_RECLAIM(struct vnode ∗ vp);

int
VOP_LOCK(struct vnode ∗ vp , int flags);

int
VOP_UNLOCK(struct vnode ∗ vp , int flags);

int
VOP_ISLOCKED(struct vnode ∗ vp);

int
VOP_BMAP(struct vnode ∗ vp , daddr_t bn , struct vnode ∗∗ vpp , daddr_t ∗ bnp ,

int ∗ runp);

int
VOP_PRINT(struct vnode ∗ vp);

int
VOP_PATHCONF(struct vnode ∗ vp , int name , register_t ∗ retval);

int
VOP_ADVLOCK(struct vnode ∗ vp , void ∗ id , int op , struct flock ∗ fl , int flags);

int
VOP_LEASE(struct vnode ∗ vp , kauth_cred_t cred , int flag);

int
VOP_WHITEOUT(struct vnode ∗ dvp , struct componentname ∗ cnp , int flags);

int
VOP_GETPAGES(struct vnode ∗ vp , voff_t offset , struct vm_page ∗∗ m ,

int ∗ count , int centeridx , vm_prot_t access_type , int advice ,
int flags);

int
VOP_PUTPAGES(struct vnode ∗ vp , voff_t offlo , voff_t offhi , int flags);

int
VOP_STRATEGY(struct vnode ∗ vp , struct buf ∗ bp);

int
VOP_BWRITE(struct buf ∗ bp);

int
VOP_GETEXTATTR(struct vnode ∗ vp , int attrnamespace , const char ∗ name ,

struct uio ∗ uio , size_t ∗ size , kauth_cred_t cred);

int
VOP_SETEXTATTR(struct vnode ∗ vp , int attrnamespace , const char ∗ name ,

struct uio ∗ uio , kauth_cred_t cred);

int
VOP_LISTEXTATTR(struct vnode ∗ vp , int attrnamespace , struct uio ∗ uio ,

size_t ∗ size , kauth_cred_t cred);

NetBSD 3.0 January 19, 2008 3

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

Not all header files are required for each function.

DESCRIPTION
The vnode operations vector describes what operations can be done to the file associated with the vnode.
The system maintains one vnode operations vector for each file system type configured into the kernel. The
vnode operations vector contains a pointer to a function for each operation supported by the file system.
Many of the functions described in the vnode operations vector are closely related to their corresponding sys-
tem calls. In most cases, they are called as a result of the system call associated with the operation being
invoked.

Functions in the vnode operations vector are invoked using specialized macros. The following table lists the
elements of the vnode operations vector, the corresponding invocation macro, and a description of the ele-
ment.

Vector element Macro Description

int (∗ vop_lookup)() VOP_LOOKUP Lookupfile name in name cache
int (∗ vop_create)() VOP_CREATE Createa new file
int (∗ vop_mknod)() VOP_MKNOD Make a new device
int (∗ vop_open)() VOP_OPEN Opena file
int (∗ vop_close)() VOP_CLOSE Closea file
int (∗ vop_access)() VOP_ACCESS Determinefile accessibility
int (∗ vop_getattr)() VOP_GETATTR Getfile attributes
int (∗ vop_setattr)() VOP_SETATTR Setfile attributes
int (∗ vop_read)() VOP_READ Readfrom a file
int (∗ vop_write)() VOP_WRITE Writeto a file
int (∗ vop_ioctl)() VOP_IOCTL Performdevice-specific I/O
int (∗ vop_fcntl)() VOP_FCNTL Performfile control
int (∗ vop_poll)() VOP_POLL Test if poll event has occurred
int (∗ vop_kqfilter)() VOP_KQFILTER Register a knote
int (∗ vop_revoke)() VOP_REVOKE Eliminatevode activity
int (∗ vop_mmap)() VOP_MMAP Mapfile into user address space
int (∗ vop_fsync)() VOP_FSYNC Flushpending data to disk
int (∗ vop_seek)() VOP_SEEK Test if file is seekable
int (∗ vop_remove)() VOP_REMOVE Remove a file
int (∗ vop_link)() VOP_LINK Link a file
int (∗ vop_rename)() VOP_RENAME Renamea file
int (∗ vop_mkdir)() VOP_MKDIR Make a new directory
int (∗ vop_rmdir)() VOP_RMDIR Remove a directory
int (∗ vop_symlink)() VOP_SYMLINK Createa symbolic link
int (∗ vop_readdir)() VOP_READDIR Readdirectory entry
int (∗ vop_readlink)() VOP_READLINK Readcontents of a symlink
int (∗ vop_abortop)() VOP_ABORTOP Abort pending operation
int (∗ vop_inactive)() VOP_INACTIVE Releasethe inactive vnode
int (∗ vop_reclaim)() VOP_RECLAIM Reclaimvnode for another file
int (∗ vop_lock)() VOP_LOCK Sleepuntil vnode lock is free
int (∗ vop_unlock)() VOP_UNLOCK Wake up process sleeping on lock
int (∗ vop_islocked)() VOP_ISLOCKED Test if vnode is locked
int (∗ vop_bmap)() VOP_BMAP Logicalblock number conversion
int (∗ vop_print)() VOP_PRINT Printdebugging information
int (∗ vop_pathconf)() VOP_PATHCONF ReturnPOSIX pathconf data
int (∗ vop_advlock)() VOP_ADVLOCK Advisory record locking
int (∗ vop_lease)() VOP_LEASE Validate vnode credentials
int (∗ vop_whiteout)() VOP_WHITEOUT Whiteoutvnode

NetBSD 3.0 January 19, 2008 4

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

int (∗ vop_getpages)() VOP_GETPAGES ReadVM pages from file
int (∗ vop_putpages)() VOP_PUTPAGES WriteVM pages to file
int (∗ vop_strategy)() VOP_STRATEGY Read/writea file system buffer
int (∗ vop_bwrite)() VOP_BWRITE Writea file system buffer
int (∗ vop_getextattr)() VOP_GETEXTATTR Getextended attribute
int (∗ vop_setextattr)() VOP_SETEXTATTR Setextended attribute
int (∗ vop_listextattr)() VOP_LISTEXTATTR List extended attributes

The implementation details of the vnode operations vector are not quite what is described here.

If the file system type does not support a specific operation, it must nevertheless assign an appropriate func-
tion in the vnode operations vector to do the minimum required of it. In most cases, such functions either do
nothing or return an error value to the effect that it is not supported.

Many of the functions in the vnode operations vector take a componentname structure. It is used to encapsu-
late many parameters into a single function argument. Ithas the following structure:

struct componentname {
/ ∗

∗ Arguments to lookup.
∗ /

uint32_t cn_nameiop; / ∗ namei operation ∗ /
uint32_t cn_flags; / ∗ flags to namei ∗ /
kauth_cred_t cn_cred; / ∗ credentials ∗ /
/ ∗

∗ Shared between lookup and commit routines.
∗ /

char ∗ cn_pnbuf; / ∗ pathname buffer ∗ /
const char ∗ cn_nameptr; / ∗ pointer to looked up name ∗ /
size_t cn_namelen; / ∗ length of looked up component ∗ /
u_long cn_hash; / ∗ hash value of looked up name ∗ /
size_t cn_consume; / ∗ chars to consume in lookup() ∗ /

};

The top half of the structure is used exclusively for the pathname lookups usingVOP_LOOKUP() and is ini-
tialized by the caller. The semantics of the lookup are affected by the lookup operation specified in
cn_nameiopand the flags specified incn_flags. Valid operations are:

LOOKUP
perform name lookup only

CREATE
set up for file creation

DELETE
set up for file deletion

RENAME
set up for file renaming

OPMASK
mask for operation

Valid values forcn->cn_flagsare:

LOCKLEAF lock inode on return
LOCKPARENT

want parent vnode returned locked

NetBSD 3.0 January 19, 2008 5

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

NOCACHE name must not be left in name cache (seenamecache (9))
FOLLOW follow symbolic links
NOFOLLOW do not follow symbolic links (pseudo)
MODMASK mask of operational modifiers

No vnode operations may be called from interrupt context. Most operations also require the vnode to be
locked on entry. To prevent deadlocks, when acquiring locks on multiple vnodes, the lock of parent directory
must be acquired before the lock on the child directory.

Vnode operations for a file system type generally should not be called directly from the kernel, but accessed
indirectly through the high-level convenience functions discussed invnsubr (9).

FUNCTIONS
VOP_LOOKUP(dvp , vpp , cnp)

Lookup a single pathname component in a given directory. The argumentdvp is the locked
vnode of the directory to search andcnp is the pathname component to be searched for. If the
pathname component is found, the address of the resulting locked vnode is returned invpp. The
operation specified incnp->cn_nameiopgives VOP_LOOKUP() hints about the reason for
requesting the lookup and uses it to cache file system type specific information in the vnode for
subsequent operations.

There are three types of lookups: ".", ".." (ISDOTDOT), and other. If the pathname component
being searched for is ".", thendvp has an extra reference added to it and it is returned in∗ vpp.
If the pathname component being search for is ".." (ISDOTDOT), dvp is unlocked, the ".." node
is locked and thendvp is relocked. Thisprocess preserves the protocol of always locking nodes
from root downward and prevents deadlock.For other pathname components,VOP_LOOKUP()
checks the accessibility of the directory and searches the name cache for the pathname compo-
nent. Seenamecache (9). If the pathname is not found in the name cache, the directory is
searched for the pathname. The resulting locked vnode is returned invpp. dvp is always
returned locked.

On failure ∗ vpp is NULL, and ∗ dvp is left locked. If the operation is successful∗ vpp is locked
and zero is returned.Typically, if ∗ vpp anddvp are the same vnode the caller will need to
release twice (decrement the reference count) and unlock once.

VOP_CREATE(dvp , vpp , cnp , vap)
Create a new file in a given directory. The argumentdvp is the locked vnode of the directory to
create the new file in andcnp is the pathname component of the new file. Theargumentvap
specifies the attributes that the new file should be created with. If the file is successfully created,
the address of the resulting locked vnode is returned invpp and zero is returned.Regardless of
the return value, the directory vnodedvp will be unlocked on return.

This function is called afterVOP_LOOKUP() when a file is being created.Normally,
VOP_LOOKUP() will have set the SAVENAME flag in cnp->cn_flagsto keep the memory
pointed to bycnp->cn_pnbufvalid. If an error is detected when creating the file, this memory is
released. Ifthe file is created successfully it will be released unless the SAVESTART flags in
specified incnp->cn_flags.

VOP_MKNOD(dvp , vpp , cnp , vap)
Make a new device-special file in a given directory. The argumentdvp is the locked vnode of
the directory to create the new device-special file in andcnp is the pathname component of the
new device-special file. The argumentvap specifies the attributes that the new device-special
file should be created with.If the file is successfully created, the address of the resulting locked
vnode is returned invpp and zero is returned.

NetBSD 3.0 January 19, 2008 6

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

This function is called afterVOP_LOOKUP() when a device-special file is being created.Nor-
mally, VOP_LOOKUP() will have set the SAVENAME flag in cnp->cn_flagsto keep the memory
pointed to bycnp->cn_pnbufvalid. If an error is detected when creating the device-special file,
this memory is released. If the device-special file is created successfully it will be released
unless the SAVESTART flags in specified incnp->cn_flags.

VOP_OPEN(vp , mode , cred)
Open a file. The argumentvp is the vnode of the file to open andmode specifies the access
mode required by the calling process.The calling credentials are specified bycred. The access
mode is a set of flags, including FREAD, FWRITE, O_NONBLOCK, O_APPEND, etc.
VOP_OPEN() must be called before a file can be accessed by a thread. The vnode reference
count is incremented.

VOP_OPEN() expects the vnodevp to be locked on entry and will leave it locked on return.If
the operation is successful zero is returned, otherwise an appropriate error code is returned.

VOP_CLOSE(vp , fflag , cred)
Close a file. The argumentvp is the vnode of the file to close andfflag specifies the access
mode by the calling process. The possible flags areFREAD, FWRITEand FNONBLOCK. The
calling credentials are specified bycred. VOP_CLOSE() frees resources allocated by
VOP_OPEN().

The vnodevp will be locked on entry and should remain locked on return.

VOP_ACCESS(vp , mode , cred)
Determine the accessibility (permissions) of the file against the specified credentials. The argu-
mentvp is the vnode of the file to check,mode is the type of access required andcred contains
the user credentials to check.The argumentmode is a mask which can contain VREAD,
VWRITE or VEXEC. If the file is accessible in the specified way, zero is returned, otherwise an
appropriate error code is returned.

The vnodevp will be locked on entry and should remain locked on return.

VOP_GETATTR(vp , vap , cred)
Get specific vnode attributes on a file. The argumentvp is the vnode of the file to get the
attributes for. The argumentcred specifies the calling credentials.VOP_GETATTR() uses the
file system type specific data objectvp->v_data to reference the underlying file attributes.
Attributes associated with the file are collected by setting the required attribute bits in
vap->va_mask. The attributes are returned invap. Attributes which are not available are set to
the value VNOVAL.

For more information on vnode attributes seevattr (9).

VOP_SETATTR(vp , vap , cred)
Set specific vnode attributes on a file. The argumentvp is the locked vnode of the file to set the
attributes for. The argumentcred specifies the calling credentials.VOP_SETATTR() uses the
file system type specific data objectvp->v_datato reference the underlying file attributes. The
new attributes are defined invap. Attributes associated with the file are set by setting the
required attribute bits invap->va_mask. Attributes which are not being modified by
VOP_SETATTR() should be set to the value VNOVAL. If the operation is successful zero is
returned, otherwise an appropriate error is returned.

For more information on vnode attributes seevattr (9).

VOP_READ(vp , uio , ioflag , cred)
Read the contents of a file. The argumentvp is the vnode of the file to read from,uio is the
location to read the data into,ioflag is a set of flags andcred are the credentials of the call-

NetBSD 3.0 January 19, 2008 7

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

ing process.

Theioflag argument is used to give directives and hints to the file system.When attempting a
read, the high 16 bits are used to provide a read-ahead hint (in unit of file system blocks) that the
file system should attempt. The low 16 bits are a bit mask which can contain the following flags:

IO_UNIT do I/O as atomic unit
IO_APPEND append write to end
IO_SYNC sync I/O file integrity completion
IO_NODELOCKED underlying node already locked
IO_NDELAY FNDELAY flag set in file table
IO_DSYNC sync I/O data integrity completion
IO_ALTSEMANTICS

use alternate I/O semantics
IO_NORMAL operate on regular data
IO_EXT operate on extended attributes
IO_DIRECT do not buffer data in the kernel

Zero is returned on success, otherwise an error is returned.The vnode should be locked on entry
and remains locked on exit.

VOP_WRITE(vp , uio , ioflag , cred)
Write to a file. The argumentvp is the vnode of the file to write to,uio is the location of the
data to write,ioflag is a set of flags andcred are the credentials of the calling process.

Theioflag argument is used to give directives and hints to the file system.The low 16 bits are
a bit mask which can contain the same flags asVOP_READ().

Zero is returned on success, otherwise an error is returned.The vnode should be locked on entry
and remains locked on exit.

VOP_IOCTL(vp , command , data , fflag , cred)
Perform device-specific I/O. The argumentvp is the locked vnode of the file, normally repre-
senting a device. Theargumentcommand specifies the device-specific operation to perform and
cnp provides extra data for the specified operation. The argumentfflags is a set of flags.The
argumentcred is the caller’s credentials. Ifthe operation is successful, zero is returned, other-
wise an appropriate error code is returned.

Most file systems do not supply a function forVOP_IOCTL(). This function implements the
ioctl (2) system call.

VOP_FCNTL(vp , command , data , fflag , cred)
Perform file control. The argumentvp is the locked vnode of the file. The argumentcommand
specifies the operation to perform andcnp provides extra data for the specified operation.The
argumentfflags is a set of flags. The argumentcred is the caller’s credentials. Ifthe opera-
tion is successful, zero is returned, otherwise an appropriate error code is returned.

VOP_POLL(vp , events)
Test if a poll event has occurred. The argumentvp is the vnode of the file to poll. It returns any
ev ents of interest as specified byevents that may have occurred for the file. The argument
events is a set of flags as specified bypoll (2).

VOP_KQFILTER(vp , kn)
Register a knotekn with the vnodevn. If the operation is successful zero is returned, otherwise
an appropriate error code is returned.

NetBSD 3.0 January 19, 2008 8

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

VOP_REVOKE(vp , flags)
Eliminate all activity associated with the vnodevp. The argumentflags is a set of flags.If
REVOKEALL is set inflags all vnodes aliased to the vnodevp are also eliminated. If the
operation is successful zero is returned, otherwise an appropriate error is returned.

VOP_MMAP(vp , prot , cred)
Inform file system thatvp is in the process of being memory mapped.The argumentprot spec-
ifies the vm access protection the vnode is going to be mapped with. The argumentcred is the
caller’s credentials. Ifthe file system allows the memory mapping, zero is returned, otherwise an
appropriate error code is returned.

Most file systems do not supply a function forVOP_MMAP() and usegenfs_mmap() to default
for success. Only file systems which do not integrate with the page cache at all typically want to
disallow memory mapping.

VOP_FSYNC(vp , cred , flags , offlo , offhi)
Flush pending data buffers for a file to disk. The argumentvp is the locked vnode of the file for
flush. Theargumentcred is the caller’s credentials. Theargumentflags is a set of flags.If
FSYNC_WAIT is specified inflags, the function should wait for I/O to complete before
returning. Theargumentofflo andoffhi specify the range of file to flush. If the operation is
successful zero is returned, otherwise an appropriate error code is returned.

This function implements thesync (2) andfsync (2) system calls.

VOP_SEEK(vp , oldoff , newoff , cred)
Test if the file is seekable for the specified offsetnewoff. The argumentvp is the locked vnode
of the file to test.For most file systems this function simply tests ifnewoff is valid. If the
specifiednewoff is less than zero, the function returns error code EINVAL.

VOP_REMOVE(dvp , vp , cnp)
Remove a file. Theargumentdvp is the locked vnode of the directory to remove the file from
andvp is the locked vnode of the file to remove. The argumentcnp is the pathname component
about the file to remove. If the operation is successful zero is returned, otherwise an appropriate
error code is returned.Both dvp andvp are locked on entry and are to be unlocked before
returning.

VOP_LINK(dvp , vp , cnp)
Link to a file. The argumentdvp is the locked node of the directory to create the new link and
vp is the vnode of the file to be linked. Theargumentcnp is the pathname component of the
new link. If the operation is successful zero is returned, otherwise an error code is returned.The
directory vnodedvp should be locked on entry and will be released and unlocked on return.The
vnodevp should not be locked on entry and will remain unlocked on return.

VOP_RENAME(fdvp , fvp , fcnp , tdvp , tvp , tcnp)
Rename a file. The argumentfdvp is the vnode of the old parent directory containing in the file
to be renamed andfvp is the vnode of the file to be renamed. The argumentfcnp is the path-
name component about the file to be renamed. The argumenttdvp is the vnode of the new
directory of the target file andtvp is the vnode of the target file (if it exists). Theargument
tcnp is the pathname component about the file’s new name. Ifthe operation is successful zero
is returned, otherwise and error code is returned.

The source directory and file vnodes should be unlocked and their reference counts should be
incremented before entry. The target directory and file vnodes should both be locked on entry.
VOP_RENAME() updates the reference counts prior to returning.

NetBSD 3.0 January 19, 2008 9

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

VOP_MKDIR(dvp , vpp , cnp , vap)
Make a new directory in a given directory. The argumentdvp is the locked vnode of the direc-
tory to create the new directory in andcnp is the pathname component of the new directory. The
argumentvap specifies the attributes that the new directory should be created with.If the file is
successfully created, the address of the resulting locked vnode is returned invpp and zero is
returned.

This function is called afterVOP_LOOKUP() when a directory is being created.Normally,
VOP_LOOKUP() will have set the SAVENAME flag in cnp->cn_flagsto keep the memory
pointed to bycnp->cn_pnbufvalid. If an error is detected when creating the directory, this mem-
ory is released. If the directory is created successfully it will be released unless the SAVESTART
flags in specified incnp->cn_flags.

VOP_RMDIR(dvp , vp , cnp)
Remove a directory in a given directory. The argumentdvp is the locked vnode of the directory
to remove the directory from andvp is the locked vnode of the directory to remove. The argu-
mentcnp is the pathname component of the directory. Zero is returned on success, otherwise an
error code is returned.Both dvp andvp should be locked on entry and will be released and
unlocked on return.

VOP_SYMLINK(dvp , vpp , cnp , vap , target)
Create a symbolic link in a given directory. The argumentdvp is the locked vnode of the direc-
tory to create the symbolic link in andcnp is the pathname component of the symbolic link.The
argumentvap specifies the attributes that the symbolic link should be created with andtarget
specifies the pathname of the target of the symbolic link. If the symbolic link is successfully cre-
ated, the address of the resulting locked vnode is returned invpp and zero is returned.

This function is called afterVOP_LOOKUP() when a symbolic link is being created.Normally,
VOP_LOOKUP() will have set the SAVENAME flag in cnp->cn_flagsto keep the memory
pointed to bycnp->cn_pnbufvalid. If an error is detected when creating the symbolic link, this
memory is released.If the symbolic link is created successfully it will be released unless the
SAVESTART flags in specified incnp->cn_flags.

VOP_READDIR(vp , uio , cred , eofflag , cookies , ncookies)
Read directory entry. The argumentvp is the vnode of the directory to read the contents of and
uio is the destination location to read the contents into. The argumentcred is the caller’s cre-
dentials. Theargumenteofflag is the pointer to a flag which is set byVOP_READDIR() to
indicate an end-of-file condition.If eofflag is NULL, the end-of-file condition is not returned.
The argumentscookies andncookies specify the addresses for the list and number of direc-
tory seek cookies generated for NFS.Both cookies andncookies should beNULL if they
aren’t required to be returned byVOP_READDIR(). Thedirectory contents are read into struct
dirent structures anduio->uio_offset is set to the offset of the next unread directory entry.
This offset may be used in a following invocation to continue a sequential read of the directory
contents. Ifthe operation is successful zero is returned, otherwise an appropriate error code is
returned.

The directory should be locked on entry and will remain locked on return.

In casencookies and cookies are supplied, one cookie should be returned per directory
entry. The value of the cookie for each directory entry should be the offset within the directory
where the on-disk version of the following directory entry starts. That is, for each directory entry
i, the corresponding cookie should refer to the offset of directory entryi + 1.

Note that thecookies array must be allocated by the callee using the M_TEMP malloc type as
callers ofVOP_READDIR() must be able to free the allocation.

NetBSD 3.0 January 19, 2008 10

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

VOP_READLINK(vp , uio , cred)
Read the contents of a symbolic link. The argumentvp is the locked vnode of the symlink and
uio is the destination location to read the contents into. The argumentcred is the credentials
of the caller. If the operation is successful zero is returned, otherwise an error code is returned.

The vnode should be locked on entry and will remain locked on return.

VOP_ABORTOP(dvp , cnp)
Abort pending operation on vnodedvp and free resources allocated incnp.

This operation is rarely implemented in file systems andgenfs_abortop() is typically used
instead.

VOP_INACTIVE(vp)
Release the inactive vnode. VOP_INACTIVE() is called when the kernel is no longer using the
vnode. Thismay be because the reference count reaches zero or it may be that the file system is
being forcibly unmounted while there are open files. It can be used to reclaim space for open but
deleted files. The argumentvp is the locked vnode to be released.If the operation is successful
zero is returned, otherwise an appropriate error code is returned.The vnodevp must be locked
on entry, and will be unlocked on return.

VOP_RECLAIM(vp)
Reclaim the vnode for another file system.VOP_RECLAIM() is called when a vnode is being
reused for a different file system.Any file system specific resources associated with the vnode
should be freed. The argumentvp is the vnode to be reclaimed. If the operation is successful
zero is returned, otherwise an appropriate error code is returned.The vnodevp should not be
locked on entry, and will remain unlocked on return.

VOP_LOCK(vp , flags)
Sleep until vnode lock is free. The argumentvp is the vnode of the file to be locked. Theargu-
mentflags is a set oflockmgr (9) flags. If the operation is successful zero is returned, other-
wise an appropriate error code is returned.VOP_LOCK() is used to serialize access to the file
system such as to prevent two writes to the same file from happening at the same time.Kernel
code should usevn_lock (9) to lock a vnode rather than callingVOP_LOCK() directly.

VOP_UNLOCK(vp , flags)
Wake up process sleeping on lock. The argumentvp is the vnode of the file to be unlocked. The
argumentflags is a set oflockmgr (9) flags. If the operation is successful zero is returned,
otherwise an appropriate error code is returned.VOP_UNLOCK() is used to serialize access to the
file system such as to prevent two writes to the same file from happening at the same time.

VOP_ISLOCKED(vp)
Test if the vnodevp is locked. Anon-zero value is returned if the vnode is not locked, otherwise
zero is returned.

VOP_BMAP(vp , bn , vpp , bnp , runp)
Convert the logical block numberbn of a file specified by vnodevp to its physical block number
on the disk. The physical block is returned inbnp. In case the logical block is not allocated, −1
is used.

If vpp is notNULL, the vnode of the device vnode for the file system is returned in the address
specified byvpp. If runp is notNULL, the number of contiguous blocks starting from the next
block after the queried block will be returned inrunp.

VOP_PRINT(vp)
Print debugging information. The argumentvp is the vnode to print. If the operation is success-
ful zero is returned, otherwise an appropriate error code is returned.

NetBSD 3.0 January 19, 2008 11

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

VOP_PATHCONF(vp , name , retval)
Implement POSIXpathconf (2) andfpathconf (2) support. The argumentvp is the locked
vnode to get information about. The argumentname specified the type of information to return.
The information is returned in the address specified byretval. Valid values forname are:

_PC_LINK_MAX return the maximum number of links to a file
_PC_NAME_MAX return the maximum number of bytes in a file name
_PC_PATH_MAX return the maximum number of bytes in a pathname
_PC_PIPE_BUF return the maximum number of bytes which will be writ-

ten atomically to a pipe
_PC_CHOWN_RESTRICTED

return 1 if appropriate privileges are required for the
chown (2) system call, otherwise zero

_PC_NO_TRUNC return if file names longer than KERN_NAME_MAX are
truncated

If name is recognized,∗ retval is set to the specified value and zero is returned, otherwise an
appropriate error is returned.

VOP_ADVLOCK(vp , id , op , fl , flags)
Manipulate Advisory record locks on a vnode. The argumentvp is the vnode on which locks are
manipulated. Theargumentid is the id token which is changing the lock andop is the
fcntl (2) operation to perform.Valid values are:

F_SETLK set lock
F_GETLK

get the first conflicted lock
F_UNLCK

clear lock

The argumentfl is a description of the lock.In the case ofSEEK_CUR, The caller should add
the current file offset to fl->l_start beforehand.VOP_ADVLOCK() treats SEEK_CURas
SEEK_SET.

The argumentflags is the set of flags.Valid values are:

F_WAIT wait until lock is granted
F_FLOCK

useflock (2) semantics for lock
F_POSIX use POSIX semantics for lock

If the operation is successful zero is returned, otherwise an appropriate error is returned.

VOP_LEASE(vp , cred , flags)
Validate vnode credentials and operation type. The argumentvp is the locked vnode of the file
to validate credentialscred. The argumentflags specifies the operation flags. If the opera-
tion is successful zero is returned, otherwise an appropriate error code is returned. The vnode
must be locked on entry and remains locked on return.

VOP_WHITEOUT(dvp , cnp , flags)
Whiteout pathname component in directory with vnodedvp. The argumentcnp specifies the
pathname component to whiteout.

VOP_GETPAGES(vp , offset , m , count , centeridx , access_type , advice , flags)
Read VM pages from file.The argumentvp is the locked vnode to read the VM pages from.
The argumentoffset is offset in the file to start accessing andm is an array of VM pages.The
argumentcount points a variable that specifies the number of pages to read. If the operation is

NetBSD 3.0 January 19, 2008 12

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

successful zero is returned, otherwise an appropriate error code is returned. If PGO_LOCKED is
specified inflags, VOP_GETPAGES() might return less pages than requested. In that case, the
variable pointed to bycountwill be updated.

This function is primarily used by the page-fault handing mechanism.

VOP_PUTPAGES(vp , offlo , offhi , flags)
Write modified (dirty) VM pages to file. The argumentvp is the vnode to write the VM pages
to. The vnode’s vm object lock (v_uobj.vmobjlock) must be held by the caller and will be
released upon return. The argumentsofflo and offhi specify the range of VM pages to
write. In caseoffhi is given as 0, all pages at and after the start offsetofflo belonging the
vnodevp will be written. The argumentflags controls the behavior of the routine and takes
the vm pager’s flags (PGO_ -prefixed). If the operation is successful zero is returned, other-
wise an appropriate error code is returned.

The function is primarily used by the pageout handling mechanism and is commonly imple-
mented indirectly by genfs_putpages() with the help of VOP_STRATEGY() and
VOP_BMAP().

VOP_STRATEGY(vp , bp)
Read/write a file system buffer. The argumentvp is the vnode to read/write to. The argument
bp is the buffer to be read or written.VOP_STRATEGY() will either read or write data to the file
depending on the value ofbp->b_flags. If the operation is successful zero is returned, otherwise
an appropriate error code is returned.

VOP_BWRITE(bp)
Write a file system buffer. The argumentbp specifies the buffer to be written.If the operation is
successful zero is returned, otherwise an appropriate error code is returned.

VOP_GETEXTATTR(vp , attrnamespace , name , uio , size , cred)
Get an extended attribute. Theargumentvp is the locked vnode of the file or directory from
which to retrieve the attribute. Theargumentattrnamespace specifies the extended attribute
namespace. Theargumentname is a nul-terminated character string naming the attribute to
retrieve. The argumentuio, if not NULL, specifies where the extended attribute value is to be
written. Theargumentsize, if not NULL, will contain the number of bytes required to read all
of the attribute data upon return.In most cases,uio will be NULL whensize is not, and vice
versa. Theargumentcred specifies the user credentials to use when authorizing the request.

VOP_SETEXTATTR(vp , attrnamespace , name , uio , cred)
Set an extended attribute. Theargumentvp is the locked vnode of the file or directory to which
to store the attribute. Theargumentnamespace specifies the extended attribute namespace.
The argumentname is a nul-terminated character string naming the attribute to store. The argu-
mentuio specifies the source of the extended attribute data. The argumentcred specifies the
user credentials to use when authorizing the request.

VOP_LISTEXTATTR(vp , attrnamespace , uio , size , cred)
Retrieve the list of extended attributes. Theargumentvp is the locked vnode of the file or direc-
tory whose attributes are to be listed. The argumentattrnamespace specifies the extended
attribute namespace. The argumentuio, if not NULL, specifies where the extended attribute list
is to be written. The argumentsize, if not NULL, will contain the number of bytes required to
read all of the attribute names upon return.In most cases,uio will be NULLwhensize is not,
and vice versa. Theargumentcred specifies the user credentials to use when authorizing the
request.

NetBSD 3.0 January 19, 2008 13

VNODEOPS (9) NetBSD Kernel Developer’s Manual VNODEOPS(9)

ERRORS
[ENOATTR] The requested attribute is not defined for this vnode.

[ENOTDIR] The vnode does not represent a directory.

[ENOENT] The component was not found in the directory.

[ENOSPC] The file system is full.

[EDQUOT] Quota exceeded.

[EACCES] Access for the specified operation is denied.

[EJUSTRETURN] A CREATE or RENAME operation would be successful.

[EPERM] an attempt was made to change an immutable file

[ENOTEMPTY] attempt to remove a directory which is not empty

[EINVAL] attempt to read from an illegal offset in the directory; unrecognized input

[EIO] a read error occurred while reading the directory or reading the contents of a symbolic
link

[EROFS] the file system is read-only

SEE ALSO
extattr (9), intro (9), lock (9), namei (9), vattr (9), vfs (9), vfsops (9), vnode (9)

HISTORY
The vnode operations vector, its functions and the corresponding macros appeared in 4.3BSD.

NetBSD 3.0 January 19, 2008 14

VNSUBR (9) NetBSD Kernel Developer’s Manual VNSUBR(9)

NAME
vnsubr, vn_bwrite, vn_close, vn_default_error, vn_isunder, vn_lock, vn_markexec,
vn_marktext, vn_rdwr, vn_restorerecurse, vn_setrecurse, vn_open, vn_stat,
vn_writechk — high-level convenience functions for vnode operations

SYNOPSIS
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/vnode.h>

int
vn_bwrite(void ∗ ap);

int
vn_close(struct vnode ∗ vp , int flags , kauth_cred_t cred);

int
vn_default_error(void ∗ v);

int
vn_isunder(struct vnode ∗ dvp , struct vnode ∗ rvp , struct lwp ∗ l);

int
vn_lock(struct vnode ∗ vp , int flags);

void
vn_markexec(struct vnode ∗ vp);

void
vn_marktext(struct vnode ∗ vp);

u_int
vn_setrecurse(struct vnode ∗ vp);

void
vn_restorerecurse(struct vnode ∗ vp , u_int flags);

int
vn_open(struct nameidata ∗ ndp , int fmode , int cmode);

int
vn_rdwr(enum uio_rw rw , struct vnode ∗ vp , void ∗ base , int len , off_t offset ,

enum uio_seg segflg , int ioflg , kauth_cred_t cred , size_t ∗ aresid ,
struct lwp ∗ l);

int
vn_readdir(file_t ∗ fp , char ∗ buf , int segflg , u_int count , int ∗ done ,

struct lwp ∗ l , off_t ∗∗ cookies , int ∗ ncookies);

int
vn_stat(struct vnode ∗ vp , struct stat ∗ sb , struct lwp ∗ l);

int
vn_writechk(struct vnode ∗ vp);

DESCRIPTION
The high-level functions described in this page are convenience functions for simplified access to the vnode
operations described invnodeops (9).

NetBSD 3.0 April 9, 2008 1

VNSUBR (9) NetBSD Kernel Developer’s Manual VNSUBR(9)

FUNCTIONS
vn_bwrite(ap)

Common code for block write operations.

vn_close(vp , flags , cred)
Common code for a vnode close. The argumentvp is the unlocked vnode of the vnode to close.
vn_close() simply locks the vnode, invokes the vnode operationVOP_CLOSE(9) and calls
vput() to return the vnode to the freelist or holdlist.Note thatvn_close() expects an
unlocked, referenced vnode and will dereference the vnode prior to returning.If the operation is
successful zero is returned, otherwise an appropriate error is returned.

vn_default_error(v)
A generic "default" routine that just returns error. It is used by a file system to specify unsup-
ported operations in the vnode operations vector.

vn_isunder(dvp , rvp , l)
Common code to check if one directory specified by the vnodervp can be found inside the
directory specified by the vnodedvp. The argumentl is the calling process.vn_isunder() is
intended to be used inchroot (2), chdir (2), fchdir (2), etc., to ensure thatchroot (2) actu-
ally means something. If the operation is successful zero is returned, otherwise 1 is returned.

vn_lock(vp , flags)
Common code to acquire the lock for vnodevp. The argument flags specifies the
lockmgr (9) flags used to lock the vnode. If the operation is successful zero is returned, other-
wise an appropriate error code is returned. The vnode interlockv_interlockis released on return.

vn_lock() must not be called when the vnode’s reference count is zero.Instead,vget (9)
should be used.

vn_markexec(vp)
Common code to mark the vnodevp as containing executable code of a running process.

vn_marktext(vp)
Common code to mark the vnodevp as being the text of a running process.

vn_setrecurse(vp)
Common code to enable LK_CANRECURSE on the vnode lock for vnodevp.
vn_setrecurse() returns the newlockmgr (9) flags after the update.

vn_restorerecurse(vp , flags)
Common code to restore the vnode lock flags for the vnodevp. It is called when done with
vn_setrecurse().

vn_open(ndp , fmode , cmode)
Common code for vnode open operations.The pathname is described in the nameidata pointer
(seenamei (9)). The argumentsfmode and cmode specify theopen (2) file mode and the
access permissions for creation.vn_open() checks permissions and invokes theVOP_OPEN(9)
or VOP_CREATE(9) vnode operations.If the operation is successful zero is returned, otherwise
an appropriate error code is returned.

vn_rdwr(rw , vp , base , len , offset , segflg , ioflg , cred , aresid , l)
Common code to package up an I/O request on a vnode into a uio and then perform the I/O.The
argumentrw specifies whether the I/O is a read (UIO_READ) or write (UIO_WRITE) operation.
The unlocked vnode is specified byvp. The argumentsl andcred are the calling lwp and its
credentials. Theremaining arguments specify the uio parameters.For further information on
these parameters seeuiomove (9).

NetBSD 3.0 April 9, 2008 2

VNSUBR (9) NetBSD Kernel Developer’s Manual VNSUBR(9)

vn_readdir(fp , buf , segflg , count , done , l , cookies , ncookies)
Common code for reading the contents of a directory. The argumentfp is the file structure,buf
is the buffer for placing the struct dirent structures. The argumentscookies andncookies
specify the addresses for the list and number of directory seek cookies generated for NFS.Both
cookies and ncookies should be NULL is they aren’t required to be returned by
vn_readdir(). If the operation is successful zero is returned, otherwise an appropriate error
code is returned.

vn_stat(vp , sb , l)
Common code for a vnode stat operation. The vnode is specified by the argumentvp, andsb is
the buffer to return the stat information.The argumentl is the calling lwp. vn_stat() basi-
cally calls the vnode operationVOP_GETATTR(9) and transfers the contents of a vattr structure
into a struct stat. If the operation is successful zero is returned, otherwise an appropriate error
code is returned.

vn_writechk(vp)
Common code to check for write permission on the vnodevp. A vnode is read-only if it is in use
as a process’s text image. Ifthe vnode is read-only ETEXTBSY is returned, otherwise zero is
returned to indicate that the vnode can be written to.

ERRORS
[EBUSY] The LK_NOWAIT flag was set andvn_lock() would have slept.

[ENOENT] The vnode has been reclaimed and is dead.This error is only returned if the
LK_RETRY flag is not passed tovn_lock().

[ETXTBSY] Cannot write to a vnode since is a process’s text image.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
vnode framework can be found. All pathnames are relative to /usr/src .

The high-level convenience functions are implemented within the filessys/kern/vfs_vnops.c and
sys/sys/vnode.h .

SEE ALSO
file (9), intro (9), lock (9), namei (9), vattr (9), vfs (9), vnode (9), vnodeops (9)

NetBSD 3.0 April 9, 2008 3

WDC (9) NetBSD Kernel Developer’s Manual WDC(9)

NAME
wdc — machine-independent IDE/ATAPI driver

SYNOPSIS
#include <dev/ata/atavar.h>
#include <sys/dev/ic/wdcvar.h>

int
wdcprobe(struct channel_softc ∗ chp);

void
wdcattach(struct channel_softc ∗ chp);

DESCRIPTION
Thewdc driver provides the machine independent core functions for driving IDE devices. IDEdevices-spe-
cific drivers (wd(4) oratapibus (4)) will use services provided bywdc.

The machine-dependent bus front-end provides informations towdc with the wdc_softcandchannel_softc
structures. Thefirst one defines global controller properties, and the second contains per-channel informa-
tions. wdc returns informations about the attached devices in theata_drive_datasstructure.

struct wdc_softc { / ∗ Per controller state ∗ /
struct device sc_dev;
int cap;

#define WDC_CAPABILITY_DATA16 0x0001
#define WDC_CAPABILITY_DATA32 0x0002
#define WDC_CAPABILITY_MODE 0x0004
#define WDC_CAPABILITY_DMA 0x0008
#define WDC_CAPABILITY_UDMA 0x0010
#define WDC_CAPABILITY_HWLOCK 0x0020
#define WDC_CAPABILITY_ATA_NOSTREAM 0x0040
#define WDC_CAPABILITY_ATAPI_NOSTREAM 0x0080
#define WDC_CAPABILITY_NO_EXTRA_RESETS 0x0100
#define WDC_CAPABILITY_PREATA 0x0200
#define WDC_CAPABILITY_IRQACK 0x0400
#define WDC_CAPABILITY_SINGLE_DRIVE 0x0800
#define WDC_CAPABILITY_NOIRQ 0x1000
#define WDC_CAPABILITY_SELECT 0x2000

uint8_t pio_mode;
uint8_t dma_mode;
int nchannels;
struct channel_softc ∗ channels;

void ∗ dma_arg;
int (∗ dma_init)(void ∗ , i nt, int, void ∗ , s ize_t, int);
void (∗ dma_start)(void ∗ , i nt, int, int);
int (∗ dma_finish)(void ∗ , i nt, int, int);

#define WDC_DMA_READ 0x01
#define WDC_DMA_POLL 0x02

int (∗ claim_hw)(void ∗ , i nt);
void (∗ free_hw)(void ∗);

};

NetBSD 3.0 October 18, 1998 1

WDC (9) NetBSD Kernel Developer’s Manual WDC(9)

struct channel_softc { / ∗ Per channel data ∗ /
int channel;
struct wdc_softc ∗ wdc;
bus_space_tag_t cmd_iot;
bus_space_handle_t cmd_ioh;
bus_space_tag_t ctl_iot;
bus_space_handle_t ctl_ioh;
bus_space_tag_t data32iot;
bus_space_handle_t data32ioh;
int ch_flags;

#define WDCF_ACTIVE 0x01
#define WDCF_IRQ_WAIT 0x10

uint8_t ch_status;
uint8_t ch_error;
struct ata_drive_datas ch_drive[2];
struct channel_queue ∗ ch_queue;

};

struct ata_drive_datas {
uint8_t drive;
uint8_t drive_flags;

#define DRIVE_ATA 0x01
#define DRIVE_ATAPI 0x02
#define DRIVE (DRIVE_ATA|DRIVE_ATAPI)
#define DRIVE_CAP32 0x04
#define DRIVE_DMA 0x08
#define DRIVE_UDMA 0x10
#define DRIVE_MODE 0x20

uint8_t PIO_mode;
uint8_t DMA_mode;
uint8_t UDMA_mode;
uint8_t state;

struct device ∗ drv_softc;
void ∗ chnl_softc;

};

The bus front-end needs to fill in the following elements ofwdc_softc:
cap supports one or more of the WDC_CAPABILITY flags
nchannels number of channels supported by this controller
channels array ofstruct channel_softcof sizenchannelsproperly initialised

The following elements are optional:
pio_mode
dma_mode
dma_arg
dma_init
dma_start
dma_finish
claim_hw
free_hw

NetBSD 3.0 October 18, 1998 2

WDC (9) NetBSD Kernel Developer’s Manual WDC(9)

The WDC_CAPABILITY_DATA16 and WDC_CAPABILITY_DATA32 flags informswdc whether the con-
troller supports 16- or 32-bit I/O accesses on the data port.If both are set, a test will be done for each drive
using the ATA or ATAPI IDENTIFY command, to automatically select the working mode.

The WDC_CAPABILITY_DMAandWDC_CAPABILITY_UDMAflags are set for controllers supporting the
DMA and Ultra-DMA modes. The bus front-end needs to provide thedma_init(), dma_start() and
dma_finish() functions. dma_init() is called just before issuing a DMA command to the IDE device.
The arguments are, respectively: dma_arg, the channel number, the drive number on this channel, the virtual
address of the DMA buffer, the size of the transfer, and theWDC_DMAflags. dma_start() is called just
after issuing a DMA command to the IDE device. Thearguments are, respectively: dma_arg, the channel
number, the drive number on this channel, and theWDC_DMAflags. dma_finish() is called once the
transfer is complete. The arguments are, respectively: dma_arg, the channel number, the drive number on
this channel, and theWDC_DMAflags. WDC_DMA_READindicates the direction of the data transfer, and
WDC_DMA_POLLindicates if the transfer will use (or used) interrupts.

TheWDC_CAPABILITY_MODEflag means that the bus front-end can program the PIO and DMA modes, so
wdc needs to provide back the supported modes for each drive, and set the drives modes. Thepio_modeand
dma_modeneeds to be set to the highest PIO and DMA mode supported.If WDC_CAPABILITY_UDMAis
set, thendma_modemust be set to the highest Ultra-DMA mode supported.If WDC_CAPABILITY_MODE
is not set,wdc will not attempt to change the current drive’s settings, assuming the host’s firmware has done
it right.

TheWDC_CAPABILITY_HWLOCKflag is set for controllers needing hardware looking before accessing the
I/O ports. If this flag is set, the bus front-end needs to provide theclaim_hw() andfree_hw() functions.
claim_hw() will be called when the driver wants to access the controller ports.The second parameter is set
to 1 when it is possible to sleep waiting for the lock, 0 otherwise.It should return 1 when access has been
granted, 0 otherwise. When access has not been granted and sleep is not allowed, the bus front-end shall call
wdcrestart() with the first argument passed toclaim_hw() as argument. Thisarguments will also be
the one passed tofree_hw(). This function is called once the transfer is complete, so that the lock can be
released.

Accesses to the data port are done by using the bus_space stream functions, unless the
WDC_CAPABILITY_ATA_NOSTREAMor WDC_CAPABILITY_ATAPI_NOSTREAMflags are set.This
should not be used, unless the data bus is not wired properly (which seems common on big-endian systems),
and byte-order needs to be preserved for compatibility with the host’s firmware. Alsonote that the IDE bus
is a little-endian bus, so the bus_space functions used for the bus_space tag passed in thechannel_softchave
to do the appropriate byte-swapping for big-endian systems.

WDC_CAPABILITY_NO_EXTRA_RESETSavoid the controller reset at the end of the disks probe.This reset
is needed for some controllers, but causes problems with some others.

WDC_CAPABILITY_NOIRQtells the driver that this controller doesn’t hav eits interrupt lines wired up use-
fully, so it should always use polled transfers.

The bus front-end needs to fill in the following elements ofchannel_softc:
channel The channel number on the controller
wdc A pointer to the controller’s wdc_softc
cmd_iot, cmd_ioh

Bus-space tag and handle for access to the command block registers (which includes
the 16-bit data port)

ctl_iot, ctl_ioh Bus-space tag and handle for access to the control block registers
ch_queue A pointer to astruct channel_queue. This will hold the queues of outstanding com-

mands for this controller.
The following elements are optional:

NetBSD 3.0 October 18, 1998 3

WDC (9) NetBSD Kernel Developer’s Manual WDC(9)

data32iot, data32ioh
Bus-space tag and handle for 32-bit data accesses. Only needed if
WDC_CAPABILITY_DATA32 is set in the controller’swdc_softc.

ch_queuecan point to a commonstruct channel_queueif the controller doesn’t support concurrent access to
its different channels.If all channels are independent, it is recommended that each channel has its own
ch_queue(for better performance).

The bus-specific front-end can use thewdcprobe() function, with a properly initialisedstruct channel_softc
as argument (wdc can be set to NULL. This allows wdcprobe() to be easily used in bus front-end probe
functions). Thisfunction will return an integer where bit 0 will be set if the master device has been found,
and 1 if the slave device has been found.

The bus-specific attach function has to callwdcattach() for each channel, with a pointer to a properly ini-
tialised channel softcas argument. Thiswill probe devices attached to the IDE channel and attach them.
Once this function returns, thech_drivearray of thechannel_softcwill contain the drive’s capabilities. This
can be used to properly initialise the controller’s mode, or disable a channel without drives.

The elements of interest inata_drive_datasfor a bus front-end are:
drive The drive number
drive_flags Flags indicating the drive capabilities. Anull drive_flagsindicate either that no drive

is here, or that no driver was found for this device.
PIO_mode, DMA_mode, UDMA_mode

the highest supported modes for this drive compatible with the controller’s capabilities.
Needs to be reset to the mode to use by the drive, if known.

drv_softc A pointer to the drive’s softc. Canbe used to print the drive’s name.

drive_flagshandles the following flags:
DRIVE_ATA, DRIVE_ATAPI

Gives the drive type, if any. The shortcut DRIVE can be used to just test the pres-
ence/absence of a drive.

DRIVE_CAP32
This drive works with 32-bit data I/O.

DRIVE_DMA This drive supports DMA.
DRIVE_UDMA

This drive supports Ultra-DMA.
DRIVE_MODE

This drive properly reported its PIO and DMA mode.

Once the controller has been initialised, it has to reset theDRIVE_DMAandDRIVE_UDMA, as well as the
values ofPIO_mode, DMA_modeandUDMA_modeif the modes to be used are not highest ones supported
by the drive.

SEE ALSO
wdc(4), bus_space (9)

CODE REFERENCES
The wdc core functions are implemented insys/dev/ic/wdc.c . Low-level ATA and ATAPI support is
provided bysys/dev/ata_wdc.c andsys/dev/scsipi/atapi_wdc.c respectively.

An example of a simple bus front-end can be found insys/dev/isapnp/wdc_isapnp.c . A more
complex one, with multiple channels and bus-master DMA support issys/dev/pci/pciide.c .
sys/arch/atari/dev/wdc_mb.c makes use of hardware locking, and also provides an example of
bus-front end for a big-endian system, which needs byte-swapping bus_space functions.

NetBSD 3.0 October 18, 1998 4

WORKQUEUE (9) NetBSD Kernel Developer’s Manual WORKQUEUE (9)

NAME
workqueue — simple do-it-in-thread-context framework

DESCRIPTION
The workqueue utility routines are provided to defer work which is needed to be processed in a thread
context.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing the
workqueue subsystem can be found. All pathnames are relative to /usr/src .

Theworkqueue subsystem is implemented within the filesys/kern/subr_workqueue.c .

SEE ALSO
intro (9), workqueue_create (9), workqueue_destroy (9), workqueue_enqueue (9)

NetBSD 3.0 September 15, 2006 1

WORKQUEUE_CREATE (9) NetBSD Kernel Developer’s Manual WORKQUEUE_CREATE (9)

NAME
workqueue_create — Create a workqueue

SYNOPSIS
#include <sys/workqueue.h>

int
workqueue_create(struct workqueue ∗∗ wqp , const char ∗ name ,

void (∗ func)(struct work ∗ , void ∗) , void ∗ arg , pri_t prio , int ipl ,
int flags);

DESCRIPTION
workqueue_create() creates a workqueue. Ittakes the following arguments.

wqp Specify where to store the created workqueue.

name The name of the workqueue.

func The function to be called for eachwork.

arg An argument to be passed as a second argument offunc.

prio The process priority to be used when sleeping to wait requests.

ipl The highest IPL at which this workqueue is used.

flags The value of 0 indicates a standard create operation, however the following flags may be bitwise
ORed together:

WQ_MPSAFESpecifies that the workqueue is multiprocessor safe and does its own locking, other-
wise the kernel lock will be held while work will be processed.

WQ_PERCPUSpecifies that the workqueue should have a separate queue for each CPU, thus the
work could be enqueued on concrete CPUs.

RETURN VALUES
workqueue_create() returns 0 on success. Otherwise, it returns anerrno (2).

SEE ALSO
errno (2), condvar (9), intro (9), workqueue (9)

NetBSD 3.0 August 5, 2007 1

WORKQUEUE_DESTROY (9) NetBSDKernel Developer’s Manual WORKQUEUE_DESTROY (9)

NAME
workqueue_destroy — Destroy a workqueue

SYNOPSIS
#include <sys/workqueue.h>

void
workqueue_destroy(struct workqueue ∗ wq);

DESCRIPTION
workqueue_destroy() destroys a workqueue and frees associated resources.The caller should ensure
that the workqueue has no work enqueued beforehand.

SEE ALSO
intro (9), workqueue (9)

NetBSD 3.0 September 15, 2006 1

WORKQUEUE_ENQUEUE (9) NetBSD Kernel Developer’s Manual WORKQUEUE_ENQUEUE (9)

NAME
workqueue_enqueue — Enqueue a work for later processing

SYNOPSIS
#include <sys/workqueue.h>

void
workqueue_enqueue(struct workqueue ∗ wq , struct work ∗ wk ,

struct cpu_info ∗ ci);

DESCRIPTION
Enqueue the workwk into the workqueuewq.

If the WQ_PERCPUflag was set on workqueue creation, theci argument may be used to specify the CPU on
which the work should be enqueued. Also it may beNULL, then work will be enqueued on the current CPU.
If WQ_PERCPUflag was not set,ci must beNULL.

The enqueued work will be processed in a thread context. A work must not be enqueued again until the call-
back is called by theworkqueue (9) framework.

SEE ALSO
intro (9), workqueue (9)

NetBSD 3.0 August 8, 2007 1

WSCONS (9) NetBSD Kernel Developer’s Manual WSCONS(9)

NAME
wscons — machine-independent console support

DESCRIPTION
Thewscons driver provides a machine-independent framework for workstation consoles. It consists of sev-
eral cooperating modules:

• display adapters (seewsdisplay (9))

• keyboards (seewskbd (9))

• pointers and mice (seewsmouse(9))

• input event multiplexor

• font handling (seewsfont (9))

• terminal emulation (seewsdisplay (9))

The wscons framework replaces the old rcons workstation framework and the various machine-dependent
console implementations.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent wscons subsystem can be found. All pathnames are relative to /usr/src .

The wscons subsystem is implemented within the directorysys/dev/wscons .

SEE ALSO
wscons (4), cons (9), driver (9), intro (9), wsdisplay (9), wsfont (9), wskbd (9), wsmouse(9)

NetBSD 3.0 October 7, 2001 1

WSDISPLAY (9) NetBSDKernel Developer’s Manual WSDISPLAY (9)

NAME
wsdisplay, wsdisplay_switchtoconsole, wsdisplay_cnattach, wsdisplaydevprint,
wsemuldisplaydevprint — wscons display support

SYNOPSIS
#include <dev/wscons/wsconsio.h>
#include <dev/wscons/wsdisplayvar.h>
#include <dev/wscons/wsemulvar.h>
#include <dev/wscons/wsemul_vt100var.h>

void
wsdisplay_switchtoconsole();

void
wsdisplay_cnattach(const struct wsscreen_descr ∗ type , void ∗ cookie ,

int ccol , int crow , long defattr);

void
wsemul_xxx_cnattach(const struct wsscreen_descr ∗ type , void ∗ cookie ,

int ccol , int crow , long defattr);

int
wsdisplaydevprint(void ∗ aux , const char ∗ pnp);

int
wsemuldisplaydevprint(void ∗ aux , const char ∗ pnp);

DESCRIPTION
The wsdisplay module is a component of thewscons (9) framework to provide machine-independent
display support. Most of the support is provided by thewsdisplay (4) device driver, which must be a child
of the hardware device driver.

The wscons display interface is complicated by the fact that there are two different interfaces. Thefirst inter-
face corresponds to the simple bit-mapped display which doesn’t provide terminal-emulation and console
facilities. Thesecond interface provides machine-independent terminal emulation for displays that can sup-
port glass-tty terminal emulations.These are character-oriented displays, with row and column numbers
starting at zero in the upper left hand corner of the screen. Display drivers which cannot emulate terminals
use the first interface. Inmost cases, the low-level hardware driver can use therasops (9) interface to pro-
vide enough support to allow glass-tty terminal emulation. If the display is not the console, terminal emula-
tion does not make sense and the display operates using the bit-mapped interface.

The wscons framework allows concurrent displays to be active. It also provides support for multiple screens
for each display and therefore allows a virtual terminal on each screen. Multiple terminal emulations and
fonts can be active at the same time allowing different emulations and fonts for each screen.

Font manipulation facilities for the terminal emulation interface are available through thewsfont (9) mod-
ule.

DATA T YPES
Display drivers providing support for wscons displays will make use of the following data types:

struct wsdisplay_accessops
A structure used to specify the display access functions invoked by userland program which
require direct device access, such as X11. All displays must provide this structure and pass it to
thewsdisplay (4) child device. It has the following members:

NetBSD 3.0 April 15, 2006 1

WSDISPLAY (9) NetBSDKernel Developer’s Manual WSDISPLAY (9)

int (∗ ioctl)(void ∗ v, void ∗ vs, u_long cmd,
void ∗ data, int flag, struct lwp ∗ l);

paddr_t (∗ mmap)(void ∗ v, void ∗ vs, off_t off, int prot);
int (∗ alloc_screen)(void ∗ ,

const struct wsscreen_descr ∗ , v oid ∗∗ ,
int ∗ , i nt ∗ , l ong ∗);

void (∗ free_screen)(void ∗ , v oid ∗);
int (∗ show_screen)(void ∗ , v oid ∗ , i nt,

void (∗)(), void ∗);
int (∗ load_font)(void ∗ , v oid ∗ ,

struct wsdisplay_font ∗);
void (∗ pollc)(void ∗ , i nt);
void (∗ scroll)(void ∗ , v oid ∗ , i nt);

Theioctl member defines the function to be called to perform display-specific ioctl calls.The
mmap member defines the function for mapping a part of the display device into user address
space. Thealloc_screen member defines a function for allocating a new screen which can
be used as a virtual terminal.Thefree_screen member defines a function for de-allocating a
screen. Theshow_screen member defines a function for mapping a screen onto the physical
display. This function is used for between switching screens.Theload_font member defines
a function for loading a new font into the display. The pollc member defines a function for
polling the console.The scroll member defines a function for scrolling the contents of the
display.

There is avoid ∗ cookie provided by the display driver associated with these functions, which
is passed to them when they are invoked.

The void ∗ vs cookie, passed toioctl() andmmap(), points to the virtual screen on which
these operations were executed.

struct wsdisplaydev_attach_args
A structure used to attach thewsdisplay (4) child device for the simple bit-mapped interface.
If the full terminal-emulation interface is to be used, thenstruct wsemuldisplaydev_attach_args
should be used instead. It has the following members:

const struct wsdisplay_accessops ∗ accessops;
void ∗ accesscookie;

struct wsemuldisplaydev_attach_args
A structure used to attach thewsdisplay (4) child device for the full terminal emulation inter-
face. If the simple bit-mapped interface is to be used, thenstruct wsdisplaydev_attach_args
should be used instead. It has the following members:

int console;
const struct wsscreen_list ∗ scrdata;
const struct wsdisplay_accessops ∗ accessops;
void ∗ accesscookie;

struct wsdisplay_emulops
A structure used to specify the display emulation functions.All displays intending to provide ter-
minal emulation must provide this structure and pass it to thewsdisplay (4) child device. It
has the following members:

void (∗ cursor)(void ∗ c, int on, int row, int col);
int (∗ mapchar)(void ∗ , i nt, unsigned int ∗);
void (∗ putchar)(void ∗ c, int row, int col,

NetBSD 3.0 April 15, 2006 2

WSDISPLAY (9) NetBSDKernel Developer’s Manual WSDISPLAY (9)

u_int uc, long attr);
void (∗ copycols)(void ∗ c, int row, int srccol,

int dstcol, int ncols);
void (∗ erasecols)(void ∗ c, int row, int startcol,

int ncols, long);
void (∗ copyrows)(void ∗ c, int srcrow, int dstrow,

int nrows);
void (∗ eraserows)(void ∗ c, int row, int nrows, long);
int (∗ allocattr)(void ∗ c, int fg, int bg, int flags,

long ∗);
void (∗ replaceattr)(void ∗ c, long oldattr,

long newattr);

Thecursor member defines a function for painting (or unpainting, depending on theon param-
eter) the cursor at the specified position.Themapchar member defines a function for changing
the character mapped at a given position in the character table.Theputchar member defines a
function for writing a character on the screen, given its position and attribute. Thecopycols
member defines a function for copying a set of columns within the same line.Theerasecols
member defines a function for clearing a set of columns in a line, filling the space with the given
attribute. Thecopyrows member defines a function for copying a set of complete rows. The
eraserows member defines a function for clearing a set of complete rows, filling the space
with the given attribute. Theallocattr member defines a function for converting an attribute
specification given by its foreground color, background color and flags, to the internal representa-
tion used by the underlying graphics driver. Thereplaceattr member defines a function for
replacing an attribute by another one across the whole visible part of the screen; this function is
optional.

There is avoid ∗ cookie provided by the display driver associated with these functions, which
is passed to them when they are invoked.

struct wsscreen_descr
A structure passed to wscons by the display driver to describe a screen. All displays which can
operate as a console must provide this structure and pass it to thewsdisplay (4) child device.
It contains the following members:

char ∗ name;
int ncols, nrows;
const struct wsdisplay_emulops ∗ textops;
int fontwidth, fontheight;
int capabilities;

Thecapabilitiesmember is a set of flags describing the screen capabilities. It can contain the fol-
lowing flags:

WSSCREEN_WSCOLORS
minimal color capability

WSSCREEN_REVERSE can display reversed
WSSCREEN_HILIT can highlight (however)
WSSCREEN_BLINK can blink
WSSCREEN_UNDERLINE

can underline

struct wsscreen_list
A structure passed to wscons by the display driver to tell about its capabilities. It contains the
following members:

NetBSD 3.0 April 15, 2006 3

WSDISPLAY (9) NetBSDKernel Developer’s Manual WSDISPLAY (9)

int nscreens;
const struct wsscreen_descr ∗∗ screens;

struct wscons_syncops
A structure passed to wscons by the display driver describing the interface for external screen
switching/process synchronization. This structure is optional and only required by displays oper-
ating with terminal emulation and intending to support multiple screens.It contains the follow-
ing members:

int (∗ detach)(void ∗ , i nt, void (∗)(), void ∗);
int (∗ attach)(void ∗ , i nt, void (∗)(), void ∗);
int (∗ check)(void ∗);
void (∗ destroy)(void ∗);

FUNCTIONS
wsdisplay_switchtoconsole()

Switch the console display to its first screen.

wsdisplay_cnattach(type , cookie , ccol , crow , defattr)
Attach this display as the console input by specifying the number of columnsccol and number
of rowscrows. The argumentdefattr specifies the default attribute (color) for the console.

wsemul_xxx_cnattach(type , cookie , ccol , crow , defattr)
Attach this display as the console with terminal emulation described by thexxx and specifying
the number of columnsccol and number of rows crows. The argumentdefattr specifies
the default attribute (color) for the console.Different terminal emulations can be active at the
same time on one display.

wsdisplaydevprint(aux , pnp)
The default wsdisplay printing routine used byconfig_found(). (seeautoconf (9)).

wsemuldisplaydevprint(aux , pnp)
The default wsemul printing routine used byconfig_found(). (seeautoconf (9)).

AUTOCONFIGURATION
Display drivers which want to use the wsdisplay module must be a parent to thewsdisplay (4) device and
provide an attachment interface. To attach thewsdisplay (4) device, the display driver must allocate and
populate awsdisplaydev_attach_args structure with the supported operations and callbacks and call
config_found() to perform the attach (seeautoconf (9)).

Display drivers which want to use the wscons terminal emulation module must be a parent to the
wsdisplay (4) device and provide awsemuldisplaydev_attach_args structure instead of the stan-
dardwsdisplaydev_attach_args to config_found() to perform the attach.If the display is not
the console the attachment is the same as wsdisplaydev_attach_args.

OPERATION
If the display belongs to the system console, it must describe the default screen by invoking
wsdisplay_cnattach() at console attach time.

All display manipulation is performed by the wscons interface by using the callbacks defined in the
wsdisplay_accessopsstructure. Theioctl() function is called by the wscons interface to perform display-
specific ioctl operations (seeioctl (2)). Theargumentcmd to theioctl() function specifies the specific
command to perform using the datadata. Valid commands are listed in
sys/dev/wscons/wsconsio.h and documented inwsdisplay (4). Operationsfor terminal emula-
tion are performed using the callbacks defined in thewsdisplay_emulopsstructure.

NetBSD 3.0 April 15, 2006 4

WSDISPLAY (9) NetBSDKernel Developer’s Manual WSDISPLAY (9)

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent wscons subsystem can be found. All pathnames are relative to /usr/src .

The wscons subsystem is implemented within the directorysys/dev/wscons . Thewsdisplay module
itself is implemented within the filesys/dev/wscons/wsdisplay.c . The terminal emulation support
is implemented within the filessys/dev/wscons/wsemul_ ∗ . ioctl (2) operations are listed in
sys/dev/wscons/wsconsio.h .

SEE ALSO
ioctl (2), wsdisplay (4), autoconf (9), driver (9), intro (9), rasops (9), wsfont (9), wskbd (9),
wsmouse(9)

NetBSD 3.0 April 15, 2006 5

WSFONT (9) NetBSD Kernel Developer’s Manual WSFONT(9)

NAME
wsfont, wsfont_init, wsfont_matches, wsfont_find, wsfont_add, wsfont_remove,
wsfont_enum, wsfont_lock, wsfont_unlock, wsfont_getflg, wsfont_map_unichar —
wscons font support

SYNOPSIS
#include <dev/wscons/wsconsio.h>
#include <dev/wsfont/wsfont.h>

void
wsfont_init(void);

int
wsfont_matches(struct wsdisplay_font ∗ font , const char ∗ name , int width ,

int height , int stride);

int
wsfont_find(const char ∗ name , int width , int height , int stride ,

int bitorder , int byteorder);

int
wsfont_add(struct wsdisplay_font ∗ font , int copy);

int
wsfont_remove(int cookie);

void
wsfont_enum(void (∗ callback)(const char ∗ , int, int, int));

int
wsfont_lock(int cookie , struct wsdisplay_font ∗∗ ptr);

int
wsfont_unlock(int cookie);

int
wsfont_getflg(int cookie , int ∗ flg , int ∗ lc);

int
wsfont_map_unichar(struct wsdisplay_font ∗ font , int c);

DESCRIPTION
Thewsfont module is a component of thewscons (9) framework to provide access to display fonts.Fonts
may be loaded dynamically into the kernel or included statically in the kernel at compile time. Display driv-
ers which emulate a glass-tty console on a bit-mapped display can add, remove and find fonts for use by
device-dependent blitter operations.

The primary data type for manipulating fonts is thewsdisplay_font structure in
dev/wscons/wsconsio.h :

struct wsdisplay_font {
char ∗ name; / ∗ font name ∗ /
int firstchar;
int numchars; / ∗ size of font table ∗ /
int encoding; / ∗ font encoding
u_int fontwidth; / ∗ character width ∗ /
u_int fontheight; / ∗ character width ∗ /
u_int stride;

NetBSD 3.0 October 7, 2001 1

WSFONT (9) NetBSD Kernel Developer’s Manual WSFONT(9)

int bitorder;
int byteorder;
void ∗ data; / ∗ pointer to font table ∗ /

};

The maximum font table size isWSDISPLAY_MAXFONTSZ.

Thewsfont framework supports fonts with the following encodings:

WSDISPLAY_FONTENC_ISO
ISO-encoded fonts.

WSDISPLAY_FONTENC_IBM
IBM-encoded fonts commonly available for IBM CGA, EGA and VGA display adapters.

WSDISPLAY_FONTENC_PCVT
PCVT-encoding fonts distributed as part of the old PCVT terminal emulation driver.

WSDISPLAY_FONTENC_ISO7
ISO-encoded Greek fonts.

WSDISPLAY_FONTENC_ISO2
ISO-encoded East European fonts.

FUNCTIONS
wsfont_init(void)

Initialise the font list with the built-in fonts.

wsfont_matches(font , name , width , height , stride)
Matches the fontfont with the specificationsname, width, height andstride. Return
zero if not matched and non-zero if matched.

wsfont_find(name , width , height , stride , bitorder , byteorder)
Find the font calledname from the fonts loaded into the kernel. Thefont aspect is specified by
width, height, and stride. If wsfont_find() is called with any of the parameters as 0,
it indicates that we don’t care about that aspect of the font.If the font is found a (nonnegative-
valued) cookie is returned which can used with the other functions.

The bitorder andbyteorder arguments are the bit order and byte order required.Valid
values are:

WSDISPLAY_FONTORDER_KNOWN
The font is in known ordered format and doesn’t need converting.

WSDISPLAY_FONTORDER_L2R
The font is ordered left to right.

WSDISPLAY_FONTORDER_R2L
The font is ordered right to left.

When more flexibility is required,wsfont_enum() should be used.

wsfont_add(font , copy)
Add a fontfont to the font list. If the copy argument is non-zero, then the font is physically
copied, otherwise a reference to the original font is made.

wsfont_remove(cookie)
Remove the font specified bycookie from the font list. The value of cookie was returned by
wsfont_add().

NetBSD 3.0 October 7, 2001 2

WSFONT (9) NetBSD Kernel Developer’s Manual WSFONT(9)

wsfont_enum(callback)
Enumerate the list of fonts.For each font in the font list, thecallback function argument is
called with the arguments specifying the font name, width, height and stride.

wsfont_lock(cookie , ptr)
Lock access to the font specified bycookie so that it cannot be unloaded from the kernel while
is being used. If the bit or byte order of the font to be locked differs from what has been
requested withwsfont_find() then the glyph data will be modified to match.At this point it
may be necessary forwsfont_lock() to make a copy of the font data; this action is transparent
to the caller. A later call towsfont_unlock() will free resources used by temporary copies.

The address of the wsdisplay_font pointer for the specified font is return in theptr argument.

wsfont_lock() returns zero on success, or an error code on failure.

wsfont_unlock(cookie)
Unlock the font specified bycookie. Returns zero on success, or an error code on failure.

wsfont_map_unichar(font , c)
Remap the unicode characterc to glyph for fontfont. Returns the glyph or success or -1 on
error.

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent wsfont subsystem can be found. All pathnames are relative to /usr/src .

The wscons subsystem is implemented within the directorysys/dev/wscons . The wsfont subsystem
itself is implemented within the filesys/dev/wsfont/wsfont.c .

SEE ALSO
wsfont (4), wsfontload (8), autoconf (9), driver (9), intro (9), wscons (9), wsdisplay (9)

NetBSD 3.0 October 7, 2001 3

WSKBD (9) NetBSD Kernel Developer’s Manual WSKBD(9)

NAME
wskbd, wskbd_input, wskbd_rawinput, wskbd_cnattach, wskbd_cndetach,
wskbddevprint — wscons keyboard support

SYNOPSIS
#include <dev/wscons/wsconsio.h>
#include <dev/wscons/wskbdvar.h>
#include <dev/wscons/wsksymdef.h>
#include <dev/wscons/wsksymvar.h>

void
wskbd_input(struct device ∗ kbddev , u_int type , int value);

void
wskbd_rawinput(struct device ∗ kbddev , u_char ∗ buf , int len);

void
wskbd_cnattach(const struct wskbd_consops ∗ consops , void ∗ conscookie ,

const struct wskbd_mapdata ∗ mapdata);

void
wskbd_cndetach();

int
wskbddevprint(void ∗ aux , const char ∗ pnp);

DESCRIPTION
Thewskbd module is a component of thewscons (9) framework to provide machine-independent keyboard
support. Mostof the support is provided by thewskbd (4) device driver, which must be a child of the hard-
ware device driver.

DATA T YPES
Ke yboard drivers providing support for wscons keyboards will make use of the following data types:

kbd_t An opaque type describing keyboard properties.

keysym_t
The wscons keyboard-independent symbolic representation of the keypress.

struct wskbd_accessops
A structure used to specify the keyboard access functions. All keyboards must provide this struc-
ture and pass it to thewskbd (4) child device. It has the following members:

int (∗ enable)(void ∗ , i nt);
void (∗ set_leds)(void ∗ , i nt);
int (∗ ioctl)(void ∗ v, u_long cmd, void ∗ data,

int flag, struct lwp ∗ l);

The enable member defines the function to be called to enable keypress passing to wscons.
Theset_leds member defined the function to be called to set the LEDs on the keyboard. The
ioctl member defines the function to be called to perform keyboard-specific ioctl calls.

There is avoid ∗ cookie provided by the keyboard driver associated with these functions,
which is passed to them when they are invoked.

struct wskbd_consops
A structure used to specify the keyboard console operations. All keyboards which can operate as
a console must provide this structure and pass it to thewskbd (4) child device. If the keyboard

NetBSD 3.0 December 20, 2005 1

WSKBD (9) NetBSD Kernel Developer’s Manual WSKBD(9)

cannot be a console, it is not necessary to specify this structure. It has the following members:

void (∗ getc)(void ∗ , u _int ∗ , i nt ∗);
void (∗ pollc)(void ∗ , i nt);
void (∗ bell)(void ∗ , u _int, u_int, u_int);

There is avoid ∗ cookie provided by the keyboard driver associated with these functions,
which is passed to them when they are invoked.

struct wscons_keydesc
A structure used to describe a keyboard mapping table to convert keyboard-specific keycodes to
wscons keysyms. Ithas the following members:

kbd_t name; / ∗ name of this map ∗ /
kbd_t base; / ∗ map this one is based on ∗ /
int map_size; / ∗ size of map ∗ /
const keysym_t ∗ map; / ∗ the map itself ∗ /

struct wskbd_mapdata
A structure used to describe the keyboard layout and operation to interpret the keyboard layout.
it contains the following members:

const struct wscons_keydesc ∗ keydesc;
kbd_t layout;

struct wskbddev_attach_args
A structure used to attach thewskbd (4) child device. It has the following members:

int console;
const struct wskbd_mapdata ∗ keymap;
const struct wskbd_accessops ∗ accessops;
void ∗ accesscookie;

Keymaps
Ke ymaps are a dense stream ofkeysym_t. A declaration has the following fields:

pos [cmd] normal [shift] [altgr] [shift-altgr]

The fields have the following meanings:

pos Always specified as KC(pos) and starts the description of keypos.
cmd If the command modifier (KS_Cmd_XXX) is active, the optional commandcmd is

invoked.
normal The keysym if no modifiers are active.
shift The keysym if the shift modifier is active.
altgr The keysym if the alt-gr modifier is active.
shift-altgr The keysym if the shift-alt-gr modifier is active.

If the keysym after pos is not KS_Cmd_XXX, thencmd is empty. The shift, altgr and
shift-altgr fields are determined from previous fields if they are not specified.Therefore, there are four
valid keysym declarations:

pos [cmd] normal

pos [cmd] normal shift

pos [cmd] normal shift altgr

NetBSD 3.0 December 20, 2005 2

WSKBD (9) NetBSD Kernel Developer’s Manual WSKBD(9)

pos [cmd] normal shift altgr shift-altgr

FUNCTIONS
wskbd_input(kbddev , type , value)

Pass the keypress of valuevalue and typetype to wscons keyboard driver. Valid values of
type are:

WSCONS_EVENT_KEY_UP
Ke y released.

WSCONS_EVENT_KEY_DOWN
Ke y pressed.

wskbd_rawinput(kbddev , buf , len)
Pass the raw keypress in the buffer buf to the wscons keyboard driver. The buffer islen bytes
long. Thisfunction should only be called if the kernel optionWSDISPLAY_COMPAT_RAWKBD
is enabled.

wskbd_cnattach(consops , conscookie , mapdata)
Attach this keyboard as the console input by specifying the console operationsconsops and the
keyboard mapping table information inmapdata. The functions specified inconsops will be
called withconscookie as the first argument.

wskbd_cndetach()
Detach this keyboard as the console input.

wskbddevprint(aux , pnp)
The default wskbd printing routine used byconfig_found(). (seeautoconf (9)).

AUTOCONFIGURATION
Ke yboard drivers which want to use the wskbd module must be a parent to thewskbd (4) device and provide
an attachment interface. To attach thewskbd (4) device, the keyboard driver must allocate and populate a
wskbddev_attach_args structure with the supported operations and callbacks and call
config_found() to perform the attach (seeautoconf (9)). The keymap member points to the
wskbd_mapdatastructure which describes the keycode mapping operations.The accessops member
points to thewskbd_accessopsstructure which describes the keyboard access operations.The console
member is a boolean to indicate to wscons whether this keyboard will be used for console input.

OPERATION
If the keyboard belongs to the system console, it must register thewskbd_consops structure specifying
the console operations viawskbd_cnattach() at console attach time.

When a keypress arrives from the keyboard, the keyboard driver must perform any necessary character
decoding to wscons events and pass the events to wscons viawskbd_input(). If the kernel is compiled
with the optionWSDISPLAY_COMPAT_RAWKBD, then the keyboard driver must also pass the raw keyboard
data to wscons viawskbd_rawinput().

The wscons framework calls back into the hardware driver by inv oking the functions that are specified in the
accessopsstructure. Theenable() andset_leds() functions are relatively simple and self-explanatory.
The ioctl() function is called by the wscons interface to perform keyboard-specific ioctl operations (see
ioctl (2)). Theargumentcmd to theioctl() function specifies the specific command to perform using
the datadata. Valid commands are listed insys/dev/wscons/wsconsio.h .

NetBSD 3.0 December 20, 2005 3

WSKBD (9) NetBSD Kernel Developer’s Manual WSKBD(9)

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent wscons subsystem can be found. All pathnames are relative to /usr/src .

The wscons subsystem is implemented within the directorysys/dev/wscons . Thewskbd module itself
is implement within the filessys/dev/wscons/wskbd.c and sys/dev/wscons/wskbdutil.c .
ioctl (2) operations are listed insys/dev/wscons/wsconsio.h .

SEE ALSO
ioctl (2), autoconf (9), driver (9), intro (9), wsdisplay (9), wsmouse(9)

NetBSD 3.0 December 20, 2005 4

WSMOUSE (9) NetBSD Kernel Developer’s Manual WSMOUSE(9)

NAME
wsmouse, wsmouse_input, wsmousedevprint — wscons mouse support

SYNOPSIS
#include <dev/wscons/wsconsio.h>
#include <dev/wscons/wsmousevar.h>

void
wsmouse_input(struct device ∗ msdev , u_int btns , int x , int y , int z , int w ,

u_int flags);

int
wsmousedevprint(void ∗ aux , const char ∗ pnp);

DESCRIPTION
Thewsmouse module is a component of thewscons (9) framework to provide machine-independent mouse
support. Mostof the support is provided by thewsmouse(4) device driver, which must be a child of the
hardware device driver.

DATA T YPES
Mouse drivers providing support for wscons pointer devices will make use of the following data types:

struct wsmouse_accessops
A structure used to specify the mouse access functions. All pointer devices must provide this
structure and pass it to thewsmouse(4) child device. It has the following members:

int (∗ enable)(void ∗);
int (∗ ioctl)(void ∗ v, u_long cmd, void ∗ data,

int flag, struct lwp ∗ l);
void (∗ disable)(void ∗);

Theenable member defines the function to be called to enable monitoring pointer movements
and passing these events to wscons.The disable member defines the function to disable
movement events. Theioctl member defines the function to be called to perform mouse-spe-
cific ioctl calls.

There is avoid ∗ cookie provided by the mouse driver associated with these functions, which
is passed to them when they are invoked.

struct wsmousedev_attach_args
A structure used to attach thewsmouse(4) child device. It has the following members:

const struct wsmouse_accessops ∗ accessops;
void ∗ accesscookie;

FUNCTIONS
wsmouse_input(msdev , btns , x , y , z , w , flags)

Callback from the mouse driver to the wsmouse interface driver. Arguments are as follows:
msdev This is thestruct device pointer passed fromconfig_found() on attaching the

child wsmouse(4) to specify the mouse device.
btns This specifies the current button status. Bits for pressed buttons (which will cause the

WSCONS_EVENT_MOUSE_DOWNev ent onwsmouse(4) device) should be set, and bits
for released buttons (which will cause theWSCONS_EVENT_MOUSE_UPev ent) should
be zero. The left most button state should be in LSB, i.e. for typical three button mouse,
the left button is 0x01, the middle button is 0x02, and the right button is 0x04.

NetBSD 3.0 November 12, 2006 1

WSMOUSE (9) NetBSD Kernel Developer’s Manual WSMOUSE(9)

x Absolute or relative X-axis value to specify the pointer coordinate.Rightward (moving
the mouse right) is positive.

y Absolute or relative Y-axis value to specify the pointer coordinate.Upward (moving the
mouse forward) is positive. Note that this aspect is opposite from the one used in the X
server dix layer.

z Absolute or relative Z-axis value to specify the pointer coordinate. Usually this axis is
used for the wheel. Downward (turning the wheel backward) is positive.

w Absolute or relative W-axis value to specify the pointer coordinate.Usually this axis
would be used for the horizontal component of the wheel.

flags This argument specifies whether the pointer device and the measurement of thex, y, z,
andw axes is in relative or absolute mode.Valid values forflags are:

WSMOUSE_INPUT_DELTA
Relative mode.

WSMOUSE_INPUT_ABSOLUTE_X
Absolute mode inx axis.

WSMOUSE_INPUT_ABSOLUTE_Y
Absolute mode iny axis.

WSMOUSE_INPUT_ABSOLUTE_Z
Absolute mode inz axis.

WSMOUSE_INPUT_ABSOLUTE_W
Absolute mode inw axis.

wsmousedevprint(aux , pnp)
The default wsmouse printing routine used byconfig_found(). (seeautoconf (9)).

AUTOCONFIGURATION
Mouse drivers which want to use the wsmouse module must be a parent to thewsmouse(4) device and pro-
vide an attachment interface. To attach thewsmouse(4) device, the mouse driver must allocate and populate
a wsmousedev_attach_args structure with the supported operations and callbacks and call
config_found() to perform the attach (seeautoconf (9)).

OPERATION
When a mouse-movement event is received, the device driver must perform any necessary movement decod-
ing to wscons events and pass the events to wscons viawsmouse_input().

The wscons framework calls back into the hardware driver by inv oking the functions that are specified in the
accessopsstructure. Theenable() anddisable() functions are relatively simple and self-explanatory.
The ioctl() function is called by the wscons interface to perform mouse-specific ioctl operations (see
ioctl (2)). Theargumentcmd to theioctl() function specifies the specific command to perform using
the datadata. Valid commands are listed insys/dev/wscons/wsconsio.h .

CODE REFERENCES
This section describes places within theNetBSD source tree where actual code implementing or using the
machine-independent wscons subsystem can be found. All pathnames are relative to /usr/src .

The wscons subsystem is implemented within the directorysys/dev/wscons . The wsmouse module
itself is implement within the filesys/dev/wscons/wsmouse.c . ioctl (2) operations are listed in
sys/dev/wscons/wsconsio.h .

NetBSD 3.0 November 12, 2006 2

WSMOUSE (9) NetBSD Kernel Developer’s Manual WSMOUSE(9)

SEE ALSO
ioctl (2), pms(4), wscons (4), wsmouse(4), autoconf (9), driver (9), intro (9), wscons (9),
wsdisplay (9), wskbd (9)

NetBSD 3.0 November 12, 2006 3

